WO2023162355A1 - Substrate treatment method and substrate treatment device - Google Patents

Substrate treatment method and substrate treatment device Download PDF

Info

Publication number
WO2023162355A1
WO2023162355A1 PCT/JP2022/041192 JP2022041192W WO2023162355A1 WO 2023162355 A1 WO2023162355 A1 WO 2023162355A1 JP 2022041192 W JP2022041192 W JP 2022041192W WO 2023162355 A1 WO2023162355 A1 WO 2023162355A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrates
substrate
processing
substrate processing
dummy
Prior art date
Application number
PCT/JP2022/041192
Other languages
French (fr)
Japanese (ja)
Inventor
光敏 佐々木
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Publication of WO2023162355A1 publication Critical patent/WO2023162355A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Definitions

  • the present invention relates to a substrate processing method and a substrate processing apparatus that perform surface processing such as etching with a processing liquid on a plurality of substrates.
  • Substrates to be processed include, for example, semiconductor substrates, liquid crystal display device substrates, flat panel display (FPD) substrates used in organic EL (electroluminescence) display devices, optical disk substrates, magnetic disk substrates, magneto-optical disks. substrates for photomasks, ceramic substrates, substrates for solar cells, and the like.
  • substrate processing apparatuses have been used to perform various processes on semiconductor substrates (hereinafter simply referred to as "substrates").
  • substrate processing apparatuses there is known a batch-type substrate processing apparatus in which a processing liquid is stored in a processing tank, and a plurality of substrates are immersed in the processing liquid at once to perform etching processing or the like. ing.
  • a batch-type substrate processing apparatus can be provided with a processing liquid supply unit that supplies a processing liquid and a bubble supply unit (bubbler) that supplies bubbles to the bottom of a processing tank in which a plurality of substrates are immersed. disclosed.
  • a processing liquid supply unit that supplies a processing liquid
  • a bubble supply unit bubbler
  • some substrates may be thinned out from the stacked array of multiple substrates. Even when the immersion process is performed with some of the substrates missing from the stacked array of multiple substrates, the processing conditions will be different between the substrates near the missing position and the other substrates, resulting in the processing of multiple substrates. was uneven.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of performing uniform processing on all of a plurality of substrates.
  • a first aspect of the present invention provides a substrate processing method for surface-treating a plurality of substrates with a processing liquid, comprising: a detecting step of detecting an arrangement state of the plurality of substrates; a specifying step of specifying a position into which the dummy substrate is to be inserted in the arrangement of the plurality of substrates based on the arrangement state of the plurality of substrates detected in the specifying step; a treatment step of immersing the inserted plurality of substrates in a treatment liquid stored in a treatment tank to perform surface treatment of the plurality of substrates, wherein the specifying step comprises: surface treatment of each of the plurality of substrates; The position where the dummy substrate is to be inserted is specified so that the width of the space existing in the substrate is constant.
  • the detection step includes a step of detecting the orientation of each of the plurality of substrates and a step of detecting an arrangement interval of the plurality of substrates. ,including.
  • a dummy substrate is inserted so that the dummy substrate is arranged to face one of the surfaces of the plurality of substrates. to identify the location.
  • dummy substrates are inserted such that each of the plurality of substrates and the dummy substrates are arranged at equal intervals. to identify the location.
  • a fifth aspect is the substrate processing method according to any one of the first to fourth aspects, wherein the processing step includes forming a flow of the processing liquid in the processing tank and storing the processing liquid in the processing tank. and C. supplying air bubbles into the treated liquid.
  • the counter plate is arranged such that the width of the space existing on the surface side of each of the plurality of substrates is constant. a holding step of holding the plurality of substrates by a lifter while being arranged with respect to the plurality of substrates; and a processing step of surface-treating the substrate.
  • the opposing plate includes a circular back plate provided on the lifter.
  • An eighth aspect is the substrate processing method according to the sixth or seventh aspect, wherein the treating step includes forming a flow of the treating solution in the treating bath, and C. providing air bubbles in the liquid.
  • a ninth aspect is directed to a substrate processing apparatus for surface-treating a plurality of substrates with a processing liquid, comprising: a processing tank for storing the processing liquid; and a processing liquid supply unit for supplying the processing liquid to the processing tank. and a lifter that holds and moves up and down the plurality of substrates and immerses the plurality of substrates in the processing liquid stored in the processing bath, wherein the lifter is present on the surface side of each of the plurality of substrates.
  • the plurality of substrates are held in a state in which the opposing plate is arranged with respect to the plurality of substrates so that the width of the space between them is constant.
  • the counter plate includes a circular back plate provided on the lifter.
  • An eleventh aspect is the substrate processing apparatus according to the ninth or tenth aspect, wherein the opposing plate includes a dummy substrate.
  • the substrate processing apparatus further includes a bubble supply section for supplying bubbles to the processing liquid stored in the processing bath.
  • the plurality of substrates are processed.
  • the processing conditions in the vicinity of the surface of all of the substrates are uniform, and uniform processing can be performed on all of the plurality of substrates.
  • the counter plate is arranged with respect to the plurality of substrates so that the width of the space existing on the surface side of each of the plurality of substrates is constant. Since the substrates are immersed in the processing liquid stored in the processing tank, the processing conditions in the vicinity of the surfaces of all of the plurality of substrates become uniform, and uniform processing can be performed on all of the plurality of substrates.
  • the counter plate is arranged with respect to the plurality of substrates so that the width of the space existing on the surface side of each of the plurality of substrates is constant. Since the substrates are held and immersed in the processing liquid, the processing conditions in the vicinity of the surfaces of all of the plurality of substrates become uniform, and uniform processing can be performed on all of the plurality of substrates.
  • FIG. 1 is an illustrative plan view showing the overall configuration of a substrate processing apparatus according to the present invention
  • FIG. It is a figure which shows the structure of a 1st chemical
  • 3 is a block diagram showing the configuration of a control unit;
  • FIG. 4 is a flow chart showing a processing procedure in the substrate processing apparatus of the first embodiment;
  • FIG. 4 is a diagram for conceptually explaining an example of dummy substrate insertion in the first embodiment;
  • FIG. 7 is a diagram for conceptually explaining another example of dummy substrate insertion in the first embodiment
  • FIG. 11 is a diagram for conceptually explaining an example of dummy substrate insertion in the second embodiment
  • It is a figure which shows the back plate of the lifter of 3rd Embodiment.
  • FIG. 11 is a diagram showing a state in which a plurality of substrates are held by the lifter of the third embodiment
  • FIG. 11 is a diagram for conceptually explaining another example of dummy substrate insertion
  • FIG. 11 is a diagram for conceptually explaining another example of dummy substrate insertion;
  • FIG. 1 is an illustrative plan view showing the overall configuration of a substrate processing apparatus 100 according to the present invention.
  • the substrate processing apparatus 100 is a batch-type substrate processing apparatus that collectively performs surface treatment of a plurality of substrates W such as semiconductor wafers with a processing liquid.
  • the dimensions and numbers of each part are exaggerated or simplified as necessary for easy understanding.
  • an XYZ orthogonal coordinate system with the Z-axis direction as the vertical direction and the XY plane as the horizontal plane is appropriately attached in order to clarify their directional relationships.
  • the substrate processing apparatus 100 mainly includes a load port 110 , a substrate processing section 120 , a main transfer robot 130 , a loading/unloading mechanism 140 , a single wafer hand 150 , a transfer mechanism 160 and a horizontal transfer mechanism 170 .
  • the substrate processing apparatus 100 also includes a control section 70 that controls operations of these mechanisms.
  • the load port 110 is provided at the end of the substrate processing apparatus 100 which is substantially rectangular in plan view.
  • a carrier 111 that accommodates a plurality of substrates (hereinafter simply referred to as “substrates”) W to be processed by the substrate processing apparatus 100 is placed on the load port 110 .
  • a carrier 111 containing unprocessed substrates W is transported by an automatic guided vehicle (AGV, OHT) or the like and placed on a load port 110 . Further, the carrier 111 containing the processed substrates W is also removed from the load port 110 by the automatic guided vehicle.
  • AGV automatic guided vehicle
  • the carrier 111 is typically a FOUP (front opening unified pod) that houses the substrate W in a closed space.
  • the carrier 111 holds a plurality of substrates W in a horizontal posture (a posture in which the normal line is along the vertical direction) in a state of being stacked and arranged at regular intervals in the vertical direction (Z direction) by a plurality of holding shelves formed inside the carrier 111 . do.
  • the maximum number of sheets that can be accommodated in the carrier 111 is 25 sheets or 50 sheets.
  • the carrier 111 may be in the form of a SMIF (Standard Mechanical Inter Face) pod or an OC (open cassette) that exposes the housed substrates W to the outside air.
  • a sensor 112 a pod opener (not shown), and the like are provided at the boundary between the main body of the substrate processing apparatus 100 and the load port 110 .
  • the pod opener opens and closes the front cover of the carrier 111 placed on the load port 110 .
  • the sensor 112 optically detects the number and position of the substrates W housed inside the carrier 111 whose lid is opened by the pod opener.
  • the substrate processing unit 120 is a main part of the substrate processing apparatus 100 that performs various surface treatments on the substrate W.
  • the substrate processing section 120 includes a plurality of processing baths arranged along the X direction inside the substrate processing apparatus 100 . Specifically, a first chemical bath 121, a first rinse bath 122, a second chemical bath 123, a second rinse bath 124, and a drying processing unit 125 are arranged in order from the ( ⁇ X) side end of the substrate processing apparatus 100. be done.
  • the first chemical bath 121 and the second chemical bath 123 store the same or different chemical solutions, respectively, and immerse a plurality of substrates W in the chemical solutions collectively to perform chemical treatment such as etching.
  • the first rinse bath 122 and the second rinse bath 124 each store a rinse solution (typically pure water), and a plurality of substrates W are collectively immersed in the rinse solution for rinsing. conduct.
  • the chemical solution tank and the rinse tank are collectively referred to as the "processing tank".
  • the processing bath stores a processing liquid and immerses the substrate W in the processing liquid to perform surface processing.
  • surface treatment is a conceptual term including chemical treatment and rinse treatment.
  • treatment liquid is a conceptual term including various chemical solutions and pure water.
  • the chemical includes, for example, a liquid for etching or a liquid for removing particles. Specifically, tetramethylammonium hydroxide (TMAH), SC-1 liquid (ammonium hydroxide a mixed solution of hydrogen peroxide and pure water), SC-2 solution (a mixed solution of hydrochloric acid, hydrogen peroxide and pure water), or phosphoric acid.
  • TMAH tetramethylammonium hydroxide
  • SC-1 liquid ammonium hydroxide a mixed solution of hydrogen peroxide and pure water
  • SC-2 solution a mixed solution of hydrochloric acid, hydrogen peroxide and pure water
  • phosphoric acid phosphoric acid.
  • the chemical solution also includes one
  • the first chemical bath 121 and the first rinse bath 122 are paired, and the second chemical bath 123 and the second rinse bath 124 are paired.
  • a first lifter 126 which is a transport mechanism dedicated to the pair of the first chemical tank 121 and the first rinse tank 122, and a transport mechanism dedicated to the pair of the second chemical tank 123 and the second rinse tank 124,
  • a second lifter 127 is provided.
  • the first lifter 126 is movable along the X direction between the first chemical bath 121 and the first rinse bath 122 .
  • the second lifter 127 is movable along the X direction between the second chemical bath 123 and the second rinse bath 124 .
  • the first lifter 126 holds a plurality of substrates W received from the main transfer robot 130 and immerses the substrates W in the chemical liquid stored in the first chemical liquid tank 121 . After completion of the chemical treatment, the first lifter 126 lifts the substrate W from the first chemical bath 121 and transfers it to the first rinse bath 122 to immerse the substrate W in the rinse liquid stored in the first rinse bath 122 . . After completion of the rinsing process, the first lifter 126 lifts the substrate W from the first rinsing tank 122 and transfers it to the main transfer robot 130 .
  • the second lifter 127 holds a plurality of substrates W received from the main transfer robot 130 and immerses the substrates W in the chemical liquid stored in the second chemical liquid tank 123 .
  • the second lifter 127 lifts the substrate W from the second chemical bath 123 and transfers it to the second rinse bath 124 to immerse the substrate W in the rinse liquid stored in the second rinse bath 124 .
  • the second lifter 127 lifts the substrate W from the second rinse tank 124 and transfers it to the main transfer robot 130 .
  • the structure of the processing bath will be described later in detail.
  • the drying processing unit 125 includes a mechanism for reducing the pressure inside the sealed drying chamber to below atmospheric pressure, and a mechanism for supplying an organic solvent (eg, isopropyl alcohol (IPA)) into the drying chamber.
  • the drying processing section 125 stores the substrate W received from the main transfer robot 130 in the drying chamber, supplies an organic solvent to the substrate W to dry the substrate W while reducing the pressure in the drying chamber. The substrate W after the drying process is transferred to the main transfer robot 130 .
  • an organic solvent eg, isopropyl alcohol (IPA)
  • the main transport robot 130 transports unprocessed substrates W received from the horizontal transport mechanism 170 to the substrate processing units 120 arranged from the first chemical tank 121 to the drying processing unit 125 .
  • the main transport robot 130 also transfers the processed substrate W received from the substrate processing section 120 to the horizontal transport mechanism 170 .
  • the main transport robot 130 is horizontally movable along the X direction within a range from the substrate transfer position with the horizontal transport mechanism 170 to the first chemical liquid tank 121 .
  • the main transfer robot 130 also includes a pair of substrate chucks 132 that hold a plurality of substrates W collectively.
  • the main transport robot 130 can collectively grip a plurality of substrates W by narrowing the space between the pair of substrate chucks 132 , and can release the gripping state by widening the space between the substrate chucks 132 .
  • the main transfer robot 130 has a mechanism for raising and lowering the pair of substrate chucks 132 .
  • the main transport robot 130 can transfer the substrates W to and from the horizontal transfer mechanism 170 , and can also transfer the substrates W to the first lifter 126 and the second lifter 127 . Further, the main transport robot 130 can transfer the substrate W to and from the drying processing section 125 as well.
  • the loading/unloading mechanism 140 loads unprocessed substrates W into the substrate processing apparatus 100 from the carrier 111 placed on the load port 110, and unloads processed substrates W from the substrate processing apparatus 100 to the carrier 111.
  • the loading/unloading mechanism 140 includes a batch hand 141 formed by stacking hand elements each capable of holding one substrate W in multiple stages.
  • the installation interval of the plurality of hand elements in the batch hand 141 is the same as the arrangement interval of the substrates W within the carrier 111 .
  • the carry-in/out mechanism 140 includes a mechanism for horizontally moving the batch hand 141 along the X direction, and a mechanism for rotating the batch hand 141 by 90° around an axis along the Y direction.
  • the loading/unloading mechanism 140 moves along the X direction to the loading/unloading position P1 to allow the batch hand 141 to enter the carrier 111, and batch the plurality of substrates W stored in the carrier 111 in a stacked arrangement. to remove and hold. Then, the loading/unloading mechanism 140 moves the batch hand 141 to the transfer position P2 along the X direction while holding the plurality of substrates W in the batch hand 141, and then moves the batch hand 141 90 degrees around the axis along the Y direction. ° Rotate. As a result, the plurality of substrates W stacked and arranged in a horizontal posture are converted to a standing posture (a posture in which the normal line is along the horizontal direction). The loading/unloading mechanism 140 further moves along the X direction, and the substrates W stacked and arranged in an upright posture and held by the batch hand 141 are transferred from the loading/unloading mechanism 140 to the transfer mechanism 160 .
  • a plurality of substrates W are transferred to the loading/unloading mechanism 140 while being stacked in a standing posture.
  • the loading/unloading mechanism 140 rotates the batch hand 141 holding the substrates W stacked and arranged in an upright posture by 90° about an axis along the Y direction.
  • the plurality of substrates W stacked and arranged in an upright posture are converted into a horizontal posture.
  • the loading/unloading mechanism 140 moves along the X direction to the loading/unloading position P ⁇ b>1 and moves the batch hand 141 holding the substrate W into the carrier 111 to transfer the substrate W to the carrier 111 .
  • the transfer mechanism 160 transfers the substrate W between the loading/unloading mechanism 140 and the horizontal transport mechanism 170 .
  • the transfer mechanism 160 includes a pair of support shafts 161 that collectively support a plurality of substrates W stacked in an upright posture.
  • the transfer mechanism 160 also includes a mechanism for moving the pair of support shafts 161 up and down.
  • the transfer mechanism 160 receives a plurality of substrates W stacked and arranged in an upright posture from the loading/unloading mechanism 140 by a pair of support shafts 161 . Then, the transfer mechanism 160 transfers the substrate W received from the loading/unloading mechanism 140 to the horizontal transport mechanism 170 in the upright posture. The transfer mechanism 160 also receives a plurality of substrates W stacked and arranged in an upright posture from the horizontal transport mechanism 170 by a pair of support shafts 161 and transfers the substrates W to the carry-in/out mechanism 140 .
  • the horizontal transport mechanism 170 includes a mechanism that horizontally transports the substrate W along the Y direction and a mechanism that rotates the substrate W by 90° around an axis along the Z direction.
  • the horizontal transport mechanism 170 rotates the plurality of substrates W received from the loading/unloading mechanism 140 and stacked in an upright posture by 90° about an axis along the Z direction, and rotates the substrates W along the Y direction. It is transported and handed over to the main transport robot 130 . Further, the horizontal transport mechanism 170 rotates the plurality of substrates W received from the main transport robot 130 and stacked in an upright posture by 90° about an axis along the Z direction, and moves the substrates W in the Y direction. , and handed over to the transfer mechanism 160 .
  • the substrate processing apparatus 100 of this embodiment is provided with a single-wafer hand 150 and a stocker 155 .
  • the stocker 155 stores dummy substrates DW.
  • the dummy substrate DW is a disk-shaped silicon wafer similar to the normal substrate W to be processed, and has the same size and shape as the substrate W. However, pattern formation and film formation are not performed on the dummy substrate DW. That is, the dummy substrate DW is a so-called bare wafer.
  • the single substrate hand 150 holds one dummy substrate DW in a horizontal posture.
  • the single-wafer hand 150 is configured to be able to move along the Y direction, move up and down along the Z direction, and move back and forth along the X direction.
  • the single-wafer hand 150 takes out one dummy substrate DW from the stocker 155, holds it, moves along the Y direction to the loading/unloading position P1, and faces the loading/unloading mechanism 140 located at the transfer position P2. do. Then, the single-wafer hand 150 moves forward along the X direction and passes the dummy substrate DW to one of the plurality of hand elements forming the batch hand 141 .
  • FIG. 2 is a diagram showing the configuration of the first chemical tank 121.
  • the first chemical bath 121 includes a processing bath 10 that stores the processing liquid, a processing liquid supply unit 30 that supplies the processing liquid to the processing bath 10, a drain unit 40 that discharges the processing liquid from the processing bath 10, and a processing bath. and a bubble supply unit 50 for supplying bubbles into the processing liquid stored in 10 .
  • the processing tank 10 is a storage container made of a chemical-resistant material such as quartz.
  • the processing bath 10 has a double bath structure including an inner bath 11 in which a processing solution is stored and the substrates W are immersed, and an outer bath 12 formed around the upper end of the inner bath 11 .
  • Each of the inner bath 11 and the outer bath 12 has an upper opening that opens upward.
  • the height of the upper edge of the outer tub 12 is higher than the height of the upper edge of the inner tub 11 .
