WO2023162985A1 - Vacuum discharge system - Google Patents

Vacuum discharge system Download PDF

Info

Publication number
WO2023162985A1
WO2023162985A1 PCT/JP2023/006256 JP2023006256W WO2023162985A1 WO 2023162985 A1 WO2023162985 A1 WO 2023162985A1 JP 2023006256 W JP2023006256 W JP 2023006256W WO 2023162985 A1 WO2023162985 A1 WO 2023162985A1
Authority
WO
WIPO (PCT)
Prior art keywords
pump
exhaust
pumps
turbo
booster
Prior art date
Application number
PCT/JP2023/006256
Other languages
French (fr)
Japanese (ja)
Inventor
正幸 橋本
好伸 大立
靖 前島
勉 高阿田
Original Assignee
エドワーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エドワーズ株式会社 filed Critical エドワーズ株式会社
Publication of WO2023162985A1 publication Critical patent/WO2023162985A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B37/00Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00
    • F04B37/10Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use
    • F04B37/14Pumps having pertinent characteristics not provided for in, or of interest apart from, groups F04B25/00 - F04B35/00 for special use to obtain high vacuum
    • F04B37/16Means for nullifying unswept space
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D25/00Pumping installations or systems
    • F04D25/16Combinations of two or more pumps ; Producing two or more separate gas flows

