WO2023162727A1 - Terminal, wireless communication method, and base station - Google Patents

Terminal, wireless communication method, and base station Download PDF

Info

Publication number
WO2023162727A1
WO2023162727A1 PCT/JP2023/004634 JP2023004634W WO2023162727A1 WO 2023162727 A1 WO2023162727 A1 WO 2023162727A1 JP 2023004634 W JP2023004634 W JP 2023004634W WO 2023162727 A1 WO2023162727 A1 WO 2023162727A1
Authority
WO
WIPO (PCT)
Prior art keywords
mpr
phr
mpe
field
transmission
Prior art date
Application number
PCT/JP2023/004634
Other languages
French (fr)
Japanese (ja)
Inventor
祐輝 松村
聡 永田
ウェイチー スン
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Publication of WO2023162727A1 publication Critical patent/WO2023162727A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • LTE successor systems for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later
  • 5G 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • a terminal In a future wireless communication system (for example, NR), a terminal (user terminal, User Equipment (UE)) provides the network with a power margin for each serving cell (Power Headroom (PH)) Send a PH report (Power Headroom Report (PHR)) containing information on The network can use PHR for control of UE uplink transmission power.
  • UE User Equipment
  • PH Power Headroom
  • PHR Power Headroom Report
  • TRP Transmission/Reception Points
  • MTRP Multi TRP
  • PHR MAC CE PHR Medium Access Control Control Element
  • the current standard does not specify how to configure some fields when two PHs are included in the PHR MAC CE. Also, the trigger conditions for PHR MAC CE have not been sufficiently studied. If an appropriate PHR is not reported, communication throughput, communication quality, etc. may deteriorate.
  • one object of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can appropriately report PHRs including multiple PHs.
  • a terminal reports Maximum Permitted Exposure (MPE) Power Management Maximum Power Reduction (P-MPR) for two Power Headrooms (PH), A controller that triggers based on a trigger condition associated with at least one of two PHs, and a transmitter that transmits the triggered MPE P-MPR report.
  • MPE Maximum Permitted Exposure
  • P-MPR Power Management Maximum Power Reduction
  • PHR including multiple PHs can be reported appropriately.
  • FIG. 16 NR is a diagram showing an example of a single entry PHR MAC CE.
  • FIG. 2 is a diagram of Rel.
  • 16 NR is a diagram showing an example of multiple entry PHR MAC CE.
  • FIG. 3A is a diagram showing an example of a case assumed in Embodiment 2.1.4.
  • FIG. 3B is a diagram showing an example of a case assumed in Embodiments 2.1.5 and 2.1.6.
  • FIG. 4A is a diagram showing an example of a case assumed in Embodiment 2.2.4.
  • FIG. 4B is a diagram showing an example of a case assumed in Embodiments 2.2.5 and 2.2.6.
  • FIG. 5 is a diagram showing an example of a single entry PHR MAC CE in the first to third embodiments.
  • FIG. 5 is a diagram showing an example of a single entry PHR MAC CE in the first to third embodiments.
  • FIG. 6 is a diagram showing an example of multiple entry PHR MAC CE in the first to third embodiments.
  • FIG. 7 is a diagram illustrating an example of a schematic configuration of a radio communication system according to an embodiment.
  • FIG. 8 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • FIG. 9 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
  • FIG. 10 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to one embodiment.
  • FIG. 11 is a diagram illustrating an example of a vehicle according to one embodiment;
  • PHR Physical Resource Report
  • PH Power Headroom Report
  • PH Power Headroom
  • the network can use PHR for control of UE uplink transmission power.
  • the PHR may be transmitted by MAC (Medium Access Control) signaling using PUSCH (Physical Uplink Shared Channel). For example, PHR is notified using PHR MAC CE (Control Element) included in MAC PDU (Protocol Data Unit).
  • MAC Medium Access Control
  • PHR MAC CE PHR MAC CE
  • Fig. 1 shows Rel. 16 NR is a diagram showing an example of a single entry PHR MAC CE.
  • Each 'R' in FIG. 1 indicates a 1-bit reserved field, which is set to a value of '0', for example.
  • ⁇ PH (Type 1, PCell)'' in FIG. 1 indicates a 6-bit field and indicates an index related to the type 1 PH of the primary cell (PCell).
  • the PH index is associated with a specific PH value (in units of decibels (dB)) (or level).
  • type 1 PH is the PH when PUSCH is considered (for example, only PUSCH power is considered), and type 2 PH considers PUCCH (for example, both PUSCH and PUCCH power is considered).
  • the PH in the case, type 3 PH may be the PH when considering the measurement reference signal (Sounding Reference Signal (SRS)) (for example, considering the power of PUSCH and SRS).
  • SRS Sounding Reference Signal
  • P CMAX,f,c ' in FIG. 1 indicates a 6-bit field and indicates an index for P CMAX,f,c used in the above calculation of the PH field.
  • the index for that P CMAX,f,c is associated with a specific UE transmit power level (dB).
  • P CMAX,f,c may be referred to as the configured maximum transmit power (maximum allowed transmit power) of the UE for serving cell c of carrier f.
  • P CMAX, f, and c are also simply written as P CMAX , PCMAX, and the like.
  • 'P' in FIG. 1 may be a field related to power management maximum power reduction (Power Management Maximum Power Reduction (P-MPR) or maximum allowable UE output power reduction) for serving cell c, or maximum allowable exposure (Maximum It may be a field related to Permitted Exposure (MPE).
  • P-MPR Power Management Maximum Power Reduction
  • MPE Permitted Exposure
  • 'MPE' in FIG. 1 may be a field related to MPE. Fields such as 'P' and 'MPE' may be replaced with 'R' fields depending on the configuration using higher layer signaling to the UE.
  • the 'P' field is set to MPE reporting (higher layer parameter mpe-Reporting-FR2) for frequency range 2 (FR2), and if the serving cell operates in FR2, to meet the MPE requirements Set to 0 if the applied P-MPR value is less than a particular P-MPR value (eg, P-MPR — 00), and set to 1 otherwise.
  • MPE reporting higher layer parameter mpe-Reporting-FR2
  • FR2 frequency range 2
  • the 'P' field may also indicate whether FR2 MPE reporting is not configured or if power backoff is applied for power management if the serving cell operates in FR1. . Note that the 'P' field is set to 1 if the corresponding P CMAX field would have had a different value if no power backoff had been applied for power management.
  • the 'MPE' field satisfies the MPE requirement if FR2 MPE reporting (higher layer parameter mpe-Reporting-FR2) is set and the serving cell operates in FR2 and the 'P' field is set to 1 may indicate the power backoff applied for This field may indicate an index corresponding to the measured P-MPR value (eg, in dB).
  • the R field (bits of R) instead of the 'MPE' field may exist.
  • NR also supports multiple entry PHR MAC CE (multiple entry PHR MAC CE) containing multiple data similar to the single entry (2 octets) described above.
  • a multiple entry PHR MAC CE may include a PH field for a Primary Secondary Cell (PSCell), a Secondary Cell (SCell), and the like.
  • PCell and PSCell may also be called special cells (SpCell).
  • Fig. 2 shows Rel. 16 NR is a diagram showing an example of multiple entry PHR MAC CE. Fields similar to those in FIG. 1 will not be repeated.
  • the 6-bit fields containing the word 'PH' in FIG. 2 respectively indicate the corresponding type (eg, types 1-3 above) and PH field for the cell.
  • Type 2 PH field for SpCells of other MAC entities may be set by the higher layer parameter phr-Type2OtherCell being true.
  • the 6-bit field containing the term 'P CMAX,f,c ' in FIG. 2 is the P CMAX,f,c field that indicates the P CMAX,f, c used in the calculation of the previous PH field.
  • 'C i ' in FIG. 2 is a field indicating whether the PH field of the serving cell corresponding to the serving cell index i is included in the PHR.
  • the number attached to the "serving cell" of the PH field and the number attached to the P CMAX, f, and c fields may not mean the serving cell index, and is simply the value included in MAC CE. or
  • the network may transmit to the UE PHR setting information regarding conditions that trigger PHR.
  • the PHR setting information includes, for example, a prohibit timer, a periodic timer, a path loss change threshold, and the like. Higher layer signaling may be used for the notification.
  • the UE triggers PHR if the PHR trigger conditions are met.
  • higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • Broadcast information includes, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), and other system information ( It may be Other System Information (OSI).
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI System Information
  • 3GPP Rel. 16 NR defines mpe-ProhibitTimer and mpe-Threshold in addition to the above mpe-Reporting-FR2 as RRC parameters for controlling PHR.
  • mpe-Reporting-FR2 is a parameter indicating whether the UE reports MPE P-MPR in PHR MAC CE.
  • mpe-ProhibitTimer is a parameter that indicates the duration of a timer (for example, the number of subframes) that is started when an MPE P-MPR report is reported.
  • mpe-Threshold is a parameter that indicates the P-MPR threshold [dB] for MPE P-MPR reporting when FR2 is set.
  • a timer based on mpe-ProhibitTimer is sometimes expressed as mpe-ProhibitTimer, and is also called a prohibition timer.
  • a PHR (this PHR is also called MPE P-MPR reporting) is triggered when at least one of the following events occurs: may also be: A measured P-MPR that applies to meet FR2 MPE requirements for at least one activated FR2 serving cell since the last transmission of PHR in the MAC entity is greater than or equal to mpe-Threshold is FR2 for at least one activated FR2 serving cell since the last transmission of PHR in the MAC entity due to the measured P-MPR being equal to or greater than the mpe-Threshold, which applies to meet MPE requirements Measured P-MPR varies more than phr-Tx-PowerFactorChange applied to meet the MPE requirements of
  • the phr-Tx-PowerFactorChange is a parameter that indicates the threshold [dB] for PHR reporting.
  • FR2 MPE requirements may also be defined, for example, in 3GPP TS 38.101-2.
  • the MPE P-MPR report is triggered when the P-MPR is greater than or equal to the threshold (mpe-Threshold) or when the change in P-MPR since the last report is greater than the threshold (phr-Tx-PowerFactorChange). be.
  • the UE If the UE has available UL resources that can accommodate a MAC CE for the triggered PHR (PHR MAC CE), it generates and transmits the PHR MAC CE.
  • the UE When an MPE P-MPR report (of a PHR MAC CE) is sent, the UE starts or restarts the mpe-ProhibitTimer and sends a triggered MPE P-MPR report for the serving cell contained within that PHR MAC CE. Cancel.
  • Multi-TRP In NR, one or more transmission/reception points (Transmission/Reception Points (TRP)) (multi-TRP (Multi-TRP (M-TRP))) uses one or more panels (multi-panels) to It is considered to perform DL transmission to. It is also being considered for UEs to perform UL transmissions on one or more TRPs.
  • TRP Transmission/Reception Points
  • M-TRP Multi-TRP
  • UEs uses one or more panels (multi-panels) to It is considered to perform DL transmission to. It is also being considered for UEs to perform UL transmissions on one or more TRPs.
  • DCI Downlink Control Information
  • SRIs SRS resource indicators
  • TPMIs Transmitted precoding matrix indicators
  • the UE may determine the precoder for PUSCH transmission based on SRI, Transmitted Rank Indicator (TRI) and TPMI for codebook-based transmission.
  • the UE may determine the precoder for PUSCH transmission based on the SRI for non-codebook-based transmission.
  • the SRI may be specified for the UE by the DCI or given by higher layer parameters.
  • Option 1 SRI/TPMI (values) for multiple (eg, 2) TRPs are indicated using a field that indicates multiple (eg, 2) SRI/TPMIs; - Option 2: A field indicating one SRI/TPMI is indicated, and code points corresponding to multiple (for example, two) SRI/TPMI values are set in the field indicating the SRI/TPMI.
  • each codepoint of multiple SRI/TPMI fields may correspond to one TPMI value.
  • the correspondence (association) between the SRI/TPMI field and the SRI/TPMI value may be defined in advance in the specification. Also, the correspondence (association) between the SRI/TPMI field and the SRI/TPMI value is described in Rel. 16 may be used, or the correspondence specified in Rel. 17 or later may be used. The correspondence between the SRI/TPMI field and the SRI/TPMI value may be different for each of the plurality of SRI/TPMI fields.
  • a codepoint indicating one SRI/TPMI field may correspond to multiple (for example, two) SRI/TPMI values.
  • the correspondence (association) between the SRI/TPMI field and the SRI/TPMI value may be defined in the specifications in advance, or may be notified/configured/activated by RRC signaling/MAC CE.
  • single PUSCH transmission/repeated transmission of PUSCH using a single TRP (Single TRP (STRP)) and repeated transmission of PUSCH using multiple TRPs (Multi TRP (MTRP)) are dynamically controlled by DCI. is being considered to be directed/switched to The dynamic switch is based on Rel. 16 may be used, or specific fields contained in the DCI defined by Rel. Certain fields defined in 17 et seq. (eg, fields for specifying STRP or MTRP operations) may be utilized.
  • dynamic switch in the present disclosure may mean “a switch that uses at least one of higher layer signaling and physical layer signaling”.
  • switch in the present disclosure may be read interchangeably as switching, change, changing, application, instruction, setting, and the like.
  • reporting two PHRs for two TRPs may be configured for the UE by higher layer parameters (RRC parameters).
  • RRC parameters higher layer parameters
  • the first PHR is Rel. May be reported similarly to 15/16.
  • the second PHR may be a PHR of a TRP that is different from the first PHR.
  • the second PHR may be reported as a real PHR or a virtual PHR.
  • the actual PHR is a PHR based on the actual PUSCH transmission, and may be called a real PHR.
  • the actual PHR may be calculated based on the power control parameters for the actual PUSCH transmission.
  • a virtual PHR is a PHR that does not depend on the actual PUSCH transmission (based on a reference PUSCH transmission), and is called a reference PHR, a PHR that follows a reference format, etc. may
  • the virtual PHR is Rel. It may be calculated based on the default power control parameters already defined in 15/16 NR, or may be calculated based on new default power control parameters.
  • the power control parameters are P CMAX, f, c , Maximum Power Reduction (MPR), P-MPR, Additional Maximum Power Reduction (Additional MPR (A-MPR)), ⁇ Tc, P 0 , alpha, It may be at least one of a pathloss reference signal (PL-RS) and a closed loop index (l). For example, Rel.
  • the current standard does not specify how to configure the above-mentioned P CMAX field, P field, MPE field, etc. when two PHRs are included in the PHR MAC CE. Also, the trigger conditions for PHR MAC CE have not been fully considered. If an appropriate PHR is not reported, communication throughput, communication quality, etc. may deteriorate.
  • the present inventors came up with a method for appropriately reporting PHRs containing multiple PHs.
  • A/B and “at least one of A and B” may be read interchangeably.
  • activate, deactivate, indicate (or indicate), select, configure, update, determine, etc. may be read interchangeably.
  • RRC RRC parameters
  • RRC messages RRC signaling
  • higher layer parameters RRC signaling
  • IEs information elements
  • MAC CE update command
  • activation/deactivation command may be read interchangeably.
  • supporting, controlling, controllable, operating, and capable of operating may be read interchangeably.
  • panels, beams, panel groups, beam groups, precoders, Uplink (UL) transmitting entities, TRPs, spatial relationship information (SRI), spatial relationships, SRS Resource Indicator (SRI), SRS resources, Control resource set (Control Resource SET (CORESET)), Physical Downlink Shared Channel (PDSCH), codeword, base station, predetermined antenna port (for example, demodulation reference signal (DMRS) port), predetermined Antenna port group (e.g., DMRS port group), predetermined group (e.g., Code Division Multiplexing (CDM) group, predetermined reference signal group, CORESET group), predetermined resource (e.g., predetermined reference signal resource), predetermined resource set (for example, predetermined reference signal resource set), CORESET pool, PUCCH group (PUCCH resource group), spatial relationship group, downlink TCI state (DL TCI state), uplink TCI state ( UL TCI state), unified TCI state, common TCI state, QCL, QCL assumption, etc. may be read interchange
  • TCI state identifier (ID) and the TCI state may be read interchangeably.
  • the TCI state and TCI may be read interchangeably.
  • indexes, IDs, indicators, and resource IDs may be read interchangeably.
  • sequences, lists, sets, groups, groups, clusters, subsets, etc. may be read interchangeably.
  • TRP index CORESET pool index (CORESETPoolIndex), pool index, group index, etc. may be read interchangeably.
  • a single PDCCH may be referred to as a PDCCH (DCI) of the first scheduling type (eg, scheduling type A (or type 1)).
  • a multi-PDCCH may also be referred to as a PDCCH (DCI) of a second scheduling type (eg, scheduling type B (or type 2)).
  • the i-th TRP may mean the i-th TCI state, the i-th CDM group, etc. (i is an integer).
  • multi-TRP MTRP, M-TRP
  • multi-TRP system multi-TRP transmission
  • multi-PDSCH multi-PDSCH
  • single DCI sDCI
  • PDCCH Physical Downlink Control Channel
  • multi-TRP system based on single DCI
  • sDCI-based MTRP scheduling multiple PUSCHs (corresponding to different SRIs) with one DCI, sDCI-based MTRP transmission, at least Activating two TCI states on one TCI codepoint
  • sDCI single DCI
  • PDCCH Physical Downlink Control Channel
  • multi-TRP system based on single DCI
  • sDCI-based MTRP scheduling multiple PUSCHs (corresponding to different SRIs) with one DCI
  • sDCI-based MTRP transmission at least Activating two TCI states on one TCI codepoint
  • multi-DCI multi-PDCCH
  • multi-TRP system based on multi-DCI
  • mDCI-based MTRP mDCI-based MTRP transmission
  • multi-DCI is used for MTRP
  • the iterations of the present disclosure are MTRP-based iterations, Rel. 17 repetitions, repetitions applying different spatial relationships, repeated PUSCHs, repeated PUCCHs, repeated transmissions, etc. may be interchanged.
  • repeated transmission in the following embodiments may correspond to at least one of repeated transmission type A, repeated transmission type B, and other repeated transmission types.
  • repeated PUSCH the same codeword/transport block may be transmitted in each PUSCH (each repetition).
  • a repeated PUSCH may be interchanged with multiple PUSCHs having the same content (eg, data/codeword/transport block).
  • the first TRP and the second TRP are the first PUSCH and the second PUSCH, the first PUSCH transmission opportunity and the second PUSCH transmission opportunity, the first SRI and the second SRI, etc. and may be read interchangeably.
  • the MTRP PUSCH repetitions in this disclosure are: 2 PUCCH repetitions into 2 TRPs, 2 PUSCH repetitions with 2 SRIs, 2 PUSCH repetitions with 2 sets of power control parameters (power control parameters are described below), and so on may be interchanged.
  • STRP PUSCH repetition may mean repeated transmission of multiple PUSCHs transmitted using one (same) SRI/power control parameter set/beam/precoder. Note that a single transmission may mean a PUSCH transmission sent using one SRI/power control parameter set/beam/precoder.
  • PUSCH repetition/PUSCH transmission to TRP1 may mean PUSCH repetition/PUSCH transmission using the first SRI (or SRI field)/first power control parameter set.
  • PUSCH repetition/PUSCH transmission to TRP2 may mean PUSCH repetition/PUSCH transmission using the second SRI (or SRI field)/second power control parameter set.
  • Repeated transmission of PUSCH using multiple TRPs in the following embodiments is M-TRP PUSCH, MTRP PUSCH repeated, PUSCH transmission using multiple TRPs, repeated transmission of PUSCH for multiple TRPs, PUSCH over multiple TRPs , repeated PUSCH over multiple TRPs, simply repeated PUSCH, repeated transmission, multiple PUSCH transmissions, PUSCH transmission using multiple SRIs, M-TRP PUSCH, and so on.
  • PUSCH transmission using a single TRP includes S-TRP PUSCH, STRP PUSCH repetition, PUSCH transmission using a single TRP, repetition transmission of PUSCH for a single TRP, PUSCH over a single TRP, single TRPs, a single PUSCH transmission for a single TRP, just a single PUSCH transmission, a PUSCH transmission in a single TRP, a PUSCH transmission with a single SRI, and so on.
  • each SRI field may indicate one or more SRS resources (SRIs) to the UE.
  • SRIs SRS resources
  • common or different embodiments may be applied to codebook-based PUSCH transmission and non-codebook-based PUSCH transmission.
  • UL transmission is not limited to PUSCH, and each embodiment of the present disclosure can be appropriately applied to PUCCH (PUSCH may be read as PUCCH).
  • the CORESET pool index is set to 0 may be read interchangeably as “the CORESET pool index is set to 0 or the CORESET pool index is not set”.
  • the CORESET pool index, the PUSCH repetition index, and the upper layer index may be read interchangeably.
  • PHR PHR
  • PH PH field
  • PH value a PH field
  • a PH field may be read interchangeably with a PH field of a certain type (eg, type 1/2/3/X).
  • MTRP PUSCH repetition is enabled for the UE by an upper layer parameter, it is not limited to this.
  • 'MTRP PUSCH repetition is enabled' may mean 'two codebook-based/non-codebook-based SRS resource sets are configured'.
  • each embodiment described later assumes that reporting two PHRs for two TRPs to the UE is enabled by higher layer parameters, but is not limited to this.
  • MTRP PUSCH repetition is enabled "reporting two PHRs for two TRPs is enabled”, etc. may be read as nothing.
  • the PHR MAC CE may include fields for each of multiple serving cells (P CMAX field, P field, etc.). Also, PHR MAC CE, PHR and MPE P-MPR reports in the following embodiments may be read interchangeably.
  • P CMAX field/P-MPR value/power backoff of (for/for/corresponding to) PH field means “(for/for/corresponding to) PUSCH transmission corresponding to PH field. may be interchanged with "P CMAX field/P-MPR value/power back off”.
  • P-MPR P-MPR value
  • power back-off may be read interchangeably.
  • any frequency range (eg, FR2) may be interchanged with any other FR (eg, FR1/3/4/X).
  • FR frequency range
  • FR1/3/4/X any frequency range
  • MPE report of FR2 may be replaced with "MPE report”.
  • the first embodiment relates to the P CMAX field in PHR MAC CE.
  • two P CMAX fields corresponding to two PH fields of one serving cell may be included.
  • the first P CMAX field indicates the value of P CMAX used to calculate the first PH field of the serving cell
  • the second P CMAX field indicates the second P CMAX field of the serving cell. may indicate the value of P CMAX used to calculate the PH field of .
  • only one P CMAX field corresponding to two PH fields of one serving cell may be included.
  • the P CMAX field may indicate at least one of the following: - the value of P CMAX used to calculate the first PH field of the serving cell; - the value of P CMAX used to calculate the second PH field of the serving cell; - The value of P CMAX used to calculate the first PH field and the second PH field of the serving cell (in this case, the common P CMAX value is used to calculate the first PH field and the second PH field may be used), • The value of P CMAX used to calculate the PH field corresponding to the actual PH of the serving cell (if the number of PH fields corresponding to the actual PH of the serving cell is 1).
  • the UE even when two PH fields of one serving cell are included in the PHR report, the UE appropriately includes the P CMAX field corresponding to the PH field in the PHR report. be able to.
  • a second embodiment relates to the P field in PHR MAC CE.
  • Embodiment 2.1 If FR2 MPE reporting (higher layer parameter mpe-Reporting-FR2) is configured and the serving cell operates in FR2, Embodiment 2.2: MPE reporting in FR2 is not configured or the serving cell operates in FR1.
  • the applied P-MPR value for (corresponding to) the first PH field of the serving cell is that of the second PH field of the serving cell.
  • the applied P-MPR value for (corresponding to) is also simply referred to as the second P-MPR value.
  • two P fields corresponding to two PH fields of one serving cell may be included.
  • the first P-field indicates whether the first P-MPR value is less than a particular P-MPR value (eg, P-MPR_00)
  • the second P-field indicates whether the , may indicate whether the second P-MPR value is less than a particular P-MPR value (eg, P-MPR_00).
  • the specific P-MPR value for each P-field may be the same or different.
  • the UE may determine information about specific P-MPR values for certain P-fields based on specific rules/UE capabilities, physical layer signaling (eg DCI), higher layer signaling (eg RRC signaling, MAC CE), a specific signal/channel, or a combination thereof.
  • a specific P-MPR value may be read interchangeably with "a set/specified threshold”.
  • Embodiment 2.1.1 set to 0 if the first P-MPR value is less than a particular P-MPR value, otherwise set to 1
  • Embodiment 2.1.2 set to 0 if the second P-MPR value is less than a particular P-MPR value, otherwise set to 1
  • Embodiment 2.1.3 The applied P-MPR value for the PH field corresponding to the actual PH of the serving cell (the number of PH fields corresponding to the actual PH of the serving cell is 1) is specified set to 0 if less than the P-MPR value, set to 1 otherwise
  • Embodiment 2.1.4 set to 0 if both the first P-MPR value and the second P-MPR value are less than a particular P-MPR value, else 1 is set to Embodiment 2.1.5: set to 0 if both the first P-MPR value and the second
  • both the first P-MPR value and the second P-MPR value are smaller than a specific P-MPR value, and the first P-MPR value and Only the case where both of the second P-MPR values are not less than the particular P-MPR value may be assumed (the other cases may not occur).
  • one of the first P-MPR value and the second P-MPR value is smaller than the specific P-MPR value, and the other is the specific P-MPR value. It may be assumed that cases not less than the P-MPR value may occur (eg, it may be assumed that these cases may occur in addition to the cases assumed in embodiment 2.1.4).
  • FIG. 3A is a diagram showing an example of a case assumed in Embodiment 2.1.4.
  • both the first PHR (PH) field and the second PHR (PH) field are less than a particular P-MPR value (eg, P-MPR_00), or both are less than the particular P-MPR value Only the above cases are assumed.
  • FIG. 3B is a diagram showing an example of cases assumed in Embodiments 2.1.5 and 2.1.6.
  • both the first PHR (PH) field and the second PHR (PH) field are less than a particular P-MPR value (eg, P-MPR_00), or both are less than the particular P-MPR value
  • P-MPR_00 a particular P-MPR value
  • cases where one is smaller than the specific P-MPR value and the other is greater than or equal to the specific P-MPR value are also assumed.
  • applying power backoff for power management for (corresponding to) the first PH field of the serving cell simply means “the first power backoff is applied”. Also, applying power backoff for power management for (corresponding to) the second PH field of the serving cell is also simply referred to as “applying the second power backoff.”
  • two P fields corresponding to two PH fields of one serving cell may be included.
  • the first P-field indicates whether the first power backoff (eg, P-MPR>0) is applied
  • the second P-field indicates whether the second It may indicate whether power backoff (eg, P-MPR>0) applies.
  • the power backoff for each P-field may be the same or different.
  • the UE may determine information on power backoff for certain P-fields based on specific rules/UE capabilities, physical layer signaling (e.g. DCI), higher layer signaling (e.g. RRC signaling, MAC CE), a specific signal/channel, or a combination thereof.
  • power backoff eg, P-MPR>0
  • P-MPR>0 applies means "that the corresponding P CMAX field has a different value if no power backoff is applied for power management. It could be read as "it was”.
  • Embodiment 2.2.1 set to 1 if the first power backoff is applied, otherwise set to 0; Embodiment 2.2.2: set to 1 if the second power backoff is applied, otherwise set to 0; Embodiment 2.2.3: Power back-off for power management for PH fields corresponding to the actual PH of the serving cell (the number of PH fields corresponding to the actual PH of the serving cell is 1) , P-MPR>0) applies, set to 0 otherwise; Embodiment 2.2.4: set to 1 if both the first power backoff and the second power backoff are applied, otherwise set to 0; Embodiment 2.2.5: set to 1 if both the first power backoff and the second power backoff are applied, otherwise set to 0; Embodiment 2.2.6: set to 1 if one (or at least one) of the first power backoff and the second power
  • Embodiments 2.2.5/2.2.6 above it is assumed that there may be cases where one of the first power back-off and the second power back-off is applied and the other is not applied. (eg, it may be assumed that these cases may occur in addition to those assumed in embodiment 2.2.4).
  • FIG. 4A is a diagram showing an example of a case assumed in Embodiment 2.2.4.
  • P-MPR power back off
  • PH first PHR
  • PH second PHR
  • P-MPR power back off
  • FIG. 4B is a diagram showing an example of cases assumed in Embodiments 2.2.5 and 2.2.6. In this example, not only the case where P-MPR is applied to both the first PHR (PH) field and the second PHR (PH) field, and the case where P-MPR is not applied to both, P - Cases where MPR applies but not the other are envisioned.
  • the P field corresponding to the PH field can be appropriately included in the PHR report. can be done.
  • a third embodiment relates to the MPE field in PHR MAC CE.
  • the power backoff applied to meet the MPE requirements for (corresponding to) the first PH field of the serving cell is also simply referred to as the first power backoff, and the second power backoff of the serving cell.
  • the power backoff applied to meet the MPE requirements for (corresponding to) the PH field of is also simply referred to as the second power backoff.
  • the MPE field may indicate an index corresponding to the measured P-MPR value (eg, in dB).
  • FR2 MPE reporting (eg, higher layer parameter mpe-Reporting-FR2) is configured, the serving cell operates in FR2, and at least one P-field corresponding to the serving cell is set to 1.
  • two MPE fields corresponding to two PH fields of one serving cell may be included. Of these two MPE fields, the first MPE field may indicate a first power backoff and the second MPE field may indicate a second power backoff.
  • FR2 MPE reporting (eg, higher layer parameter mpe-Reporting-FR2) is configured, the serving cell operates in FR2, and at least one P-field corresponding to the serving cell is set to 1. , only one MPE field corresponding to two PH fields of one serving cell may be included.
  • the P CMAX field may indicate at least one of the following: a first power back off; a second power back off; a first power backoff and a second power backoff (in this case, a common power backoff value may be used to calculate the first PH field and the second PH field); Power backoff applied to meet MPE requirements for (corresponding to) PH fields corresponding to the actual PH of the serving cell (if the number of PH fields corresponding to the actual PH of the serving cell is 1) .
  • the FR2 MPE reporting (eg, higher layer parameter mpe-Reporting-FR2) is configured and the serving cell operates in FR2" means "whether the FR2 MPE reporting is configured , or the serving cell operates in FR1.
  • the MPE field corresponding to the PH field can be appropriately included in the PHR report. can be done.
  • the PHR MAC CE of the first to third embodiments may be a single entry PHR MAC CE or a multiple entry PHR MAC CE.
  • FIG. 5 is a diagram showing an example of a single entry PHR MAC CE in the first to third embodiments. Differences from FIG. 1 will be described, and descriptions of the same points will not be repeated.
  • PH_1 and PH_2 correspond to the first PH field and the second PH field, respectively, and may indicate, for example, the PH for TRP1 and the PH for TRP2. Also, "_1" and “_2" attached to other fields indicate that the fields correspond to the first PH field and the second PH field, respectively.
  • P_1 and P_2 correspond to the first and second P fields of the second embodiment
  • MPE_1 and MPE_2 correspond to the first and second MPE fields of the third embodiment
  • P CMAX _1 and P CMAX _2 may correspond to the first and second P CMAX fields of the first embodiment. Note that “_1” and “_2" may not be written, or may be written differently.
  • FIG. 6 is a diagram showing an example of multiple entry PHR MAC CE in the first to third embodiments. Differences from FIG. 2 will be described, and descriptions of the same points will not be repeated. Further, the description of the fields for which the same contents have been described with reference to FIG. 5 will not be repeated.
  • PH_j,1 and PH_j,2 correspond to the first and second PH fields, respectively, and may indicate, for example, the PH for TRP1 and the PH for TRP2. Also, “_j, 1" and “_j, 2" attached to other fields indicate that the field corresponds to the first PH field and the second PH field, respectively. Note that “_j, 1" and “_j, 2" may not be written, or may be written differently.
  • the Xi field (the octet including the Xi field) does not have to be included in the PHR MAC CE. This is because if the number of PHs reported for each serving cell is configured, if reporting two PHRs for two TRPs is configured/enabled, etc., there is no need to include the Xi field. be.
  • the fourth embodiment relates to trigger conditions (trigger events) of PHR MAC CE.
  • the PHR MAC CE may be the PHR MAC CE of the first to third embodiments.
  • Embodiment 4.1 The fourth embodiment is roughly divided into Embodiment 4.1 and Embodiment 4.2. It should be understood, like other embodiments, that these embodiments are not exclusive (both may be applied).
  • PHR MAC CE may be triggered when the following events occur (UE may trigger PHR MAC CE in such cases):