  • the first lifter 126 has a back plate 22 extending in the vertical direction (Z direction) and three holding bars 21 extending in the horizontal direction (Y direction) from the lower end of the back plate 22 .
  • a plurality of (for example, 52) holding grooves are formed in each holding bar 21 at a predetermined pitch.
  • a plurality of substrates W are held on three holding rods 21 in parallel with each other at predetermined intervals in an upright posture with their peripheral edges fitted in the holding grooves.
  • the first lifter 126 moves up and down in the first chemical tank 121 .
  • 3 and 4 are diagrams showing the lifting operation of the first lifter 126.
  • FIG. By moving the first lifter 126 up and down, the substrate W moves from the immersion position (the position in FIG. 4) inside the processing tank 10 to the lifting position above the processing tank 10, as indicated by the arrow AR2 in FIG. (position in FIG. 3).
  • the substrate W By lowering the substrate W to the immersion position while the processing liquid is stored in the processing bath 10, the substrate W is immersed in the processing liquid and subjected to the surface treatment.
  • the treatment liquid supply unit 30 includes a nozzle 31 and a piping system for supplying the treatment liquid thereto.
  • the nozzle 31 is arranged at the bottom inside the inner bath 11 of the processing bath 10 .
  • a dispersion plate 15 is provided directly above the nozzle 31 so as to face the nozzle 31 .
  • a punching plate 17 is provided above the dispersion plate 15 .
  • FIG. 5 is a diagram of the nozzle 31, the dispersion plate 15 and the punching plate 17 viewed from the bottom of the processing tank 10.
  • a tip portion of the pipe 32 of the processing liquid supply unit 30 (the portion extending into the processing bath 10) constitutes a pipe 32a.
  • a plurality of nozzles 31 are formed above the pipe 32a. Each nozzle 31 is communicatively connected to a pipe 32a.
  • a dispersion plate 15 is provided above each of the plurality of nozzles 31 .
  • the dispersion plate 15 is a disk-shaped member provided parallel to the horizontal plane.
  • the nozzle 31 projects vertically upward from the pipe 32 a toward the distribution plate 15 .
  • a punching plate 17 is provided over the entire horizontal cross section of the inner tank 11 above the dispersion plate 15 .
  • a plurality of processing liquid holes 17 a are formed on the entire surface of the punching plate 17 .
  • the processing liquid supplied to the pipe 32a is discharged from the nozzle 31 toward the dispersion plate 15 directly above.
  • the flow of the processing liquid impinges on the distribution plate 15, the pressure of the liquid is dispersed, and the processing liquid is discharged. It extends horizontally along the surface of the dispersion plate 15 .
  • the processing liquid spread horizontally by the dispersion plate 15 rises from the plurality of processing liquid holes 17a of the punching plate 17 to form a laminar flow in the processing bath 10 from the bottom to the top.
  • the piping system for supplying the processing liquid to the nozzle 31 is configured with a pump 33 , a heater 34 , a filter 35 , a flow control valve 36 and a valve 37 in the piping 32 .
  • Pump 33, heater 34, filter 35, flow control valve 36 and valve 37 are arranged in this order from upstream to downstream of pipe 32 (from outer tank 12 to inner tank 11).
  • the tip side of the pipe 32 extends into the processing tank 10 to form a pipe 32 a ( FIG. 5 ), and the base end side of the pipe 32 is connected to the outer tank 12 .
  • the pipe 32 guides the processing liquid flowing out of the outer tank 12 back to the inner tank 11 . That is, the processing liquid supply unit 30 circulates the processing liquid in the processing tank 10 .
  • the pump 33 discharges the processing liquid from the outer tank 12 to the pipe 32 and sends the processing liquid to the nozzle 31 .
  • the heater 34 heats the processing liquid flowing through the pipe 32 . When phosphoric acid or the like is used as the processing liquid, the processing liquid is heated by the heater 34 and the heated processing liquid is stored in the processing tank 10 .
  • the filter 35 filters the treatment liquid flowing through the pipe 32 to remove impurities and the like.
  • a flow control valve 36 adjusts the flow rate of the processing liquid flowing through the pipe 32 .
  • the valve 37 opens and closes the channel of the pipe 32 . By opening the valve 37 while operating the pump 33 , the processing liquid discharged from the outer tank 12 flows through the pipe 32 and is supplied to the nozzle 31 , the flow rate of which is regulated by the flow control valve 36 .
  • the chemical supply unit 80 includes a chemical supply source 81, a valve 82, a nozzle 83 and a pipe 84.
  • the pipe 84 has a distal end connected to the nozzle 83 and a proximal end connected to the chemical solution supply source 81 .
  • a valve 82 is provided in the middle of the path of the pipe 84 . When the valve 82 is opened, the chemical liquid is supplied from the chemical liquid supply source 81 to the nozzle 83 and discharged from the nozzle 83 toward the outer tank 12 of the processing tank 10 .
  • the chemical solution supplied from the chemical solution supply part 80 to the outer tank 12 is supplied into the inner tank 11 by the treatment liquid supply part 30 .
  • the nozzle 83 of the chemical solution supply unit 80 may directly supply the chemical solution to the inner tank 12 .
  • the first rinse tank 122 and the second rinse tank 124 are not provided with the chemical supply unit 80 .
  • a pure water supply unit 90 includes a pure water supply source 91 , a valve 92 , a nozzle 93 and a pipe 94 .
  • the tip side of the pipe 94 is connected to the nozzle 93 , and the base end side is connected to the pure water supply source 91 .
  • a valve 92 is provided in the middle of the path of the pipe 94 . When the valve 92 is opened, pure water is supplied from the pure water supply source 91 to the nozzle 93 and discharged from the nozzle 93 toward the outer tank 12 of the processing tank 10 .
  • the pure water supplied by the pure water supply unit 90 functions as a diluent for the chemical.
  • the chemical solution is supplied from the chemical solution supply part 80 to the processing bath 10 and the pure water is supplied from the pure water supply part 90 to dilute the chemical solution.
  • the drainage unit 40 includes a pipe 41 and a valve 45.
  • the tip side of the pipe 41 is connected to the bottom wall of the inner tank 11 of the processing tank 10 .
  • a valve 45 is provided in the middle of the path of the pipe 41 .
  • the base end side of the pipe 43 is connected to the drainage equipment of the factory where the substrate processing apparatus 1 is installed. When the valve 45 is opened, the processing liquid stored in the inner tank 11 is rapidly discharged from the bottom of the inner tank 11 to the pipe 41 and processed by the drainage equipment.
  • the bubble supply unit 50 includes a plurality of bubble supply pipes 51 (six in this embodiment) and a piping system for supplying gas to them.
  • the six bubble supply pipes 51 are arranged inside the inner bath 11 of the processing bath 10 above the punching plate 17 and below the substrate W held at the immersion position by the first lifter 126 .
  • Each of the six bubble supply pipes 51 is a long tubular member.
  • Each bubble supply pipe 51 is provided with a plurality of bubble holes.
  • Each of the six bubble supply pipes 51 discharges gas from the bubble hole into the processing liquid stored in the processing tank 10 .
  • the gas supplied by the bubble supply unit 50 is, for example, an inert gas.
  • the inert gas is, for example, nitrogen or argon (nitrogen is used in this embodiment).
  • a piping system for supplying gas to the six bubble supply pipes 51 includes a pipe 52, a gas supply mechanism 53 and a gas supply source 54.
  • the tip side of one pipe 52 is connected to each of the six bubble supply pipes 51 .
  • a proximal end of the pipe 52 is connected to a gas supply source 54 .
  • a gas supply mechanism 53 is provided for each of the pipes 52 . That is, one gas supply mechanism 53 is provided for each of the six bubble supply pipes 51 .
  • a gas supply source 54 delivers gas to each pipe 52 .
  • the gas supply mechanism 53 includes a mass flow controller and an opening/closing valve (not shown), and supplies gas to the bubble supply pipe 51 through the pipe 52 and adjusts the flow rate of the supplied gas.
  • the control unit 70 controls the various operating mechanisms provided in the substrate processing apparatus 100 .
  • FIG. 6 is a block diagram showing the configuration of the control section 70.
  • the hardware configuration of the control unit 70 is the same as that of a general computer. That is, the control unit 70 includes a CPU that is a circuit that performs various arithmetic processing, a ROM that is a read-only memory that stores basic programs, a RAM that is a readable and writable memory that stores various information, and control software and data.
  • a storage unit 74 (for example, a magnetic disk) for storing is provided.
  • the processing in the substrate processing apparatus 100 proceeds as the CPU of the control unit 70 executes a predetermined processing program.
  • the control unit 70 includes an insertion position specifying unit 71.
  • the insertion position specifying unit 71 is a functional processing unit realized by the CPU of the control unit 70 executing a predetermined processing program. Details of the processing performed by the insertion position specifying unit 71 will be described later.
  • a storage unit 74 of the control unit 70 stores a processing recipe 75 that defines procedures and conditions for processing the substrate W.
  • the processing recipe 75 is acquired by the substrate processing apparatus 100 by, for example, being input by an operator of the apparatus via an input unit 72 described later and stored in the storage unit 74 .
  • the processing recipe 75 may be transferred to the substrate processing apparatuses 100 by communication from a host computer that manages a plurality of substrate processing apparatuses 100 and stored in the storage unit 74 .
  • Mechanisms such as the sensor 112 and the single-wafer hand 150 are electrically connected to the control unit 70 .
  • the control unit 70 receives detection results from the sensor 112 and controls the operation of the single-wafer hand 150 .
  • a display unit 73 and an input unit 72 are also connected to the control unit 70 .
  • the display unit 73 and the input unit 72 function as user interfaces of the substrate processing apparatus 100 .
  • the control unit 70 displays various information on the display unit 73 .
  • An operator of the substrate processing apparatus 100 can input various commands and parameters from the input section 72 while confirming the information displayed on the display section 73 .
  • a keyboard or a mouse, for example, can be used as the input unit 72 .
  • As the display unit 73 for example, a liquid crystal display can be used as the display unit 73 and the input unit 72.
  • a liquid crystal touch panel provided on the outer wall of the substrate processing apparatus 100 is employed to have both functions.
  • FIG. 7 is a flow chart showing a processing procedure in the substrate processing apparatus 100 of the first embodiment.
  • the processing procedure described below proceeds as the control unit 70 controls each operating mechanism of the substrate processing apparatus 100 .
  • the carrier 111 containing unprocessed substrates W is placed on the load port 110, and the substrates W are carried into the substrate processing apparatus 100 (step S1).
  • a plurality of substrates W are accommodated in a state of being stacked and arranged in a horizontal posture.
  • the ID tag attached to the carrier 111 is read by an optical reader (not shown) to identify the lot (a set of multiple substrates W) accommodated in the carrier 111.
  • the number is transmitted to control unit 70 .
  • the control unit 70 extracts the processing recipe 75 pre-assigned to the identification number of the lot from many processing recipes 75 stored in the storage unit 74 .
  • the control unit 70 detects the orientation of each of the plurality of substrates W stored in the carrier 111 based on the extracted processing recipe 75 (step S2).
  • the orientation of the substrate W is information as to which direction the surface faces. For example, in a state in which a plurality of substrates W are stacked in a horizontal posture, the surface of each substrate W faces either upward or downward.
  • the orientation of each of the plurality of substrates W housed in the carrier 111 is designated by the processing recipe 75 .
  • the control unit 70 Based on the processing recipe 75, the control unit 70 detects whether the surface of each of the plurality of substrates W horizontally stacked on the carrier 111 faces upward or downward.
  • the surface of the substrate W is the surface on which patterns and films are formed among the two main surfaces.
  • the main surface of the substrate W opposite to the front surface is the back surface.
  • the pod opener opens the front cover of the carrier 111 .
  • the sensor 112 detects the arrangement intervals of the plurality of substrates W accommodated in the carrier 111 (step S3).
  • the sensor 112 optically detects the arrangement interval of the plurality of substrates W stacked and arranged in a horizontal posture. Information about the arrangement interval of the substrates W detected by the sensor 112 is transmitted to the controller 70 .
  • the control unit 70 By detecting the orientation of the substrates W in step S2 and detecting the arrangement interval of the substrates W in step S3, the control unit 70 acquires two types of information regarding the arrangement state of the plurality of substrates W stored in the carrier 111. becomes. Then, the insertion position specifying unit 71 of the control unit 70 specifies the insertion positions of the dummy substrates DW based on the detected two pieces of information (orientation information and arrangement interval information) regarding the arrangement state of the plurality of substrates W (step S4).
  • FIG. 8 is a diagram for conceptually explaining an example of dummy substrate insertion in the first embodiment.
  • Each concave portion of the unevenness shown in the lower part of FIG. 8 indicates a slot capable of holding one substrate W.
  • a plurality of slots shown in FIG. 8 correspond to, for example, a plurality of holding grooves or the like carved in the holding bar 21 of the first lifter 126 .
  • the short arrows indicate the surface of the substrate W (the same applies to FIGS. 9, 10, 12, 13, and 14 hereinafter).
  • the substrates W are basically sequentially held in all slots. That is, the basic interval between adjacent substrates W is one slot. Such an example corresponds to processing a lot of 50 sheets. However, in the stacked arrangement of the plurality of substrates W, one substrate W is missing from between the substrates W11 and W12. Similarly, one substrate W is missing from between the substrate W13 and the substrate W14. Such omission of the substrate W occurs, for example, as a result of removal of the substrate W, which has been defectively processed in the previous process of the substrate processing apparatus 100 .
  • the gap between the substrate W11 and the substrate W12 and the gap between the substrate W13 and the substrate W14 become 2 slots due to the substrate W coming off. That is, in the stacking arrangement of a plurality of substrates W, the intervals between adjacent substrates W become uneven. Information about the interval between the substrates W adjacent to each other is acquired in step S3 and transmitted to the control unit 70 . Information about the orientation of the surface of each substrate W is obtained in step S2.
  • the relative widening of the distance between the substrates W11 and W12 and the distance between the substrates W13 and W14 means that the width of the space existing on the surface side of the substrate W11 and the substrate W13 exists on the surface side of the other substrate W. It means that it will be wider than the width of the space to be used. That is, the width of the space existing on the surface side of the other substrate W is 1 slot, while the width of the space existing on the surface side of the substrate W11 and the substrate W13 is 2 slots.
  • the width of the space existing on the surface side of the substrate W15 at the end in the stacked arrangement of the plurality of substrates W is relatively wide.
  • the width of the space existing on the front surface side is equal to that of the other substrates W15. is the same as the width of the space that exists on the surface side of the (that is, one slot).
  • the insertion position specifying unit 71 specifies the positions into which the dummy substrates DW are inserted so that the width of the space existing on the surface side of each of the plurality of substrates W is constant. .
  • the insertion position specifying unit 71 determines the insertion position of the dummy substrate DW so that the dummy substrate DW is arranged opposite to the front surface of the substrate W having a relatively wide space on the front surface side.
  • the slot A which is one slot away from the surface of the substrate W11, the slot B which is one slot away from the surface of the substrate W13, and the slot C which is one slot away from the surface of the substrate W15 serve as insertion positions for the dummy substrates DW. identified. That is, in the first embodiment, the insertion positions of the dummy substrates DW are specified so that the width of the space existing on the surface side of each of the plurality of substrates W is one slot. Since 52 holding grooves are formed in the holding bar 21, even in a lot of 50 substrates, it is possible to hold the dummy substrates DW in the slot C which is one slot apart from the surface of the substrate W15. be.
  • the carry-in/out mechanism 140 takes out the plurality of substrates W from the carrier 111 .
  • the loading/unloading mechanism 140 moves to the loading/unloading position P ⁇ b>1 and collectively receives and holds a plurality of substrates W accommodated in the carrier 111 by the batch hand 141 .
  • the loading/unloading mechanism 140 moves to the transfer position P ⁇ b>2 while holding the plurality of substrates W on the batch hand 141 .
  • the single-wafer hand 150 takes out the dummy substrate DW from the stocker 155, moves to the loading/unloading position P1, and faces the loading/unloading mechanism 140 stopped at the transfer position P2. Then, the single-wafer hand 150 inserts the dummy substrate DW into the stacking arrangement of the plurality of substrates W held by the loading/unloading mechanism 140 (step S5).
  • the single-wafer hand 150 inserts the dummy substrate DW into the slot specified in step S4. Specifically, the single substrate hand 150 inserts dummy substrates DW into slots A, B and C in FIG.
  • the insertion of the dummy substrate DW also includes arranging the dummy substrate DW at the end of the stacked arrangement of the plurality of substrates W.
  • the carry-in/out mechanism 140 moves the plurality of substrates W into which the dummy substrates DW are inserted (hereafter, the stacking arrangement of the plurality of substrates W including the inserted dummy substrates DW is referred to as “stacking of substrates W”). (referred to as "body”) from a horizontal posture to a standing posture.
  • the stack of substrates W in the upright posture is transferred from the loading/unloading mechanism 140 to the horizontal transport mechanism 170 via the transfer mechanism 160 .
  • the horizontal transport mechanism 170 transfers the stack of substrates W to the main transport robot 130 .
  • the main transport robot 130 transfers the stack of substrates W to the first lifter 126 (or the second lifter 127).
  • the processing liquid is circulated by overflowing from the inner tank 11 of the processing tank 10 to the outer tank 12 and returning to the inner tank 11 .
  • the processing liquid flowing out from the outer tank 12 to the pipe 32 is sent to the nozzle 31 by the pump 33 .
  • the processing liquid flowing through the pipe 32 is heated by the heater 34 as necessary.
  • the flow rate of the processing liquid flowing through the pipe 32 is regulated by a flow rate control valve 36 .
  • the processing liquid supplied to the nozzle 31 is discharged upward in the inner bath 11 from the nozzle 31 .
  • the treatment liquid discharged from the nozzles 31 collides with the dispersion plate 15 and spreads horizontally along the surface of the dispersion plate 15 .
  • the processing liquid spread in the horizontal direction by the dispersion plate 15 reaches the punching plate 17 and passes through the plurality of processing liquid holes 17a. to form.
  • the processing liquid that has reached the upper end of the inner bath 11 overflows and flows into the outer bath 12 .
  • the stack of substrates W is immersed in the treatment liquid while a laminar flow of the treatment liquid is formed in the treatment bath 10 (step S6). Specifically, the first lifter 126 that has received the stacked body of substrates W descends from the lifting position above the processing tank 10, lowers the stacked body of substrates W to the immersion position in the processing tank 10, and immerses the stacked body in the processing liquid. The substrate W is immersed.
  • the first lifter 126 holds the stack of substrates W at the immersion position in a state in which a laminar flow of the processing liquid is formed in the processing tank 10 , thereby forming a layer of the processing liquid between the substrates W. As the current flows, the surface of the substrate W is exposed to the processing liquid, and the surface processing (etching processing in this embodiment) of the substrate W proceeds (step S7).
  • the bubble supply unit 50 supplies bubbles from the bubble supply pipe 51 into the processing liquid in the processing tank 10 .
  • the flow velocity of the laminar flow of the processing liquid formed by the dispersion plate 15 and the punching plate 17 is relatively low. flow speed increases. By increasing the flow velocity of the processing liquid in the vicinity of the surface of the substrate W, the surface processing efficiency of the substrate W can be improved and the etching rate can be increased.
