WO2023162686A1 - Energizing device, molding device, and energizing method - Google Patents

Energizing device, molding device, and energizing method Download PDF

Info

Publication number
WO2023162686A1
WO2023162686A1 PCT/JP2023/004064 JP2023004064W WO2023162686A1 WO 2023162686 A1 WO2023162686 A1 WO 2023162686A1 JP 2023004064 W JP2023004064 W JP 2023004064W WO 2023162686 A1 WO2023162686 A1 WO 2023162686A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
conductive member
unit
energizing
molding
Prior art date
Application number
PCT/JP2023/004064
Other languages
French (fr)
Japanese (ja)
Inventor
啓 山内
清正 鴻上
Original Assignee
住友重機械工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友重機械工業株式会社 filed Critical 住友重機械工業株式会社
Publication of WO2023162686A1 publication Critical patent/WO2023162686A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D24/00Special deep-drawing arrangements in, or in connection with, presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D26/00Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces
    • B21D26/02Shaping without cutting otherwise than using rigid devices or tools or yieldable or resilient pads, i.e. applying fluid pressure or magnetic forces by applying fluid pressure
    • B21D26/033Deforming tubular bodies
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating

Definitions

  • the present disclosure relates to an energization device, a molding device, and an energization method.
  • Patent Document 1 describes a mold having a lower mold and an upper mold that are paired with each other, a gas supply unit that supplies gas into a metal pipe material held between the molds, and a metal pipe material that is held between the molds. and a heating section for heating metal pipe material.
  • an object of the present disclosure is to provide an energization device, a molding device, and an energization method that enable a power supply unit to easily supply power to an energization unit even when the layout of the device is changed.
  • An energization device is an energization device that energizes a metal material and is used in a molding device that molds a metal material, and includes an energization unit that energizes the metal material and a power supply that supplies power to the energization unit. and changing the power feeding position of the power feeding part with respect to the current-carrying part according to the shape of the metal material.
  • An energization device includes an energization unit that energizes a metal material and a power supply unit that energizes the energization unit. Therefore, the energizing device can energize the metal material from the energizing portion by supplying power from the power feeding portion to the energizing portion when the energizing device is energized.
  • the power supply device changes the power supply position of the power supply unit with respect to the current supply unit according to the shape of the metal material. In this case, even if the layout of the device needs to be changed according to the shape of the metal material, it is possible to easily supply power to the current-carrying parts simply by changing the power supply position. As described above, even when the layout of the device is changed, the power supply unit can easily supply power to the current-carrying unit.
  • the power supply may have a transmission member extending to transmit current from the power supply to the power supply location.
  • the power supply unit can easily supply power from the power supply unit to the power supply position by means of a transmission member such as a bus bar or a water-cooled cable.
  • the energization device may be able to three-dimensionally change the power supply position.
  • the energization device can arrange the power supply position at a more appropriate position according to the shape of the metal material.
  • the power supply unit includes a first conductive member extending in a first direction parallel to the horizontal direction, and a second conductive member connected to a predetermined position in the first direction with respect to the first conductive member. and capable of changing the connection position of the second conductive member in the first direction with respect to the first conductive member.
  • the current-carrying portion can easily adjust the power supply position in the first direction simply by changing the connection position of the second conductive member with respect to the first conductive member.
  • the power supply unit includes a first conductive member extending in a first direction parallel to the horizontal direction, and a second conductive member connected to a predetermined position in the first direction with respect to the first conductive member. and a power feeding position for the second conductive member in a horizontal direction and in a second direction orthogonal to the first direction.
  • the current-carrying portion can easily adjust the power supply position in the second direction simply by changing the power supply position with respect to the second conductive member.
  • the power supply unit includes a first conductive member extending in a first direction parallel to the horizontal direction, and a second conductive member connected to a predetermined position in the first direction with respect to the first conductive member. and the inclination of the second conductive member can be changed with respect to a horizontal direction and a second direction orthogonal to the first direction. In this case, the current-carrying portion can easily adjust the power feeding position in the second direction simply by changing the inclination of the second conductive member.
  • the power supply unit includes a first conductive member extending in a first direction parallel to the horizontal direction, a second conductive member connected to a predetermined position in the first direction with respect to the first conductive member, and a horizontal and a third conductive member connected to a predetermined position of the second conductive member in a second direction orthogonal to the direction and the first direction, wherein the thickness of the third conductive member in the vertical direction is It may be changeable.
  • the power supply portion can easily adjust the power supply position in the vertical direction simply by changing the thickness of the third member.
  • the power supply unit includes a first conductive member extending in a first direction parallel to the horizontal direction, a second conductive member connected to a predetermined position in the first direction with respect to the first conductive member, and a horizontal and a third conductive member connected to a predetermined position of the second conductive portion in a second direction orthogonal to the direction and the first direction, the main surface of the third conductive member in the horizontal direction may be changeable.
  • the current-carrying part can easily adjust the inclination of the power feeding position with respect to the horizontal direction only by changing the inclination of the main surface of the third conductive member in the horizontal direction.
  • a molding apparatus includes the above-described energizing apparatus and molds a metal material.
  • An energization method is a method for energizing a metal material, which is used for molding a metal material by a molding apparatus, and includes an energization unit that energizes the metal material and a power supply unit that supplies power to the energization unit. and the power supply position of the power supply unit with respect to the current supply unit may be changed according to the shape of the metal material.
  • an energization device a molding device, and an energization method that allow the power supply unit to easily supply power to the energization unit even when the layout of the device is changed.
  • FIG. 1 is a schematic configuration diagram showing a molding device according to an embodiment of the present disclosure
  • FIG. FIG. 2(a) is a schematic side view showing the heating and expansion unit.
  • FIG. 2(b) is a cross-sectional view showing how the nozzle seals the metal pipe material.
  • 1 is a schematic plan view of a molding device provided with an energizing device;
  • FIG. It is a side view of a molding device provided with an energization device.
  • . 4 is an enlarged cross-sectional view of the vicinity of a power supply plate;
  • FIG. 3 is a plan view showing an embedded busbar and a plate-like busbar;
  • FIG. 5 is a cross-sectional view taken along line VII-VII shown in FIG. 4;
  • FIG. 8 is an enlarged cross-sectional view showing a structure near a transmission member in FIG. 7;
  • FIG. 10 is a conceptual diagram for explaining change in power supply position;
  • FIG. 10 is a conceptual diagram for explaining change in power supply position;
  • FIG. 10 is a conceptual diagram for explaining change in power supply position;
  • FIG. 10 is a conceptual diagram for explaining change in power supply position;
  • FIG. 1 is a schematic configuration diagram of a molding device 1 according to this embodiment.
  • a molding apparatus 1 is an apparatus for molding a hollow metal pipe by blow molding.
  • the molding device 1 is installed on a horizontal plane.
  • the molding apparatus 1 includes a molding die 2 , a drive mechanism 3 , a holding section 4 , a heating section 5 , a fluid supply section 6 , a cooling section 7 and a control section 8 .
  • the metal pipe material 40 (metal material) refers to a hollow article before completion of molding by the molding apparatus 1 .
  • the metal pipe material 40 is a hardenable steel type pipe material.
  • the direction in which the metal pipe material 40 extends during molding may be referred to as the "longitudinal direction”
  • the direction orthogonal to the longitudinal direction may be referred to as the "width direction”.
  • the molding die 2 is a die for molding the metal pipe 140 from the metal pipe material 40, and includes a lower die 11 and an upper die 12 facing each other in the vertical direction.
  • the lower die 11 and the upper die 12 are constructed from steel blocks.
  • Each of the lower die 11 and the upper die 12 is provided with a recess in which the metal pipe material 40 is accommodated.
  • the lower mold 11 and the upper mold 12 are in close contact with each other (mold closed state), and each recess forms a target-shaped space in which the metal pipe material is to be molded. Therefore, the surface of each recess becomes the molding surface of the molding die 2 .
  • the mold 11 on the lower side is fixed to the base 13 via a die holder or the like.
  • the upper die 12 is fixed to the slide of the drive mechanism 3 via a die holder or the like.
  • the drive mechanism 3 is a mechanism that moves at least one of the lower mold 11 and the upper mold 12.
  • the drive mechanism 3 has a configuration that moves only the upper mold 12 .
  • the drive mechanism 3 includes a slide 21 that moves the upper die 12 so that the lower die 11 and the upper die 12 are joined together, and a pull-back cylinder as an actuator that generates a force to lift the slide 21 upward. 22 , a main cylinder 23 as a drive source that pressurizes the slide 21 downward, and a drive source 24 that applies a drive force to the main cylinder 23 .
  • the holding part 4 is a mechanism that holds the metal pipe material 40 arranged between the lower mold 11 and the upper mold 12 .
  • the holding part 4 has a lower electrode 26 and an upper electrode 27 that hold the metal pipe material 40 at one end in the longitudinal direction of the molding die 2 and a metal pipe material at the other end in the longitudinal direction of the molding die 2 .
  • the lower electrode 26 and the upper electrode 27 on both sides in the longitudinal direction hold the metal pipe material 40 by sandwiching the end portions of the metal pipe material 40 from above and below.
  • the upper surface of the lower electrode 26 and the lower surface of the upper electrode 27 are formed with grooves having a shape corresponding to the outer peripheral surface of the metal pipe material 40 .
  • a driving mechanism (not shown) is provided for the lower electrode 26 and the upper electrode 27 so that they can move independently in the vertical direction.
  • the heating unit 5 heats the metal pipe material 40 .
  • the heating unit 5 is a mechanism that heats the metal pipe material 40 by energizing the metal pipe material 40 .
  • the heating unit 5 heats the metal pipe material 40 between the lower mold 11 and the upper mold 12 while the metal pipe material 40 is separated from the lower mold 11 and the upper mold 12.
  • the heating unit 5 includes the lower electrode 26 and the upper electrode 27 on both sides in the longitudinal direction, and a power source 28 for supplying current to the metal pipe material 40 via these electrodes 26 and 27 .
  • the heating unit may be arranged in a pre-process of the molding apparatus 1 to perform heating outside.
  • the fluid supply unit 6 is a mechanism for supplying high-pressure fluid into the metal pipe material 40 held between the lower mold 11 and the upper mold 12.
  • the fluid supply unit 6 supplies high-pressure fluid to the metal pipe material 40 that has been heated by the heating unit 5 to a high temperature state, thereby expanding the metal pipe material 40 .
  • the fluid supply units 6 are provided on both ends of the molding die 2 in the longitudinal direction.
  • the fluid supply unit 6 includes a nozzle 31 that supplies fluid from the opening at the end of the metal pipe material 40 to the inside of the metal pipe material 40, and a drive that moves the nozzle 31 forward and backward with respect to the opening of the metal pipe material 40. It comprises a mechanism 32 and a source 33 for supplying high pressure fluid into the metal pipe material 40 through the nozzle 31 .
  • the drive mechanism 32 brings the nozzle 31 into close contact with the end of the metal pipe material 40 while ensuring sealing performance during fluid supply and exhaust, and separates the nozzle 31 from the end of the metal pipe material 40 at other times.
  • the fluid supply unit 6 may supply gas such as high-pressure air or inert gas as the fluid. Further, the fluid supply unit 6 and the holding unit 4 having a mechanism for vertically moving the metal pipe material 40 and the heating unit 5 may be included in the same device.
  • FIG. 2(a) is a schematic side view showing the heating and expansion unit 150.
  • FIG. 2(b) is a cross-sectional view showing how the nozzle 31 seals the metal pipe material 40. As shown in FIG.
  • the heating and expansion unit 150 includes the lower electrode 26 and the upper electrode 27 described above, an electrode mounting unit 151 mounting the electrodes 26 and 27, the nozzle 31 and the drive mechanism 32 described above. , a lifting unit 152 and a unit base 153 .
  • the electrode mounting unit 151 includes an elevating frame 154 and electrode frames 156 and 157 . Electrode frames 156 and 157 function as part of drive mechanism 60 that supports and moves electrodes 26 and 27, respectively.
  • the driving mechanism 32 drives the nozzle 31 to move up and down together with the electrode mounting unit 151 .
  • the driving mechanism 32 includes a piston 61 holding the nozzle 31 and a cylinder 62 driving the piston.
  • the lifting unit 152 includes a lifting frame base 64 attached to the upper surface of the unit base 153, and a lifting actuator 66 for applying a lifting motion to the lifting frame 154 of the electrode mounting unit 151 by the lifting frame base 64. ing.
  • the elevating frame base 64 has guide portions 64 a and 64 b that guide the elevating motion of the elevating frame 154 with respect to the unit base 153 .
  • the lifting unit 152 functions as part of the driving mechanism 60 of the holding section 4 .
  • the heating and expansion unit 150 has a plurality of unit bases 153 with different upper surface inclination angles, and by exchanging these bases, the lower electrode 26, the upper electrode 27, the nozzle 31, the electrode mounting unit 151, the driving mechanism 32, the lifting and lowering It is possible to collectively change and adjust the tilt angle of the unit 152 .
  • the nozzle 31 is a tubular member into which the end of the metal pipe material 40 can be inserted.
  • the nozzle 31 is supported by the driving mechanism 32 so that the center line of the nozzle 31 is aligned with the reference line SL1.
  • the inner diameter of the supply port 31a at the end of the nozzle 31 on the metal pipe material 40 side substantially matches the outer diameter of the metal pipe material 40 after expansion molding.
  • the nozzle 31 supplies high-pressure fluid to the metal pipe material 40 from the internal flow path 63 .
  • gas etc. are mentioned as an example of a high-pressure fluid.
  • the cooling unit 7 is a mechanism for cooling the molding die 2 .
  • the cooling section 7 can rapidly cool the metal pipe material 40 when the expanded metal pipe material 40 comes into contact with the molding surface of the molding die 2 .
  • the cooling unit 7 includes flow paths 36 formed inside the lower mold 11 and the upper mold 12 and a water circulation mechanism 37 that supplies and circulates cooling water to the flow paths 36 .
  • the control unit 8 is a device that controls the molding device 1 as a whole.
  • the control unit 8 controls the drive mechanism 3 , the holding unit 4 , the heating unit 5 , the fluid supply unit 6 and the cooling unit 7 .
  • the control unit 8 repeats the operation of molding the metal pipe material 40 with the molding die 2 .
  • the control unit 8 controls the actuators of the holding unit 4 so that the metal pipe material 40 is supported by the lower electrodes 26 on both sides in the longitudinal direction, and then the upper electrodes 27 are lowered to sandwich the metal pipe material 40.
  • the control unit 8 controls the transfer timing from a transfer device such as a robot arm, and arranges the metal pipe material 40 between the lower mold 11 and the upper mold 12 in the open state. good.
  • the control unit 8 may be manually arranged by an operator to place the metal pipe material 40 between the lower mold 11 and the upper mold 12 .
  • the control part 8 controls the heating part 5, and energizes and heats the metal pipe material 40. As shown in FIG. As a result, an axial current flows through the metal pipe material 40, and the electrical resistance of the metal pipe material 40 itself causes the metal pipe material 40 itself to generate heat due to Joule heat.
  • a plurality of controllers 8 may be installed according to the control target device.
  • the control unit 8 controls the drive mechanism 3 to lower the upper mold 12 and bring it closer to the lower mold 11 to close the molding mold 2 .
  • the control unit 8 controls the fluid supply unit 6 to seal the openings at both ends of the metal pipe material 40 with the nozzles 31 and supply the fluid.
  • the metal pipe material 40 softened by heating expands and comes into contact with the molding surface of the molding die 2 .
  • the metal pipe material 40 is shape
  • FIG. 3 is a schematic plan view of the molding apparatus 1 including the energizing device 100.
  • FIG. 4 is a side view of the molding apparatus 1 including the energizing device 100.
  • FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. Further, FIG. 4 shows members related to the current-carrying portion 70 of the heating and expansion unit 150, and other members are appropriately simplified or omitted.
  • the energizing device 100 is a device for energizing the metal pipe material 40 used in the forming device 1 for forming the metal pipe material 40 . As shown in FIGS. 3 and 4 , the energization device 100 includes an energization section 70 and a power supply section 71 .
  • the energization unit 70 is a mechanism that energizes the metal pipe material 40 .
  • the energizing section 70 is a mechanism including the electrodes 26 and 27 described above, and is a mechanism for energizing the metal pipe material 40 in the heating/expansion unit 150 .
  • the power supply unit 71 is a mechanism that supplies power to the current-carrying unit 70 .
  • the power supply unit 71 electrically connects the power source 28 (electricity supply unit) and the power supply unit 70 .
  • the XYZ coordinate system may be used.
  • the X-axis direction (second direction) is the longitudinal direction of the axis of the metal pipe material 40 during molding in the horizontal direction.
  • the Y-axis direction (first direction) is a direction perpendicular to the longitudinal direction.
  • the Z-axis direction is the vertical direction. One side in the X-axis direction and the Y-axis direction is the positive side, and the upper side is the positive side in the Z-axis direction.
  • the energizing device 100 includes a energizing portion 70 and a power feeding portion 71 for the positive end of the metal pipe material 40 in the X-axis direction, and a energizing portion 70 and a power feeding portion for the negative end of the metal pipe material 40 in the X-axis direction. 71 and.