  • the measured P-MPR applied to meet the MPE requirements of FR2 for at least one activated FR2 serving cell since the last transmission of PHR in the MAC entity is a threshold (e.g. , the threshold indicated by the upper layer parameter mpe-Threshold).
  • Option 4.1.1 refer to (use) the measured P-MPR of the first PHR as the measured P-MPR
  • Option 4.1.2 refer to (use) the measured P-MPR of the second PHR as the measured P-MPR
  • Option 4.1.3 refer to (use) the measured P-MPR of one PHR, which is actually the PHR, of the first PHR and the second PHR as the measured P-MPR
  • Option 4.1.4 Replace the above "measured P-MPR is greater than or equal to the threshold” with "measured P-MPR of both the first PHR and the second PHR are greater than or equal to the threshold”
  • Option 4.1.5 The above “measured P-MPR is greater than or equal to the threshold” is changed to "either/at least one of the first PHR and the second P
  • the threshold for (the P-MPR of) the first PHR utilizes the threshold indicated by the existing upper layer parameter (eg, mpe-Threshold), and the threshold for (the measured P-MPR of) the second PHR For the threshold for , use the threshold indicated by the new upper layer parameter (eg, mpe-Threshold2). Note that these thresholds may be reversed.
  • Option 4.1.9 As the measured P-MPR, refer to the larger value of the measured P-MPR of the first PHR and the measured P-MPR of the second PHR (use ),
  • Option 4.1.10 As the measured P-MPR, refer to the smaller value of the measured P-MPR of the first PHR and the measured P-MPR of the second PHR (use ).
  • PHR MAC CE may be triggered when the following events occur (UE may trigger PHR MAC CE in such cases): PHR at the MAC entity due to the measured P-MPR being equal to or greater than a threshold (e.g.
  • the measured P-MPR applied to meet the MPE requirements of FR2 is a certain value (e.g., higher layer parameter phr-Tx-PowerFactorChange values indicated by ).
  • Option 4.2.1 refer to (use) the measured P-MPR of the first PHR as the measured P-MPR
  • Option 4.2.2 refer to (use) the measured P-MPR of the second PHR as the measured P-MPR
  • Option 4.2.3 refer to (use) the measured P-MPR of one PHR, which is actually the PHR, of the first PHR and the second PHR as the measured P-MPR
  • Option 4.2.4 Replace "measured P-MPR varies more than a certain value” above with “measured P-MPR of both the first PHR and the second PHR change significantly,”
  • Option 4.2.5 Replace the above "measured P-MPR fluctuates more than a certain value” with "one of the first PHR and the second PHR / at least one of the measured P-MPR fluctuates more
  • the specific value for the first PHR utilizes the value indicated by an existing upper layer parameter (eg, phr-Tx-PowerFactorChange), and the second PHR (the measured P-MPR) uses the value indicated by the new upper layer parameter (eg, phr-Tx-PowerFactorChange2).
  • the measured P-MPR refer to the larger value of the measured P-MPR of the first PHR and the measured P-MPR of the second PHR (use )
  • Option 4.2.10 As the measured P-MPR, refer to the smaller value of the measured P-MPR of the first PHR and the measured P-MPR of the second PHR (use ).
  • Transmission (eg, transmission of PHR) in the fourth embodiment may fall under at least one of the following cases: - Case 1: the transmission is an actual PUSCH transmission and is an S-TRP PUSCH transmission; - Case 2: the transmission is an actual PUSCH transmission and is an M-TRP PUSCH transmission; - Case 3: The transmission is a virtual PUSCH transmission (reference PUSCH transmission).
  • Case 1 above may be rewritten by applying one SRI field/TPMI field/SRS resource set/power control parameter set, or dynamic S-TRP/M included in DCI that schedules PUSCH.
  • -TRP switching field may be replaced by indicating S-TRP (for example, the value of the SRS resource set indicator field specified in Rel.17 indicates 0 or 1).
  • Case 1 may include at least one of the following: Case 1-1: the S-TRP is TRP1 (the first SRS resource set is applied, or the value of the SRS resource set indicator field indicates 0); Case 1-2: the S-TRP is TRP2 (the second SRS resource set is applied or the value of the SRS resource set indicator field indicates 1).
  • Cases 1-1 and 1-2 may or may not be distinguished.
  • Case 2 above may be rewritten by applying two SRI fields/TPMI fields/SRS resource sets/power control parameter sets, or dynamic S-TRP/M included in DCI that schedules PUSCH.
  • -TRP switching field may be replaced by indicating M-TRP (for example, the value of the SRS resource set indicator field defined in Rel.17 indicates 2 or 3).
  • Case 2 may include at least one of the following: Case 2-1: The order of M-TRP (M-TRP PUSCH) is ⁇ TRP1, TRP2 ⁇ (the first iteration is associated with the first TRP/SRS resource set/SRI field, or resource set indicator field value indicates 2), Case 2-2: The order of M-TRP (M-TRP PUSCH) is ⁇ TRP2, TRP1 ⁇ (the first iteration is associated with the second TRP/SRS resource set/SRI field, or The value of the resource set indicator field indicates 3).
  • Case 2-1 The order of M-TRP (M-TRP PUSCH) is ⁇ TRP1, TRP2 ⁇ (the first iteration is associated with the first TRP/SRS resource set/SRI field, or resource set indicator field value indicates 2)
  • Case 2-2 The order of M-TRP (M-TRP PUSCH) is ⁇ TRP2, TRP1 ⁇ (the first iteration is associated with the second TRP/SRS resource set/SRI field,
  • Cases 2-1 and 2-2 may or may not be distinguished.
  • the final transmission of PHR and the transmission of PHR triggered based on the (current) measured P-MPR in the fourth embodiment may correspond to the above different cases respectively, or the same may apply to the case.
  • the last transmission of PHR MAC CE corresponds to case 1 (/1-1/1-2)/2 (/2-1/2-2)/3 and based on the current measured P-MPR
  • the transmission of the PHR MAC CE triggered by this may fall under case 1 (/1-1/1-2)/2 (/2-1/2-2)/3.
  • "when MTRP PUSCH repetition is enabled and reporting two PHRs for two TRPs is enabled” means “MTRP PUSCH repetition and two two PHR reports for TRP, and at least one of which is enabled”.
  • At least one of the above embodiments may be applied when STRP PUSCH repetition or single transmission (in other words, PUSCH transmission without repetition) is specified by DCI for a serving cell. , may be applied when MTRP PUSCH repetition is specified by the DCI for a serving cell.
  • reporting the PHR may mean “reporting the PHR for the serving cell for which the DCI designates STRP PUSCH repetition/single transmission/MTRP PUSCH repetition”.
  • the PHR reported may be Type 1 PH or other types of PH.
  • the first PH (PH indicated by the first PH field) and the second PH (PH indicated by the second PH field) appearing in each embodiment correspond to at least one of the following cases.
  • the last transmitted PHR and the triggered PHR based on the (current) measured P-MPR in the fourth embodiment may correspond to the different cases above, respectively, or the same case. may correspond to For example, the 2 PHs included in the last transmitted PHR MAC CE fall under cases A/B/C/D, and the 2 included in the PHR MAC CE triggered based on the current measured P-MPR PH may fall under cases A/B/C/D.
  • first PH and the second PH may be reported in one PHR MAC CE, or may be reported in separate (multiple) PHR MAC CEs.
  • the first PH may mean the PH of the first PUSCH iteration (the earliest PUSCH iteration).
  • the first PH is the PH of the PUSCH repetition (or the first PUSCH repetition or the earliest PUSCH repetition) associated with the first SRI field/TPMI field/SRS resource set/power control parameter set/TRP. may mean.
  • the second PH may mean a PH of TRP that is different from the first PH.
  • the second PH uses the second SRI field/TPMI field/SRS resource set/power control parameter set/TRP related PUSCH repetition (or first/second PUSCH repetition or earliest/latest PUSCH repeat). Note that the second SRI field/TPMI field/SRS resource set/power control parameter set/TRP is different from the first SRI field/TPMI field/SRS resource set/power control parameter set/TRP.
  • the (applied) P-MPR of the first/second PH (PHR) is the (applied) P-MPR of the corresponding PUSCH transmission of the first/second PH (PHR) may mean.
  • the UE may have multiple panels (UL panels, panels available for UL transmission).
  • panels, UE antenna groups, UE antenna port groups, UE capability values, and UE capability value sets may be read interchangeably.
  • Multiple panels may also support different numbers of antenna ports, different numbers of SRS ports, different numbers of layers, different numbers of beams, different transmit powers, different Equivalent Isotopically Radiated Power (EIRP). (In other words, different panels may transmit/receive these parameters (elements) differently).
  • EIRP Equivalent Isotopically Radiated Power
  • a UE that supports multiple panels and a UE that does not support multiple panels may be applied with different options (aspects/configurations/controls) of the first/second/third/fourth embodiments described above.
  • a PHR MAC CE reporting two PH fields for the same panel and a PHR MAC CE reporting two PH fields for a different panel may have different configurations.
  • MPE reporting may not be supported together with PHR reporting for M-TRP.
  • the UE for a serving cell, M-TRP PUSCH repetition and two PHR for PUSCH to two TRP, if at least one of is configured / supported / enabled, FR2 MPE reporting may not be expected to be set.
  • the UE for a certain serving cell, M-TRP PUSCH repetition and two PHRs for PUSCH to two TRP, at least one of is configured / supported / enabled, FR2 of The setting of MPE reporting may be ignored, or it may be assumed that FR2 MPE reporting is not set regardless of the received configuration information (actual configuration).
  • the specific UE capabilities may indicate at least one of the following: Whether or not to support PUSCH repetition of multi-TRP; Whether to support two PH/P CMAX /P/MPE fields (including PHR MAC CE) (per serving cell); Whether to support two PHRs for PUSCH to two TRPs; whether to support MPE reporting; • Whether to support MPE reporting with M-TRP PUSCH repetition and/or two PHRs for PUSCH to two TRPs.
  • the specific UE capability may be determined for each serving cell/BWP/FR.
  • At least one of the above embodiments may be applied if the UE is configured with specific information related to the above embodiments by higher layer signaling (if not configured, for example Rel. 15/ 16 operations apply).
  • the specific information indicates to enable/set multiple PH/P CMAX /P/MPE fields (including PHR MAC CE), information indicating to enable multi-TRP PUSCH repetition.
  • the UE may be configured using higher layer parameters as to which embodiment/case/condition described above is used to control the PHR.
  • wireless communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the radio communication methods according to the above embodiments of the present disclosure or a combination thereof.
  • FIG. 7 is a diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
  • LTE Long Term Evolution
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • LTE Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB) )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB)
  • gNB NR base stations
  • a wireless communication system 1 includes a base station 11 forming a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) arranged in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. You may prepare.
  • a user terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminals 20 are not limited to the embodiment shown in the figure.
  • the base stations 11 and 12 are collectively referred to as the base station 10 when not distinguished.
  • the user terminal 20 may connect to at least one of the multiple base stations 10 .
  • the user terminal 20 may utilize at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)).
  • Macrocell C1 may be included in FR1, and small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a plurality of base stations 10 may be connected by wire (for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is an IAB Also called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 directly or via another base station 10 .
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication schemes such as LTE, LTE-A, and 5G.
  • a radio access scheme based on orthogonal frequency division multiplexing may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a radio access method may be called a waveform.
  • other radio access schemes for example, other single-carrier transmission schemes and other multi-carrier transmission schemes
  • the UL and DL radio access schemes may be used as the UL and DL radio access schemes.
  • a downlink shared channel Physical Downlink Shared Channel (PDSCH)
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • an uplink shared channel (PUSCH) shared by each user terminal 20 an uplink control channel (PUCCH), a random access channel (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, higher layer control information, and the like may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) including scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CControl Resource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource searching for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates.
  • a CORESET may be associated with one or more search spaces. The UE may monitor CORESETs associated with certain search spaces based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • PUCCH channel state information
  • acknowledgment information for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • SR scheduling request
  • a random access preamble for connection establishment with a cell may be transmitted by the PRACH.
  • downlink, uplink, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical" to the head.
  • synchronization signals SS
  • downlink reference signals DL-RS
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS)), Phase Tracking Reference Signal (PTRS)), etc.
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • DMRS Demodulation reference signal
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS Block (SSB), and so on.
  • SS, SSB, etc. may also be referred to as reference signals.
  • DMRS may also be called a user terminal-specific reference signal (UE-specific reference signal).
  • FIG. 8 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • the base station 10 comprises a control section 110 , a transmission/reception section 120 , a transmission/reception antenna 130 and a transmission line interface 140 .
  • One or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
  • this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the base station 10 as a whole.
  • the control unit 110 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping), and the like.
  • the control unit 110 may control transmission/reception, measurement, etc. using the transmission/reception unit 120 , the transmission/reception antenna 130 and the transmission line interface 140 .
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer them to the transmission/reception unit 120 .
  • the control unit 110 may perform call processing (setup, release, etc.) of communication channels, state management of the base station 10, management of radio resources, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121 , a radio frequency (RF) section 122 and a measuring section 123 .
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212 .
  • the transmitting/receiving unit 120 is configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
  • the transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of the transmission processing section 1211 and the RF section 122 .
  • the receiving section may be composed of a reception processing section 1212 , an RF section 122 and a measurement section 123 .
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (DFT) on the bit string to be transmitted. Processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-to-analog conversion may be performed, and the baseband signal may be output.
  • channel coding which may include error correction coding
  • modulation modulation
  • mapping mapping
  • filtering filtering
  • DFT discrete Fourier transform
  • DFT discrete Fourier transform
  • the transmitting/receiving unit 120 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 130. .
  • the transmitting/receiving unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmission/reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, Fast Fourier transform (FFT) processing, and Inverse Discrete Fourier transform (IDFT) processing on the acquired baseband signal. )) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing. User data and the like may be acquired.
  • FFT Fast Fourier transform
  • IDFT Inverse Discrete Fourier transform
  • the transmitting/receiving unit 120 may measure the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)) , signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), and the like may be measured.
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • RSSI Received Signal Strength Indicator
  • channel information for example, CSI
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, etc., and user data (user plane data) for the user terminal 20, control plane data, and the like. Data and the like may be obtained, transmitted, and the like.
  • the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission line interface 140.
  • the transmitting/receiving unit 120 transmits to the user terminal 20 information (for example, RRC parameters) for setting the inclusion of two Power Headroom (PH) fields in the Medium Access Control (MAC) control element for one serving cell. good too.
  • RRC parameters for example, RRC parameters
  • the transmitting/receiving unit 120 may receive from the user terminal 20 the MAC control element including the P CMAX, f, c fields for at least one of the two PH fields.
  • the transmitting/receiving unit 120 provides setting information related to trigger conditions for Maximum Permitted Exposure (MPE) Power Management Maximum Power Reduction (P-MPR) reporting for the two Power Headrooms (PH) (eg, mpe-Threshold, mpe-ProhibitTimer, phr-Tx-PowerFactorChange) may be sent to the user terminal 20 .
  • MPE Maximum Permitted Exposure
  • P-MPR Power Management Maximum Power Reduction
  • PH Power Headrooms
  • the transmitting/receiving unit 120 may receive from the user terminal 20 the MPE P-MPR report triggered based on the trigger condition related to at least one of the two PHs.
  • FIG. 9 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
  • the user terminal 20 includes a control section 210 , a transmission/reception section 220 and a transmission/reception antenna 230 .
  • One or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the user terminal 20 as a whole.
  • the control unit 210 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230 .
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals and transfer them to the transmission/reception unit 220 .
  • the transmitting/receiving section 220 may include a baseband section 221 , an RF section 222 and a measurement section 223 .
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212 .
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure.
  • the transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of a transmission processing section 2211 and an RF section 222 .
  • the receiving section may include a reception processing section 2212 , an RF section 222 and a measurement section 223 .
  • the transmitting/receiving antenna 230 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
  • the transmitter/receiver 220 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (eg, RLC retransmission control), MAC layer processing (eg, , HARQ retransmission control) and the like may be performed to generate a bit string to be transmitted.
  • RLC layer processing eg, RLC retransmission control
  • MAC layer processing eg, HARQ retransmission control
  • the transmission/reception unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing on a bit string to be transmitted. , precoding, digital-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
  • Whether or not to apply DFT processing may be based on transform precoding settings. Transmitting/receiving unit 220 (transmission processing unit 2211), for a certain channel (for example, PUSCH), if transform precoding is enabled, the above to transmit the channel using the DFT-s-OFDM waveform
  • the DFT process may be performed as the transmission process, or otherwise the DFT process may not be performed as the transmission process.
  • the transmitting/receiving unit 220 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (error correction) on the acquired baseband signal. decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmitting/receiving section 220 may measure the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measuring unit 223 may measure received power (eg, RSRP), received quality (eg, RSRQ, SINR, SNR), signal strength (eg, RSSI), channel information (eg, CSI), and the like.
  • the measurement result may be output to control section 210 .
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be configured by at least one of the transmitter/receiver 220 and the transmitter/receiver antenna 230 .
  • control unit 210 includes two Power Headroom (PH) fields for one serving cell, P CMAX, f, c field for at least one of the two PH fields Medium Access Control (MAC) control element including may be generated.
  • PH Power Headroom
  • MAC Medium Access Control
  • the transmitting/receiving unit 220 may transmit the MAC control element.
  • control unit 210 reports the Maximum Permitted Exposure (MPE) Power Management Maximum Power Reduction (P-MPR) report for the two Power Headrooms (PH), may be triggered based on a trigger condition associated with at least one of
  • the transmitting/receiving unit 220 may transmit the triggered MPE P-MPR report.
  • each functional block may be implemented using one device physically or logically coupled, or directly or indirectly using two or more physically or logically separated devices (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • function includes judgment, decision, determination, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deem , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (component) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 10 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to one embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • processor 1001 may be implemented by one or more chips.
  • predetermined software program
  • the processor 1001 performs calculations, communication via the communication device 1004 and at least one of reading and writing data in the memory 1002 and the storage 1003 .
  • the processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission/reception unit 120 220
  • FIG. 10 FIG. 10
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 (210) may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
  • the memory 1002 is a computer-readable recording medium, such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), or at least any other suitable storage medium. may be configured by one.
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD), for example. may be configured to include
  • the transmitting/receiving unit 120 (220), the transmitting/receiving antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a signal may also be a message.
  • a reference signal may be abbreviated as RS, and may also be called a pilot, a pilot signal, etc., depending on the applicable standard.
  • a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may consist of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that make up a radio frame may be called a subframe.
  • a subframe may consist of one or more slots in the time domain.
  • a subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration , a particular filtering process performed by the transceiver in the frequency domain, a particular windowing process performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may also be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (PUSCH) Mapping Type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • an RB may contain one or more symbols in the time domain and may be 1 slot, 1 minislot, 1 subframe or 1 TTI long.
  • One TTI, one subframe, etc. may each be configured with one or more resource blocks.
  • One or more RBs are Physical Resource Block (PRB), Sub-Carrier Group (SCG), Resource Element Group (REG), PRB pair, RB Also called a pair.
  • PRB Physical Resource Block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair RB Also called a pair.
  • a resource block may be composed of one or more resource elements (Resource Element (RE)).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP for UL
  • BWP for DL DL BWP
  • One or multiple BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • information, signals, etc. can be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
  • Information, signals, etc. may be input and output through multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Input and output information, signals, etc. may be overwritten, updated or appended. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to other devices.
  • Uplink Control Information (UCI) Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of predetermined information is not limited to explicit notification, but implicit notification (for example, by not notifying the predetermined information or by providing another information by notice of
  • the determination may be made by a value (0 or 1) represented by 1 bit, or by a boolean value represented by true or false. , may be performed by numerical comparison (eg, comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) , a server, or other remote source, these wired and/or wireless technologies are included within the definition of transmission media.
  • a “network” may refer to devices (eg, base stations) included in a network.
  • precoding "precoding weight”
  • QCL Quality of Co-Location
  • TCI state Transmission Configuration Indication state
  • spatialal patial relation
  • spatialal domain filter "transmission power”
  • phase rotation "antenna port
  • antenna port group "layer”
  • number of layers Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are interchangeable. can be used as intended.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is assigned to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head (RRH))) may also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)). Head (RRH)
  • RRH Head
  • the terms "cell” or “sector” refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , a handset, a user agent, a mobile client, a client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a moving object, the mobile itself, or the like.
  • the moving body refers to a movable object, the speed of movement is arbitrary, and it naturally includes cases where the moving body is stationary.
  • Examples of such moving bodies include vehicles, transportation vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , airplanes, rockets, satellites, drones, multi-copters, quad-copters, balloons and objects mounted on them.
  • the mobile body may be a mobile body that autonomously travels based on an operation command.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • a vehicle e.g., car, airplane, etc.
  • an unmanned mobile object e.g., drone, self-driving car, etc.
  • a robot manned or unmanned .
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 11 is a diagram showing an example of a vehicle according to one embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, revolution sensor 51, air pressure sensor 52, vehicle speed sensor 53, acceleration sensor 54, accelerator pedal sensor 55, brake pedal sensor 56, shift lever sensor 57, and object detection sensor 58), information service unit 59 and communication module 60.
  • various sensors current sensor 50, revolution sensor 51, air pressure sensor 52, vehicle speed sensor 53, acceleration sensor 54, accelerator pedal sensor 55, brake pedal sensor 56, shift lever sensor 57, and object detection sensor 58
  • information service unit 59 and communication module 60.
  • the driving unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor.
  • the steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 is composed of a microprocessor 61 , a memory (ROM, RAM) 62 , and a communication port (eg, input/output (IO) port) 63 . Signals from various sensors 50 to 58 provided in the vehicle are input to the electronic control unit 49 .
  • the electronic control unit 49 may be called an Electronic Control Unit (ECU).
  • ECU Electronic Control Unit
  • the signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheels 46/rear wheels 47 obtained by the rotation speed sensor 51, and an air pressure sensor 52.
  • air pressure signal of front wheels 46/rear wheels 47 vehicle speed signal obtained by vehicle speed sensor 53, acceleration signal obtained by acceleration sensor 54, depression amount signal of accelerator pedal 43 obtained by accelerator pedal sensor 55, brake pedal sensor
  • the information service unit 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios for providing (outputting) various information such as driving information, traffic information, and entertainment information, and these devices. and one or more ECUs that control The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
  • various information/services for example, multimedia information/multimedia services
  • the information service unit 59 may include an input device (e.g., keyboard, mouse, microphone, switch, button, sensor, touch panel, etc.) that receives input from the outside, and an output device that outputs to the outside (e.g., display, speaker, LED lamp, touch panel, etc.).
  • an input device e.g., keyboard, mouse, microphone, switch, button, sensor, touch panel, etc.
  • an output device e.g., display, speaker, LED lamp, touch panel, etc.
  • the driving support system unit 64 includes a millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., Global Navigation Satellite System (GNSS), etc.), map information (e.g., High Definition (HD)) maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMU), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving load, and one or more devices that control these devices ECU.
  • the driving support system unit 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63 .
  • the communication module 60 communicates with the vehicle 40 through a communication port 63 such as a driving unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from an external device via wireless communication.
  • Communication module 60 may be internal or external to electronic control 49 .
  • the external device may be, for example, the above-described base station 10, user terminal 20, or the like.
  • the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (and may function as at least one of the base station 10 and the user terminal 20).
  • the communication module 60 receives signals from the various sensors 50 to 58 described above input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. may be transmitted to the external device via wireless communication.
  • the electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by communication module 60 may include information based on the above inputs.
  • the communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device and displays it on the information service unit 59 provided in the vehicle.
  • the information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as displays and speakers based on the PDSCH received by the communication module 60 (or data/information decoded from the PDSCH)). may be called
  • the communication module 60 stores various information received from an external device in a memory 62 that can be used by the microprocessor 61 . Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, the steering unit 42, the accelerator pedal 43, the brake pedal 44, the shift lever 45, the left and right front wheels 46, and the left and right rear wheels provided in the vehicle 40. 47, axle 48, and various sensors 50-58 may be controlled.
  • the base station in the present disclosure may be read as a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the user terminal 20 may have the functions of the base station 10 described above.
  • words such as "uplink” and “downlink” may be replaced with words corresponding to communication between terminals (for example, "sidelink”).
  • uplink channels, downlink channels, etc. may be read as sidelink channels.
  • user terminals in the present disclosure may be read as base stations.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • operations that are assumed to be performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may involve the base station, one or more network nodes other than the base station (e.g., Clearly, this can be done by a Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Also, the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is, for example, an integer or a decimal number
  • Future Radio Access FAA
  • RAT New-Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802 .11 Wi-Fi®
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, or any other suitable wireless communication method. It may be applied to a system to be used, a next-generation system extended, modified, created or defined based on these.
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining includes judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry ( For example, looking up in a table, database, or another data structure), ascertaining, etc. may be considered to be “determining.”
  • determining (deciding) includes receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access ( accessing (e.g., accessing data in memory), etc.
  • determining is considered to be “determining” resolving, selecting, choosing, establishing, comparing, etc. good too. That is, “determining (determining)” may be regarded as “determining (determining)” some action.
  • Maximum transmit power described in this disclosure may mean the maximum value of transmit power, may mean the nominal maximum transmit power (the nominal UE maximum transmit power), or may mean the rated maximum transmit power (the rated UE maximum transmit power).
  • connection refers to any connection or coupling, direct or indirect, between two or more elements. and can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • radio frequency domain when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, radio frequency domain, microwave They can be considered to be “connected” or “coupled” together using the domain, electromagnetic energy having wavelengths in the optical (both visible and invisible) domain, and the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