  • the dummy substrate DW is inserted so that the width of the space existing on the surface side of each of the plurality of substrates W is constant (one slot). Therefore, the width of the space existing on the front surface side of all of the plurality of substrates W becomes equal. As a result, the flow of the processing liquid and the behavior of air bubbles in the vicinity of the surface of all of the substrates W become uniform, so that all of the substrates W can be uniformly processed.
  • the first lifter 126 lifts the stack of substrates W from the first chemical bath 121 and transfers it to the first rinse bath 122 .
  • a plurality of substrates W are rinsed in the first rinse bath 122 .
  • the main transport robot 130 transports the stack of substrates W to the drying processing section 125, and the plurality of substrates W are dried.
  • the stack of substrates W is transferred from the main transfer robot 130 to the horizontal transfer mechanism 170 and further transferred to the carry-in/out mechanism 140 via the transfer mechanism 160 .
  • the loading/unloading mechanism 140 accommodates the plurality of substrates W in the carrier 111, and the substrates W are unloaded (step S8).
  • FIG. 9 is a diagram for conceptually explaining another example of dummy substrate insertion in the first embodiment.
  • all the substrates W have the same surface orientation, but in the example of FIG. 9, two adjacent substrates W form a pair, and the surfaces of the two substrates W face each other. are stacked and arranged as follows.
  • the width of the space existing on the surface side of the substrate W is basically one slot.
  • the substrate W paired with the substrate W21 and the substrate W paired with the substrate W22 are missing. Due to the occurrence of such an omission of the substrate W, the width of the space existing on the surface side of the substrate W21 and the substrate W22 becomes two slots. That is, the width of the space existing on the front surface side of the substrate W is non-uniform.
  • a slot D facing the surface of the substrate W21 and separated by one slot from the surface, and a slot E facing the surface of the substrate W22 and separated by one slot from the surface are dummy substrates.
  • Dummy substrates DW are inserted into slots D and E, which are specified as DW insertion positions. Even in this manner, the width of the space existing on the front surface side of all of the plurality of substrates W becomes equal, so that all of the plurality of substrates W can be uniformly processed.
  • the insertion position of the dummy substrate DW is specified so that the dummy substrate DW is arranged opposite to the surface of the substrate W whose width of the space existing on the surface side is wider than one slot.
  • the width of the space existing on the surface side of each of the plurality of substrates W becomes constant (one slot).
  • the flow of the processing liquid and the behavior of air bubbles in the vicinity of the surface of all of the substrates W become uniform, so that all of the substrates W can be uniformly processed.
  • a second embodiment of the invention will be described.
  • the configuration of the substrate processing apparatus of the second embodiment is the same as that of the first embodiment.
  • the processing procedure in the substrate processing apparatus of the second embodiment is also the same as that of the first embodiment.
  • the difference between the second embodiment and the first embodiment is the manner in which the dummy substrate DW is inserted.
  • FIG. 10 is a diagram for conceptually explaining an example of dummy substrate insertion in the second embodiment.
  • the substrates W are sequentially held in all the slots. ). That is, in the stacking arrangement of the substrates W of the second embodiment, the substrates W are basically held every four slots. However, one substrate W that should be located at the position of the slot F, which is four slots away from the surface of the substrate W31, is missing.
  • the positions for inserting the dummy substrates DW are specified so that each of the plurality of substrates W and the dummy substrates DW are arranged at equal intervals.
  • a slot F that is four slots away from the surface of the substrate W31 is specified as the insertion position of the dummy substrate DW, and the dummy substrate DW is inserted into the slot F.
  • the insertion position of the dummy substrate DW is specified so that the width of the space existing on the surface side of each of the plurality of substrates W is constant.
  • the insertion positions of the dummy substrates DW are specified so that each of the plurality of substrates W and the dummy substrates DW are arranged at equal intervals.
  • the width of the space existing on the surface side of each of the plurality of substrates W becomes constant (four slots).
  • the flow of the processing liquid and the behavior of bubbles in the vicinity of the surface of all of the plurality of substrates W become uniform, and uniform processing can be performed on all of the plurality of substrates W. You can.
  • the overall configuration of the substrate processing apparatus of the third embodiment is substantially the same as that of the first embodiment. Further, the contents of processing in the substrate processing apparatus of the third embodiment are also substantially the same as those of the first embodiment. In the third embodiment, part of the structure of the substrate processing apparatus is used instead of the dummy substrate DW.
  • FIG. 11 is a diagram showing the back plate 222 of the first lifter 126 (or the second lifter 127) of the third embodiment.
  • a circular plate 223 is formed on a part of the back plate 222 of the third embodiment.
  • the circular plate 223 is formed in a circular shape with the same diameter as the substrate W.
  • the configuration of the rest of the substrate processing apparatus except for the back plate 222 of the lifter is the same as that of the first embodiment.
  • FIG. 12 is a diagram showing a state in which a plurality of substrates W are held by the first lifter 126 of the third embodiment.
  • a plurality of substrates W are held by the holding rods 21 of the first lifter 126 at regular intervals (1-slot intervals). That is, most of the substrates W are held adjacent to each other with a one-slot spacing on the front surface side. However, there is no adjacent substrate W on the surface side of the substrate W41 at the extreme end in the stacked arrangement of the plurality of substrates W. As shown in FIG.
  • a circular plate 223 having the same shape and size as the substrate W is formed on part of the back plate 222 . Then, the substrate W41 at the farthest end and the circular plate 223 face each other, specifically, the interval between the substrate W41 and the circular plate 223 is the same as the interval between the other adjacent substrates W (one slot). , a plurality of substrates W are held. As a result, the widths of the spaces existing on the surface side of all of the plurality of substrates W become equal.
  • the plurality of substrates W are held by the first lifter 126 in a state in which the opposing plate is arranged such that the width of the space existing on the surface side of each of the plurality of substrates W is constant (one slot). are doing.
  • the opposing plate here is a circular plate 223 which is part of the structure of the substrate processing apparatus.
  • FIG. 13 is a diagram for conceptually explaining another example of dummy substrate insertion.
  • a plurality of substrates W are stacked and arranged at irregular intervals. Since the plurality of substrates W are arranged irregularly, it is impossible to arrange each of the plurality of substrates W and the dummy substrates DW at equal intervals as in the second embodiment.
  • the slot facing the surface of all the substrates W and separated by one slot from the surface is specified as the insertion position of the dummy substrate DW.
  • the dummy substrates DW are arranged to face all the surfaces of the plurality of substrates W, and the width of the space existing on the surface side of each of the plurality of substrates W becomes constant (one slot).
  • the flow of the processing liquid and the behavior of air bubbles in the vicinity of the surface of all of the substrates W become uniform, so that all of the substrates W can be uniformly processed.
  • each of the plurality of substrates W and the dummy substrate DW are arranged at regular intervals. They may be arranged facing each other.
  • FIG. 14 is a diagram for conceptually explaining another example of dummy substrate insertion.
  • the stacking arrangement of the substrates W in FIG. 14 is the same as the stacking arrangement of the substrates W in the second embodiment (FIG. 10).
  • the dummy substrates DW are inserted so that each of the plurality of substrates W and the dummy substrates DW are arranged at equal intervals, but in the example shown in FIG.
  • a slot separated by one slot from the surface is specified as the insertion position of the dummy substrate DW.
  • the dummy substrates DW are arranged to face all the surfaces of the plurality of substrates W, and the width of the space existing on the surface side of each of the plurality of substrates W becomes constant (one slot).
  • the flow of the processing liquid and the behavior of bubbles in the vicinity of the surface of all of the plurality of substrates W become uniform, and uniform processing can be performed on all of the plurality of substrates W. can.
  • dummy substrates DW may be inserted into the row of a plurality of substrates W.
  • the dummy substrate DW also functions as a counter plate. That is, the term “opposing plate” is a conceptual term that includes both the circular plate 223 and the dummy substrate DW, which are part of the structure of the substrate processing apparatus.
  • the plurality of substrates W are arranged at intervals of 4 slots, but the present invention is not limited to this, and the plurality of substrates W may be arranged at other intervals, for example, at intervals of 2 slots. can be Such an example corresponds to processing a lot of 25 sheets. Even when a plurality of substrates W are arranged at two-slot intervals, the dummy substrates DW are arranged such that each of the plurality of substrates W and the dummy substrates DW are arranged at equal intervals, as in the second embodiment. , the width of the space existing on the surface side of each of the plurality of substrates W becomes constant (two slots).
  • dummy substrates DW may be inserted into slots facing the surfaces of all substrates W and separated from the surfaces by one slot.
  • the dummy substrates DW are arranged to face all the surfaces of the plurality of substrates W, and the width of the space existing on the surface side of each of the plurality of substrates W becomes constant (one slot).
  • the flow of the processing liquid and the behavior of air bubbles in the vicinity of the surface of all of the substrates W become uniform, so that all of the substrates W can be uniformly processed.
  • the dummy substrates DW were inserted only in the necessary slots, but the dummy substrates DW may be inserted in all the empty slots. Even in this way, the width of the space existing on the surface side of each of the plurality of substrates W is surely constant (one slot). As a result, the flow of the processing liquid and the behavior of air bubbles in the vicinity of the surface of all of the substrates W become uniform, so that all of the substrates W can be uniformly processed.
  • the supply of air bubbles is not essential. Even if bubbles are not supplied, the width of the space existing on the surface side of each of the plurality of substrates W is made constant, so that the processing liquid flows uniformly in the vicinity of the surface of each of the plurality of substrates W. All of the plurality of substrates W can be uniformly processed.
  • treatment tank 30 treatment liquid supply section 50 bubble supply section 70 control section 100 substrate processing apparatus 110 load port 111 carrier 112 sensor 120 substrate processing section 121 first chemical tank 122 first rinse tank 123 second chemical tank 124 second rinse tank 125 Drying processing unit 126 First lifter 127 Second lifter 130 Main transfer robot 140 Loading/unloading mechanism 150 Sheet-fed hand 160 Transfer mechanism 170 Horizontal transfer mechanism DW Dummy substrate W Substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Weting (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

This substrate treatment device collectively holds a layered array of a plurality of substrates, immerses the same in a treatment liquid, and carries out a substrate surface treatment by supplying the treatment liquid and bubbles. In the layered array of substrates, a dummy substrate is inserted in a slot where there has been an omission. The treatment is carried out on the layered body of the plurality of substrates with the inserted dummy substrate. The width of a space present on the surface side of each of the plurality of substrates is constant, and the flow, bubble behaviour, etc. of the treatment liquid in the vicinity of the surface are uniform for all of the plurality of substrates, making it possible to carry out a uniform treatment on all of the plurality of substrates.

Description

基板処理方法および基板処理装置Substrate processing method and substrate processing apparatus
 本発明は、複数の基板に対して処理液によるエッチング等の表面処理を行う基板処理方法および基板処理装置に関する。処理対象となる基板には、例えば、半導体基板、液晶表示装置用基板、有機EL(electroluminescence)表示装置などに用いるflat panel display(FPD)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、または、太陽電池用基板などが含まれる。 The present invention relates to a substrate processing method and a substrate processing apparatus that perform surface processing such as etching with a processing liquid on a plurality of substrates. Substrates to be processed include, for example, semiconductor substrates, liquid crystal display device substrates, flat panel display (FPD) substrates used in organic EL (electroluminescence) display devices, optical disk substrates, magnetic disk substrates, magneto-optical disks. substrates for photomasks, ceramic substrates, substrates for solar cells, and the like.
 従来より、半導体装置の製造工程では、半導体基板(以下、単に「基板」と称する)に対して種々の処理を行う基板処理装置が用いられている。そのような基板処理装置の1つとして、処理槽内に処理液を貯留し、その処理液中に複数の基板を一括して浸漬してエッチング処理等を行うバッチ式の基板処理装置が知られている。 Conventionally, in the manufacturing process of semiconductor devices, substrate processing apparatuses have been used to perform various processes on semiconductor substrates (hereinafter simply referred to as "substrates"). As one of such substrate processing apparatuses, there is known a batch-type substrate processing apparatus in which a processing liquid is stored in a processing tank, and a plurality of substrates are immersed in the processing liquid at once to perform etching processing or the like. ing.
 特許文献1には、バッチ式の基板処理装置において、複数の基板を浸漬する処理槽の底部に処理液を供給する処理液供給部と気泡を供給する気泡供給部(バブラ)とを設けることが開示されている。処理液の供給に加えて気泡を処理液中に供給することにより、処理槽内における処理液の流速が速くなって基板の表面処理の効率が向上する。 In Patent Document 1, a batch-type substrate processing apparatus can be provided with a processing liquid supply unit that supplies a processing liquid and a bubble supply unit (bubbler) that supplies bubbles to the bottom of a processing tank in which a plurality of substrates are immersed. disclosed. By supplying air bubbles into the processing liquid in addition to supplying the processing liquid, the flow velocity of the processing liquid in the processing bath increases, thereby improving the efficiency of surface processing of the substrate.
特開2005-244162号公報JP 2005-244162 A
 しかし、複数の基板を積層配列して処理槽内の処理液中に浸漬したときに、積層配列の中央部に含まれる基板の表面近傍における処理液および気泡の流れと、積層配列の最端部に位置する基板の表面近傍における処理液および気泡の流れとでは異なるものとなっていた。すなわち、積層配列の中央部と最端部とでは処理条件が異なっており、その結果複数の基板に対して不均一な処理が行われることとなっていた。 However, when a plurality of substrates are stacked and arranged and immersed in the processing liquid in the processing tank, the flow of the processing liquid and air bubbles in the vicinity of the surface of the substrate included in the central portion of the stacked array and the flow of air bubbles at the outermost portion of the stacked array. It was different from the flow of the processing liquid and air bubbles in the vicinity of the surface of the substrate located at . That is, the processing conditions are different between the central portion and the endmost portion of the lamination arrangement, and as a result, non-uniform processing is performed on a plurality of substrates.
 また、前工程での処理結果によっては複数の基板の積層配列から一部の基板が間引かれることもある。複数の基板の積層配列から一部の基板が抜けた状態で浸漬処理が行われたときにも、欠落位置近傍の基板とそれ以外の基板とで処理条件が異なることとなり、複数の基板に対する処理が不均一になっていた。 Also, depending on the processing results in the previous process, some substrates may be thinned out from the stacked array of multiple substrates. Even when the immersion process is performed with some of the substrates missing from the stacked array of multiple substrates, the processing conditions will be different between the substrates near the missing position and the other substrates, resulting in the processing of multiple substrates. was uneven.
 本発明は、上記課題に鑑みてなされたものであり、複数の基板の全てに対して均一な処理を行うことができる基板処理方法および基板処理装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a substrate processing method and a substrate processing apparatus capable of performing uniform processing on all of a plurality of substrates.
 上記課題を解決するため、この発明の第1の態様は、複数の基板に対して処理液による表面処理を行う基板処理方法において、複数の基板の配列状態を検出する検出工程と、前記検出工程にて検出された前記複数の基板の配列状態に基づいて、前記複数の基板の並びに対してダミー基板を挿入する位置を特定する特定工程と、前記特定工程にて特定された位置にダミー基板を挿入した前記複数の基板を処理槽に貯留された処理液中に浸漬して前記複数の基板の表面処理を行う処理工程と、を備え、前記特定工程では、前記複数の基板のそれぞれの表面側に存在する空間の幅が一定となるようにダミー基板を挿入する位置を特定する。 In order to solve the above-described problems, a first aspect of the present invention provides a substrate processing method for surface-treating a plurality of substrates with a processing liquid, comprising: a detecting step of detecting an arrangement state of the plurality of substrates; a specifying step of specifying a position into which the dummy substrate is to be inserted in the arrangement of the plurality of substrates based on the arrangement state of the plurality of substrates detected in the specifying step; a treatment step of immersing the inserted plurality of substrates in a treatment liquid stored in a treatment tank to perform surface treatment of the plurality of substrates, wherein the specifying step comprises: surface treatment of each of the plurality of substrates; The position where the dummy substrate is to be inserted is specified so that the width of the space existing in the substrate is constant.
 また、第2の態様は、第1の態様に係る基板処理方法において、前記検出工程は、前記複数の基板のそれぞれの向きを検知する工程と、前記複数の基板の配列間隔を検出する工程と、を含む。 Further, in a second aspect, in the substrate processing method according to the first aspect, the detection step includes a step of detecting the orientation of each of the plurality of substrates and a step of detecting an arrangement interval of the plurality of substrates. ,including.
 また、第3の態様は、第1または第2の態様に係る基板処理方法において、前記特定工程では、前記複数の基板のいずれかの表面にダミー基板が対向配置されるようにダミー基板を挿入する位置を特定する。 Further, in a third aspect, in the substrate processing method according to the first or second aspect, in the specifying step, a dummy substrate is inserted so that the dummy substrate is arranged to face one of the surfaces of the plurality of substrates. to identify the location.
 また、第4の態様は、第1または第2の態様に係る基板処理方法において、前記特定工程では、前記複数の基板のそれぞれとダミー基板とが等間隔で配置されるようにダミー基板を挿入する位置を特定する。 In a fourth aspect, in the substrate processing method according to the first or second aspect, in the specifying step, dummy substrates are inserted such that each of the plurality of substrates and the dummy substrates are arranged at equal intervals. to identify the location.
 また、第5の態様は、第1から第4のいずれかの態様に係る基板処理方法において、前記処理工程は、前記処理槽内に処理液の流れを形成する工程と、前記処理槽に貯留された処理液中に気泡を供給する工程と、を含む。 A fifth aspect is the substrate processing method according to any one of the first to fourth aspects, wherein the processing step includes forming a flow of the processing liquid in the processing tank and storing the processing liquid in the processing tank. and C. supplying air bubbles into the treated liquid.
 また、第6の態様は、複数の基板に対して処理液による表面処理を行う基板処理方法において、複数の基板のそれぞれの表面側に存在する空間の幅が一定となるように対向板を前記複数の基板に対して配置した状態で前記複数の基板をリフタに保持する保持工程と、前記リフタを昇降させて前記複数の基板を処理槽に貯留された処理液中に浸漬させて前記複数の基板の表面処理を行う処理工程と、を備える。 In a sixth aspect, in a substrate processing method for surface-treating a plurality of substrates with a processing liquid, the counter plate is arranged such that the width of the space existing on the surface side of each of the plurality of substrates is constant. a holding step of holding the plurality of substrates by a lifter while being arranged with respect to the plurality of substrates; and a processing step of surface-treating the substrate.
 また、第7の態様は、第6の態様に係る基板処理方法において、前記対向板は、前記リフタに設けられた円形の背板を含む。 Further, according to a seventh aspect, in the substrate processing method according to the sixth aspect, the opposing plate includes a circular back plate provided on the lifter.
 また、第8の態様は、第6または第7の態様に係る基板処理方法において、前記処理工程は、前記処理槽内に処理液の流れを形成する工程と、前記処理槽に貯留された処理液中に気泡を供給する工程と、を含む。 An eighth aspect is the substrate processing method according to the sixth or seventh aspect, wherein the treating step includes forming a flow of the treating solution in the treating bath, and C. providing air bubbles in the liquid.