  • the power feeding portion 71 has transmission members 72 and 73 extending to transmit current from the power supply 28 to the power feeding position EP.
  • the transmission member 72 is a member provided on the power supply 28 side.
  • the transmission member 72 extends from the power supply 28 to near the end of the base 13 of the molding apparatus 1 on the positive side in the Y-axis direction.
  • the transmission member 73 is a member provided on the base 13 side.
  • the transmission member 73 extends from near the end of the base 13 on the positive side in the Y-axis direction to the power supply position EP.
  • the negative end of the transmission member 72 in the Y-axis direction is connected to the positive end of the transmission member 73 in the Y-axis direction via a connector 74 (see also FIG. 5).
  • the transmission member 73 is mounted on a movable bolster truck 160 together with the base 13 (see FIG. 4). Accordingly, the transmission member 73 can be removed from the transmission member 72 by removing it from the connector 74 .
  • the connector 74 is provided so that the base 13 can be placed on the mobile carriage and moved, another electrical path attachment/detachment mechanism may be provided.
  • the transmission member 72 is configured by a bus bar formed of a conductive member extending like a belt.
  • the power supply 28 is arranged at a position closer to the negative side in the X-axis direction with respect to the molding die 2 . Therefore, the transmission member 72 for the conductive portion 70 on the positive side in the X-axis direction extends so as to wrap around to the positive side in the X-axis direction more than the transmission member 72 for the conductive portion 70 on the negative side in the X-axis direction.
  • a cover portion 75 is provided around the transmission member 72 to prevent contact from the outside.
  • the conducting section 70 includes the electrodes 26 and 27 described above, a power supply plate 76 and a conductive path 77 .
  • the power supply plate 76 contacts the power supply surface 80 of the transmission member 73 at the power supply position EP. As a result, the power supply plate 76 is supplied with power from the power supply surface 80 of the transmission member 73 .
  • the power supply plate 76 is a plate-like member extending parallel to the XY plane.
  • the power supply plate 76 is arranged inside a through portion 153a penetrating vertically through the unit base 153 .
  • the power supply plate 76 is provided with a conductive elastic body 78 .
  • the conductive elastic body 78 is fitted in a groove formed in the power supply plate 76 .
  • the conductive path 77 is connected to the lower electrode 26 at one end and to the power supply plate 76 at the other end. As a result, the conductive path 77 supplies the current supplied by the power supply plate 76 to the lower electrode 26 .
  • the shape of the conductive path 77 is not particularly limited, and may be changed as appropriate.
  • the power supply device 100 can change the power supply position EP of the power supply part 71 with respect to the power supply part 70 according to the shape of the metal pipe material 40 .
  • the energization device 100 can three-dimensionally change the power feeding position EP. Being three-dimensionally changeable means that the energization device 100 can change at least the power feeding position EP in the X-axis direction, the power feeding position EP in the Y-axis direction, and the power feeding position EP in the Z-axis direction. Furthermore, the energizing device 100 can also change the inclination of the power supply position EP with respect to the XY plane and the inclination of the power supply position EP with respect to the X-axis direction.
  • FIG. 6 is a plan view showing the embedded busbar 81 and the plate-shaped busbar 83.
  • FIG. 7 is a cross-sectional view taken along line VII--VII shown in FIG.
  • FIG. 8 is an enlarged sectional view showing the structure near the transmission member 73 in FIG.
  • the transmission member 73 of the power supply portion 71 includes an embedded bus bar 81 (first conductive member), a block conductor 82, a plate-shaped bus bar 83 (second conductive member), and a block conductor 84 ( a third conductive member);
  • the embedded busbar 81 is a strip-shaped conductive member embedded in the base 13 and extending in the Y-axis direction.
  • the Y-axis direction positive side end of the embedded bus bar 81 is arranged at a position protruding from the Y-axis direction positive side end of the base 13 .
  • the Y-axis direction positive end of the embedded bus bar 81 is connected to the connector 74 via a joint member 86 .
  • the Y-axis direction negative side end of the embedded bus bar 81 is disposed near the Y-axis direction negative side end of the base 13 .
  • the embedded bus bar 81 extends parallel to the Y-axis direction while having a constant width.
  • the thickness direction of the embedded bus bar 81 is parallel to the vertical direction (Z-axis direction).
  • the upper surface of the embedded busbar 81 is embedded at a position lower than the upper surface of the base 13 .
  • a plurality of tile-shaped insulating plates 87 are provided on the upper surface of the embedded busbar 81 .
  • a plurality of insulating plates 87 are arranged in the Y-axis direction and fixed to the embedded bus bar 81 (see FIG. 6).
  • the upper surface of the insulating plate 87 is arranged at the same height as the upper surface of the base 13 .
  • the insulating plate 87 is fixed to the embedded bus bar 81 by screwing. Therefore, the insulating plate 87 at a desired position can be removed from the embedded bus bar 81 by removing the screw.
  • the block conductor 82 is a conductive member fixed to the embedded bus bar 81 at the location where the insulating plate 87 is removed.
  • the block conductor 82 is fixed to the embedded busbar 81 by screwing with its lower surface in contact with the upper surface of the embedded busbar 81 . Since the block conductor 82 is a member that can be replaced with any insulating plate 87 , it has the same shape as the insulating plate 87 . Thereby, the block conductor 82 can change the electricity extraction position in the longitudinal direction (Y-axis direction) of the embedded bus bar 81 .
  • the plate-shaped busbar 83 is a conductive member connected to the embedded busbar 81 at a predetermined position in the Y-axis direction.
  • the plate-shaped bus bar 83 is fixed to the block conductor 82 by screwing with the lower surface in contact with the upper surface of the block conductor 82 .
  • the plate-like bus bar 83 has a rectangular shape whose longitudinal direction is the X-axis direction.
  • the plate-shaped bus bar 83 is arranged so that the region E1 near the positive end in the X-axis direction protrudes from the positive end in the X-axis direction of the embedded bus bar 81 and the block conductor 82 .
  • the plate-shaped bus bar 83 is supported on the upper surface of the base 13 in the region E1 protruding from the block conductor 82 on the positive side in the X-axis direction (see FIG. 7).
  • the block conductor 82 is arranged above the embedded busbar 81 and below the plate-like busbar 83 .
  • the block conductor 82 and the plate-like bus bar 83 may be configured as an integral member.
  • an insulating material 88 is provided between the embedded busbar 81, the block conductor 82, and the plate-like busbar 83.
  • the insulating material 88 is formed so as to cover the bottom surfaces of the embedded busbars 81 and the plate-like busbars 83 and the side surfaces of the embedded busbars 81 and the block conductors 82 .
  • the block conductor 84 is a conductive member connected to a predetermined position of the plate-shaped bus bar 83 in the X-axis direction.
  • the block conductor 84 is fixed to the plate-like bus bar 83 by screwing with its lower surface in contact with the upper surface of the plate-like bus bar 83 .
  • the block conductor 84 is fixed to the region E ⁇ b>1 of the plate-like busbar 83 .
  • the upper surface of the block conductor 84 constitutes the feeding surface 80 of the feeding portion 71, that is, the feeding position EP. Therefore, the height of the power feeding position EP is adjusted by the thickness of the block conductor 84 .
  • the power supply position EP is arranged at a position shifted from the plate-shaped bus bar 83 to the negative side in the X-axis direction at an arbitrary position in the Y-axis direction of the plate-shaped bus bar 83 .
  • the block conductor 82 , plate-shaped bus bar 83 , and block conductor 84 are arranged inside the through portion 153 a of the unit base 153 .
  • the power feeding position EP is set to It is necessary to change to the negative side.
  • the energizing device 100 can change the power feeding position EP with respect to the plate-shaped bus bar 83 in the X-axis direction. That is, the fixing position of the block conductor 84 with respect to the plate-like bus bar 83 in the X-axis direction is changed to the negative side in the X-axis direction. As a result, the power feeding position EP is changed to the negative side in the X-axis direction.
  • the power supply position EP when the position of the heating expansion unit 150 is changed to the positive side in the X-axis direction according to the length of the metal pipe material 40, the power supply position EP is set to It is necessary to change to the positive side.
  • the energizing device 100 can change the power feeding position EP with respect to the plate-shaped bus bar 83 in the X-axis direction. That is, the plate-like bus bar 83 is made longer than that shown in FIG. 9(a).
  • the fixed position in the X-axis direction of the block conductor 84 with respect to the plate-shaped bus bar 83 is changed to the positive side in the X-axis direction. As a result, the power supply position EP changes to the positive side in the X-axis direction.
  • the energizing device 100 can change the connecting position of the plate-shaped bus bar 83 to the embedded bus bar 81 in the Y-axis direction. That is, the fixing position of the plate-like busbar 83 with respect to the embedded busbar 81 in the Y-axis direction is changed to the positive side in the Y-axis direction. As a result, the power supply position EP is changed to the positive side in the Y-axis direction.
  • the energization device 100 can change the inclination of the plate-shaped bus bar 83 with respect to the X-axis direction. That is, the inclination of the plate-shaped busbar 83 with respect to the embedded busbar 81 with respect to the X-axis direction is changed. As a result, the inclination of the power feeding position EP with respect to the X-axis direction is changed.
  • the energization device 100 can change the thickness of the block conductor 84 in the vertical direction. That is, the thickness of the block conductor 84 is changed to be large. As a result, the power supply position EP is changed upward.
  • the power feeding position EP is tilted with respect to the horizontal direction.
  • the energization device 100 can change the inclination of the main surface of the block conductor 84 in the horizontal direction. That is, the upper surface of the block conductor 84 is changed to be inclined. As a result, the power feeding position EP is tilted with respect to the horizontal direction.
  • the energization device 100 includes an energization unit 70 that energizes the metal pipe material 40 and a power supply unit 71 that supplies power to the energization unit 70 . Therefore, the energizing device 100 can energize the metal pipe material 40 from the energizing part 70 by supplying power from the power feeding part 71 to the energizing part 70 at the time of energization.
  • the power supply device 100 changes the power supply position EP of the power supply part 71 with respect to the power supply part 70 according to the shape of the metal pipe material 40 .
  • the power supply portion 71 may have transmission members 72 and 73 extending to transmit current from the power supply 28 to the power supply position EP.
  • the power supply unit 71 can easily supply power from the power supply 28 to the power supply position EP by means of transmission members 72 and 73 such as bus bars and water-cooled cables.
  • the energization device 100 may be able to change the power supply position EP three-dimensionally. In this case, the energization device 100 can arrange the power feeding position EP at a more appropriate position according to the shape of the metal pipe material 40 .
  • the power feeding portion 71 has an embedded busbar 81 extending in the Y-axis direction parallel to the horizontal direction, and a plate-like busbar 83 connected to the embedded busbar 81 at a predetermined position in the Y-axis direction. It may be possible to change the connection position of the plate-shaped bus bar 83 in the Y-axis direction. In this case, the current-carrying portion 70 can easily adjust the power supply position EP in the Y-axis direction simply by changing the connection position of the plate-like busbar 83 with respect to the embedded busbar 81 .
  • the power supply portion 71 has an embedded busbar 81 extending in the Y-axis direction parallel to the horizontal direction, and a plate-like busbar 83 connected to the embedded busbar 81 at a predetermined position in the Y-axis direction. It may be possible to change the power supply position EP with respect to the plate-shaped bus bar 83 in the X-axis direction perpendicular to the Y-axis direction. In this case, the power supply portion 70 can easily adjust the power supply position EP in the X-axis direction only by changing the power supply position EP with respect to the plate-shaped bus bar 83 .
  • the power supply portion 71 has an embedded busbar 81 extending in the Y-axis direction parallel to the horizontal direction, and a plate-like busbar 83 connected to the embedded busbar 81 at a predetermined position in the Y-axis direction.
  • the orientation or angle of the plate-like bus bar 83 may be changeable on the XY plane formed in the X-axis direction orthogonal to the Y-axis direction. In this case, the conducting section 70 can easily adjust the orientation of the power feeding position EP on the XY plane simply by changing the orientation or angle of the plate-shaped bus bar 83 .
  • the power feeding portion 71 includes an embedded bus bar 81 extending in the Y-axis direction parallel to the horizontal direction, a plate-like bus bar 83 connected to the embedded bus bar 81 at a predetermined position in the Y-axis direction, and a horizontal and Y-axis direction. and a block conductor 84 connected to a predetermined position of the plate-shaped bus bar 83 in the orthogonal X-axis direction, and the thickness of the block conductor 84 in the vertical direction may be changeable.
  • the power supply portion 70 can easily adjust the power supply position EP in the vertical direction (Z-axis direction) simply by changing the thickness of the block conductor 84 .
  • the power feeding portion 71 includes an embedded bus bar 81 extending in the Y-axis direction parallel to the horizontal direction, a plate-like bus bar 83 connected to the embedded bus bar 81 at a predetermined position in the Y-axis direction, and a horizontal and Y-axis direction. and a block conductor 84 connected to a predetermined position of the plate-shaped bus bar 83 in the orthogonal X-axis direction, and the inclination of the main surface of the block conductor 84 in the horizontal direction may be changeable.
  • the current-carrying portion 70 can easily adjust the inclination of the power supply position EP with respect to the horizontal direction only by changing the inclination of the main surface of the block conductor 84 in the horizontal direction.
  • the molding apparatus 1 includes the above-described energization apparatus 100 and molds the metal pipe material 40 .
  • the energization method according to the present embodiment is a method for energizing the metal pipe material 40, which is used for molding the metal pipe material 40 by the molding apparatus 1, and includes an energization unit 70 for energizing the metal pipe material 40, and an energization unit 70. , and the power supply position EP of the power supply unit 71 with respect to the current supply unit 70 may be changed according to the shape of the metal pipe material 40 .
  • the molding apparatus 1 and the energization method it is possible to obtain the same functions and effects as those of the energization apparatus 100 described above.
  • the present disclosure is not limited to the above-described embodiments.
  • the overall configuration of the molding apparatus is not limited to that shown in FIG. 1, and can be changed as appropriate without departing from the gist of the disclosure.
  • each of the conductive members 81 to 84 of the power supply portion 71 is merely an example, and can be changed as appropriate without departing from the gist of the disclosure.
  • a busbar is used as the transmission member, but a water-cooled cable may be used as the transmission member.
  • a water-cooled cable may be used as the transmission member.
  • using multiple large-diameter water-cooled cables that lack flexibility in order to pass a large current results in a lack of compactness, the complexity of water-cooling the water-cooled cables, and a large-scale attachment / detachment mechanism for the connector part.
  • a busbar it is more preferable to use a busbar as a transmission member.
  • the molding device may be a molding device that heats a metal material, and a hot stamping molding device may be employed.
  • the power supply unit a first conductive member extending in a first direction parallel to the horizontal direction; a second conductive member connected to the conductive member at a predetermined position in the first direction; The energizing device according to any one of modes 1 to 3, wherein the connection position of the second conductive member in the first direction with respect to the first conductive member can be changed.
  • the power supply unit a first conductive member extending in a first direction parallel to the horizontal direction; a second conductive member connected to the first conductive member at a predetermined position in the first direction; 5.
  • the energization device according to any one of modes 1 to 4, wherein the power feeding position for the second conductive member can be changed in a second direction orthogonal to the horizontal direction and the first direction.
  • the power supply unit a first conductive member extending in a first direction parallel to the horizontal direction; a second conductive member connected to the first conductive member at a predetermined position in the first direction;
  • the energization device according to any one of modes 1 to 5, wherein the inclination of the second conductive member can be changed with respect to a second direction orthogonal to the horizontal direction and the first direction.
  • the power supply unit a first conductive member extending in a first direction parallel to the horizontal direction; a second conductive member connected to a predetermined position in the first direction with respect to the first conductive member; a third conductive member connected to a predetermined position of the second conductive member in a second direction orthogonal to the horizontal direction and the first direction; 7.
  • the energization device according to any one of modes 1 to 6, wherein the thickness of the third conductive member in the vertical direction can be changed.
  • the power supply unit a first conductive member extending in a first direction parallel to the horizontal direction; a second conductive member connected to a predetermined position in the first direction with respect to the first conductive member; a third conductive member connected to a predetermined position of the second conductive portion in a second direction orthogonal to the horizontal direction and the first direction;
  • the energization device according to any one of modes 1 to 7, wherein the inclination of the main surface of the third conductive member in the horizontal direction can be changed.
  • a molding apparatus comprising the energization apparatus according to any one of modes 1 to 8, and molding the metal material.
  • Form 10 A method for energizing a metal material used for molding the metal material by a molding apparatus, a current-carrying unit that energizes the metal material; energizing using an energizing device including a power feeding unit that supplies power to the energizing unit; A power supply method, wherein a power supply position of the power supply unit with respect to the current supply unit is changed according to the shape of the metal material.
  • SYMBOLS 1 Forming apparatus, 40... Metal pipe material (metal material), 70... Current-carrying part, 71... Power supply part, 81... Embedded busbar (first conductive member), 83... Plate-like busbar (second conductive member), 84: block conductor (third conductive member), 100: energizing device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