The present invention suitably reports a PHR including a plurality of pieces of PH. A terminal according to one aspect of the present disclosure comprises: a control unit which triggers a maximum permitted exposure (MPE) power management maximum power reduction (P-MPR) report pertaining to two pieces of power headroom (PH) on the basis of a trigger condition related to at least one of the two pieces of PH; and a transmission unit which transmits the triggered PME P-MPR report.

Description

端末、無線通信方法及び基地局Terminal, wireless communication method and base station
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。 The present disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of further high data rate, low delay, etc. (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 LTE successor systems (for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later) are also being considered. .
 将来の無線通信システム(例えば、NR)では、端末(ユーザ端末(user terminal)、User Equipment(UE))がネットワークに対して、サービングセル毎の電力余裕(パワーヘッドルーム(Power Headroom(PH)))の情報を含むPHレポート(Power Headroom Report(PHR))を送信する。ネットワークは、UEの上り送信電力の制御のために、PHRを利用できる。 In a future wireless communication system (for example, NR), a terminal (user terminal, User Equipment (UE)) provides the network with a power margin for each serving cell (Power Headroom (PH)) Send a PH report (Power Headroom Report (PHR)) containing information on The network can use PHR for control of UE uplink transmission power.
 NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP(Multi TRP(MTRP)))が、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のTRPに対してUL送信を行うことが検討されている。 In NR, it is being considered that one or more transmission/reception points (Transmission/Reception Points (TRP)) (Multi TRP (MTRP)) perform DL transmission to the UE. It is also being considered for UEs to perform UL transmissions on one or more TRPs.
 将来の無線システム(例えば、Rel.17以降のNR)において、MTRPのPhysical Uplink Shared Channel(PUSCH)繰り返し送信が検討されている。また、MTRP PUSCHがサポート/設定/有効化され、かつ、2つのTRPのための2つのPHを報告することが設定/有効化される場合に、PHR Medium Access Control Control Element(PHR MAC CE)に2つのPHRを含めることが検討されている。 In future radio systems (for example, NR after Rel. 17), repeated transmission of MTRP's Physical Uplink Shared Channel (PUSCH) is under consideration. Also, when MTRP PUSCH is supported/configured/enabled and reporting two PHs for two TRPs is configured/enabled, the PHR Medium Access Control Control Element (PHR MAC CE) The inclusion of two PHRs is being considered.
 しかしながら、現状の規格では、PHR MAC CEに2つのPHを含める場合に、いくつかのフィールドをどのように構成するかを規定していない。また、PHR MAC CEのトリガ条件について十分に検討されていない。適切なPHRの報告が行われなければ、通信スループット、通信品質などが劣化するおそれがある。 However, the current standard does not specify how to configure some fields when two PHs are included in the PHR MAC CE. Also, the trigger conditions for PHR MAC CE have not been sufficiently studied. If an appropriate PHR is not reported, communication throughput, communication quality, etc. may deteriorate.
 そこで、本開示は、複数のPHを含むPHRを適切に報告できる端末、無線通信方法及び基地局を提供することを目的の1つとする。 Therefore, one object of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can appropriately report PHRs including multiple PHs.
 本開示の一態様に係る端末は、2つのPower Headroom(PH)に関する最大許容曝露(Maximum Permitted Exposure(MPE)) 電力管理最大電力低減(Power Management Maximum Power Reduction(P-MPR))報告を、前記2つのPHの少なくとも一方に関連するトリガ条件に基づいてトリガする制御部と、トリガされた前記MPE P-MPR報告を送信する送信部と、を有する。 A terminal according to an aspect of the present disclosure reports Maximum Permitted Exposure (MPE) Power Management Maximum Power Reduction (P-MPR) for two Power Headrooms (PH), A controller that triggers based on a trigger condition associated with at least one of two PHs, and a transmitter that transmits the triggered MPE P-MPR report.
 本開示の一態様によれば、複数のPHを含むPHRを適切に報告できる。 According to one aspect of the present disclosure, PHR including multiple PHs can be reported appropriately.
図1は、Rel.16 NRにおけるシングルエントリPHR MAC CEの一例を示す図である。FIG. 16 NR is a diagram showing an example of a single entry PHR MAC CE. 図2は、Rel.16 NRにおけるマルチプルエントリPHR MAC CEの一例を示す図である。FIG. 2 is a diagram of Rel. 16 NR is a diagram showing an example of multiple entry PHR MAC CE. 図3Aは、実施形態2.1.4において想定されるケースの一例を示す図である。図3Bは、実施形態2.1.5及び2.1.6において想定されるケースの一例を示す図である。FIG. 3A is a diagram showing an example of a case assumed in Embodiment 2.1.4. FIG. 3B is a diagram showing an example of a case assumed in Embodiments 2.1.5 and 2.1.6. 図4Aは、実施形態2.2.4において想定されるケースの一例を示す図である。図4Bは、実施形態2.2.5及び2.2.6において想定されるケースの一例を示す図である。FIG. 4A is a diagram showing an example of a case assumed in Embodiment 2.2.4. FIG. 4B is a diagram showing an example of a case assumed in Embodiments 2.2.5 and 2.2.6. 図5は、第1-第3の実施形態におけるシングルエントリPHR MAC CEの一例を示す図である。FIG. 5 is a diagram showing an example of a single entry PHR MAC CE in the first to third embodiments. 図6は、第1-第3の実施形態におけるマルチプルエントリPHR MAC CEの一例を示す図である。FIG. 6 is a diagram showing an example of multiple entry PHR MAC CE in the first to third embodiments. 図7は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 7 is a diagram illustrating an example of a schematic configuration of a radio communication system according to an embodiment. 図8は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 8 is a diagram illustrating an example of the configuration of a base station according to one embodiment. 図9は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 9 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment. 図10は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 10 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to one embodiment. 図11は、一実施形態に係る車両の一例を示す図である。FIG. 11 is a diagram illustrating an example of a vehicle according to one embodiment;
(PHR)
 将来の無線通信システム(例えば、NR)では、UEがネットワークに対して、サービングセル毎の電力余裕(パワーヘッドルーム(Power Headroom(PH)))の情報を含むPHレポート(Power Headroom Report(PHR))を送信する。ネットワークは、UEの上り送信電力の制御のために、PHRを利用できる。
(PHR)
In a future wireless communication system (for example, NR), the UE sends a PH report (Power Headroom Report (PHR)) containing information on the power margin (Power Headroom (PH)) for each serving cell to the network. to send. The network can use PHR for control of UE uplink transmission power.
 PHRは、PUSCH(Physical Uplink Shared Channel)を用いてMAC(Medium Access Control)シグナリングにより送信されてもよい。例えば、PHRは、MAC PDU(Protocol Data Unit)に含まれるPHR MAC CE(Control Element)を用いて通知される。 The PHR may be transmitted by MAC (Medium Access Control) signaling using PUSCH (Physical Uplink Shared Channel). For example, PHR is notified using PHR MAC CE (Control Element) included in MAC PDU (Protocol Data Unit).
 NRでは、プライマリセル(Primary Cell(PCell))に関するシングルエントリPHR MAC CE(single entry PHR MAC CE)がサポートされる。 In NR, a single entry PHR MAC CE (PHR MAC CE) for a primary cell (PCell) is supported.
 図1は、Rel.16 NRにおけるシングルエントリPHR MAC CEの一例を示す図である。当該MAC CEは、2オクテット(=16ビット)によって構成される。図1の‘R’はそれぞれ1ビットの予約フィールドを示し、例えば‘0’の値にセットされる。 Fig. 1 shows Rel. 16 NR is a diagram showing an example of a single entry PHR MAC CE. The MAC CE is composed of 2 octets (=16 bits). Each 'R' in FIG. 1 indicates a 1-bit reserved field, which is set to a value of '0', for example.
 図1の‘PH(Type 1,PCell)’は6ビットのフィールドを示し、プライマリセル(Primary Cell(PCell))のタイプ1 PHに関するインデックスを示す。当該PHに関するインデックスは、具体的なPHの値(デシベル(dB)単位)(又はレベル)と関連付けられている。 ``PH (Type 1, PCell)'' in FIG. 1 indicates a 6-bit field and indicates an index related to the type 1 PH of the primary cell (PCell). The PH index is associated with a specific PH value (in units of decibels (dB)) (or level).
 なお、例えば、タイプ1 PHは、PUSCHを考慮した(例えば、PUSCHの電力のみを考慮した)場合のPH、タイプ2 PHは、PUCCHを考慮した(例えば、PUSCH及びPUCCH両方の電力を考慮した)場合のPH、タイプ3 PHは、測定用参照信号(Sounding Reference Signal(SRS))を考慮した(例えばPUSCH及びSRSの電力を考慮した)場合のPHであってもよい。 Note that, for example, type 1 PH is the PH when PUSCH is considered (for example, only PUSCH power is considered), and type 2 PH considers PUCCH (for example, both PUSCH and PUCCH power is considered). The PH in the case, type 3 PH may be the PH when considering the measurement reference signal (Sounding Reference Signal (SRS)) (for example, considering the power of PUSCH and SRS).
 図1の‘PCMAX,f,c’は6ビットのフィールドを示し、上記PHフィールドの計算に用いられたPCMAX,f,cに関するインデックスを示す。当該PCMAX,f,cに関するインデックスは、具体的なUE送信電力レベル(dB)と関連付けられている。なお、PCMAX,f,cは、キャリアfのサービングセルcのためのUEの設定される最大送信電力(最大許容送信電力)と呼ばれてもよい。以下、PCMAX,f,cは単にPCMAX、PCMAXなどとも表記する。 'P CMAX,f,c ' in FIG. 1 indicates a 6-bit field and indicates an index for P CMAX,f,c used in the above calculation of the PH field. The index for that P CMAX,f,c is associated with a specific UE transmit power level (dB). Note that P CMAX,f,c may be referred to as the configured maximum transmit power (maximum allowed transmit power) of the UE for serving cell c of carrier f. Hereinafter, P CMAX, f, and c are also simply written as P CMAX , PCMAX, and the like.
 図1の‘P’は、サービングセルcについての電力管理最大電力低減(Power Management Maximum Power Reduction(P-MPR)又は最大許容UE出力電力低減)に関するフィールドであってもよいし、最大許容曝露(Maximum Permitted Exposure(MPE))に関連するフィールドであってもよい。図1の‘MPE’は、MPEに関連するフィールドであってもよい。‘P’、‘MPE’などのフィールドは、UEへの上位レイヤシグナリングを用いた設定によっては、‘R’フィールドで読み替えられてもよい。 'P' in FIG. 1 may be a field related to power management maximum power reduction (Power Management Maximum Power Reduction (P-MPR) or maximum allowable UE output power reduction) for serving cell c, or maximum allowable exposure (Maximum It may be a field related to Permitted Exposure (MPE). 'MPE' in FIG. 1 may be a field related to MPE. Fields such as 'P' and 'MPE' may be replaced with 'R' fields depending on the configuration using higher layer signaling to the UE.
 ‘P’フィールドは、周波数レンジ2(Frequency Range 2(FR2))のMPE報告(上位レイヤパラメータmpe-Reporting-FR2)が設定され、サービングセルがFR2で動作する場合には、MPE要件を満たすために適用されるP-MPR値が特定のP-MPR値(例えば、P-MPR_00)より小さければ0が設定され、それ以外では1が設定される。 The 'P' field is set to MPE reporting (higher layer parameter mpe-Reporting-FR2) for frequency range 2 (FR2), and if the serving cell operates in FR2, to meet the MPE requirements Set to 0 if the applied P-MPR value is less than a particular P-MPR value (eg, P-MPR — 00), and set to 1 otherwise.
 また、‘P’フィールドは、FR2のMPE報告が設定されていないか、又はサービングセルがFR1で動作する場合には、電力管理のためにパワーバックオフが適用されるか否かを示してもよい。なお、電力管理のためにパワーバックオフが適用されていなければ対応するPCMAXフィールドが異なる値を有することになっていた場合、‘P’フィールドは1に設定される。 The 'P' field may also indicate whether FR2 MPE reporting is not configured or if power backoff is applied for power management if the serving cell operates in FR1. . Note that the 'P' field is set to 1 if the corresponding P CMAX field would have had a different value if no power backoff had been applied for power management.
 ‘MPE’フィールドは、FR2のMPE報告(上位レイヤパラメータmpe-Reporting-FR2)が設定され、サービングセルがFR2で動作し、かつ‘P’フィールドが1に設定される場合には、MPE要件を満たすために適用されるパワーバックオフを示してもよい。このフィールドは、測定されたP-MPR値(例えばdB単位)に対応するインデックスを示してもよい。 The 'MPE' field satisfies the MPE requirement if FR2 MPE reporting (higher layer parameter mpe-Reporting-FR2) is set and the serving cell operates in FR2 and the 'P' field is set to 1 may indicate the power backoff applied for This field may indicate an index corresponding to the measured P-MPR value (eg, in dB).
 FR2のMPE報告が設定されていないか、又はサービングセルがFR1で動作しているか、又は‘P’フィールドが0に設定される場合には、‘MPE’フィールドの代わりにRフィールド(Rのビット)が存在してもよい。 If FR2 MPE reporting is not configured or the serving cell is operating in FR1 or the 'P' field is set to 0, the R field (bits of R) instead of the 'MPE' field may exist.
 NRでは、上述のシングルエントリ(2オクテット)に類似するデータを複数含むマルチプルエントリPHR MAC CE(multiple entry PHR MAC CE)もサポートされる。マルチプルエントリPHR MAC CEは、プライマリセカンダリセル(Primary Secondary Cell(PSCell))、セカンダリセル(Secondary Cell(SCell))のためのPHフィールドなどを含んでもよい。なお、PCell及びPSCellは、スペシャルセル(Special Cell(SpCell))と呼ばれてもよい。 NR also supports multiple entry PHR MAC CE (multiple entry PHR MAC CE) containing multiple data similar to the single entry (2 octets) described above. A multiple entry PHR MAC CE may include a PH field for a Primary Secondary Cell (PSCell), a Secondary Cell (SCell), and the like. PCell and PSCell may also be called special cells (SpCell).
 図2は、Rel.16 NRにおけるマルチプルエントリPHR MAC CEの一例を示す図である。図1と同様のフィールドについては、説明を繰り返さない。図2の‘PH’の文言を含む6ビットのフィールドは、それぞれ対応するタイプ(例えば、上述のタイプ1-3)及びセルのためのPHフィールドを示す。 Fig. 2 shows Rel. 16 NR is a diagram showing an example of multiple entry PHR MAC CE. Fields similar to those in FIG. 1 will not be repeated. The 6-bit fields containing the word 'PH' in FIG. 2 respectively indicate the corresponding type (eg, types 1-3 above) and PH field for the cell.
 なお、他のMACエンティティのSpCellのためのタイプ2PHフィールドの存在は、上位レイヤパラメータphr-Type2OtherCellがtrueであることによって設定されてもよい。 Note that the presence of the Type 2 PH field for SpCells of other MAC entities may be set by the higher layer parameter phr-Type2OtherCell being true.
 図2の‘PCMAX,f,c’の文言を含む6ビットのフィールドは、直前のPHフィールドの計算に用いられたPCMAX,f,cを示すPCMAX,f,cフィールドである。図2の‘C’はサービングセルインデックスiに対応するサービングセルのPHフィールドが当該PHRに含まれるか否かを示すフィールドである。なお、図2は最大のサービングセルインデックスが8より小さい場合であって、8以上の場合は、当該MAC CEには例えばi=31までのサービングセルを示すことができる‘C’のフィールドが含まれてもよい。 The 6-bit field containing the term 'P CMAX,f,c ' in FIG. 2 is the P CMAX,f,c field that indicates the P CMAX,f, c used in the calculation of the previous PH field. 'C i ' in FIG. 2 is a field indicating whether the PH field of the serving cell corresponding to the serving cell index i is included in the PHR. In addition, FIG. 2 shows a case where the maximum serving cell index is less than 8, and if it is 8 or more, the MAC CE includes a 'C i ' field that can indicate serving cells up to i=31, for example. may
 なお、PHフィールドの「サービングセル」に付される数字及びPCMAX,f,cフィールドに付される数字は、サービングセルインデックスを意味しなくてもよく、単にMAC CEに含まれる何番目の値であるかを意味してもよい。 In addition, the number attached to the "serving cell" of the PH field and the number attached to the P CMAX, f, and c fields may not mean the serving cell index, and is simply the value included in MAC CE. or
 図2の‘V’は直後のPHフィールドに対応するPHの値が実際の送信(real transmission)に基づくか(V=0)、参照フォーマット(reference format)に基づくか(V=1)を示すフィールドである。参照フォーマットに基づくPHは、仮想PH(virtual PH)と呼ばれてもよい。なお、V=1の場合、対応する‘PCMAX,c’フィールド、‘MPE’フィールドなどは省略(omit)されてもよい。 'V' in FIG. 2 indicates whether the PH value corresponding to the immediately following PH field is based on the real transmission (V=0) or the reference format (V=1). is a field. A PH based on a reference format may be called a virtual PH. Note that when V=1, the corresponding 'P CMAX,c ' field, 'MPE' field, etc. may be omitted.
 ネットワークは、UEに対して、PHRをトリガする条件に関するPHR設定情報を送信してもよい。ここで、PHR設定情報としては、例えば、禁止タイマ(prohibit timer)、周期的タイマ(periodic timer)、パスロス変化の閾値などがある。当該通知には、上位レイヤシグナリングが用いられてもよい。UEは、PHRトリガ条件を満たす場合、PHRをトリガする。 The network may transmit to the UE PHR setting information regarding conditions that trigger PHR. Here, the PHR setting information includes, for example, a prohibit timer, a periodic timer, a path loss change threshold, and the like. Higher layer signaling may be used for the notification. The UE triggers PHR if the PHR trigger conditions are met.
 なお、本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 In addition, in the present disclosure, higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。 For MAC signaling, for example, MAC Control Element (MAC CE), MAC Protocol Data Unit (PDU), etc. may be used. Broadcast information includes, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), and other system information ( It may be Other System Information (OSI).
 3GPP Rel.16 NRでは、PHRを制御するためのRRCパラメータとして、上述のmpe-Reporting-FR2に加えて、mpe-ProhibitTimer及びmpe-Thresholdが定義されている。mpe-Reporting-FR2は、UEがPHR MAC CEにおいてMPE P-MPRを報告するか否かを示すパラメータである。mpe-ProhibitTimerは、MPE P-MPR報告が報告される際に開始されるタイマの継続時間(例えば、サブフレーム数)を示すパラメータである。mpe-Thresholdは、FR2が設定される場合の、MPE P-MPR報告のためのP-MPR閾値[dB]を示すパラメータである。  3GPP Rel. 16 NR defines mpe-ProhibitTimer and mpe-Threshold in addition to the above mpe-Reporting-FR2 as RRC parameters for controlling PHR. mpe-Reporting-FR2 is a parameter indicating whether the UE reports MPE P-MPR in PHR MAC CE. mpe-ProhibitTimer is a parameter that indicates the duration of a timer (for example, the number of subframes) that is started when an MPE P-MPR report is reported. mpe-Threshold is a parameter that indicates the P-MPR threshold [dB] for MPE P-MPR reporting when FR2 is set.
 mpe-ProhibitTimerに基づくタイマは、mpe-ProhibitTimerと表現されることもあるし、禁止タイマとも呼ばれることもある。 A timer based on mpe-ProhibitTimer is sometimes expressed as mpe-ProhibitTimer, and is also called a prohibition timer.
 mpe-Reporting-FR2が設定され、かつmpe-ProhibitTimerが起動していない場合には、以下の少なくとも1つのイベントが生じる場合にPHR(このPHRは、MPE P-MPR報告とも呼ばれる)がトリガされてもよい:
 ・MACエンティティにおけるPHRの最後の送信以降に、少なくとも1つのアクティベートされたFR2サービングセルについて、FR2のMPE要件(FR2 MPE requirements)を満たすために適用される、測定されたP-MPRがmpe-Threshold以上である、
 ・MPE要件を満たすために適用される、測定されたP-MPRがmpe-Threshold以上であることに起因するMACエンティティにおけるPHRの最後の送信以降に、少なくとも1つのアクティベートされたFR2サービングセルについて、FR2のMPE要件を満たすために適用される、測定されたP-MPRがphr-Tx-PowerFactorChangeより大きく変動する。
If mpe-Reporting-FR2 is set and mpe-ProhibitTimer is not running, a PHR (this PHR is also called MPE P-MPR reporting) is triggered when at least one of the following events occurs: may also be:
A measured P-MPR that applies to meet FR2 MPE requirements for at least one activated FR2 serving cell since the last transmission of PHR in the MAC entity is greater than or equal to mpe-Threshold is
FR2 for at least one activated FR2 serving cell since the last transmission of PHR in the MAC entity due to the measured P-MPR being equal to or greater than the mpe-Threshold, which applies to meet MPE requirements Measured P-MPR varies more than phr-Tx-PowerFactorChange applied to meet the MPE requirements of
 なお、phr-Tx-PowerFactorChangeは、PHR報告のための閾値[dB]を示すパラメータである。また、FR2のMPE要件は、例えば、3GPP TS 38.101-2において定義されてもよい。  The phr-Tx-PowerFactorChange is a parameter that indicates the threshold [dB] for PHR reporting. FR2 MPE requirements may also be defined, for example, in 3GPP TS 38.101-2.
 つまり、MPE P-MPR報告は、P-MPRが閾値(mpe-Threshold)以上となる場合か、最後の報告からのP-MPRの変動が閾値(phr-Tx-PowerFactorChange)より大きい場合にトリガされる。 That is, the MPE P-MPR report is triggered when the P-MPR is greater than or equal to the threshold (mpe-Threshold) or when the change in P-MPR since the last report is greater than the threshold (phr-Tx-PowerFactorChange). be.
 UEは、トリガされたPHRのためのMAC CE(PHR MAC CE)を収容できる利用可能なULリソースがある場合、当該PHR MAC CEを生成して送信する。 If the UE has available UL resources that can accommodate a MAC CE for the triggered PHR (PHR MAC CE), it generates and transmits the PHR MAC CE.
 MPE P-MPR報告(のPHR MAC CE)が送信される場合、UEは、mpe-ProhibitTimerを開始又は再開し、当該PHR MAC CE内に含まれるサービングセルのためのトリガされたMPE P-MPR報告をキャンセルする。 When an MPE P-MPR report (of a PHR MAC CE) is sent, the UE starts or restarts the mpe-ProhibitTimer and sends a triggered MPE P-MPR report for the serving cell contained within that PHR MAC CE. Cancel.
(マルチTRP)
 NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP(Multi-TRP(M-TRP)))が、1つ又は複数のパネル(マルチパネル)を用いて、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のTRPに対してUL送信を行うことが検討されている。
(Multi-TRP)
In NR, one or more transmission/reception points (Transmission/Reception Points (TRP)) (multi-TRP (Multi-TRP (M-TRP))) uses one or more panels (multi-panels) to It is considered to perform DL transmission to. It is also being considered for UEs to perform UL transmissions on one or more TRPs.
 ところで、将来の無線システム(例えば、Rel.17以降のNR)において、複数TRPのPUSCH繰り返し送信(MTRP PUSCH繰り返し)を行うための単一の下りリンク制御情報(Downlink Control Information(DCI))を用いて、複数の(例えば、2つの)SRSリソース識別子(SRS Resource Indicator(SRI))/送信プリコーディング行列インジケータ(Transmitted Precoding Matrix Indicator(TPMI))を指示することが検討されている。 By the way, in future wireless systems (for example, NR after Rel. 17), a single downlink control information (Downlink Control Information (DCI)) for performing repeated PUSCH transmission of multiple TRPs (MTRP PUSCH repetition) will be used. It is being considered to indicate multiple (for example, two) SRS resource identifiers (SRS resource indicators (SRIs))/transmitted precoding matrix indicators (TPMIs).
 例えば、UEは、コードブックベース送信の場合、SRI、送信ランクインジケータ(Transmitted Rank Indicator(TRI))及びTPMIに基づいて、PUSCH送信のためのプリコーダを決定してもよい。UEは、ノンコードブックベース送信の場合、SRIに基づいてPUSCH送信のためのプリコーダを決定してもよい。なお、SRIは、DCIによってUEに対して指定されてもよいし、上位レイヤパラメータによって与えられてもよい。 For example, the UE may determine the precoder for PUSCH transmission based on SRI, Transmitted Rank Indicator (TRI) and TPMI for codebook-based transmission. The UE may determine the precoder for PUSCH transmission based on the SRI for non-codebook-based transmission. Note that the SRI may be specified for the UE by the DCI or given by higher layer parameters.
 単一のDCIが複数のSRI/TPMIを指示する場合、以下のオプション1又はオプション2が考えられる;
 ・オプション1:複数の(例えば、2つの)SRI/TPMIを指示するフィールドを用いて、複数の(例えば、2つの)TRPに対するSRI/TPMI(値)が指示される、
 ・オプション2:1つのSRI/TPMIを指示するフィールドが指示され、当該SRI/TPMIを指示するフィールドに、複数の(例えば、2つの)SRI/TPMIの値に対応するコードポイントが設定される。
If a single DCI indicates multiple SRI/TPMI, the following options 1 or 2 are possible;
Option 1: SRI/TPMI (values) for multiple (eg, 2) TRPs are indicated using a field that indicates multiple (eg, 2) SRI/TPMIs;
- Option 2: A field indicating one SRI/TPMI is indicated, and code points corresponding to multiple (for example, two) SRI/TPMI values are set in the field indicating the SRI/TPMI.
 オプション1において、複数のSRI/TPMIフィールドのそれぞれのコードポイントが、1つのTPMIの値に対応してもよい。SRI/TPMIフィールドとSRI/TPMIの値の対応(関連付け)は、予め仕様で定義されてもよい。また、SRI/TPMIフィールドとSRI/TPMIの値の対応(関連付け)は、Rel.16までに規定される対応を使用してもよいし、Rel.17以降に規定される対応であってもよい。複数のSRI/TPMIフィールドごとに、SRI/TPMIフィールドとSRI/TPMIの値の対応が異なってもよい。 In option 1, each codepoint of multiple SRI/TPMI fields may correspond to one TPMI value. The correspondence (association) between the SRI/TPMI field and the SRI/TPMI value may be defined in advance in the specification. Also, the correspondence (association) between the SRI/TPMI field and the SRI/TPMI value is described in Rel. 16 may be used, or the correspondence specified in Rel. 17 or later may be used. The correspondence between the SRI/TPMI field and the SRI/TPMI value may be different for each of the plurality of SRI/TPMI fields.
 オプション2において、1つのSRI/TPMIフィールドが指示されるコードポイントが、複数の(例えば、2つの)SRI/TPMIの値に対応してもよい。SRI/TPMIフィールドとSRI/TPMIの値の対応(関連付け)は、予め仕様で定義されてもよいし、RRCシグナリング/MAC CEによって通知/設定/アクティベートされてもよい。 In option 2, a codepoint indicating one SRI/TPMI field may correspond to multiple (for example, two) SRI/TPMI values. The correspondence (association) between the SRI/TPMI field and the SRI/TPMI value may be defined in the specifications in advance, or may be notified/configured/activated by RRC signaling/MAC CE.
 なお、単一のPUSCH送信/単一TRP(Single TRP(STRP))を利用するPUSCHの繰り返し送信と、複数TRP(Multi TRP(MTRP))を利用するPUSCHの繰り返し送信とは、DCIによって動的に指示/スイッチされることが検討されている。当該動的なスイッチは、Rel.16までに規定されるDCIに含まれる特定のフィールドが利用されてもよいし、Rel.17以降に規定される特定のフィールド(例えば、STRP又はMTRP動作を指定するためのフィールド)が利用されてもよい。 In addition, single PUSCH transmission/repeated transmission of PUSCH using a single TRP (Single TRP (STRP)) and repeated transmission of PUSCH using multiple TRPs (Multi TRP (MTRP)) are dynamically controlled by DCI. is being considered to be directed/switched to The dynamic switch is based on Rel. 16 may be used, or specific fields contained in the DCI defined by Rel. Certain fields defined in 17 et seq. (eg, fields for specifying STRP or MTRP operations) may be utilized.
 また、本開示における「動的なスイッチ」は、「上位レイヤシグナリング及び物理レイヤシグナリングの少なくとも一方を用いるスイッチ」を意味してもよい。また、本開示の「スイッチ」は、スイッチング、変更(change)、チェンジング、適用、指示、設定などと互いに読み替えられてもよい。 Also, the "dynamic switch" in the present disclosure may mean "a switch that uses at least one of higher layer signaling and physical layer signaling". Also, "switch" in the present disclosure may be read interchangeably as switching, change, changing, application, instruction, setting, and the like.
 ところで、M-TRP PUSCHがサポート/設定/有効化され、かつ、2つのTRPのための2つのPHRを報告することが設定/有効化される場合に、PHR MAC CEに2つのPHR(第1のPHR及び第2のPHR)を含めることが検討されている。2つのTRPのための2つのPHRを報告することは、上位レイヤパラメータ(RRCパラメータ)によってUEに対して設定されてもよい。 By the way, when M-TRP PUSCH is supported/configured/enabled and reporting two PHRs for two TRPs is configured/enabled, two PHRs (first and a second PHR) are being considered. Reporting two PHRs for two TRPs may be configured for the UE by higher layer parameters (RRC parameters).
 ここで、第1のPHRは、Rel.15/16と同様に報告されてもよい。第2のPHRは、第1のPHRとは異なるTRPのPHRであってもよい。第2のPHRは、実際PHRとして報告されてもよいし、仮想PHRとして報告されてもよい。 Here, the first PHR is Rel. May be reported similarly to 15/16. The second PHR may be a PHR of a TRP that is different from the first PHR. The second PHR may be reported as a real PHR or a virtual PHR.