Definitions

  • the present invention relates to an evacuation system.
  • ALD Atomic Layer Deposition, atomic layer deposition technology
  • CVD Chemical Vapor Deposition, chemical vapor deposition technology
  • Etching for semiconductor manufacturing and the like is usually performed with the substrate placed in the chamber and the chamber in a vacuum atmosphere, so a vacuum exhaust system connected to the chamber is required in the semiconductor manufacturing process.
  • the vacuum pumping system includes back pumps (dry vacuum pumps), booster pumps (mechanical booster pumps), and turbomolecular pumps that are connected to the exhaust pipes to evacuate the chamber. It is configured including a device.
  • a turbo-molecular pump is composed of a turbo-molecular pump mechanism composed of multiple stages of rotary blades and multiple stages of fixed blades on the exhaust upstream side, and a screw groove pump provided on the exhaust downstream side.
  • a clean room CR is provided on the upper floor UF, and chambers 501A, 501B, 501C, . . . , 502C .
  • the booster pumps 503A, . . . may be installed inside the clean room CR.
  • the chambers 501A . . . turbo molecular pumps 502A .
  • Valves (first valves 507A, 507B, 507C . . . , second valves 508A, 508B, 508C . 509A, 509B, 509C..., fourth valves 510A, 510B, 510C...) are provided.
  • the reason why the vacuum exhaust system 500 is installed in such an arrangement is that a high degree of cleanliness is required when forming a thin film, and the clean room equipment and maintenance costs are high to achieve this. This is to reduce the cost by minimizing the area of the clean room.
  • the booster pumps 503A and back pumps 504A are arranged directly under the chambers 501A and the like because the lengths of the exhaust pipes 505A and the roughing pipes 506A are reduced. This is to make the conductance as large as possible by shortening it.
  • An object of the present invention is to provide an evacuation system that can effectively utilize space.
  • the vacuum exhaust system of the present invention includes a turbo-molecular pump mechanism that exhausts gas molecules from an exhaust port by interaction between multiple stages of rotor blades and multiple stages of fixed blades. a molecular pump; an exhaust pipe having an integrated pipe section to which each of the exhaust ports is connected; and a back pump connected to the exhaust pipe for exhausting the gas molecules through the integrated pipe section.
  • a booster pump that assists the exhaust performance of the back pump is connected between the integrated pipe portion of the exhaust pipe and the back pump, and the number of the booster pumps is equal to the number of the turbo molecule Preferably less than the number of pumps.
  • the booster pump is arranged side by side with respect to the turbo-molecular pump, and the integrated piping section is arranged at a position avoiding directly under the turbo-molecular pump.
  • a backup booster pump that assists the exhaust performance of the back pump is further connected between the integrated pipe portion and the back pump in the exhaust pipe.
  • a backup pump for exhausting the gas molecules is further connected to the exhaust pipe through the integrated pipe section.
  • the turbomolecular pump does not have a thread groove pump mechanism, so the product is less likely to accumulate in the pump.
  • a reduction in exhaust performance of the turbo-molecular pump due to the omission of the thread groove pump mechanism can be compensated for by the back pump.
  • conventional exhaust pipes connect turbo-molecular pumps and back pumps to each chamber, respectively, and the number of chambers is the same as the number of turbo-molecular pumps and back pumps.
  • the piping has an integrated piping section to which each of a plurality of turbomolecular pumps is connected, and the back pump exhaust is configured to be performed via the integrated piping section, so the number of back pumps can be reduced. can be done. Therefore, the space that was conventionally required for installing the back pump can be saved, and the space required for installing the manufacturing equipment can be effectively utilized.
  • FIG. 1 is a longitudinal sectional view schematically showing an embodiment of a vacuum pump included in an evacuation system according to the present invention
  • FIG. 2 is a circuit diagram of an amplifier circuit of the vacuum pump shown in FIG. 1
  • FIG. 4 is a time chart showing control when a current command value is greater than a detected value
  • 4 is a time chart showing control when a current command value is smaller than a detected value
  • 1 schematically shows an embodiment of an evacuation system according to the invention
  • FIG. 6A and 6B are diagrams schematically showing the periphery of the integrated piping section of the evacuation system shown in FIG. 5, where (a) is a plan view and (b) is a side view
  • FIG. 6 is a diagram showing a modification of the evacuation system shown in FIG. 5
  • 1 is a diagram schematically showing a conventional evacuation system
  • FIG. 1 A longitudinal sectional view of this turbo-molecular pump 100 is shown in FIG.
  • the turbomolecular pump 100 is provided with an intake port 101 at the upper end of a cylindrical outer cylinder 127 extending along the central axis CA.
  • a rotating body 103 having a plurality of rotating blades 102 (102a, 102b, 102c, . is provided inside the outer cylinder 127.
  • a rotor shaft 113 is attached to the center of the rotor 103, and the rotor shaft 113 is levitated in the air and position-controlled by, for example, a 5-axis control magnetic bearing.
  • the rotor 103 is generally made of metal such as aluminum or aluminum alloy.
  • the upper radial electromagnet 104 has four electromagnets arranged in pairs on the X-axis and the Y-axis.
  • Four upper radial sensors 107 are provided adjacent to the upper radial electromagnets 104 and corresponding to the upper radial electromagnets 104, respectively.
  • the upper radial sensor 107 is, for example, an inductance sensor or an eddy current sensor having a conductive winding, and detects the position of the rotor shaft 113 based on the change in the inductance of this conductive winding, which changes according to the position of the rotor shaft 113 . to detect
  • the upper radial sensor 107 is configured to detect the radial displacement of the rotor shaft 113, that is, the rotating body 103 fixed thereto, and send it to a control device (not shown).
  • a compensation circuit having a PID adjustment function generates an excitation control command signal for the upper radial electromagnet 104 based on the position signal detected by the upper radial sensor 107, and the amplifier shown in FIG. A circuit 150 (described later) controls the excitation of the upper radial electromagnet 104 based on this excitation control command signal, thereby adjusting the upper radial position of the rotor shaft 113 .
  • the rotor shaft 113 is made of a high magnetic permeability material (iron, stainless steel, etc.) or the like, and is attracted by the magnetic force of the upper radial electromagnet 104 . Such adjustments are made independently in the X-axis direction and the Y-axis direction.
  • the lower radial electromagnet 105 and the lower radial sensor 108 are arranged in the same manner as the upper radial electromagnet 104 and the upper radial sensor 107 so that the lower radial position of the rotor shaft 113 is set to the upper radial position. adjusted in the same way.
  • the axial electromagnets 106A and 106B are arranged so as to vertically sandwich a disk-shaped metal disk 111 provided below the rotor shaft 113 .
  • the metal disk 111 is made of a high magnetic permeability material such as iron.
  • An axial sensor 109 is provided to detect axial displacement of the rotor shaft 113 and is configured to send its axial position signal to the controller.
  • a compensation circuit having, for example, a PID adjustment function generates excitation control command signals for the axial electromagnets 106A and 106B based on the axial position signal detected by the axial sensor 109.
  • the amplifier circuit 150 controls the excitation of the axial electromagnet 106A and the axial electromagnet 106B based on these excitation control command signals, so that the axial electromagnet 106A attracts the metal disk 111 upward by magnetic force, The axial electromagnet 106B attracts the metal disk 111 downward, and the axial position of the rotor shaft 113 is adjusted.
  • the control device appropriately adjusts the magnetic force exerted on the metal disk 111 by the axial electromagnets 106A and 106B, magnetically levitates the rotor shaft 113 in the axial direction, and holds the rotor shaft 113 in the space without contact.
  • the amplifier circuit 150 that controls the excitation of the upper radial electromagnet 104, the lower radial electromagnet 105, and the axial electromagnets 106A and 106B will be described later.
  • the motor 121 has a plurality of magnetic poles circumferentially arranged to surround the rotor shaft 113 .
  • Each magnetic pole is controlled by a control device so as to rotationally drive the rotor shaft 113 via an electromagnetic force acting between the magnetic poles and the rotor shaft 113 .
  • the motor 121 incorporates a rotation speed sensor (not shown) such as a Hall element, resolver, encoder, etc., and the rotation speed of the rotor shaft 113 is detected by the detection signal of this rotation speed sensor.
  • phase sensor (not shown) is attached, for example, near the lower radial direction sensor 108 to detect the phase of rotation of the rotor shaft 113 .
  • the control device detects the position of the magnetic pole using both the detection signals from the phase sensor and the rotational speed sensor.
  • a plurality of fixed wings 123 (123a, 123b, 123c%) are arranged with a slight gap from the rotary wings 102 (102a, 102b, 102c).
  • the rotor blades 102 (102a, 102b, 102c, . . . ) are inclined at a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113 in order to move molecules of the exhaust gas downward by collision.
  • the fixed wings 123 (123a, 123b, 123c, . . . ) are made of metal such as aluminum, iron, stainless steel, or copper, or metal such as an alloy containing these metals as components.
  • the fixed blades 123 are also inclined at a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113, and are arranged inwardly of the outer cylinder 127 in a staggered manner with the stages of the rotary blades 102. ing.
  • the outer peripheral end of the fixed wing 123 is supported by being inserted between a plurality of stacked fixed wing spacers 125 (125a, 125b, 125c, . . . ).
  • the fixed wing spacer 125 is a ring-shaped member, and is made of metal such as aluminum, iron, stainless steel, copper, or an alloy containing these metals as components.
  • An outer cylinder 127 is fixed to the outer circumference of the stationary blade spacer 125 with a small gap therebetween.
  • a base portion 129 is provided at the bottom of the outer cylinder 127 .
  • the base portion 129 is formed with an exhaust port 133 that opens laterally so as to be orthogonal to the central axis CA, and the exhaust port 133 is connected to an evacuation system, which will be described later. Exhaust gas that has entered the intake port 101 from the chamber (vacuum chamber) side and has been transferred to the base portion 129 is sent to the exhaust port 133 .
  • the base portion 129 is a disk-shaped member that constitutes the base portion of the turbomolecular pump 100, and is generally made of metal such as iron, aluminum, or stainless steel.
  • the base portion 129 physically holds the turbo-molecular pump 100 and also functions as a heat conduction path, so a metal such as iron, aluminum, or copper that has rigidity and high thermal conductivity is used. is desirable.
  • the temperature of the rotor blades 102 rises due to frictional heat generated when the exhaust gas contacts the rotor blades 102, conduction of heat generated by the motor 121, and the like. It is transmitted to the stationary blade 123 side by conduction by molecules or the like.
  • the fixed blade spacers 125 are joined to each other at their outer peripheral portions, and transmit the heat received by the fixed blades 123 from the rotary blades 102 and the frictional heat generated when the exhaust gas contacts the fixed blades 123 to the outside.
  • the turbo-molecular pump 100 of the present embodiment does not include such a screw groove pump mechanism, and pumps gas molecules from the exhaust port 133 using only the turbo-molecular pump mechanism including the rotor blades 102 and the fixed blades 123. configured to exhaust.
  • the gas sucked from the intake port 101 may move the upper radial electromagnet 104, the upper radial sensor 107, the motor 121, the lower radial electromagnet 105, the lower radial sensor 108, the shaft
  • the electrical section is surrounded by a stator column 122 so as not to intrude into the electrical section composed of the directional electromagnets 106A and 106B, the axial direction sensor 109, etc., and the interior of the stator column 122 is maintained at a predetermined pressure with purge gas. It may drip.
  • a pipe (not shown) is arranged in the base portion 129, and the purge gas is introduced through this pipe.
  • the introduced purge gas is delivered to the exhaust port 133 through gaps between the protective bearing 120 and the rotor shaft 113 , between the rotor and stator of the motor 121 , and between the stator column 122 and the inner cylindrical portion of the rotor blade 102 .
  • the turbo-molecular pump 100 requires model identification and control based on individually adjusted unique parameters (for example, various characteristics corresponding to the model).
  • the turbomolecular pump 100 has an electronic circuit section 141 in its body.
  • the electronic circuit section 141 includes a semiconductor memory such as an EEP-ROM, electronic components such as semiconductor elements for accessing the same, a board 143 for mounting them, and the like.
  • the electronic circuit section 141 is accommodated, for example, below a rotational speed sensor (not shown) near the center of a base section 129 that constitutes the lower portion of the turbo-molecular pump 100 and is closed by an airtight bottom cover 145 .
  • some of the process gases introduced into the chamber have the property of becoming solid when their pressure exceeds a predetermined value or their temperature falls below a predetermined value. be.
  • the pressure of the exhaust gas is lowest at the inlet 101 and highest at the outlet 133 .
  • the process gas is transported from the inlet 101 to the outlet 133, if its pressure becomes higher than a predetermined value or its temperature becomes lower than a predetermined value, the process gas becomes solid and turbo molecules are formed. It adheres and deposits inside the pump 100 .
  • a heater (not shown) or an annular water-cooling tube (not shown) is wound around the outer periphery of the base portion or the like, and a temperature sensor (for example, a thermistor) (not shown) is embedded in the base portion. Heating of the heater and cooling by water cooling pipes are controlled (hereinafter referred to as TMS: Temperature Management System) so as to keep the temperature of the base portion at a constant high temperature (set temperature) based on the signal of .
  • TMS Temperature Management System
  • turbo-molecular pump 100 of the present embodiment does not have a screw groove pump mechanism, deposition of precipitates in the turbo-molecular pump 100 can be suppressed, and the cost can be reduced by omitting members related to TMS. can be done.
  • the amplifier circuit 150 that controls the excitation of the upper radial electromagnet 104, the lower radial electromagnet 105, and the axial electromagnets 106A and 106B will be described.
  • a circuit diagram of this amplifier circuit 150 is shown in FIG.
  • an electromagnet winding 151 constituting the upper radial electromagnet 104 and the like has one end connected to a positive electrode 171a of a power source 171 via a transistor 161, and the other end connected to a current detection circuit 181 and a transistor 162. is connected to the negative electrode 171b of the power source 171 via the .
  • the transistors 161 and 162 are so-called power MOSFETs and have a structure in which a diode is connected between their source and drain.
  • the transistor 161 has its diode cathode terminal 161 a connected to the positive electrode 171 a and anode terminal 161 b connected to one end of the electromagnet winding 151 .
  • the transistor 162 has a diode cathode terminal 162a connected to the current detection circuit 181 and an anode terminal 162b connected to the negative electrode 171b.
  • the diode 165 for current regeneration has a cathode terminal 165a connected to one end of the electromagnet winding 151 and an anode terminal 165b connected to the negative electrode 171b.
  • the current regeneration diode 166 has its cathode terminal 166a connected to the positive electrode 171a and its anode terminal 166b connected to the other end of the electromagnet winding 151 via the current detection circuit 181. It has become so.
  • the current detection circuit 181 is composed of, for example, a Hall sensor type current sensor or an electric resistance element.
  • the amplifier circuit 150 configured as described above corresponds to one electromagnet. Therefore, if the magnetic bearing is controlled by five axes and there are a total of ten electromagnets 104, 105, 106A, and 106B, a similar amplifier circuit 150 is configured for each of the electromagnets, and ten amplifier circuits are provided for the power source 171. 150 are connected in parallel.
  • the amplifier control circuit 191 is composed of, for example, a digital signal processor section (hereinafter referred to as a DSP section) (not shown) of the control device. It has become.
  • the amplifier control circuit 191 compares the current value detected by the current detection circuit 181 (a signal reflecting this current value is called a current detection signal 191c) and a predetermined current command value. Then, based on this comparison result, the magnitude of the pulse width (pulse width times Tp1, Tp2) to be generated within the control cycle Ts, which is one cycle of PWM control, is determined. As a result, the gate drive signals 191 a and 191 b having this pulse width are output from the amplifier control circuit 191 to the gate terminals of the transistors 161 and 162 .
  • a high voltage of about 50 V is used as the power source 171 so that the current flowing through the electromagnet winding 151 can be rapidly increased (or decreased).
  • a capacitor is usually connected between the positive electrode 171a and the negative electrode 171b of the power source 171 for stabilizing the power source 171 (not shown).
  • electromagnet current iL the current flowing through the electromagnet winding 151
  • electromagnet current iL the current flowing through the electromagnet winding 151
  • flywheel current is held.
  • the hysteresis loss in the amplifier circuit 150 can be reduced, and the power consumption of the entire circuit can be suppressed.
  • high-frequency noise such as harmonics generated in the turbo-molecular pump 100 can be reduced.
  • the electromagnet current iL flowing through the electromagnet winding 151 can be detected.
  • the transistors 161 and 162 are turned off only once during the control cycle Ts (for example, 100 ⁇ s) for the time corresponding to the pulse width time Tp1. turn on both. Therefore, the electromagnet current iL during this period increases from the positive electrode 171a to the negative electrode 171b toward a current value iLmax (not shown) that can flow through the transistors 161,162.
  • both the transistors 161 and 162 are turned off only once in the control cycle Ts for the time corresponding to the pulse width time Tp2 as shown in FIG. . Therefore, the electromagnet current iL during this period decreases from the negative electrode 171b to the positive electrode 171a toward a current value iLmin (not shown) that can be regenerated via the diodes 165,166.
  • either one of the transistors 161 and 162 is turned on after the pulse width times Tp1 and Tp2 have elapsed. Therefore, the flywheel current is held in the amplifier circuit 150 during this period.
  • the vacuum exhaust system 200 of this embodiment has a clean room CR provided on the upper floor UF, a plurality of chambers 201A, 201B, 201C, . . . and the same number of turbomolecular pumps 100A, 100B, 100C .
  • the evacuation system 200 also includes one booster pump 202 installed outside the clean room CR on the upper floor UF and one back pump 203 installed on the lower floor LF where the clean room CR is not provided. is composed of
  • the booster pump 202 is also called a mechanical booster pump, and the ultimate vacuum is about 0.01 to 10 Pa as an example.
  • the back pump 203 is also called a dry vacuum pump, and the ultimate degree of vacuum is, for example, about 1 kPa.
  • Booster pump 202 is often a Roots positive displacement vacuum pump. Compared to turbomolecular pumps (especially screw groove pump mechanisms), Roots-type positive displacement vacuum pumps have a large inertia of the rotating body and operate at low speed and high torque, so there is a margin to maintain performance against product buildup. is large.
  • the back pump 203 is often a positive displacement dry vacuum pump of roots type, claw type or screw type. Compared to turbomolecular pumps (particularly screw groove pump mechanisms), these pumps have a large margin for maintaining performance against product buildup, similar to the booster pump 202 .
  • the chambers 201A and the back pump 203 are connected to each other by a roughing pipe 205 in addition to the exhaust pipe 204 .
  • the exhaust pipe 204 includes a horizontally extending integrated pipe portion 206 as shown in FIG. A plurality of connection ports 207A, 207B, 207C, .
  • the turbo-molecular pumps 100A The exhaust ports 133A of the turbomolecular pumps 100A are connected to the connection ports 207A.
  • the booster pump 202 is installed side by side with the turbo-molecular pumps 100A . It should be noted that the one end portion of the integrated pipe section 206 and the booster pump 202 may not be directly connected, but may be connected via a pipe that constitutes the exhaust pipe 204 .
  • the exhaust pipe 204 includes first valves 208A... between the chambers 201A... and the turbomolecular pumps 100A..., as shown in FIG. Further, the exhaust pipe 204 is provided with a second valve 209 and a third valve 210 at the portion located on the upper floor UF and the portion located on the lower floor LF, respectively, between the booster pump 202 and the back pump 203 .
  • the roughing pipe 205 is branched into a plurality of pipes on the upstream side of the exhaust gas, and is combined into a single pipe on the downstream side of the exhaust gas.
  • a plurality of branched portions of the roughing pipe 205 are connected to chambers 201A, respectively, and fourth valves 211A, 211B, 211C, .
  • a united portion of the roughing pipe 205 is connected to the back pump 203, and a fifth valve 212 is provided at the united portion.
  • the above-described vacuum evacuation system 200 is configured such that evacuation from the turbomolecular pumps 100A . Since it is not necessary to provide a booster pump and a back pump for each chamber as in the exhaust system 500, the number of booster pumps 202 and back pumps 203 can be reduced. Therefore, the space required for installing the booster pump and the back pump in the conventional evacuation system 500 can be saved, so that the space in the building in which the evacuation system 200 is installed can be effectively utilized.
  • the conventional vacuum evacuation system 500 requires a plurality of evacuation pipes 505A to connect the turbo molecular pumps 502A and the booster pumps 503A. In the system 200, since the pipes are integrated into one integrated pipe section 206, more space can be saved in this respect as well. By connecting the turbomolecular pumps 100A, .
  • the integrated piping section 206 is arranged directly below the turbo molecular pumps 100A, etc., the turbo molecular pumps 100A, . . .
  • the integrated piping section 206 by arranging the integrated piping section 206 at a position that avoids directly under the turbo-molecular pumps 100A, . . . as in the present embodiment, the height can be suppressed.
  • the chambers 201A In order to make the chambers 201A .
  • the chambers 201A under atmospheric pressure are decompressed through the air pipe 205.
  • the fourth valves 211A and the fifth valve 212 are closed, and the first valve 208A, the second valve 209 and the third valve are closed.
  • 210 is opened, and the turbomolecular pumps 100A, .
  • the turbo-molecular pumps 100A of the present embodiment are not provided with the thread groove pump mechanism as described above, the deterioration of the exhaust performance of the turbo-molecular pump 100A due to the omission of the thread groove pump mechanism may be caused by the booster. It can be supplemented by pump 202 and back pump 203 .
  • the evacuation system 200 described above may be configured like the evacuation system 250 shown in FIG.
  • the evacuation system 250 of this embodiment further includes a backup booster pump 251 and a backup back pump 252 in addition to the evacuation system 200 .
  • the backup booster pump 251 is installed on the upper floor UF of the same layer as the booster pump 202 and outside the clean room CR, and the backup back pump 252 is installed on the lower floor LF of the same layer as the back pump 203 .
  • the backup booster pump 251 is connected to the integrated piping section 206 via a sixth valve 253, and is connected via a seventh valve 254 to the exhaust downstream side of the booster pump 202 in the exhaust piping 204.
  • the backup back pump 252 is connected to the exhaust pipe 204 via the eighth valve 255 and is connected to the roughing pipe 205 via the ninth valve 256 .
  • the vacuum evacuation system 250 when the booster pump 202 malfunctions, the booster pump 202 is stopped and the sixth valve 253 and the seventh valve 254 are opened to drive the backup booster pump 251. As a result, the operation of the evacuation system 250 can be continued without stopping for a long time.
  • the back pump 203 malfunctions and the roughing pipe 205 is to be decompressed
  • the back pump 203 is stopped, the fifth valve 212 is closed, and the ninth valve 256 is opened to open the backup back pump.
  • the pump 252 Further, when reducing the pressure in the exhaust pipe 204, the back pump 203 is stopped, the eighth valve 255 is opened, and the backup back pump 252 is driven. By executing such a procedure, even if the back pump 203 malfunctions, the operation of the vacuum exhaust system 250 can be continued without a long period of stoppage.
  • the booster pumps 202 provided in the evacuation systems 200 and 250 supplement the evacuation performance of the back pumps 203 . Therefore, the booster pump 202 may be omitted if the back pump 203 alone can sufficiently evacuate. Also, the number of booster pumps 202 used in the evacuation systems 200 and 250 should be less than the number of turbomolecular pumps 100, and the number is not limited to one as described above, and may be plural.
  • turbomolecular pump 102 rotor blade 123: fixed blade 133: exhaust port 200, 250: vacuum exhaust system 202: booster pump 203: back pump 204: exhaust pipe 206: integrated pipe section 251: backup booster pump 252: backup back pump for