In the present invention, an energization device that is used in a molding device for molding a metal material and that energizes the metal material comprises an energization unit for energizing the metal material and a power supply unit for supplying power to the energization unit. The power supply position at which the power supply unit supplies power to the energization unit is changed in accordance with the shape of the metal material.

Description

通電装置、成形装置、及び通電方法Energizing device, molding device, and energizing method
 本開示は、通電装置、成形装置、及び通電方法に関する。 The present disclosure relates to an energization device, a molding device, and an energization method.
 従来、加熱された金属材料を成形する成形装置が知られている。例えば、下記特許文献1には、互いに対になる下型及び上型を有する金型と、金型の間に保持された金属パイプ材料内に気体を供給する気体供給部と、通電加熱によって当該金属パイプ材料を加熱する加熱部と、を備える成形装置が開示されている。  Conventionally, a molding device that molds a heated metal material is known. For example, Patent Document 1 below describes a mold having a lower mold and an upper mold that are paired with each other, a gas supply unit that supplies gas into a metal pipe material held between the molds, and a metal pipe material that is held between the molds. and a heating section for heating metal pipe material.
特開2009-220141号公報Japanese Patent Application Laid-Open No. 2009-220141
 ここで、上述のような成形装置においては、加熱部の電極へ電力を供給するために、ブスバーを連結させる場合があった。しかしながら、金属材料の形状等が変更されると、加熱部の装置のレイアウトを変更する必要があり、ブスバーを作り直す必要があった。そのため、装置のレイアウト変更がある場合でも、容易に給電部が通電部へ給電することが求められていた。 Here, in the molding apparatus as described above, there are cases where a bus bar is connected in order to supply electric power to the electrodes of the heating section. However, when the shape or the like of the metal material is changed, it is necessary to change the layout of the device of the heating section, and it is necessary to recreate the busbar. Therefore, even when the layout of the apparatus is changed, it is desired that the power supply unit easily supply power to the current-carrying unit.
 そこで、本開示は、装置のレイアウト変更がある場合でも、容易に給電部が通電部へ給電することができる通電装置、成形装置、及び通電方法を提供することを目的とする。 Therefore, an object of the present disclosure is to provide an energization device, a molding device, and an energization method that enable a power supply unit to easily supply power to an energization unit even when the layout of the device is changed.
 本開示の一態様に係る通電装置は、金属材料を成形する成形装置に用いられる、金属材料に通電する通電装置であって、金属材料に通電を行う通電部と、通電部に給電を行う給電部と、を備え、金属材料の形状に応じて、給電部の通電部に対する給電位置を変更する。 An energization device according to an aspect of the present disclosure is an energization device that energizes a metal material and is used in a molding device that molds a metal material, and includes an energization unit that energizes the metal material and a power supply that supplies power to the energization unit. and changing the power feeding position of the power feeding part with respect to the current-carrying part according to the shape of the metal material.
 本開示の一態様に係る通電装置は、金属材料に通電を行う通電部と、通電部に給電を行う給電部と、を備える。従って、通電装置は、通電時には、給電部から通電部へ給電を行うことで、通電部から金属材料へ通電することができる。ここで、通電装置は、金属材料の形状に応じて、給電部の通電部に対する給電位置を変更する。この場合、金属材料の形状に応じて装置のレイアウト変更が必要になった場合でも、給電位置を変更するだけで、容易に通電部へ給電することが可能になる。以上より、装置のレイアウト変更がある場合でも、容易に給電部が通電部へ給電することができる。 An energization device according to an aspect of the present disclosure includes an energization unit that energizes a metal material and a power supply unit that energizes the energization unit. Therefore, the energizing device can energize the metal material from the energizing portion by supplying power from the power feeding portion to the energizing portion when the energizing device is energized. Here, the power supply device changes the power supply position of the power supply unit with respect to the current supply unit according to the shape of the metal material. In this case, even if the layout of the device needs to be changed according to the shape of the metal material, it is possible to easily supply power to the current-carrying parts simply by changing the power supply position. As described above, even when the layout of the device is changed, the power supply unit can easily supply power to the current-carrying unit.
 給電部は、電気供給部から給電位置へ電流を伝送するように延びる伝送部材を有してよい。この場合、給電部は、ブスバーや水冷ケーブルなどの伝送部材によって、電気供給部から給電位置へ給電を容易に行うことができる。 The power supply may have a transmission member extending to transmit current from the power supply to the power supply location. In this case, the power supply unit can easily supply power from the power supply unit to the power supply position by means of a transmission member such as a bus bar or a water-cooled cable.
 通電装置は、給電位置を三次元的に変更可能であってよい。この場合、通電装置は、金属材料の形状に応じて、より適切な位置に給電位置を配置することができる。 The energization device may be able to three-dimensionally change the power supply position. In this case, the energization device can arrange the power supply position at a more appropriate position according to the shape of the metal material.
 給電部は、水平方向に平行な第1の方向に延びる第1の導電部材と、第1の導電部材に対して第1の方向における所定の位置に接続される第2の導電部材と、を有し、第1の導電部材に対する第1の方向における第2の導電部材の接続位置を変更可能であってよい。この場合、通電部は、第1の導電部材に対する第2の導電部材の接続位置を変更するだけで、容易に給電位置の第1の方向における調整を行うことができる。 The power supply unit includes a first conductive member extending in a first direction parallel to the horizontal direction, and a second conductive member connected to a predetermined position in the first direction with respect to the first conductive member. and capable of changing the connection position of the second conductive member in the first direction with respect to the first conductive member. In this case, the current-carrying portion can easily adjust the power supply position in the first direction simply by changing the connection position of the second conductive member with respect to the first conductive member.
 給電部は、水平方向に平行な第1の方向に延びる第1の導電部材と、第1の導電部材に対して第1の方向における所定の位置に接続される第2の導電部材と、を有し、水平方向及び第1の方向と直交する第2の方向における、第2の導電部材に対する給電位置を変更可能であってよい。この場合、通電部は、第2の導電部材に対する給電位置を変更するだけで、容易に給電位置の第2の方向における調整を行うことができる。 The power supply unit includes a first conductive member extending in a first direction parallel to the horizontal direction, and a second conductive member connected to a predetermined position in the first direction with respect to the first conductive member. and a power feeding position for the second conductive member in a horizontal direction and in a second direction orthogonal to the first direction. In this case, the current-carrying portion can easily adjust the power supply position in the second direction simply by changing the power supply position with respect to the second conductive member.
 給電部は、水平方向に平行な第1の方向に延びる第1の導電部材と、第1の導電部材に対して第1の方向における所定の位置に接続される第2の導電部材と、を有し、水平方向及び第1の方向と直交する第2の方向に対して、第2の導電部材の傾きを変更可能であってよい。この場合、通電部は、第2の導電部材の傾きを変更するだけで、容易に給電位置の第2の方向における調整を行うことができる。 The power supply unit includes a first conductive member extending in a first direction parallel to the horizontal direction, and a second conductive member connected to a predetermined position in the first direction with respect to the first conductive member. and the inclination of the second conductive member can be changed with respect to a horizontal direction and a second direction orthogonal to the first direction. In this case, the current-carrying portion can easily adjust the power feeding position in the second direction simply by changing the inclination of the second conductive member.
 給電部は、水平方向に平行な第1の方向に延びる第1の導電部材と、第1の導電部材に対して第1の方向における所定の位置に接続される第2の導電部材と、水平方向及び第1の方向と直交する第2の方向において、第2の導電部材の所定の位置に接続される第3の導電部材と、を有し、上下方向における第3の導電部材の厚みを変更可能であってよい。この場合、通電部は、第3の部材の厚みを変更するだけで、容易に上下方向における給電位置の調整を行うことができる。 The power supply unit includes a first conductive member extending in a first direction parallel to the horizontal direction, a second conductive member connected to a predetermined position in the first direction with respect to the first conductive member, and a horizontal and a third conductive member connected to a predetermined position of the second conductive member in a second direction orthogonal to the direction and the first direction, wherein the thickness of the third conductive member in the vertical direction is It may be changeable. In this case, the power supply portion can easily adjust the power supply position in the vertical direction simply by changing the thickness of the third member.
 給電部は、水平方向に平行な第1の方向に延びる第1の導電部材と、第1の導電部材に対して第1の方向における所定の位置に接続される第2の導電部材と、水平方向及び第1の方向と直交する第2の方向において、第2の導電部の所定の位置に接続される第3の導電部材と、を有し、水平方向における第3の導電部材の主面の傾きを変更可能であってよい。この場合、通電部は、水平方向における第3の導電部材の主面の傾きを変更するだけで、容易に水平方向に対する給電位置の傾きの調整を行うことができる。 The power supply unit includes a first conductive member extending in a first direction parallel to the horizontal direction, a second conductive member connected to a predetermined position in the first direction with respect to the first conductive member, and a horizontal and a third conductive member connected to a predetermined position of the second conductive portion in a second direction orthogonal to the direction and the first direction, the main surface of the third conductive member in the horizontal direction may be changeable. In this case, the current-carrying part can easily adjust the inclination of the power feeding position with respect to the horizontal direction only by changing the inclination of the main surface of the third conductive member in the horizontal direction.
 本開示の一態様に係る成形装置は、上述の通電装置を備え、金属材料を成形する。 A molding apparatus according to one aspect of the present disclosure includes the above-described energizing apparatus and molds a metal material.
 本開示の一態様に係る通電方法は、成形装置による金属材料の成形に用いられる、金属材料に対する通電方法であって、金属材料に通電を行う通電部と、通電部に給電を行う給電部と、を備える通電装置を用いて通電を行い、金属材料の形状に応じて、給電部の通電部に対する給電位置を変更してよい。 An energization method according to an aspect of the present disclosure is a method for energizing a metal material, which is used for molding a metal material by a molding apparatus, and includes an energization unit that energizes the metal material and a power supply unit that supplies power to the energization unit. and the power supply position of the power supply unit with respect to the current supply unit may be changed according to the shape of the metal material.
 これらの成形装置、及び通電方法によれば、上述の通電装置と同趣旨の作用・効果を得ることができる。 According to these molding devices and energization methods, the same functions and effects as those of the energization device described above can be obtained.
 本開示によれば、装置のレイアウト変更がある場合でも、容易に給電部が通電部へ給電することができる通電装置、成形装置、及び通電方法を提供できる。 According to the present disclosure, it is possible to provide an energization device, a molding device, and an energization method that allow the power supply unit to easily supply power to the energization unit even when the layout of the device is changed.
本開示の実施形態に係る成形装置を示す概略構成図である。1 is a schematic configuration diagram showing a molding device according to an embodiment of the present disclosure; FIG. 図2(a)は、加熱膨張ユニットを示す概略側面図である。図2(b)は、ノズルが金属パイプ材料をシールした時の様子を示す断面図である。FIG. 2(a) is a schematic side view showing the heating and expansion unit. FIG. 2(b) is a cross-sectional view showing how the nozzle seals the metal pipe material. 通電装置を備える成形装置の概略平面図である。1 is a schematic plan view of a molding device provided with an energizing device; FIG. 通電装置を備える成形装置の側面図である。。It is a side view of a molding device provided with an energization device. . 給電プレート付近の拡大断面図である。4 is an enlarged cross-sectional view of the vicinity of a power supply plate; FIG. 埋設ブスバー及び板状ブスバーを示す平面図である。FIG. 3 is a plan view showing an embedded busbar and a plate-like busbar; 図4に示すVII-VII線に沿った断面図である。FIG. 5 is a cross-sectional view taken along line VII-VII shown in FIG. 4; 図7のうち伝送部材付近の構造を示す拡大断面図である。FIG. 8 is an enlarged cross-sectional view showing a structure near a transmission member in FIG. 7; 給電位置の変更について説明するための概念図である。FIG. 10 is a conceptual diagram for explaining change in power supply position; 給電位置の変更について説明するための概念図である。FIG. 10 is a conceptual diagram for explaining change in power supply position; 給電位置の変更について説明するための概念図である。FIG. 10 is a conceptual diagram for explaining change in power supply position; 給電位置の変更について説明するための概念図である。FIG. 10 is a conceptual diagram for explaining change in power supply position;
 以下、本開示による通電装置及び成形装置の好適な実施形態について図面を参照しながら説明する。なお、各図において同一部分又は相当部分には同一符号を付し、重複する説明は省略する。 Preferred embodiments of the energization device and molding device according to the present disclosure will be described below with reference to the drawings. In each figure, the same or corresponding parts are denoted by the same reference numerals, and redundant explanations are omitted.
 図1は、本実施形態に係る成形装置1の概略構成図である。図1に示すように、成形装置1は、ブロー成形によって中空形状を有する金属パイプを成形する装置である。本実施形態では、成形装置1は、水平面上に設置される。成形装置1は、成形金型2と、駆動機構3と、保持部4と、加熱部5と、流体供給部6と、冷却部7と、制御部8と、を備える。なお、本明細書において、金属パイプ材料40(金属材料)は、成形装置1での成形完了前の中空物品を指す。金属パイプ材料40は、焼入れ可能な鋼種のパイプ材料である。また、水平方向のうち、成形時において金属パイプ材料40が延びる方向を「長手方向」と称し、長手方向と直交する方向を「幅方向」と称する場合がある。 FIG. 1 is a schematic configuration diagram of a molding device 1 according to this embodiment. As shown in FIG. 1, a molding apparatus 1 is an apparatus for molding a hollow metal pipe by blow molding. In this embodiment, the molding device 1 is installed on a horizontal plane. The molding apparatus 1 includes a molding die 2 , a drive mechanism 3 , a holding section 4 , a heating section 5 , a fluid supply section 6 , a cooling section 7 and a control section 8 . In addition, in this specification, the metal pipe material 40 (metal material) refers to a hollow article before completion of molding by the molding apparatus 1 . The metal pipe material 40 is a hardenable steel type pipe material. Further, among the horizontal directions, the direction in which the metal pipe material 40 extends during molding may be referred to as the "longitudinal direction", and the direction orthogonal to the longitudinal direction may be referred to as the "width direction".
 成形金型2は、金属パイプ材料40から金属パイプ140を成形する型であり、上下方向に互いに対向する下側の金型11及び上側の金型12を備える。下側の金型11及び上側の金型12は、鋼鉄製ブロックで構成される。下側の金型11及び上側の金型12のそれぞれには、金属パイプ材料40が収容される凹部が設けられる。下側の金型11と上側の金型12は、互いに密接した状態(型閉状態)で、各々の凹部が金属パイプ材料を成形すべき目標形状の空間を形成する。従って、各々の凹部の表面が成形金型2の成形面となる。下側の金型11は、ダイホルダ等を介して基台13に固定される。上側の金型12は、ダイホルダ等を介して駆動機構3のスライドに固定される。 The molding die 2 is a die for molding the metal pipe 140 from the metal pipe material 40, and includes a lower die 11 and an upper die 12 facing each other in the vertical direction. The lower die 11 and the upper die 12 are constructed from steel blocks. Each of the lower die 11 and the upper die 12 is provided with a recess in which the metal pipe material 40 is accommodated. The lower mold 11 and the upper mold 12 are in close contact with each other (mold closed state), and each recess forms a target-shaped space in which the metal pipe material is to be molded. Therefore, the surface of each recess becomes the molding surface of the molding die 2 . The mold 11 on the lower side is fixed to the base 13 via a die holder or the like. The upper die 12 is fixed to the slide of the drive mechanism 3 via a die holder or the like.
 駆動機構3は、下側の金型11及び上側の金型12の少なくとも一方を移動させる機構である。図1では、駆動機構3は、上側の金型12のみを移動させる構成を有する。駆動機構3は、下側の金型11及び上側の金型12同士が合わさるように上側の金型12を移動させるスライド21と、上記スライド21を上側へ引き上げる力を発生させるアクチュエータとしての引き戻しシリンダ22と、スライド21を下降加圧する駆動源としてのメインシリンダ23と、メインシリンダ23に駆動力を付与する駆動源24と、を備えている。 The drive mechanism 3 is a mechanism that moves at least one of the lower mold 11 and the upper mold 12. In FIG. 1 , the drive mechanism 3 has a configuration that moves only the upper mold 12 . The drive mechanism 3 includes a slide 21 that moves the upper die 12 so that the lower die 11 and the upper die 12 are joined together, and a pull-back cylinder as an actuator that generates a force to lift the slide 21 upward. 22 , a main cylinder 23 as a drive source that pressurizes the slide 21 downward, and a drive source 24 that applies a drive force to the main cylinder 23 .