 また、第9の態様は、複数の基板に対して処理液による表面処理を行う基板処理装置において、処理液を貯留する処理槽と、前記処理槽内に処理液を供給する処理液供給部と、複数の基板を保持して昇降し、前記処理槽に貯留された処理液中に前記複数の基板を浸漬するリフタと、を備え、前記リフタは、前記複数の基板のそれぞれの表面側に存在する空間の幅が一定となるように対向板を前記複数の基板に対して配置した状態で前記複数の基板を保持する。 A ninth aspect is directed to a substrate processing apparatus for surface-treating a plurality of substrates with a processing liquid, comprising: a processing tank for storing the processing liquid; and a processing liquid supply unit for supplying the processing liquid to the processing tank. and a lifter that holds and moves up and down the plurality of substrates and immerses the plurality of substrates in the processing liquid stored in the processing bath, wherein the lifter is present on the surface side of each of the plurality of substrates. The plurality of substrates are held in a state in which the opposing plate is arranged with respect to the plurality of substrates so that the width of the space between them is constant.
 また、第10の態様は、第9の態様に係る基板処理装置において、前記対向板は、前記リフタに設けられた円形の背板を含む。 Further, according to a tenth aspect, in the substrate processing apparatus according to the ninth aspect, the counter plate includes a circular back plate provided on the lifter.
 また、第11の態様は、第9または第10の態様に係る基板処理装置において、前記対向板は、ダミー基板を含む。 An eleventh aspect is the substrate processing apparatus according to the ninth or tenth aspect, wherein the opposing plate includes a dummy substrate.
 また、第12の態様は、第9から第11のいずれかの態様に係る基板処理装置において、前記処理槽に貯留された処理液に気泡を供給する気泡供給部をさらに備える。 Further, according to a twelfth aspect, the substrate processing apparatus according to any one of the ninth to eleventh aspects further includes a bubble supply section for supplying bubbles to the processing liquid stored in the processing bath.
 第1から第5の態様に係る基板処理方法によれば、複数の基板のそれぞれの表面側に存在する空間の幅が一定となるようにダミー基板を挿入する位置を特定するため、複数の基板の全てについて表面近傍における処理条件が均一となり、複数の基板の全てに対して均一な処理を行うことができる。 According to the substrate processing methods according to the first to fifth aspects, in order to specify the position where the dummy substrate is to be inserted so that the width of the space existing on the surface side of each of the plurality of substrates is constant, the plurality of substrates are processed. The processing conditions in the vicinity of the surface of all of the substrates are uniform, and uniform processing can be performed on all of the plurality of substrates.
 第6から第8の態様に係る基板処理方法によれば、複数の基板のそれぞれの表面側に存在する空間の幅が一定となるように対向板を複数の基板に対して配置した状態で複数の基板を処理槽に貯留された処理液中に浸漬させるため、複数の基板の全てについて表面近傍における処理条件が均一となり、複数の基板の全てに対して均一な処理を行うことができる。 According to the substrate processing methods according to the sixth to eighth aspects, the counter plate is arranged with respect to the plurality of substrates so that the width of the space existing on the surface side of each of the plurality of substrates is constant. Since the substrates are immersed in the processing liquid stored in the processing tank, the processing conditions in the vicinity of the surfaces of all of the plurality of substrates become uniform, and uniform processing can be performed on all of the plurality of substrates.
 第9から第12の態様に係る基板処理装置によれば、複数の基板のそれぞれの表面側に存在する空間の幅が一定となるように対向板を複数の基板に対して配置した状態で複数の基板を保持して処理液中に浸漬させるため、複数の基板の全てについて表面近傍における処理条件が均一となり、複数の基板の全てに対して均一な処理を行うことができる。 According to the substrate processing apparatuses according to the ninth to twelfth aspects, the counter plate is arranged with respect to the plurality of substrates so that the width of the space existing on the surface side of each of the plurality of substrates is constant. Since the substrates are held and immersed in the processing liquid, the processing conditions in the vicinity of the surfaces of all of the plurality of substrates become uniform, and uniform processing can be performed on all of the plurality of substrates.
本発明に係る基板処理装置の全体構成を示す図解的な平面図である。1 is an illustrative plan view showing the overall configuration of a substrate processing apparatus according to the present invention; FIG. 第1薬液槽の構成を示す図である。It is a figure which shows the structure of a 1st chemical|medical-solution tank. リフタが上昇した状態を示す図である。It is a figure which shows the state which the lifter raised. リフタが下降した状態を示す図である。It is a figure which shows the state which the lifter descended. ノズル、分散板およびパンチングプレートを処理槽の底部から見た図である。It is the figure which looked at the nozzle, the dispersion plate, and the punching plate from the bottom part of the processing tank. 制御部の構成を示すブロック図である。3 is a block diagram showing the configuration of a control unit; FIG. 第1実施形態の基板処理装置における処理手順を示すフローチャートである。4 is a flow chart showing a processing procedure in the substrate processing apparatus of the first embodiment; 第1実施形態におけるダミー基板挿入の一例を概念的に説明するための図である。FIG. 4 is a diagram for conceptually explaining an example of dummy substrate insertion in the first embodiment; 第1実施形態におけるダミー基板挿入の他の例を概念的に説明するための図である。FIG. 7 is a diagram for conceptually explaining another example of dummy substrate insertion in the first embodiment; 第2実施形態におけるダミー基板挿入の一例を概念的に説明するための図である。FIG. 11 is a diagram for conceptually explaining an example of dummy substrate insertion in the second embodiment; 第3実施形態のリフタの背板を示す図である。It is a figure which shows the back plate of the lifter of 3rd Embodiment. 第3実施形態のリフタに複数の基板が保持された状態を示す図である。FIG. 11 is a diagram showing a state in which a plurality of substrates are held by the lifter of the third embodiment; ダミー基板挿入の他の例を概念的に説明するための図である。FIG. 11 is a diagram for conceptually explaining another example of dummy substrate insertion; ダミー基板挿入の他の例を概念的に説明するための図である。FIG. 11 is a diagram for conceptually explaining another example of dummy substrate insertion;
 以下、図面を参照しつつ本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
  <第1実施形態>
 図1は、本発明に係る基板処理装置100の全体構成を示す図解的な平面図である。基板処理装置100は、複数枚の半導体ウェハーなどの基板Wに対して一括して処理液による表面処理を行うバッチ式の基板処理装置である。なお、図1および以降の各図においては、理解容易のため、必要に応じて各部の寸法や数を誇張または簡略化して描いている。また、図1および以降の各図には、それらの方向関係を明確にするためZ軸方向を鉛直方向とし、XY平面を水平面とするXYZ直交座標系を適宜付している。
<First embodiment>
FIG. 1 is an illustrative plan view showing the overall configuration of a substrate processing apparatus 100 according to the present invention. The substrate processing apparatus 100 is a batch-type substrate processing apparatus that collectively performs surface treatment of a plurality of substrates W such as semiconductor wafers with a processing liquid. In addition, in FIG. 1 and subsequent figures, the dimensions and numbers of each part are exaggerated or simplified as necessary for easy understanding. Also, in FIG. 1 and subsequent figures, an XYZ orthogonal coordinate system with the Z-axis direction as the vertical direction and the XY plane as the horizontal plane is appropriately attached in order to clarify their directional relationships.
 基板処理装置100は、主として、ロードポート110、基板処理部120、主搬送ロボット130、搬出入機構140、枚葉ハンド150、移載機構160、および、水平搬送機構170を備える。また、基板処理装置100は、これら各機構の動作を制御する制御部70を備える。 The substrate processing apparatus 100 mainly includes a load port 110 , a substrate processing section 120 , a main transfer robot 130 , a loading/unloading mechanism 140 , a single wafer hand 150 , a transfer mechanism 160 and a horizontal transfer mechanism 170 . The substrate processing apparatus 100 also includes a control section 70 that controls operations of these mechanisms.
 ロードポート110は、平面視でほぼ長方形に形成された基板処理装置100の端部に設けられている。ロードポート110には、基板処理装置100で処理される複数枚の基板(以下、単に「基板」とする)Wを収容するキャリア111が載置される。未処理の基板Wを収容したキャリア111は無人搬送車(AGV、OHT)等によって搬送されてロードポート110に載置される。また、処理済みの基板Wを収容したキャリア111も無人搬送車によってロードポート110から持ち去られる。 The load port 110 is provided at the end of the substrate processing apparatus 100 which is substantially rectangular in plan view. A carrier 111 that accommodates a plurality of substrates (hereinafter simply referred to as “substrates”) W to be processed by the substrate processing apparatus 100 is placed on the load port 110 . A carrier 111 containing unprocessed substrates W is transported by an automatic guided vehicle (AGV, OHT) or the like and placed on a load port 110 . Further, the carrier 111 containing the processed substrates W is also removed from the load port 110 by the automatic guided vehicle.
 キャリア111は、典型的には、基板Wを密閉空間に収納するFOUP(front opening unified pod)である。キャリア111は、その内部に形設された複数の保持棚によって複数の基板Wを水平姿勢(法線が鉛直方向に沿う姿勢)で鉛直方向(Z方向)に一定間隔で積層配列した状態で保持する。キャリア111の最大収容枚数は、25枚または50枚である。なお、キャリア111の形態としては、FOUPの他に、SMIF(Standard Mechanical Inter Face)ポッドや収納した基板Wを外気に曝すOC(open cassette)であっても良い。 The carrier 111 is typically a FOUP (front opening unified pod) that houses the substrate W in a closed space. The carrier 111 holds a plurality of substrates W in a horizontal posture (a posture in which the normal line is along the vertical direction) in a state of being stacked and arranged at regular intervals in the vertical direction (Z direction) by a plurality of holding shelves formed inside the carrier 111 . do. The maximum number of sheets that can be accommodated in the carrier 111 is 25 sheets or 50 sheets. In addition to the FOUP, the carrier 111 may be in the form of a SMIF (Standard Mechanical Inter Face) pod or an OC (open cassette) that exposes the housed substrates W to the outside air.
 基板処理装置100の本体部とロードポート110との境界部分には、センサ112およびポッドオープナー(図示省略)等が設けられている。ポッドオープナーは、ロードポート110に載置されたキャリア111の前面の蓋を開閉する。センサ112は、ポッドオープナーによって蓋が開かれたキャリア111の内部に収容されている基板Wの枚数および存在位置を光学的手法によって検出する。 A sensor 112, a pod opener (not shown), and the like are provided at the boundary between the main body of the substrate processing apparatus 100 and the load port 110 . The pod opener opens and closes the front cover of the carrier 111 placed on the load port 110 . The sensor 112 optically detects the number and position of the substrates W housed inside the carrier 111 whose lid is opened by the pod opener.
 基板処理部120は、基板Wに対して種々の表面処理を行う基板処理装置100の主要部である。基板処理部120は、基板処理装置100の内部にてX方向に沿って配列された複数の処理槽を備える。具体的には、基板処理装置100の(-X)側端部から順に、第1薬液槽121、第1リンス槽122、第2薬液槽123、第2リンス槽124および乾燥処理部125が配置される。第1薬液槽121および第2薬液槽123は、それぞれ、同種または異種の薬液を貯留し、その薬液中に複数の基板Wを一括して浸漬させてエッチング処理等の薬液処理を行う。また、第1リンス槽122および第2リンス槽124は、それぞれ、リンス液(典型的には純水)を貯留し、そのリンス液中に複数の基板Wを一括して浸漬させてリンス処理を行う。 The substrate processing unit 120 is a main part of the substrate processing apparatus 100 that performs various surface treatments on the substrate W. The substrate processing section 120 includes a plurality of processing baths arranged along the X direction inside the substrate processing apparatus 100 . Specifically, a first chemical bath 121, a first rinse bath 122, a second chemical bath 123, a second rinse bath 124, and a drying processing unit 125 are arranged in order from the (−X) side end of the substrate processing apparatus 100. be done. The first chemical bath 121 and the second chemical bath 123 store the same or different chemical solutions, respectively, and immerse a plurality of substrates W in the chemical solutions collectively to perform chemical treatment such as etching. In addition, the first rinse bath 122 and the second rinse bath 124 each store a rinse solution (typically pure water), and a plurality of substrates W are collectively immersed in the rinse solution for rinsing. conduct.
 本明細書においては、薬液槽およびリンス槽を総称して「処理槽」とする。処理槽は、処理液を貯留し、その処理液中に基板Wを浸漬させて表面処理を行うものである。本明細書において、「表面処理」とは薬液処理およびリンス処理を含む概念の用語である。また、本明細書において、「処理液」とは各種の薬液および純水を含む概念の用語である。薬液としては、例えば、エッチング処理を行うための液、または、パーティクルを除去するための液などが含まれ、具体的には、水酸化テトラメチルアンモニウム(TMAH)、SC-1液(水酸化アンモニウムと過酸化水素水と純水との混合溶液)、SC-2液(塩酸と過酸化水素水と純水との混合溶液)、または、リン酸などが用いられる。薬液は、純水によって希釈されたものも含む。 In this specification, the chemical solution tank and the rinse tank are collectively referred to as the "processing tank". The processing bath stores a processing liquid and immerses the substrate W in the processing liquid to perform surface processing. As used herein, "surface treatment" is a conceptual term including chemical treatment and rinse treatment. In this specification, the term "treatment liquid" is a conceptual term including various chemical solutions and pure water. The chemical includes, for example, a liquid for etching or a liquid for removing particles. Specifically, tetramethylammonium hydroxide (TMAH), SC-1 liquid (ammonium hydroxide a mixed solution of hydrogen peroxide and pure water), SC-2 solution (a mixed solution of hydrochloric acid, hydrogen peroxide and pure water), or phosphoric acid. The chemical solution also includes one diluted with pure water.
 基板処理装置100においては、第1薬液槽121と第1リンス槽122とが対になっており、第2薬液槽123と第2リンス槽124とが対になっている。そして、第1薬液槽121と第1リンス槽122との対に専用の搬送機構である第1リフタ126、および、第2薬液槽123と第2リンス槽124との対に専用の搬送機構である第2リフタ127が設けられている。第1リフタ126は、第1薬液槽121と第1リンス槽122との間でX方向に沿って移動可能とされている。第2リフタ127は、第2薬液槽123と第2リンス槽124との間でX方向に沿って移動可能とされている。 In the substrate processing apparatus 100, the first chemical bath 121 and the first rinse bath 122 are paired, and the second chemical bath 123 and the second rinse bath 124 are paired. A first lifter 126, which is a transport mechanism dedicated to the pair of the first chemical tank 121 and the first rinse tank 122, and a transport mechanism dedicated to the pair of the second chemical tank 123 and the second rinse tank 124, A second lifter 127 is provided. The first lifter 126 is movable along the X direction between the first chemical bath 121 and the first rinse bath 122 . The second lifter 127 is movable along the X direction between the second chemical bath 123 and the second rinse bath 124 .
 第1リフタ126は、主搬送ロボット130から受け取った複数の基板Wを保持し、その基板Wを第1薬液槽121に貯留された薬液中に浸漬させる。薬液処理の終了後、第1リフタ126は、第1薬液槽121から基板Wを引き上げて第1リンス槽122に移送し、第1リンス槽122に貯留されたリンス液中に基板Wを浸漬させる。リンス処理終了後、第1リフタ126は、第1リンス槽122から基板Wを引き上げて主搬送ロボット130に渡す。 The first lifter 126 holds a plurality of substrates W received from the main transfer robot 130 and immerses the substrates W in the chemical liquid stored in the first chemical liquid tank 121 . After completion of the chemical treatment, the first lifter 126 lifts the substrate W from the first chemical bath 121 and transfers it to the first rinse bath 122 to immerse the substrate W in the rinse liquid stored in the first rinse bath 122 . . After completion of the rinsing process, the first lifter 126 lifts the substrate W from the first rinsing tank 122 and transfers it to the main transfer robot 130 .
 同様に、第2リフタ127は、主搬送ロボット130から受け取った複数の基板Wを保持し、その基板Wを第2薬液槽123に貯留された薬液中に浸漬させる。薬液処理の終了後、第2リフタ127は、第2薬液槽123から基板Wを引き上げて第2リンス槽124に移送し、第2リンス槽124に貯留されたリンス液中に基板Wを浸漬させる。リンス処理終了後、第2リフタ127は、第2リンス槽124から基板Wを引き上げて主搬送ロボット130に渡す。なお、処理槽の構成については後にさらに詳述する。 Similarly, the second lifter 127 holds a plurality of substrates W received from the main transfer robot 130 and immerses the substrates W in the chemical liquid stored in the second chemical liquid tank 123 . After the chemical treatment is completed, the second lifter 127 lifts the substrate W from the second chemical bath 123 and transfers it to the second rinse bath 124 to immerse the substrate W in the rinse liquid stored in the second rinse bath 124 . . After completing the rinse process, the second lifter 127 lifts the substrate W from the second rinse tank 124 and transfers it to the main transfer robot 130 . The structure of the processing bath will be described later in detail.
 乾燥処理部125は、密閉された乾燥チャンバー内を大気圧未満に減圧する機構と、当該乾燥チャンバー内に有機溶剤(例えば、イソプロピルアルコール(IPA))を供給する機構とを備える。乾燥処理部125は、主搬送ロボット130から受け取った基板Wを乾燥チャンバー内に収容し、その乾燥チャンバー内を減圧雰囲気としつつ、基板Wに有機溶剤を供給して基板Wを乾燥させる。乾燥処理後の基板Wは主搬送ロボット130に受け渡される。 The drying processing unit 125 includes a mechanism for reducing the pressure inside the sealed drying chamber to below atmospheric pressure, and a mechanism for supplying an organic solvent (eg, isopropyl alcohol (IPA)) into the drying chamber. The drying processing section 125 stores the substrate W received from the main transfer robot 130 in the drying chamber, supplies an organic solvent to the substrate W to dry the substrate W while reducing the pressure in the drying chamber. The substrate W after the drying process is transferred to the main transfer robot 130 .
 主搬送ロボット130は、水平搬送機構170から受け取った未処理の基板Wを第1薬液槽121から乾燥処理部125にかけて配列された基板処理部120に搬送する。また、主搬送ロボット130は、基板処理部120から受け取った処理済みの基板Wを水平搬送機構170に渡す。 The main transport robot 130 transports unprocessed substrates W received from the horizontal transport mechanism 170 to the substrate processing units 120 arranged from the first chemical tank 121 to the drying processing unit 125 . The main transport robot 130 also transfers the processed substrate W received from the substrate processing section 120 to the horizontal transport mechanism 170 .
 主搬送ロボット130は、水平搬送機構170との基板受渡位置から第1薬液槽121に至る範囲でX方向に沿って水平移動可能に設けられている。また、主搬送ロボット130は、複数の基板Wを一括して把持する一対の基板チャック132を備えている。主搬送ロボット130は、一対の基板チャック132の間隔を狭めることにより複数の基板Wを一括して把持することができ、基板チャック132の間隔を拡げることにより把持状態を解除することができる。さらに、主搬送ロボット130は、一対の基板チャック132を昇降させる機構を備える。このような構成により、主搬送ロボット130は、水平搬送機構170に対して基板Wの受け渡しを行うことができるとともに、第1リフタ126および第2リフタ127とも基板Wの受け渡しを行うことができる。さらに、主搬送ロボット130は、乾燥処理部125に対しても基板Wの受け渡しを行うことができる。 The main transport robot 130 is horizontally movable along the X direction within a range from the substrate transfer position with the horizontal transport mechanism 170 to the first chemical liquid tank 121 . The main transfer robot 130 also includes a pair of substrate chucks 132 that hold a plurality of substrates W collectively. The main transport robot 130 can collectively grip a plurality of substrates W by narrowing the space between the pair of substrate chucks 132 , and can release the gripping state by widening the space between the substrate chucks 132 . Further, the main transfer robot 130 has a mechanism for raising and lowering the pair of substrate chucks 132 . With such a configuration, the main transport robot 130 can transfer the substrates W to and from the horizontal transfer mechanism 170 , and can also transfer the substrates W to the first lifter 126 and the second lifter 127 . Further, the main transport robot 130 can transfer the substrate W to and from the drying processing section 125 as well.