Abstract

[Problem] To propose a vacuum discharge system which causes a product derived from process gas to be less likely deposited in a turbo molecular pump and which is capable of effectively using a space required for equipment installation. [Solution] A vacuum discharge system 200 is characterized by comprising: a plurality of turbo molecular pumps 100 each of which includes a turbo molecular pump mechanism which discharges gas molecules from a discharge port 133 by an interaction between a plurality of stages of rotor blades 102 and a plurality of stages of stator blades 123 and which does not include a thread groove pump mechanism; a discharge pipe 204 including a unified pipe portion 206 to which each of the discharge ports 133 is connected; and a back pump 203 which is connected to the discharge pipe 204 and discharges the gas molecules via the unified pipe portion 206.

Description

真空排気システムVacuum exhaust system
 本発明は、真空排気システムに関する。 The present invention relates to an evacuation system.
 半導体製造におけるウエハ面に薄膜を形成する表面処理においては、エッチングやALD(Atomic Layer Deposition、原子層堆積技術)、CVD(Chemical Vapor Deposition、化学気相成長技術)等が用いられる。 Etching, ALD (Atomic Layer Deposition, atomic layer deposition technology), CVD (Chemical Vapor Deposition, chemical vapor deposition technology), etc. are used in surface treatment for forming thin films on wafer surfaces in semiconductor manufacturing.
 半導体製造等のエッチングは通常、チャンバ内に基板を載置してチャンバを真空雰囲気にした状態で行われることから、半導体製造工程においてはチャンバに接続される真空排気システムが必要である。真空排気システムは、チャンバに接続される排気配管の他、排気配管に接続されてチャンバ内を真空引きするバックポンプ(ドライ真空ポンプ)やブースターポンプ(メカニカルブースターポンプ)、ターボ分子ポンプ等の真空排気装置を含んで構成される。 Etching for semiconductor manufacturing and the like is usually performed with the substrate placed in the chamber and the chamber in a vacuum atmosphere, so a vacuum exhaust system connected to the chamber is required in the semiconductor manufacturing process. In addition to exhaust pipes connected to the chamber, the vacuum pumping system includes back pumps (dry vacuum pumps), booster pumps (mechanical booster pumps), and turbomolecular pumps that are connected to the exhaust pipes to evacuate the chamber. It is configured including a device.
 ターボ分子ポンプは、特許文献1に示されているように、排気上流側において複数段の回転翼と複数段の固定翼により構成されるターボ分子ポンプ機構と、排気下流側に設けられるネジ溝ポンプ機構で構成される。 As shown in Patent Document 1, a turbo-molecular pump is composed of a turbo-molecular pump mechanism composed of multiple stages of rotary blades and multiple stages of fixed blades on the exhaust upstream side, and a screw groove pump provided on the exhaust downstream side. Mechanism.
 ここで、図8を参照しながら建物に設けられた真空排気システムの一実施形態について説明する。図示したように建物に真空排気システム500を設けるにあたっては、例えば上層フロアUFにクリーンルームCRを設け、このクリーンルームCR内に薄膜を形成するチャンバ501A、501B、501C・・・とターボ分子ポンプ502A、502B、502C・・・を設置する。図示したようにターボ分子ポンプ502A・・・に接続されるブースターポンプ503A、503B、503C・・・とバックポンプ504A、504B、504C・・・は、クリーンルームCR外の下層フロアLFに設置することが一般的である。なお、ブースターポンプ503A・・・は、クリーンルームCR内に設置することもある。ここでチャンバ501A・・・、ターボ分子ポンプ502A・・・、ブースターポンプ503A・・・、バックポンプ504A・・・は、排気配管505A・・・で接続されている。またチャンバ501A・・・、ブースターポンプ503A・・・、バックポンプ504A・・・は、排気配管505A・・・とは別に、粗引き用配管506A・・・で接続されている。なお排気配管505A・・・と粗引き用配管506A・・・の途中には、バルブ(第一バルブ507A、507B、507C・・・、第二バルブ508A、508B、508C・・・、第三バルブ509A、509B、509C・・・、第四バルブ510A、510B、510C・・・)が設けられている。 Here, one embodiment of the evacuation system provided in the building will be described with reference to FIG. In providing the vacuum exhaust system 500 in the building as illustrated, for example, a clean room CR is provided on the upper floor UF, and chambers 501A, 501B, 501C, . . . , 502C . As illustrated, booster pumps 503A, 503B, 503C, . . . and back pumps 504A, 504B, 504C, . Common. The booster pumps 503A, . . . may be installed inside the clean room CR. Here, the chambers 501A . . . , turbo molecular pumps 502A . The chambers 501A, . . . , booster pumps 503A, . . . , and back pumps 504A . Valves ( first valves 507A, 507B, 507C . . . , second valves 508A, 508B, 508C . 509A, 509B, 509C..., fourth valves 510A, 510B, 510C...) are provided.
 このような配置で真空排気システム500を設置しているのは、薄膜を形成する際には高いクリーン度が求められ、これを実現するにはクリーンルームの設備費及び維持費が高額になるため、クリーンルームの面積を必要最小限に抑えてコスト削減を図るためのである。またブースターポンプ503A・・・とバックポンプ504A・・・をチャンバ501A・・・等の直下に配置しているのは、排気配管505A・・・や粗引き用配管506A・・・の長さを短くしてコンダクタンスをできるだけ大きくするためである。 The reason why the vacuum exhaust system 500 is installed in such an arrangement is that a high degree of cleanliness is required when forming a thin film, and the clean room equipment and maintenance costs are high to achieve this. This is to reduce the cost by minimizing the area of the clean room. The booster pumps 503A and back pumps 504A are arranged directly under the chambers 501A and the like because the lengths of the exhaust pipes 505A and the roughing pipes 506A are reduced. This is to make the conductance as large as possible by shortening it.
 なお半導体等を製造するための設備は、設置スペースをできるだけ減らすとともに同一のスペースに多くの設備が設置できるようにするため、特許文献2に示されているように密集した状態で据え付けられる。 In addition, equipment for manufacturing semiconductors, etc. is installed in a dense state as shown in Patent Document 2 in order to reduce the installation space as much as possible and to allow many equipment to be installed in the same space.
特開2013-079602号公報JP 2013-079602 A 特開2017-079329号公報JP 2017-079329 A
 ところでプロセスガスを排気すると、ガスの温度及び圧力が下がって気体の状態から昇華し、固体となった生成物がターボ分子ポンプ内に堆積することによってポンプ流路を狭め、ターボ分子ポンプの性能を低下させることがある。このような現象は、特にポンプ流路の狭いネジ溝ポンプ機構で生じやすくなっている。このため特許文献1に示されているように、ポンプ本体を加熱する加熱装置とポンプ本体を冷却する冷却装置を制御して、生成物が析出しにくい状態にすることが行われている。しかし、このような制御を行えるように構成する場合はコスト高になる。また、最近の半導体製造においてはプロセスガスの流量が増えているため、これらの機構を用いても生成物が堆積しやすい状況にある。 By the way, when the process gas is exhausted, the temperature and pressure of the gas decrease, the gas sublimates, and solid products accumulate in the turbomolecular pump, narrowing the pump flow path and reducing the performance of the turbomolecular pump. may decrease. Such a phenomenon is likely to occur particularly in a thread groove pump mechanism having a narrow pump flow path. For this reason, as disclosed in Patent Document 1, a heating device for heating the pump body and a cooling device for cooling the pump body are controlled to make it difficult for the product to deposit. However, the cost will be high if it is configured so that such control can be performed. In addition, in recent semiconductor manufacturing, the flow rate of process gas is increasing, so even if these mechanisms are used, products tend to accumulate.
 また半導体等の製造設備は、特許文献2のように密集した状態で設置されているものの、更なるコストの削減と生産効率の向上のためには、設置スペースの有効活用を一段と図る必要がある。 In addition, although manufacturing equipment for semiconductors and the like is installed in a dense state as in Patent Document 2, in order to further reduce costs and improve production efficiency, it is necessary to further improve the effective use of installation space. .
 このような点に鑑み、本発明は、従来使用していた加熱装置や冷却装置を使用せずともプロセスガス由来の生成物がターボ分子ポンプ内に堆積しにくくなり、また製造設備の設置に要するスペースを有効に活用することができる真空排気システムを提供することを目的とする。 In view of these points, the present invention makes it difficult for products derived from the process gas to accumulate in the turbomolecular pump without using the conventionally used heating device or cooling device, and furthermore, it is necessary to install the manufacturing equipment. An object of the present invention is to provide an evacuation system that can effectively utilize space.
 本発明の真空排気システムは、複数段の回転翼と複数段の固定翼との相互作用によってガス分子を排気口から排気するターボ分子ポンプ機構を備える一方、ネジ溝ポンプ機構を持たない複数のターボ分子ポンプと、前記排気口のそれぞれが接続された統合配管部を有する排気配管と、前記排気配管に接続されて前記統合配管部を介して前記ガス分子を排気するバックポンプと、を備えることを特徴とする。 The vacuum exhaust system of the present invention includes a turbo-molecular pump mechanism that exhausts gas molecules from an exhaust port by interaction between multiple stages of rotor blades and multiple stages of fixed blades. a molecular pump; an exhaust pipe having an integrated pipe section to which each of the exhaust ports is connected; and a back pump connected to the exhaust pipe for exhausting the gas molecules through the integrated pipe section. Characterized by
 このような真空排気システムにおいて、前記排気配管における前記統合配管部から前記バックポンプまでの間に、当該バックポンプの排気性能を補助するブースターポンプが接続され、前記ブースターポンプの数は、前記ターボ分子ポンプの数よりも少ないことが好ましい。 In such a vacuum exhaust system, a booster pump that assists the exhaust performance of the back pump is connected between the integrated pipe portion of the exhaust pipe and the back pump, and the number of the booster pumps is equal to the number of the turbo molecule Preferably less than the number of pumps.
 また前記ブースターポンプは、前記ターボ分子ポンプに対して横並びに配置され、前記統合配管部は、前記ターボ分子ポンプの直下を避けた位置に配置されることが好ましい。 Further, it is preferable that the booster pump is arranged side by side with respect to the turbo-molecular pump, and the integrated piping section is arranged at a position avoiding directly under the turbo-molecular pump.
 そして前記排気配管における前記統合配管部から前記バックポンプまでの間に、当該バックポンプの排気性能を補助するバックアップ用ブースターポンプが更に接続されることが好ましい。 It is preferable that a backup booster pump that assists the exhaust performance of the back pump is further connected between the integrated pipe portion and the back pump in the exhaust pipe.
 また前記排気配管に、前記統合配管部を介して前記ガス分子を排気するバックアップ用バックポンプが更に接続されることが好ましい。 Further, it is preferable that a backup pump for exhausting the gas molecules is further connected to the exhaust pipe through the integrated pipe section.
 本発明の真空排気システムにおいて、ターボ分子ポンプはネジ溝ポンプ機構を備えていないため、生成物がポンプ内で堆積しにくくなる。なおネジ溝ポンプ機構を省略したことによるターボ分子ポンプの排気性能の低下は、バックポンプにより補うことができる。また従来の排気配管は、各チャンバに対してターボ分子ポンプとバックポンプをそれぞれ接続していて、チャンバの数とターボ分子ポンプ及びバックポンプの数が同数であったが、本真空排気システムの排気配管は、複数のターボ分子ポンプのそれぞれが接続された統合配管部を有していて、バックポンプによる排気は統合配管部を介して行うように構成しているため、バックポンプの数を減らすことができる。従って、従来、バックポンプの設置に要していたスペースをあけることができ、製造設備の設置に要するスペースを有効に活用することができる。 In the evacuation system of the present invention, the turbomolecular pump does not have a thread groove pump mechanism, so the product is less likely to accumulate in the pump. A reduction in exhaust performance of the turbo-molecular pump due to the omission of the thread groove pump mechanism can be compensated for by the back pump. In addition, conventional exhaust pipes connect turbo-molecular pumps and back pumps to each chamber, respectively, and the number of chambers is the same as the number of turbo-molecular pumps and back pumps. The piping has an integrated piping section to which each of a plurality of turbomolecular pumps is connected, and the back pump exhaust is configured to be performed via the integrated piping section, so the number of back pumps can be reduced. can be done. Therefore, the space that was conventionally required for installing the back pump can be saved, and the space required for installing the manufacturing equipment can be effectively utilized.