 実際PHR(actual PHR)は、実際のPUSCH送信(actual PUSCH transmission)に基づくPHRであり、リアルPHR(real PHR)と呼ばれてもよい。実際PHRは、実際のPUSCH送信のための電力制御パラメータに基づいて算出されてもよい。 The actual PHR is a PHR based on the actual PUSCH transmission, and may be called a real PHR. The actual PHR may be calculated based on the power control parameters for the actual PUSCH transmission.
 仮想PHR(virtual PHR)は、実際のPUSCH送信に依存しない(参照PUSCH送信(reference PUSCH transmission)に基づく)PHRであり、参照PHR(reference PHR)、参照フォーマット(reference format)に従うPHRなどと呼ばれてもよい。仮想PHRは、Rel.15/16 NRで既に規定されているデフォルトの電力制御パラメータに基づいて算出されてもよいし、新たなデフォルトの電力制御パラメータに基づいて算出されてもよい。 A virtual PHR is a PHR that does not depend on the actual PUSCH transmission (based on a reference PUSCH transmission), and is called a reference PHR, a PHR that follows a reference format, etc. may The virtual PHR is Rel. It may be calculated based on the default power control parameters already defined in 15/16 NR, or may be calculated based on new default power control parameters.
 なお、本開示において、電力制御パラメータは、PCMAX,f,c、Maximum Power Reduction(MPR)、P-MPR、追加最大電力低減(Additional MPR(A-MPR))、ΔTc、P、alpha、パスロス参照信号(Pathloss Reference Signal(PL-RS))、閉ループインデックス(l)の少なくとも1つであってもよい。例えば、Rel.16 NRでは、デフォルトの電力制御パラメータは、MPR=0[dB]、A-MPR=0[dB]、P-MPR=0[dB]、ΔT=0[dB]であり、P及びalphaは、P0_NOMIANAL_PUSCH、f、c(0)及び上位レイヤパラメータp0-PUSCH-AlphaSetId=0を用いて得られ、下りリンクパスロス推定は上位レイヤパラメータpusch-PathlossReferenceRS-Id=0を用いて得られ、l=0である。 In the present disclosure, the power control parameters are P CMAX, f, c , Maximum Power Reduction (MPR), P-MPR, Additional Maximum Power Reduction (Additional MPR (A-MPR)), ΔTc, P 0 , alpha, It may be at least one of a pathloss reference signal (PL-RS) and a closed loop index (l). For example, Rel. In 16 NR, the default power control parameters are MPR = 0 [dB], A-MPR = 0 [dB], P-MPR = 0 [dB], ΔT C = 0 [dB], P 0 and alpha is obtained using P 0_NOMIANAL_PUSCH, f, c (0) and the higher layer parameter p0-PUSCH-AlphaSetId=0, the downlink path loss estimate is obtained using the higher layer parameter pusch-PathlossReferenceRS-Id=0, l = 0.
 しかしながら、現状の規格では、PHR MAC CEに2つのPHRを含める場合に、上述のPCMAXフィールド、Pフィールド、MPEフィールドなどをどのように構成するかを規定していない。また、PHR MAC CEのトリガ条件について十分に検討されていない。適切なPHRの報告が行われなければ、通信スループット、通信品質などが劣化するおそれがある。 However, the current standard does not specify how to configure the above-mentioned P CMAX field, P field, MPE field, etc. when two PHRs are included in the PHR MAC CE. Also, the trigger conditions for PHR MAC CE have not been fully considered. If an appropriate PHR is not reported, communication throughput, communication quality, etc. may deteriorate.
 そこで、本発明者らは、複数のPHを含むPHRを適切に報告するための方法を着想した。 Therefore, the present inventors came up with a method for appropriately reporting PHRs containing multiple PHs.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication method according to each embodiment may be applied independently, or may be applied in combination.
 本開示において、「A/B」、「A及びBの少なくとも一方」、は互いに読み替えられてもよい。 In the present disclosure, "A/B" and "at least one of A and B" may be read interchangeably.
 本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。 In the present disclosure, activate, deactivate, indicate (or indicate), select, configure, update, determine, etc. may be read interchangeably.
 本開示において、RRC、RRCパラメータ、RRCメッセージ、RRCシグナリング、上位レイヤパラメータ、情報要素(IE)、設定、は互いに読み替えられてもよい。本開示において、MAC CE、更新コマンド、アクティベーション/ディアクティベーションコマンド、は互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できる、は互いに読み替えられてもよい。 In the present disclosure, RRC, RRC parameters, RRC messages, RRC signaling, higher layer parameters, information elements (IEs), and settings may be read interchangeably. In the present disclosure, MAC CE, update command, and activation/deactivation command may be read interchangeably. In the present disclosure, supporting, controlling, controllable, operating, and capable of operating may be read interchangeably.
 本開示において、パネル、ビーム、パネルグループ、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、TRP、空間関係情報(SRI)、空間関係、SRSリソース識別子(SRS Resource Indicator(SRI))、SRSリソース、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード、基地局、所定のアンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、所定のアンテナポートグループ(例えば、DMRSポートグループ)、所定のグループ(例えば、符号分割多重(Code Division Multiplexing(CDM))グループ、所定の参照信号グループ、CORESETグループ)、所定のリソース(例えば、所定の参照信号リソース)、所定のリソースセット(例えば、所定の参照信号リソースセット)、CORESETプール、PUCCHグループ(PUCCHリソースグループ)、空間関係グループ、下りリンクのTCI状態(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、QCL、QCL想定などは、互いに読み替えられてもよい。 In the present disclosure, panels, beams, panel groups, beam groups, precoders, Uplink (UL) transmitting entities, TRPs, spatial relationship information (SRI), spatial relationships, SRS Resource Indicator (SRI), SRS resources, Control resource set (Control Resource SET (CORESET)), Physical Downlink Shared Channel (PDSCH), codeword, base station, predetermined antenna port (for example, demodulation reference signal (DMRS) port), predetermined Antenna port group (e.g., DMRS port group), predetermined group (e.g., Code Division Multiplexing (CDM) group, predetermined reference signal group, CORESET group), predetermined resource (e.g., predetermined reference signal resource), predetermined resource set (for example, predetermined reference signal resource set), CORESET pool, PUCCH group (PUCCH resource group), spatial relationship group, downlink TCI state (DL TCI state), uplink TCI state ( UL TCI state), unified TCI state, common TCI state, QCL, QCL assumption, etc. may be read interchangeably.
 また、TCI状態Identifier(ID)とTCI状態は、互いに読み替えられてもよい。TCI状態及びTCIは、互いに読み替えられてもよい。 Also, the TCI state identifier (ID) and the TCI state may be read interchangeably. The TCI state and TCI may be read interchangeably.
 本開示において、インデックス、ID、インディケーター、リソースID、は互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。 In the present disclosure, indexes, IDs, indicators, and resource IDs may be read interchangeably. In the present disclosure, sequences, lists, sets, groups, groups, clusters, subsets, etc. may be read interchangeably.
 本開示において、TRPインデックス、CORESETプールインデックス(CORESETPoolIndex)、プールインデックス、グループインデックスなどは、互いに読み替えられてもよい。 In the present disclosure, TRP index, CORESET pool index (CORESETPoolIndex), pool index, group index, etc. may be read interchangeably.
 本開示において、シングルPDCCH(DCI)は、第1のスケジューリングタイプ(例えば、スケジューリングタイプA(又はタイプ1))のPDCCH(DCI)と呼ばれてもよい。また、マルチPDCCH(DCI)は、第2のスケジューリングタイプ(例えば、スケジューリングタイプB(又はタイプ2))のPDCCH(DCI)と呼ばれてもよい。 In the present disclosure, a single PDCCH (DCI) may be referred to as a PDCCH (DCI) of the first scheduling type (eg, scheduling type A (or type 1)). A multi-PDCCH (DCI) may also be referred to as a PDCCH (DCI) of a second scheduling type (eg, scheduling type B (or type 2)).
 本開示において、シングルDCIについて、第iのTRP(TRP#i)は、第iのTCI状態、第iのCDMグループなどを意味してもよい(iは、整数)。マルチDCIについて、第iのTRP(TRP#i)は、CORESETプールインデックス=iに対応するCORESET、第iのTCI状態、第iのCDMグループなどを意味してもよい(iは、整数)。 In this disclosure, for a single DCI, the i-th TRP (TRP#i) may mean the i-th TCI state, the i-th CDM group, etc. (i is an integer). For multi-DCI, the i-th TRP (TRP#i) may mean the CORESET corresponding to CORESET pool index = i, the i-th TCI state, the i-th CDM group, etc. (i is an integer).
 本開示において、マルチTRP(MTRP、M-TRP)、マルチTRPシステム、マルチTRP送信、マルチPDSCH、は互いに読み替えられてもよい。 In the present disclosure, multi-TRP (MTRP, M-TRP), multi-TRP system, multi-TRP transmission, and multi-PDSCH may be read interchangeably.
 本開示において、シングルDCI(sDCI)、シングルPDCCH、シングルDCIに基づくマルチTRPシステム、sDCIベースMTRP、1つのDCIによって複数の(異なるSRIに対応する)PUSCHをスケジュールすること、sDCIベースMTRP送信、少なくとも1つのTCIコードポイント上の2つのTCI状態をアクティベートされること、は互いに読み替えられてもよい。 In the present disclosure, single DCI (sDCI), single PDCCH, multi-TRP system based on single DCI, sDCI-based MTRP, scheduling multiple PUSCHs (corresponding to different SRIs) with one DCI, sDCI-based MTRP transmission, at least Activating two TCI states on one TCI codepoint may be read interchangeably.
 本開示において、マルチDCI(mDCI)、マルチPDCCH、マルチDCIに基づくマルチTRPシステム、mDCIベースMTRP、mDCIベースMTRP送信、MTRP向けにマルチDCIが用いられること、2つのDCIによって複数の(異なるSRIに対応する)PUSCHをスケジュールすること、2つのCORESETプールインデックス又はCORESETプールインデックス=1(又は1以上の値)が設定されること、は互いに読み替えられてもよい。 In the present disclosure, multi-DCI (mDCI), multi-PDCCH, multi-TRP system based on multi-DCI, mDCI-based MTRP, mDCI-based MTRP transmission, multi-DCI is used for MTRP, multiple (for different SRI The corresponding) scheduling PUSCH and setting two CORESET pool indices or CORESET pool index = 1 (or a value greater than or equal to 1) may be read interchangeably.
 本開示の繰り返しは、MTRPベース繰り返し、Rel.17の繰り返し、異なる空間関係を適用する繰り返し、繰り返しPUSCH、繰り返しPUCCH、繰り返し送信などと互いに読み替えられてもよい。また、以下の実施形態における繰り返し送信は、繰り返し送信タイプA、繰り返し送信タイプB及びその他の繰り返し送信タイプの少なくとも1つに該当してもよい。 The iterations of the present disclosure are MTRP-based iterations, Rel. 17 repetitions, repetitions applying different spatial relationships, repeated PUSCHs, repeated PUCCHs, repeated transmissions, etc. may be interchanged. Also, repeated transmission in the following embodiments may correspond to at least one of repeated transmission type A, repeated transmission type B, and other repeated transmission types.
 なお、繰り返しPUSCHでは、同じコードワード/トランスポートブロックが各PUSCH(各繰り返し)において伝送されてもよい。繰り返しPUSCHは、同じ内容(例えば、データ/コードワード/トランスポートブロック)を有する複数のPUSCHと互いに読み替えられてもよい。 Note that in repeated PUSCH, the same codeword/transport block may be transmitted in each PUSCH (each repetition). A repeated PUSCH may be interchanged with multiple PUSCHs having the same content (eg, data/codeword/transport block).
 本開示において、第1のTRP及び第2のTRPは、第1のPUSCH及び第2のPUSCH、第1のPUSCH送信機会及び第2のPUSCH送信機会、第1のSRI及び第2のSRI、などと互いに読み替えられてもよい。 In this disclosure, the first TRP and the second TRP are the first PUSCH and the second PUSCH, the first PUSCH transmission opportunity and the second PUSCH transmission opportunity, the first SRI and the second SRI, etc. and may be read interchangeably.
 本開示におけるMTRP PUSCH繰り返しは、2つのTRPへの2つのPUCCH繰り返し、2つのSRIを用いる2つのPUSCH繰り返し、2つの電力制御パラメータのセット(電力制御パラメータは後述する)を用いる2つのPUSCH繰り返し、などと互いに読み替えられてもよい。 The MTRP PUSCH repetitions in this disclosure are: 2 PUCCH repetitions into 2 TRPs, 2 PUSCH repetitions with 2 SRIs, 2 PUSCH repetitions with 2 sets of power control parameters (power control parameters are described below), and so on may be interchanged.
 本開示において、STRP PUSCHの繰り返しは、1つの(同じ)SRI/電力制御パラメータセット/ビーム/プリコーダを用いて送信される複数のPUSCHの繰り返し送信を意味してもよい。なお、単一の送信(single transmission)は、1つのSRI/電力制御パラメータセット/ビーム/プリコーダを用いて送信されるPUSCH送信を意味してもよい。 In the present disclosure, STRP PUSCH repetition may mean repeated transmission of multiple PUSCHs transmitted using one (same) SRI/power control parameter set/beam/precoder. Note that a single transmission may mean a PUSCH transmission sent using one SRI/power control parameter set/beam/precoder.
 なお、TRP1(第1のTRP)へのPUSCH繰り返し/PUSCH送信は、第1のSRI(又はSRIフィールド)/第1の電力制御パラメータセットを用いるPUSCH繰り返し/PUSCH送信を意味してもよい。 Note that PUSCH repetition/PUSCH transmission to TRP1 (first TRP) may mean PUSCH repetition/PUSCH transmission using the first SRI (or SRI field)/first power control parameter set.
 また、TRP2(第2のTRP)へのPUSCH繰り返し/PUSCH送信は、第2のSRI(又はSRIフィールド)/第2の電力制御パラメータセットを用いるPUSCH繰り返し/PUSCH送信を意味してもよい。 Also, PUSCH repetition/PUSCH transmission to TRP2 (second TRP) may mean PUSCH repetition/PUSCH transmission using the second SRI (or SRI field)/second power control parameter set.
 以下の実施形態における、複数のTRPを利用するPUSCHの繰り返し送信は、M-TRP PUSCH、MTRP PUSCH繰り返し、複数TRPを利用するPUSCH送信、複数のTRP向けのPUSCHの繰り返し送信、複数のTRPにわたるPUSCH、複数のTRPにわたる繰り返しPUSCH、単に繰り返しPUSCH、繰り返し送信、複数のPUSCH送信、複数のSRIを用いるPUSCH送信、M-TRP PUSCHなどと互いに読み替えられてもよい。 Repeated transmission of PUSCH using multiple TRPs in the following embodiments is M-TRP PUSCH, MTRP PUSCH repeated, PUSCH transmission using multiple TRPs, repeated transmission of PUSCH for multiple TRPs, PUSCH over multiple TRPs , repeated PUSCH over multiple TRPs, simply repeated PUSCH, repeated transmission, multiple PUSCH transmissions, PUSCH transmission using multiple SRIs, M-TRP PUSCH, and so on.
 また、単一TRPを利用するPUSCH送信は、S-TRP PUSCH、STRP PUSCH繰り返し、単一TRPを利用するPUSCH送信、単一のTRP向けのPUSCHの繰り返し送信、単一のTRPにわたるPUSCH、単一のTRPにわたる繰り返しPUSCH、単一のTRP向けの単一のPUSCH送信、単に単一のPUSCH送信、単一のTRPにおけるPUSCH送信、単一のSRIを用いるPUSCH送信、などと呼ばれてもよい。 In addition, PUSCH transmission using a single TRP includes S-TRP PUSCH, STRP PUSCH repetition, PUSCH transmission using a single TRP, repetition transmission of PUSCH for a single TRP, PUSCH over a single TRP, single TRPs, a single PUSCH transmission for a single TRP, just a single PUSCH transmission, a PUSCH transmission in a single TRP, a PUSCH transmission with a single SRI, and so on.
 なお、本開示における各実施形態において、UL送信として、1つのDCIを用いる単一/複数のTRP向けのPUSCH送信、コードブックベースのPUSCH送信、を例に説明するが、ノンコードブックベースのPUSCH送信に適用してもよく、各実施形態を適用できるPUSCH送信は、これらに限られない。本開示における各実施形態をノンコードブックベースのPUSCH送信に適用する場合、各SRIフィールドによって1以上のSRSリソース(SRI)がUEに指示されてもよい。また、コードブックベースのPUSCH送信とノンコードブックベースのPUSCH送信とに、共通の又は異なる実施形態が適用されてもよい。また、UL送信は、PUSCHに限られず、本開示の各実施形態は、PUCCHに対しても適宜適用可能である(PUSCHは、PUCCHに読み替えられてもよい)。 In each embodiment of the present disclosure, PUSCH transmission for single/multiple TRPs using one DCI, codebook-based PUSCH transmission, and codebook-based PUSCH transmission will be described as examples of UL transmission, but non-codebook-based PUSCH It may be applied to transmission, and PUSCH transmission to which each embodiment can be applied is not limited to these. When applying the embodiments in this disclosure to non-codebook-based PUSCH transmission, each SRI field may indicate one or more SRS resources (SRIs) to the UE. Also, common or different embodiments may be applied to codebook-based PUSCH transmission and non-codebook-based PUSCH transmission. In addition, UL transmission is not limited to PUSCH, and each embodiment of the present disclosure can be appropriately applied to PUCCH (PUSCH may be read as PUCCH).
 また、本開示における各実施形態において、複数TRP、複数SRI等の数が2つの場合を主な例に説明するが、これらの数は3以上であってもよい。言い換えると、本開示の「2つ」は「複数」で読み替えられてもよい。 Also, in each embodiment of the present disclosure, a case where the number of multiple TRPs, multiple SRIs, etc. is two will be described as a main example, but these numbers may be three or more. In other words, "two" in the present disclosure may be read as "plurality".
 なお、本開示では、「CORESETプールインデックス=0に設定される」は「CORESETプールインデックス=0に設定される又はCORESETプールインデックスが設定されない」と互いに読み替えられてもよい。 It should be noted that in the present disclosure, "the CORESET pool index is set to 0" may be read interchangeably as "the CORESET pool index is set to 0 or the CORESET pool index is not set".
 また、本開示では、CORESETプールインデックス、PUSCHの繰り返しインデックス及び上位レイヤインデックスは、互いに読み替えられてもよい。 Also, in the present disclosure, the CORESET pool index, the PUSCH repetition index, and the upper layer index may be read interchangeably.
 本開示において、「PHR」、「PH」、「PHフィールド」、「PH値」などは、互いに読み替えられてもよい。また、本開示において、PHフィールドは、あるタイプ(例えば、タイプ1/2/3/X)のPHフィールドと互いに読み替えられてもよい。 In the present disclosure, "PHR", "PH", "PH field", "PH value", etc. may be read interchangeably. Also, in this disclosure, a PH field may be read interchangeably with a PH field of a certain type (eg, type 1/2/3/X).
 なお、後述の各実施形態は、上位レイヤパラメータによってUEに対してMTRP PUSCH繰り返しが有効化される場合を前提とするが、これに限られない。「MTRP PUSCH繰り返しが有効化されること」は、「2つのコードブックベース/ノンコードブックベースのSRSリソースセットが設定されること」を意味してもよい。 It should be noted that although each of the embodiments described later assumes that MTRP PUSCH repetition is enabled for the UE by an upper layer parameter, it is not limited to this. 'MTRP PUSCH repetition is enabled' may mean 'two codebook-based/non-codebook-based SRS resource sets are configured'.
 また、後述の各実施形態は、上位レイヤパラメータによってUEに対して2つのTRPのための2つのPHRを報告することが有効化される場合を前提とするが、これに限られない。 In addition, each embodiment described later assumes that reporting two PHRs for two TRPs to the UE is enabled by higher layer parameters, but is not limited to this.
 以下の実施形態における、「MTRP PUSCH繰り返しが有効化される」、「2つのTRPのための2つのPHRを報告することが有効化される」などはないものとして読み替えられてもよい。 In the following embodiments, "MTRP PUSCH repetition is enabled", "reporting two PHRs for two TRPs is enabled", etc. may be read as nothing.
 なお、各実施形態では、PHR MAC CEには、複数のサービングセルそれぞれのためのフィールド(PCMAXフィールド、Pフィールドなど)が含まれてもよい。また、以下の実施形態におけるPHR MAC CE、PHR及びMPE P-MPR報告は、互いに読み替えられてもよい。 Note that in embodiments, the PHR MAC CE may include fields for each of multiple serving cells (P CMAX field, P field, etc.). Also, PHR MAC CE, PHR and MPE P-MPR reports in the following embodiments may be read interchangeably.
 また、以下の実施形態における、「PHフィールドの(/のための/に対応する)PCMAXフィールド/P-MPR値/パワーバックオフ」は、「PHフィールドの対応するPUSCH送信の(/のための/に対応する)PCMAXフィールド/P-MPR値/パワーバックオフ」と互いに読み替えられてもよい。 Also, in the following embodiments, "P CMAX field/P-MPR value/power backoff of (for/for/corresponding to) PH field" means "(for/for/corresponding to) PUSCH transmission corresponding to PH field. may be interchanged with "P CMAX field/P-MPR value/power back off".
 本開示において、P-MPR、P-MPR値及びパワーバックオフは、互いに読み替えられてもよい。 In the present disclosure, P-MPR, P-MPR value, and power back-off may be read interchangeably.
 本開示において、任意の周波数レンジ(Frequency Range(FR))(例えば、FR2)は、他の任意のFR(例えば、FR1/3/4/X)と互いに読み替えられてもよい。なお、任意のFRは表記を省略されてもよく、例えば、「FR2のMPE報告」は「MPE報告」と互いに読み替えられてもよい。 In the present disclosure, any frequency range (FR) (eg, FR2) may be interchanged with any other FR (eg, FR1/3/4/X). Note that the notation of any FR may be omitted, and for example, "MPE report of FR2" may be replaced with "MPE report".
(無線通信方法)
<第1の実施形態>
 第1の実施形態は、PHR MAC CEにおけるPCMAXフィールドに関する。
(Wireless communication method)
<First embodiment>
The first embodiment relates to the P CMAX field in PHR MAC CE.
 第1の実施形態において、1つのサービングセルの2つのPHフィールドに対応するPCMAXフィールドは、2つ含まれてもよい。これら2つのPCMAXフィールドのうち、第1のPCMAXフィールドは、上記サービングセルの第1のPHフィールドの算出に用いられるPCMAXの値を示し、第2のPCMAXフィールドは、上記サービングセルの第2のPHフィールドの算出に用いられるPCMAXの値を示してもよい。 In the first embodiment, two P CMAX fields corresponding to two PH fields of one serving cell may be included. Of these two P CMAX fields, the first P CMAX field indicates the value of P CMAX used to calculate the first PH field of the serving cell, and the second P CMAX field indicates the second P CMAX field of the serving cell. may indicate the value of P CMAX used to calculate the PH field of .
 第1の実施形態において、1つのサービングセルの2つのPHフィールドに対応するPCMAXフィールドは、1つだけ含まれてもよい。当該PCMAXフィールドは、以下の少なくとも1つを示してもよい:
 ・上記サービングセルの第1のPHフィールドの算出に用いられるPCMAXの値、
 ・上記サービングセルの第2のPHフィールドの算出に用いられるPCMAXの値、
 ・上記サービングセルの第1のPHフィールド及び第2のPHフィールドの算出に用いられるPCMAXの値(この場合、第1のPHフィールド及び第2のPHフィールドの算出には共通のPCMAXの値が用いられてもよい)、
 ・上記サービングセルの実際PHに対応するPHフィールドの算出に用いられるPCMAXの値(上記サービングセルの実際PHに対応するPHフィールドの数は1である場合)。
In a first embodiment, only one P CMAX field corresponding to two PH fields of one serving cell may be included. The P CMAX field may indicate at least one of the following:
- the value of P CMAX used to calculate the first PH field of the serving cell;
- the value of P CMAX used to calculate the second PH field of the serving cell;
- The value of P CMAX used to calculate the first PH field and the second PH field of the serving cell (in this case, the common P CMAX value is used to calculate the first PH field and the second PH field may be used),
• The value of P CMAX used to calculate the PH field corresponding to the actual PH of the serving cell (if the number of PH fields corresponding to the actual PH of the serving cell is 1).
 以上説明した第1の実施形態によれば、UEは、1つのサービングセルのPHフィールドをPHR報告に2つ含める場合であっても、PHフィールドに対応するPCMAXフィールドを当該PHR報告に適切に含めることができる。 According to the first embodiment described above, even when two PH fields of one serving cell are included in the PHR report, the UE appropriately includes the P CMAX field corresponding to the PH field in the PHR report. be able to.
<第2の実施形態>
 第2の実施形態は、PHR MAC CEにおけるPフィールドに関する。
<Second embodiment>
A second embodiment relates to the P field in PHR MAC CE.
 第2の実施形態は、以下の2つの場合に大別される:
 ・実施形態2.1:FR2のMPE報告(上位レイヤパラメータmpe-Reporting-FR2)が設定され、サービングセルがFR2において動作する場合、
 ・実施形態2.2:FR2のMPE報告が設定されていないか、又はサービングセルがFR1において動作する場合。
The second embodiment can be roughly divided into the following two cases:
Embodiment 2.1: If FR2 MPE reporting (higher layer parameter mpe-Reporting-FR2) is configured and the serving cell operates in FR2,
Embodiment 2.2: MPE reporting in FR2 is not configured or the serving cell operates in FR1.
[実施形態2.1]
 実施形態2.1において、サービングセルの第1のPHフィールドのための(に対応する)適用されるP-MPR値は、単に第1のP-MPR値とも呼び、サービングセルの第2のPHフィールドのための(に対応する)適用されるP-MPR値は、単に第2のP-MPR値とも呼ぶ。
[Embodiment 2.1]
In embodiment 2.1, the applied P-MPR value for (corresponding to) the first PH field of the serving cell, also simply referred to as the first P-MPR value, is that of the second PH field of the serving cell. The applied P-MPR value for (corresponding to) is also simply referred to as the second P-MPR value.
 実施形態2.1では、1つのサービングセルの2つのPHフィールドに対応するPフィールドは、2つ含まれてもよい。これら2つのPフィールドのうち、第1のPフィールドは、第1のP-MPR値が特定のP-MPR値(例えば、P-MPR_00)より小さいか否かを示し、第2のPフィールドは、第2のP-MPR値が特定のP-MPR値(例えば、P-MPR_00)より小さいか否かを示してもよい。 In embodiment 2.1, two P fields corresponding to two PH fields of one serving cell may be included. Of these two P-fields, the first P-field indicates whether the first P-MPR value is less than a particular P-MPR value (eg, P-MPR_00), and the second P-field indicates whether the , may indicate whether the second P-MPR value is less than a particular P-MPR value (eg, P-MPR_00).
 なお、実施形態2.1において、各Pフィールドについての特定のP-MPR値は、同じであってもよいし、異なってもよい。UEは、あるPフィールドについての特定のP-MPR値に関する情報を、特定のルール/UE能力に基づいて決定してもよいし、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル、又はこれらの組み合わせを用いて通知されてもよい。本開示において、「特定のP-MPR値」は、「設定/規定される閾値」と互いに読み替えられてもよい。 Note that in embodiment 2.1, the specific P-MPR value for each P-field may be the same or different. The UE may determine information about specific P-MPR values for certain P-fields based on specific rules/UE capabilities, physical layer signaling (eg DCI), higher layer signaling (eg RRC signaling, MAC CE), a specific signal/channel, or a combination thereof. In the present disclosure, "a specific P-MPR value" may be read interchangeably with "a set/specified threshold".
 実施形態2.1において、1つのサービングセルの2つのPHフィールドに対応するPフィールドは、1つだけ含まれてもよい。当該Pフィールドは、以下の少なくとも1つに従ってもよい:
 ・実施形態2.1.1:第1のP-MPR値が特定のP-MPR値より小さい場合には0に設定され、そうでない場合には1に設定される、
 ・実施形態2.1.2:第2のP-MPR値が特定のP-MPR値より小さい場合には0に設定され、そうでない場合には1に設定される、
 ・実施形態2.1.3:上記サービングセルの実際PHに対応するPHフィールド(上記サービングセルの実際PHに対応するPHフィールドの数は1である)のための適用されるP-MPR値が特定のP-MPR値より小さい場合には0に設定され、そうでない場合には1に設定される、
 ・実施形態2.1.4:第1のP-MPR値及び第2のP-MPR値の両方が、特定のP-MPR値より小さい場合には0に設定され、そうでない場合には1に設定される、
 ・実施形態2.1.5:第1のP-MPR値及び第2のP-MPR値の両方が、特定のP-MPR値より小さい場合には0に設定され、そうでない場合には1に設定される、
 ・実施形態2.1.6:第1のP-MPR値及び第2のP-MPR値の一方(又は少なくとも一方)が、特定のP-MPR値より小さい場合には0に設定され、そうでない場合には1に設定される。
In embodiment 2.1, only one P field corresponding to two PH fields of one serving cell may be included. The P-field may be subject to at least one of the following:
Embodiment 2.1.1: set to 0 if the first P-MPR value is less than a particular P-MPR value, otherwise set to 1;
Embodiment 2.1.2: set to 0 if the second P-MPR value is less than a particular P-MPR value, otherwise set to 1;
Embodiment 2.1.3: The applied P-MPR value for the PH field corresponding to the actual PH of the serving cell (the number of PH fields corresponding to the actual PH of the serving cell is 1) is specified set to 0 if less than the P-MPR value, set to 1 otherwise;
Embodiment 2.1.4: set to 0 if both the first P-MPR value and the second P-MPR value are less than a particular P-MPR value, else 1 is set to
Embodiment 2.1.5: set to 0 if both the first P-MPR value and the second P-MPR value are less than a particular P-MPR value, else 1 is set to
Embodiment 2.1.6: set to 0 if one (or at least one) of the first P-MPR value and the second P-MPR value is less than a particular P-MPR value; otherwise it is set to 1.
 なお、上記実施形態2.1.4においては、第1のP-MPR値及び第2のP-MPR値の両方が特定のP-MPR値より小さいケースと、第1のP-MPR値及び第2のP-MPR値の両方が特定のP-MPR値より小さくないケースと、のみが想定されてもよい(その他のケースは生じないと想定されてもよい)。 In Embodiment 2.1.4 above, both the first P-MPR value and the second P-MPR value are smaller than a specific P-MPR value, and the first P-MPR value and Only the case where both of the second P-MPR values are not less than the particular P-MPR value may be assumed (the other cases may not occur).
 なお、上記実施形態2.1.5/2.1.6においては、第1のP-MPR値及び第2のP-MPR値の一方が特定のP-MPR値より小さく、他方が特定のP-MPR値より小さくないケースが生じ得ると想定されてもよい(例えば、これらのケースが実施形態2.1.4において想定されるケースに加えて生じ得ると想定されてもよい)。 In Embodiments 2.1.5/2.1.6 above, one of the first P-MPR value and the second P-MPR value is smaller than the specific P-MPR value, and the other is the specific P-MPR value. It may be assumed that cases not less than the P-MPR value may occur (eg, it may be assumed that these cases may occur in addition to the cases assumed in embodiment 2.1.4).
