WO2023162960A1 - Elecrochemical oxygen sensor and production method therefor - Google Patents

Elecrochemical oxygen sensor and production method therefor Download PDF

Info

Publication number
WO2023162960A1
WO2023162960A1 PCT/JP2023/006155 JP2023006155W WO2023162960A1 WO 2023162960 A1 WO2023162960 A1 WO 2023162960A1 JP 2023006155 W JP2023006155 W JP 2023006155W WO 2023162960 A1 WO2023162960 A1 WO 2023162960A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxygen sensor
catalyst layer
positive electrode
oxygen
alloy
Prior art date
Application number
PCT/JP2023/006155
Other languages
French (fr)
Japanese (ja)
Inventor
北澤直久
渡辺光俊
岩波良治
大町あゆみ
Original Assignee
マクセル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マクセル株式会社 filed Critical マクセル株式会社
Publication of WO2023162960A1 publication Critical patent/WO2023162960A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/403Cells and electrode assemblies
    • G01N27/404Cells with anode, cathode and cell electrolyte on the same side of a permeable membrane which separates them from the sample fluid, e.g. Clark-type oxygen sensors

Definitions

  • This application relates to an electrochemical oxygen sensor that improves the reliability of measurements in gases with low oxygen concentrations, and a manufacturing method thereof.
  • Electrochemical oxygen sensors (hereinafter also referred to as oxygen sensors) have the advantage of being inexpensive, easy to use, and capable of operating at room temperature. It is used in a wide range of fields, such as oxygen concentration detection in medical equipment such as respirators.
  • an electrochemical oxygen sensor for example, one that has an aqueous electrolyte and uses Sn or an alloy thereof as a negative electrode is known (Patent Documents 1 and 2, etc.).
  • the electrochemical oxygen sensor In the electrochemical oxygen sensor, when oxygen flows into the interior, it is reduced at the positive electrode, and a metal elution reaction occurs at the negative electrode, generating a current between the positive electrode and the negative electrode according to the oxygen concentration. Therefore, for example, the current generated by the positive electrode reaction (reduction of oxygen at the positive electrode) is converted into voltage, and the oxygen concentration is obtained based on this value. Therefore, when the electrochemical oxygen sensor is placed in an oxygen-free environment, the positive electrode reaction as described above does not occur. should also be possible. In reality, however, in spite of being placed in an oxygen-free environment, several hours after the start of observation, measurement results may appear as if oxygen is present. For this reason, depending on the configuration of the oxygen sensor, it may be difficult to use it for measuring low-concentration oxygen gas.
  • the present application has been made in view of the above circumstances, and aims to provide an electrochemical oxygen sensor with improved reliability of measurement in a gas with a low oxygen concentration, and a method of manufacturing the same.
  • the electrochemical oxygen sensor of the present application includes a positive electrode, a negative electrode, an oxygen-permeable diaphragm, and an electrolytic solution composed of an aqueous solution, the negative electrode containing a metal that dissolves in the electrolytic solution, and the electrolytic solution having a pH 3 to 10 aqueous solution, the positive electrode includes a catalyst layer containing Au, one surface of the catalyst layer is in contact with the electrolyte, and the catalyst layer has at least the surface on the electrolyte side and contains Ag or an alloy of Ag.
  • the electrochemical oxygen sensor of the present application includes a first step of depositing Ag on the surface of a metal layer containing Au to form a catalyst layer, and placing the Ag-attached side of the catalyst layer on the electrolyte side. It can be manufactured by the manufacturing method of the present application including a second step of arranging and assembling the positive electrode.
  • an electrochemical oxygen sensor with improved reliability when measuring the oxygen concentration of a gas with a low oxygen content, and a method of manufacturing the same.
  • FIG. 1 is a cross-sectional view schematically showing an example of the electrochemical oxygen sensor of the present application.
  • FIG. 2 is a graph showing the characteristics evaluation test results of the electrochemical oxygen sensors of Examples 1-3 and Comparative Examples 1-2.
  • FIG. 3 is a graph showing the characteristic evaluation test results of the electrochemical oxygen sensors of Examples 4 to 5 and Comparative Example 3.
  • FIG. 1 is a cross-sectional view schematically showing an example of the electrochemical oxygen sensor of the present application.
  • FIG. 2 is a graph showing the characteristics evaluation test results of the electrochemical oxygen sensors of Examples 1-3 and Comparative Examples 1-2.
  • FIG. 3 is a graph showing the characteristic evaluation test results of the electrochemical oxygen sensors of Examples 4 to 5 and Comparative Example 3.
  • the electrochemical oxygen sensor of the present application includes a positive electrode, a negative electrode, a diaphragm that allows oxygen to pass through, and an electrolytic solution composed of an aqueous solution, the negative electrode contains a metal that dissolves in the electrolytic solution, and the electrolytic solution has a pH 3 to 10 aqueous solution, the positive electrode includes a catalyst layer containing Au, one surface of the catalyst layer is in contact with the electrolyte, and the catalyst layer has at least the surface on the electrolyte side has Ag or an alloy of Ag.
  • the positive electrode of the electrochemical oxygen sensor of the present application includes a catalyst layer containing Au, and the catalyst layer has Ag or an alloy of Ag on at least the surface on the side of the electrolyte that is in contact with the electrolyte. It is possible to improve the measurement accuracy when measuring the oxygen concentration of a gas with a low oxygen content.
  • the alloy of Ag is preferably an alloy of Au and Ag.
  • the other surface of the catalyst layer is arranged on the side of the diaphragm, and having Au or an alloy of Au on at least the surface on the side of the diaphragm is useful for prolonging the life of the oxygen sensor and for poisoning gases such as hydrogen sulfide. It is preferable from the aspect of preventing the influence of
  • the catalyst layer may be a laminate of a layer containing Ag or an alloy of Ag and a layer containing Au or an alloy of Au.
  • the content of Ag on the surface on the electrolyte solution side is higher than the content of Ag on the inside, in order to further enhance the effect of Ag.
  • the content of Ag in the total amount of metals in the catalyst layer is preferably 1 atomic % or more in order to further enhance its effect.
  • the content of Au in the total amount of metals in the catalyst layer is preferably 10 atomic % or more in order to further enhance its effect.
  • oxygen sensor an electrochemical oxygen sensor (hereinafter sometimes abbreviated as "oxygen sensor") in which the positive electrode catalyst layer is composed of Au is used in an oxygen-free environment, several hours after the start of use, it is determined whether oxygen exists or not.
  • a voltage rise such as The inventors of the present invention considered the reaction occurring inside the oxygen sensor and, as a result, thought that the voltage rise may occur for the following reasons.
  • the reaction represented by the following formula (1) occurs when oxygen is present.
  • the positive electrode does not react as shown in formula (1).
  • the positive electrode in a state where oxygen is not supplied to the positive electrode, the positive electrode is electrically connected to the negative electrode through the resistor, so that the negative electrode potential is applied.
  • the metal element is eluted from the negative electrode, and a deposition reaction of the eluted element occurs at the positive electrode (when the eluted element is Sn, the reaction represented by the following formula (2) or (3)) occurs between the positive and negative electrodes. It is believed that voltage is generated by the flow of current.
  • the catalyst layer containing the catalytic metal in the positive electrode has Ag or an alloy of Ag on at least the surface of the electrolyte solution side in contact with the electrolyte solution, so the oxygen sensor can be used in an oxygen-free environment.
  • the oxygen sensor of the present application can measure the concentration of oxygen in a wide concentration range, for example, it can be used in a gas with a low oxygen concentration, including an oxygen-free environment.
  • FIG. 1 is a cross-sectional view schematically showing a galvanic cell oxygen sensor, which is one embodiment of the electrochemical oxygen sensor of the present application.
  • the oxygen sensor 1 shown in FIG. 1 has a positive electrode 50 , a negative electrode 80 and an electrolytic solution 90 in a cylindrical container 20 with a bottom.
  • the container 20 is composed of a container body 21 that holds an electrolytic solution 90 inside, and a sealing lid 10 for fixing the protective film 40 , the diaphragm 60 and the positive electrode 50 to the opening of the container body 21 .
  • the sealing lid 10 is composed of a first sealing lid (inner lid) 11 and a second sealing lid (outer lid) 12 for fixing the first sealing lid 11 . and is attached to the container body 21 via an O-ring 30 .
  • a negative electrode 80 is arranged in a state of being immersed in the electrolytic solution inside the container main body 21 containing the electrolytic solution 90 , and a lead portion 81 is formed on the negative electrode 80 .
  • the positive electrode 50 is configured by laminating a catalyst layer (catalyst electrode) 51 and a positive electrode current collector 52 , and a lead wire 53 is attached to the positive electrode current collector 52 .
  • a hole 70 for passing the lead wire 53 attached to the positive electrode current collector 52 is provided in the lower part of the container body 21 holding the electrolytic solution 90 of the container 20 . Further, although not shown in FIG. 1 , in addition to the perforations 70 , perforations for supplying the electrolytic solution to the positive electrode 50 are also provided in the lower portion of the container body 21 .
  • a correction resistor 100 and a temperature compensating thermistor 110 are connected in series between the lead portion 81 of the negative electrode 80 and the lead wire 53 attached to the positive electrode current collector 52 , and housed inside the container body 21 .
  • a negative electrode terminal 82 is connected to a lead portion 81 of the negative electrode 80
  • a positive electrode terminal 54 is connected to a lead wire 53 attached to the positive electrode current collector 52 .
  • a diaphragm 60 that selectively allows permeation of oxygen and restricts the amount of permeation to match the battery reaction is arranged. is introduced into the positive electrode 50 through the diaphragm 60 .
  • a protective film 40 is arranged on the outer surface side of the diaphragm 60 to prevent dust, dust, water, and the like from adhering to the diaphragm 60 , and is fixed by the first sealing lid 11 .
  • the first sealing lid 11 functions as a pressing end plate for the protective film 40 , the diaphragm 60 and the positive electrode 50 .
  • a threaded portion is formed on the inner peripheral portion of the second sealing lid 12 so as to be screwed with the threaded portion formed on the outer peripheral portion of the opening of the container body 21 .
  • the first sealing lid 11 is pressed against the container body 21 via the O-ring 30, so that the protective film is formed while maintaining airtightness and liquidtightness.
  • the diaphragm 60 and the positive electrode 50 can be fixed to the container body 21 .
  • the negative electrode of the oxygen sensor uses a material containing a metal that dissolves in the electrolyte. can be suppressed, the negative electrode is preferably made of a material containing Sn or a Sn alloy, and more preferably made of a Sn alloy. Although this Sn or Sn alloy may contain a certain amount of impurities, it is desirable that the content of Pb is less than 1000 ppm in order to comply with the RoHS Directive.
  • Sn alloy specifically, general lead-free solder materials (Sn-3.0Ag-0.5Cu, Sn-3.5Ag, Sn-3.5Ag-0.75Cu, Sn-3.8Ag- 0.7Cu, Sn-3.9Ag-0.6Cu, Sn-4.0Ag-0.5Cu, Sn-1.0Ag-0.5Cu, Sn-1.0Ag-0.7Cu, Sn-0.3Ag- 0.7Cu, Sn-0.75Cu, Sn-0.7Cu-Ni-P-Ge, Sn-0.6Cu-Ni-P-GeSn-1.0Ag-0.7Cu-Bi-In, Sn-0.
  • solder materials Sn-3.0Ag-0.5Cu, Sn-3.5Ag, Sn-3.5Ag-0.75Cu, Sn-3.8Ag- 0.7Cu, Sn-3.9Ag-0.6Cu, Sn-4.0Ag-0.5Cu, Sn-1.0Ag-0.5Cu, Sn-1.0Ag-0.7Cu, Sn-0.3Ag- 0.7Cu,
  • the positive electrode of the oxygen sensor is composed of a catalyst layer containing a catalytic metal and a positive electrode current collector.
  • the catalyst which is the constituent material of the catalyst layer, is generally not particularly limited as long as it can generate current by electrochemical reduction of oxygen on the positive electrode. and silver (Ag), which has a function of preventing a positive electrode reaction in an oxygen-free environment. Au and Ag may be alloyed.
  • the catalyst layer using only Ag, which has the effect of preventing the positive electrode reaction in an oxygen-free environment.
  • the catalyst layer is composed only of Ag, the catalyst layer is easily affected by the poisoning gas, such as hydrogen sulfide, if the gas used to measure the oxygen concentration contains a poisoning gas. is limited, and problems arise in terms of practical use of the oxygen sensor.
  • the catalyst layer is formed using only Ag, the service life of the sensor is shortened compared to the catalyst layer containing Au, although the reason is not clear.
  • the catalyst layer is configured to contain Au, and Ag or an alloy of Ag is disposed at least on the surface of the catalyst layer on the electrolyte side that is in contact with the electrolyte.
  • the alloy of Ag an alloy of Au and Ag is preferably used from the viewpoint of the service life of the oxygen sensor.
  • the content of Ag in the total amount of metals in the catalyst layer is preferably 1 atomic % or more, and preferably 15 atomic % or more. It is more preferably 35 atomic % or more, particularly preferably 45 atomic % or more, and most preferably 45 atomic % or more.
  • the content of Ag in the total amount of metals in the catalyst layer is preferably 90 atomic % or less. It is preferably 60 atomic % or less, more preferably 40 atomic % or less, and most preferably 20 atomic % or less. That is, the content of Au in the total amount of metals in the catalyst layer is preferably 10 atomic % or more, more preferably 40 atomic % or more, particularly preferably 60 atomic % or more, and 80 atomic % or more. % or more is most preferable. Even if the composition of the catalyst layer is not uniform, the content of Ag and the content of Au may be adjusted so as to fall within the above range as a whole.
  • the catalyst layer can be entirely formed of a uniform alloy containing Au and Ag.
  • the surface in contact with the liquid is composed of Ag or an alloy of Ag (such as an alloy of Au and Ag), and the diaphragm side is composed of Au or an alloy of Au (Au and Ag having a smaller proportion of Ag than the surface in contact with the electrolyte). alloys, etc.).
  • the content of Ag in the catalyst layer increases from the surface on the side of the electrolyte toward the inside so that the content of Ag on the surface in contact with the electrolyte is higher than the content of Ag on the membrane side. It may decrease.
  • the Au content in the catalyst layer decreases from the diaphragm-side surface toward the inside so that the Au content on the membrane-side surface is higher than that on the electrolyte side. It is okay to continue.
  • a laminate of a layer containing Ag or an alloy of Ag and a layer containing Au or an alloy of Au may be used.
  • the thickness of the catalyst layer is thin, the effect can be sufficiently exhibited. is more preferred.
  • the catalyst layer can contain elements other than Au and Ag, such as metal elements having catalytic activity such as Fe, Co, Cu, Ni, Ru, Rh, Pd, Os, Ir, and Pt.
  • metal elements having catalytic activity such as Fe, Co, Cu, Ni, Ru, Rh, Pd, Os, Ir, and Pt.
  • the total content of metal elements other than Au and Ag is preferably 20 atomic % or less, more preferably 10 atomic % or less, of the total amount of metals in the catalyst layer. More preferably, it is particularly preferably 5 atomic % or less, and the catalyst layer may be composed only of Au and Ag.
  • the electrolyte of the oxygen sensor is composed of an aqueous solution, such as an aqueous solution containing acetic acid, potassium acetate and lead acetate, and an aqueous solution containing citric acid and citrate (alkali metal salt, etc.).
  • the aqueous solution that constitutes the electrolytic solution may contain various organic acids, inorganic acids, alkalis, salts thereof, etc. as necessary for the purpose of pH adjustment.
  • an aqueous solution containing a chelating agent as the electrolytic solution. It is presumed that the chelating agent has the effect of chelating the constituent metals of the negative electrode and dissolving them in the electrolytic solution (hereinafter referred to as the "chelating effect"), which may contribute to the extension of the life of the oxygen sensor. .
  • chelating agent refers to a molecule (including ions) having multiple coordination sites (coordination atoms) that form a coordinate bond with a metal ion, and forms a complex with the metal ion (complex It stabilizes metal ions by transformation), and can be contained in the electrolytic solution in the form of an acid or a salt thereof that generates the above molecules in the solvent constituting the electrolytic solution. Therefore, those having a single coordination site (coordination atom) such as phosphoric acid, acetic acid, carbonic acid and salts thereof with weak complexing power are not included in the "chelating agent” as used herein. .
  • Metal ions such as Sn 2+ eluted from the negative electrode during discharge are unstable in the electrolyte when the pH of the electrolyte is in the weakly acidic to weakly alkaline range, so they immediately form oxides and hydroxides on the negative electrode. , and may hinder the reaction of the negative electrode.
  • the electrolytic solution contains a chelating agent, the eluted metal ions are chelated and exist stably as complex ions, so that the reaction at the negative electrode can be prevented from being hindered.
  • a chelating agent generally has a chelating action and pH buffering ability (the ability to keep the pH of a solution almost constant even when a small amount of acid or base is added).
  • succinic acid, fumaric acid, maleic acid, citric acid, tartaric acid, glutaric acid, adipic acid, malic acid, malonic acid, aspartic acid, glutamic acid, ascorbic acid, salts thereof, etc. 1 type, or 2 or more types can be used.
  • citric acid As the chelating agent, from the viewpoint of enhancing the chelating action, it is more preferable to use those having high solubility in water, specifically citric acid, tartaric acid, glutamic acid and salts thereof.
  • the concentration of the chelating agent in the electrolytic solution is, for example, preferably 2.3 mol/L or more, more preferably 2.5 mol/L or more, and particularly preferably 2.7 mol/L or more. .
  • the electrolytic solution further contains ammonia to increase the molar concentration of the chelating agent in the electrolytic solution. By delaying, it is possible to prolong the life of the oxygen sensor.
  • the concentration of ammonia in the electrolytic solution is preferably 0.01 mol/L or more in order to facilitate the above-mentioned action of ammonia, and is preferably 0.1 mol/L or more in order to further enhance the above-mentioned action, and is preferably 1 mol/L. L or more is more preferable.
  • the upper limit of the concentration of ammonia in the electrolyte is not specified in particular, but since ammonia is a compound specified in Table 2 of Japan's "Poisonous and Deleterious Substances Control Law", from the viewpoint of safety , the concentration of ammonia in the electrolyte is preferably less than 10 mol/L.
  • the pH of the aqueous solution that constitutes the electrolyte is 3-10.
  • the oxygen sensor placed in an oxygen-free environment tends to cause a reaction in which the metal ions eluted from the negative electrode are deposited at the positive electrode. It is possible to prevent the problem of voltage rise of the oxygen sensor due to such a precipitation reaction.
  • a diaphragm on the outer surface of the positive electrode of the oxygen sensor to control the inflow of oxygen so that too much oxygen does not reach the catalyst electrode.
  • the diaphragm one that selectively allows oxygen to permeate and limits the permeation amount of oxygen gas is preferable.
  • the material and thickness of the membrane are not particularly limited, fluororesins such as polytetrafluoroethylene and tetrafluoroethylene-hexafluoropropylene copolymer; polyolefins such as polyethylene; and the like are usually used.
  • the diaphragm may be a porous membrane, a non-porous membrane, or a capillary-type membrane having pores formed with capillaries.
  • a protective film made of a porous resin film on the diaphragm.
  • the material and thickness of the protective film there are no particular restrictions on the material and thickness of the protective film as long as it can prevent dirt, dust, water, etc. from adhering to the diaphragm and has the function of permeating air (including oxygen).
  • a fluororesin such as polytetrafluoroethylene is used.
  • the container body 21 of the oxygen sensor 1 can be made of, for example, acrylonitrile-butadiene-styrene (ABS) resin.
  • the sealing lid 10 (the first sealing lid 11 and the second sealing lid 12) arranged at the opening of the container body 21 can be made of, for example, ABS resin, polypropylene, polycarbonate, fluororesin, or the like. can.
  • the oxygen sensor 1 can be kept air-tight and liquid-tight by deforming.
  • the material of the O-ring is not particularly limited, but nitrile rubber, silicone rubber, ethylene propylene rubber, fluororesin and the like are usually used.
  • the present application has been described by taking the galvanic cell oxygen sensor, which is one embodiment of the electrochemical oxygen sensor of the present application, as an example.
  • the oxygen sensor shown in FIG. 1 can be modified in various ways as long as it has the function of an oxygen sensor.
  • the electrochemical oxygen sensor of the present application can take the form of a constant potential oxygen sensor.
  • a constant potential oxygen sensor is a sensor that applies a constant voltage between a positive electrode and a negative electrode, and the applied voltage is set according to the electrochemical characteristics of each electrode and the type of gas to be detected.
  • the constant potential type oxygen sensor when an appropriate constant voltage is applied between the positive electrode and the negative electrode, the current flowing between them and the oxygen gas concentration have a proportional relationship.
  • the oxygen gas concentration of an unknown gas can be detected by measuring the voltage.
  • the electrochemical oxygen sensor of the present application can be preferably applied to applications in an oxygen-free environment, but can also be applied to the same applications as conventionally known electrochemical oxygen sensors.
  • the electrochemical oxygen sensor of the present application includes a first step of depositing Ag on the surface of a metal layer containing Au to form a catalyst layer, and placing the Ag-attached side of the catalyst layer on the electrolyte side. and a second step of arranging and assembling the positive electrode.
  • Ag attached to the surface of the metal layer containing Au may remain on the surface of the metal layer as it is without reacting with the underlying metal layer, or may be alloyed with the underlying metal layer (for example, Au) to An alloy of Ag (for example, an alloy of Au and Ag) may be formed on at least the surface of the layer.
  • the method for manufacturing an electrochemical oxygen sensor of the present application may further include a step of heat-treating the metal layer having Ag deposited on its surface in an inert atmosphere or a reducing atmosphere after the first step. This can promote the alloying of Au and Ag. By alloying Au and Ag, Ag can be stably retained in the catalyst layer.
  • Examples of methods for attaching Ag to the surface of a metal layer containing Au or further alloying Au and Ag include physical vapor deposition (PVD), chemical vapor deposition (CVD), reactive plasma chemical vapor deposition, and chemical vapor deposition. Phase deposition method (PACVD), ion plating method (IP), sputtering method and the like are exemplified. Moreover, the method of electrochemically depositing, such as electrodeposition, may be used.
  • the amount of Ag to be deposited is preferably such that the content of Ag in the total amount of metal in the catalyst layer is 1 atomic % or more in order to further enhance its effect.
  • the Ag content in the metal layer decreases from the surface toward the inside so that the Ag content on the surface is higher than the Ag content on the inside. good too.
  • Example 1 ⁇ Preparation of electrolytic solution> An electrolytic solution was prepared by dissolving citric acid, tripotassium citrate and ammonia in water. The molar concentrations in the electrolytic solution were citric acid: 2.5 mol/L, tripotassium citrate: 0.5 mol/L, and ammonia: 3.0 mol/L. The pH of this electrolytic solution was 4.30 at 25°C.
  • ⁇ Preparation of positive electrode catalyst layer> On the surface of the tetrafluoroethylene-hexafluoropropylene copolymer film that serves as the diaphragm, a metal film made of an alloy of Au and Ag with a thickness of about 70 nm was formed as a catalyst layer of the positive electrode by ion plating.
  • the sealing lid 10 (the first sealing lid 11 and the second sealing lid 12) was also made of ABS resin like the container body 21.
  • a porous polytetrafluoroethylene sheet was used as the protective film 40, and a tetrafluoroethylene-hexafluoropropylene copolymer film was used as the diaphragm 60, as described above.
  • the catalyst layer (catalyst electrode) 51 of the positive electrode 50 uses the previously prepared catalyst layer, and is arranged so that the surface 51a on the side opposite to the diaphragm 60 is in contact with the electrolytic solution.
  • a wire 53 made of titanium was used, and the positive electrode current collector 52 and the lead wire 53 were welded together.
  • the negative electrode 80 was made of a Sn--Sb alloy (Sb content: 5% by mass).
  • a correction resistor 100 and a temperature compensating thermistor 110 are connected in series.
  • the oxygen concentration can be detected from the output voltage.
  • the first sealing lid 11, the O-ring 30, the protective film 40 made of polytetrafluoroethylene sheet, the diaphragm 60 made of tetrafluoroethylene-hexafluoropropylene copolymer, the catalyst electrode 51, and the positive electrode current collector 52 are pressed by screwing the container main body 21 and the second sealing lid 12 to maintain a good sealing state.
  • Example 1 In the same manner as in Example 1, except that instead of the metal film made of an alloy of Au and Ag, a metal film made of only Au having a thickness of about 70 nm prepared by an ion plating method was used as the positive electrode catalyst layer. Assembled the oxygen sensor.
  • Example 2 In the same manner as in Example 1, except that instead of the metal film made of an alloy of Au and Ag, a metal film made of only Ag having a thickness of about 70 nm prepared by an ion plating method was used as the positive electrode catalyst layer. Assembled the oxygen sensor.
  • An oxygen sensor was assembled in the same manner as in Example 1, except that the catalyst layer of the positive electrode was used and the side on which Ag was laminated was placed in contact with the electrolytic solution.
  • Example 5 A laminated film composed of an Au layer and an Ag layer was produced as a positive electrode catalyst layer in the same manner as in Example 4, except that the thickness of the Ag film laminated on the surface of the Au metal film was changed to about 30 nm.
  • An oxygen sensor was assembled in the same manner as in Example 1, except that the catalyst layer of the positive electrode was used and the side on which Ag was laminated was placed in contact with the electrolytic solution.
  • Example 3 An oxygen sensor was assembled in the same manner as in Example 1, except that a metal film of Au having a thickness of about 60 nm formed by an ion plating method was used as it was as the catalyst layer of the positive electrode.