 保持部4は、下側の金型11及び上側の金型12の間に配置される金属パイプ材料40を保持する機構である。保持部4は、成形金型2の長手方向における一端側にて金属パイプ材料40を保持する下側電極26及び上側電極27と、成形金型2の長手方向における他端側にて金属パイプ材料40を保持する下側電極26及び上側電極27と、を備える。長手方向の両側の下側電極26及び上側電極27は、金属パイプ材料40の端部付近を上下方向から挟み込むことによって、当該金属パイプ材料40を保持する。なお、下側電極26の上面及び上側電極27の下面には、金属パイプ材料40の外周面に対応する形状を有する溝部が形成される。下側電極26及び上側電極27には、図示されない駆動機構が設けられており、それぞれ独立して上下方向へ移動することができる。 The holding part 4 is a mechanism that holds the metal pipe material 40 arranged between the lower mold 11 and the upper mold 12 . The holding part 4 has a lower electrode 26 and an upper electrode 27 that hold the metal pipe material 40 at one end in the longitudinal direction of the molding die 2 and a metal pipe material at the other end in the longitudinal direction of the molding die 2 . a lower electrode 26 and an upper electrode 27 holding 40; The lower electrode 26 and the upper electrode 27 on both sides in the longitudinal direction hold the metal pipe material 40 by sandwiching the end portions of the metal pipe material 40 from above and below. The upper surface of the lower electrode 26 and the lower surface of the upper electrode 27 are formed with grooves having a shape corresponding to the outer peripheral surface of the metal pipe material 40 . A driving mechanism (not shown) is provided for the lower electrode 26 and the upper electrode 27 so that they can move independently in the vertical direction.
 加熱部5は、金属パイプ材料40を加熱する。加熱部5は、金属パイプ材料40へ通電することで当該金属パイプ材料40を加熱する機構である。加熱部5は、下側の金型11及び上側の金型12の間にて、下側の金型11及び上側の金型12から金属パイプ材料40が離間した状態にて、当該金属パイプ材料40を加熱する。加熱部5は、上述の長手方向の両側の下側電極26及び上側電極27と、これらの電極26,27を介して金属パイプ材料40へ電流を流す電源28と、を備える。なお、加熱部は、成形装置1の前工程に配置し、外部で加熱をするものであっても良い。 The heating unit 5 heats the metal pipe material 40 . The heating unit 5 is a mechanism that heats the metal pipe material 40 by energizing the metal pipe material 40 . The heating unit 5 heats the metal pipe material 40 between the lower mold 11 and the upper mold 12 while the metal pipe material 40 is separated from the lower mold 11 and the upper mold 12. Heat 40; The heating unit 5 includes the lower electrode 26 and the upper electrode 27 on both sides in the longitudinal direction, and a power source 28 for supplying current to the metal pipe material 40 via these electrodes 26 and 27 . In addition, the heating unit may be arranged in a pre-process of the molding apparatus 1 to perform heating outside.
 流体供給部6は、下側の金型11及び上側の金型12の間に保持された金属パイプ材料40内に高圧の流体を供給するための機構である。流体供給部6は、加熱部5で加熱されることで高温状態となった金属パイプ材料40に高圧の流体を供給して、金属パイプ材料40を膨張させる。流体供給部6は、成形金型2の長手方向の両端側に設けられる。流体供給部6は、金属パイプ材料40の端部の開口部から当該金属パイプ材料40の内部へ流体を供給するノズル31と、ノズル31を金属パイプ材料40の開口部に対して進退移動させる駆動機構32と、ノズル31を介して金属パイプ材料40内へ高圧の流体を供給する供給源33と、を備える。駆動機構32は、流体供給時及び排気時にはノズル31を金属パイプ材料40の端部にシール性を確保した状態で密着させ、その他の時にはノズル31を金属パイプ材料40の端部から離間させる。なお、流体供給部6は、流体として、高圧の空気や不活性ガスなどの気体を供給してよい。また、流体供給部6は、金属パイプ材料40を上下方向へ移動する機構を有する保持部4とともに、加熱部5を含めて同一装置としても良い。 The fluid supply unit 6 is a mechanism for supplying high-pressure fluid into the metal pipe material 40 held between the lower mold 11 and the upper mold 12. The fluid supply unit 6 supplies high-pressure fluid to the metal pipe material 40 that has been heated by the heating unit 5 to a high temperature state, thereby expanding the metal pipe material 40 . The fluid supply units 6 are provided on both ends of the molding die 2 in the longitudinal direction. The fluid supply unit 6 includes a nozzle 31 that supplies fluid from the opening at the end of the metal pipe material 40 to the inside of the metal pipe material 40, and a drive that moves the nozzle 31 forward and backward with respect to the opening of the metal pipe material 40. It comprises a mechanism 32 and a source 33 for supplying high pressure fluid into the metal pipe material 40 through the nozzle 31 . The drive mechanism 32 brings the nozzle 31 into close contact with the end of the metal pipe material 40 while ensuring sealing performance during fluid supply and exhaust, and separates the nozzle 31 from the end of the metal pipe material 40 at other times. The fluid supply unit 6 may supply gas such as high-pressure air or inert gas as the fluid. Further, the fluid supply unit 6 and the holding unit 4 having a mechanism for vertically moving the metal pipe material 40 and the heating unit 5 may be included in the same device.
 保持部4、加熱部5、及び流体供給部6の構成要素は、ユニット化された加熱膨張ユニット150として構成されてよい。図2(a)は、加熱膨張ユニット150を示す概略側面図である。図2(b)は、ノズル31が金属パイプ材料40をシールした時の様子を示す断面図である。 The constituent elements of the holding section 4, the heating section 5, and the fluid supply section 6 may be configured as a unitized heating and expansion unit 150. FIG. 2(a) is a schematic side view showing the heating and expansion unit 150. FIG. FIG. 2(b) is a cross-sectional view showing how the nozzle 31 seals the metal pipe material 40. As shown in FIG.
 図2(a)に示すように、加熱膨張ユニット150は、上述の下側電極26及び上側電極27と、各電極26,27を搭載した電極搭載ユニット151、上述のノズル31及び駆動機構32と、昇降ユニット152と、ユニットベース153と、を備える。電極搭載ユニット151は、昇降フレーム154と、電極フレーム156,157と、を備える。電極フレーム156,157は、各電極26,27を支持して移動させる駆動機構60の一部として機能する。駆動機構32は、ノズル31を駆動させ、電極搭載ユニット151と共に昇降する。駆動機構32は、ノズル31を保持するピストン61と、ピストンを駆動させるシリンダ62とを備えている。昇降ユニット152は、ユニットベース153の上面に取り付けられる昇降フレームベース64と、これらの昇降フレームベース64によって、電極搭載ユニット151の昇降フレーム154に対して昇降動作を付与する昇降用アクチュエータ66とを備えている。昇降フレームベース64は、ユニットベース153に対する昇降フレーム154の昇降動作をガイドするガイド部64a,64bを有する。昇降ユニット152は、保持部4の駆動機構60の一部として機能する。加熱膨張ユニット150は、上面の傾斜角度が異なる複数のユニットベース153を有し、これらを交換することにより、下側電極26及び上側電極27、ノズル31、電極搭載ユニット151、駆動機構32、昇降ユニット152の傾斜角度を一括的に変更調節することを可能としている。 As shown in FIG. 2A, the heating and expansion unit 150 includes the lower electrode 26 and the upper electrode 27 described above, an electrode mounting unit 151 mounting the electrodes 26 and 27, the nozzle 31 and the drive mechanism 32 described above. , a lifting unit 152 and a unit base 153 . The electrode mounting unit 151 includes an elevating frame 154 and electrode frames 156 and 157 . Electrode frames 156 and 157 function as part of drive mechanism 60 that supports and moves electrodes 26 and 27, respectively. The driving mechanism 32 drives the nozzle 31 to move up and down together with the electrode mounting unit 151 . The driving mechanism 32 includes a piston 61 holding the nozzle 31 and a cylinder 62 driving the piston. The lifting unit 152 includes a lifting frame base 64 attached to the upper surface of the unit base 153, and a lifting actuator 66 for applying a lifting motion to the lifting frame 154 of the electrode mounting unit 151 by the lifting frame base 64. ing. The elevating frame base 64 has guide portions 64 a and 64 b that guide the elevating motion of the elevating frame 154 with respect to the unit base 153 . The lifting unit 152 functions as part of the driving mechanism 60 of the holding section 4 . The heating and expansion unit 150 has a plurality of unit bases 153 with different upper surface inclination angles, and by exchanging these bases, the lower electrode 26, the upper electrode 27, the nozzle 31, the electrode mounting unit 151, the driving mechanism 32, the lifting and lowering It is possible to collectively change and adjust the tilt angle of the unit 152 .
 ノズル31は、金属パイプ材料40の端部を挿入可能な筒状部材である。ノズル31は、当該ノズル31の中心線が基準線SL1と一致するように、駆動機構32に支持されている。金属パイプ材料40側のノズル31の端部の供給口31aの内径は、膨張成形後の金属パイプ材料40の外径に略一致している。この状態で、ノズル31は、内部の流路63から高圧の流体を金属パイプ材料40に供給する。なお、高圧流体の一例としては、気体などが挙げられる。 The nozzle 31 is a tubular member into which the end of the metal pipe material 40 can be inserted. The nozzle 31 is supported by the driving mechanism 32 so that the center line of the nozzle 31 is aligned with the reference line SL1. The inner diameter of the supply port 31a at the end of the nozzle 31 on the metal pipe material 40 side substantially matches the outer diameter of the metal pipe material 40 after expansion molding. In this state, the nozzle 31 supplies high-pressure fluid to the metal pipe material 40 from the internal flow path 63 . In addition, gas etc. are mentioned as an example of a high-pressure fluid.
 図1に戻り、冷却部7は、成形金型2を冷却する機構である。冷却部7は、成形金型2を冷却することで、膨張した金属パイプ材料40が成形金型2の成形面と接触したときに、金属パイプ材料40を急速に冷却することができる。冷却部7は、下側の金型11及び上側の金型12の内部に形成された流路36と、流路36へ冷却水を供給して循環させる水循環機構37と、を備える。 Returning to FIG. 1 , the cooling unit 7 is a mechanism for cooling the molding die 2 . By cooling the molding die 2 , the cooling section 7 can rapidly cool the metal pipe material 40 when the expanded metal pipe material 40 comes into contact with the molding surface of the molding die 2 . The cooling unit 7 includes flow paths 36 formed inside the lower mold 11 and the upper mold 12 and a water circulation mechanism 37 that supplies and circulates cooling water to the flow paths 36 .
 制御部8は、成形装置1全体を制御する装置である。制御部8は、駆動機構3、保持部4、加熱部5、流体供給部6、及び冷却部7を制御する。制御部8は、金属パイプ材料40を成形金型2で成形する動作を繰り返し行う。 The control unit 8 is a device that controls the molding device 1 as a whole. The control unit 8 controls the drive mechanism 3 , the holding unit 4 , the heating unit 5 , the fluid supply unit 6 and the cooling unit 7 . The control unit 8 repeats the operation of molding the metal pipe material 40 with the molding die 2 .
 制御部8は、長手方向の両側の下側電極26で金属パイプ材料40を支持し、その後に上側電極27を降ろして当該金属パイプ材料40を挟むように、保持部4のアクチュエータ等を制御する。制御部8は、例えば、ロボットアーム等の搬送装置からの搬送タイミングを制御して、開いた状態の下側の金型11及び上側の金型12の間に金属パイプ材料40を配置してもよい。あるいは、制御部8は、作業者が手動で下側の金型11及び上側の金型12の間に金属パイプ材料40を配置してもよい。また、制御部8は、加熱部5を制御して、金属パイプ材料40を通電加熱する。これにより、金属パイプ材料40に軸方向の電流が流れ、金属パイプ材料40自身の電気抵抗により、金属パイプ材料40自体がジュール熱によって発熱する。制御部8は、制御対象装置に応じて複数個設置されてもよい。 The control unit 8 controls the actuators of the holding unit 4 so that the metal pipe material 40 is supported by the lower electrodes 26 on both sides in the longitudinal direction, and then the upper electrodes 27 are lowered to sandwich the metal pipe material 40. . For example, the control unit 8 controls the transfer timing from a transfer device such as a robot arm, and arranges the metal pipe material 40 between the lower mold 11 and the upper mold 12 in the open state. good. Alternatively, the control unit 8 may be manually arranged by an operator to place the metal pipe material 40 between the lower mold 11 and the upper mold 12 . Moreover, the control part 8 controls the heating part 5, and energizes and heats the metal pipe material 40. As shown in FIG. As a result, an axial current flows through the metal pipe material 40, and the electrical resistance of the metal pipe material 40 itself causes the metal pipe material 40 itself to generate heat due to Joule heat. A plurality of controllers 8 may be installed according to the control target device.
 制御部8は、駆動機構3を制御して上側の金型12を降ろして下側の金型11に近接させ、成形金型2の型閉を行う。その一方、制御部8は、流体供給部6を制御して、ノズル31で金属パイプ材料40の両端の開口部をシールすると共に、流体を供給する。これにより、加熱により軟化した金属パイプ材料40が膨張して成形金型2の成形面と接触する。そして、金属パイプ材料40は、成形金型2の成形面の形状に沿うように成形される。なお、フランジ付きの金属パイプを形成する場合、下側の金型11と上側の金型12との間の隙間に金属パイプ材料40の一部を進入させた後、更に型閉を行って、当該進入部を押しつぶしてフランジ部とする。金属パイプ材料40が成形面に接触すると、冷却部7で冷却された成形金型2で急冷されることによって、金属パイプ材料40の焼き入れが実施される。 The control unit 8 controls the drive mechanism 3 to lower the upper mold 12 and bring it closer to the lower mold 11 to close the molding mold 2 . On the other hand, the control unit 8 controls the fluid supply unit 6 to seal the openings at both ends of the metal pipe material 40 with the nozzles 31 and supply the fluid. As a result, the metal pipe material 40 softened by heating expands and comes into contact with the molding surface of the molding die 2 . And the metal pipe material 40 is shape|molded so that the shape of the shaping|molding surface of the shaping|molding die 2 may be followed. When forming a metal pipe with a flange, after part of the metal pipe material 40 is introduced into the gap between the lower mold 11 and the upper mold 12, the mold is further closed, The entry portion is crushed to form a flange portion. When the metal pipe material 40 comes into contact with the molding surface, the metal pipe material 40 is quenched by being rapidly cooled by the cooling part 7 with the molding die 2 .
 次に、図3及び図4を参照して、成形装置1及び通電装置100の構成について説明する。図3は、通電装置100を備える成形装置1の概略平面図である。図4は、通電装置100を備える成形装置1の側面図である。なお、図4は、図3のIV-IV線の位置における断面図である。また、図4は、加熱膨張ユニット150の通電部70に関する部材が示されており、その他の部材については適宜簡略化、または省略されている。 Next, configurations of the molding device 1 and the energization device 100 will be described with reference to FIGS. 3 and 4. FIG. FIG. 3 is a schematic plan view of the molding apparatus 1 including the energizing device 100. FIG. FIG. 4 is a side view of the molding apparatus 1 including the energizing device 100. FIG. 4 is a cross-sectional view taken along line IV-IV in FIG. Further, FIG. 4 shows members related to the current-carrying portion 70 of the heating and expansion unit 150, and other members are appropriately simplified or omitted.
 通電装置100は、金属パイプ材料40を成形する成形装置1に用いられる、金属パイプ材料40に通電する装置である。図3及び図4に示すように、通電装置100は、通電部70と、給電部71と、を備える。通電部70は、金属パイプ材料40に通電を行う機構である。通電部70は、前述の電極26,27を含む機構であり、加熱膨張ユニット150のうちの、金属パイプ材料40への通電を行うための機構である。給電部71は、通電部70に給電を行う機構である。給電部71は、電源28(電気供給部)と通電部70とを電気的に接続する。なお、以降の説明においては、XYZ座標系を用いて説明を行う場合がある。X軸方向(第2の方向)は、水平方向のうち、成形時において金属パイプ材料40の軸の長手方向である。Y軸方向(第1の方向)は、長手方向と直交する方向である。Z軸方向は上下方向である。X軸方向及びY軸方向の一方側を正側とし、上側をZ軸方向の正側とする。 The energizing device 100 is a device for energizing the metal pipe material 40 used in the forming device 1 for forming the metal pipe material 40 . As shown in FIGS. 3 and 4 , the energization device 100 includes an energization section 70 and a power supply section 71 . The energization unit 70 is a mechanism that energizes the metal pipe material 40 . The energizing section 70 is a mechanism including the electrodes 26 and 27 described above, and is a mechanism for energizing the metal pipe material 40 in the heating/expansion unit 150 . The power supply unit 71 is a mechanism that supplies power to the current-carrying unit 70 . The power supply unit 71 electrically connects the power source 28 (electricity supply unit) and the power supply unit 70 . In addition, in the following description, the XYZ coordinate system may be used. The X-axis direction (second direction) is the longitudinal direction of the axis of the metal pipe material 40 during molding in the horizontal direction. The Y-axis direction (first direction) is a direction perpendicular to the longitudinal direction. The Z-axis direction is the vertical direction. One side in the X-axis direction and the Y-axis direction is the positive side, and the upper side is the positive side in the Z-axis direction.
 通電装置100は、金属パイプ材料40のX軸方向の正側の端部に対する通電部70及び給電部71と、金属パイプ材料40のX軸方向の負側の端部に対する通電部70及び給電部71と、を備える。 The energizing device 100 includes a energizing portion 70 and a power feeding portion 71 for the positive end of the metal pipe material 40 in the X-axis direction, and a energizing portion 70 and a power feeding portion for the negative end of the metal pipe material 40 in the X-axis direction. 71 and.
 給電部71は、電源28から給電位置EPへ電流を伝送するように延びる伝送部材72,73を有する。伝送部材72は、電源28側に設けられる部材である。伝送部材72は、電源28から、成形装置1の基台13のY軸方向の正側の端部付近まで延びている。伝送部材73は、基台13側に設けられる部材である。伝送部材73は、基台13のY軸方向の正側の端部付近から給電位置EPまで延びている。伝送部材72のY軸方向の負側の端部は、コネクタ74を介して伝送部材73のY軸方向の正側の端部と接続される(図5も参照)。伝送部材73は、基台13と共に移動式ボルスター台車160に設けられている(図4参照)。従って、伝送部材73は、コネクタ74から取り外すことによって、伝送部材72から取り外し可能である。なお、基台13を移動台車に載せ、移動することができるようにコネクタ74が設けられているが、他の電気的経路着脱機構が設けられてもよい。 The power feeding portion 71 has transmission members 72 and 73 extending to transmit current from the power supply 28 to the power feeding position EP. The transmission member 72 is a member provided on the power supply 28 side. The transmission member 72 extends from the power supply 28 to near the end of the base 13 of the molding apparatus 1 on the positive side in the Y-axis direction. The transmission member 73 is a member provided on the base 13 side. The transmission member 73 extends from near the end of the base 13 on the positive side in the Y-axis direction to the power supply position EP. The negative end of the transmission member 72 in the Y-axis direction is connected to the positive end of the transmission member 73 in the Y-axis direction via a connector 74 (see also FIG. 5). The transmission member 73 is mounted on a movable bolster truck 160 together with the base 13 (see FIG. 4). Accordingly, the transmission member 73 can be removed from the transmission member 72 by removing it from the connector 74 . In addition, although the connector 74 is provided so that the base 13 can be placed on the mobile carriage and moved, another electrical path attachment/detachment mechanism may be provided.