 搬出入機構140は、ロードポート110に載置されたキャリア111から基板処理装置100の内部に未処理の基板Wを搬入するとともに、基板処理装置100からキャリア111に処理済みの基板Wを搬出する。搬出入機構140は、それぞれが1枚の基板Wを保持可能なハンド要素を多段に積層してなるバッチハンド141を備える。バッチハンド141における複数のハンド要素の設置間隔は、キャリア111内における基板Wの配列間隔と同じである。また、搬出入機構140は、バッチハンド141をX方向に沿って水平移動させる機構と、バッチハンド141をY方向に沿った軸を中心に90°回動させる機構とを備える。 The loading/unloading mechanism 140 loads unprocessed substrates W into the substrate processing apparatus 100 from the carrier 111 placed on the load port 110, and unloads processed substrates W from the substrate processing apparatus 100 to the carrier 111. . The loading/unloading mechanism 140 includes a batch hand 141 formed by stacking hand elements each capable of holding one substrate W in multiple stages. The installation interval of the plurality of hand elements in the batch hand 141 is the same as the arrangement interval of the substrates W within the carrier 111 . The carry-in/out mechanism 140 includes a mechanism for horizontally moving the batch hand 141 along the X direction, and a mechanism for rotating the batch hand 141 by 90° around an axis along the Y direction.
 搬出入機構140は、X方向に沿って搬出入位置P1にまで移動してバッチハンド141をキャリア111内に進入させ、キャリア111内に積層配列した状態で収納されている複数の基板Wを一括して取り出して保持する。そして、搬出入機構140は、バッチハンド141に複数の基板Wを保持した状態でX方向に沿って移載位置P2にまで移動してからバッチハンド141をY方向に沿った軸を中心に90°回動させる。これにより、水平姿勢で積層配列されていた複数の基板Wが起立姿勢(法線が水平方向に沿う姿勢)に変換されることとなる。搬出入機構140はさらにX方向に沿って移動し、起立姿勢で積層配列されてバッチハンド141に保持された基板Wは搬出入機構140から移載機構160に渡される。 The loading/unloading mechanism 140 moves along the X direction to the loading/unloading position P1 to allow the batch hand 141 to enter the carrier 111, and batch the plurality of substrates W stored in the carrier 111 in a stacked arrangement. to remove and hold. Then, the loading/unloading mechanism 140 moves the batch hand 141 to the transfer position P2 along the X direction while holding the plurality of substrates W in the batch hand 141, and then moves the batch hand 141 90 degrees around the axis along the Y direction. ° Rotate. As a result, the plurality of substrates W stacked and arranged in a horizontal posture are converted to a standing posture (a posture in which the normal line is along the horizontal direction). The loading/unloading mechanism 140 further moves along the X direction, and the substrates W stacked and arranged in an upright posture and held by the batch hand 141 are transferred from the loading/unloading mechanism 140 to the transfer mechanism 160 .
 逆に、移載機構160からは起立姿勢で積層配列された状態で複数の基板Wが搬出入機構140に渡される。搬出入機構140は、起立姿勢で積層配列された基板Wを保持するバッチハンド141をY方向に沿った軸を中心に90°回動させる。これにより、起立姿勢で積層配列されていた複数の基板Wが水平姿勢に変換される。そして、搬出入機構140は、X方向に沿って搬出入位置P1にまで移動して基板Wを保持するバッチハンド141をキャリア111内に進入させ、基板Wをキャリア111に渡す。 Conversely, from the transfer mechanism 160, a plurality of substrates W are transferred to the loading/unloading mechanism 140 while being stacked in a standing posture. The loading/unloading mechanism 140 rotates the batch hand 141 holding the substrates W stacked and arranged in an upright posture by 90° about an axis along the Y direction. As a result, the plurality of substrates W stacked and arranged in an upright posture are converted into a horizontal posture. Then, the loading/unloading mechanism 140 moves along the X direction to the loading/unloading position P<b>1 and moves the batch hand 141 holding the substrate W into the carrier 111 to transfer the substrate W to the carrier 111 .
 移載機構160は、搬出入機構140と水平搬送機構170との間で基板Wを移載する。移載機構160は、起立姿勢で積層配列された複数の基板Wを一括して支持する一対の支持軸161を備える。また、移載機構160は、一対の支持軸161を昇降移動させる機構を備える。 The transfer mechanism 160 transfers the substrate W between the loading/unloading mechanism 140 and the horizontal transport mechanism 170 . The transfer mechanism 160 includes a pair of support shafts 161 that collectively support a plurality of substrates W stacked in an upright posture. The transfer mechanism 160 also includes a mechanism for moving the pair of support shafts 161 up and down.
 移載機構160は、起立姿勢で積層配列された複数の基板Wを一対の支持軸161によって搬出入機構140から受け取る。そして、移載機構160は、搬出入機構140から受け取った基板Wを起立姿勢のまま水平搬送機構170に渡す。また、移載機構160は、起立姿勢で積層配列された複数の基板Wを水平搬送機構170から一対の支持軸161によって受け取り、その基板Wを搬出入機構140に渡す。 The transfer mechanism 160 receives a plurality of substrates W stacked and arranged in an upright posture from the loading/unloading mechanism 140 by a pair of support shafts 161 . Then, the transfer mechanism 160 transfers the substrate W received from the loading/unloading mechanism 140 to the horizontal transport mechanism 170 in the upright posture. The transfer mechanism 160 also receives a plurality of substrates W stacked and arranged in an upright posture from the horizontal transport mechanism 170 by a pair of support shafts 161 and transfers the substrates W to the carry-in/out mechanism 140 .
 水平搬送機構170は、基板WをY方向に沿って水平搬送する機構と、基板WをZ方向に沿った軸を中心に90°回動させる機構とを備える。水平搬送機構170は、搬出入機構140から受け取った起立姿勢で積層配列された複数の基板WをZ方向に沿った軸を中心に90°回動させるとともに、その基板WをY方向に沿って搬送して主搬送ロボット130に渡す。また、水平搬送機構170は、主搬送ロボット130から受け取った起立姿勢で積層配列された複数の基板WをZ方向に沿った軸を中心に90°回動させるとともに、その基板WをY方向に沿って搬送して移載機構160に渡す。 The horizontal transport mechanism 170 includes a mechanism that horizontally transports the substrate W along the Y direction and a mechanism that rotates the substrate W by 90° around an axis along the Z direction. The horizontal transport mechanism 170 rotates the plurality of substrates W received from the loading/unloading mechanism 140 and stacked in an upright posture by 90° about an axis along the Z direction, and rotates the substrates W along the Y direction. It is transported and handed over to the main transport robot 130 . Further, the horizontal transport mechanism 170 rotates the plurality of substrates W received from the main transport robot 130 and stacked in an upright posture by 90° about an axis along the Z direction, and moves the substrates W in the Y direction. , and handed over to the transfer mechanism 160 .
 また、本実施形態の基板処理装置100には、枚葉ハンド150およびストッカー155が設けられている。ストッカー155には、ダミー基板DWが収納されている。ダミー基板DWは、処理対象となる通常の基板Wと同様の円板形状のシリコンウェハーであり、基板Wと同様のサイズおよび形状を有する。但し、ダミー基板DWには、パターン形成や成膜はなされていない。すなわち、ダミー基板DWは、いわゆるベアウェハーである。枚葉ハンド150は、1枚のダミー基板DWを水平姿勢で保持する。また、枚葉ハンド150は、Y方向に沿った移動、Z方向に沿った昇降移動、および、X方向に沿った進退移動が可能に構成されている。 Further, the substrate processing apparatus 100 of this embodiment is provided with a single-wafer hand 150 and a stocker 155 . The stocker 155 stores dummy substrates DW. The dummy substrate DW is a disk-shaped silicon wafer similar to the normal substrate W to be processed, and has the same size and shape as the substrate W. However, pattern formation and film formation are not performed on the dummy substrate DW. That is, the dummy substrate DW is a so-called bare wafer. The single substrate hand 150 holds one dummy substrate DW in a horizontal posture. In addition, the single-wafer hand 150 is configured to be able to move along the Y direction, move up and down along the Z direction, and move back and forth along the X direction.
 枚葉ハンド150は、ストッカー155から1枚のダミー基板DWを取り出して保持し、Y方向に沿って搬出入位置P1まで移動し、移載位置P2に位置している搬出入機構140と相対向する。そして、枚葉ハンド150は、X方向に沿って前進移動し、バッチハンド141を構成する複数のハンド要素のいずれかにダミー基板DWを渡す。 The single-wafer hand 150 takes out one dummy substrate DW from the stocker 155, holds it, moves along the Y direction to the loading/unloading position P1, and faces the loading/unloading mechanism 140 located at the transfer position P2. do. Then, the single-wafer hand 150 moves forward along the X direction and passes the dummy substrate DW to one of the plurality of hand elements forming the batch hand 141 .
 次に、基板処理部120に設けられた処理槽の構成について説明する。ここでは、処理槽として第1薬液槽121について説明するが、他の処理槽も同様の構成を備える。図2は、第1薬液槽121の構成を示す図である。第1薬液槽121は、処理液を貯留する処理槽10と、処理槽10に処理液を供給する処理液供給部30と、処理槽10から処理液を排出する排液部40と、処理槽10に貯留された処理液中に気泡を供給する気泡供給部50とを備える。 Next, the configuration of the processing tanks provided in the substrate processing section 120 will be described. Here, the first chemical bath 121 will be described as the processing bath, but the other processing baths have the same configuration. FIG. 2 is a diagram showing the configuration of the first chemical tank 121. As shown in FIG. The first chemical bath 121 includes a processing bath 10 that stores the processing liquid, a processing liquid supply unit 30 that supplies the processing liquid to the processing bath 10, a drain unit 40 that discharges the processing liquid from the processing bath 10, and a processing bath. and a bubble supply unit 50 for supplying bubbles into the processing liquid stored in 10 .
 処理槽10は、石英等の耐薬性の材料により構成された貯留容器である。処理槽10は、処理液を貯留してその内部に基板Wを浸漬させる内槽11と、内槽11の上端外周部に形成された外槽12とを含む二重槽構造を有する。内槽11および外槽12はそれぞれ上向きに開いた上部開口を有する。外槽12の上縁の高さは、内槽11の上縁の高さよりも高い。内槽11の上端まで処理液が貯留されている状態で処理液供給部30から処理液がさらに供給されると、内槽11の上部から処理液が溢れて外槽12へとオーバーフローする。 The processing tank 10 is a storage container made of a chemical-resistant material such as quartz. The processing bath 10 has a double bath structure including an inner bath 11 in which a processing solution is stored and the substrates W are immersed, and an outer bath 12 formed around the upper end of the inner bath 11 . Each of the inner bath 11 and the outer bath 12 has an upper opening that opens upward. The height of the upper edge of the outer tub 12 is higher than the height of the upper edge of the inner tub 11 . When the processing liquid is further supplied from the processing liquid supply unit 30 while the processing liquid is stored up to the upper end of the inner bath 11 , the processing liquid overflows from the top of the inner bath 11 to the outer bath 12 .
 第1リフタ126は、鉛直方向(Z方向)に延びる背板22と、背板22の下端から水平方向(Y方向)に延びる3本の保持棒21とを有する。各保持棒21には複数(例えば、52個)の保持溝が所定のピッチで刻設されている。複数の基板Wは、その周縁部を保持溝に嵌合させた状態で3本の保持棒21上に互いに所定間隔を隔てて平行に起立姿勢で保持される。 The first lifter 126 has a back plate 22 extending in the vertical direction (Z direction) and three holding bars 21 extending in the horizontal direction (Y direction) from the lower end of the back plate 22 . A plurality of (for example, 52) holding grooves are formed in each holding bar 21 at a predetermined pitch. A plurality of substrates W are held on three holding rods 21 in parallel with each other at predetermined intervals in an upright posture with their peripheral edges fitted in the holding grooves.
 第1リフタ126は、第1薬液槽121において昇降移動を行う。図3および図4は、第1リフタ126の昇降動作を示す図である。第1リフタ126が上下に移動することにより、基板Wは図2の矢印AR2にて示すように、処理槽10の内部の浸漬位置(図4の位置)と、処理槽10の上方の引き上げ位置(図3の位置)との間で昇降移動される。処理槽10に処理液が貯留された状態で基板Wが浸漬位置に下降されることにより、当該処理液中に基板Wが浸漬されて表面処理が行われる。 The first lifter 126 moves up and down in the first chemical tank 121 . 3 and 4 are diagrams showing the lifting operation of the first lifter 126. FIG. By moving the first lifter 126 up and down, the substrate W moves from the immersion position (the position in FIG. 4) inside the processing tank 10 to the lifting position above the processing tank 10, as indicated by the arrow AR2 in FIG. (position in FIG. 3). By lowering the substrate W to the immersion position while the processing liquid is stored in the processing bath 10, the substrate W is immersed in the processing liquid and subjected to the surface treatment.
 図2に戻り、処理液供給部30は、ノズル31およびそれに処理液を送給する配管系を備える。ノズル31は、処理槽10の内槽11内の底部に配置される。ノズル31の直上にはノズル31に対向するように分散板15が設けられる。さらに、分散板15の上方にはパンチングプレート17が設けられている。 Returning to FIG. 2, the treatment liquid supply unit 30 includes a nozzle 31 and a piping system for supplying the treatment liquid thereto. The nozzle 31 is arranged at the bottom inside the inner bath 11 of the processing bath 10 . A dispersion plate 15 is provided directly above the nozzle 31 so as to face the nozzle 31 . Furthermore, a punching plate 17 is provided above the dispersion plate 15 .
 図5は、ノズル31、分散板15およびパンチングプレート17を処理槽10の底部から見た図である。処理液供給部30の配管32の先端部分(処理槽10内に延びる部分)が配管32aを構成する。配管32aの上側に複数のノズル31が形設される。各ノズル31は、配管32aに連通接続されている。複数のノズル31のそれぞれの上方に分散板15が設けられる。分散板15は、水平面に平行に設けられた円板形状の部材である。ノズル31は、分散板15に向かって、配管32aから鉛直上方に突設されている。分散板15のさらに上方には内槽11の水平断面の全体にパンチングプレート17が設けられる。パンチングプレート17の全面に複数の処理液孔17aが穿設されている。 5 is a diagram of the nozzle 31, the dispersion plate 15 and the punching plate 17 viewed from the bottom of the processing tank 10. FIG. A tip portion of the pipe 32 of the processing liquid supply unit 30 (the portion extending into the processing bath 10) constitutes a pipe 32a. A plurality of nozzles 31 are formed above the pipe 32a. Each nozzle 31 is communicatively connected to a pipe 32a. A dispersion plate 15 is provided above each of the plurality of nozzles 31 . The dispersion plate 15 is a disk-shaped member provided parallel to the horizontal plane. The nozzle 31 projects vertically upward from the pipe 32 a toward the distribution plate 15 . A punching plate 17 is provided over the entire horizontal cross section of the inner tank 11 above the dispersion plate 15 . A plurality of processing liquid holes 17 a are formed on the entire surface of the punching plate 17 .
 配管32aに送給された処理液は、ノズル31から直上の分散板15に向けて吐出される。処理槽10に処理液が貯留されている状態でノズル31から上方に向けて処理液が吐出されると、その処理液の流れが分散板15に突き当たって液の圧力が分散され、処理液が分散板15の面に沿って水平方向に拡がる。そして、分散板15によって水平方向に拡がった処理液は、パンチングプレート17の複数の処理液孔17aから上昇して処理槽10内に下方から上方へと向かう層流を形成する。 The processing liquid supplied to the pipe 32a is discharged from the nozzle 31 toward the dispersion plate 15 directly above. When the processing liquid is discharged upward from the nozzle 31 while the processing liquid is stored in the processing tank 10, the flow of the processing liquid impinges on the distribution plate 15, the pressure of the liquid is dispersed, and the processing liquid is discharged. It extends horizontally along the surface of the dispersion plate 15 . The processing liquid spread horizontally by the dispersion plate 15 rises from the plurality of processing liquid holes 17a of the punching plate 17 to form a laminar flow in the processing bath 10 from the bottom to the top.
 図2に戻り、ノズル31に処理液を送給する配管系は、配管32にポンプ33、ヒータ34、フィルタ35、流量調整バルブ36およびバルブ37を備えて構成される。ポンプ33、ヒータ34、フィルタ35、流量調整バルブ36およびバルブ37は、この順番で配管32の上流から下流に向かって(外槽12から内槽11に向かって)配置される。 Returning to FIG. 2 , the piping system for supplying the processing liquid to the nozzle 31 is configured with a pump 33 , a heater 34 , a filter 35 , a flow control valve 36 and a valve 37 in the piping 32 . Pump 33, heater 34, filter 35, flow control valve 36 and valve 37 are arranged in this order from upstream to downstream of pipe 32 (from outer tank 12 to inner tank 11).
 配管32の先端側は処理槽10内に延設されて配管32a(図5)を構成するとともに、配管32の基端側は外槽12に接続される。配管32は、外槽12から流れ出た処理液を再び内槽11に導く。すなわち、処理液供給部30は、処理槽10内の処理液を循環させるのである。ポンプ33は、外槽12から配管32に処理液を排出させるとともに、その処理液をノズル31に送り出す。ヒータ34は、配管32を流れる処理液を加熱する。処理液としてリン酸等を用いる場合には、ヒータ34によって処理液を加熱し、昇温した処理液を処理槽10に貯留する。 The tip side of the pipe 32 extends into the processing tank 10 to form a pipe 32 a ( FIG. 5 ), and the base end side of the pipe 32 is connected to the outer tank 12 . The pipe 32 guides the processing liquid flowing out of the outer tank 12 back to the inner tank 11 . That is, the processing liquid supply unit 30 circulates the processing liquid in the processing tank 10 . The pump 33 discharges the processing liquid from the outer tank 12 to the pipe 32 and sends the processing liquid to the nozzle 31 . The heater 34 heats the processing liquid flowing through the pipe 32 . When phosphoric acid or the like is used as the processing liquid, the processing liquid is heated by the heater 34 and the heated processing liquid is stored in the processing tank 10 .
 フィルタ35は、配管32を流れる処理液をろ過して不純物等を取り除く。流量調整バルブ36は、配管32を流れる処理液の流量を調整する。バルブ37は、配管32の流路を開閉する。ポンプ33を作動させつつバルブ37を開放することにより、外槽12から排出された処理液が配管32を流れてノズル31に送給され、その流量は流量調整バルブ36によって規定される。 The filter 35 filters the treatment liquid flowing through the pipe 32 to remove impurities and the like. A flow control valve 36 adjusts the flow rate of the processing liquid flowing through the pipe 32 . The valve 37 opens and closes the channel of the pipe 32 . By opening the valve 37 while operating the pump 33 , the processing liquid discharged from the outer tank 12 flows through the pipe 32 and is supplied to the nozzle 31 , the flow rate of which is regulated by the flow control valve 36 .