Abstract

This electrochemical oxygen sensor is characterized by comprising a positive electrode, a negative electrode, a barrier membrane that transmits oxygen, and an electrolyte that is formed from an aqueous solution, and is further characterized in that: the negative electrode includes a metal that is eluted into the electrolyte; the electrolyte is an aqueous solution having a pH of 3-10; the positive electrode includes a catalyst layer containing Au; one surface of the catalyst layer makes contact with the electrolyte; and the catalyst layer has Ag or an Ag alloy on at least the electrolyte-side surface thereof.

Description

電気化学式酸素センサおよびその製造方法Electrochemical oxygen sensor and manufacturing method thereof
 本願は、酸素濃度が低いガスにおける測定の信頼性を高めた電気化学式酸素センサと、その製造方法とに関するものである。 This application relates to an electrochemical oxygen sensor that improves the reliability of measurements in gases with low oxygen concentrations, and a manufacturing method thereof.
 電気化学式酸素センサ(以下、酸素センサともいう。)は、安価、手軽であり、かつ常温での作動が可能という利点を有することから、船倉内部やマンホール内の酸欠状態のチェック、麻酔器や人工呼吸器などの医療機器における酸素濃度の検出など、広い分野で使用されている。 Electrochemical oxygen sensors (hereinafter also referred to as oxygen sensors) have the advantage of being inexpensive, easy to use, and capable of operating at room temperature. It is used in a wide range of fields, such as oxygen concentration detection in medical equipment such as respirators.
 このような電気化学式酸素センサとしては、例えば、水溶液系の電解液を有し、負極にSnやその合金を使用したものが知られている(特許文献1、2など)。 As such an electrochemical oxygen sensor, for example, one that has an aqueous electrolyte and uses Sn or an alloy thereof as a negative electrode is known ( Patent Documents 1 and 2, etc.).
特開2006-194708号公報JP-A-2006-194708 特開2017-67596号公報JP 2017-67596 A
 電気化学式酸素センサにおいては、酸素が内部に流入すると正極で還元され、また負極で金属の溶出反応が生じることにより、正極と負極との間に酸素濃度に応じた電流が発生する。そのため、例えば、正極反応(正極での酸素の還元)によって生じた電流を電圧に変換し、この値を基にして酸素濃度を求めている。よって、電気化学式酸素センサを無酸素の環境下に置いた場合には、前記のような正極反応が生じないことから、本来、前記の電流は発生せず、酸素濃度がゼロであることの測定も可能となるはずである。ところが、現実には、無酸素環境下に置かれているにも関わらず、観測を開始して数時間経過すると、酸素が存在しているかのような測定結果が得られる場合がある。このため、酸素センサの構成によっては、低い濃度の酸素ガスの測定には使用し難いといった問題が生じることもあり、酸素濃度の測定範囲が限られるという課題が生じていた。 In the electrochemical oxygen sensor, when oxygen flows into the interior, it is reduced at the positive electrode, and a metal elution reaction occurs at the negative electrode, generating a current between the positive electrode and the negative electrode according to the oxygen concentration. Therefore, for example, the current generated by the positive electrode reaction (reduction of oxygen at the positive electrode) is converted into voltage, and the oxygen concentration is obtained based on this value. Therefore, when the electrochemical oxygen sensor is placed in an oxygen-free environment, the positive electrode reaction as described above does not occur. should also be possible. In reality, however, in spite of being placed in an oxygen-free environment, several hours after the start of observation, measurement results may appear as if oxygen is present. For this reason, depending on the configuration of the oxygen sensor, it may be difficult to use it for measuring low-concentration oxygen gas.
 本願は、前記事情に鑑みてなされたものであり、酸素濃度が低いガスにおける測定の信頼性を高めた電気化学式酸素センサと、その製造方法とを提供することにある。 The present application has been made in view of the above circumstances, and aims to provide an electrochemical oxygen sensor with improved reliability of measurement in a gas with a low oxygen concentration, and a method of manufacturing the same.
 本願の電気化学式酸素センサは、正極、負極、酸素を透過する隔膜、および水溶液で構成された電解液を含み、前記負極は、前記電解液に溶出する金属を含み、前記電解液は、pHが3~10の水溶液であり、前記正極は、Auを含有する触媒層を含み、前記触媒層は、一方の表面が前記電解液と接しており、前記触媒層は、少なくとも前記電解液側の表面に、AgまたはAgの合金を有することを特徴とする。 The electrochemical oxygen sensor of the present application includes a positive electrode, a negative electrode, an oxygen-permeable diaphragm, and an electrolytic solution composed of an aqueous solution, the negative electrode containing a metal that dissolves in the electrolytic solution, and the electrolytic solution having a pH 3 to 10 aqueous solution, the positive electrode includes a catalyst layer containing Au, one surface of the catalyst layer is in contact with the electrolyte, and the catalyst layer has at least the surface on the electrolyte side and contains Ag or an alloy of Ag.
 本願の電気化学式酸素センサは、一例として、Auを含有する金属層の表面にAgを付着させ、触媒層を形成する第1工程と、前記触媒層のAgを付着させた側を電解液側に配置して正極を組み立てる第2工程とを含む本願の製造方法によって、製造することができる。 As an example, the electrochemical oxygen sensor of the present application includes a first step of depositing Ag on the surface of a metal layer containing Au to form a catalyst layer, and placing the Ag-attached side of the catalyst layer on the electrolyte side. It can be manufactured by the manufacturing method of the present application including a second step of arranging and assembling the positive electrode.
 本願によれば、酸素含有量が低いガスの酸素濃度を測定する際の信頼性を高めた電気化学式酸素センサと、その製造方法とを提供することができる。 According to the present application, it is possible to provide an electrochemical oxygen sensor with improved reliability when measuring the oxygen concentration of a gas with a low oxygen content, and a method of manufacturing the same.
図1は、本願の電気化学式酸素センサの一例を模式的に表す断面図である。FIG. 1 is a cross-sectional view schematically showing an example of the electrochemical oxygen sensor of the present application. 図2は、実施例1~3および比較例1~2の電気化学式酸素センサの特性評価試験結果を表すグラフである。FIG. 2 is a graph showing the characteristics evaluation test results of the electrochemical oxygen sensors of Examples 1-3 and Comparative Examples 1-2. 図3は、実施例4~5および比較例3の電気化学式酸素センサの特性評価試験結果を表すグラフである。FIG. 3 is a graph showing the characteristic evaluation test results of the electrochemical oxygen sensors of Examples 4 to 5 and Comparative Example 3. FIG.
 <電気化学式酸素センサ>
 本願の電気化学式酸素センサは、正極、負極、酸素を透過する隔膜、および水溶液で構成された電解液を備え、前記負極は、前記電解液に溶出する金属を含み、前記電解液は、pHが3~10の水溶液であり、前記正極は、Auを含有する触媒層を含み、前記触媒層は、一方の表面が前記電解液と接しており、前記触媒層は、少なくとも前記電解液側の表面に、AgまたはAgの合金を有している。
<Electrochemical oxygen sensor>
The electrochemical oxygen sensor of the present application includes a positive electrode, a negative electrode, a diaphragm that allows oxygen to pass through, and an electrolytic solution composed of an aqueous solution, the negative electrode contains a metal that dissolves in the electrolytic solution, and the electrolytic solution has a pH 3 to 10 aqueous solution, the positive electrode includes a catalyst layer containing Au, one surface of the catalyst layer is in contact with the electrolyte, and the catalyst layer has at least the surface on the electrolyte side has Ag or an alloy of Ag.
 本願の電気化学式酸素センサの正極は、Auを含有する触媒層を含み、前記触媒層は、前記電解液と接する少なくとも電解液側の表面に、AgまたはAgの合金を有しているので、酸素含有量が低いガスの酸素濃度を測定する際の測定精度を向上できる。前記Agの合金としては、AuとAgの合金であることが好ましい。 The positive electrode of the electrochemical oxygen sensor of the present application includes a catalyst layer containing Au, and the catalyst layer has Ag or an alloy of Ag on at least the surface on the side of the electrolyte that is in contact with the electrolyte. It is possible to improve the measurement accuracy when measuring the oxygen concentration of a gas with a low oxygen content. The alloy of Ag is preferably an alloy of Au and Ag.
 また、前記触媒層は、もう一方の表面が隔膜側に配置されており、少なくとも隔膜側の表面に、AuまたはAuの合金を有することが、酸素センサの長寿命化や硫化水素などの被毒ガスの影響を防ぐ面から好ましい。 The other surface of the catalyst layer is arranged on the side of the diaphragm, and having Au or an alloy of Au on at least the surface on the side of the diaphragm is useful for prolonging the life of the oxygen sensor and for poisoning gases such as hydrogen sulfide. It is preferable from the aspect of preventing the influence of
 前記触媒層は、AgまたはAgの合金を有する層と、AuまたはAuの合金を有する層との積層体であってもよい。 The catalyst layer may be a laminate of a layer containing Ag or an alloy of Ag and a layer containing Au or an alloy of Au.
 前記触媒層は、前記電解液側の表面でのAgの含有割合が内部でのAgの含有割合よりも高いことが、Agの効果をより高めるため好ましい。 In the catalyst layer, it is preferable that the content of Ag on the surface on the electrolyte solution side is higher than the content of Ag on the inside, in order to further enhance the effect of Ag.
 前記触媒層における金属の総量中のAgの含有割合は、その効果をより高めるため、1原子%以上であることが好ましい。 The content of Ag in the total amount of metals in the catalyst layer is preferably 1 atomic % or more in order to further enhance its effect.
 前記触媒層における金属の総量中のAuの含有割合は、その効果をより高めるため、10原子%以上であることが好ましい。 The content of Au in the total amount of metals in the catalyst layer is preferably 10 atomic % or more in order to further enhance its effect.
 本願の電気化学式酸素センサが酸素含有量の低いガスの酸素濃度を測定する際の測定精度を向上できる理由は、現時点では下記のように考えられる。 At present, the reasons why the electrochemical oxygen sensor of the present application can improve the measurement accuracy when measuring the oxygen concentration of gases with low oxygen content are considered as follows.
 正極の触媒層がAuで構成された電気化学式酸素センサ(以下、「酸素センサ」と略す場合がある。)を無酸素環境下で使用すると、使用開始から数時間経過すると、酸素が存在するかのような電圧上昇が認められる。本発明者らは、酸素センサ内部で生じる反応を検討した結果、前記電圧上昇が以下の理由によって発生するのではないかと考えた。 When an electrochemical oxygen sensor (hereinafter sometimes abbreviated as "oxygen sensor") in which the positive electrode catalyst layer is composed of Au is used in an oxygen-free environment, several hours after the start of use, it is determined whether oxygen exists or not. A voltage rise such as The inventors of the present invention considered the reaction occurring inside the oxygen sensor and, as a result, thought that the voltage rise may occur for the following reasons.
 酸素センサの正極では、酸素が存在すると下記(1)式で表される反応が起こる。 At the positive electrode of the oxygen sensor, the reaction represented by the following formula (1) occurs when oxygen is present.
 O2+4H++4e-→H2O   (1) O 2 +4H + +4e →H 2 O (1)
 しかしながら、酸素センサが無酸素環境下に置かれた場合、正極では前記(1)式で示す反応は生じない。一方、正極に酸素が供給されない状態では、正極は、抵抗を介して負極と電気的に接続されているため負極電位が印加されている状態になってしまう。その結果、負極から金属元素が溶出するとともに、正極では溶出元素の析出反応(溶出元素がSnの場合は、下記(2)または(3)式で表される反応)が生じ、正負極間に電流が流れることにより電圧が発生すると考えられる。 However, when the oxygen sensor is placed in an oxygen-free environment, the positive electrode does not react as shown in formula (1). On the other hand, in a state where oxygen is not supplied to the positive electrode, the positive electrode is electrically connected to the negative electrode through the resistor, so that the negative electrode potential is applied. As a result, the metal element is eluted from the negative electrode, and a deposition reaction of the eluted element occurs at the positive electrode (when the eluted element is Sn, the reaction represented by the following formula (2) or (3)) occurs between the positive and negative electrodes. It is believed that voltage is generated by the flow of current.
 Sn4++4e-→Sn   (2)
 Sn2++2e-→Sn   (3)
Sn 4+ +4e →Sn (2)
Sn 2+ +2e →Sn (3)