 伝送部材72は、帯状に延びる導電部材で形成されるブスバーによって構成される。なお、図3に示す実施例では、電源28が成形金型2に対してX軸方向の負側寄りの位置に配置されている。従って、X軸方向の正側の通電部70に対する伝送部材72は、X軸方向の負側の通電部70に対する伝送部材72よりも、X軸方向の正側へ大きく回り込むように延びている。なお、伝送部材72の周囲には、外部からの接触を防止するためのカバー部75が設けられている。 The transmission member 72 is configured by a bus bar formed of a conductive member extending like a belt. In addition, in the embodiment shown in FIG. 3, the power supply 28 is arranged at a position closer to the negative side in the X-axis direction with respect to the molding die 2 . Therefore, the transmission member 72 for the conductive portion 70 on the positive side in the X-axis direction extends so as to wrap around to the positive side in the X-axis direction more than the transmission member 72 for the conductive portion 70 on the negative side in the X-axis direction. A cover portion 75 is provided around the transmission member 72 to prevent contact from the outside.
 図4に示すように、通電部70は、前述の電極26,27と、給電プレート76と、導電路77と、を備える。給電プレート76は、給電位置EPにて伝送部材73の給電面80と接触する。これにより、給電プレート76は、伝送部材73の給電面80から給電される。給電プレート76は、XY平面と平行に広がる板状の部材である。給電プレート76は、ユニットベース153において上下方向に貫通する貫通部153aの内部に配置される。 As shown in FIG. 4 , the conducting section 70 includes the electrodes 26 and 27 described above, a power supply plate 76 and a conductive path 77 . The power supply plate 76 contacts the power supply surface 80 of the transmission member 73 at the power supply position EP. As a result, the power supply plate 76 is supplied with power from the power supply surface 80 of the transmission member 73 . The power supply plate 76 is a plate-like member extending parallel to the XY plane. The power supply plate 76 is arranged inside a through portion 153a penetrating vertically through the unit base 153 .
 ここで、図5に示すように、給電プレート76には、導電性弾性体78が設けられている。導電性弾性体78は、給電プレート76に形成された溝部に嵌め込まれている。これにより、給電プレート76の下面76aと、伝送部材73の給電面80との間に隙間が形成されている場合であっても、弾性変形可能な導電性弾性体78を介して、給電可能となっている。 Here, as shown in FIG. 5, the power supply plate 76 is provided with a conductive elastic body 78 . The conductive elastic body 78 is fitted in a groove formed in the power supply plate 76 . As a result, even when a gap is formed between the lower surface 76a of the power supply plate 76 and the power supply surface 80 of the transmission member 73, power can be supplied through the elastically deformable conductive elastic body 78. It's becoming
 図4に示すように、導電路77は、一方側の端部において下側電極26に接続され、他方側の端部において給電プレート76に接続される。これにより、導電路77は、給電プレート76で給電された電流を下側電極26へ供給する。なお、導電路77の形状は特に限定されるものではなく、適宜変更してもよい。 As shown in FIG. 4, the conductive path 77 is connected to the lower electrode 26 at one end and to the power supply plate 76 at the other end. As a result, the conductive path 77 supplies the current supplied by the power supply plate 76 to the lower electrode 26 . The shape of the conductive path 77 is not particularly limited, and may be changed as appropriate.
 本実施形態において、通電装置100は、金属パイプ材料40の形状に応じて、給電部71の通電部70に対する給電位置EPを変更することができる。通電装置100は、給電位置EPを三次元的に変更可能である。三次元的に変更可能とは、通電装置100が、X軸方向における給電位置EP、Y軸方向における給電位置EP、及びZ軸方向における給電位置EPを少なくとも変更可能であることを意味する。更に、通電装置100は、XY平面に対する給電位置EPの傾き、及びX軸方向に対する給電位置EPの傾きも変更できる。通電装置100が、金属パイプ材料40の形状に応じて給電位置EPを変更するための構造について、図4、図6~図8を参照して説明する。図6は、埋設ブスバー81及び板状ブスバー83を示す平面図である。図7は、図4に示すVII-VII線に沿った断面図である。図8は、図7のうち伝送部材73付近の構造を示す拡大断面図である。 In this embodiment, the power supply device 100 can change the power supply position EP of the power supply part 71 with respect to the power supply part 70 according to the shape of the metal pipe material 40 . The energization device 100 can three-dimensionally change the power feeding position EP. Being three-dimensionally changeable means that the energization device 100 can change at least the power feeding position EP in the X-axis direction, the power feeding position EP in the Y-axis direction, and the power feeding position EP in the Z-axis direction. Furthermore, the energizing device 100 can also change the inclination of the power supply position EP with respect to the XY plane and the inclination of the power supply position EP with respect to the X-axis direction. A structure for changing the power feeding position EP according to the shape of the metal pipe material 40 by the energizing device 100 will be described with reference to FIGS. 4 and 6 to 8. FIG. FIG. 6 is a plan view showing the embedded busbar 81 and the plate-shaped busbar 83. As shown in FIG. FIG. 7 is a cross-sectional view taken along line VII--VII shown in FIG. FIG. 8 is an enlarged sectional view showing the structure near the transmission member 73 in FIG.
 図4に示すように、給電部71の伝送部材73は、埋設ブスバー81(第1の導電部材)と、ブロック導体82と、板状ブスバー83(第2の導電部材)と、ブロック導体84(第3の導電部材)と、を備える。 As shown in FIG. 4, the transmission member 73 of the power supply portion 71 includes an embedded bus bar 81 (first conductive member), a block conductor 82, a plate-shaped bus bar 83 (second conductive member), and a block conductor 84 ( a third conductive member);
 埋設ブスバー81は、基台13に埋設された状態で、Y軸方向に延びる帯状の導電部材である。埋設ブスバー81のY軸方向の正側の端部は、基台13のY軸方向の正側の端部からはみ出る位置に配置される。なお、埋設ブスバー81のY軸方向の正側の端部は、継手部材86を介してコネクタ74に接続される。埋設ブスバー81のY軸方向の負側の端部は、基台13のY軸方向の負側の端部付近に配置される。埋設ブスバー81は、一定の幅を有した状態でY軸軸方向に平行に延びる。埋設ブスバー81の厚み方向は、上下方向(Z軸方向)と平行をなしている。埋設ブスバー81の上面は、基台13の上面よりも低い位置に埋設されている。 The embedded busbar 81 is a strip-shaped conductive member embedded in the base 13 and extending in the Y-axis direction. The Y-axis direction positive side end of the embedded bus bar 81 is arranged at a position protruding from the Y-axis direction positive side end of the base 13 . The Y-axis direction positive end of the embedded bus bar 81 is connected to the connector 74 via a joint member 86 . The Y-axis direction negative side end of the embedded bus bar 81 is disposed near the Y-axis direction negative side end of the base 13 . The embedded bus bar 81 extends parallel to the Y-axis direction while having a constant width. The thickness direction of the embedded bus bar 81 is parallel to the vertical direction (Z-axis direction). The upper surface of the embedded busbar 81 is embedded at a position lower than the upper surface of the base 13 .
 埋設ブスバー81の上面には、複数のタイル状の絶縁板87が設けられている。複数の絶縁板87は、Y軸方向に沿って並べられた状態にて、埋設ブスバー81に固定される(図6参照)。なお、絶縁板87の上面は、基台13の上面と同じ高さに配置される。絶縁板87は、ネジ止めによって埋設ブスバー81に固定される。従って、ネジを外すことによって、所望の位置の絶縁板87を埋設ブスバー81から取り外すことができる。 A plurality of tile-shaped insulating plates 87 are provided on the upper surface of the embedded busbar 81 . A plurality of insulating plates 87 are arranged in the Y-axis direction and fixed to the embedded bus bar 81 (see FIG. 6). The upper surface of the insulating plate 87 is arranged at the same height as the upper surface of the base 13 . The insulating plate 87 is fixed to the embedded bus bar 81 by screwing. Therefore, the insulating plate 87 at a desired position can be removed from the embedded bus bar 81 by removing the screw.
 ブロック導体82は、絶縁板87が取り外された箇所において、埋設ブスバー81に固定される導電部材である。ブロック導体82は、下面が埋設ブスバー81の上面に接触した状態にて、ネジ止めによって埋設ブスバー81に固定される。ブロック導体82は、任意の絶縁板87と入れ替え可能な部材であるため、絶縁板87と同様な形状を有する。これにより、ブロック導体82は、埋設ブスバー81の長手方向(Y軸方向)において、電気の取り出し位置を変更することができる。 The block conductor 82 is a conductive member fixed to the embedded bus bar 81 at the location where the insulating plate 87 is removed. The block conductor 82 is fixed to the embedded busbar 81 by screwing with its lower surface in contact with the upper surface of the embedded busbar 81 . Since the block conductor 82 is a member that can be replaced with any insulating plate 87 , it has the same shape as the insulating plate 87 . Thereby, the block conductor 82 can change the electricity extraction position in the longitudinal direction (Y-axis direction) of the embedded bus bar 81 .
 板状ブスバー83は、埋設ブスバー81に対してY軸方向における所定の位置に接続される導電部材である。板状ブスバー83は、下面がブロック導体82の上面に接触した状態にて、ネジ止めによってブロック導体82に固定される。図6に示すように、板状ブスバー83は、X軸方向が長手方向となるような長方形の形状を有している。板状ブスバー83は、X軸方向の正側の端部付近の領域E1が、埋設ブスバー81及びブロック導体82のX軸方向の正側の端部からはみ出るように配置される。これにより、板状ブスバー83は、ブロック導体82からX軸方向の正側にはみ出る領域E1において、基台13の上面に支持される(図7参照)。以上のような構成により、ブロック導体82は、埋設ブスバー81の上側、且つ板状ブスバー83の下側に配置される。なお、ブロック導体82と板状ブスバー83とは、一体の部材として構成されてもよい。 The plate-shaped busbar 83 is a conductive member connected to the embedded busbar 81 at a predetermined position in the Y-axis direction. The plate-shaped bus bar 83 is fixed to the block conductor 82 by screwing with the lower surface in contact with the upper surface of the block conductor 82 . As shown in FIG. 6, the plate-like bus bar 83 has a rectangular shape whose longitudinal direction is the X-axis direction. The plate-shaped bus bar 83 is arranged so that the region E1 near the positive end in the X-axis direction protrudes from the positive end in the X-axis direction of the embedded bus bar 81 and the block conductor 82 . Thereby, the plate-shaped bus bar 83 is supported on the upper surface of the base 13 in the region E1 protruding from the block conductor 82 on the positive side in the X-axis direction (see FIG. 7). With the above configuration, the block conductor 82 is arranged above the embedded busbar 81 and below the plate-like busbar 83 . Note that the block conductor 82 and the plate-like bus bar 83 may be configured as an integral member.
 図8に示すように、埋設ブスバー81、ブロック導体82、及び板状ブスバー83との間には、絶縁材88が設けられている。絶縁材88は、埋設ブスバー81及び板状ブスバー83の底面と、埋設ブスバー81及びブロック導体82の側面と、を覆うように形成される。 As shown in FIG. 8, an insulating material 88 is provided between the embedded busbar 81, the block conductor 82, and the plate-like busbar 83. The insulating material 88 is formed so as to cover the bottom surfaces of the embedded busbars 81 and the plate-like busbars 83 and the side surfaces of the embedded busbars 81 and the block conductors 82 .
 ブロック導体84は、X軸方向において、板状ブスバー83の所定の位置に接続される導電部材である。ブロック導体84は、下面が板状ブスバー83の上面に接触した状態にて、ネジ止めによって板状ブスバー83に固定される。ブロック導体84は、板状ブスバー83の領域E1に固定される。ブロック導体84の上面は、給電部71の給電面80、すなわち給電位置EPを構成する。従って、ブロック導体84の厚みによって、給電位置EPの高さが調整される。また、給電位置EPは、板状ブスバー83のY軸方向における任意の位置において、当該板状ブスバー83からX軸方向の負側にシフトした位置に配置される。なお、ブロック導体82、板状ブスバー83、及びブロック導体84は、ユニットベース153の貫通部153a内に配置されている。 The block conductor 84 is a conductive member connected to a predetermined position of the plate-shaped bus bar 83 in the X-axis direction. The block conductor 84 is fixed to the plate-like bus bar 83 by screwing with its lower surface in contact with the upper surface of the plate-like bus bar 83 . The block conductor 84 is fixed to the region E<b>1 of the plate-like busbar 83 . The upper surface of the block conductor 84 constitutes the feeding surface 80 of the feeding portion 71, that is, the feeding position EP. Therefore, the height of the power feeding position EP is adjusted by the thickness of the block conductor 84 . Further, the power supply position EP is arranged at a position shifted from the plate-shaped bus bar 83 to the negative side in the X-axis direction at an arbitrary position in the Y-axis direction of the plate-shaped bus bar 83 . The block conductor 82 , plate-shaped bus bar 83 , and block conductor 84 are arranged inside the through portion 153 a of the unit base 153 .
 次に、通電装置100が給電位置EPを三次元的に変更するときの内容について説明する。すなわち、金属パイプ材料40の形状に応じて、給電部71の通電部70に対する給電位置EPを変更する通電方法について説明する。 Next, the contents when the energization device 100 three-dimensionally changes the power supply position EP will be described. In other words, an energization method for changing the power feeding position EP of the power feeding portion 71 with respect to the energizing portion 70 according to the shape of the metal pipe material 40 will be described.
 例えば、図9(a)に示すように、金属パイプ材料40の長さに応じて、加熱膨張ユニット150の位置がX軸方向の負側へ変更される場合、給電位置EPをX軸方向の負側へ変更する必要がある。これに対し、図11(a)に示すように、通電装置100は、X軸方向における、板状ブスバー83に対する給電位置EPを変更可能である。すなわち、板状ブスバー83に対するブロック導体84のX軸方向における固定位置を、X軸方向における負側へ変更する。これにより、給電位置EPがX軸方向の負側へ変更される。 For example, as shown in FIG. 9A, when the position of the heating expansion unit 150 is changed to the negative side in the X-axis direction according to the length of the metal pipe material 40, the power feeding position EP is set to It is necessary to change to the negative side. On the other hand, as shown in FIG. 11(a), the energizing device 100 can change the power feeding position EP with respect to the plate-shaped bus bar 83 in the X-axis direction. That is, the fixing position of the block conductor 84 with respect to the plate-like bus bar 83 in the X-axis direction is changed to the negative side in the X-axis direction. As a result, the power feeding position EP is changed to the negative side in the X-axis direction.
 例えば、図9(b)に示すように、金属パイプ材料40の長さに応じて、加熱膨張ユニット150の位置がX軸方向の正側へ変更される場合、給電位置EPをX軸方向の正側へ変更する必要がある。これに対し、図11(b)に示すように、通電装置100は、X軸方向における、板状ブスバー83に対する給電位置EPを変更可能である。すなわち、板状ブスバー83を図9(a)に示すものより長くする。また、板状ブスバー83に対するブロック導体84のX軸方向における固定位置を、X軸方向における正側へ変更する。これにより、給電位置EPがX軸方向の正側へ変更する。 For example, as shown in FIG. 9B, when the position of the heating expansion unit 150 is changed to the positive side in the X-axis direction according to the length of the metal pipe material 40, the power supply position EP is set to It is necessary to change to the positive side. On the other hand, as shown in FIG. 11(b), the energizing device 100 can change the power feeding position EP with respect to the plate-shaped bus bar 83 in the X-axis direction. That is, the plate-like bus bar 83 is made longer than that shown in FIG. 9(a). Also, the fixed position in the X-axis direction of the block conductor 84 with respect to the plate-shaped bus bar 83 is changed to the positive side in the X-axis direction. As a result, the power supply position EP changes to the positive side in the X-axis direction.
 例えば、図9(c)に示すように、金属パイプ材料40の形状に応じて、加熱膨張ユニット150の位置がY軸方向の正側へ変更される場合、給電位置EPをY軸方向の正側へ変更する必要がある。これに対し、図11(c)に示すように、通電装置100は、埋設ブスバー81に対するY軸方向における板状ブスバー83の接続位置を変更可能である。すなわち、埋設ブスバー81に対する板状ブスバー83のY軸方向における固定位置を、Y軸方向における正側へ変更する。これにより、給電位置EPがY軸方向の正側へ変更される。 For example, as shown in FIG. 9C, when the position of the heating expansion unit 150 is changed to the positive side in the Y-axis direction according to the shape of the metal pipe material 40, the power feeding position EP Need to change side. On the other hand, as shown in FIG. 11(c), the energizing device 100 can change the connecting position of the plate-shaped bus bar 83 to the embedded bus bar 81 in the Y-axis direction. That is, the fixing position of the plate-like busbar 83 with respect to the embedded busbar 81 in the Y-axis direction is changed to the positive side in the Y-axis direction. As a result, the power supply position EP is changed to the positive side in the Y-axis direction.
 例えば、図9(d)に示すように、金属パイプ材料40の形状に応じて、加熱膨張ユニット150がX軸方向に対して傾く場合、給電位置EPをX軸方向に対して傾ける必要がある。これに対し、図11(d)に示すように、通電装置100は、X軸方向に対して、板状ブスバー83の傾きを変更可能である。すなわち、埋設ブスバー81に対する板状ブスバー83のX軸方向に対する傾きを変更する。これにより、給電位置EPのX軸方向に対する傾きが変更される。 For example, as shown in FIG. 9D, when the heating expansion unit 150 is tilted with respect to the X-axis direction depending on the shape of the metal pipe material 40, it is necessary to tilt the power feeding position EP with respect to the X-axis direction. . On the other hand, as shown in FIG. 11(d), the energization device 100 can change the inclination of the plate-shaped bus bar 83 with respect to the X-axis direction. That is, the inclination of the plate-shaped busbar 83 with respect to the embedded busbar 81 with respect to the X-axis direction is changed. As a result, the inclination of the power feeding position EP with respect to the X-axis direction is changed.
 例えば、図10(a)に示すように、金属パイプ材料40の形状に応じて、加熱膨張ユニット150の電極26,27の位置が上側へ変更される場合、給電位置EPを上側へ変更する必要がある。これに対し、図12(a)に示すように、通電装置100は、上下方向におけるブロック導体84の厚みを変更可能である。すなわち、ブロック導体84の厚みを大きいものに変更する。これにより、給電位置EPが上側へ変更される。 For example, as shown in FIG. 10(a), when the positions of the electrodes 26 and 27 of the heating expansion unit 150 are changed upward according to the shape of the metal pipe material 40, it is necessary to change the feeding position EP upward. There is On the other hand, as shown in FIG. 12(a), the energization device 100 can change the thickness of the block conductor 84 in the vertical direction. That is, the thickness of the block conductor 84 is changed to be large. As a result, the power supply position EP is changed upward.