 薬液供給部80は、薬液供給源81、バルブ82、ノズル83および配管84を含む。配管84の先端側はノズル83に接続されるとともに、基端側は薬液供給源81に接続される。配管84の経路途中にバルブ82が設けられている。バルブ82が開放されると、薬液供給源81からノズル83に薬液が送給され、ノズル83から処理槽10の外槽12に向けて薬液が吐出される。薬液供給部80から外槽12に供給された薬液は処理液供給部30によって内槽11内に供給される。なお、薬液供給部80のノズル83は、内槽12に直接薬液を供給するようにしても良い。また、第1リンス槽122および第2リンス槽124には、薬液供給部80は設けられていない。 The chemical supply unit 80 includes a chemical supply source 81, a valve 82, a nozzle 83 and a pipe 84. The pipe 84 has a distal end connected to the nozzle 83 and a proximal end connected to the chemical solution supply source 81 . A valve 82 is provided in the middle of the path of the pipe 84 . When the valve 82 is opened, the chemical liquid is supplied from the chemical liquid supply source 81 to the nozzle 83 and discharged from the nozzle 83 toward the outer tank 12 of the processing tank 10 . The chemical solution supplied from the chemical solution supply part 80 to the outer tank 12 is supplied into the inner tank 11 by the treatment liquid supply part 30 . It should be noted that the nozzle 83 of the chemical solution supply unit 80 may directly supply the chemical solution to the inner tank 12 . In addition, the first rinse tank 122 and the second rinse tank 124 are not provided with the chemical supply unit 80 .
 純水供給部90は、純水供給源91、バルブ92、ノズル93および配管94を含む。配管94の先端側はノズル93に接続されるとともに、基端側は純水供給源91に接続される。配管94の経路途中にバルブ92が設けられている。バルブ92が開放されると、純水供給源91からノズル93に純水が送給され、ノズル93から処理槽10の外槽12に向けて純水が吐出される。第1薬液槽121においては、純水供給部90が供給する純水は薬液の希釈液として機能する。薬液供給部80から処理槽10に薬液が供給されるとともに、純水供給部90から純水が供給されることにより、薬液が希釈されることとなる。 A pure water supply unit 90 includes a pure water supply source 91 , a valve 92 , a nozzle 93 and a pipe 94 . The tip side of the pipe 94 is connected to the nozzle 93 , and the base end side is connected to the pure water supply source 91 . A valve 92 is provided in the middle of the path of the pipe 94 . When the valve 92 is opened, pure water is supplied from the pure water supply source 91 to the nozzle 93 and discharged from the nozzle 93 toward the outer tank 12 of the processing tank 10 . In the first chemical tank 121, the pure water supplied by the pure water supply unit 90 functions as a diluent for the chemical. The chemical solution is supplied from the chemical solution supply part 80 to the processing bath 10 and the pure water is supplied from the pure water supply part 90 to dilute the chemical solution.
 排液部40は、配管41およびバルブ45を含む。配管41の先端側は処理槽10の内槽11の底壁に接続される。配管41の経路途中にはバルブ45が設けられている。配管43の基端側は、基板処理装置1が設置される工場の排液設備に接続されている。バルブ45が開放されると、内槽11内に貯留されていた処理液が内槽11の底部から配管41に急速排出され、排液設備にて処理される。 The drainage unit 40 includes a pipe 41 and a valve 45. The tip side of the pipe 41 is connected to the bottom wall of the inner tank 11 of the processing tank 10 . A valve 45 is provided in the middle of the path of the pipe 41 . The base end side of the pipe 43 is connected to the drainage equipment of the factory where the substrate processing apparatus 1 is installed. When the valve 45 is opened, the processing liquid stored in the inner tank 11 is rapidly discharged from the bottom of the inner tank 11 to the pipe 41 and processed by the drainage equipment.
 気泡供給部50は、複数本の気泡供給管51(本実施形態では6本)およびそれらに気体を送給する配管系を備える。6本の気泡供給管51は、処理槽10の内槽11の内部において、パンチングプレート17の上方、かつ、第1リフタ126によって浸漬位置に保持された基板Wの下方に配置される。6本の気泡供給管51のそれぞれは長尺の管状部材である。各気泡供給管51には複数の気泡孔が穿設されている。6本の気泡供給管51のそれぞれは、処理槽10内に貯留されている処理液中に気泡孔から気体を吐出する。処理槽10に処理液が貯留された状態で6本の気泡供給管51から処理液中に気体を供給すると、その気体は気泡となって処理液中を上昇する。気泡供給部50が供給する気体は、例えば不活性ガスである。その不活性ガスは、例えば、窒素またはアルゴンである(本実施形態では窒素を使用)。 The bubble supply unit 50 includes a plurality of bubble supply pipes 51 (six in this embodiment) and a piping system for supplying gas to them. The six bubble supply pipes 51 are arranged inside the inner bath 11 of the processing bath 10 above the punching plate 17 and below the substrate W held at the immersion position by the first lifter 126 . Each of the six bubble supply pipes 51 is a long tubular member. Each bubble supply pipe 51 is provided with a plurality of bubble holes. Each of the six bubble supply pipes 51 discharges gas from the bubble hole into the processing liquid stored in the processing tank 10 . When gas is supplied from the six bubble supply pipes 51 into the processing liquid while the processing liquid is stored in the processing bath 10, the gas becomes bubbles and rises in the processing liquid. The gas supplied by the bubble supply unit 50 is, for example, an inert gas. The inert gas is, for example, nitrogen or argon (nitrogen is used in this embodiment).
 6本の気泡供給管51に気体を送給する配管系は、配管52、気体供給機構53および気体供給源54を含む。6本の気泡供給管51のそれぞれに1本の配管52の先端側が接続される。配管52の基端側は気体供給源54に接続されている。そして、配管52のそれぞれに気体供給機構53が設けられる。つまり、6本の気泡供給管51のそれぞれについて1個の気体供給機構53が設けられている。気体供給源54は、各配管52に気体を送り出す。気体供給機構53は、図示省略のマスフローコントローラおよび開閉バルブ等を備えており、配管52を介して気泡供給管51に気体を送給するとともに、その送給する気体の流量を調整する。 A piping system for supplying gas to the six bubble supply pipes 51 includes a pipe 52, a gas supply mechanism 53 and a gas supply source 54. The tip side of one pipe 52 is connected to each of the six bubble supply pipes 51 . A proximal end of the pipe 52 is connected to a gas supply source 54 . A gas supply mechanism 53 is provided for each of the pipes 52 . That is, one gas supply mechanism 53 is provided for each of the six bubble supply pipes 51 . A gas supply source 54 delivers gas to each pipe 52 . The gas supply mechanism 53 includes a mass flow controller and an opening/closing valve (not shown), and supplies gas to the bubble supply pipe 51 through the pipe 52 and adjusts the flow rate of the supplied gas.
 制御部70は、基板処理装置100に設けられた上記の種々の動作機構を制御する。図6は、制御部70の構成を示すブロック図である。制御部70のハードウェアとしての構成は一般的なコンピュータと同様である。すなわち、制御部70は、各種演算処理を行う回路であるCPU、基本プログラムを記憶する読み出し専用のメモリであるROM、各種情報を記憶する読み書き自在のメモリであるRAMおよび制御用ソフトウェアやデータなどを記憶しておく記憶部74(例えば、磁気ディスク)を備えている。制御部70のCPUが所定の処理プログラムを実行することによって基板処理装置100における処理が進行する。 The control unit 70 controls the various operating mechanisms provided in the substrate processing apparatus 100 . FIG. 6 is a block diagram showing the configuration of the control section 70. As shown in FIG. The hardware configuration of the control unit 70 is the same as that of a general computer. That is, the control unit 70 includes a CPU that is a circuit that performs various arithmetic processing, a ROM that is a read-only memory that stores basic programs, a RAM that is a readable and writable memory that stores various information, and control software and data. A storage unit 74 (for example, a magnetic disk) for storing is provided. The processing in the substrate processing apparatus 100 proceeds as the CPU of the control unit 70 executes a predetermined processing program.
 制御部70は、挿入位置特定部71を備える。この挿入位置特定部71は、制御部70のCPUが所定の処理プログラムを実行することによって実現される機能処理部である。挿入位置特定部71の処理内容についてはさらに後述する。また、制御部70の記憶部74には、基板Wを処理する手順および条件を定めた処理レシピ75が記憶されている。処理レシピ75は、例えば、装置のオペレータが、後述する入力部72を介して入力して記憶部74に記憶させることによって、基板処理装置100に取得される。或いは、複数の基板処理装置100を管理するホストコンピュータから基板処理装置100に処理レシピ75が通信により引き渡されて記憶部74に記憶されても良い。 The control unit 70 includes an insertion position specifying unit 71. The insertion position specifying unit 71 is a functional processing unit realized by the CPU of the control unit 70 executing a predetermined processing program. Details of the processing performed by the insertion position specifying unit 71 will be described later. A storage unit 74 of the control unit 70 stores a processing recipe 75 that defines procedures and conditions for processing the substrate W. FIG. The processing recipe 75 is acquired by the substrate processing apparatus 100 by, for example, being input by an operator of the apparatus via an input unit 72 described later and stored in the storage unit 74 . Alternatively, the processing recipe 75 may be transferred to the substrate processing apparatuses 100 by communication from a host computer that manages a plurality of substrate processing apparatuses 100 and stored in the storage unit 74 .
 制御部70には、センサ112および枚葉ハンド150等の機構が電気的に接続されている。制御部70は、センサ112から検出結果を受信するとともに、枚葉ハンド150の動作を制御する。 Mechanisms such as the sensor 112 and the single-wafer hand 150 are electrically connected to the control unit 70 . The control unit 70 receives detection results from the sensor 112 and controls the operation of the single-wafer hand 150 .
 また、制御部70には、表示部73および入力部72が接続されている。表示部73および入力部72は、基板処理装置100のユーザーインターフェイスとして機能する。制御部70は、表示部73に種々の情報を表示する。基板処理装置100のオペレータは、表示部73に表示された情報を確認しつつ、入力部72から種々のコマンドやパラメータを入力することができる。入力部72としては、例えばキーボードやマウスを用いることができる。表示部73としては、例えば液晶ディスプレイを用いることができる。本実施形態においては、表示部73および入力部72として、基板処理装置100の外壁に設けられた液晶のタッチパネルを採用して双方の機能を併せ持たせるようにしている。 A display unit 73 and an input unit 72 are also connected to the control unit 70 . The display unit 73 and the input unit 72 function as user interfaces of the substrate processing apparatus 100 . The control unit 70 displays various information on the display unit 73 . An operator of the substrate processing apparatus 100 can input various commands and parameters from the input section 72 while confirming the information displayed on the display section 73 . A keyboard or a mouse, for example, can be used as the input unit 72 . As the display unit 73, for example, a liquid crystal display can be used. In this embodiment, as the display unit 73 and the input unit 72, a liquid crystal touch panel provided on the outer wall of the substrate processing apparatus 100 is employed to have both functions.
 次に、基板処理装置100における処理動作について説明する。図7は、第1実施形態の基板処理装置100における処理手順を示すフローチャートである。以下に示す処理手順は、制御部70が基板処理装置100の各動作機構を制御することによって進行する。 Next, processing operations in the substrate processing apparatus 100 will be described. FIG. 7 is a flow chart showing a processing procedure in the substrate processing apparatus 100 of the first embodiment. The processing procedure described below proceeds as the control unit 70 controls each operating mechanism of the substrate processing apparatus 100 .
 まず、未処理の基板Wを収納したキャリア111がロードポート110に載置されて基板Wが基板処理装置100に搬入される(ステップS1)。キャリア111内には、複数の基板Wが水平姿勢で積層配列された状態で収納されている。キャリア111がロードポート110に載置されると、そのキャリア111に付されたIDタグが図示省略の光学リーダによって読み取られ、キャリア111に収納されたロット(一組の複数の基板W)の識別番号が制御部70に伝達される。制御部70は、記憶部74に格納されている多数の処理レシピ75から当該ロットの識別番号に予め割り当てられている処理レシピ75を抽出する。 First, the carrier 111 containing unprocessed substrates W is placed on the load port 110, and the substrates W are carried into the substrate processing apparatus 100 (step S1). In the carrier 111, a plurality of substrates W are accommodated in a state of being stacked and arranged in a horizontal posture. When the carrier 111 is placed on the load port 110, the ID tag attached to the carrier 111 is read by an optical reader (not shown) to identify the lot (a set of multiple substrates W) accommodated in the carrier 111. The number is transmitted to control unit 70 . The control unit 70 extracts the processing recipe 75 pre-assigned to the identification number of the lot from many processing recipes 75 stored in the storage unit 74 .
 制御部70は、抽出した処理レシピ75に基づいて、キャリア111に収納されている複数の基板Wのそれぞれの向きを検知する(ステップS2)。基板Wの向きとは、表面がいずれを向いているかという情報である。例えば、複数の基板Wが水平姿勢で積層配列された状態においては、各基板Wの表面は上方または下方のいずれかに向いている。キャリア111に収納されている複数の基板Wのそれぞれの向きは処理レシピ75で指定されている。制御部70は、キャリア111に水平姿勢で積層配列されている複数の基板Wのそれぞれの表面が上方または下方のいずれを向いているかを処理レシピ75に基づいて検知するのである。なお、基板Wの表面とは、2つある主面のうちパターンや膜が形成されている面である。表面とは反対側の基板Wの主面は裏面となる。 The control unit 70 detects the orientation of each of the plurality of substrates W stored in the carrier 111 based on the extracted processing recipe 75 (step S2). The orientation of the substrate W is information as to which direction the surface faces. For example, in a state in which a plurality of substrates W are stacked in a horizontal posture, the surface of each substrate W faces either upward or downward. The orientation of each of the plurality of substrates W housed in the carrier 111 is designated by the processing recipe 75 . Based on the processing recipe 75, the control unit 70 detects whether the surface of each of the plurality of substrates W horizontally stacked on the carrier 111 faces upward or downward. The surface of the substrate W is the surface on which patterns and films are formed among the two main surfaces. The main surface of the substrate W opposite to the front surface is the back surface.
 また、キャリア111がロードポート110に載置された後、ポッドオープナーがキャリア111の前面の蓋を開く。そして、センサ112がキャリア111に収納されている複数の基板Wの配列間隔を検出する(ステップS3)。センサ112は、水平姿勢で積層配列されている複数の基板Wの配列間隔を光学的手法によって検出する。センサ112によって検出された基板Wの配列間隔に関する情報は制御部70に伝達される。 Also, after the carrier 111 is placed on the load port 110 , the pod opener opens the front cover of the carrier 111 . Then, the sensor 112 detects the arrangement intervals of the plurality of substrates W accommodated in the carrier 111 (step S3). The sensor 112 optically detects the arrangement interval of the plurality of substrates W stacked and arranged in a horizontal posture. Information about the arrangement interval of the substrates W detected by the sensor 112 is transmitted to the controller 70 .
 ステップS2における基板Wの向きの検知、および、ステップS3における基板Wの配列間隔の検出によって、制御部70はキャリア111に収納されている複数の基板Wの配列状態に関する2つの情報を取得することとなる。そして、制御部70の挿入位置特定部71は、検出された複数の基板Wの配列状態に関する2つの情報(向き情報および配列間隔情報)に基づいて、ダミー基板DWの挿入位置を特定する(ステップS4)。 By detecting the orientation of the substrates W in step S2 and detecting the arrangement interval of the substrates W in step S3, the control unit 70 acquires two types of information regarding the arrangement state of the plurality of substrates W stored in the carrier 111. becomes. Then, the insertion position specifying unit 71 of the control unit 70 specifies the insertion positions of the dummy substrates DW based on the detected two pieces of information (orientation information and arrangement interval information) regarding the arrangement state of the plurality of substrates W (step S4).
 図8は、第1実施形態におけるダミー基板挿入の一例を概念的に説明するための図である。図8の下方に示す凹凸の各凹部は1枚の基板Wを保持可能なスロットを示している。図8に示す複数のスロットは、例えば第1リフタ126の保持棒21に刻設された複数の保持溝等に対応している。また、図8において、短い矢印で示しているのは基板Wの表面である(以降、図9,10,12,13,14において同じ)。 FIG. 8 is a diagram for conceptually explaining an example of dummy substrate insertion in the first embodiment. Each concave portion of the unevenness shown in the lower part of FIG. 8 indicates a slot capable of holding one substrate W. As shown in FIG. A plurality of slots shown in FIG. 8 correspond to, for example, a plurality of holding grooves or the like carved in the holding bar 21 of the first lifter 126 . Further, in FIG. 8, the short arrows indicate the surface of the substrate W (the same applies to FIGS. 9, 10, 12, 13, and 14 hereinafter).
 図8に示す例においては、基本的には全てのスロットに対して順次に基板Wが保持されている。すなわち、隣り合う基板Wの基本間隔は1スロットである。このような例は、50枚のロットを処理する場合に対応している。但し、複数の基板Wの積層配列において、基板W11と基板W12との間からは1枚の基板Wが抜けている。同様に、基板W13と基板W14との間からも1枚の基板Wが抜けている。このような基板Wの抜けは、例えば基板処理装置100よりも前工程にて処理不良となった基板Wを取り除いた結果として生じる。 In the example shown in FIG. 8, the substrates W are basically sequentially held in all slots. That is, the basic interval between adjacent substrates W is one slot. Such an example corresponds to processing a lot of 50 sheets. However, in the stacked arrangement of the plurality of substrates W, one substrate W is missing from between the substrates W11 and W12. Similarly, one substrate W is missing from between the substrate W13 and the substrate W14. Such omission of the substrate W occurs, for example, as a result of removal of the substrate W, which has been defectively processed in the previous process of the substrate processing apparatus 100 .
 基板Wの抜けが生じることによって、基板W11と基板W12との間隔および基板W13と基板W14との間隔は2スロットとなる。すなわち、複数の基板Wの積層配列において、隣り合う基板Wの間隔は不均一となる。なお、このような隣り合う基板Wの間隔に関する情報はステップS3で取得されて制御部70に伝達される。また、それぞれの基板Wの表面の向きに関する情報はステップS2で取得される。 The gap between the substrate W11 and the substrate W12 and the gap between the substrate W13 and the substrate W14 become 2 slots due to the substrate W coming off. That is, in the stacking arrangement of a plurality of substrates W, the intervals between adjacent substrates W become uneven. Information about the interval between the substrates W adjacent to each other is acquired in step S3 and transmitted to the control unit 70 . Information about the orientation of the surface of each substrate W is obtained in step S2.
 基板W11と基板W12との間隔および基板W13と基板W14との間隔が相対的に広くなることは、基板W11および基板W13の表面側に存在する空間の幅が他の基板Wの表面側に存在する空間の幅よりも広くなることを意味している。すなわち、当該他の基板Wの表面側に存在する空間の幅が1スロットであるのに対して、基板W11および基板W13の表面側に存在する空間の幅は2スロットとなる。 The relative widening of the distance between the substrates W11 and W12 and the distance between the substrates W13 and W14 means that the width of the space existing on the surface side of the substrate W11 and the substrate W13 exists on the surface side of the other substrate W. It means that it will be wider than the width of the space to be used. That is, the width of the space existing on the surface side of the other substrate W is 1 slot, while the width of the space existing on the surface side of the substrate W11 and the substrate W13 is 2 slots.
 また、複数の基板Wの積層配列における最端部の基板W15についても表面側に存在する空間の幅が相対的に広くなっている。なお、基板W15とは反対側の最端部に位置する基板Wについては、表面側の隣り合う位置に基板Wが配置されているため、その表面側に存在する空間の幅は他の基板Wの表面側に存在する空間の幅と同じである(つまり、1スロット)。 In addition, the width of the space existing on the surface side of the substrate W15 at the end in the stacked arrangement of the plurality of substrates W is relatively wide. Regarding the substrate W located at the farthest end on the side opposite to the substrate W15, since the substrates W are arranged at positions adjacent to each other on the front surface side, the width of the space existing on the front surface side is equal to that of the other substrates W15. is the same as the width of the space that exists on the surface side of the (that is, one slot).