 前記の通り、正極の触媒層がAuで構成された酸素センサを無酸素環境下で使用した場合、使用開始から数時間が経つと電圧上昇が生じる一方で、一定の時間が経過すると、前記の電圧上昇が認められなくなる。これは、Au上に吸着、析出する溶出元素の量が限られており、前記反応がある程度進行するとそれ以上は進まなくなり、正負極間に電流が流れなくなるためである。以上の知見から、本発明者らは、触媒層の電解液と接する表面において、前記正極での反応を防ぐことができれば、無酸素状態で正負極間に電流が生じるのを防ぐことができ、酸素濃度が低いガスを測定する際の信頼性を高めることができると考えた。 As described above, when an oxygen sensor whose positive electrode catalyst layer is made of Au is used in an oxygen-free environment, the voltage rises after several hours from the start of use, but after a certain period of time, the above-mentioned Voltage rise is no longer recognized. This is because the amount of eluted elements that can be adsorbed or deposited on Au is limited, and once the reaction has progressed to a certain extent, it will no longer proceed, and current will not flow between the positive and negative electrodes. Based on the above knowledge, the present inventors have found that if the reaction at the positive electrode can be prevented on the surface of the catalyst layer that is in contact with the electrolyte, the current can be prevented from being generated between the positive and negative electrodes in an oxygen-free state. We thought that it would be possible to improve the reliability when measuring gases with low oxygen concentrations.
 本願の酸素センサでは、正極における触媒金属を含有する触媒層の、電解液と接する少なくとも電解液側の表面に、AgまたはAgの合金を有しているため、酸素センサを無酸素環境下で使用した場合の、負極から溶出した金属イオンの正極での析出反応による電圧上昇の発生を防止することが可能となる。これにより、本願の酸素センサは、例えば、無酸素環境下も含む酸素濃度の低いガス中での使用も可能となるなど、広い濃度範囲で酸素の濃度測定を行うことができる。 In the oxygen sensor of the present application, the catalyst layer containing the catalytic metal in the positive electrode has Ag or an alloy of Ag on at least the surface of the electrolyte solution side in contact with the electrolyte solution, so the oxygen sensor can be used in an oxygen-free environment. In this case, it is possible to prevent the occurrence of a voltage rise due to the precipitation reaction of the metal ions eluted from the negative electrode at the positive electrode. As a result, the oxygen sensor of the present application can measure the concentration of oxygen in a wide concentration range, for example, it can be used in a gas with a low oxygen concentration, including an oxygen-free environment.
 次に、本願の酸素センサを、好適な実施形態の一例であるガルバニ電池式酸素センサを例にとり、図面を用いて説明する。 Next, the oxygen sensor of the present application will be described with reference to the drawings, taking a galvanic cell type oxygen sensor as an example of a preferred embodiment.
 図1は、本願の電気化学式酸素センサの一実施形態であるガルバニ電池式酸素センサを、模式的に表す断面図である。 FIG. 1 is a cross-sectional view schematically showing a galvanic cell oxygen sensor, which is one embodiment of the electrochemical oxygen sensor of the present application.
 図1に示す酸素センサ1は、有底筒状の容器20内に正極50、負極80および電解液90を有している。容器20は、内部に電解液90を保持する容器本体21と、容器本体21の開口部に保護膜40、隔膜60および正極50を固定するための封止蓋10とで構成されている。封止蓋10は、第1封止蓋(中蓋)11と、第1封止蓋11を固定するための第2封止蓋(外蓋)12とで構成され、酸素センサ1内に酸素を取り込むための貫通孔120を有しており、O-リング30を介して容器本体21に取り付けられている。 The oxygen sensor 1 shown in FIG. 1 has a positive electrode 50 , a negative electrode 80 and an electrolytic solution 90 in a cylindrical container 20 with a bottom. The container 20 is composed of a container body 21 that holds an electrolytic solution 90 inside, and a sealing lid 10 for fixing the protective film 40 , the diaphragm 60 and the positive electrode 50 to the opening of the container body 21 . The sealing lid 10 is composed of a first sealing lid (inner lid) 11 and a second sealing lid (outer lid) 12 for fixing the first sealing lid 11 . and is attached to the container body 21 via an O-ring 30 .
 電解液90を収容する容器本体21の内部には、負極80が電解液中に浸漬された状態で配されており、負極80には、リード部81が形成されている。また、正極50は、触媒層(触媒電極)51と正極集電体52とが積層されて構成されており、正極集電体52には、リード線53が取り付けられている。そして、容器20のうちの電解液90を保持する容器本体21の下部には、正極集電体52に取り付けられたリード線53を通すための穿孔70が設けられている。また、図1では示していないが、容器本体21の下部には、前記穿孔70とは別に、電解液を正極50に供給するための穿孔も設けられている。 A negative electrode 80 is arranged in a state of being immersed in the electrolytic solution inside the container main body 21 containing the electrolytic solution 90 , and a lead portion 81 is formed on the negative electrode 80 . The positive electrode 50 is configured by laminating a catalyst layer (catalyst electrode) 51 and a positive electrode current collector 52 , and a lead wire 53 is attached to the positive electrode current collector 52 . A hole 70 for passing the lead wire 53 attached to the positive electrode current collector 52 is provided in the lower part of the container body 21 holding the electrolytic solution 90 of the container 20 . Further, although not shown in FIG. 1 , in addition to the perforations 70 , perforations for supplying the electrolytic solution to the positive electrode 50 are also provided in the lower portion of the container body 21 .
 負極80のリード部81と正極集電体52に取り付けられたリード線53との間には、補正抵抗100および温度補償用サーミスタ110が直列に連結され、容器本体21の内部に収容されている。また、負極80のリード部81には、負極端子82が接続されており、正極集電体52に取り付けられたリード線53には、正極端子54が接続されており、それぞれ容器本体21の外部に導出されている。 A correction resistor 100 and a temperature compensating thermistor 110 are connected in series between the lead portion 81 of the negative electrode 80 and the lead wire 53 attached to the positive electrode current collector 52 , and housed inside the container body 21 . . A negative electrode terminal 82 is connected to a lead portion 81 of the negative electrode 80 , and a positive electrode terminal 54 is connected to a lead wire 53 attached to the positive electrode current collector 52 . is derived from
 正極50の外面側には、酸素を選択的に透過させ、かつ透過量を電池反応に見合うように制限する隔膜60が配されており、封止蓋10に設けられた貫通孔120からの酸素が、隔膜60を通じて正極50へ導入される。また、隔膜60の外面側には、隔膜60へのゴミやチリ、水などの付着を防止するための保護膜40が配されており、第1封止蓋11によって固定されている。 On the outer surface side of the positive electrode 50, a diaphragm 60 that selectively allows permeation of oxygen and restricts the amount of permeation to match the battery reaction is arranged. is introduced into the positive electrode 50 through the diaphragm 60 . A protective film 40 is arranged on the outer surface side of the diaphragm 60 to prevent dust, dust, water, and the like from adhering to the diaphragm 60 , and is fixed by the first sealing lid 11 .
 すなわち、第1封止蓋11は、保護膜40、隔膜60および正極50の押圧端板として機能する。図1に示す酸素センサ1では、容器本体21の開口部の外周部に形成されたネジ部と螺合するように、第2封止蓋12の内周部にネジ部が形成されている。そして、封止蓋10をネジ締めすることにより、第1封止蓋11がO-リング30を介して容器本体21に押し付けられることで、気密性および液密性を保持した状態で、保護膜40、隔膜60および正極50を容器本体21に固定できるようになっている。 That is, the first sealing lid 11 functions as a pressing end plate for the protective film 40 , the diaphragm 60 and the positive electrode 50 . In the oxygen sensor 1 shown in FIG. 1, a threaded portion is formed on the inner peripheral portion of the second sealing lid 12 so as to be screwed with the threaded portion formed on the outer peripheral portion of the opening of the container body 21 . Then, by screwing the sealing lid 10, the first sealing lid 11 is pressed against the container body 21 via the O-ring 30, so that the protective film is formed while maintaining airtightness and liquidtightness. 40 , the diaphragm 60 and the positive electrode 50 can be fixed to the container body 21 .
 そして、正極50の触媒層51の電解液と接する少なくとも電解液側の表面51aに、AgまたはAgの合金を有している。 At least the surface 51a of the catalyst layer 51 of the positive electrode 50, which is in contact with the electrolyte, is Ag or an alloy of Ag.
 酸素センサの負極には、電解液に溶出する金属を含む材料を使用するが、pHが3~10の水溶液からなる電解液中での腐食が生じにくく、元々無酸素環境下での正極における水素の発生を抑制できることから、負極はSnまたはSn合金を含む材料で構成されていることが好ましく、Sn合金で構成されていることがより好ましい。このSnまたはSn合金は、一定量の不純物を含有していてもよいが、RoHS指令に適合させるため、Pbの含有量は1000ppm未満であることが望ましい。 The negative electrode of the oxygen sensor uses a material containing a metal that dissolves in the electrolyte. can be suppressed, the negative electrode is preferably made of a material containing Sn or a Sn alloy, and more preferably made of a Sn alloy. Although this Sn or Sn alloy may contain a certain amount of impurities, it is desirable that the content of Pb is less than 1000 ppm in order to comply with the RoHS Directive.
 負極に使用し得るSn合金としては、耐食性の点から、Sn-Ag合金、Sn-Cu合金、Sn-Ag-Cu合金、Sn-Sb合金などが例示されるが、Al、Bi、Fe、Mg、Na、Zn、Ca、Ge、In、Ni、Coなどの金属元素を含有する合金であってもよい。 Examples of Sn alloys that can be used for the negative electrode include Sn--Ag alloys, Sn--Cu alloys, Sn--Ag--Cu alloys, and Sn--Sb alloys from the viewpoint of corrosion resistance. , Na, Zn, Ca, Ge, In, Ni, Co, and other metal elements.
 Sn合金としては、具体的には、一般的な鉛フリーはんだ材料(Sn-3.0Ag-0.5Cu、Sn-3.5Ag、Sn-3.5Ag-0.75Cu、Sn-3.8Ag-0.7Cu、Sn-3.9Ag-0.6Cu、Sn-4.0Ag-0.5Cu、Sn-1.0Ag-0.5Cu、Sn-1.0Ag-0.7Cu、Sn-0.3Ag-0.7Cu、Sn-0.75Cu、Sn-0.7Cu-Ni-P-Ge、Sn-0.6Cu-Ni-P-GeSn-1.0Ag-0.7Cu-Bi-In、Sn-0.3Ag-0.7Cu-0.5Bi-Ni、Sn-3.0Ag-3.0Bi-3.0In、Sn-3.9Ag-0.6Cu-3.0Sb、Sn-3.5Ag-0.5Bi-8.0In、Sn-5.0Sb、Sn-10Sb、Sn-0.5Ag-6.0Cu、Sn-5.0Cu-0.15Ni、Sn-0.5Ag-4.0Cu、Sn-2.3Ag-Ni-Co、Sn-2Ag-Cu-Ni、Sn-3Ag-3Bi-0.8Cu-Ni、Sn-3.0Ag-0.5Cu-Ni、Sn-0.3Ag-2.0Cu-Ni、Sn-0.3Ag-0.7Cu-Ni、Sn-58Bi、Sn-57Bi-1.0Agなど)や、Sn-Sb合金を好ましく用いることができる。 As the Sn alloy, specifically, general lead-free solder materials (Sn-3.0Ag-0.5Cu, Sn-3.5Ag, Sn-3.5Ag-0.75Cu, Sn-3.8Ag- 0.7Cu, Sn-3.9Ag-0.6Cu, Sn-4.0Ag-0.5Cu, Sn-1.0Ag-0.5Cu, Sn-1.0Ag-0.7Cu, Sn-0.3Ag- 0.7Cu, Sn-0.75Cu, Sn-0.7Cu-Ni-P-Ge, Sn-0.6Cu-Ni-P-GeSn-1.0Ag-0.7Cu-Bi-In, Sn-0. 3Ag-0.7Cu-0.5Bi-Ni, Sn-3.0Ag-3.0Bi-3.0In, Sn-3.9Ag-0.6Cu-3.0Sb, Sn-3.5Ag-0.5Bi- 8.0In, Sn-5.0Sb, Sn-10Sb, Sn-0.5Ag-6.0Cu, Sn-5.0Cu-0.15Ni, Sn-0.5Ag-4.0Cu, Sn-2.3Ag- Ni-Co, Sn-2Ag-Cu-Ni, Sn-3Ag-3Bi-0.8Cu-Ni, Sn-3.0Ag-0.5Cu-Ni, Sn-0.3Ag-2.0Cu-Ni, Sn- 0.3Ag-0.7Cu-Ni, Sn-58Bi, Sn-57Bi-1.0Ag, etc.) and Sn-Sb alloys can be preferably used.
 酸素センサの正極は、例えば、図1に示すように、触媒金属を含有する触媒層と正極集電体とで構成されたものが使用される。触媒層の構成材料である触媒としては、一般的には正極上の電気化学的な酸素の還元によって電流が生じ得るものであれば特に限定されないが、本願では、少なくとも、酸化還元に活性な金属である金(Au)と、無酸素環境下での正極反応を防ぐ作用を有する銀(Ag)とを用いる。AuとAgは合金化していてもよい。 For example, as shown in FIG. 1, the positive electrode of the oxygen sensor is composed of a catalyst layer containing a catalytic metal and a positive electrode current collector. The catalyst, which is the constituent material of the catalyst layer, is generally not particularly limited as long as it can generate current by electrochemical reduction of oxygen on the positive electrode. and silver (Ag), which has a function of preventing a positive electrode reaction in an oxygen-free environment. Au and Ag may be alloyed.
 ここで、無酸素環境下での正極反応を防ぐ作用を有するAgのみを用いて触媒層を構成することも考えられる。しかし、触媒層をAgのみで構成すると、酸素濃度を測定するガスに硫化水素などの被毒ガスが含まれている場合、触媒層が被毒ガスの影響を受けやすいため、酸素濃度を測定できるガス組成が限定されてしまい、酸素センサの実用面での課題が生じることになる。また、Agのみを用いて触媒層を構成すると、理由は定かではないが、Auを含む触媒層と比較し、センサの寿命が短くなってしまう。 Here, it is also conceivable to configure the catalyst layer using only Ag, which has the effect of preventing the positive electrode reaction in an oxygen-free environment. However, if the catalyst layer is composed only of Ag, the catalyst layer is easily affected by the poisoning gas, such as hydrogen sulfide, if the gas used to measure the oxygen concentration contains a poisoning gas. is limited, and problems arise in terms of practical use of the oxygen sensor. Further, if the catalyst layer is formed using only Ag, the service life of the sensor is shortened compared to the catalyst layer containing Au, although the reason is not clear.