 例えば、図10(b)に示すように、金属パイプ材料40の形状に応じて、加熱膨張ユニット150の電極26,27が水平方向に対して傾く場合、給電位置EPを水平方向に対して傾ける必要がある。これに対し、図12(b)に示すように、通電装置100は、水平方向におけるブロック導体84の主面の傾きを変更可能である。すなわち、ブロック導体84の上面を傾斜したものに変更する。これにより、給電位置EPが水平方向に対して傾く。 For example, as shown in FIG. 10B, when the electrodes 26 and 27 of the heating expansion unit 150 are tilted with respect to the horizontal direction according to the shape of the metal pipe material 40, the power feeding position EP is tilted with respect to the horizontal direction. There is a need. On the other hand, as shown in FIG. 12(b), the energization device 100 can change the inclination of the main surface of the block conductor 84 in the horizontal direction. That is, the upper surface of the block conductor 84 is changed to be inclined. As a result, the power feeding position EP is tilted with respect to the horizontal direction.
 次に、本実施形態に係る通電装置100、成形装置1、及び通電方法の作用・効果について説明する。 Next, the functions and effects of the energization device 100, the molding device 1, and the energization method according to this embodiment will be described.
 本実施形態に係る通電装置100は、金属パイプ材料40に通電を行う通電部70と、通電部70に給電を行う給電部71と、を備える。従って、通電装置100は、通電時には、給電部71から通電部70へ給電を行うことで、通電部70から金属パイプ材料40へ通電することができる。ここで、通電装置100は、金属パイプ材料40の形状に応じて、給電部71の通電部70に対する給電位置EPを変更する。この場合、金属パイプ材料40の形状に応じて装置のレイアウト変更が必要になった場合でも、給電位置EPを変更するだけで、容易に通電部70へ給電することが可能になる。以上より、装置のレイアウト変更がある場合でも、容易に給電部が通電部へ給電することができる。 The energization device 100 according to this embodiment includes an energization unit 70 that energizes the metal pipe material 40 and a power supply unit 71 that supplies power to the energization unit 70 . Therefore, the energizing device 100 can energize the metal pipe material 40 from the energizing part 70 by supplying power from the power feeding part 71 to the energizing part 70 at the time of energization. Here, the power supply device 100 changes the power supply position EP of the power supply part 71 with respect to the power supply part 70 according to the shape of the metal pipe material 40 . In this case, even if the layout of the apparatus needs to be changed according to the shape of the metal pipe material 40, power can be easily supplied to the current-carrying portion 70 simply by changing the power supply position EP. As described above, even when the layout of the device is changed, the power supply unit can easily supply power to the current-carrying unit.
 給電部71は、電源28から給電位置EPへ電流を伝送するように延びる伝送部材72,73を有してよい。この場合、給電部71は、ブスバーや水冷ケーブルなどの伝送部材72,73によって、電源28から給電位置EPへ給電を容易に行うことができる。 The power supply portion 71 may have transmission members 72 and 73 extending to transmit current from the power supply 28 to the power supply position EP. In this case, the power supply unit 71 can easily supply power from the power supply 28 to the power supply position EP by means of transmission members 72 and 73 such as bus bars and water-cooled cables.
 通電装置100は、給電位置EPを三次元的に変更可能であってよい。この場合、通電装置100は、金属パイプ材料40の形状に応じて、より適切な位置に給電位置EPを配置することができる。 The energization device 100 may be able to change the power supply position EP three-dimensionally. In this case, the energization device 100 can arrange the power feeding position EP at a more appropriate position according to the shape of the metal pipe material 40 .
 給電部71は、水平方向に平行なY軸方向に延びる埋設ブスバー81と、埋設ブスバー81に対してY軸方向における所定の位置に接続される板状ブスバー83と、を有し、埋設ブスバー81に対するY軸方向における板状ブスバー83の接続位置を変更可能であってよい。この場合、通電部70は、埋設ブスバー81に対する板状ブスバー83の接続位置を変更するだけで、容易に給電位置EPのY軸方向における調整を行うことができる。 The power feeding portion 71 has an embedded busbar 81 extending in the Y-axis direction parallel to the horizontal direction, and a plate-like busbar 83 connected to the embedded busbar 81 at a predetermined position in the Y-axis direction. It may be possible to change the connection position of the plate-shaped bus bar 83 in the Y-axis direction. In this case, the current-carrying portion 70 can easily adjust the power supply position EP in the Y-axis direction simply by changing the connection position of the plate-like busbar 83 with respect to the embedded busbar 81 .
 給電部71は、水平方向に平行なY軸方向に延びる埋設ブスバー81と、埋設ブスバー81に対してY軸方向における所定の位置に接続される板状ブスバー83と、を有し、水平方向及びY軸方向と直交するX軸方向における、板状ブスバー83に対する給電位置EPを変更可能であってよい。この場合、通電部70は、板状ブスバー83に対する給電位置EPを変更するだけで、容易に給電位置EPのX軸方向における調整を行うことができる。 The power supply portion 71 has an embedded busbar 81 extending in the Y-axis direction parallel to the horizontal direction, and a plate-like busbar 83 connected to the embedded busbar 81 at a predetermined position in the Y-axis direction. It may be possible to change the power supply position EP with respect to the plate-shaped bus bar 83 in the X-axis direction perpendicular to the Y-axis direction. In this case, the power supply portion 70 can easily adjust the power supply position EP in the X-axis direction only by changing the power supply position EP with respect to the plate-shaped bus bar 83 .
 給電部71は、水平方向に平行なY軸方向に延びる埋設ブスバー81と、埋設ブスバー81に対してY軸方向における所定の位置に接続される板状ブスバー83と、を有し、水平方向及びY軸方向と直交するX軸方向で形成されるXY平面上で、板状ブスバー83の向きまたは角度を変更可能であってよい。この場合、通電部70は、板状ブスバー83の向きまたは角度を変更するだけで、容易に給電位置EPのXY平面における向きの調整を行うことができる。 The power supply portion 71 has an embedded busbar 81 extending in the Y-axis direction parallel to the horizontal direction, and a plate-like busbar 83 connected to the embedded busbar 81 at a predetermined position in the Y-axis direction. The orientation or angle of the plate-like bus bar 83 may be changeable on the XY plane formed in the X-axis direction orthogonal to the Y-axis direction. In this case, the conducting section 70 can easily adjust the orientation of the power feeding position EP on the XY plane simply by changing the orientation or angle of the plate-shaped bus bar 83 .
 給電部71は、水平方向に平行なY軸方向に延びる埋設ブスバー81と、埋設ブスバー81に対してY軸方向における所定の位置に接続される板状ブスバー83と、水平方向及びY軸方向と直交するX軸方向において、板状ブスバー83の所定の位置に接続されるブロック導体84と、を有し、上下方向におけるブロック導体84の厚みを変更可能であってよい。この場合、通電部70は、ブロック導体84の厚みを変更するだけで、容易に上下方向(Z軸方向)における給電位置EPの調整を行うことができる。 The power feeding portion 71 includes an embedded bus bar 81 extending in the Y-axis direction parallel to the horizontal direction, a plate-like bus bar 83 connected to the embedded bus bar 81 at a predetermined position in the Y-axis direction, and a horizontal and Y-axis direction. and a block conductor 84 connected to a predetermined position of the plate-shaped bus bar 83 in the orthogonal X-axis direction, and the thickness of the block conductor 84 in the vertical direction may be changeable. In this case, the power supply portion 70 can easily adjust the power supply position EP in the vertical direction (Z-axis direction) simply by changing the thickness of the block conductor 84 .
 給電部71は、水平方向に平行なY軸方向に延びる埋設ブスバー81と、埋設ブスバー81に対してY軸方向における所定の位置に接続される板状ブスバー83と、水平方向及びY軸方向と直交するX軸方向において、板状ブスバー83の所定の位置に接続されるブロック導体84と、を有し、水平方向におけるブロック導体84の主面の傾きを変更可能であってよい。この場合、通電部70は、水平方向におけるブロック導体84の主面の傾きを変更するだけで、容易に水平方向に対する給電位置EPの傾きを調整を行うことができる。 The power feeding portion 71 includes an embedded bus bar 81 extending in the Y-axis direction parallel to the horizontal direction, a plate-like bus bar 83 connected to the embedded bus bar 81 at a predetermined position in the Y-axis direction, and a horizontal and Y-axis direction. and a block conductor 84 connected to a predetermined position of the plate-shaped bus bar 83 in the orthogonal X-axis direction, and the inclination of the main surface of the block conductor 84 in the horizontal direction may be changeable. In this case, the current-carrying portion 70 can easily adjust the inclination of the power supply position EP with respect to the horizontal direction only by changing the inclination of the main surface of the block conductor 84 in the horizontal direction.
 本実施形態に係る成形装置1は、上述の通電装置100を備え、金属パイプ材料40を成形する。 The molding apparatus 1 according to this embodiment includes the above-described energization apparatus 100 and molds the metal pipe material 40 .
 本実施形態に係る通電方法は、成形装置1による金属パイプ材料40の成形に用いられる、金属パイプ材料40に対する通電方法であって、金属パイプ材料40に通電を行う通電部70と、通電部70に給電を行う給電部71と、を備える通電装置100を用いて通電を行い、金属パイプ材料40の形状に応じて、給電部71の通電部70に対する給電位置EPを変更してよい。 The energization method according to the present embodiment is a method for energizing the metal pipe material 40, which is used for molding the metal pipe material 40 by the molding apparatus 1, and includes an energization unit 70 for energizing the metal pipe material 40, and an energization unit 70. , and the power supply position EP of the power supply unit 71 with respect to the current supply unit 70 may be changed according to the shape of the metal pipe material 40 .
 これらの成形装置1、及び通電方法によれば、上述の通電装置100と同趣旨の作用・効果を得ることができる。 According to the molding apparatus 1 and the energization method, it is possible to obtain the same functions and effects as those of the energization apparatus 100 described above.
 本開示は、上述の実施形態に限定されるものではない。例えば、成形装置の全体構成は図1に示すものに限定されず、開示の趣旨を逸脱しない範囲で適宜変更可能である。 The present disclosure is not limited to the above-described embodiments. For example, the overall configuration of the molding apparatus is not limited to that shown in FIG. 1, and can be changed as appropriate without departing from the gist of the disclosure.
 また、給電部71の各導電部材81~84の構造は一例に過ぎず、開示の趣旨を逸脱しない範囲で適宜変更可能である。 Also, the structure of each of the conductive members 81 to 84 of the power supply portion 71 is merely an example, and can be changed as appropriate without departing from the gist of the disclosure.
 上述の実施形態では、伝送部材としてブスバーを採用していたが、水冷ケーブルを伝送部材として使用してもよい。ただし、大電流を流すために、柔軟性に欠ける大径水冷ケーブルを複数本使用することは、コンパクト性に欠け、水冷ケーブルを水冷する煩雑さを伴い、また、コネクタ部分には大掛かりな着脱機構が必要になる課題も生じる。そのため、伝送部材としてブスバーを使用することがより好ましい。 In the above-described embodiment, a busbar is used as the transmission member, but a water-cooled cable may be used as the transmission member. However, using multiple large-diameter water-cooled cables that lack flexibility in order to pass a large current results in a lack of compactness, the complexity of water-cooling the water-cooled cables, and a large-scale attachment / detachment mechanism for the connector part. There are also issues that require Therefore, it is more preferable to use a busbar as a transmission member.
 成形装置は、金属材料を加熱する成形装置であればよく、ホットスタンピング法の成形装置が採用されてもよい。 The molding device may be a molding device that heats a metal material, and a hot stamping molding device may be employed.
[形態1]
 金属材料を成形する成形装置に用いられる、前記金属材料に通電する通電装置であって、
 金属材料に通電を行う通電部と、
 前記通電部に給電を行う給電部と、を備え、
 前記金属材料の形状に応じて、前記給電部の前記通電部に対する給電位置を変更する、通電装置。
[形態2]
 前記給電部は、電気供給部から前記給電位置へ電流を伝送するように延びる伝送部材を有する、形態1に記載の通電装置。
[形態3]
 前記給電位置を三次元的に変更可能である、形態1又は2に記載の通電装置。
[形態4]
 前記給電部は、
  水平方向に平行な第1の方向に延びる第1の導電部材と、
  前記導電部材に対して前記第1の方向における所定の位置に接続される第2の導電部材と、を有し、
 前記第1の導電部材に対する前記第1の方向における前記第2の導電部材の接続位置を変更可能である、形態1~3の何れか一項に記載の通電装置。
[形態5]
 前記給電部は、
  水平方向に平行な第1の方向に延びる第1の導電部材と、
  前記第1の導電部材に対して前記第1の方向における所定の位置に接続される第2の導電部材と、を有し、
 前記水平方向及び前記第1の方向と直交する第2の方向における、前記第2の導電部材に対する前記給電位置を変更可能である、形態1~4の何れか一項に記載の通電装置。
[形態6]
 前記給電部は、
  水平方向に平行な第1の方向に延びる第1の導電部材と、
  前記第1の導電部材に対して前記第1の方向における所定の位置に接続される第2の導電部材と、を有し、
 前記水平方向及び前記第1の方向と直交する第2の方向に対して、前記第2の導電部材の傾きを変更可能である、形態1~5の何れか一項に記載の通電装置。
[形態7]
 前記給電部は、
  水平方向に平行な第1の方向に延びる第1の導電部材と、
  前記第1の導電部材に対して前記第1の方向における所定の位置に接続される第2の導電部材と、
  前記水平方向及び前記第1の方向と直交する第2の方向において、前記第2の導電部材の所定の位置に接続される第3の導電部材と、を有し、
 上下方向における前記第3の導電部材の厚みを変更可能である、形態1~6の何れか一項に記載の通電装置。
[形態8]
 前記給電部は、
  水平方向に平行な第1の方向に延びる第1の導電部材と、
  前記第1の導電部材に対して前記第1の方向における所定の位置に接続される第2の導電部材と、
  前記水平方向及び前記第1の方向と直交する第2の方向において、前記第2の導電部の所定の位置に接続される第3の導電部材と、を有し、
 前記水平方向における前記第3の導電部材の主面の傾きを変更可能である、形態1~7の何れか一項に記載の通電装置。
[形態9]
 形態1~8の何れか一項に記載された通電装置を備え、前記金属材料を成形する成形装置。
[形態10]
 成形装置による金属材料の成形に用いられる、前記金属材料に対する通電方法であって、
 前記金属材料に通電を行う通電部と、
 前記通電部に給電を行う給電部と、を備える通電装置を用いて通電を行い、
 前記金属材料の形状に応じて、前記給電部の前記通電部に対する給電位置を変更する、通電方法。
[Mode 1]
An energization device for energizing the metal material, which is used in a molding device for molding the metal material,
a current-carrying part that energizes the metal material;
A power supply unit that supplies power to the current-carrying unit,
An energizing device that changes a power feeding position of the power feeding portion with respect to the energizing portion according to the shape of the metal material.
[Mode 2]
The energization device according to form 1, wherein the power supply unit has a transmission member extending to transmit current from the power supply unit to the power supply position.
[Mode 3]
The energizing device according to mode 1 or 2, wherein the power feeding position can be changed three-dimensionally.
[Mode 4]
The power supply unit
a first conductive member extending in a first direction parallel to the horizontal direction;
a second conductive member connected to the conductive member at a predetermined position in the first direction;
The energizing device according to any one of modes 1 to 3, wherein the connection position of the second conductive member in the first direction with respect to the first conductive member can be changed.
[Mode 5]
The power supply unit
a first conductive member extending in a first direction parallel to the horizontal direction;
a second conductive member connected to the first conductive member at a predetermined position in the first direction;
5. The energization device according to any one of modes 1 to 4, wherein the power feeding position for the second conductive member can be changed in a second direction orthogonal to the horizontal direction and the first direction.
[Mode 6]
The power supply unit
a first conductive member extending in a first direction parallel to the horizontal direction;
a second conductive member connected to the first conductive member at a predetermined position in the first direction;
The energization device according to any one of modes 1 to 5, wherein the inclination of the second conductive member can be changed with respect to a second direction orthogonal to the horizontal direction and the first direction.
[Mode 7]
The power supply unit
a first conductive member extending in a first direction parallel to the horizontal direction;
a second conductive member connected to a predetermined position in the first direction with respect to the first conductive member;
a third conductive member connected to a predetermined position of the second conductive member in a second direction orthogonal to the horizontal direction and the first direction;
7. The energization device according to any one of modes 1 to 6, wherein the thickness of the third conductive member in the vertical direction can be changed.
[Mode 8]
The power supply unit
a first conductive member extending in a first direction parallel to the horizontal direction;
a second conductive member connected to a predetermined position in the first direction with respect to the first conductive member;
a third conductive member connected to a predetermined position of the second conductive portion in a second direction orthogonal to the horizontal direction and the first direction;
The energization device according to any one of modes 1 to 7, wherein the inclination of the main surface of the third conductive member in the horizontal direction can be changed.
[Mode 9]
A molding apparatus comprising the energization apparatus according to any one of modes 1 to 8, and molding the metal material.
[Form 10]
A method for energizing a metal material used for molding the metal material by a molding apparatus,
a current-carrying unit that energizes the metal material;
energizing using an energizing device including a power feeding unit that supplies power to the energizing unit;
A power supply method, wherein a power supply position of the power supply unit with respect to the current supply unit is changed according to the shape of the metal material.
 1…成形装置、40…金属パイプ材料(金属材料)、70・・・通電部、71・・・給電部、81・・・埋設ブスバー(第1の導電部材)、83・・・板状ブスバー(第2の導電部材)、84・・・ブロック導体(第3の導電部材)、100・・・通電装置。 DESCRIPTION OF SYMBOLS 1... Forming apparatus, 40... Metal pipe material (metal material), 70... Current-carrying part, 71... Power supply part, 81... Embedded busbar (first conductive member), 83... Plate-like busbar (second conductive member), 84: block conductor (third conductive member), 100: energizing device.