 このような間隔が不均一な状態で積層配列された複数の基板Wをそのまま基板処理部120にて処理すると、基板間の間隔が広いところでは処理液や気泡の流れが他とは異なることとなり、その結果不均一な処理が行われることとなる。このため、第1実施形態においては、複数の基板Wのそれぞれの表面側に存在する空間の幅が一定となるように、挿入位置特定部71がダミー基板DWを挿入する位置を特定している。特に第1実施形態では、表面側に存在する空間の幅が相対的に広い基板Wの表面にダミー基板DWが対向配置されるように、挿入位置特定部71がダミー基板DWを挿入する位置を特定する。具体的には、基板W11の表面から1スロット隔てたスロットA、基板W13の表面から1スロット隔てたスロットB、および、基板W15の表面から1スロット隔てたスロットCがダミー基板DWの挿入位置として特定される。すなわち、第1実施形態では、複数の基板Wのそれぞれの表面側に存在する空間の幅が1スロットとなるように、ダミー基板DWの挿入位置が特定されることとなる。なお、保持棒21には52個の保持溝が刻設されているため、50枚のロットであっても基板W15の表面から1スロット隔てたスロットCにダミー基板DWを保持させることは可能である。 If the substrate processing section 120 processes the plurality of substrates W stacked and arranged in such a state that the intervals are not uniform, the flow of the processing liquid and air bubbles will be different where the intervals between the substrates are wide. , resulting in uneven processing. For this reason, in the first embodiment, the insertion position specifying unit 71 specifies the positions into which the dummy substrates DW are inserted so that the width of the space existing on the surface side of each of the plurality of substrates W is constant. . In particular, in the first embodiment, the insertion position specifying unit 71 determines the insertion position of the dummy substrate DW so that the dummy substrate DW is arranged opposite to the front surface of the substrate W having a relatively wide space on the front surface side. Identify. Specifically, the slot A which is one slot away from the surface of the substrate W11, the slot B which is one slot away from the surface of the substrate W13, and the slot C which is one slot away from the surface of the substrate W15 serve as insertion positions for the dummy substrates DW. identified. That is, in the first embodiment, the insertion positions of the dummy substrates DW are specified so that the width of the space existing on the surface side of each of the plurality of substrates W is one slot. Since 52 holding grooves are formed in the holding bar 21, even in a lot of 50 substrates, it is possible to hold the dummy substrates DW in the slot C which is one slot apart from the surface of the substrate W15. be.
 ダミー基板DWの挿入位置が特定された後、搬出入機構140がキャリア111から複数の基板Wを取り出す。搬出入機構140は、搬出入位置P1に移動してバッチハンド141によってキャリア111に収容されている複数の基板Wを一括して受け取って保持する。そして、搬出入機構140は、バッチハンド141に複数の基板Wを保持した状態で移載位置P2に移動する。 After the insertion positions of the dummy substrates DW are specified, the carry-in/out mechanism 140 takes out the plurality of substrates W from the carrier 111 . The loading/unloading mechanism 140 moves to the loading/unloading position P<b>1 and collectively receives and holds a plurality of substrates W accommodated in the carrier 111 by the batch hand 141 . Then, the loading/unloading mechanism 140 moves to the transfer position P<b>2 while holding the plurality of substrates W on the batch hand 141 .
 一方、枚葉ハンド150は、ストッカー155からダミー基板DWを取り出して搬出入位置P1に移動し、移載位置P2に停止している搬出入機構140と相対向する。そして、枚葉ハンド150は、搬出入機構140が保持している複数の基板Wの積層配列に対してダミー基板DWを挿入する(ステップS5)。枚葉ハンド150は、ステップS4で特定されたスロットにダミー基板DWを挿入する。具体的には、枚葉ハンド150は、図8のスロットA、スロットBおよびスロットCにダミー基板DWを挿入する。なお、本明細書において、ダミー基板DWの挿入には、複数の基板Wの積層配列の端にダミー基板DWを配置することも含む。 On the other hand, the single-wafer hand 150 takes out the dummy substrate DW from the stocker 155, moves to the loading/unloading position P1, and faces the loading/unloading mechanism 140 stopped at the transfer position P2. Then, the single-wafer hand 150 inserts the dummy substrate DW into the stacking arrangement of the plurality of substrates W held by the loading/unloading mechanism 140 (step S5). The single-wafer hand 150 inserts the dummy substrate DW into the slot specified in step S4. Specifically, the single substrate hand 150 inserts dummy substrates DW into slots A, B and C in FIG. In this specification, the insertion of the dummy substrate DW also includes arranging the dummy substrate DW at the end of the stacked arrangement of the plurality of substrates W.
 ダミー基板DWが挿入された後、搬出入機構140は、ダミー基板DWが挿入された複数の基板W(以下、挿入されたダミー基板DWを含む複数の基板Wの積層配列を「基板Wの積層体」と称する)を水平姿勢から起立姿勢に姿勢変換する。起立姿勢とされた基板Wの積層体は搬出入機構140から移載機構160を介して水平搬送機構170に渡される。水平搬送機構170は、基板Wの積層体を主搬送ロボット130に渡す。そして、主搬送ロボット130は、基板Wの積層体を第1リフタ126(または第2リフタ127)に渡す。 After the dummy substrates DW are inserted, the carry-in/out mechanism 140 moves the plurality of substrates W into which the dummy substrates DW are inserted (hereafter, the stacking arrangement of the plurality of substrates W including the inserted dummy substrates DW is referred to as “stacking of substrates W”). (referred to as "body") from a horizontal posture to a standing posture. The stack of substrates W in the upright posture is transferred from the loading/unloading mechanism 140 to the horizontal transport mechanism 170 via the transfer mechanism 160 . The horizontal transport mechanism 170 transfers the stack of substrates W to the main transport robot 130 . Then, the main transport robot 130 transfers the stack of substrates W to the first lifter 126 (or the second lifter 127).
 第1薬液槽121においては、処理槽10の内槽11から外槽12へとオーバーフローし、外槽12から流れ出た処理液が内槽11に戻ることによって処理液が循環している。具体的には、外槽12から配管32に流れ出た処理液は、ポンプ33によってノズル31に送り出される。このとき、配管32を流れる処理液は必要に応じてヒータ34によって加熱される。また、配管32を流れる処理液の流量は流量調整バルブ36によって規定される。 In the first chemical tank 121 , the processing liquid is circulated by overflowing from the inner tank 11 of the processing tank 10 to the outer tank 12 and returning to the inner tank 11 . Specifically, the processing liquid flowing out from the outer tank 12 to the pipe 32 is sent to the nozzle 31 by the pump 33 . At this time, the processing liquid flowing through the pipe 32 is heated by the heater 34 as necessary. Also, the flow rate of the processing liquid flowing through the pipe 32 is regulated by a flow rate control valve 36 .
 ノズル31に送給された処理液は、ノズル31から内槽11内の上方に向けて吐出される。ノズル31から吐出された処理液は、分散板15に突き当たって分散板15の面に沿って水平方向に拡がる。分散板15によって水平方向に拡がった処理液は、パンチングプレート17に到達して複数の処理液孔17aを通過し、その処理液孔17aから上昇して上方へと向かう層流を内槽11内に形成する。内槽11の上端にまで到達した処理液は外槽12にオーバーフローして流れ込む。 The processing liquid supplied to the nozzle 31 is discharged upward in the inner bath 11 from the nozzle 31 . The treatment liquid discharged from the nozzles 31 collides with the dispersion plate 15 and spreads horizontally along the surface of the dispersion plate 15 . The processing liquid spread in the horizontal direction by the dispersion plate 15 reaches the punching plate 17 and passes through the plurality of processing liquid holes 17a. to form. The processing liquid that has reached the upper end of the inner bath 11 overflows and flows into the outer bath 12 .
 処理槽10内に上昇する処理液の層流が形成されている状態で基板Wの積層体が処理液中に浸漬される(ステップS6)。具体的には、基板Wの積層体を受け取った第1リフタ126が処理槽10上方の引き上げ位置から下降し、基板Wの積層体を処理槽10内の浸漬位置に下降させて処理液中に基板Wを浸漬させる。 The stack of substrates W is immersed in the treatment liquid while a laminar flow of the treatment liquid is formed in the treatment bath 10 (step S6). Specifically, the first lifter 126 that has received the stacked body of substrates W descends from the lifting position above the processing tank 10, lowers the stacked body of substrates W to the immersion position in the processing tank 10, and immerses the stacked body in the processing liquid. The substrate W is immersed.
 処理槽10内に処理液の層流が形成されている状態で第1リフタ126によって基板Wの積層体が浸漬位置に保持されることにより、基板Wと基板Wとの間を処理液の層流が流れて基板Wの表面が処理液に曝されることとなり、基板Wの表面処理(本実施形態ではエッチング処理)が進行する(ステップS7)。 The first lifter 126 holds the stack of substrates W at the immersion position in a state in which a laminar flow of the processing liquid is formed in the processing tank 10 , thereby forming a layer of the processing liquid between the substrates W. As the current flows, the surface of the substrate W is exposed to the processing liquid, and the surface processing (etching processing in this embodiment) of the substrate W proceeds (step S7).
 また、気泡供給部50は、気泡供給管51から処理槽10内の処理液中に気泡を供給する。分散板15およびパンチングプレート17によって形成される処理液の層流の流速は比較的低速なのであるが、供給された気泡が基板Wの表面に沿って処理液中を上昇することにより、処理液の流速が速くなる。基板Wの表面近傍における処理液の流速が速くなることにより、基板Wの表面処理効率が向上してエッチングレートを高めることが可能となる。 Also, the bubble supply unit 50 supplies bubbles from the bubble supply pipe 51 into the processing liquid in the processing tank 10 . The flow velocity of the laminar flow of the processing liquid formed by the dispersion plate 15 and the punching plate 17 is relatively low. flow speed increases. By increasing the flow velocity of the processing liquid in the vicinity of the surface of the substrate W, the surface processing efficiency of the substrate W can be improved and the etching rate can be increased.
 第1実施形態においては、複数の基板Wのそれぞれの表面側に存在する空間の幅が一定(1スロット)となるように、ダミー基板DWが挿入されている。従って、複数の基板Wの全てについて表面側に存在する空間の幅が等しくなる。その結果、複数の基板Wの全てについて表面近傍における処理液の流れおよび気泡の挙動が均一となり、複数の基板Wの全てに対して均一な処理を行うことができる。 In the first embodiment, the dummy substrate DW is inserted so that the width of the space existing on the surface side of each of the plurality of substrates W is constant (one slot). Therefore, the width of the space existing on the front surface side of all of the plurality of substrates W becomes equal. As a result, the flow of the processing liquid and the behavior of air bubbles in the vicinity of the surface of all of the substrates W become uniform, so that all of the substrates W can be uniformly processed.
 所定時間のエッチング処理が終了した後、第1リフタ126が基板Wの積層体を第1薬液槽121から引き上げて第1リンス槽122に移送する。第1リンス槽122では、複数の基板Wに対するリンス処理が行われる。その後、主搬送ロボット130が基板Wの積層体を乾燥処理部125に搬送し、複数の基板Wの乾燥処理が行われる。乾燥処理の後、基板Wの積層体は、主搬送ロボット130から水平搬送機構170に渡され、さらに移載機構160を介して搬出入機構140に渡される。そして、搬出入機構140が複数の基板Wをキャリア111に収納して基板Wが搬出される(ステップS8)。 After the etching process for a predetermined time is completed, the first lifter 126 lifts the stack of substrates W from the first chemical bath 121 and transfers it to the first rinse bath 122 . A plurality of substrates W are rinsed in the first rinse bath 122 . After that, the main transport robot 130 transports the stack of substrates W to the drying processing section 125, and the plurality of substrates W are dried. After the drying process, the stack of substrates W is transferred from the main transfer robot 130 to the horizontal transfer mechanism 170 and further transferred to the carry-in/out mechanism 140 via the transfer mechanism 160 . Then, the loading/unloading mechanism 140 accommodates the plurality of substrates W in the carrier 111, and the substrates W are unloaded (step S8).
 図9は、第1実施形態におけるダミー基板挿入の他の例を概念的に説明するための図である。図8の例では、全ての基板Wの表面の向きが同じであったが、図9の例では、隣り合う2枚の基板Wが一対となり、それら2枚の基板Wの表面が相対向するように積層配列されている。 FIG. 9 is a diagram for conceptually explaining another example of dummy substrate insertion in the first embodiment. In the example of FIG. 8, all the substrates W have the same surface orientation, but in the example of FIG. 9, two adjacent substrates W form a pair, and the surfaces of the two substrates W face each other. are stacked and arranged as follows.
 図9に示す例においても、基本的には基板Wの表面側に存在する空間の幅は1スロットである。しかし、基板W21と対をなす基板Wおよび基板W22と対をなす基板Wが抜けている。このような基板Wの抜けが生じることによって、基板W21および基板W22の表面側に存在する空間の幅は2スロットとなる。すなわち、基板Wの表面側に存在する空間の幅が不均一となっている。 Also in the example shown in FIG. 9, the width of the space existing on the surface side of the substrate W is basically one slot. However, the substrate W paired with the substrate W21 and the substrate W paired with the substrate W22 are missing. Due to the occurrence of such an omission of the substrate W, the width of the space existing on the surface side of the substrate W21 and the substrate W22 becomes two slots. That is, the width of the space existing on the front surface side of the substrate W is non-uniform.
 このため、図9に示す例では、基板W21の表面に対向してその表面から1スロット隔てたスロットD、および、基板W22の表面に対向してその表面から1スロット隔てたスロットEがダミー基板DWの挿入位置として特定され、スロットDおよびスロットEにダミー基板DWが挿入される。このようにしても、複数の基板Wの全てについて表面側に存在する空間の幅が等しくなり、複数の基板Wの全てに対して均一な処理を行うことができる。 Therefore, in the example shown in FIG. 9, a slot D facing the surface of the substrate W21 and separated by one slot from the surface, and a slot E facing the surface of the substrate W22 and separated by one slot from the surface are dummy substrates. Dummy substrates DW are inserted into slots D and E, which are specified as DW insertion positions. Even in this manner, the width of the space existing on the front surface side of all of the plurality of substrates W becomes equal, so that all of the plurality of substrates W can be uniformly processed.
 要するに、第1実施形態においては、表面側に存在する空間の幅が1スロットよりも広い基板Wの表面にダミー基板DWが対向配置されるように、ダミー基板DWの挿入位置が特定される。その結果として複数の基板Wのそれぞれの表面側に存在する空間の幅が一定(1スロット)となる。これにより、複数の基板Wの全てについて表面近傍における処理液の流れおよび気泡の挙動等が均一となり、複数の基板Wの全てに対して均一な処理を行うことができるのである。 In short, in the first embodiment, the insertion position of the dummy substrate DW is specified so that the dummy substrate DW is arranged opposite to the surface of the substrate W whose width of the space existing on the surface side is wider than one slot. As a result, the width of the space existing on the surface side of each of the plurality of substrates W becomes constant (one slot). As a result, the flow of the processing liquid and the behavior of air bubbles in the vicinity of the surface of all of the substrates W become uniform, so that all of the substrates W can be uniformly processed.
  <第2実施形態>
 次に、本発明の第2実施形態について説明する。第2実施形態の基板処理装置の構成は第1実施形態と同じである。また、第2実施形態の基板処理装置における処理手順も第1実施形態と同様である。第2実施形態が第1実施形態と相違するのは、ダミー基板DWを挿入する態様である。
<Second embodiment>
Next, a second embodiment of the invention will be described. The configuration of the substrate processing apparatus of the second embodiment is the same as that of the first embodiment. The processing procedure in the substrate processing apparatus of the second embodiment is also the same as that of the first embodiment. The difference between the second embodiment and the first embodiment is the manner in which the dummy substrate DW is inserted.
 図10は、第2実施形態におけるダミー基板挿入の一例を概念的に説明するための図である。第1実施形態では基本的には全てのスロットに対して順次に基板Wが保持されていたが、第2実施形態においては隣り合う基板Wの基本間隔が複数スロット(図10の例では4スロット)である。すなわち、第2実施形態の基板Wの積層配列においては、基本的には4スロット毎に基板Wが保持されている。但し、基板W31の表面から4スロット隔てたスロットFの位置にあるべき基板Wが1枚抜けている。 FIG. 10 is a diagram for conceptually explaining an example of dummy substrate insertion in the second embodiment. In the first embodiment, basically, the substrates W are sequentially held in all the slots. ). That is, in the stacking arrangement of the substrates W of the second embodiment, the substrates W are basically held every four slots. However, one substrate W that should be located at the position of the slot F, which is four slots away from the surface of the substrate W31, is missing.
 このような基板Wの抜けが生じることによって、基板W31と基板W32との間隔が他の隣り合う基板Wの間隔よりも広くなって基板間隔が不均一となる。このため、第2実施形態においては、複数の基板Wのそれぞれとダミー基板DWとが等間隔で配置されるようにダミー基板DWを挿入する位置が特定される。具体的には、基板W31の表面から4スロット隔てたスロットFがダミー基板DWの挿入位置として特定され、スロットFにダミー基板DWが挿入される。これにより、複数の基板Wのそれぞれとダミー基板DWとは4スロット間隔で配置されることとなる。第2実施形態のようにしても、複数の基板Wのそれぞれの表面側に存在する空間の幅が一定となるようにダミー基板DWの挿入位置が特定されることとなる。 Due to the occurrence of such a missing substrate W, the gap between the substrate W31 and the substrate W32 becomes wider than the gap between the other adjacent substrates W, resulting in non-uniform substrate gaps. Therefore, in the second embodiment, the positions for inserting the dummy substrates DW are specified so that each of the plurality of substrates W and the dummy substrates DW are arranged at equal intervals. Specifically, a slot F that is four slots away from the surface of the substrate W31 is specified as the insertion position of the dummy substrate DW, and the dummy substrate DW is inserted into the slot F. As a result, each of the plurality of substrates W and the dummy substrate DW are arranged at intervals of 4 slots. Even in the second embodiment, the insertion position of the dummy substrate DW is specified so that the width of the space existing on the surface side of each of the plurality of substrates W is constant.
 第2実施形態においては、複数の基板Wのそれぞれとダミー基板DWとが等間隔で配置されるように、ダミー基板DWの挿入位置が特定される。その結果として複数の基板Wのそれぞれの表面側に存在する空間の幅が一定(4スロット)となる。これにより、第1実施形態と同様に、複数の基板Wの全てについて表面近傍における処理液の流れおよび気泡の挙動等が均一となり、複数の基板Wの全てに対して均一な処理を行うことができるのである。 In the second embodiment, the insertion positions of the dummy substrates DW are specified so that each of the plurality of substrates W and the dummy substrates DW are arranged at equal intervals. As a result, the width of the space existing on the surface side of each of the plurality of substrates W becomes constant (four slots). As a result, as in the first embodiment, the flow of the processing liquid and the behavior of bubbles in the vicinity of the surface of all of the plurality of substrates W become uniform, and uniform processing can be performed on all of the plurality of substrates W. You can.