 図3Aは、実施形態2.1.4において想定されるケースの一例を示す図である。本例では、第1のPHR(PH)フィールド及び第2のPHR(PH)フィールドの両方が特定のP-MPR値(例えば、P-MPR_00)より小さい、又は両方が当該特定のP-MPR値以上のケースのみが想定される。 FIG. 3A is a diagram showing an example of a case assumed in Embodiment 2.1.4. In this example, both the first PHR (PH) field and the second PHR (PH) field are less than a particular P-MPR value (eg, P-MPR_00), or both are less than the particular P-MPR value Only the above cases are assumed.
 図3Bは、実施形態2.1.5及び2.1.6において想定されるケースの一例を示す図である。本例では、第1のPHR(PH)フィールド及び第2のPHR(PH)フィールドの両方が特定のP-MPR値(例えば、P-MPR_00)より小さい、又は両方が当該特定のP-MPR値以上のケースだけでなく、一方が当該特定のP-MPR値より小さく、かつ他方が当該特定のP-MPR値以上であるケースも想定される。 FIG. 3B is a diagram showing an example of cases assumed in Embodiments 2.1.5 and 2.1.6. In this example, both the first PHR (PH) field and the second PHR (PH) field are less than a particular P-MPR value (eg, P-MPR_00), or both are less than the particular P-MPR value In addition to the above cases, cases where one is smaller than the specific P-MPR value and the other is greater than or equal to the specific P-MPR value are also assumed.
[実施形態2.2]
 実施形態2.2において、サービングセルの第1のPHフィールドのための(に対応する)電力管理のためにパワーバックオフが適用されることは、単に「第1のパワーバックオフが適用される」とも呼び、サービングセルの第2のPHフィールドのための(に対応する)電力管理のためにパワーバックオフが適用されることは、単に「第2のパワーバックオフが適用される」とも呼ぶ。
[Embodiment 2.2]
In embodiment 2.2, applying power backoff for power management for (corresponding to) the first PH field of the serving cell simply means "the first power backoff is applied". Also, applying power backoff for power management for (corresponding to) the second PH field of the serving cell is also simply referred to as "applying the second power backoff."
 実施形態2.2では、1つのサービングセルの2つのPHフィールドに対応するPフィールドは、2つ含まれてもよい。これら2つのPフィールドのうち、第1のPフィールドは、第1のパワーバックオフ(例えば、P-MPR>0)が適用されるか否かを示し、第2のPフィールドは、第2のパワーバックオフ(例えば、P-MPR>0)が適用されるか否かを示してもよい。 In embodiment 2.2, two P fields corresponding to two PH fields of one serving cell may be included. Of these two P-fields, the first P-field indicates whether the first power backoff (eg, P-MPR>0) is applied, and the second P-field indicates whether the second It may indicate whether power backoff (eg, P-MPR>0) applies.
 なお、実施形態2.2において、各Pフィールドについてのパワーバックオフは、同じであってもよいし、異なってもよい。UEは、あるPフィールドについてのパワーバックオフに関する情報を、特定のルール/UE能力に基づいて決定してもよいし、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル、又はこれらの組み合わせを用いて通知されてもよい。本開示において、「パワーバックオフ(例えば、P-MPR>0)が適用される」は、「電力管理のためにパワーバックオフが適用されていなければ対応するPCMAXフィールドが異なる値を有することになっていた」と互いに読み替えられてもよい。 Note that in embodiment 2.2, the power backoff for each P-field may be the same or different. The UE may determine information on power backoff for certain P-fields based on specific rules/UE capabilities, physical layer signaling (e.g. DCI), higher layer signaling (e.g. RRC signaling, MAC CE), a specific signal/channel, or a combination thereof. In this disclosure, "power backoff (eg, P-MPR>0) applies" means "that the corresponding P CMAX field has a different value if no power backoff is applied for power management. It could be read as "it was".
 実施形態2.2において、1つのサービングセルの2つのPHフィールドに対応するPフィールドは、1つだけ含まれてもよい。当該Pフィールドは、以下の少なくとも1つに従ってもよい:
 ・実施形態2.2.1:第1のパワーバックオフが適用される場合には1に設定され、そうでない場合には0に設定される、
 ・実施形態2.2.2:第2のパワーバックオフが適用される場合には1に設定され、そうでない場合には0に設定される、
 ・実施形態2.2.3:上記サービングセルの実際PHに対応するPHフィールド(上記サービングセルの実際PHに対応するPHフィールドの数は1である)のための電力管理のためにパワーバックオフ(例えば、P-MPR>0)が適用される場合には1に設定され、そうでない場合には0に設定される、
 ・実施形態2.2.4:第1のパワーバックオフ及び第2のパワーバックオフの両方が適用される場合には1に設定され、そうでない場合には0に設定される、
 ・実施形態2.2.5:第1のパワーバックオフ及び第2のパワーバックオフの両方が適用される場合には1に設定され、そうでない場合には0に設定される、
 ・実施形態2.2.6:第1のパワーバックオフ及び第2のパワーバックオフの一方(又は少なくとも一方)が適用される場合には1に設定され、そうでない場合には0に設定される。
In embodiment 2.2, only one P-field corresponding to two PH-fields of one serving cell may be included. The P-field may be subject to at least one of the following:
Embodiment 2.2.1: set to 1 if the first power backoff is applied, otherwise set to 0;
Embodiment 2.2.2: set to 1 if the second power backoff is applied, otherwise set to 0;
Embodiment 2.2.3: Power back-off for power management for PH fields corresponding to the actual PH of the serving cell (the number of PH fields corresponding to the actual PH of the serving cell is 1) , P-MPR>0) applies, set to 0 otherwise;
Embodiment 2.2.4: set to 1 if both the first power backoff and the second power backoff are applied, otherwise set to 0;
Embodiment 2.2.5: set to 1 if both the first power backoff and the second power backoff are applied, otherwise set to 0;
Embodiment 2.2.6: set to 1 if one (or at least one) of the first power backoff and the second power backoff is applied, otherwise set to 0 be.
 なお、上記実施形態2.2.4においては、第1のパワーバックオフ及び第2のパワーバックオフの両方が適用されるケースと、第1のパワーバックオフ及び第2のパワーバックオフの両方が適用されないケースと、のみが想定されてもよい(その他のケースは生じないと想定されてもよい)。 In Embodiments 2.2.4 above, the case where both the first power back-off and the second power back-off are applied, and the case where both the first power back-off and the second power back-off are applied does not apply (other cases may not occur).
 なお、上記実施形態2.2.5/2.2.6においては、第1のパワーバックオフ及び第2のパワーバックオフの一方が適用され、他方が適用されないケースが生じ得ると想定されてもよい(例えば、これらのケースが実施形態2.2.4において想定されるケースに加えて生じ得ると想定されてもよい)。 In Embodiments 2.2.5/2.2.6 above, it is assumed that there may be cases where one of the first power back-off and the second power back-off is applied and the other is not applied. (eg, it may be assumed that these cases may occur in addition to those assumed in embodiment 2.2.4).
 図4Aは、実施形態2.2.4において想定されるケースの一例を示す図である。本例では、第1のPHR(PH)フィールド及び第2のPHR(PH)フィールドの両方についてP-MPR(パワーバックオフ)が適用されるケースと、両方についてP-MPR(パワーバックオフ)が適用されないケースと、のみが想定される。 FIG. 4A is a diagram showing an example of a case assumed in Embodiment 2.2.4. In this example, a case where P-MPR (power back off) is applied to both the first PHR (PH) field and the second PHR (PH) field, and a case where P-MPR (power back off) is applied to both Only cases where it does not apply are assumed.
 図4Bは、実施形態2.2.5及び2.2.6において想定されるケースの一例を示す図である。本例では、第1のPHR(PH)フィールド及び第2のPHR(PH)フィールドの両方についてP-MPRが適用されるケースと、両方についてP-MPRが適用されないケースだけでなく、一方にP-MPRが適用されるが他方には適用されないケースも想定される。 FIG. 4B is a diagram showing an example of cases assumed in Embodiments 2.2.5 and 2.2.6. In this example, not only the case where P-MPR is applied to both the first PHR (PH) field and the second PHR (PH) field, and the case where P-MPR is not applied to both, P - Cases where MPR applies but not the other are envisioned.
 なお、第2の実施形態における「0に設定される」及び「1に設定される」は、互いに読み替えられてもよい。 Note that "set to 0" and "set to 1" in the second embodiment may be read interchangeably.
 以上説明した第2の実施形態によれば、UEは、1つのサービングセルのPHフィールドをPHR報告に2つ含める場合であっても、PHフィールドに対応するPフィールドを当該PHR報告に適切に含めることができる。 According to the second embodiment described above, even if the UE includes two PH fields of one serving cell in the PHR report, the P field corresponding to the PH field can be appropriately included in the PHR report. can be done.
<第3の実施形態>
 第3の実施形態は、PHR MAC CEにおけるMPEフィールドに関する。
<Third Embodiment>
A third embodiment relates to the MPE field in PHR MAC CE.
 第3の実施形態において、サービングセルの第1のPHフィールドのための(に対応する)MPE要件を満たすために適用されるパワーバックオフは、単に第1のパワーバックオフとも呼び、サービングセルの第2のPHフィールドのための(に対応する)MPE要件を満たすために適用されるパワーバックオフは、単に第2のパワーバックオフとも呼ぶ。なお、MPEフィールドは、測定されたP-MPR値(例えばdB単位)に対応するインデックスを示してもよい。 In a third embodiment, the power backoff applied to meet the MPE requirements for (corresponding to) the first PH field of the serving cell is also simply referred to as the first power backoff, and the second power backoff of the serving cell. The power backoff applied to meet the MPE requirements for (corresponding to) the PH field of is also simply referred to as the second power backoff. Note that the MPE field may indicate an index corresponding to the measured P-MPR value (eg, in dB).
 第3の実施形態において、FR2のMPE報告(例えば、上位レイヤパラメータmpe-Reporting-FR2)が設定され、サービングセルがFR2において動作し、かつ当該サービングセルに対応する少なくとも1つのPフィールドが1に設定される場合には、1つのサービングセルの2つのPHフィールドに対応するMPEフィールドは、2つ含まれてもよい。これら2つのMPEフィールドのうち、第1のMPEフィールドは第1のパワーバックオフを示し、第2のMPEフィールドは第2のパワーバックオフを示してもよい。 In a third embodiment, FR2 MPE reporting (eg, higher layer parameter mpe-Reporting-FR2) is configured, the serving cell operates in FR2, and at least one P-field corresponding to the serving cell is set to 1. , two MPE fields corresponding to two PH fields of one serving cell may be included. Of these two MPE fields, the first MPE field may indicate a first power backoff and the second MPE field may indicate a second power backoff.
 第3の実施形態において、FR2のMPE報告(例えば、上位レイヤパラメータmpe-Reporting-FR2)が設定され、サービングセルがFR2において動作し、かつ当該サービングセルに対応する少なくとも1つのPフィールドが1に設定される場合には、1つのサービングセルの2つのPHフィールドに対応するMPEフィールドは、1つだけ含まれてもよい。当該PCMAXフィールドは、以下の少なくとも1つを示してもよい:
 ・第1のパワーバックオフ、
 ・第2のパワーバックオフ、
 ・第1のパワーバックオフ及び第2のパワーバックオフ(この場合、第1のPHフィールド及び第2のPHフィールドの算出には共通のパワーバックオフの値が用いられてもよい)、
 ・上記サービングセルの実際PHに対応するPHフィールドのための(に対応する)MPE要件を満たすために適用されるパワーバックオフ(上記サービングセルの実際PHに対応するPHフィールドの数は1である場合)。
In a third embodiment, FR2 MPE reporting (eg, higher layer parameter mpe-Reporting-FR2) is configured, the serving cell operates in FR2, and at least one P-field corresponding to the serving cell is set to 1. , only one MPE field corresponding to two PH fields of one serving cell may be included. The P CMAX field may indicate at least one of the following:
a first power back off;
a second power back off;
a first power backoff and a second power backoff (in this case, a common power backoff value may be used to calculate the first PH field and the second PH field);
Power backoff applied to meet MPE requirements for (corresponding to) PH fields corresponding to the actual PH of the serving cell (if the number of PH fields corresponding to the actual PH of the serving cell is 1) .
 なお、第3の実施形態において、「FR2のMPE報告(例えば、上位レイヤパラメータmpe-Reporting-FR2)が設定され、サービングセルがFR2において動作し」は、「FR2のMPE報告が設定されていないか、又はサービングセルがFR1で動作し」で読み替えられてもよい。 Note that, in the third embodiment, "the FR2 MPE reporting (eg, higher layer parameter mpe-Reporting-FR2) is configured and the serving cell operates in FR2" means "whether the FR2 MPE reporting is configured , or the serving cell operates in FR1.
 以上説明した第3の実施形態によれば、UEは、1つのサービングセルのPHフィールドをPHR報告に2つ含める場合であっても、PHフィールドに対応するMPEフィールドを当該PHR報告に適切に含めることができる。 According to the third embodiment described above, even if the UE includes two PH fields of one serving cell in the PHR report, the MPE field corresponding to the PH field can be appropriately included in the PHR report. can be done.
<第1-第3の実施形態のPHR MAC CEの具体例>
 第1-第3の実施形態のPHR MAC CEは、シングルエントリPHR MAC CEであってもよいし、マルチプルエントリPHR MAC CEであってもよい。
<Specific example of PHR MAC CE of the first to third embodiments>
The PHR MAC CE of the first to third embodiments may be a single entry PHR MAC CE or a multiple entry PHR MAC CE.
 図5は、第1-第3の実施形態におけるシングルエントリPHR MAC CEの一例を示す図である。図1と異なる点を説明し、同じ点については説明を繰り返さない。 FIG. 5 is a diagram showing an example of a single entry PHR MAC CE in the first to third embodiments. Differences from FIG. 1 will be described, and descriptions of the same points will not be repeated.
 PH_1及びPH_2はそれぞれ、第1のPHフィールド及び第2のPHフィールドに該当し、例えば、TRP1向けのPH及びTRP2向けのPHを示してもよい。また、他のフィールドについて付される“_1”及び“_2”はそれぞれ、そのフィールドが第1のPHフィールド及び第2のPHフィールドに対応することを示す。 PH_1 and PH_2 correspond to the first PH field and the second PH field, respectively, and may indicate, for example, the PH for TRP1 and the PH for TRP2. Also, "_1" and "_2" attached to other fields indicate that the fields correspond to the first PH field and the second PH field, respectively.
 例えば、P_1及びP_2は、第2の実施形態の第1及び第2のPフィールドに該当し、MPE_1及びMPE_2は、第3の実施形態の第1及び第2のMPEフィールドに該当し、PCMAX_1及びPCMAX_2は、第1の実施形態の第1及び第2のPCMAXフィールドに該当してもよい。なお、“_1”及び“_2”は表記されなくてもよいし、別の表記がされてもよい。 For example, P_1 and P_2 correspond to the first and second P fields of the second embodiment, MPE_1 and MPE_2 correspond to the first and second MPE fields of the third embodiment, and P CMAX _1 and P CMAX _2 may correspond to the first and second P CMAX fields of the first embodiment. Note that "_1" and "_2" may not be written, or may be written differently.
 Vフィールドは直後のPHフィールドが実際PHRか仮想PHRかを表す。例えば、V=1は直後のPHRフィールドが仮想PHRであることを、V=0は直後のPHRフィールドが実際PHRであることを意味してもよい(また、これらは逆であってもよい)。 The V field indicates whether the immediately following PH field is an actual PHR or a virtual PHR. For example, V=1 may mean that the immediately following PHR field is a virtual PHR, and V=0 means that the immediately following PHR field is actually a PHR (and vice versa). .
 図6は、第1-第3の実施形態におけるマルチプルエントリPHR MAC CEの一例を示す図である。図2と異なる点を説明し、同じ点については説明を繰り返さない。また、図5で同様な内容を説明したフィールドについても、説明を繰り返さない。 FIG. 6 is a diagram showing an example of multiple entry PHR MAC CE in the first to third embodiments. Differences from FIG. 2 will be described, and descriptions of the same points will not be repeated. Further, the description of the fields for which the same contents have been described with reference to FIG. 5 will not be repeated.
 PH_j,1及びPH_j,2はそれぞれ、第1のPHフィールド及び第2のPHフィールドに該当し、例えば、TRP1向けのPH及びTRP2向けのPHを示してもよい。また、他のフィールドについて付される“_j,1”及び“_j,2”はそれぞれ、そのフィールドが第1のPHフィールド及び第2のPHフィールドに対応することを示す。なお、“_j,1”及び“_j,2”は表記されなくてもよいし、別の表記がされてもよい。 PH_j,1 and PH_j,2 correspond to the first and second PH fields, respectively, and may indicate, for example, the PH for TRP1 and the PH for TRP2. Also, "_j, 1" and "_j, 2" attached to other fields indicate that the field corresponds to the first PH field and the second PH field, respectively. Note that "_j, 1" and "_j, 2" may not be written, or may be written differently.
 図6において、Xフィールドは、1つ又は2つのPHRが報告されることを示すフィールドに該当し、Cフィールドに対応するPHR_j,2を含むオクテット(図示される8ビットの1列)が存在するか否かを示す。例えば、X=1は存在することを、X=0は存在しないことを意味してもよい(また、これらは逆であってもよい)。 In FIG. 6, the X i field corresponds to a field indicating that one or two PHRs are reported, and the octet containing PHR_j,2 corresponding to the C i field (one row of 8 bits shown) is Indicates whether it exists or not. For example, X i =1 may mean present and X i =0 may mean not present (and vice versa).
 なお、Xフィールドはサービングセルインデックス=0(又はPCell又はSpCell)に関して1つ又は2つのPHRが報告されることを示すフィールドに該当してもよい。また、Cフィールドは、Rフィールドであってもよい。 Note that the X 0 field may correspond to a field indicating that one or two PHRs are reported for serving cell index=0 (or PCell or SpCell). Also, the C0 field may be the R field.
 なお、Xフィールド(Xフィールドを含むオクテット)は、当該PHR MAC CEに含まれなくてもよい。各サービングセルについて報告されるPHの数が設定される場合、2つのTRPのための2つのPHRを報告することが設定/有効化される場合などには、Xフィールドを含める必要がないためである。 Note that the Xi field (the octet including the Xi field) does not have to be included in the PHR MAC CE. This is because if the number of PHs reported for each serving cell is configured, if reporting two PHRs for two TRPs is configured/enabled, etc., there is no need to include the Xi field. be.
<第4の実施形態>
 第4の実施形態は、PHR MAC CEのトリガ条件(トリガイベント)に関する。当該PHR MAC CEは、第1-第3の実施形態のPHR MAC CEであってもよい。
<Fourth Embodiment>
The fourth embodiment relates to trigger conditions (trigger events) of PHR MAC CE. The PHR MAC CE may be the PHR MAC CE of the first to third embodiments.
 第4の実施形態は、実施形態4.1と実施形態4.2に大別される。なお、これらの実施形態が排他的でない(両方適用されてもよい)ことは、他の実施形態と同様に理解される。 The fourth embodiment is roughly divided into Embodiment 4.1 and Embodiment 4.2. It should be understood, like other embodiments, that these embodiments are not exclusive (both may be applied).
[実施形態4.1]
 実施形態4.1において、FR2のMPE報告(例えば、上位レイヤパラメータmpe-Reporting-FR2)が設定され、かつ禁止タイマ(例えば、上位レイヤパラメータmpe-ProhibitTimerに関する)が起動していない場合には、以下のイベントが生じる場合にPHR MAC CEがトリガされてもよい(UEは、そのような場合にPHR MAC CEをトリガしてもよい):
 ・MACエンティティにおけるPHRの最後の送信以降に、少なくとも1つのアクティベートされたFR2サービングセルについて、FR2のMPE要件を満たすために適用される、測定されたP-MPR(measured P-MPR)が閾値(例えば、上位レイヤパラメータmpe-Thresholdによって示される閾値)以上である。
[Embodiment 4.1]
In embodiment 4.1, if the FR2 MPE reporting (e.g. higher layer parameter mpe-Reporting-FR2) is configured and the prohibit timer (e.g. for upper layer parameter mpe-ProhibitTimer) is not running: PHR MAC CE may be triggered when the following events occur (UE may trigger PHR MAC CE in such cases):
The measured P-MPR applied to meet the MPE requirements of FR2 for at least one activated FR2 serving cell since the last transmission of PHR in the MAC entity is a threshold (e.g. , the threshold indicated by the upper layer parameter mpe-Threshold).
 実施形態4.1において、UEに対して、MTRP PUSCH繰り返しが有効化され、かつ、2つのTRPのための2つのPHRを報告することが有効化される場合には、当該UEは、上記のトリガ条件について、以下の少なくとも1つに従ってもよい:
 ・オプション4.1.1:上記測定されたP-MPRとして、第1のPHRの測定されたP-MPRを参照する(用いる)、
 ・オプション4.1.2:上記測定されたP-MPRとして、第2のPHRの測定されたP-MPRを参照する(用いる)、
 ・オプション4.1.3:上記測定されたP-MPRとして、第1のPHR及び第2のPHRのうち実際PHRである1つのPHRの、測定されたP-MPRを参照する(用いる)、
 ・オプション4.1.4:上記「測定されたP-MPRが閾値以上である」を「第1のPHR及び第2のPHRの両方の測定されたP-MPRが閾値以上である」と読み替える、
 ・オプション4.1.5:上記「測定されたP-MPRが閾値以上である」を「第1のPHR及び第2のPHRのいずれか一方/少なくとも一方の測定されたP-MPRが閾値以上である」と読み替える、
 ・オプション4.1.6:第1のPHR及び第2のPHRの両方の測定されたP-MPRは常に同じであると想定する、
 ・オプション4.1.7:上記測定されたP-MPRとして、第1のPHRの測定されたP-MPR及び第2のPHRの測定されたP-MPRに基づく値(例えば、第1のPHRの測定されたP-MPR及び第2のPHRの測定されたP-MPRの平均値)を参照する(用いる)、
 ・オプション4.1.8:第2のPHR(の測定されたP-MPR)について、上記閾値に関する追加のパラメータが設定される。例えば、第1のPHR(のP-MPR)についての閾値には既存の上位レイヤパラメータ(例えば、mpe-Threshold)によって示される閾値を利用し、第2のPHR(の測定されたP-MPR)についての閾値には、新しい上位レイヤパラメータ(例えば、mpe-Threshold2)によって示される閾値を利用する。なお、これらの閾値は逆であってもよい、
 ・オプション4.1.9:上記測定されたP-MPRとして、第1のPHRの測定されたP-MPR及び第2のPHRの測定されたP-MPRのうち、大きい値を参照する(用いる)、
 ・オプション4.1.10:上記測定されたP-MPRとして、第1のPHRの測定されたP-MPR及び第2のPHRの測定されたP-MPRのうち、小さい値を参照する(用いる)。
In embodiment 4.1, if MTRP PUSCH repetition is enabled for a UE and reporting two PHRs for two TRPs is enabled, the UE is configured to perform the above For trigger conditions, at least one of the following may be obeyed:
Option 4.1.1: refer to (use) the measured P-MPR of the first PHR as the measured P-MPR;
Option 4.1.2: refer to (use) the measured P-MPR of the second PHR as the measured P-MPR;
Option 4.1.3: refer to (use) the measured P-MPR of one PHR, which is actually the PHR, of the first PHR and the second PHR as the measured P-MPR;
Option 4.1.4: Replace the above "measured P-MPR is greater than or equal to the threshold" with "measured P-MPR of both the first PHR and the second PHR are greater than or equal to the threshold" ,
Option 4.1.5: The above "measured P-MPR is greater than or equal to the threshold" is changed to "either/at least one of the first PHR and the second PHR measured P-MPR is greater than or equal to the threshold is ",
Option 4.1.6: Assume that the measured P-MPR of both the first PHR and the second PHR are always the same,
Option 4.1.7: As the measured P-MPR, a value based on the measured P-MPR of the first PHR and the measured P-MPR of the second PHR (e.g., the first PHR refer to (use) the measured P-MPR of and the measured P-MPR of the second PHR),
• Option 4.1.8: For (the measured P-MPR of) the second PHR, an additional parameter is set for the above threshold. For example, the threshold for (the P-MPR of) the first PHR utilizes the threshold indicated by the existing upper layer parameter (eg, mpe-Threshold), and the threshold for (the measured P-MPR of) the second PHR For the threshold for , use the threshold indicated by the new upper layer parameter (eg, mpe-Threshold2). Note that these thresholds may be reversed.
Option 4.1.9: As the measured P-MPR, refer to the larger value of the measured P-MPR of the first PHR and the measured P-MPR of the second PHR (use ),
Option 4.1.10: As the measured P-MPR, refer to the smaller value of the measured P-MPR of the first PHR and the measured P-MPR of the second PHR (use ).
[実施形態4.2]
 実施形態4.2において、FR2のMPE報告(例えば、上位レイヤパラメータmpe-Reporting-FR2)が設定され、かつ禁止タイマ(例えば、上位レイヤパラメータmpe-ProhibitTimerに関する)が起動していない場合には、以下のイベントが生じる場合にPHR MAC CEがトリガされてもよい(UEは、そのような場合にPHR MAC CEをトリガしてもよい):
 ・MPE要件を満たすために適用される、測定されたP-MPR(measured P-MPR)が閾値(例えば、上位レイヤパラメータmpe-Thresholdによって示される閾値)以上であることに起因するMACエンティティにおけるPHRの最後の送信以降に、少なくとも1つのアクティベートされたFR2サービングセルについて、FR2のMPE要件を満たすために適用される、測定されたP-MPRが特定の値(例えば、上位レイヤパラメータphr-Tx-PowerFactorChangeによって示される値)より大きく変動する。
[Embodiment 4.2]
In embodiment 4.2, if the FR2 MPE reporting (e.g. higher layer parameter mpe-Reporting-FR2) is configured and the prohibit timer (e.g. for upper layer parameter mpe-ProhibitTimer) is not running: PHR MAC CE may be triggered when the following events occur (UE may trigger PHR MAC CE in such cases):
PHR at the MAC entity due to the measured P-MPR being equal to or greater than a threshold (e.g. the threshold indicated by the higher layer parameter mpe-Threshold) applied to meet the MPE requirements Since the last transmission of , for at least one activated FR2 serving cell, the measured P-MPR applied to meet the MPE requirements of FR2 is a certain value (e.g., higher layer parameter phr-Tx-PowerFactorChange values indicated by ).
 実施形態4.2において、UEに対して、MTRP PUSCH繰り返しが有効化され、かつ、2つのTRPのための2つのPHRを報告することが有効化される場合には、当該UEは、上記のトリガ条件について、以下の少なくとも1つに従ってもよい:
 ・オプション4.2.1:上記測定されたP-MPRとして、第1のPHRの測定されたP-MPRを参照する(用いる)、
 ・オプション4.2.2:上記測定されたP-MPRとして、第2のPHRの測定されたP-MPRを参照する(用いる)、
 ・オプション4.2.3:上記測定されたP-MPRとして、第1のPHR及び第2のPHRのうち実際PHRである1つのPHRの、測定されたP-MPRを参照する(用いる)、
 ・オプション4.2.4:上記「測定されたP-MPRが特定の値より大きく変動する」を「第1のPHR及び第2のPHRの両方の測定されたP-MPRが特定の値より大きく変動する」と読み替える、
 ・オプション4.2.5:上記「測定されたP-MPRが特定の値より大きく変動する」を「第1のPHR及び第2のPHRのいずれか一方/少なくとも一方の測定されたP-MPRが特定の値より大きく変動する」と読み替える、
 ・オプション4.2.6:第1のPHR及び第2のPHRの両方の測定されたP-MPRは常に同じであると想定する、
 ・オプション4.2.7:上記測定されたP-MPRとして、第1のPHRの測定されたP-MPR及び第2のPHRの測定されたP-MPRに基づく値(例えば、第1のPHRの測定されたP-MPR及び第2のPHRの測定されたP-MPRの平均値)を参照する(用いる)、
 ・オプション4.2.8:第2のPHR(の測定されたP-MPR)について、上記特定の値に関する追加のパラメータが設定される。例えば、第1のPHR(のP-MPR)についての特定の値には既存の上位レイヤパラメータ(例えば、phr-Tx-PowerFactorChange)によって示される値を利用し、第2のPHR(の測定されたP-MPR)についての特定の値には、新しい上位レイヤパラメータ(例えば、phr-Tx-PowerFactorChange2)によって示される値を利用する。なお、これらの特定の値は逆であってもよい、
 ・オプション4.2.9:上記測定されたP-MPRとして、第1のPHRの測定されたP-MPR及び第2のPHRの測定されたP-MPRのうち、大きい値を参照する(用いる)、
 ・オプション4.2.10:上記測定されたP-MPRとして、第1のPHRの測定されたP-MPR及び第2のPHRの測定されたP-MPRのうち、小さい値を参照する(用いる)。
In embodiment 4.2, if MTRP PUSCH repetition is enabled for a UE and reporting two PHRs for two TRPs is enabled, then the UE performs the above For trigger conditions, at least one of the following may be obeyed:
Option 4.2.1: refer to (use) the measured P-MPR of the first PHR as the measured P-MPR;
Option 4.2.2: refer to (use) the measured P-MPR of the second PHR as the measured P-MPR;
Option 4.2.3: refer to (use) the measured P-MPR of one PHR, which is actually the PHR, of the first PHR and the second PHR as the measured P-MPR;
Option 4.2.4: Replace "measured P-MPR varies more than a certain value" above with "measured P-MPR of both the first PHR and the second PHR change significantly,”
Option 4.2.5: Replace the above "measured P-MPR fluctuates more than a certain value" with "one of the first PHR and the second PHR / at least one of the measured P-MPR fluctuates more than a certain value,"
Option 4.2.6: Assume that the measured P-MPR of both the first PHR and the second PHR are always the same,
Option 4.2.7: As the measured P-MPR, a value based on the measured P-MPR of the first PHR and the measured P-MPR of the second PHR (e.g., the first PHR refer to (use) the measured P-MPR of and the measured P-MPR of the second PHR);
• Option 4.2.8: For (the measured P-MPR of) the second PHR, an additional parameter is set for the above specified value. For example, the specific value for the first PHR (P-MPR) utilizes the value indicated by an existing upper layer parameter (eg, phr-Tx-PowerFactorChange), and the second PHR (the measured P-MPR) uses the value indicated by the new upper layer parameter (eg, phr-Tx-PowerFactorChange2). Note that these specific values may be reversed,
Option 4.2.9: As the measured P-MPR, refer to the larger value of the measured P-MPR of the first PHR and the measured P-MPR of the second PHR (use ),
Option 4.2.10: As the measured P-MPR, refer to the smaller value of the measured P-MPR of the first PHR and the measured P-MPR of the second PHR (use ).
[第4の実施形態の変形例]
 第4の実施形態における送信(例えば、PHRの送信)は、以下の少なくとも1つのケースに該当してもよい:
 ・ケース1:送信は実際のPUSCH送信であり、かつ、S-TRP PUSCH送信である、
 ・ケース2:送信は実際のPUSCH送信であり、かつ、M-TRP PUSCH送信である、
 ・ケース3:送信は仮想PUSCH送信(参照PUSCH送信)である。
[Modification of the fourth embodiment]
Transmission (eg, transmission of PHR) in the fourth embodiment may fall under at least one of the following cases:
- Case 1: the transmission is an actual PUSCH transmission and is an S-TRP PUSCH transmission;