 そこで、本願では、触媒層がAuを含有する構成とし、少なくとも、触媒層の電解液と接する電解液側の表面には、AgまたはAgの合金を配置することとした。前記Agの合金としては、酸素センサの寿命などの点からAuとAgの合金が好ましく用いられる。無酸素環境下での正極反応を防ぐAgの効果を高める観点から、触媒層における金属の総量中のAgの含有割合は、1原子%以上であることが好ましく、15原子%以上であることがより好ましく、35原子%以上であることが特に好ましく、45原子%以上であることが最も好ましい。一方、触媒層にAuを一定以上含有させて硫化水素などの被毒ガスの影響を受けにくくする観点からは、触媒層における金属の総量中のAgの含有割合は、90原子%以下であることが好ましく、60原子%以下であることがより好ましく、40原子%以下であることが特に好ましく、20原子%以下であることが最も好ましい。すなわち、触媒層における金属の総量中のAuの含有割合は、10原子%以上であることが好ましく、40原子%以上であることがより好ましく、60原子%以上であることが特に好ましく、80原子%以上であることが最も好ましい。なお、触媒層の組成が均一でない場合であっても、Agの含有割合およびAuの含有割合は、全体として前記の範囲内となるよう調整すればよい。 Therefore, in the present application, the catalyst layer is configured to contain Au, and Ag or an alloy of Ag is disposed at least on the surface of the catalyst layer on the electrolyte side that is in contact with the electrolyte. As the alloy of Ag, an alloy of Au and Ag is preferably used from the viewpoint of the service life of the oxygen sensor. From the viewpoint of enhancing the effect of Ag that prevents positive electrode reaction in an oxygen-free environment, the content of Ag in the total amount of metals in the catalyst layer is preferably 1 atomic % or more, and preferably 15 atomic % or more. It is more preferably 35 atomic % or more, particularly preferably 45 atomic % or more, and most preferably 45 atomic % or more. On the other hand, from the viewpoint of making the catalyst layer contain a certain amount or more of Au to make it less susceptible to poisoning gases such as hydrogen sulfide, the content of Ag in the total amount of metals in the catalyst layer is preferably 90 atomic % or less. It is preferably 60 atomic % or less, more preferably 40 atomic % or less, and most preferably 20 atomic % or less. That is, the content of Au in the total amount of metals in the catalyst layer is preferably 10 atomic % or more, more preferably 40 atomic % or more, particularly preferably 60 atomic % or more, and 80 atomic % or more. % or more is most preferable. Even if the composition of the catalyst layer is not uniform, the content of Ag and the content of Au may be adjusted so as to fall within the above range as a whole.
 また、触媒層は、全体をAuとAgを含む均一な合金で形成することもできるが、電解液と接する側と酸素が流入する側(隔膜側)とで組成が異なっていてもよく、電解液と接する表面がAg、または、Agの合金(AuとAgの合金など)で構成され、隔膜側がAu、または、Auの合金(前記電解液と接する表面よりもAgの割合が少ないAuとAgの合金など)で構成されてもよい。例えば、電解液と接する表面でのAgの含有割合が、それよりも隔膜側でのAgの含有割合よりも高くなるよう、電解液側の表面から内部に向かって触媒層におけるAgの含有割合が減少していくのであってもよい。また、隔膜側の表面でのAuの含有割合が、それよりも電解液側でのAuの含有割合よりも高くなるよう、隔膜側の表面から内部に向かって触媒層におけるAuの含有割合が減少していくのであってもよい。また、AgまたはAgの合金を有する層と、AuまたはAuの合金を有する層との積層体としてもよい。このような構成とすることにより、酸素濃度が低いガスを測定する際の信頼性を高めるとともに、硫化水素などの被毒ガスの影響をより受けにくくし、また、酸素センサの寿命を長期化する効果をより発揮しやすくすることができる。 In addition, the catalyst layer can be entirely formed of a uniform alloy containing Au and Ag. The surface in contact with the liquid is composed of Ag or an alloy of Ag (such as an alloy of Au and Ag), and the diaphragm side is composed of Au or an alloy of Au (Au and Ag having a smaller proportion of Ag than the surface in contact with the electrolyte). alloys, etc.). For example, the content of Ag in the catalyst layer increases from the surface on the side of the electrolyte toward the inside so that the content of Ag on the surface in contact with the electrolyte is higher than the content of Ag on the membrane side. It may decrease. In addition, the Au content in the catalyst layer decreases from the diaphragm-side surface toward the inside so that the Au content on the membrane-side surface is higher than that on the electrolyte side. It is okay to continue. Alternatively, a laminate of a layer containing Ag or an alloy of Ag and a layer containing Au or an alloy of Au may be used. By adopting such a configuration, the reliability when measuring a gas with a low oxygen concentration is improved, the influence of poisonous gases such as hydrogen sulfide is reduced, and the service life of the oxygen sensor is extended. can be more easily demonstrated.
 触媒層の厚みは、薄くても十分に効果を発揮することができ、例えば、30nm以上であればよく、一方、200nm以下とすることができ、150nm以下とするのが好ましく、100nm以下とするのがより好ましい。 Even if the thickness of the catalyst layer is thin, the effect can be sufficiently exhibited. is more preferred.
 なお、触媒層は、AuおよびAg以外の元素、例えば、Fe、Co、Cu、Ni、Ru、Rh、Pd、Os、Ir、Ptなどの触媒活性を有する金属元素を含むことができる。ただし、AuおよびAgの作用を阻害しないために、AuおよびAg以外の金属元素の含有総量は、触媒層における金属の総量中20原子%以下であることが好ましく、10原子%以下であることがより好ましく、5原子%以下であることが特に好ましく、AuおよびAgのみで触媒層を構成してもよい。 The catalyst layer can contain elements other than Au and Ag, such as metal elements having catalytic activity such as Fe, Co, Cu, Ni, Ru, Rh, Pd, Os, Ir, and Pt. However, in order not to inhibit the action of Au and Ag, the total content of metal elements other than Au and Ag is preferably 20 atomic % or less, more preferably 10 atomic % or less, of the total amount of metals in the catalyst layer. More preferably, it is particularly preferably 5 atomic % or less, and the catalyst layer may be composed only of Au and Ag.
 酸素センサの電解液には、水溶液で構成されたものが使用され、例えば、酢酸、酢酸カリウムおよび酢酸鉛を含有する水溶液、クエン酸およびクエン酸塩(アルカリ金属塩など)を含有する水溶液などのカルボン酸またはその塩を含有する酸性水溶液;水酸化ナトリウム水溶液、水酸化カリウム水溶液などのアルカリ性水溶液;炭酸や炭酸塩の水溶液などを使用することができる。 The electrolyte of the oxygen sensor is composed of an aqueous solution, such as an aqueous solution containing acetic acid, potassium acetate and lead acetate, and an aqueous solution containing citric acid and citrate (alkali metal salt, etc.). An acidic aqueous solution containing a carboxylic acid or a salt thereof; an alkaline aqueous solution such as an aqueous sodium hydroxide solution or an aqueous potassium hydroxide solution; an aqueous solution of carbonic acid or a carbonate;
 また、電解液を構成する水溶液は、pH調整の目的で、必要に応じて各種の有機酸や無機酸、アルカリやそれらの塩などを含有していてもよい。 In addition, the aqueous solution that constitutes the electrolytic solution may contain various organic acids, inorganic acids, alkalis, salts thereof, etc. as necessary for the purpose of pH adjustment.
 なお、酸素センサの長寿命化を図る観点からは、電解液には、キレート剤を含有する水溶液を使用することが好ましい。キレート剤には、負極の構成金属をキレート化して電解液に溶解させる作用(以下、「キレート化作用」という。)があると推測され、これが酸素センサの長寿命化に寄与し得ると考えられる。 From the viewpoint of extending the life of the oxygen sensor, it is preferable to use an aqueous solution containing a chelating agent as the electrolytic solution. It is presumed that the chelating agent has the effect of chelating the constituent metals of the negative electrode and dissolving them in the electrolytic solution (hereinafter referred to as the "chelating effect"), which may contribute to the extension of the life of the oxygen sensor. .
 本明細書でいう「キレート剤」とは、金属イオンと配位結合をする配位座(配位原子)を複数持つ分子(イオンも含む。)を有し、金属イオンと錯体を形成(錯化)して金属イオンを安定化させるものであり、電解液を構成する溶媒中で前記分子を生成する酸やその塩などの形で電解液に含有させることができる。従って、錯化力が弱いリン酸、酢酸、炭酸およびこれらの塩などの、前記配位座(配位原子)が単数であるものは、本明細書でいう「キレート剤」には含まれない。 As used herein, the term “chelating agent” refers to a molecule (including ions) having multiple coordination sites (coordination atoms) that form a coordinate bond with a metal ion, and forms a complex with the metal ion (complex It stabilizes metal ions by transformation), and can be contained in the electrolytic solution in the form of an acid or a salt thereof that generates the above molecules in the solvent constituting the electrolytic solution. Therefore, those having a single coordination site (coordination atom) such as phosphoric acid, acetic acid, carbonic acid and salts thereof with weak complexing power are not included in the "chelating agent" as used herein. .
 放電時に負極から溶出したSn2+などの金属イオンは、電解液のpHが弱酸性~弱アルカリ性の範囲にある場合は、電解液中で不安定なため直ちに酸化物や水酸化物として負極上に析出し、負極の反応を阻害するおそれを生じる。しかし、電解液にキレート剤が含まれていると、溶出した金属イオンはキレート化され錯イオンとして安定に存在するため、負極の反応を阻害するのを防ぐことができる。 Metal ions such as Sn 2+ eluted from the negative electrode during discharge are unstable in the electrolyte when the pH of the electrolyte is in the weakly acidic to weakly alkaline range, so they immediately form oxides and hydroxides on the negative electrode. , and may hinder the reaction of the negative electrode. However, when the electrolytic solution contains a chelating agent, the eluted metal ions are chelated and exist stably as complex ions, so that the reaction at the negative electrode can be prevented from being hindered.
 キレート剤は、一般に、キレート化作用を有すると共に、pH緩衝能(少量の酸や塩基が添加されても、溶液のpHをほぼ一定に保つ能力)を有しているが、その具体例としては、例えば、コハク酸、フマル酸、マレイン酸、クエン酸、酒石酸、グルタル酸、アジピン酸、リンゴ酸、マロン酸、アスパラギン酸、グルタミン酸、アスコルビン酸や、これらの塩などが挙げられ、これらのうちの1種または2種以上を用いることができる。 A chelating agent generally has a chelating action and pH buffering ability (the ability to keep the pH of a solution almost constant even when a small amount of acid or base is added). , For example, succinic acid, fumaric acid, maleic acid, citric acid, tartaric acid, glutaric acid, adipic acid, malic acid, malonic acid, aspartic acid, glutamic acid, ascorbic acid, salts thereof, etc. 1 type, or 2 or more types can be used.
 キレート剤には、キレート化作用を高める観点から水への溶解度が高いもの、具体的には、クエン酸、酒石酸、グルタミン酸およびその塩などを用いることがより好ましい。これらの中でも、クエン酸やその塩は水への溶解度が高く〔クエン酸:73g/100mL(25℃)、クエン酸三ナトリウム:71g/100mL(25℃)、クエン酸三カリウム:167g/100mL(25℃)〕、また、クエン酸は解離可能な水素原子の数が多く、pH緩衝能が発揮されるpHが複数あることから(pKa1=3.13、pKa2=4.75、pKa3=6.40)、クエン酸を使用することがより好ましい。よって、キレート剤としてクエン酸を用いた場合には、水への溶解度が高く、pH緩衝能も高くなるため、酸素センサの寿命がより向上する。 As the chelating agent, from the viewpoint of enhancing the chelating action, it is more preferable to use those having high solubility in water, specifically citric acid, tartaric acid, glutamic acid and salts thereof. Among these, citric acid and its salts have high solubility in water [citric acid: 73 g / 100 mL (25 ° C.), trisodium citrate: 71 g / 100 mL (25 ° C.), tripotassium citrate: 167 g / 100 mL ( 25° C.)], and since citric acid has a large number of dissociable hydrogen atoms and there are multiple pHs at which the pH buffering ability is exhibited (pKa 1 =3.13, pKa 2 =4.75, pKa 3 = 6.40), more preferably using citric acid. Therefore, when citric acid is used as a chelating agent, the solubility in water is high and the pH buffering capacity is also high, so that the life of the oxygen sensor is further improved.
 電解液中でのキレート剤の濃度は、例えば、2.3mol/L以上であることが好ましく、2.5mol/L以上であることがより好ましく、2.7mol/L以上であることが特に好ましい。 The concentration of the chelating agent in the electrolytic solution is, for example, preferably 2.3 mol/L or more, more preferably 2.5 mol/L or more, and particularly preferably 2.7 mol/L or more. .
 なお、電解液中に溶解している負極由来の金属が飽和濃度に達すると、前記金属の酸化物が生成して負極が不活性になることで酸素センサの寿命が損なわれる虞があり、電解液にキレート剤を含有させても、酸素センサの長寿命化効果が限定的になることもある。この場合、電解液にはアンモニアをさらに含有させて、電解液中のキレート剤のモル濃度を高めることが好ましく、これにより、電解液中に溶解している負極由来の金属が飽和に達することを遅らせて、酸素センサの寿命をより長期化することが可能となる。 In addition, when the metal derived from the negative electrode dissolved in the electrolytic solution reaches a saturation concentration, the oxide of the metal is generated and the negative electrode becomes inactive, which may shorten the life of the oxygen sensor. Even if the liquid contains a chelating agent, the effect of prolonging the life of the oxygen sensor may be limited. In this case, it is preferable that the electrolytic solution further contains ammonia to increase the molar concentration of the chelating agent in the electrolytic solution. By delaying, it is possible to prolong the life of the oxygen sensor.