本発明に係る真空排気システムに含まれる真空ポンプの一実施形態を概略的に示した縦断面図である。1 is a longitudinal sectional view schematically showing an embodiment of a vacuum pump included in an evacuation system according to the present invention; FIG. 図1に示した真空ポンプのアンプ回路の回路図である。2 is a circuit diagram of an amplifier circuit of the vacuum pump shown in FIG. 1; FIG. 電流指令値が検出値より大きい場合の制御を示すタイムチャートである。4 is a time chart showing control when a current command value is greater than a detected value; 電流指令値が検出値より小さい場合の制御を示すタイムチャートである。4 is a time chart showing control when a current command value is smaller than a detected value; 本発明に係る真空排気システムの一実施形態を概略的に示した図である。1 schematically shows an embodiment of an evacuation system according to the invention; FIG. 図5に示した真空排気システムの統合配管部周辺を概略的に示した図であって、(a)は平面図であり、(b)は側面図である。6A and 6B are diagrams schematically showing the periphery of the integrated piping section of the evacuation system shown in FIG. 5, where (a) is a plan view and (b) is a side view; 図5に示した真空排気システムの変形例を示した図である。FIG. 6 is a diagram showing a modification of the evacuation system shown in FIG. 5; 従来の真空排気システムを概略的に示した図である。1 is a diagram schematically showing a conventional evacuation system; FIG.
 以下、図面を参照しながら本発明に係る真空排気システムの一実施形態について説明する。まず、この真空排気システムに含まれるターボ分子ポンプについて、図1~図4を参照しながら説明する。 An embodiment of the evacuation system according to the present invention will be described below with reference to the drawings. First, the turbomolecular pump included in this evacuation system will be described with reference to FIGS. 1 to 4. FIG.
 このターボ分子ポンプ100の縦断面図を図1に示す。図1において、ターボ分子ポンプ100には、中心軸CAに沿って延在する円筒状の外筒127の上端に吸気口101が備えられている。そして、外筒127の内方には、ガスを吸引排気するためのタービンブレードである複数の回転翼102(102a、102b、102c・・・)を周部に放射状かつ多段に形成した回転体103が備えられている。この回転体103の中心にはロータ軸113が取り付けられており、このロータ軸113は、例えば5軸制御の磁気軸受により空中に浮上支持かつ位置制御されている。回転体103は、一般的に、アルミニウム又はアルミニウム合金などの金属によって構成されている。 A longitudinal sectional view of this turbo-molecular pump 100 is shown in FIG. In FIG. 1, the turbomolecular pump 100 is provided with an intake port 101 at the upper end of a cylindrical outer cylinder 127 extending along the central axis CA. Inside the outer cylinder 127, a rotating body 103 having a plurality of rotating blades 102 (102a, 102b, 102c, . is provided. A rotor shaft 113 is attached to the center of the rotor 103, and the rotor shaft 113 is levitated in the air and position-controlled by, for example, a 5-axis control magnetic bearing. The rotor 103 is generally made of metal such as aluminum or aluminum alloy.
 上側径方向電磁石104は、4個の電磁石がX軸とY軸とに対をなして配置されている。この上側径方向電磁石104に近接して、かつ上側径方向電磁石104のそれぞれに対応して4個の上側径方向センサ107が備えられている。上側径方向センサ107は、例えば伝導巻線を有するインダクタンスセンサや渦電流センサなどが用いられ、ロータ軸113の位置に応じて変化するこの伝導巻線のインダクタンスの変化に基づいてロータ軸113の位置を検出する。この上側径方向センサ107はロータ軸113、すなわちそれに固定された回転体103の径方向変位を検出し、不図示の制御装置に送るように構成されている。 The upper radial electromagnet 104 has four electromagnets arranged in pairs on the X-axis and the Y-axis. Four upper radial sensors 107 are provided adjacent to the upper radial electromagnets 104 and corresponding to the upper radial electromagnets 104, respectively. The upper radial sensor 107 is, for example, an inductance sensor or an eddy current sensor having a conductive winding, and detects the position of the rotor shaft 113 based on the change in the inductance of this conductive winding, which changes according to the position of the rotor shaft 113 . to detect The upper radial sensor 107 is configured to detect the radial displacement of the rotor shaft 113, that is, the rotating body 103 fixed thereto, and send it to a control device (not shown).
 この制御装置においては、例えばPID調節機能を有する補償回路が、上側径方向センサ107によって検出された位置信号に基づいて、上側径方向電磁石104の励磁制御指令信号を生成し、図2に示すアンプ回路150(後述する)が、この励磁制御指令信号に基づいて、上側径方向電磁石104を励磁制御することで、ロータ軸113の上側の径方向位置が調整される。 In this control device, for example, a compensation circuit having a PID adjustment function generates an excitation control command signal for the upper radial electromagnet 104 based on the position signal detected by the upper radial sensor 107, and the amplifier shown in FIG. A circuit 150 (described later) controls the excitation of the upper radial electromagnet 104 based on this excitation control command signal, thereby adjusting the upper radial position of the rotor shaft 113 .
 そして、このロータ軸113は、高透磁率材(鉄、ステンレスなど)などにより形成され、上側径方向電磁石104の磁力により吸引されるようになっている。かかる調整は、X軸方向とY軸方向とにそれぞれ独立して行われる。また、下側径方向電磁石105及び下側径方向センサ108が、上側径方向電磁石104及び上側径方向センサ107と同様に配置され、ロータ軸113の下側の径方向位置を上側の径方向位置と同様に調整している。 The rotor shaft 113 is made of a high magnetic permeability material (iron, stainless steel, etc.) or the like, and is attracted by the magnetic force of the upper radial electromagnet 104 . Such adjustments are made independently in the X-axis direction and the Y-axis direction. In addition, the lower radial electromagnet 105 and the lower radial sensor 108 are arranged in the same manner as the upper radial electromagnet 104 and the upper radial sensor 107 so that the lower radial position of the rotor shaft 113 is set to the upper radial position. adjusted in the same way.
 さらに、軸方向電磁石106A、106Bが、ロータ軸113の下部に備えた円板状の金属ディスク111を上下に挟んで配置されている。金属ディスク111は、鉄などの高透磁率材で構成されている。ロータ軸113の軸方向変位を検出するために軸方向センサ109が備えられ、その軸方向位置信号が制御装置に送られるように構成されている。 Furthermore, the axial electromagnets 106A and 106B are arranged so as to vertically sandwich a disk-shaped metal disk 111 provided below the rotor shaft 113 . The metal disk 111 is made of a high magnetic permeability material such as iron. An axial sensor 109 is provided to detect axial displacement of the rotor shaft 113 and is configured to send its axial position signal to the controller.
 そして、制御装置において、例えばPID調節機能を有する補償回路が、軸方向センサ109によって検出された軸方向位置信号に基づいて、軸方向電磁石106Aと軸方向電磁石106Bのそれぞれの励磁制御指令信号を生成し、アンプ回路150が、これらの励磁制御指令信号に基づいて、軸方向電磁石106Aと軸方向電磁石106Bをそれぞれ励磁制御することで、軸方向電磁石106Aが磁力により金属ディスク111を上方に吸引し、軸方向電磁石106Bが金属ディスク111を下方に吸引し、ロータ軸113の軸方向位置が調整される。 Then, in the control device, a compensation circuit having, for example, a PID adjustment function generates excitation control command signals for the axial electromagnets 106A and 106B based on the axial position signal detected by the axial sensor 109. Then, the amplifier circuit 150 controls the excitation of the axial electromagnet 106A and the axial electromagnet 106B based on these excitation control command signals, so that the axial electromagnet 106A attracts the metal disk 111 upward by magnetic force, The axial electromagnet 106B attracts the metal disk 111 downward, and the axial position of the rotor shaft 113 is adjusted.
 このように、制御装置は、この軸方向電磁石106A、106Bが金属ディスク111に及ぼす磁力を適当に調節し、ロータ軸113を軸方向に磁気浮上させ、空間に非接触で保持するようになっている。なお、これら上側径方向電磁石104、下側径方向電磁石105及び軸方向電磁石106A、106Bを励磁制御するアンプ回路150については、後述する。 In this manner, the control device appropriately adjusts the magnetic force exerted on the metal disk 111 by the axial electromagnets 106A and 106B, magnetically levitates the rotor shaft 113 in the axial direction, and holds the rotor shaft 113 in the space without contact. there is The amplifier circuit 150 that controls the excitation of the upper radial electromagnet 104, the lower radial electromagnet 105, and the axial electromagnets 106A and 106B will be described later.
 一方、モータ121は、ロータ軸113を取り囲むように周状に配置された複数の磁極を備えている。各磁極は、ロータ軸113との間に作用する電磁力を介してロータ軸113を回転駆動するように、制御装置によって制御されている。また、モータ121には図示しない例えばホール素子、レゾルバ、エンコーダなどの回転速度センサが組み込まれており、この回転速度センサの検出信号によりロータ軸113の回転速度が検出されるようになっている。 On the other hand, the motor 121 has a plurality of magnetic poles circumferentially arranged to surround the rotor shaft 113 . Each magnetic pole is controlled by a control device so as to rotationally drive the rotor shaft 113 via an electromagnetic force acting between the magnetic poles and the rotor shaft 113 . Further, the motor 121 incorporates a rotation speed sensor (not shown) such as a Hall element, resolver, encoder, etc., and the rotation speed of the rotor shaft 113 is detected by the detection signal of this rotation speed sensor.
 さらに、例えば下側径方向センサ108近傍に、図示しない位相センサが取り付けてあり、ロータ軸113の回転の位相を検出するようになっている。制御装置では、この位相センサと回転速度センサの検出信号を共に用いて磁極の位置を検出するようになっている。 Furthermore, a phase sensor (not shown) is attached, for example, near the lower radial direction sensor 108 to detect the phase of rotation of the rotor shaft 113 . The control device detects the position of the magnetic pole using both the detection signals from the phase sensor and the rotational speed sensor.
 回転翼102(102a、102b、102c・・・)とわずかの空隙を隔てて複数枚の固定翼123(123a、123b、123c・・・)が配設されている。回転翼102(102a、102b、102c・・・)は、それぞれ排気ガスの分子を衝突により下方向に移送するため、ロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成されている。固定翼123(123a、123b、123c・・・)は、例えばアルミニウム、鉄、ステンレス、銅などの金属、又はこれらの金属を成分として含む合金などの金属によって構成されている。 A plurality of fixed wings 123 (123a, 123b, 123c...) are arranged with a slight gap from the rotary wings 102 (102a, 102b, 102c...). The rotor blades 102 (102a, 102b, 102c, . . . ) are inclined at a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113 in order to move molecules of the exhaust gas downward by collision. there is The fixed wings 123 (123a, 123b, 123c, . . . ) are made of metal such as aluminum, iron, stainless steel, or copper, or metal such as an alloy containing these metals as components.
 また、固定翼123も、同様にロータ軸113の軸線に垂直な平面から所定の角度だけ傾斜して形成され、かつ外筒127の内方に向けて回転翼102の段と互い違いに配設されている。そして、固定翼123の外周端は、複数の段積みされた固定翼スペーサ125(125a、125b、125c・・・)の間に嵌挿された状態で支持されている。 Similarly, the fixed blades 123 are also inclined at a predetermined angle from a plane perpendicular to the axis of the rotor shaft 113, and are arranged inwardly of the outer cylinder 127 in a staggered manner with the stages of the rotary blades 102. ing. The outer peripheral end of the fixed wing 123 is supported by being inserted between a plurality of stacked fixed wing spacers 125 (125a, 125b, 125c, . . . ).