- Case 2: the transmission is an actual PUSCH transmission and is an M-TRP PUSCH transmission;
- Case 3: The transmission is a virtual PUSCH transmission (reference PUSCH transmission).
 上記ケース1は、1つのSRIフィールド/TPMIフィールド/SRSリソースセット/電力制御パラメータセットが適用されることで読み替えられてもよいし、PUSCHをスケジュールするDCIに含まれる動的なS-TRP/M-TRPスイッチングフィールドがS-TRPを示す(例えば、Rel.17で規定されるSRSリソースセットインディケーターフィールドの値が0又は1を示す)ことで読み替えられてもよい。 Case 1 above may be rewritten by applying one SRI field/TPMI field/SRS resource set/power control parameter set, or dynamic S-TRP/M included in DCI that schedules PUSCH. -TRP switching field may be replaced by indicating S-TRP (for example, the value of the SRS resource set indicator field specified in Rel.17 indicates 0 or 1).
 なお、ケース1は、以下の少なくとも1つを含んでもよい:
 ・ケース1-1:S-TRPがTRP1である(第1のSRSリソースセットが適用される、又は、上記SRSリソースセットインディケーターフィールドの値が0を示す)、
 ・ケース1-2:S-TRPがTRP2である(第2のSRSリソースセットが適用される、又は、上記SRSリソースセットインディケーターフィールドの値が1を示す)。
Note that Case 1 may include at least one of the following:
Case 1-1: the S-TRP is TRP1 (the first SRS resource set is applied, or the value of the SRS resource set indicator field indicates 0);
Case 1-2: the S-TRP is TRP2 (the second SRS resource set is applied or the value of the SRS resource set indicator field indicates 1).
 ケース1-1及び1-2は、区別されてもよいし、区別されなくてもよい。 Cases 1-1 and 1-2 may or may not be distinguished.
 上記ケース2は、2つのSRIフィールド/TPMIフィールド/SRSリソースセット/電力制御パラメータセットが適用されることで読み替えられてもよいし、PUSCHをスケジュールするDCIに含まれる動的なS-TRP/M-TRPスイッチングフィールドがM-TRPを示す(例えば、Rel.17で規定されるSRSリソースセットインディケーターフィールドの値が2又は3を示す)ことで読み替えられてもよい。 Case 2 above may be rewritten by applying two SRI fields/TPMI fields/SRS resource sets/power control parameter sets, or dynamic S-TRP/M included in DCI that schedules PUSCH. -TRP switching field may be replaced by indicating M-TRP (for example, the value of the SRS resource set indicator field defined in Rel.17 indicates 2 or 3).
 なお、ケース2は、以下の少なくとも1つを含んでもよい:
 ・ケース2-1:M-TRP(M-TRP PUSCH)の順番が{TRP1、TRP2}である(第1の繰り返しが第1のTRP/SRSリソースセット/SRIフィールドに関連する、又は、上記SRSリソースセットインディケーターフィールドの値が2を示す)、
 ・ケース2-2:M-TRP(M-TRP PUSCH)の順番が{TRP2、TRP1}である(第1の繰り返しが第2のTRP/SRSリソースセット/SRIフィールドに関連する、又は、上記SRSリソースセットインディケーターフィールドの値が3を示す)。
Note that Case 2 may include at least one of the following:
Case 2-1: The order of M-TRP (M-TRP PUSCH) is {TRP1, TRP2} (the first iteration is associated with the first TRP/SRS resource set/SRI field, or resource set indicator field value indicates 2),
Case 2-2: The order of M-TRP (M-TRP PUSCH) is {TRP2, TRP1} (the first iteration is associated with the second TRP/SRS resource set/SRI field, or The value of the resource set indicator field indicates 3).
 ケース2-1及び2-2は、区別されてもよいし、区別されなくてもよい。 Cases 2-1 and 2-2 may or may not be distinguished.
 第4の実施形態における、PHRの最後の送信と、(現在の)測定されたP-MPRに基づいてトリガされるPHRの送信と、はそれぞれ上記の異なるケースに該当してもよいし、同じケースに該当してもよい。例えば、PHR MAC CEの最後の送信がケース1(/1-1/1-2)/2(/2-1/2-2)/3に該当し、現在の測定されたP-MPRに基づいてトリガされるPHR MAC CEの送信がケース1(/1-1/1-2)/2(/2-1/2-2)/3に該当してもよい。 The final transmission of PHR and the transmission of PHR triggered based on the (current) measured P-MPR in the fourth embodiment may correspond to the above different cases respectively, or the same may apply to the case. For example, the last transmission of PHR MAC CE corresponds to case 1 (/1-1/1-2)/2 (/2-1/2-2)/3 and based on the current measured P-MPR The transmission of the PHR MAC CE triggered by this may fall under case 1 (/1-1/1-2)/2 (/2-1/2-2)/3.
 なお、第4の実施形態における、「MTRP PUSCH繰り返しが有効化され、かつ、2つのTRPのための2つのPHRを報告することが有効化される場合」は、「MTRP PUSCH繰り返しと、2つのTRPのための2つのPHRの報告と、の少なくとも一方が有効化される場合」と互いに読み替えられてもよい。 In the fourth embodiment, "when MTRP PUSCH repetition is enabled and reporting two PHRs for two TRPs is enabled" means "MTRP PUSCH repetition and two two PHR reports for TRP, and at least one of which is enabled".
<その他>
 上述の実施形態の少なくとも1つは、あるサービングセルについてSTRP PUSCH繰り返し、又は単一の送信(single transmission)(言い換えると、繰り返しなしのPUSCH送信)がDCIによって指定される場合に適用されてもよいし、あるサービングセルについてDCIによってMTRP PUSCH繰り返しが指定される場合に適用されてもよい。
<Others>
At least one of the above embodiments may be applied when STRP PUSCH repetition or single transmission (in other words, PUSCH transmission without repetition) is specified by DCI for a serving cell. , may be applied when MTRP PUSCH repetition is specified by the DCI for a serving cell.
 なお、各実施形態において、「PHRを報告する」ことは、「DCIによってSTRP PUSCH繰り返し/単一の送信/MTRP PUSCH繰り返しが指定されるサービングセルに関して、PHRを報告する」ことを意味してもよい。なお、本開示において、報告されるPHRは、タイプ1PHであってもよいし、他のタイプのPHであってもよい。 Note that, in each embodiment, "reporting the PHR" may mean "reporting the PHR for the serving cell for which the DCI designates STRP PUSCH repetition/single transmission/MTRP PUSCH repetition". . Note that in the present disclosure, the PHR reported may be Type 1 PH or other types of PH.
 なお、各実施形態において登場する第1のPH(第1のPHフィールドによって示されるPH)及び第2のPH(第2のPHフィールドによって示されるPH)は、以下の少なくとも1つのケースに該当してもよい:
 ・ケースA:第1のPHは実際PHであり、第2のPHは実際PHである、
 ・ケースB:第1のPHは実際PHであり、第2のPHは仮想PHである、
 ・ケースC:第1のPHは仮想PHであり、第2のPHは仮想PHである、
 ・ケースD:第1のPHは仮想PHであり、第2のPHは実際PHである。
The first PH (PH indicated by the first PH field) and the second PH (PH indicated by the second PH field) appearing in each embodiment correspond to at least one of the following cases. may be:
- Case A: the first PH is an actual PH and the second PH is an actual PH;
- Case B: the first PH is a real PH and the second PH is a virtual PH;
- Case C: the first PH is a virtual PH and the second PH is a virtual PH,
• Case D: the first PH is a virtual PH and the second PH is a real PH.
 第4の実施形態における、最後に送信されたPHRと、(現在の)測定されたP-MPRに基づいてトリガされるPHRと、はそれぞれ上記の異なるケースに該当してもよいし、同じケースに該当してもよい。例えば、最後に送信されたPHR MAC CEに含まれる2つのPHがケースA/B/C/Dに該当し、現在の測定されたP-MPRに基づいてトリガされるPHR MAC CEに含まれる2つのPHがケースA/B/C/Dに該当してもよい。 The last transmitted PHR and the triggered PHR based on the (current) measured P-MPR in the fourth embodiment may correspond to the different cases above, respectively, or the same case. may correspond to For example, the 2 PHs included in the last transmitted PHR MAC CE fall under cases A/B/C/D, and the 2 included in the PHR MAC CE triggered based on the current measured P-MPR PH may fall under cases A/B/C/D.
 なお、第1のPH及び第2のPHは、1つのPHR MAC CEに含まれて報告されてもよいし、それぞれ別々の(複数の)PHR MAC CEに含まれて報告されてもよい。 It should be noted that the first PH and the second PH may be reported in one PHR MAC CE, or may be reported in separate (multiple) PHR MAC CEs.
 本開示において、第1のPHは、第1のPUSCH繰り返し(最も早いPUSCH繰り返し)のPHを意味してもよい。 In the present disclosure, the first PH may mean the PH of the first PUSCH iteration (the earliest PUSCH iteration).
 本開示において、第1のPHは、第1のSRIフィールド/TPMIフィールド/SRSリソースセット/電力制御パラメータセット/TRPに関連するPUSCH繰り返し(又は第1のPUSCH繰り返し又は最も早いPUSCH繰り返し)のPHを意味してもよい。 In this disclosure, the first PH is the PH of the PUSCH repetition (or the first PUSCH repetition or the earliest PUSCH repetition) associated with the first SRI field/TPMI field/SRS resource set/power control parameter set/TRP. may mean.
 本開示において、第2のPHは、第1のPHとは異なるTRPのPHを意味してもよい。 In the present disclosure, the second PH may mean a PH of TRP that is different from the first PH.
 本開示において、第2のPHは、第2のSRIフィールド/TPMIフィールド/SRSリソースセット/電力制御パラメータセット/TRPに関連するPUSCH繰り返し(又は第1/第2のPUSCH繰り返し又は最も早い/遅いPUSCH繰り返し)のPHを意味してもよい。なお、第2のSRIフィールド/TPMIフィールド/SRSリソースセット/電力制御パラメータセット/TRPは、第1のSRIフィールド/TPMIフィールド/SRSリソースセット/電力制御パラメータセット/TRPと異なる。 In this disclosure, the second PH uses the second SRI field/TPMI field/SRS resource set/power control parameter set/TRP related PUSCH repetition (or first/second PUSCH repetition or earliest/latest PUSCH repeat). Note that the second SRI field/TPMI field/SRS resource set/power control parameter set/TRP is different from the first SRI field/TPMI field/SRS resource set/power control parameter set/TRP.
 本開示において、第1/第2のPH(PHR)の(適用される)P-MPRは、第1/第2のPH(PHR)の対応するPUSCH送信の(適用される)P-MPRを意味してもよい。 In this disclosure, the (applied) P-MPR of the first/second PH (PHR) is the (applied) P-MPR of the corresponding PUSCH transmission of the first/second PH (PHR) may mean.
 本開示において、UEは、複数のパネル(ULパネル、UL送信に利用できるパネル)を有してもよい。なお、本開示において、パネル、UEアンテナグループ、UEアンテナポートグループ、UE能力値、UE能力値セットは、互いに読み替えられてもよい。また、複数のパネルは、異なるアンテナポート数、異なるSRSポート数、異なるレイヤ数、異なるビーム数、異なる送信電力、異なる等価等方放射電力(Equivalent Isotopically Radiated Power(EIRP))をサポートしてもよい(言い換えると、異なるパネルは、これらのパラメータ(要素)が異なる送信/受信を行ってもよい)。 In the present disclosure, the UE may have multiple panels (UL panels, panels available for UL transmission). In addition, in the present disclosure, panels, UE antenna groups, UE antenna port groups, UE capability values, and UE capability value sets may be read interchangeably. Multiple panels may also support different numbers of antenna ports, different numbers of SRS ports, different numbers of layers, different numbers of beams, different transmit powers, different Equivalent Isotopically Radiated Power (EIRP). (In other words, different panels may transmit/receive these parameters (elements) differently).
 複数のパネルをサポートするUE及び複数のパネルをサポートしないUEは、上述の第1/第2/第3/第4の実施形態の異なるオプション(態様/構成/制御)を適用されてもよい。 A UE that supports multiple panels and a UE that does not support multiple panels may be applied with different options (aspects/configurations/controls) of the first/second/third/fourth embodiments described above.
 また、MTRP PUSCH繰り返しの2つのPHR/2つのTRP/2つのビーム(SRSリソースセット/SRI/SRIフィールド)が同じパネルに関連する場合と、これらが異なるパネルに関連する場合と、で上述の第1/第2/第3/第4の実施形態の異なるオプション(態様/構成/制御)を適用されてもよい。例えば、同じパネルについての2つのPHフィールドを報告するPHR MAC CEと、異なるパネルについての2つのPHフィールドを報告するPHR MAC CEと、は異なる構成を有してもよい。 Also, in the case where two PHRs/two TRPs/two beams (SRS resource set/SRI/SRI field) of MTRP PUSCH repetition are related to the same panel, and when they are related to different panels, the above-mentioned Different options (aspects/configurations/controls) of the first/second/third/fourth embodiments may be applied. For example, a PHR MAC CE reporting two PH fields for the same panel and a PHR MAC CE reporting two PH fields for a different panel may have different configurations.
 なお、MPE報告は、M-TRP向けのPHR報告と一緒にサポートされなくてもよい。例えば、UEは、あるサービングセルについて、M-TRP PUSCH繰り返しと、2つのTRPへのPUSCHのための2つのPHRと、の少なくとも一方が設定/サポート/有効化される場合には、FR2のMPE報告が設定されることを予期しなくてもよい。 Note that MPE reporting may not be supported together with PHR reporting for M-TRP. For example, the UE, for a serving cell, M-TRP PUSCH repetition and two PHR for PUSCH to two TRP, if at least one of is configured / supported / enabled, FR2 MPE reporting may not be expected to be set.
 また、例えば、UEは、あるサービングセルについて、M-TRP PUSCH繰り返しと、2つのTRPへのPUSCHのための2つのPHRと、の少なくとも一方が設定/サポート/有効化される場合には、FR2のMPE報告の設定を無視してもよいし、受信した設定情報(実際の設定)に関わらずFR2のMPE報告が設定されないと想定してもよい。 Also, for example, the UE, for a certain serving cell, M-TRP PUSCH repetition and two PHRs for PUSCH to two TRP, at least one of is configured / supported / enabled, FR2 of The setting of MPE reporting may be ignored, or it may be assumed that FR2 MPE reporting is not set regardless of the received configuration information (actual configuration).
 なお、上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。 It should be noted that at least one of the above-described embodiments may be applied only to UEs that report specific UE capabilities or support the specific UE capabilities.
 当該特定のUE能力は、以下の少なくとも1つを示してもよい:
 ・マルチTRPのPUSCH繰り返しをサポートするか否か、
 ・(サービングセルにつき)2つのPH/PCMAX/P/MPEフィールド(を含むPHR MAC CE)をサポートするか否か、
 ・2つのTRPへのPUSCHのための2つのPHRをサポートするか否か、
 ・MPE報告をサポートするか否か、
 ・MPE報告を、M-TRP PUSCH繰り返しと、2つのTRPへのPUSCHのための2つのPHRと、の少なくとも一方と一緒にサポートするか否か。
The specific UE capabilities may indicate at least one of the following:
Whether or not to support PUSCH repetition of multi-TRP;
Whether to support two PH/P CMAX /P/MPE fields (including PHR MAC CE) (per serving cell);
Whether to support two PHRs for PUSCH to two TRPs;
whether to support MPE reporting;
• Whether to support MPE reporting with M-TRP PUSCH repetition and/or two PHRs for PUSCH to two TRPs.
 なお、上記特定のUE能力は、サービングセル/BWP/FRごとに決定されてもよい。 Note that the specific UE capability may be determined for each serving cell/BWP/FR.
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリングによって上述の実施形態に関連する特定の情報を設定された場合に適用されてもよい(設定されない場合は、例えばRel.15/16の動作を適用する)。例えば、当該特定の情報は、マルチTRPのPUSCH繰り返しを有効化することを示す情報、複数のPH/PCMAX/P/MPEフィールド(を含むPHR MAC CE)を有効化する/設定することを示す情報、特定のリリース(例えば、Rel.17、18)向けの任意のRRCパラメータなどであってもよい。また、上述のどの実施形態/ケース/条件に基づいてPHRの制御を行うかについて、UEは上位レイヤパラメータを用いて設定されてもよい。 Also, at least one of the above embodiments may be applied if the UE is configured with specific information related to the above embodiments by higher layer signaling (if not configured, for example Rel. 15/ 16 operations apply). For example, the specific information indicates to enable/set multiple PH/P CMAX /P/MPE fields (including PHR MAC CE), information indicating to enable multi-TRP PUSCH repetition. Information, arbitrary RRC parameters for a specific release (eg, Rel. 17, 18), etc. In addition, the UE may be configured using higher layer parameters as to which embodiment/case/condition described above is used to control the PHR.
 なお、上述の実施形態は、PUSCH繰り返しタイプA/タイプBが利用される場合に適用されてもよい。 Note that the above-described embodiment may be applied when PUSCH repetition type A/type B is used.
 なお、上述の実施形態は、MTRP繰り返しの特定のマッピングパターン(巡回(cyclical)、連続(sequential)、等分(half-half)など)が利用される場合に適用されてもよい。 Note that the above-described embodiments may be applied when a specific mapping pattern of MTRP repetitions (cyclical, sequential, half-half, etc.) is used.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(wireless communication system)
A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below. In this radio communication system, communication is performed using any one of the radio communication methods according to the above embodiments of the present disclosure or a combination thereof.
 図7は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 7 is a diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment. The wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 The wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc. may be included.
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB) )) may be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 A wireless communication system 1 includes a base station 11 forming a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) arranged in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. You may prepare. A user terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminals 20 are not limited to the embodiment shown in the figure. Hereinafter, the base stations 11 and 12 are collectively referred to as the base station 10 when not distinguished.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may connect to at least one of the multiple base stations 10 . The user terminal 20 may utilize at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)). Macrocell C1 may be included in FR1, and small cell C2 may be included in FR2. For example, FR1 may be a frequency band below 6 GHz (sub-6 GHz), and FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Also, the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 A plurality of base stations 10 may be connected by wire (for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is an IAB Also called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 directly or via another base station 10 . The core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal compatible with at least one of communication schemes such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the radio communication system 1, a radio access scheme based on orthogonal frequency division multiplexing (OFDM) may be used. For example, in at least one of Downlink (DL) and Uplink (UL), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 A radio access method may be called a waveform. Note that in the radio communication system 1, other radio access schemes (for example, other single-carrier transmission schemes and other multi-carrier transmission schemes) may be used as the UL and DL radio access schemes.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the radio communication system 1, as downlink channels, a downlink shared channel (Physical Downlink Shared Channel (PDSCH)) shared by each user terminal 20, a broadcast channel (Physical Broadcast Channel (PBCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)) or the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 In the radio communication system 1, as uplink channels, an uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), a random access channel (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH. User data, higher layer control information, and the like may be transmitted by PUSCH. Also, a Master Information Block (MIB) may be transmitted by the PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by the PDCCH. The lower layer control information may include, for example, downlink control information (DCI) including scheduling information for at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 The DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. PDSCH may be replaced with DL data, and PUSCH may be replaced with UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (CControl Resource SET (CORESET)) and a search space (search space) may be used for PDCCH detection. CORESET corresponds to a resource searching for DCI. The search space corresponds to the search area and search method of PDCCH candidates. A CORESET may be associated with one or more search spaces. The UE may monitor CORESETs associated with certain search spaces based on the search space settings.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. Note that "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. in the present disclosure may be read interchangeably.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 By PUCCH, channel state information (CSI), acknowledgment information (for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.) and scheduling request (Scheduling Request ( SR)) may be transmitted. A random access preamble for connection establishment with a cell may be transmitted by the PRACH.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 In addition, in the present disclosure, downlink, uplink, etc. may be expressed without adding "link". Also, various channels may be expressed without adding "Physical" to the head.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, synchronization signals (SS), downlink reference signals (DL-RS), etc. may be transmitted. In the radio communication system 1, the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS)), Phase Tracking Reference Signal (PTRS)), etc. may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS). A signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS Block (SSB), and so on. Note that SS, SSB, etc. may also be referred to as reference signals.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 Also, in the radio communication system 1, even if measurement reference signals (SRS), demodulation reference signals (DMRS), etc. are transmitted as uplink reference signals (UL-RS), good. Note that DMRS may also be called a user terminal-specific reference signal (UE-specific reference signal).
(基地局)
 図8は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 8 is a diagram illustrating an example of the configuration of a base station according to one embodiment. The base station 10 comprises a control section 110 , a transmission/reception section 120 , a transmission/reception antenna 130 and a transmission line interface 140 . One or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 It should be noted that this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the base station 10 as a whole. The control unit 110 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping), and the like. The control unit 110 may control transmission/reception, measurement, etc. using the transmission/reception unit 120 , the transmission/reception antenna 130 and the transmission line interface 140 . The control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer them to the transmission/reception unit 120 . The control unit 110 may perform call processing (setup, release, etc.) of communication channels, state management of the base station 10, management of radio resources, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 120 may include a baseband section 121 , a radio frequency (RF) section 122 and a measuring section 123 . The baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212 . The transmitting/receiving unit 120 is configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit. The transmission section may be composed of the transmission processing section 1211 and the RF section 122 . The receiving section may be composed of a reception processing section 1212 , an RF section 122 and a measurement section 123 .
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmitting/receiving unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like. The transmitting/receiving unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitting/receiving unit 120 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission/reception unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (DFT) on the bit string to be transmitted. Processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-to-analog conversion may be performed, and the baseband signal may be output.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmitting/receiving unit 120 (RF unit 122) may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 130. .
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission/reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, Fast Fourier transform (FFT) processing, and Inverse Discrete Fourier transform (IDFT) processing on the acquired baseband signal. )) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing. User data and the like may be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmitting/receiving unit 120 (measuring unit 123) may measure the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal. The measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)) , signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), and the like may be measured. The measurement result may be output to control section 110 .
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission path interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, etc., and user data (user plane data) for the user terminal 20, control plane data, and the like. Data and the like may be obtained, transmitted, and the like.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 The transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission line interface 140.
 なお、送受信部120は、1つのサービングセルについて2つのPower Headroom(PH)フィールドをMedium Access Control(MAC)制御要素に含めることを設定する情報(例えば、RRCパラメータ)を、ユーザ端末20に送信してもよい。 In addition, the transmitting/receiving unit 120 transmits to the user terminal 20 information (for example, RRC parameters) for setting the inclusion of two Power Headroom (PH) fields in the Medium Access Control (MAC) control element for one serving cell. good too.
 送受信部120は、前記2つのPHフィールドのうち少なくとも一方に関するPCMAX,f,cフィールドを含む前記MAC制御要素を、前記ユーザ端末20から受信してもよい。 The transmitting/receiving unit 120 may receive from the user terminal 20 the MAC control element including the P CMAX, f, c fields for at least one of the two PH fields.
 また、送受信部120は、2つのPower Headroom(PH)に関する最大許容曝露(Maximum Permitted Exposure(MPE)) 電力管理最大電力低減(Power Management Maximum Power Reduction(P-MPR))報告のトリガ条件に関する設定情報(例えば、mpe-Threshold、mpe-ProhibitTimer、phr-Tx-PowerFactorChange)を、ユーザ端末20に送信してもよい。 In addition, the transmitting/receiving unit 120 provides setting information related to trigger conditions for Maximum Permitted Exposure (MPE) Power Management Maximum Power Reduction (P-MPR) reporting for the two Power Headrooms (PH) (eg, mpe-Threshold, mpe-ProhibitTimer, phr-Tx-PowerFactorChange) may be sent to the user terminal 20 .
 送受信部120は、前記2つのPHの少なくとも一方に関連する前記トリガ条件に基づいてトリガされた前記MPE P-MPR報告を、前記ユーザ端末20から受信してもよい。 The transmitting/receiving unit 120 may receive from the user terminal 20 the MPE P-MPR report triggered based on the trigger condition related to at least one of the two PHs.
(ユーザ端末)
 図9は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(user terminal)