 電解液中のアンモニアの濃度は、アンモニアの前記作用を生じやすくさせるために、0.01mol/L以上とし、前記作用をより高めるために、0.1mol/L以上とすることが好ましく、1mol/L以上とすることがより好ましい。また、電解液中のアンモニアの濃度の上限は、特に規定はされないが、アンモニアは日本の「毒物及び劇物取締法」別表第二に規定されている化合物であるので、安全性の観点からは、電解液中でのアンモニアの濃度は、10mol/L未満とすることが好ましい。 The concentration of ammonia in the electrolytic solution is preferably 0.01 mol/L or more in order to facilitate the above-mentioned action of ammonia, and is preferably 0.1 mol/L or more in order to further enhance the above-mentioned action, and is preferably 1 mol/L. L or more is more preferable. In addition, the upper limit of the concentration of ammonia in the electrolyte is not specified in particular, but since ammonia is a compound specified in Table 2 of Japan's "Poisonous and Deleterious Substances Control Law", from the viewpoint of safety , the concentration of ammonia in the electrolyte is preferably less than 10 mol/L.
 電解液を構成する水溶液のpHは3~10である。電解液がこのようなpHの場合に、無酸素環境下に置かれた酸素センサにおいて、負極から溶出した金属イオンが正極で析出する反応が生じやすいが、前記の通り、本願であれば、このような析出反応による酸素センサの電圧上昇の問題を防止することができる。 The pH of the aqueous solution that constitutes the electrolyte is 3-10. When the electrolyte has such a pH, the oxygen sensor placed in an oxygen-free environment tends to cause a reaction in which the metal ions eluted from the negative electrode are deposited at the positive electrode. It is possible to prevent the problem of voltage rise of the oxygen sensor due to such a precipitation reaction.
 酸素センサの正極の外面には、触媒電極に到達する酸素が多くなりすぎないように、酸素の流入を制御するための隔膜を配置することが好ましい。隔膜としては、酸素を選択的に透過させると共に、酸素ガスの透過量を制限できるものが好ましい。隔膜の材質や厚みについては特に制限はないが、通常、ポリテトラフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体などのフッ素樹脂;ポリエチレンなどのポリオレフィン;などが使用される。隔膜には、多孔膜、無孔膜、更には、キャピラリー式と呼ばれる毛細管が形成された孔を有する膜を使用することができる。 It is preferable to place a diaphragm on the outer surface of the positive electrode of the oxygen sensor to control the inflow of oxygen so that too much oxygen does not reach the catalyst electrode. As the diaphragm, one that selectively allows oxygen to permeate and limits the permeation amount of oxygen gas is preferable. Although the material and thickness of the membrane are not particularly limited, fluororesins such as polytetrafluoroethylene and tetrafluoroethylene-hexafluoropropylene copolymer; polyolefins such as polyethylene; and the like are usually used. The diaphragm may be a porous membrane, a non-porous membrane, or a capillary-type membrane having pores formed with capillaries.
 さらに、前記隔膜を保護するために、隔膜上に多孔性の樹脂膜からなる保護膜を配置することが好ましい。保護膜は、隔膜へのゴミやチリ、水などの付着を防止でき、空気(酸素を含む)を透過する機能を有していれば、その材質や厚みについては特に制限はないが、通常、ポリテトラフルオロエチレンなどのフッ素樹脂が使用される。 Furthermore, in order to protect the diaphragm, it is preferable to dispose a protective film made of a porous resin film on the diaphragm. There are no particular restrictions on the material and thickness of the protective film as long as it can prevent dirt, dust, water, etc. from adhering to the diaphragm and has the function of permeating air (including oxygen). A fluororesin such as polytetrafluoroethylene is used.
 酸素センサ1の容器本体21は、例えばアクリロニトリル-ブタジエン-スチレン(ABS)樹脂で構成することができる。また、容器本体21の開口部に配される封止蓋10(第1封止蓋11および第2封止蓋12)は、例えば、ABS樹脂、ポリプロピレン、ポリカーボネート、フッ素樹脂などで構成することができる。 The container body 21 of the oxygen sensor 1 can be made of, for example, acrylonitrile-butadiene-styrene (ABS) resin. The sealing lid 10 (the first sealing lid 11 and the second sealing lid 12) arranged at the opening of the container body 21 can be made of, for example, ABS resin, polypropylene, polycarbonate, fluororesin, or the like. can.
 さらに、容器20の容器本体21と封止蓋10(第1封止蓋11)との間に介在させるO-リング30は、容器本体21と第2封止蓋12とのネジ締めによって押圧されて変形することで、酸素センサ1の気密性および液密性を保持できるようになっている。O-リングの材質については特に制限はないが、通常、ニトリルゴム、シリコーンゴム、エチレンプロピレンゴム、フッ素樹脂などが使用される。 Furthermore, the O-ring 30 interposed between the container body 21 of the container 20 and the sealing lid 10 (first sealing lid 11) is pressed by the screw tightening between the container body 21 and the second sealing lid 12. The oxygen sensor 1 can be kept air-tight and liquid-tight by deforming. The material of the O-ring is not particularly limited, but nitrile rubber, silicone rubber, ethylene propylene rubber, fluororesin and the like are usually used.
 これまで、本願の電気化学式酸素センサの一実施形態であるガルバニ電池式酸素センサを例にとって本願を説明してきたが、本願の電気化学式酸素センサは前記実施形態に限定されるものではなく、その技術的思想の範囲内で種々の変更が可能である。また、図1に示す酸素センサについても、酸素センサとしての機能を備えていれば、各種設計変更が可能である。 So far, the present application has been described by taking the galvanic cell oxygen sensor, which is one embodiment of the electrochemical oxygen sensor of the present application, as an example. Various modifications are possible within the scope of the concept. Also, the oxygen sensor shown in FIG. 1 can be modified in various ways as long as it has the function of an oxygen sensor.
 また、本願の電気化学式酸素センサは、定電位式酸素センサとしての形態を採ることもできる。定電位式酸素センサは、正極と負極との間に一定電圧を印加するセンサであり、印加電圧は各電極の電気化学特性や検知するガス種に応じて設定される。定電位式酸素センサでは正極と負極の間に適当な一定電圧を印加すると、その間に流れる電流と酸素ガス濃度とは比例関係を有するので、電流を電圧に変換すれば、ガルバニ電池式酸素センサと同様に、電圧を測定することによって未知の気体の酸素ガス濃度を検出することができる。 Also, the electrochemical oxygen sensor of the present application can take the form of a constant potential oxygen sensor. A constant potential oxygen sensor is a sensor that applies a constant voltage between a positive electrode and a negative electrode, and the applied voltage is set according to the electrochemical characteristics of each electrode and the type of gas to be detected. In the constant potential type oxygen sensor, when an appropriate constant voltage is applied between the positive electrode and the negative electrode, the current flowing between them and the oxygen gas concentration have a proportional relationship. Similarly, the oxygen gas concentration of an unknown gas can be detected by measuring the voltage.
 本願の電気化学式酸素センサは、無酸素環境下で使用する用途に好ましく適用できるが、従来から知られている電気化学式酸素センサと同じ用途にも適用することが可能である。 The electrochemical oxygen sensor of the present application can be preferably applied to applications in an oxygen-free environment, but can also be applied to the same applications as conventionally known electrochemical oxygen sensors.
 <電気化学式酸素センサの製造方法>
 本願の電気化学式酸素センサは、一例として、Auを含有する金属層の表面にAgを付着させ、触媒層を形成する第1工程と、前記触媒層のAgを付着させた側を電解液側に配置して正極を組み立てる第2工程とを備えた本願の製造方法によって製造することができる。
<Manufacturing method of electrochemical oxygen sensor>
As an example, the electrochemical oxygen sensor of the present application includes a first step of depositing Ag on the surface of a metal layer containing Au to form a catalyst layer, and placing the Ag-attached side of the catalyst layer on the electrolyte side. and a second step of arranging and assembling the positive electrode.
 Auを含有する金属層の表面に付着させたAgは、下地の金属層と反応せずそのまま金属層の表面に存在してもよく、また、下地の金属層(例えばAu)と合金化し、金属層の少なくとも表面にAgの合金(例えば、AuとAgの合金)が形成されていてもよい。 Ag attached to the surface of the metal layer containing Au may remain on the surface of the metal layer as it is without reacting with the underlying metal layer, or may be alloyed with the underlying metal layer (for example, Au) to An alloy of Ag (for example, an alloy of Au and Ag) may be formed on at least the surface of the layer.
 また、本願の電気化学式酸素センサの製造方法は、前記第1工程の後に、不活性雰囲気または還元雰囲気において、表面にAgを付着させた前記金属層を熱処理する工程をさらに備えていてもよい。これによりAuとAgとの合金化を促進させることができる。AuとAgとが合金化することにより、Agを触媒層に安定的に保持できる。 In addition, the method for manufacturing an electrochemical oxygen sensor of the present application may further include a step of heat-treating the metal layer having Ag deposited on its surface in an inert atmosphere or a reducing atmosphere after the first step. This can promote the alloying of Au and Ag. By alloying Au and Ag, Ag can be stably retained in the catalyst layer.
 Auを含有する金属層の表面にAgを付着、あるいはさらにAuとAgを合金化させる方法としては、例えば、物理気相蒸着法(PVD)、化学気相蒸着法(CVD)、反応プラズマ化学気相蒸着法(PACVD)、イオンプレーティング法(IP)、スパッタリング法などが例示される。また、電析など電気化学的に析出させる方法であってもよい。 Examples of methods for attaching Ag to the surface of a metal layer containing Au or further alloying Au and Ag include physical vapor deposition (PVD), chemical vapor deposition (CVD), reactive plasma chemical vapor deposition, and chemical vapor deposition. Phase deposition method (PACVD), ion plating method (IP), sputtering method and the like are exemplified. Moreover, the method of electrochemically depositing, such as electrodeposition, may be used.
 付着させるAgの量は、その効果をより高めるため、触媒層における金属の総量中のAgの含有割合が、1原子%以上となる量であることが好ましい。 The amount of Ag to be deposited is preferably such that the content of Ag in the total amount of metal in the catalyst layer is 1 atomic % or more in order to further enhance its effect.
 また、触媒層は、表面でのAgの含有割合が内部でのAgの含有割合よりも高くなるよう、例えば、表面から内部に向かって金属層におけるAgの含有割合が減少していくのであってもよい。 In addition, in the catalyst layer, for example, the Ag content in the metal layer decreases from the surface toward the inside so that the Ag content on the surface is higher than the Ag content on the inside. good too.
 以下、実施例に基づいて本願を詳細に述べる。ただし、下記実施例は、本願を制限するものではない。 The present application will be described in detail below based on examples. However, the following examples do not limit the present application.
 (実施例1)
 <電解液の調製>
 クエン酸、クエン酸三カリウムおよびアンモニアを水に溶解させて電解液を調製した。なお、電解液中のモル濃度は、クエン酸:2.5mol/L、クエン酸三カリウム:0.5mol/L、アンモニア:3.0mol/Lとした。この電解液のpHは25℃で4.30であった。
(Example 1)
<Preparation of electrolytic solution>
An electrolytic solution was prepared by dissolving citric acid, tripotassium citrate and ammonia in water. The molar concentrations in the electrolytic solution were citric acid: 2.5 mol/L, tripotassium citrate: 0.5 mol/L, and ammonia: 3.0 mol/L. The pH of this electrolytic solution was 4.30 at 25°C.
 <正極の触媒層の作製>
 隔膜となるテトラフルオロエチレン-ヘキサフルオロプロピレン共重合体膜の表面に、イオンプレーティング法により、厚さ約70nmのAuとAgの合金よりなる金属膜を、正極の触媒層として作製した。作製した触媒層におけるAuとAgの含有割合は、モル比(原子%)で、Au:Ag=90:10とした。なお、前記触媒層の作製ではAuとAgの均一な合金が形成されたと考えられる。
<Preparation of positive electrode catalyst layer>
On the surface of the tetrafluoroethylene-hexafluoropropylene copolymer film that serves as the diaphragm, a metal film made of an alloy of Au and Ag with a thickness of about 70 nm was formed as a catalyst layer of the positive electrode by ion plating. The content ratio of Au and Ag in the prepared catalyst layer was Au:Ag=90:10 in terms of molar ratio (atomic %). In addition, it is considered that a uniform alloy of Au and Ag was formed in the preparation of the catalyst layer.
 <酸素センサの組み立て>
 前記の電解液5.4gをABS樹脂製の容器本体21の内部に注入し、図1に示す構成のガルバニ電池式酸素センサを組み立てた。封止蓋10(第1封止蓋11および第2封止蓋12)も容器本体21と同様にABS樹脂で形成した。また、保護膜40には多孔性のポリテトラフルオロエチレン製シートを使用し、前述のとおり、隔膜60にはテトラフルオロエチレン-ヘキサフルオロプロピレン共重合体膜を使用した。
<Assembly of oxygen sensor>