 固定翼スペーサ125はリング状の部材であり、例えばアルミニウム、鉄、ステンレス、銅などの金属、又はこれらの金属を成分として含む合金などの金属によって構成されている。固定翼スペーサ125の外周には、わずかの空隙を隔てて外筒127が固定されている。外筒127の底部にはベース部129が配設されている。ベース部129には、中心軸CAに対して直交するように横向きに開口する排気口133が形成され、排気口133は、後述する真空排気システムに接続されている。チャンバ(真空チャンバ)側から吸気口101に入ってベース部129に移送されてきた排気ガスは、排気口133へと送られる。 The fixed wing spacer 125 is a ring-shaped member, and is made of metal such as aluminum, iron, stainless steel, copper, or an alloy containing these metals as components. An outer cylinder 127 is fixed to the outer circumference of the stationary blade spacer 125 with a small gap therebetween. A base portion 129 is provided at the bottom of the outer cylinder 127 . The base portion 129 is formed with an exhaust port 133 that opens laterally so as to be orthogonal to the central axis CA, and the exhaust port 133 is connected to an evacuation system, which will be described later. Exhaust gas that has entered the intake port 101 from the chamber (vacuum chamber) side and has been transferred to the base portion 129 is sent to the exhaust port 133 .
 ベース部129は、ターボ分子ポンプ100の基底部を構成する円盤状の部材であり、一般には鉄、アルミニウム、ステンレスなどの金属によって構成されている。ベース部129はターボ分子ポンプ100を物理的に保持すると共に、熱の伝導路の機能も兼ね備えているので、鉄、アルミニウムや銅などの剛性があり、熱伝導率も高い金属が使用されるのが望ましい。 The base portion 129 is a disk-shaped member that constitutes the base portion of the turbomolecular pump 100, and is generally made of metal such as iron, aluminum, or stainless steel. The base portion 129 physically holds the turbo-molecular pump 100 and also functions as a heat conduction path, so a metal such as iron, aluminum, or copper that has rigidity and high thermal conductivity is used. is desirable.
 かかる構成において、回転翼102がロータ軸113と共にモータ121により回転駆動されると、回転翼102と固定翼123の作用により、吸気口101を通じてチャンバから排気ガスが吸気される。回転翼102の回転速度は通常20000rpm~90000rpmであり、回転翼102の先端での周速度は200m/s~400m/sに達する。吸気口101から吸気された排気ガスは、回転翼102と固定翼123の間を通り、ベース部129へ移送され、排気口133から排出される。このとき、排気ガスが回転翼102に接触する際に生ずる摩擦熱や、モータ121で発生した熱の伝導などにより、回転翼102の温度は上昇するが、この熱は、輻射又は排気ガスの気体分子などによる伝導により固定翼123側に伝達される。 In such a configuration, when the rotor shaft 113 and the rotor shaft 113 are driven to rotate by the motor 121 , the rotor blades 102 and the fixed blades 123 act to suck exhaust gas from the chamber through the intake port 101 . The rotation speed of the rotor blade 102 is usually 20000-90000 rpm, and the peripheral speed at the tip of the rotor blade 102 reaches 200-400 m/s. Exhaust gas sucked from the intake port 101 passes between the rotor blade 102 and the fixed blade 123 , is transferred to the base portion 129 , and is discharged from the exhaust port 133 . At this time, the temperature of the rotor blades 102 rises due to frictional heat generated when the exhaust gas contacts the rotor blades 102, conduction of heat generated by the motor 121, and the like. It is transmitted to the stationary blade 123 side by conduction by molecules or the like.
 固定翼スペーサ125は、外周部で互いに接合しており、固定翼123が回転翼102から受け取った熱や排気ガスが固定翼123に接触する際に生ずる摩擦熱などを外部へと伝達する。 The fixed blade spacers 125 are joined to each other at their outer peripheral portions, and transmit the heat received by the fixed blades 123 from the rotary blades 102 and the frictional heat generated when the exhaust gas contacts the fixed blades 123 to the outside.
 ところで従来のターボ分子ポンプは、背圧が高い場合でも運転を行うことができるように、最下段の回転翼102と固定翼123の下方にネジ溝ポンプ機構が設けられていて、回転翼102と固定翼123によって吸気口101から吸気された排気ガスは、このネジ溝ポンプ機構を経由して、排気口133から排出される。一方、本実施形態のターボ分子ポンプ100は、このようなネジ溝ポンプ機構を設けずに、回転翼102と固定翼123を含んで構成されるターボ分子ポンプ機構のみでガス分子を排気口133から排気するように構成されている。 By the way, in the conventional turbo-molecular pump, a screw groove pump mechanism is provided below the lowermost rotor blade 102 and the fixed blade 123 so that it can be operated even when the back pressure is high. Exhaust gas sucked from the intake port 101 by the fixed wing 123 is discharged from the exhaust port 133 via this thread groove pump mechanism. On the other hand, the turbo-molecular pump 100 of the present embodiment does not include such a screw groove pump mechanism, and pumps gas molecules from the exhaust port 133 using only the turbo-molecular pump mechanism including the rotor blades 102 and the fixed blades 123. configured to exhaust.
 また、ターボ分子ポンプ100の用途によっては、吸気口101から吸引されたガスが上側径方向電磁石104、上側径方向センサ107、モータ121、下側径方向電磁石105、下側径方向センサ108、軸方向電磁石106A、106B、軸方向センサ109などで構成される電装部に侵入することのないよう、電装部は周囲をステータコラム122で覆われ、このステータコラム122内はパージガスにて所定圧に保たれる場合もある。 Further, depending on the application of the turbo-molecular pump 100, the gas sucked from the intake port 101 may move the upper radial electromagnet 104, the upper radial sensor 107, the motor 121, the lower radial electromagnet 105, the lower radial sensor 108, the shaft The electrical section is surrounded by a stator column 122 so as not to intrude into the electrical section composed of the directional electromagnets 106A and 106B, the axial direction sensor 109, etc., and the interior of the stator column 122 is maintained at a predetermined pressure with purge gas. It may drip.
 この場合には、ベース部129には図示しない配管が配設され、この配管を通じてパージガスが導入される。導入されたパージガスは、保護ベアリング120とロータ軸113間、モータ121のロータとステータ間、ステータコラム122と回転翼102の内周側円筒部の間の隙間を通じて排気口133へ送出される。 In this case, a pipe (not shown) is arranged in the base portion 129, and the purge gas is introduced through this pipe. The introduced purge gas is delivered to the exhaust port 133 through gaps between the protective bearing 120 and the rotor shaft 113 , between the rotor and stator of the motor 121 , and between the stator column 122 and the inner cylindrical portion of the rotor blade 102 .
 ここに、ターボ分子ポンプ100は、機種の特定と、個々に調整された固有のパラメータ(例えば、機種に対応する諸特性)に基づいた制御を要する。この制御パラメータを格納するために、上記ターボ分子ポンプ100は、その本体内に電子回路部141を備えている。電子回路部141は、EEP-ROM等の半導体メモリ及びそのアクセスのための半導体素子等の電子部品、それらの実装用の基板143等から構成される。この電子回路部141は、ターボ分子ポンプ100の下部を構成するベース部129の例えば中央付近の図示しない回転速度センサの下部に収容され、気密性の底蓋145によって閉じられている。 Here, the turbo-molecular pump 100 requires model identification and control based on individually adjusted unique parameters (for example, various characteristics corresponding to the model). In order to store the control parameters, the turbomolecular pump 100 has an electronic circuit section 141 in its body. The electronic circuit section 141 includes a semiconductor memory such as an EEP-ROM, electronic components such as semiconductor elements for accessing the same, a board 143 for mounting them, and the like. The electronic circuit section 141 is accommodated, for example, below a rotational speed sensor (not shown) near the center of a base section 129 that constitutes the lower portion of the turbo-molecular pump 100 and is closed by an airtight bottom cover 145 .
 ところで、半導体の製造工程では、チャンバに導入されるプロセスガスの中には、その圧力が所定値よりも高くなり、或いは、その温度が所定値よりも低くなると、固体となる性質を有するものがある。ターボ分子ポンプ100内部では、排気ガスの圧力は、吸気口101で最も低く排気口133で最も高い。プロセスガスが吸気口101から排気口133へ移送される途中で、その圧力が所定値よりも高くなったり、その温度が所定値よりも低くなったりすると、プロセスガスは、固体状となり、ターボ分子ポンプ100内部に付着して堆積する。 In the semiconductor manufacturing process, some of the process gases introduced into the chamber have the property of becoming solid when their pressure exceeds a predetermined value or their temperature falls below a predetermined value. be. Inside the turbomolecular pump 100 , the pressure of the exhaust gas is lowest at the inlet 101 and highest at the outlet 133 . When the process gas is transported from the inlet 101 to the outlet 133, if its pressure becomes higher than a predetermined value or its temperature becomes lower than a predetermined value, the process gas becomes solid and turbo molecules are formed. It adheres and deposits inside the pump 100 .
 例えば、Alエッチング装置にプロセスガスとしてSiCl4が使用された場合、低真空(760[torr]~10-2[torr])かつ、低温(約20[℃])のとき、固体生成物(例えばAlCl3)が析出し、ターボ分子ポンプ100内部に付着堆積することが蒸気圧曲線からわかる。これにより、ターボ分子ポンプ100内部にプロセスガスの析出物が堆積すると、この堆積物がポンプ流路を狭め、ターボ分子ポンプ100の性能を低下させる原因となる。従来のターボ分子ポンプにおいては、圧力が高い排気口の近くに位置するネジ溝ポンプ機構で析出物が堆積しやすく、性能低下につながりやすい状況にあった。 For example, when SiCl4 is used as a process gas in an Al etching apparatus, a solid product (eg, AlCl3 ) is precipitated and deposited inside the turbo-molecular pump 100 from the vapor pressure curve. As a result, when deposits of the process gas accumulate inside the turbo-molecular pump 100 , the deposits narrow the pump flow path and cause the performance of the turbo-molecular pump 100 to deteriorate. In conventional turbo-molecular pumps, deposits tend to accumulate in the screw groove pump mechanism located near the high-pressure exhaust port, which tends to lead to performance deterioration.
 そのため、この問題を解決するために、従来はベース部等の外周に図示しないヒータや環状の水冷管を巻着させ、かつ例えばベース部に図示しない温度センサ(例えばサーミスタ)を埋め込み、この温度センサの信号に基づいてベース部の温度を一定の高い温度(設定温度)に保つようにヒータの加熱や水冷管による冷却の制御(以下TMSという。TMS;Temperature Management System)が行われている。しかし、これらの部材を設けるとコストが嵩むことになる。特に、最近の半導体製造はプロセスガスの流量が増えているため、TMS技術を適用した場合でもネジ溝ポンプ機構で析出物が堆積しやすい状況にあった。一方、本実施形態のターボ分子ポンプ100はネジ溝ポンプ機構を持たないため、ターボ分子ポンプ100内での析出物の堆積を抑制することができ、またTMSに関する部材を省略してコストを抑えることができる。 Therefore, in order to solve this problem, conventionally, a heater (not shown) or an annular water-cooling tube (not shown) is wound around the outer periphery of the base portion or the like, and a temperature sensor (for example, a thermistor) (not shown) is embedded in the base portion. Heating of the heater and cooling by water cooling pipes are controlled (hereinafter referred to as TMS: Temperature Management System) so as to keep the temperature of the base portion at a constant high temperature (set temperature) based on the signal of . However, providing these members increases the cost. In particular, in recent semiconductor manufacturing, the flow rate of process gas is increasing, so even when the TMS technology is applied, deposits are likely to accumulate in the thread groove pump mechanism. On the other hand, since the turbo-molecular pump 100 of the present embodiment does not have a screw groove pump mechanism, deposition of precipitates in the turbo-molecular pump 100 can be suppressed, and the cost can be reduced by omitting members related to TMS. can be done.