FIG. 9 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment. The user terminal 20 includes a control section 210 , a transmission/reception section 220 and a transmission/reception antenna 230 . One or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 It should be noted that this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the user terminal 20 as a whole. The control unit 210 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, and the like. The control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230 . The control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals and transfer them to the transmission/reception unit 220 .
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 220 may include a baseband section 221 , an RF section 222 and a measurement section 223 . The baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212 . The transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit. The transmission section may be composed of a transmission processing section 2211 and an RF section 222 . The receiving section may include a reception processing section 2212 , an RF section 222 and a measurement section 223 .
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 230 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmitting/receiving unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like. The transmitting/receiving unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitter/receiver 220 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmitting/receiving unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (eg, RLC retransmission control), MAC layer processing (eg, , HARQ retransmission control) and the like may be performed to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission/reception unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing on a bit string to be transmitted. , precoding, digital-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Whether or not to apply DFT processing may be based on transform precoding settings. Transmitting/receiving unit 220 (transmission processing unit 2211), for a certain channel (for example, PUSCH), if transform precoding is enabled, the above to transmit the channel using the DFT-s-OFDM waveform The DFT process may be performed as the transmission process, or otherwise the DFT process may not be performed as the transmission process.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmitting/receiving unit 220 (RF unit 222) may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 230. .
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving section 220 (RF section 222) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (error correction) on the acquired baseband signal. decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmitting/receiving section 220 (measuring section 223) may measure the received signal. For example, the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal. The measuring unit 223 may measure received power (eg, RSRP), received quality (eg, RSRQ, SINR, SNR), signal strength (eg, RSSI), channel information (eg, CSI), and the like. The measurement result may be output to control section 210 .
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 Note that the transmitter and receiver of the user terminal 20 in the present disclosure may be configured by at least one of the transmitter/receiver 220 and the transmitter/receiver antenna 230 .
 なお、制御部210は、1つのサービングセルについて2つのPower Headroom(PH)フィールドを含み、当該2つのPHフィールドのうち少なくとも一方に関するPCMAX,f,cフィールドを含むMedium Access Control(MAC)制御要素を生成してもよい。 Note that the control unit 210 includes two Power Headroom (PH) fields for one serving cell, P CMAX, f, c field for at least one of the two PH fields Medium Access Control (MAC) control element including may be generated.
 送受信部220は、前記MAC制御要素を送信してもよい。 The transmitting/receiving unit 220 may transmit the MAC control element.
 また、制御部210は、2つのPower Headroom(PH)に関する最大許容曝露(Maximum Permitted Exposure(MPE)) 電力管理最大電力低減(Power Management Maximum Power Reduction(P-MPR))報告を、前記2つのPHの少なくとも一方に関連するトリガ条件に基づいてトリガしてもよい。 In addition, the control unit 210 reports the Maximum Permitted Exposure (MPE) Power Management Maximum Power Reduction (P-MPR) report for the two Power Headrooms (PH), may be triggered based on a trigger condition associated with at least one of
 送受信部220は、トリガされた前記MPE P-MPR報告を送信してもよい。 The transmitting/receiving unit 220 may transmit the triggered MPE P-MPR report.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
It should be noted that the block diagrams used in the description of the above embodiments show blocks in units of functions. These functional blocks (components) are implemented by any combination of at least one of hardware and software. Also, the method of realizing each functional block is not particularly limited. That is, each functional block may be implemented using one device physically or logically coupled, or directly or indirectly using two or more physically or logically separated devices (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices. A functional block may be implemented by combining software in the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 where function includes judgment, decision, determination, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deem , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (component) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図10は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 10 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to one embodiment. The base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the present disclosure, terms such as apparatus, circuit, device, section, and unit can be read interchangeably. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be multiple processors. Also, processing may be performed by one processor, or processing may be performed by two or more processors concurrently, serially, or otherwise. Note that processor 1001 may be implemented by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as a processor 1001 and a memory 1002, the processor 1001 performs calculations, communication via the communication device 1004 and at least one of reading and writing data in the memory 1002 and the storage 1003 .
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system and controls the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like. For example, at least part of the above-described control unit 110 (210), transmission/reception unit 120 (220), etc. may be realized by the processor 1001. FIG.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Also, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 110 (210) may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), or at least any other suitable storage medium. may be configured by one. The memory 1002 may also be called a register, cache, main memory (main storage device), or the like. The memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also be called an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD), for example. may be configured to include For example, the transmitting/receiving unit 120 (220), the transmitting/receiving antenna 130 (230), and the like described above may be realized by the communication device 1004. FIG. The transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
The terms explained in this disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, channel, symbol and signal (signal or signaling) may be interchanged. A signal may also be a message. A reference signal may be abbreviated as RS, and may also be called a pilot, a pilot signal, etc., depending on the applicable standard. A component carrier (CC) may also be called a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may consist of one or more periods (frames) in the time domain. Each of the one or more periods (frames) that make up a radio frame may be called a subframe. Furthermore, a subframe may consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, a numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration , a particular filtering process performed by the transceiver in the frequency domain, a particular windowing process performed by the transceiver in the time domain, and/or the like.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. A slot may also be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 A slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (PUSCH) Mapping Type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum scheduling time unit in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 A TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like. A TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms, and the short TTI (e.g., shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms A TTI having the above TTI length may be read instead.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain. The number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve. The number of subcarriers included in an RB may be determined based on neumerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Also, an RB may contain one or more symbols in the time domain and may be 1 slot, 1 minislot, 1 subframe or 1 TTI long. One TTI, one subframe, etc. may each be configured with one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are Physical Resource Block (PRB), Sub-Carrier Group (SCG), Resource Element Group (REG), PRB pair, RB Also called a pair.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Also, a resource block may be composed of one or more resource elements (Resource Element (RE)). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP) (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier. good too. Here, the common RB may be identified by an RB index based on the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or multiple BWPs may be configured for a UE within one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be read as "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 It should be noted that the structures of radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples. For example, the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not restrictive names in any respect. Further, the formulas and the like using these parameters may differ from those expressly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable names, the various names assigned to these various channels and information elements are not limiting names in any way. .
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 Also, information, signals, etc. can be output from a higher layer to a lower layer and/or from a lower layer to a higher layer. Information, signals, etc. may be input and output through multiple network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Input and output information, signals, etc. may be overwritten, updated or appended. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 Notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods. For example, the notification of information in the present disclosure includes physical layer signaling (e.g., Downlink Control Information (DCI)), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or combinations thereof may be performed by
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 The physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like. RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like. Also, MAC signaling may be notified using, for example, a MAC Control Element (CE).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, notification of predetermined information (for example, notification of “being X”) is not limited to explicit notification, but implicit notification (for example, by not notifying the predetermined information or by providing another information by notice of
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value (0 or 1) represented by 1 bit, or by a boolean value represented by true or false. , may be performed by numerical comparison (eg, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) , a server, or other remote source, these wired and/or wireless technologies are included within the definition of transmission media.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. A “network” may refer to devices (eg, base stations) included in a network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, "precoding", "precoder", "weight (precoding weight)", "Quasi-Co-Location (QCL)", "Transmission Configuration Indication state (TCI state)", "spatial "spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel" are interchangeable. can be used as intended.
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission Point (TP)", "Reception Point (RP)", "Transmission/Reception Point (TRP)", "Panel" , “cell,” “sector,” “cell group,” “carrier,” “component carrier,” etc. may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is assigned to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head (RRH))) may also provide communication services. The terms "cell" or "sector" refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)", "user terminal", "User Equipment (UE)", and "terminal" are used interchangeably. can be
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , a handset, a user agent, a mobile client, a client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a moving object, the mobile itself, or the like.
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。 The moving body refers to a movable object, the speed of movement is arbitrary, and it naturally includes cases where the moving body is stationary. Examples of such moving bodies include vehicles, transportation vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , airplanes, rockets, satellites, drones, multi-copters, quad-copters, balloons and objects mounted on them. Further, the mobile body may be a mobile body that autonomously travels based on an operation command.
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 The mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
 図11は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。 FIG. 11 is a diagram showing an example of a vehicle according to one embodiment. The vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, revolution sensor 51, air pressure sensor 52, vehicle speed sensor 53, acceleration sensor 54, accelerator pedal sensor 55, brake pedal sensor 56, shift lever sensor 57, and object detection sensor 58), information service unit 59 and communication module 60. Prepare.
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。 The driving unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor. The steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。 The electronic control unit 49 is composed of a microprocessor 61 , a memory (ROM, RAM) 62 , and a communication port (eg, input/output (IO) port) 63 . Signals from various sensors 50 to 58 provided in the vehicle are input to the electronic control unit 49 . The electronic control unit 49 may be called an Electronic Control Unit (ECU).
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。 The signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheels 46/rear wheels 47 obtained by the rotation speed sensor 51, and an air pressure sensor 52. air pressure signal of front wheels 46/rear wheels 47, vehicle speed signal obtained by vehicle speed sensor 53, acceleration signal obtained by acceleration sensor 54, depression amount signal of accelerator pedal 43 obtained by accelerator pedal sensor 55, brake pedal sensor The brake pedal 44 depression amount signal obtained by 56, the operation signal of the shift lever 45 obtained by the shift lever sensor 57, and the detection for detecting obstacles, vehicles, pedestrians, etc. obtained by the object detection sensor 58. There are signals.
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。 The information service unit 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios for providing (outputting) various information such as driving information, traffic information, and entertainment information, and these devices. and one or more ECUs that control The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service unit 59 may include an input device (e.g., keyboard, mouse, microphone, switch, button, sensor, touch panel, etc.) that receives input from the outside, and an output device that outputs to the outside (e.g., display, speaker, LED lamp, touch panel, etc.).
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving support system unit 64 includes a millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., Global Navigation Satellite System (GNSS), etc.), map information (e.g., High Definition (HD)) maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMU), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving load, and one or more devices that control these devices ECU. In addition, the driving support system unit 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。 The communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63 . For example, the communication module 60 communicates with the vehicle 40 through a communication port 63 such as a driving unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。 The communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from an external device via wireless communication. Communication module 60 may be internal or external to electronic control 49 . The external device may be, for example, the above-described base station 10, user terminal 20, or the like. Also, the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (and may function as at least one of the base station 10 and the user terminal 20).
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 60 receives signals from the various sensors 50 to 58 described above input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. may be transmitted to the external device via wireless communication. The electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be called an input unit that receives input. For example, the PUSCH transmitted by communication module 60 may include information based on the above inputs.
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。 The communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device and displays it on the information service unit 59 provided in the vehicle. The information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as displays and speakers based on the PDSCH received by the communication module 60 (or data/information decoded from the PDSCH)). may be called
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。 Also, the communication module 60 stores various information received from an external device in a memory 62 that can be used by the microprocessor 61 . Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, the steering unit 42, the accelerator pedal 43, the brake pedal 44, the shift lever 45, the left and right front wheels 46, and the left and right rear wheels provided in the vehicle 40. 47, axle 48, and various sensors 50-58 may be controlled.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。 Also, the base station in the present disclosure may be read as a user terminal. For example, communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.) Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the user terminal 20 may have the functions of the base station 10 described above. In addition, words such as "uplink" and "downlink" may be replaced with words corresponding to communication between terminals (for example, "sidelink"). For example, uplink channels, downlink channels, etc. may be read as sidelink channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, user terminals in the present disclosure may be read as base stations. In this case, the base station 10 may have the functions of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, operations that are assumed to be performed by the base station may be performed by its upper node in some cases. In a network that includes one or more network nodes with a base station, various operations performed for communication with a terminal may involve the base station, one or more network nodes other than the base station (e.g., Clearly, this can be done by a Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Also, the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG (x is, for example, an integer or a decimal number)), Future Radio Access (FRA), New-Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802 .11 (Wi-Fi®), IEEE 802.16 (WiMAX®), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth®, or any other suitable wireless communication method. It may be applied to a system to be used, a next-generation system extended, modified, created or defined based on these. Also, multiple systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The term "based on" as used in this disclosure does not mean "based only on" unless otherwise specified. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using the "first," "second," etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "determination" includes judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry ( For example, looking up in a table, database, or another data structure), ascertaining, etc. may be considered to be "determining."
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 Also, "determining (deciding)" includes receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access ( accessing (e.g., accessing data in memory), etc.
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 Also, "determining" is considered to be "determining" resolving, selecting, choosing, establishing, comparing, etc. good too. That is, "determining (determining)" may be regarded as "determining (determining)" some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 Also, "judgment (decision)" may be read as "assuming", "expecting", or "considering".
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 "Maximum transmit power" described in this disclosure may mean the maximum value of transmit power, may mean the nominal maximum transmit power (the nominal UE maximum transmit power), or may mean the rated maximum transmit power (the rated UE maximum transmit power).
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 The terms “connected”, “coupled”, or any variation thereof, as used in this disclosure, refer to any connection or coupling, direct or indirect, between two or more elements. and can include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access".
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In this disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, radio frequency domain, microwave They can be considered to be “connected” or “coupled” together using the domain, electromagnetic energy having wavelengths in the optical (both visible and invisible) domain, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean that "A and B are different from C". Terms such as "separate," "coupled," etc. may also be interpreted in the same manner as "different."
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include," "including," and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising." is intended. Furthermore, the term "or" as used in this disclosure is not intended to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, when articles are added by translation, such as a, an, and the in English, the disclosure may include that nouns following these articles are plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is obvious to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as modifications and changes without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for illustrative purposes and does not impose any limitation on the invention according to the present disclosure.
 本出願は、2022年2月25日出願の特願2022-28457に基づく。この内容は、すべてここに含めておく。 This application is based on Japanese Patent Application No. 2022-28457 filed on February 25, 2022. All of this content is included here.