5.4 g of the electrolytic solution was poured into the container body 21 made of ABS resin to assemble a galvanic cell type oxygen sensor having the configuration shown in FIG. The sealing lid 10 (the first sealing lid 11 and the second sealing lid 12) was also made of ABS resin like the container body 21. As shown in FIG. A porous polytetrafluoroethylene sheet was used as the protective film 40, and a tetrafluoroethylene-hexafluoropropylene copolymer film was used as the diaphragm 60, as described above.
 正極50の触媒層(触媒電極)51には、先に作製した触媒層を用い、隔膜60と接している反対側の表面51aが電解液と接するように配置し、正極集電体52およびリード線53にはチタン製のものを使用して、正極集電体52とリード線53は溶接して一体化した。また、負極80は、Sn-Sb合金(Sb含有量:5質量%)によって構成した。 The catalyst layer (catalyst electrode) 51 of the positive electrode 50 uses the previously prepared catalyst layer, and is arranged so that the surface 51a on the side opposite to the diaphragm 60 is in contact with the electrolytic solution. A wire 53 made of titanium was used, and the positive electrode current collector 52 and the lead wire 53 were welded together. The negative electrode 80 was made of a Sn--Sb alloy (Sb content: 5% by mass).
 また、正極のリード線53と負極のリード部81との間には、補正抵抗100および温度補償用サーミスタ110を直列に接続し、さらに、正極のリード線53および負極のリード部81から、正極端子54および負極端子82を容器本体21の外部にそれぞれ導出することにより、出力される電圧から酸素濃度を検出できるようにした。 Between the positive lead wire 53 and the negative lead portion 81, a correction resistor 100 and a temperature compensating thermistor 110 are connected in series. By leading the terminal 54 and the negative terminal 82 to the outside of the container body 21, the oxygen concentration can be detected from the output voltage.
 組み立てた酸素センサ1においては、第1封止蓋11、O-リング30、ポリテトラフルオロエチレン製シートの保護膜40、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体製の隔膜60、触媒電極51、および正極集電体52は、容器本体21と第2封止蓋12とのネジ締めによって押圧され良好な封止状態を維持するようにした。 In the assembled oxygen sensor 1, the first sealing lid 11, the O-ring 30, the protective film 40 made of polytetrafluoroethylene sheet, the diaphragm 60 made of tetrafluoroethylene-hexafluoropropylene copolymer, the catalyst electrode 51, and the positive electrode current collector 52 are pressed by screwing the container main body 21 and the second sealing lid 12 to maintain a good sealing state.
 (実施例2)
 イオンプレーティング法で作製した触媒層(AuとAgの合金)におけるAuとAgの含有割合を、モル比(原子%)で、Au:Ag=73:27に変更した以外は、実施例1と同様にして、酸素センサを組み立てた。
(Example 2)
Example 1, except that the content ratio of Au and Ag in the catalyst layer (an alloy of Au and Ag) produced by the ion plating method was changed to Au:Ag=73:27 in terms of molar ratio (atomic %). Similarly, an oxygen sensor was assembled.
 (実施例3)
 イオンプレーティング法で作製した触媒層(AuとAgの合金)におけるAuとAgの含有割合を、モル比(原子%)で、Au:Ag=49:51に変更した以外は、実施例1と同様にして、酸素センサを組み立てた。
(Example 3)
Example 1 except that the content ratio of Au and Ag in the catalyst layer (an alloy of Au and Ag) produced by the ion plating method was changed to Au:Ag=49:51 in terms of molar ratio (atomic %). Similarly, an oxygen sensor was assembled.
 (比較例1)
 AuとAgの合金よりなる金属膜に代えて、イオンプレーティング法で作製した厚さ約70nmのAuのみからなる金属膜を正極の触媒層として用いた以外は、実施例1と同様にして、酸素センサを組み立てた。
(Comparative example 1)
In the same manner as in Example 1, except that instead of the metal film made of an alloy of Au and Ag, a metal film made of only Au having a thickness of about 70 nm prepared by an ion plating method was used as the positive electrode catalyst layer. Assembled the oxygen sensor.
 (比較例2)
 AuとAgの合金よりなる金属膜に代えて、イオンプレーティング法で作製した厚さ約70nmのAgのみからなる金属膜を正極の触媒層として用いた以外は、実施例1と同様にして、酸素センサを組み立てた。
(Comparative example 2)
In the same manner as in Example 1, except that instead of the metal film made of an alloy of Au and Ag, a metal film made of only Ag having a thickness of about 70 nm prepared by an ion plating method was used as the positive electrode catalyst layer. Assembled the oxygen sensor.
 実施例1~3および比較例1~2の酸素センサを、それぞれ50℃の環境下で窒素ガス中に保持し、その間の出力電圧を測定した。その結果を図2に示す。 The oxygen sensors of Examples 1-3 and Comparative Examples 1-2 were each held in nitrogen gas in an environment of 50°C, and the output voltage was measured during that time. The results are shown in FIG.
 実施例1~3の酸素センサでは、測定開始後に出力電圧が0V付近まで低下し、その後の出力電圧の変動が少なく、実際の酸素濃度(0%)と測定値との差が小さく、高い精度で低い酸素濃度を安定して測定できることが分かった。 In the oxygen sensors of Examples 1 to 3, the output voltage dropped to near 0 V after the start of measurement, the output voltage fluctuated little after that, the difference between the actual oxygen concentration (0%) and the measured value was small, and the accuracy was high. It was found that low oxygen concentration can be stably measured at
 一方、比較例1の純金で構成された金属膜を触媒層とした酸素センサでは、測定開始後に出力電圧がいったん0V付近まで低下したが、その後出力電圧が大きく上昇し、実際の酸素濃度と測定値との乖離が大きくなった。 On the other hand, in the oxygen sensor of Comparative Example 1 having a metal film made of pure gold as a catalyst layer, the output voltage once decreased to around 0 V after the start of measurement, but then the output voltage increased significantly, and the actual oxygen concentration and the measurement There is a large discrepancy between the values.
 また、比較例2の純銀で構成された金属膜を触媒層とした酸素センサでは、実施例1~3の酸素センサよりも出力電圧の変動が少なくなった。一方、純銀で構成された金属膜を触媒層とする酸素センサは、硫化水素などの被毒ガスの影響を受けやすく、酸素濃度を測定できるガス組成が限定されてしまうほか、理由は明確ではないが、Auを含む金属膜を触媒層とする酸素センサに比べ寿命が短くなるなど、実用面で課題を生じやすくなる。 In addition, in the oxygen sensor of Comparative Example 2, in which the metal film made of pure silver was used as the catalyst layer, fluctuations in the output voltage were smaller than those of the oxygen sensors of Examples 1-3. On the other hand, an oxygen sensor that uses a metal film made of pure silver as a catalyst layer is susceptible to poisoning gases such as hydrogen sulfide, which limits the gas composition that can measure oxygen concentration. , the service life of which is shorter than that of an oxygen sensor using a metal film containing Au as a catalyst layer.
 (実施例4)
 イオンプレーティング法により、厚さ約60nmのAuよりなる金属膜を、隔膜となるテトラフルオロエチレン-ヘキサフルオロプロピレン共重合体膜の表面に作製した。次に、前記金属膜の表面に、スパッタリングにより厚さ約10nmのAgの膜を積層し、Au層とAg層よりなる積層膜を正極の触媒層として作製した。作製した触媒層におけるAuとAgの含有割合は、モル比(原子%)で、Au:Ag=86:14であった。
(Example 4)
A metal film made of Au with a thickness of about 60 nm was formed on the surface of a tetrafluoroethylene-hexafluoropropylene copolymer film as a diaphragm by an ion plating method. Next, an Ag film having a thickness of about 10 nm was laminated on the surface of the metal film by sputtering to prepare a laminated film composed of an Au layer and an Ag layer as a positive electrode catalyst layer. The content ratio of Au and Ag in the prepared catalyst layer was Au:Ag=86:14 in terms of molar ratio (atomic %).
 前記正極の触媒層を用い、Agを積層した側を電解液と接するように配置した以外は、実施例1と同様にして酸素センサを組み立てた。 An oxygen sensor was assembled in the same manner as in Example 1, except that the catalyst layer of the positive electrode was used and the side on which Ag was laminated was placed in contact with the electrolytic solution.
 (実施例5)
 Auよりなる金属膜の表面に積層するAgの膜の厚みを約30nmに変更した以外は、実施例4と同様にしてAu層とAg層よりなる積層膜を正極の触媒層として作製した。作製した触媒層におけるAuとAgの含有割合は、モル比(原子%)で、Au:Ag=67:33であった。
(Example 5)
A laminated film composed of an Au layer and an Ag layer was produced as a positive electrode catalyst layer in the same manner as in Example 4, except that the thickness of the Ag film laminated on the surface of the Au metal film was changed to about 30 nm. The content ratio of Au and Ag in the prepared catalyst layer was Au:Ag=67:33 in terms of molar ratio (atomic %).
 前記正極の触媒層を用い、Agを積層した側を電解液と接するように配置した以外は、実施例1と同様にして酸素センサを組み立てた。 An oxygen sensor was assembled in the same manner as in Example 1, except that the catalyst layer of the positive electrode was used and the side on which Ag was laminated was placed in contact with the electrolytic solution.
 (比較例3)
 イオンプレーティング法により形成した厚さ約60nmのAuよりなる金属膜をそのまま正極の触媒層として用いた以外は、実施例1と同様にして、酸素センサを組み立てた。
(Comparative Example 3)
An oxygen sensor was assembled in the same manner as in Example 1, except that a metal film of Au having a thickness of about 60 nm formed by an ion plating method was used as it was as the catalyst layer of the positive electrode.
 実施例4~5および比較例3の酸素センサを、それぞれ50℃の環境下で窒素ガス中に保持し、その間の出力電圧を測定した。その結果を図3に示す。 The oxygen sensors of Examples 4-5 and Comparative Example 3 were each held in nitrogen gas in an environment of 50°C, and the output voltage was measured during that time. The results are shown in FIG.
 実施例4~5の酸素センサでは、測定開始後に出力電圧が0V付近まで低下し、その後若干出力電圧が上昇するものの、出力電圧の変動が少なく、実際の酸素濃度(0%)と測定値との差が小さく、高い精度で低い酸素濃度を安定して測定できることが分かった。 In the oxygen sensors of Examples 4 and 5, the output voltage decreased to near 0 V after the start of measurement, and then the output voltage increased slightly, but the output voltage fluctuated little, and the actual oxygen concentration (0%) and the measured value were different. It was found that the difference between the two was small, and it was possible to stably measure low oxygen concentrations with high accuracy.
 一方、純金で構成された金属膜を触媒層とした比較例3の酸素センサでは、比較例1の酸素センサと同様に、測定開始後に出力電圧がいったん0V付近まで低下したが、その後出力電圧が大きく上昇し、実際の酸素濃度と測定値との乖離が大きくなった。また、出力電圧が再び低下した後も、電圧が安定せず値がふらつく様子が認められた。 On the other hand, in the oxygen sensor of Comparative Example 3, in which the metal film made of pure gold was used as the catalyst layer, the output voltage dropped to near 0 V after the start of measurement, as in the case of the oxygen sensor of Comparative Example 1. It increased greatly, and the divergence between the actual oxygen concentration and the measured value became large. Moreover, even after the output voltage dropped again, it was observed that the voltage was not stable and the value fluctuated.
 本願は、上記以外の形態としても実施が可能である。本願に開示された実施形態は一例であって、これらに限定はされない。本願の範囲は、上述の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれるものである。 The present application can be implemented in forms other than the above. The embodiments disclosed in this application are examples and are not limiting. The scope of the present application shall be interpreted with priority given to the descriptions in the attached claims rather than the descriptions in the above specification, and all changes within the scope of equivalents to the claims shall be included in the scope of the claims. It is something that can be done.
  1  酸素センサ
 10  封止蓋
 11  第1封止蓋(中蓋)
 12  第2封止蓋(外蓋)
 20  容器
 21  容器本体
 30  O-リング
 40  保護膜
 50  正極
 51  触媒層(触媒電極)
 51a 表面
 52  正極集電体
 53  リード線
 54  正極端子
 60  隔膜
 70  穿孔
 80  負極
 81  リード部
 82  負極端子
 90  電解液
100  補正抵抗
110  温度補償用サーミスタ
120  貫通孔
1 oxygen sensor 10 sealing lid 11 first sealing lid (inner lid)
12 Second sealing lid (outer lid)
20 container 21 container body 30 O-ring 40 protective film 50 positive electrode 51 catalyst layer (catalyst electrode)
51a surface 52 positive electrode current collector 53 lead wire 54 positive electrode terminal 60 diaphragm 70 perforation 80 negative electrode 81 lead portion 82 negative electrode terminal 90 electrolytic solution 100 correction resistor 110 temperature compensating thermistor 120 through hole