 次に、このように構成されるターボ分子ポンプ100に関して、その上側径方向電磁石104、下側径方向電磁石105及び軸方向電磁石106A、106Bを励磁制御するアンプ回路150について説明する。このアンプ回路150の回路図を図2に示す。 Next, regarding the turbo-molecular pump 100 configured in this way, the amplifier circuit 150 that controls the excitation of the upper radial electromagnet 104, the lower radial electromagnet 105, and the axial electromagnets 106A and 106B will be described. A circuit diagram of this amplifier circuit 150 is shown in FIG.
 図2において、上側径方向電磁石104等を構成する電磁石巻線151は、その一端がトランジスタ161を介して電源171の正極171aに接続されており、また、その他端が電流検出回路181及びトランジスタ162を介して電源171の負極171bに接続されている。そして、トランジスタ161、162は、いわゆるパワーMOSFETとなっており、そのソース-ドレイン間にダイオードが接続された構造を有している。 In FIG. 2, an electromagnet winding 151 constituting the upper radial electromagnet 104 and the like has one end connected to a positive electrode 171a of a power source 171 via a transistor 161, and the other end connected to a current detection circuit 181 and a transistor 162. is connected to the negative electrode 171b of the power source 171 via the . The transistors 161 and 162 are so-called power MOSFETs and have a structure in which a diode is connected between their source and drain.
 このとき、トランジスタ161は、そのダイオードのカソード端子161aが正極171aに接続されるとともに、アノード端子161bが電磁石巻線151の一端と接続されるようになっている。また、トランジスタ162は、そのダイオードのカソード端子162aが電流検出回路181に接続されるとともに、アノード端子162bが負極171bと接続されるようになっている。 At this time, the transistor 161 has its diode cathode terminal 161 a connected to the positive electrode 171 a and anode terminal 161 b connected to one end of the electromagnet winding 151 . The transistor 162 has a diode cathode terminal 162a connected to the current detection circuit 181 and an anode terminal 162b connected to the negative electrode 171b.
 一方、電流回生用のダイオード165は、そのカソード端子165aが電磁石巻線151の一端に接続されるとともに、そのアノード端子165bが負極171bに接続されるようになっている。また、これと同様に、電流回生用のダイオード166は、そのカソード端子166aが正極171aに接続されるとともに、そのアノード端子166bが電流検出回路181を介して電磁石巻線151の他端に接続されるようになっている。そして、電流検出回路181は、例えばホールセンサ式電流センサや電気抵抗素子で構成されている。 On the other hand, the diode 165 for current regeneration has a cathode terminal 165a connected to one end of the electromagnet winding 151 and an anode terminal 165b connected to the negative electrode 171b. Similarly, the current regeneration diode 166 has its cathode terminal 166a connected to the positive electrode 171a and its anode terminal 166b connected to the other end of the electromagnet winding 151 via the current detection circuit 181. It has become so. The current detection circuit 181 is composed of, for example, a Hall sensor type current sensor or an electric resistance element.
 以上のように構成されるアンプ回路150は、一つの電磁石に対応されるものである。そのため、磁気軸受が5軸制御で、電磁石104、105、106A、106Bが合計10個ある場合には、電磁石のそれぞれについて同様のアンプ回路150が構成され、電源171に対して10個のアンプ回路150が並列に接続されるようになっている。 The amplifier circuit 150 configured as described above corresponds to one electromagnet. Therefore, if the magnetic bearing is controlled by five axes and there are a total of ten electromagnets 104, 105, 106A, and 106B, a similar amplifier circuit 150 is configured for each of the electromagnets, and ten amplifier circuits are provided for the power source 171. 150 are connected in parallel.
 さらに、アンプ制御回路191は、例えば、制御装置の図示しないディジタル・シグナル・プロセッサ部(以下、DSP部という)によって構成され、このアンプ制御回路191は、トランジスタ161、162のon/offを切り替えるようになっている。 Further, the amplifier control circuit 191 is composed of, for example, a digital signal processor section (hereinafter referred to as a DSP section) (not shown) of the control device. It has become.
 アンプ制御回路191は、電流検出回路181が検出した電流値(この電流値を反映した信号を電流検出信号191cという)と所定の電流指令値とを比較するようになっている。そして、この比較結果に基づき、PWM制御による1周期である制御サイクルTs内に発生させるパルス幅の大きさ(パルス幅時間Tp1、Tp2)を決めるようになっている。その結果、このパルス幅を有するゲート駆動信号191a、191bを、アンプ制御回路191からトランジスタ161、162のゲート端子に出力するようになっている。 The amplifier control circuit 191 compares the current value detected by the current detection circuit 181 (a signal reflecting this current value is called a current detection signal 191c) and a predetermined current command value. Then, based on this comparison result, the magnitude of the pulse width (pulse width times Tp1, Tp2) to be generated within the control cycle Ts, which is one cycle of PWM control, is determined. As a result, the gate drive signals 191 a and 191 b having this pulse width are output from the amplifier control circuit 191 to the gate terminals of the transistors 161 and 162 .
 なお、回転体103の回転速度の加速運転中に共振点を通過する際や定速運転中に外乱が発生した際等に、高速かつ強い力での回転体103の位置制御をする必要がある。そのため、電磁石巻線151に流れる電流の急激な増加(あるいは減少)ができるように、電源171としては、例えば50V程度の高電圧が使用されるようになっている。また、電源171の正極171aと負極171bとの間には、電源171の安定化のために、通常コンデンサが接続されている(図示略)。 It is necessary to control the position of the rotating body 103 at high speed and with a strong force when the rotating body 103 passes through the resonance point during acceleration operation of the rotation speed or when disturbance occurs during constant speed operation. . Therefore, a high voltage of about 50 V, for example, is used as the power source 171 so that the current flowing through the electromagnet winding 151 can be rapidly increased (or decreased). A capacitor is usually connected between the positive electrode 171a and the negative electrode 171b of the power source 171 for stabilizing the power source 171 (not shown).
 かかる構成において、トランジスタ161、162の両方をonにすると、電磁石巻線151に流れる電流(以下、電磁石電流iLという)が増加し、両方をoffにすると、電磁石電流iLが減少する。 In such a configuration, when both transistors 161 and 162 are turned on, the current flowing through the electromagnet winding 151 (hereinafter referred to as electromagnet current iL) increases, and when both are turned off, the electromagnet current iL decreases.
 また、トランジスタ161、162の一方をonにし他方をoffにすると、いわゆるフライホイール電流が保持される。そして、このようにアンプ回路150にフライホイール電流を流すことで、アンプ回路150におけるヒステリシス損を減少させ、回路全体としての消費電力を低く抑えることができる。また、このようにトランジスタ161、162を制御することにより、ターボ分子ポンプ100に生じる高調波等の高周波ノイズを低減することができる。さらに、このフライホイール電流を電流検出回路181で測定することで電磁石巻線151を流れる電磁石電流iLが検出可能となる。 Also, when one of the transistors 161 and 162 is turned on and the other is turned off, a so-called flywheel current is held. By passing the flywheel current through the amplifier circuit 150 in this way, the hysteresis loss in the amplifier circuit 150 can be reduced, and the power consumption of the entire circuit can be suppressed. Further, by controlling the transistors 161 and 162 in this manner, high-frequency noise such as harmonics generated in the turbo-molecular pump 100 can be reduced. Furthermore, by measuring this flywheel current with the current detection circuit 181, the electromagnet current iL flowing through the electromagnet winding 151 can be detected.
 すなわち、検出した電流値が電流指令値より小さい場合には、図3に示すように制御サイクルTs(例えば100μs)中で1回だけ、パルス幅時間Tp1に相当する時間分だけトランジスタ161、162の両方をonにする。そのため、この期間中の電磁石電流iLは、正極171aから負極171bへ、トランジスタ161、162を介して流し得る電流値iLmax(図示せず)に向かって増加する。 That is, when the detected current value is smaller than the current command value, as shown in FIG. 3, the transistors 161 and 162 are turned off only once during the control cycle Ts (for example, 100 μs) for the time corresponding to the pulse width time Tp1. turn on both. Therefore, the electromagnet current iL during this period increases from the positive electrode 171a to the negative electrode 171b toward a current value iLmax (not shown) that can flow through the transistors 161,162.
 一方、検出した電流値が電流指令値より大きい場合には、図4に示すように制御サイクルTs中で1回だけパルス幅時間Tp2に相当する時間分だけトランジスタ161、162の両方をoffにする。そのため、この期間中の電磁石電流iLは、負極171bから正極171aへ、ダイオード165、166を介して回生し得る電流値iLmin(図示せず)に向かって減少する。 On the other hand, when the detected current value is greater than the current command value, both the transistors 161 and 162 are turned off only once in the control cycle Ts for the time corresponding to the pulse width time Tp2 as shown in FIG. . Therefore, the electromagnet current iL during this period decreases from the negative electrode 171b to the positive electrode 171a toward a current value iLmin (not shown) that can be regenerated via the diodes 165,166.
 そして、いずれの場合にも、パルス幅時間Tp1、Tp2の経過後は、トランジスタ161、162のどちらか1個をonにする。そのため、この期間中は、アンプ回路150にフライホイール電流が保持される。 In either case, either one of the transistors 161 and 162 is turned on after the pulse width times Tp1 and Tp2 have elapsed. Therefore, the flywheel current is held in the amplifier circuit 150 during this period.
 次に、上述したターボ分子ポンプ100を含む真空排気システム200について、図5を参照しながら説明する。本実施形態の真空排気システム200は、上層フロアUFにクリーンルームCRを設け、このクリーンルームCR内に設置される複数のチャンバ201A、201B、201C・・・と、クリーンルームCR内に設置されるチャンバ201A・・・と同数のターボ分子ポンプ100A、100B、100C・・・とを含んで構成されている。また真空排気システム200は、上層フロアUFにおけるクリーンルームCRの外側に設置されている1台のブースターポンプ202と、クリーンルームCRを設けていない下層フロアLFに設置されている1台のバックポンプ203とを含んで構成されている。 Next, an evacuation system 200 including the turbomolecular pump 100 described above will be described with reference to FIG. The vacuum exhaust system 200 of this embodiment has a clean room CR provided on the upper floor UF, a plurality of chambers 201A, 201B, 201C, . . . and the same number of turbomolecular pumps 100A, 100B, 100C . The evacuation system 200 also includes one booster pump 202 installed outside the clean room CR on the upper floor UF and one back pump 203 installed on the lower floor LF where the clean room CR is not provided. is composed of
 なおブースターポンプ202は、メカニカルブースターポンプとも称されるものであって、到達真空度は一例として0.01~10Pa程度である。またバックポンプ203は、ドライ真空ポンプとも称されるものであって、到達真空度は一例として1kPa程度である。ブースターポンプ202は、多くの場合にルーツ型の容積式真空ポンプが採用される。ルーツ型の容積式真空ポンプは、ターボ分子ポンプ(特にネジ溝ポンプ機構)に比べて、回転体のイナーシャが大きく、低速高トルク運転となるので、生成物の堆積に対して性能を維持できるマージンが大きい。またバックポンプ203は、多くの場合にルーツ型、クロー型、スクリュー型の容積式ドライ真空ポンプが採用される。これらはターボ分子ポンプ(特にネジ溝ポンプ機構)と比較して、ブースターポンプ202と同様に生成物の堆積に対して性能を維持できるマージンが大きい。 The booster pump 202 is also called a mechanical booster pump, and the ultimate vacuum is about 0.01 to 10 Pa as an example. The back pump 203 is also called a dry vacuum pump, and the ultimate degree of vacuum is, for example, about 1 kPa. Booster pump 202 is often a Roots positive displacement vacuum pump. Compared to turbomolecular pumps (especially screw groove pump mechanisms), Roots-type positive displacement vacuum pumps have a large inertia of the rotating body and operate at low speed and high torque, so there is a margin to maintain performance against product buildup. is large. The back pump 203 is often a positive displacement dry vacuum pump of roots type, claw type or screw type. Compared to turbomolecular pumps (particularly screw groove pump mechanisms), these pumps have a large margin for maintaining performance against product buildup, similar to the booster pump 202 .