Claims (10)

  1.  金属材料を成形する成形装置に用いられる、前記金属材料に通電する通電装置であって、
     金属材料に通電を行う通電部と、
     前記通電部に給電を行う給電部と、を備え、
     前記金属材料の形状に応じて、前記給電部の前記通電部に対する給電位置を変更する、通電装置。
    An energization device for energizing the metal material, which is used in a molding device for molding the metal material,
    a current-carrying part that energizes the metal material;
    A power supply unit that supplies power to the current-carrying unit,
    An energizing device that changes a power feeding position of the power feeding portion with respect to the energizing portion according to the shape of the metal material.
  2.  前記給電部は、電気供給部から前記給電位置へ電流を伝送するように延びる伝送部材を有する、請求項1に記載の通電装置。 The power supply device according to claim 1, wherein the power supply unit has a transmission member extending to transmit current from the power supply unit to the power supply position.
  3.  前記給電位置を三次元的に変更可能である、請求項1に記載の通電装置。 The energization device according to claim 1, wherein the power supply position can be changed three-dimensionally.
  4.  前記給電部は、
      水平方向に平行な第1の方向に延びる第1の導電部材と、
      前記導電部材に対して前記第1の方向における所定の位置に接続される第2の導電部材と、を有し、
     前記第1の導電部材に対する前記第1の方向における前記第2の導電部材の接続位置を変更可能である、請求項1に記載の通電装置。
    The power supply unit
    a first conductive member extending in a first direction parallel to the horizontal direction;
    a second conductive member connected to the conductive member at a predetermined position in the first direction;
    2. The energization device according to claim 1, wherein the connection position of said second conductive member in said first direction with respect to said first conductive member can be changed.
  5.  前記給電部は、
      水平方向に平行な第1の方向に延びる第1の導電部材と、
      前記第1の導電部材に対して前記第1の方向における所定の位置に接続される第2の導電部材と、を有し、
     前記水平方向及び前記第1の方向と直交する第2の方向における、前記第2の導電部材に対する前記給電位置を変更可能である、請求項1に記載の通電装置。
    The power supply unit
    a first conductive member extending in a first direction parallel to the horizontal direction;
    a second conductive member connected to the first conductive member at a predetermined position in the first direction;
    2. The power supply device according to claim 1, wherein said power feeding position for said second conductive member can be changed in a second direction orthogonal to said horizontal direction and said first direction.
  6.  前記給電部は、
      水平方向に平行な第1の方向に延びる第1の導電部材と、
      前記第1の導電部材に対して前記第1の方向における所定の位置に接続される第2の導電部材と、を有し、
     前記水平方向及び前記第1の方向と直交する第2の方向に対して、前記第2の導電部材の傾きを変更可能である、請求項1に記載の通電装置。
    The power supply unit
    a first conductive member extending in a first direction parallel to the horizontal direction;
    a second conductive member connected to the first conductive member at a predetermined position in the first direction;
    The energization device according to claim 1, wherein the inclination of said second conductive member can be changed with respect to a second direction orthogonal to said horizontal direction and said first direction.
  7.  前記給電部は、
      水平方向に平行な第1の方向に延びる第1の導電部材と、
      前記第1の導電部材に対して前記第1の方向における所定の位置に接続される第2の導電部材と、
      前記水平方向及び前記第1の方向と直交する第2の方向において、前記第2の導電部材の所定の位置に接続される第3の導電部材と、を有し、
     上下方向における前記第3の導電部材の厚みを変更可能である、請求項1に記載の通電装置。
    The power supply unit
    a first conductive member extending in a first direction parallel to the horizontal direction;
    a second conductive member connected to a predetermined position in the first direction with respect to the first conductive member;
    a third conductive member connected to a predetermined position of the second conductive member in a second direction orthogonal to the horizontal direction and the first direction;
    The energization device according to claim 1, wherein the thickness of said third conductive member in the vertical direction can be changed.
  8.  前記給電部は、
      水平方向に平行な第1の方向に延びる第1の導電部材と、
      前記第1の導電部材に対して前記第1の方向における所定の位置に接続される第2の導電部材と、
      前記水平方向及び前記第1の方向と直交する第2の方向において、前記第2の導電部の所定の位置に接続される第3の導電部材と、を有し、
     前記水平方向における前記第3の導電部材の主面の傾きを変更可能である、請求項1に記載の通電装置。
    The power supply unit
    a first conductive member extending in a first direction parallel to the horizontal direction;
    a second conductive member connected to a predetermined position in the first direction with respect to the first conductive member;
    a third conductive member connected to a predetermined position of the second conductive portion in a second direction orthogonal to the horizontal direction and the first direction;
    The energization device according to claim 1, wherein the inclination of the main surface of said third conductive member in said horizontal direction can be changed.
  9.  請求項1に記載された通電装置を備え、前記金属材料を成形する成形装置。 A molding apparatus comprising the energization apparatus according to claim 1 and molding the metal material.
  10.  成形装置による金属材料の成形に用いられる、前記金属材料に対する通電方法であって、
     前記金属材料に通電を行う通電部と、
     前記通電部に給電を行う給電部と、を備える通電装置を用いて通電を行い、
     前記金属材料の形状に応じて、前記給電部の前記通電部に対する給電位置を変更する、通電方法。
    A method for energizing a metal material used for molding the metal material by a molding apparatus,
    a current-carrying unit that energizes the metal material;
    energizing using an energizing device including a power feeding unit that supplies power to the energizing unit;
    A power supply method, wherein a power supply position of the power supply unit with respect to the current supply unit is changed according to the shape of the metal material.
PCT/JP2023/004064 2022-02-22 2023-02-07 Energizing device, molding device, and energizing method WO2023162686A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-025663 2022-02-22
JP2022025663 2022-02-22