Claims (12)

  1.  正極、負極、酸素を透過する隔膜、および水溶液で構成された電解液を含む電気化学式酸素センサであって、
     前記負極は、前記電解液に溶出する金属を含み、
     前記電解液は、pHが3~10の水溶液であり、
     前記正極は、Auを含有する触媒層を含み、
     前記触媒層は、一方の表面が前記電解液と接しており、
     前記触媒層は、少なくとも前記電解液側の表面に、AgまたはAgの合金を有することを特徴とする電気化学式酸素センサ。
    An electrochemical oxygen sensor comprising a positive electrode, a negative electrode, a diaphragm permeable to oxygen, and an electrolytic solution composed of an aqueous solution,
    The negative electrode contains a metal that dissolves in the electrolytic solution,
    The electrolytic solution is an aqueous solution having a pH of 3 to 10,
    The positive electrode includes a catalyst layer containing Au,
    One surface of the catalyst layer is in contact with the electrolytic solution,
    The electrochemical oxygen sensor, wherein the catalyst layer has Ag or an alloy of Ag on at least the surface on the electrolyte side.
  2.  前記触媒層は、少なくとも前記電解液側の表面に、AuとAgの合金を有する請求項1に記載の電気化学式酸素センサ。 The electrochemical oxygen sensor according to claim 1, wherein the catalyst layer has an alloy of Au and Ag on at least the surface on the electrolyte side.
  3.  前記隔膜は、前記触媒層のもう一方の表面側に配置されており、
     前記触媒層は、少なくとも前記隔膜側の表面に、AuまたはAuの合金を有する請求項1または2に記載の電気化学式酸素センサ。
    The diaphragm is arranged on the other surface side of the catalyst layer,
    3. The electrochemical oxygen sensor according to claim 1, wherein the catalyst layer has Au or an Au alloy on at least the surface on the diaphragm side.
  4.  前記触媒層は、AgまたはAgの合金を有する層と、AuまたはAuの合金を有する層との積層体である請求項1~3のいずれかに記載の電気化学式酸素センサ。 The electrochemical oxygen sensor according to any one of claims 1 to 3, wherein the catalyst layer is a laminate of a layer containing Ag or an alloy of Ag and a layer containing Au or an alloy of Au.
  5.  前記触媒層は、前記電解液側の表面でのAgの含有割合が内部でのAgの含有割合よりも高い請求項1~4のいずれかに記載の電気化学式酸素センサ。 The electrochemical oxygen sensor according to any one of claims 1 to 4, wherein the catalyst layer has a higher Ag content on the electrolyte side surface than on the inside thereof.
  6.  前記触媒層における金属の総量中のAgの含有割合が、1原子%以上である請求項1~5のいずれかに記載の電気化学式酸素センサ。 The electrochemical oxygen sensor according to any one of claims 1 to 5, wherein the content of Ag in the total amount of metals in the catalyst layer is 1 atomic % or more.
  7.  前記触媒層における金属の総量中のAuの含有割合が、10原子%以上である請求項1~6のいずれかに記載の電気化学式酸素センサ。 The electrochemical oxygen sensor according to any one of claims 1 to 6, wherein the content of Au in the total amount of metal in the catalyst layer is 10 atomic % or more.
  8.  前記電解液が、キレート剤を含有する請求項1~7のいずれかに記載の電気化学式酸素センサ。 The electrochemical oxygen sensor according to any one of claims 1 to 7, wherein the electrolytic solution contains a chelating agent.
  9.  前記負極が、SnまたはSnの合金を含む請求項1~8のいずれかに記載の電気化学式酸素センサ。 The electrochemical oxygen sensor according to any one of claims 1 to 8, wherein the negative electrode contains Sn or an alloy of Sn.
  10.  請求項1~7のいずれかに記載の電気化学式酸素センサを製造する方法であって、
     Auを含有する金属層の表面にAgを付着させ、触媒層を形成する第1工程と、
     前記触媒層のAgを付着させた側を電解液側に配置して正極を組み立てる第2工程とを含むことを特徴とする電気化学式酸素センサの製造方法。
    A method for manufacturing an electrochemical oxygen sensor according to any one of claims 1 to 7,
    A first step of depositing Ag on the surface of a metal layer containing Au to form a catalyst layer;
    A method of manufacturing an electrochemical oxygen sensor, comprising: a second step of assembling a positive electrode by arranging the Ag-adhered side of the catalyst layer on the electrolyte side.
  11.  キレート剤を含有する電解液を用いる請求項10に記載の電気化学式酸素センサの製造方法。 The method for manufacturing an electrochemical oxygen sensor according to claim 10, wherein an electrolytic solution containing a chelating agent is used.
  12.  SnまたはSnの合金を含む負極を用いる請求項10または11に記載の電気化学式酸素センサの製造方法。 The method for manufacturing an electrochemical oxygen sensor according to claim 10 or 11, wherein a negative electrode containing Sn or an alloy of Sn is used.
PCT/JP2023/006155 2022-02-22 2023-02-21 Elecrochemical oxygen sensor and production method therefor WO2023162960A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-025895 2022-02-22
JP2022025895 2022-02-22