 チャンバ201A・・・、ターボ分子ポンプ100A・・・、ブースターポンプ202、バックポンプ203は、排気配管204で相互に接続されている。またチャンバ201A・・・とバックポンプ203は、排気配管204とは別に、粗引き用配管205で相互に接続されている。 The chambers 201A . . . , the turbomolecular pump 100A . The chambers 201A and the back pump 203 are connected to each other by a roughing pipe 205 in addition to the exhaust pipe 204 .
 ここで、排気配管204について詳細に説明する。本実施形態の排気配管204は、図6に示すように水平方向に延在する統合配管部206を備えている。統合配管部206における両側面には、統合配管部206の長さ方向に間隔をあけて配置される複数の接続口207A、207B、207C・・・が設けられている。そしてターボ分子ポンプ100A・・・は、統合配管部206を挟んで両側に、統合配管部206が延在する向きに沿って横並び状態(ターボ分子ポンプ100A・・・同士が高さ方向に重なっていない状態)で設置されていて、ターボ分子ポンプ100A・・・における排気口133A・・・が、接続口207A・・・に接続されている。ブースターポンプ202は、ターボ分子ポンプ100A・・・と同階層の上層フロアUFにおいて、ターボ分子ポンプ100A・・・と横並びになるように設置され、統合配管部206の一端部に接続されている。なお、統合配管部206の一端部とブースターポンプ202を直接接続せず、排気配管204を構成する配管を介してこれらを接続しても良い。 Here, the exhaust pipe 204 will be described in detail. The exhaust pipe 204 of this embodiment includes a horizontally extending integrated pipe portion 206 as shown in FIG. A plurality of connection ports 207A, 207B, 207C, . The turbo-molecular pumps 100A . The exhaust ports 133A of the turbomolecular pumps 100A are connected to the connection ports 207A. The booster pump 202 is installed side by side with the turbo-molecular pumps 100A . It should be noted that the one end portion of the integrated pipe section 206 and the booster pump 202 may not be directly connected, but may be connected via a pipe that constitutes the exhaust pipe 204 .
 また排気配管204は、図5に示すようにチャンバ201A・・・とターボ分子ポンプ100A・・・の間に第一バルブ208A・・・を備えている。また排気配管204は、ブースターポンプ202とバックポンプ203の間において、上層フロアUFに位置する部分と下層フロアLFに位置する部分にそれぞれ第二バルブ209と第三バルブ210を備えている。 In addition, the exhaust pipe 204 includes first valves 208A... between the chambers 201A... and the turbomolecular pumps 100A..., as shown in FIG. Further, the exhaust pipe 204 is provided with a second valve 209 and a third valve 210 at the portion located on the upper floor UF and the portion located on the lower floor LF, respectively, between the booster pump 202 and the back pump 203 .
 粗引き用配管205は、図5に示すように排気上流側では複数本に分岐している一方、排気下流側では1本にまとめられている。粗引き用配管205における複数本に分岐した部分は、それぞれチャンバ201A・・・に接続されていて、また分岐したそれぞれには第四バルブ211A、211B、211C・・・が設けられている。そして粗引き用配管205における1本にまとめられた部分は、バックポンプ203に接続されていて、この1本にまとめられた部分には、第五バルブ212が設けられている。 As shown in FIG. 5, the roughing pipe 205 is branched into a plurality of pipes on the upstream side of the exhaust gas, and is combined into a single pipe on the downstream side of the exhaust gas. A plurality of branched portions of the roughing pipe 205 are connected to chambers 201A, respectively, and fourth valves 211A, 211B, 211C, . A united portion of the roughing pipe 205 is connected to the back pump 203, and a fifth valve 212 is provided at the united portion.
 上記の真空排気システム200は、ブースターポンプ202とバックポンプ203によるターボ分子ポンプ100A・・・からの排気は統合配管部206を介して行うように構成されていて、図8に示した従来の真空排気システム500のようにチャンバ毎にブースターポンプとバックポンプを設ける必要がないため、ブースターポンプ202とバックポンプ203の数を減らすことができる。従って、従来の真空排気システム500においてブースターポンプとバックポンプの設置に要していたスペースをあけることができるため、真空排気システム200を設ける建物内のスペースを有効に活用することができる。また従来の真空排気システム500は、ターボ分子ポンプ502A・・・とブースターポンプ503A・・・を接続するために複数本の排気配管505A・・・が必要であったが、本実施形態の真空排気システム200では、1本の統合配管部206にまとめられているため、この点でも従来に比してスペースをあけることができる。そして横並びに配置したターボ分子ポンプ100A・・・とブースターポンプ202を統合配管部206によって接続することによってこれらをつなぐ配管長が短くなるため、コンダクタンスの低下を抑制することができる。また統合配管部206をターボ分子ポンプ100A・・・の直下に配置すると、その分、ターボ分子ポンプ100A・・・を嵩上げしなければならなくなってチャンバ201A・・・等の高さも高くなってしまうが、本実施形態のようにターボ分子ポンプ100A・・・の直下を避けた位置に統合配管部206を配置することにより、高さを抑えることができる。 The above-described vacuum evacuation system 200 is configured such that evacuation from the turbomolecular pumps 100A . Since it is not necessary to provide a booster pump and a back pump for each chamber as in the exhaust system 500, the number of booster pumps 202 and back pumps 203 can be reduced. Therefore, the space required for installing the booster pump and the back pump in the conventional evacuation system 500 can be saved, so that the space in the building in which the evacuation system 200 is installed can be effectively utilized. In addition, the conventional vacuum evacuation system 500 requires a plurality of evacuation pipes 505A to connect the turbo molecular pumps 502A and the booster pumps 503A. In the system 200, since the pipes are integrated into one integrated pipe section 206, more space can be saved in this respect as well. By connecting the turbomolecular pumps 100A, . Also, if the integrated piping section 206 is arranged directly below the turbo molecular pumps 100A, etc., the turbo molecular pumps 100A, . . . However, by arranging the integrated piping section 206 at a position that avoids directly under the turbo-molecular pumps 100A, . . . as in the present embodiment, the height can be suppressed.
 なお、本実施形態の真空排気システム200によってチャンバ201A・・・を真空雰囲気にするには、まず第四バルブ211A・・・と第五バルブ212を開くとともにバックポンプ203を駆動させて、粗引き用配管205を通じて大気圧下のチャンバ201A・・・の減圧を行う。そして所定の圧力までチャンバ201A・・・内が減圧された後は、第四バルブ211A・・・と第五バルブ212を閉じるとともに第一バルブ208A・・・、第二バルブ209、及び第三バルブ210を開き、更にターボ分子ポンプ100A・・・、ブースターポンプ202、及びバックポンプ203を駆動させることにより、チャンバ201A・・・を意図した真空雰囲気にすることができる。なお、本実施形態のターボ分子ポンプ100A・・・は、上述したようにネジ溝ポンプ機構を備えていないものの、ネジ溝ポンプ機構を省略したことによるターボ分子ポンプ100Aの排気性能の低下は、ブースターポンプ202とバックポンプ203で補うことができる。 In order to make the chambers 201A . The chambers 201A under atmospheric pressure are decompressed through the air pipe 205. After the pressure in the chambers 201A is reduced to a predetermined pressure, the fourth valves 211A and the fifth valve 212 are closed, and the first valve 208A, the second valve 209 and the third valve are closed. 210 is opened, and the turbomolecular pumps 100A, . Although the turbo-molecular pumps 100A of the present embodiment are not provided with the thread groove pump mechanism as described above, the deterioration of the exhaust performance of the turbo-molecular pump 100A due to the omission of the thread groove pump mechanism may be caused by the booster. It can be supplemented by pump 202 and back pump 203 .
 上述した真空排気システム200は、図7に示した真空排気システム250のように構成してもよい。本実施形態の真空排気システム250は、真空排気システム200に対して更にバックアップ用ブースターポンプ251とバックアップ用バックポンプ252を備えている。バックアップ用ブースターポンプ251は、ブースターポンプ202と同階層の上層フロアUFであってクリーンルームCR外に設置され、バックアップ用バックポンプ252は、バックポンプ203と同階層の下層フロアLFに設置されている。またバックアップ用ブースターポンプ251は、第六バルブ253を介して統合配管部206に接続されるとともに、排気配管204におけるブースターポンプ202よりも排気下流側に対して第七バルブ254を介して接続される。そしてバックアップ用バックポンプ252は、第八バルブ255を介して排気配管204に接続されるとともに、第九バルブ256を介して粗引き用配管205に接続される。 The evacuation system 200 described above may be configured like the evacuation system 250 shown in FIG. The evacuation system 250 of this embodiment further includes a backup booster pump 251 and a backup back pump 252 in addition to the evacuation system 200 . The backup booster pump 251 is installed on the upper floor UF of the same layer as the booster pump 202 and outside the clean room CR, and the backup back pump 252 is installed on the lower floor LF of the same layer as the back pump 203 . The backup booster pump 251 is connected to the integrated piping section 206 via a sixth valve 253, and is connected via a seventh valve 254 to the exhaust downstream side of the booster pump 202 in the exhaust piping 204. . The backup back pump 252 is connected to the exhaust pipe 204 via the eighth valve 255 and is connected to the roughing pipe 205 via the ninth valve 256 .
 このような真空排気システム250によれば、ブースターポンプ202の動作不良が生じたときは、ブースターポンプ202を停止させるとともに第六バルブ253と第七バルブ254を開いてバックアップ用ブースターポンプ251を駆動させることにより、長時間の停止を伴うことなく真空排気システム250としての運転を続けることができる。そしてバックポンプ203の動作不良が生じた際、粗引き用配管205での減圧を行う場合は、バックポンプ203を停止させるとともに第五バルブ212を閉じ、更に第九バルブ256を開いてバックアップ用バックポンプ252を駆動する。また排気配管204での減圧を行う場合はバックポンプ203を停止させるとともに第八バルブ255を開いてバックアップ用バックポンプ252を駆動させる。このような手順を実行することにより、バックポンプ203の動作不良が生じた場合にも長時間の停止を伴うことなく真空排気システム250としての運転を続けることができる。 According to the vacuum evacuation system 250, when the booster pump 202 malfunctions, the booster pump 202 is stopped and the sixth valve 253 and the seventh valve 254 are opened to drive the backup booster pump 251. As a result, the operation of the evacuation system 250 can be continued without stopping for a long time. When the back pump 203 malfunctions and the roughing pipe 205 is to be decompressed, the back pump 203 is stopped, the fifth valve 212 is closed, and the ninth valve 256 is opened to open the backup back pump. Drive the pump 252 . Further, when reducing the pressure in the exhaust pipe 204, the back pump 203 is stopped, the eighth valve 255 is opened, and the backup back pump 252 is driven. By executing such a procedure, even if the back pump 203 malfunctions, the operation of the vacuum exhaust system 250 can be continued without a long period of stoppage.
 以上、本発明の一実施形態について説明したが、本発明は係る特定の実施形態に限定されるものではなく、上記の説明で特に限定しない限り、特許請求の範囲に記載された本発明の趣旨の範囲内において、種々の変形・変更、組み合わせが可能である。また、上記の実施形態における効果は、本発明から生じる効果を例示したに過ぎず、本発明による効果が上記の効果に限定されることを意味するものではない。 Although one embodiment of the present invention has been described above, the present invention is not limited to such a specific embodiment, and unless otherwise limited by the above description, the spirit of the present invention described in the claims Various modifications, changes, and combinations are possible within the scope of. Moreover, the effects of the above-described embodiments are merely examples of the effects produced by the present invention, and do not mean that the effects of the present invention are limited to the above effects.
 例えば真空排気システム200、250に設けたブースターポンプ202は、バックポンプ203の排気性能を補うものである。従って、排気配管505のコンダクタンスに応じて任意に設ければよく、バックポンプ203のみでも十分に排気できる場合は、ブースターポンプ202は省略してもよい。また、真空排気システム200、250に用いられるブースターポンプ202の台数は、ターボ分子ポンプ100の台数よりも少なければよく、上述した1台に限られず複数台でもよい。 For example, the booster pumps 202 provided in the evacuation systems 200 and 250 supplement the evacuation performance of the back pumps 203 . Therefore, the booster pump 202 may be omitted if the back pump 203 alone can sufficiently evacuate. Also, the number of booster pumps 202 used in the evacuation systems 200 and 250 should be less than the number of turbomolecular pumps 100, and the number is not limited to one as described above, and may be plural.
100:ターボ分子ポンプ
102:回転翼
123:固定翼
133:排気口
200、250:真空排気システム
202:ブースターポンプ
203:バックポンプ
204:排気配管
206:統合配管部
251:バックアップ用ブースターポンプ
252:バックアップ用バックポンプ
 