Publications (1)

Publication Number Publication Date
WO2023162686A1 true WO2023162686A1 (en) 2023-08-31

Family

ID=87765669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004064 WO2023162686A1 (en) 2022-02-22 2023-02-07 Energizing device, molding device, and energizing method

Country Status (1)

Country Link
WO (1) WO2023162686A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220141A (en) * 2008-03-14 2009-10-01 Marujun Co Ltd Method and apparatus for manufacturing pipe product
JP2011183441A (en) * 2010-03-10 2011-09-22 Shiroki Corp Press forming method
JP2013123725A (en) * 2011-12-14 2013-06-24 Jfe Steel Corp Blank local area electrical heating method in press forming
JP5790473B2 (en) * 2011-12-14 2015-10-07 トヨタ自動車株式会社 Electric heating method and electric heating device
JP5880175B2 (en) * 2012-03-15 2016-03-08 マツダ株式会社 Electric heating method and hot press molding method
JP6450608B2 (en) * 2015-03-05 2019-01-09 高周波熱錬株式会社 Heating method, heating apparatus, and method for producing press-molded product

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009220141A (en) * 2008-03-14 2009-10-01 Marujun Co Ltd Method and apparatus for manufacturing pipe product
JP2011183441A (en) * 2010-03-10 2011-09-22 Shiroki Corp Press forming method
JP2013123725A (en) * 2011-12-14 2013-06-24 Jfe Steel Corp Blank local area electrical heating method in press forming
JP5790473B2 (en) * 2011-12-14 2015-10-07 トヨタ自動車株式会社 Electric heating method and electric heating device
JP5880175B2 (en) * 2012-03-15 2016-03-08 マツダ株式会社 Electric heating method and hot press molding method
JP6450608B2 (en) * 2015-03-05 2019-01-09 高周波熱錬株式会社 Heating method, heating apparatus, and method for producing press-molded product

Similar Documents

Publication Publication Date Title
US20220118500A1 (en) Display device and forming device
WO2023162686A1 (en) Energizing device, molding device, and energizing method
JP2023159248A (en) Molding apparatus
US11453037B2 (en) Forming system
JPH05263125A (en) Full automatic high-frequency induction quenching device
CN112739472B (en) Expansion forming device
JP7403531B2 (en) molding system
JP7351772B2 (en) Molding equipment
WO2023042488A1 (en) Molding device
CN211102008U (en) Welding device
WO2023095584A1 (en) Molding device and molding method
CN117241900A (en) Forming system, electric heating system, electrode, forming device and supporting device
JP2002320893A (en) Spray gun heating device
JP6044982B2 (en) Spot welding equipment
JP4347652B2 (en) Arc welding equipment
WO2024122166A1 (en) Molding system
WO2021182359A1 (en) Molding system and molding method
JP2014083586A (en) Spot welding device
JP2022144636A (en) Electric heating system and electrode
JP6004571B2 (en) Spot welding equipment
JP6008675B2 (en) Spot welding equipment
JPS5956989A (en) Stationary type spot welding machine
JP2014083585A (en) Spot welding device
KR20220141782A (en) Molding system and molding method
CN116847934A (en) Molding system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759690

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024502999

Country of ref document: JP