Publications (1)

Publication Number Publication Date
WO2023162960A1 true WO2023162960A1 (en) 2023-08-31

Family

ID=87765883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/006155 WO2023162960A1 (en) 2022-02-22 2023-02-21 Elecrochemical oxygen sensor and production method therefor

Country Status (1)

Country Link
WO (1) WO2023162960A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194708A (en) * 2005-01-13 2006-07-27 Gs Yuasa Corporation:Kk Electrochemical oxygen sensor
JP2017067596A (en) * 2015-09-30 2017-04-06 株式会社Gsユアサ Oxygen sensor
JP2018059720A (en) * 2016-09-30 2018-04-12 株式会社Gsユアサ Galvanic cell type oxygen sensor
WO2020079769A1 (en) * 2018-10-17 2020-04-23 マクセル株式会社 Electrochemical oxygen sensor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006194708A (en) * 2005-01-13 2006-07-27 Gs Yuasa Corporation:Kk Electrochemical oxygen sensor
JP2017067596A (en) * 2015-09-30 2017-04-06 株式会社Gsユアサ Oxygen sensor
JP2018059720A (en) * 2016-09-30 2018-04-12 株式会社Gsユアサ Galvanic cell type oxygen sensor
WO2020079769A1 (en) * 2018-10-17 2020-04-23 マクセル株式会社 Electrochemical oxygen sensor

Similar Documents

Publication Publication Date Title
JP7009646B2 (en) Electrochemical oxygen sensor
EP2219024B1 (en) Electrochemical oxygen sensor
JP2023007024A (en) electrochemical oxygen sensor
EP3495810B1 (en) Electrochemical oxygen sensor
WO2023162960A1 (en) Elecrochemical oxygen sensor and production method therefor
EP2950089B1 (en) Galvanic cell type oxygen sensor with a pb-sb alloy negative electrode
JP6621637B2 (en) Oxygen sensor
JP6899751B2 (en) Electrochemical oxygen sensor
WO2022113389A1 (en) Electrochemical oxygen sensor and method for producing same
JP6707431B2 (en) Galvanic battery oxygen sensor
JPWO2022113389A5 (en)
JP6985533B1 (en) Electrochemical oxygen sensor
JP6955950B2 (en) Electrochemical oxygen sensor
JP2022161670A (en) electrochemical oxygen sensor
US20220326174A1 (en) Electrochemical oxygen sensor
JP2019066331A (en) Electrochemical oxygen sensor
JP2019066328A (en) Electrochemical oxygen sensor
JP2018059719A (en) Electrochemical oxygen sensor
CN117929502A (en) Electrochemical oxygen sensor
JP4415442B2 (en) Galvanic cell oxygen sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759961

Country of ref document: EP

Kind code of ref document: A1