Claims (3)

  1.  2つのPower Headroom(PH)に関する最大許容曝露(Maximum Permitted Exposure(MPE)) 電力管理最大電力低減(Power Management Maximum Power Reduction(P-MPR))報告を、前記2つのPHの少なくとも一方に関連するトリガ条件に基づいてトリガする制御部と、
     トリガされた前記MPE P-MPR報告を送信する送信部と、を有する端末。
    Maximum Permitted Exposure (MPE) for two Power Headrooms (PH) Trigger Power Management Maximum Power Reduction (P-MPR) reporting associated with at least one of the two PHs a control that triggers based on a condition;
    a transmitter that transmits the triggered MPE P-MPR report.
  2.  2つのPower Headroom(PH)に関する最大許容曝露(Maximum Permitted Exposure(MPE)) 電力管理最大電力低減(Power Management Maximum Power Reduction(P-MPR))報告を、前記2つのPHの少なくとも一方に関連するトリガ条件に基づいてトリガするステップと、
     トリガされた前記MPE P-MPR報告を送信するステップと、を有する端末の無線通信方法。
    Maximum Permitted Exposure (MPE) for two Power Headrooms (PH) Trigger Power Management Maximum Power Reduction (P-MPR) reporting associated with at least one of the two PHs a step that triggers based on a condition;
    and transmitting the triggered MPE P-MPR report.
  3.  2つのPower Headroom(PH)に関する最大許容曝露(Maximum Permitted Exposure(MPE)) 電力管理最大電力低減(Power Management Maximum Power Reduction(P-MPR))報告のトリガ条件に関する設定情報を、端末に送信する送信部と、
     前記2つのPHの少なくとも一方に関連する前記トリガ条件に基づいてトリガされた前記MPE P-MPR報告を、前記端末から受信する受信部と、を有する基地局。
    Maximum Permitted Exposure (MPE) for two Power Headrooms (PH) Transmission to send configuration information to the terminal regarding trigger conditions for Power Management Maximum Power Reduction (P-MPR) reporting Department and
    a receiver that receives from the terminal the MPE P-MPR reports triggered based on the trigger condition associated with at least one of the two PHs.
PCT/JP2023/004634 2022-02-25 2023-02-10 Terminal, wireless communication method, and base station WO2023162727A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-028457 2022-02-25
JP2022028457 2022-02-25

Publications (1)

Publication Number Publication Date
WO2023162727A1 true WO2023162727A1 (en) 2023-08-31

Family

ID=87765821

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004634 WO2023162727A1 (en) 2022-02-25 2023-02-10 Terminal, wireless communication method, and base station

Country Status (1)

Country Link
WO (1) WO2023162727A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149259A1 (en) * 2020-01-24 2021-07-29 株式会社Nttドコモ Terminal, wireless communication method, and base station

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149259A1 (en) * 2020-01-24 2021-07-29 株式会社Nttドコモ Terminal, wireless communication method, and base station

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "Measurements on deactivated SCG", 3GPP DRAFT; R2-2110555, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20210816 - 20210827, 22 October 2021 (2021-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052067000 *
NOKIA, NOKIA SHANGHAI BELL: "UE behaviour while SCG is deactivated", 3GPP DRAFT; R2-2203184, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic; 20220221 - 20220303, 15 February 2022 (2022-02-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052114977 *

Similar Documents

Publication Publication Date Title
WO2023162727A1 (en) Terminal, wireless communication method, and base station
WO2023157773A1 (en) Terminal, wireless communication method, and base station
WO2023223986A1 (en) Terminal, radio communication method, and base station
WO2023223988A1 (en) Terminal, wireless communication method, and base station
WO2023152905A1 (en) Terminal, wireless communication method, and base station
WO2023148871A1 (en) Terminal, wireless communication method, and base station
WO2023223987A1 (en) Terminal, radio communication method, and base station
WO2023162436A1 (en) Terminal, wireless communication method, and base station
WO2023135759A1 (en) Terminal, wireless communication method, and base station
WO2023162726A1 (en) Terminal, wireless communication method, and base station
WO2023068070A1 (en) Terminal, wireless communication method, and base station
WO2023135758A1 (en) Terminal, wireless communication method, and base station
WO2023203763A1 (en) Terminal, wireless communication method, and base station
WO2023136055A1 (en) Terminal, radio communication method, and base station
WO2023162724A1 (en) Terminal, wireless communication method, and base station
WO2023085354A1 (en) Terminal, wireless communication method, and base station
WO2023053407A1 (en) Terminal, wireless communication method and base station
WO2023053408A1 (en) Terminal, wireless communication method and base station
WO2023100317A1 (en) Terminal, wireless communication method, and base station
WO2023195162A1 (en) Terminal, wireless communication method, and base station
WO2023203681A1 (en) Terminal, wireless communication method, and base station
WO2023095288A1 (en) Terminal, wireless communication method and base station
WO2023095289A1 (en) Terminal, wireless communication method, and base station
WO2023195161A1 (en) Terminal, wireless communication method, and base station
WO2023162437A1 (en) Terminal, wireless communication method, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759731

Country of ref document: EP

Kind code of ref document: A1