100: turbomolecular pump 102: rotor blade 123: fixed blade 133: exhaust port 200, 250: vacuum exhaust system 202: booster pump 203: back pump 204: exhaust pipe 206: integrated pipe section 251: backup booster pump 252: backup back pump for

Claims (5)

  1.  複数段の回転翼と複数段の固定翼との相互作用によってガス分子を排気口から排気するターボ分子ポンプ機構を備える一方、ネジ溝ポンプ機構を持たない複数のターボ分子ポンプと、
     前記排気口のそれぞれが接続された統合配管部を有する排気配管と、
     前記排気配管に接続されて前記統合配管部を介して前記ガス分子を排気するバックポンプと、を備えることを特徴とする真空排気システム。
    a plurality of turbo-molecular pumps having a turbo-molecular pump mechanism for exhausting gas molecules from an exhaust port by interaction between a plurality of stages of rotor blades and a plurality of stages of stationary blades, but not having a screw groove pump mechanism;
    an exhaust pipe having an integrated pipe section to which each of the exhaust ports is connected;
    and a back pump that is connected to the exhaust pipe and exhausts the gas molecules through the integrated pipe section.
  2.  前記排気配管における前記統合配管部から前記バックポンプまでの間に、当該バックポンプの排気性能を補助するブースターポンプが接続され、
     前記ブースターポンプの数は、前記ターボ分子ポンプの数よりも少ないことを特徴とする請求項1に記載の真空排気システム。
    A booster pump that assists the exhaust performance of the back pump is connected between the integrated pipe portion and the back pump in the exhaust pipe,
    2. The evacuation system according to claim 1, wherein the number of said booster pumps is less than the number of said turbomolecular pumps.
  3.  前記ブースターポンプは、前記ターボ分子ポンプに対して横並びに配置され、
     前記統合配管部は、前記ターボ分子ポンプの直下を避けた位置に配置されることを特徴とする請求項2に記載の真空排気システム。
    the booster pump is arranged side by side with the turbomolecular pump;
    3. The evacuation system according to claim 2, wherein the integrated piping section is arranged at a position avoiding directly below the turbo-molecular pump.
  4.  前記排気配管における前記統合配管部から前記バックポンプまでの間に、当該バックポンプの排気性能を補助するバックアップ用ブースターポンプが更に接続されることを特徴とする請求項2又は3に記載の真空排気システム。 4. The vacuum exhaust system according to claim 2, wherein a backup booster pump for assisting the exhaust performance of the back pump is further connected between the integrated piping section and the back pump in the exhaust piping. system.
  5.  前記排気配管に、前記統合配管部を介して前記ガス分子を排気するバックアップ用バックポンプが更に接続されることを特徴とする請求項1~4の何れか一項に記載の真空排気システム。
     
    5. The vacuum evacuation system according to claim 1, further comprising a backup pump for evacuating the gas molecules through the integrated piping section, which is further connected to the evacuation piping.
PCT/JP2023/006256 2022-02-28 2023-02-21 Vacuum discharge system WO2023162985A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-029407 2022-02-28
JP2022029407A JP2023125364A (en) 2022-02-28 2022-02-28 Evacuation system

Publications (1)

Publication Number Publication Date
WO2023162985A1 true WO2023162985A1 (en) 2023-08-31

Family

ID=82324099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006256 WO2023162985A1 (en) 2022-02-28 2023-02-21 Vacuum discharge system

Country Status (4)

Country Link
JP (1) JP2023125364A (en)
GB (1) GB202208028D0 (en)
TW (1) TW202346716A (en)
WO (1) WO2023162985A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277698A (en) * 1988-04-30 1989-11-08 Nippon Ferrofluidics Kk Compound vacuum pump
JP2001132683A (en) * 1999-10-29 2001-05-18 Applied Materials Inc Turbo-molecular pump
WO2015182699A1 (en) * 2014-05-30 2015-12-03 株式会社 荏原製作所 Gas-evacuation system
JP2017025793A (en) * 2015-07-23 2017-02-02 エドワーズ株式会社 Exhaust system
GB2592043A (en) * 2020-02-13 2021-08-18 Edwards Ltd Axial flow vacuum pump
JP2022509662A (en) * 2018-11-28 2022-01-21 エドワーズ リミテッド Multi-chamber vacuum exhaust system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01277698A (en) * 1988-04-30 1989-11-08 Nippon Ferrofluidics Kk Compound vacuum pump
JP2001132683A (en) * 1999-10-29 2001-05-18 Applied Materials Inc Turbo-molecular pump
WO2015182699A1 (en) * 2014-05-30 2015-12-03 株式会社 荏原製作所 Gas-evacuation system
JP2017025793A (en) * 2015-07-23 2017-02-02 エドワーズ株式会社 Exhaust system
JP2022509662A (en) * 2018-11-28 2022-01-21 エドワーズ リミテッド Multi-chamber vacuum exhaust system
GB2592043A (en) * 2020-02-13 2021-08-18 Edwards Ltd Axial flow vacuum pump

Also Published As

Publication number Publication date
GB202208028D0 (en) 2022-07-13
JP2023125364A (en) 2023-09-07
TW202346716A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
WO2023162985A1 (en) Vacuum discharge system
WO2022186076A1 (en) Vacuum pump and vacuum exhaust device
WO2023228863A1 (en) Vacuum pump and vacuum evacuation system
WO2022255202A1 (en) Vacuum pump, spacer, and casing
WO2022186075A1 (en) Vacuum pump
US20230383757A1 (en) Vacuum pump and vacuum exhaust system using the vacuum pump
WO2022264925A1 (en) Vacuum pump
WO2022145292A1 (en) Vacuum pump and control device
WO2022181464A1 (en) Vacuum pump and cover used for said vacuum pump
WO2022220197A1 (en) Turbo-molecular pump
WO2023238804A1 (en) Vacuum pump and vacuum exhaust system
US20230250826A1 (en) Vacuum pump and vacuum pump rotor blade
WO2022163341A1 (en) Vacuum pump and spacer
WO2022038996A1 (en) Vacuum pump, fixed blade, and spacer
JP7463324B2 (en) Vacuum pump and heat transfer suppressing member for vacuum pump
WO2022054717A1 (en) Vacuum pump
WO2023095910A1 (en) Vacuum pump, spacer component, and bolt fastening method
WO2023106154A1 (en) Vacuum pump and good thermal conductivity component
WO2022124240A1 (en) Vacuum pump
WO2023027084A1 (en) Vacuum pump and fixation component
JP2023160495A (en) Vacuum pump, control device, and control method
JP2023000161A (en) Rare gas recovery system and rare gas recovery method
JP2023075636A (en) Vacuum pump and heat insulation member used for the vacuum pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759986

Country of ref document: EP

Kind code of ref document: A1