  <第3実施形態>
 次に、本発明の第3実施形態について説明する。第3実施形態の基板処理装置の全体構成は第1実施形態と概ね同じである。また、第3実施形態の基板処理装置における処理内容も第1実施形態と概ね同様である。第3実施形態においては、基板処理装置の構造物の一部をダミー基板DWの代わりに用いている。
<Third Embodiment>
Next, a third embodiment of the invention will be described. The overall configuration of the substrate processing apparatus of the third embodiment is substantially the same as that of the first embodiment. Further, the contents of processing in the substrate processing apparatus of the third embodiment are also substantially the same as those of the first embodiment. In the third embodiment, part of the structure of the substrate processing apparatus is used instead of the dummy substrate DW.
 図11は、第3実施形態の第1リフタ126(または第2リフタ127)の背板222を示す図である。第3実施形態の背板222の一部には円形板223が形成されている。円形板223は、基板Wと同じ直径の円形に形成されている。リフタの背板222を除く残余の基板処理装置の構成は第1実施形態と同様である。 FIG. 11 is a diagram showing the back plate 222 of the first lifter 126 (or the second lifter 127) of the third embodiment. A circular plate 223 is formed on a part of the back plate 222 of the third embodiment. The circular plate 223 is formed in a circular shape with the same diameter as the substrate W. The configuration of the rest of the substrate processing apparatus except for the back plate 222 of the lifter is the same as that of the first embodiment.
 図12は、第3実施形態の第1リフタ126に複数の基板Wが保持された状態を示す図である。図12に示す例においては、複数の基板Wが等間隔(1スロット間隔)で第1リフタ126の保持棒21に保持されている。すなわち、ほとんどの基板Wの表面側には1スロット隔てて隣り合う基板Wが保持されている。但し、複数の基板Wの積層配列における最端部の基板W41については表面側に隣り合う基板Wが存在しない。 FIG. 12 is a diagram showing a state in which a plurality of substrates W are held by the first lifter 126 of the third embodiment. In the example shown in FIG. 12, a plurality of substrates W are held by the holding rods 21 of the first lifter 126 at regular intervals (1-slot intervals). That is, most of the substrates W are held adjacent to each other with a one-slot spacing on the front surface side. However, there is no adjacent substrate W on the surface side of the substrate W41 at the extreme end in the stacked arrangement of the plurality of substrates W. As shown in FIG.
 このため、第3実施形態においては、背板222の一部に基板Wと同じ形状およびサイズの円形板223を形成している。そして、最端部の基板W41と円形板223とが対向するように、具体的には基板W41と円形板223との間隔が他の隣り合う基板Wの間隔と同じ(1スロット分)となるように、複数の基板Wを保持している。これにより、複数の基板Wの全てについて表面側に存在する空間の幅が等しくなる。 Therefore, in the third embodiment, a circular plate 223 having the same shape and size as the substrate W is formed on part of the back plate 222 . Then, the substrate W41 at the farthest end and the circular plate 223 face each other, specifically, the interval between the substrate W41 and the circular plate 223 is the same as the interval between the other adjacent substrates W (one slot). , a plurality of substrates W are held. As a result, the widths of the spaces existing on the surface side of all of the plurality of substrates W become equal.
 第3実施形態においては、複数の基板Wのそれぞれの表面側に存在する空間の幅が一定(1スロット)となるように対向板を配置した状態で複数の基板Wを第1リフタ126に保持している。ここでの対向板は、基板処理装置の構造物の一部である円形板223である。第3実施形態のようにしても、複数の基板Wの全てについて表面側に存在する空間の幅が等しくなるため、複数の基板Wの全てについて表面近傍における処理液の流れおよび気泡の挙動等が均一となり、複数の基板Wの全てに対して均一な処理を行うことができる。 In the third embodiment, the plurality of substrates W are held by the first lifter 126 in a state in which the opposing plate is arranged such that the width of the space existing on the surface side of each of the plurality of substrates W is constant (one slot). are doing. The opposing plate here is a circular plate 223 which is part of the structure of the substrate processing apparatus. Even in the case of the third embodiment, since the width of the space existing on the surface side of all of the plurality of substrates W is the same, the flow of the processing liquid and the behavior of bubbles in the vicinity of the surface of all of the plurality of substrates W are different. All of the plurality of substrates W can be uniformly processed.
  <変形例>
 以上、本発明の実施の形態について説明したが、この発明はその趣旨を逸脱しない限りにおいて上述したもの以外に種々の変更を行うことが可能である。例えば、上記各実施形態においては、複数の基板Wが規則的に配列されていたが、複数の基板Wが不規則に配列されていても本発明に係る技術を適用することができる。図13は、ダミー基板挿入の他の例を概念的に説明するための図である。図13の例では、複数の基板Wが不規則な間隔で積層配列されている。複数の基板Wが不規則に配列されているため、第2実施形態のように複数の基板Wのそれぞれとダミー基板DWとを等間隔で配置することは不可能である。このため、図13に示す例では、全ての基板Wの表面に対向してその表面から1スロット隔てたスロットがダミー基板DWの挿入位置として特定される。このようにしても、複数の基板Wの全ての表面にダミー基板DWが対向配置されることとなり、複数の基板Wのそれぞれの表面側に存在する空間の幅が一定(1スロット)となる。その結果、複数の基板Wの全てについて表面近傍における処理液の流れおよび気泡の挙動等が均一となり、複数の基板Wの全てに対して均一な処理を行うことができる。
<Modification>
Although the embodiments of the present invention have been described above, the present invention can be modified in various ways other than those described above without departing from the scope of the invention. For example, in each of the embodiments described above, the plurality of substrates W are arranged regularly, but the technology according to the present invention can be applied even if the plurality of substrates W are arranged irregularly. FIG. 13 is a diagram for conceptually explaining another example of dummy substrate insertion. In the example of FIG. 13, a plurality of substrates W are stacked and arranged at irregular intervals. Since the plurality of substrates W are arranged irregularly, it is impossible to arrange each of the plurality of substrates W and the dummy substrates DW at equal intervals as in the second embodiment. For this reason, in the example shown in FIG. 13, the slot facing the surface of all the substrates W and separated by one slot from the surface is specified as the insertion position of the dummy substrate DW. Even in this way, the dummy substrates DW are arranged to face all the surfaces of the plurality of substrates W, and the width of the space existing on the surface side of each of the plurality of substrates W becomes constant (one slot). As a result, the flow of the processing liquid and the behavior of air bubbles in the vicinity of the surface of all of the substrates W become uniform, so that all of the substrates W can be uniformly processed.
 また、第2実施形態においては、複数の基板Wのそれぞれとダミー基板DWとが等間隔で配置されるようにしていたが、これに代えて複数の基板Wのそれぞれの表面にダミー基板DWを対向配置するようにしても良い。図14は、ダミー基板挿入の他の例を概念的に説明するための図である。図14の基板Wの積層配列は、第2実施形態の基板Wの積層配列(図10)と同じである。図10では複数の基板Wのそれぞれとダミー基板DWとが等間隔で配置されるようにダミー基板DWを挿入していたが、図14に示す例では、全ての基板Wの表面に対向してその表面から1スロット隔てたスロットがダミー基板DWの挿入位置として特定される。このようにしても、複数の基板Wの全ての表面にダミー基板DWが対向配置されることとなり、複数の基板Wのそれぞれの表面側に存在する空間の幅が一定(1スロット)となる。その結果、第2実施形態と同様に、複数の基板Wの全てについて表面近傍における処理液の流れおよび気泡の挙動等が均一となり、複数の基板Wの全てに対して均一な処理を行うことができる。 In addition, in the second embodiment, each of the plurality of substrates W and the dummy substrate DW are arranged at regular intervals. They may be arranged facing each other. FIG. 14 is a diagram for conceptually explaining another example of dummy substrate insertion. The stacking arrangement of the substrates W in FIG. 14 is the same as the stacking arrangement of the substrates W in the second embodiment (FIG. 10). In FIG. 10, the dummy substrates DW are inserted so that each of the plurality of substrates W and the dummy substrates DW are arranged at equal intervals, but in the example shown in FIG. A slot separated by one slot from the surface is specified as the insertion position of the dummy substrate DW. Even in this way, the dummy substrates DW are arranged to face all the surfaces of the plurality of substrates W, and the width of the space existing on the surface side of each of the plurality of substrates W becomes constant (one slot). As a result, as in the second embodiment, the flow of the processing liquid and the behavior of bubbles in the vicinity of the surface of all of the plurality of substrates W become uniform, and uniform processing can be performed on all of the plurality of substrates W. can.
 また、第3実施形態において、第1,2実施形態と同様に、複数の基板Wの並びに対してダミー基板DWを挿入するようにしても良い。この場合、円形板223に加えてダミー基板DWも対向板として機能することとなる。すなわち、「対向板」とは、基板処理装置の構造物の一部である円形板223およびダミー基板DWの双方を含む概念の用語である。そして、複数の基板Wのそれぞれの表面側に存在する空間の幅が一定となるように対向板を配置した状態で複数の基板Wを第1リフタ126に保持することにより、複数の基板Wの全てについて表面側に存在する空間の幅が等しくなる。その結果、複数の基板Wの全てについて表面近傍における処理液の流れおよび気泡の挙動等が均一となり、複数の基板Wの全てに対して均一な処理を行うことができる。 Also, in the third embodiment, as in the first and second embodiments, dummy substrates DW may be inserted into the row of a plurality of substrates W. In this case, in addition to the circular plate 223, the dummy substrate DW also functions as a counter plate. That is, the term “opposing plate” is a conceptual term that includes both the circular plate 223 and the dummy substrate DW, which are part of the structure of the substrate processing apparatus. By holding the plurality of substrates W on the first lifter 126 in a state where the opposing plate is arranged so that the width of the space existing on the surface side of each of the plurality of substrates W is constant, the plurality of substrates W can be separated. The width of the space existing on the surface side becomes equal for all. As a result, the flow of the processing liquid and the behavior of air bubbles in the vicinity of the surface of all of the substrates W become uniform, so that all of the substrates W can be uniformly processed.
 また、第2実施形態においては、4スロット間隔で複数の基板Wが配列されていたが、これに限定されるものではなく、他の間隔、例えば2スロット間隔で複数の基板Wが配列されていても良い。このような例は、25枚のロットを処理する場合に対応している。2スロット間隔で複数の基板Wが配列されている場合であっても、第2実施形態と同様に、複数の基板Wのそれぞれとダミー基板DWとが等間隔で配置されるようにダミー基板DWを挿入すれば、複数の基板Wのそれぞれの表面側に存在する空間の幅が一定(2スロット)となる。或いは、全ての基板Wの表面に対向してその表面から1スロット隔てたスロットにダミー基板DWを挿入するようにしても良い。このようにすれば、複数の基板Wの全ての表面にダミー基板DWが対向配置されることとなり、複数の基板Wのそれぞれの表面側に存在する空間の幅が一定(1スロット)となる。いずれの手法であっても、複数の基板Wの全てについて表面近傍における処理液の流れおよび気泡の挙動等が均一となり、複数の基板Wの全てに対して均一な処理を行うことができる。 In addition, in the second embodiment, the plurality of substrates W are arranged at intervals of 4 slots, but the present invention is not limited to this, and the plurality of substrates W may be arranged at other intervals, for example, at intervals of 2 slots. can be Such an example corresponds to processing a lot of 25 sheets. Even when a plurality of substrates W are arranged at two-slot intervals, the dummy substrates DW are arranged such that each of the plurality of substrates W and the dummy substrates DW are arranged at equal intervals, as in the second embodiment. , the width of the space existing on the surface side of each of the plurality of substrates W becomes constant (two slots). Alternatively, dummy substrates DW may be inserted into slots facing the surfaces of all substrates W and separated from the surfaces by one slot. In this way, the dummy substrates DW are arranged to face all the surfaces of the plurality of substrates W, and the width of the space existing on the surface side of each of the plurality of substrates W becomes constant (one slot). In either method, the flow of the processing liquid and the behavior of air bubbles in the vicinity of the surface of all of the substrates W become uniform, so that all of the substrates W can be uniformly processed.
 また、上記各実施形態においては要するに必要なスロットのみにダミー基板DWを挿入するようにしていたが、空いている全てのスロットにダミー基板DWを挿入するようにしても良い。このようにしても、複数の基板Wのそれぞれの表面側に存在する空間の幅が確実に一定(1スロット)となる。その結果、複数の基板Wの全てについて表面近傍における処理液の流れおよび気泡の挙動等が均一となり、複数の基板Wの全てに対して均一な処理を行うことができる。 Also, in each of the above-described embodiments, the dummy substrates DW were inserted only in the necessary slots, but the dummy substrates DW may be inserted in all the empty slots. Even in this way, the width of the space existing on the surface side of each of the plurality of substrates W is surely constant (one slot). As a result, the flow of the processing liquid and the behavior of air bubbles in the vicinity of the surface of all of the substrates W become uniform, so that all of the substrates W can be uniformly processed.
 また、上記各実施形態において、気泡の供給は必須ではない。気泡を供給しない場合であっても、複数の基板Wのそれぞれの表面側に存在する空間の幅を一定にすることにより、複数の基板Wの全てについて表面近傍における処理液の流れが均一となり、複数の基板Wの全てに対して均一な処理を行うことができる。 Also, in each of the above embodiments, the supply of air bubbles is not essential. Even if bubbles are not supplied, the width of the space existing on the surface side of each of the plurality of substrates W is made constant, so that the processing liquid flows uniformly in the vicinity of the surface of each of the plurality of substrates W. All of the plurality of substrates W can be uniformly processed.
 10 処理槽
 30 処理液供給部
 50 気泡供給部
 70 制御部
 100 基板処理装置
 110 ロードポート
 111 キャリア
 112 センサ
 120 基板処理部
 121 第1薬液槽
 122 第1リンス槽
 123 第2薬液槽
 124 第2リンス槽
 125 乾燥処理部
 126 第1リフタ
 127 第2リフタ
 130 主搬送ロボット
 140 搬出入機構
 150 枚葉ハンド
 160 移載機構
 170 水平搬送機構
 DW ダミー基板
 W 基板
REFERENCE SIGNS LIST 10 treatment tank 30 treatment liquid supply section 50 bubble supply section 70 control section 100 substrate processing apparatus 110 load port 111 carrier 112 sensor 120 substrate processing section 121 first chemical tank 122 first rinse tank 123 second chemical tank 124 second rinse tank 125 Drying processing unit 126 First lifter 127 Second lifter 130 Main transfer robot 140 Loading/unloading mechanism 150 Sheet-fed hand 160 Transfer mechanism 170 Horizontal transfer mechanism DW Dummy substrate W Substrate

Claims (12)

  1.  複数の基板に対して処理液による表面処理を行う基板処理方法であって、
     複数の基板の配列状態を検出する検出工程と、
     前記検出工程にて検出された前記複数の基板の配列状態に基づいて、前記複数の基板の並びに対してダミー基板を挿入する位置を特定する特定工程と、
     前記特定工程にて特定された位置にダミー基板を挿入した前記複数の基板を処理槽に貯留された処理液中に浸漬して前記複数の基板の表面処理を行う処理工程と、
    を備え、
     前記特定工程では、前記複数の基板のそれぞれの表面側に存在する空間の幅が一定となるようにダミー基板を挿入する位置を特定する基板処理方法。
    A substrate processing method for surface-treating a plurality of substrates with a processing liquid, comprising:
    a detection step of detecting an arrangement state of a plurality of substrates;
    a specifying step of specifying a position into which a dummy substrate is to be inserted with respect to the arrangement of the plurality of substrates based on the arrangement state of the plurality of substrates detected in the detecting step;
    a processing step of performing a surface treatment on the plurality of substrates by immersing the plurality of substrates with the dummy substrates inserted in the positions specified in the specifying step in a processing liquid stored in a processing tank;
    with
    In the specifying step, the substrate processing method specifies a position into which the dummy substrate is to be inserted so that the width of the space existing on the surface side of each of the plurality of substrates is constant.
  2.  請求項1記載の基板処理方法において、
     前記検出工程は、
     前記複数の基板のそれぞれの向きを検知する工程と、
     前記複数の基板の配列間隔を検出する工程と、
    を含む基板処理方法。
    In the substrate processing method according to claim 1,
    The detection step includes
    detecting the orientation of each of the plurality of substrates;
    a step of detecting an arrangement interval of the plurality of substrates;
    A substrate processing method comprising:
  3.  請求項1または請求項2記載の基板処理方法において、
     前記特定工程では、前記複数の基板のいずれかの表面にダミー基板が対向配置されるようにダミー基板を挿入する位置を特定する基板処理方法。
    In the substrate processing method according to claim 1 or claim 2,
    In the specifying step, the substrate processing method specifies a position where the dummy substrate is to be inserted so that the dummy substrate is arranged to face one of the surfaces of the plurality of substrates.
  4.  請求項1または請求項2記載の基板処理方法において、
     前記特定工程では、前記複数の基板のそれぞれとダミー基板とが等間隔で配置されるようにダミー基板を挿入する位置を特定する基板処理方法。
    In the substrate processing method according to claim 1 or claim 2,
    In the specifying step, the substrate processing method specifies a position into which the dummy substrate is inserted so that each of the plurality of substrates and the dummy substrate are arranged at equal intervals.
  5.  請求項1から請求項4のいずれかに記載の基板処理方法において、
     前記処理工程は、
     前記処理槽内に処理液の流れを形成する工程と、
     前記処理槽に貯留された処理液中に気泡を供給する工程と、
    を含む基板処理方法。
    In the substrate processing method according to any one of claims 1 to 4,
    The processing step includes
    forming a flow of processing liquid in the processing bath;
    a step of supplying air bubbles into the processing liquid stored in the processing tank;
    A substrate processing method comprising:
  6.  複数の基板に対して処理液による表面処理を行う基板処理方法であって、
     複数の基板のそれぞれの表面側に存在する空間の幅が一定となるように対向板を前記複数の基板に対して配置した状態で前記複数の基板をリフタに保持する保持工程と、
     前記リフタを昇降させて前記複数の基板を処理槽に貯留された処理液中に浸漬させて前記複数の基板の表面処理を行う処理工程と、
    を備える基板処理方法。
    A substrate processing method for surface-treating a plurality of substrates with a processing liquid, comprising:
    a holding step of holding the plurality of substrates by a lifter in a state in which the opposing plate is arranged with respect to the plurality of substrates so that the width of the space existing on the surface side of each of the plurality of substrates is constant;
    a treatment step of performing surface treatment on the plurality of substrates by elevating the lifter to immerse the plurality of substrates in a treatment liquid stored in a treatment tank;
    A substrate processing method comprising:
  7.  請求項6記載の基板処理方法において、
     前記対向板は、前記リフタに設けられた円形の背板を含む基板処理方法。
    In the substrate processing method according to claim 6,
    The substrate processing method, wherein the counter plate includes a circular back plate provided on the lifter.
  8.  請求項6または請求項7記載の基板処理方法において、
     前記処理工程は、
     前記処理槽内に処理液の流れを形成する工程と、
     前記処理槽に貯留された処理液中に気泡を供給する工程と、
    を含む基板処理方法。
    In the substrate processing method according to claim 6 or claim 7,
    The processing step includes
    forming a flow of processing liquid in the processing bath;
    a step of supplying air bubbles into the processing liquid stored in the processing tank;
    A substrate processing method comprising:
  9.  複数の基板に対して処理液による表面処理を行う基板処理装置であって、
     処理液を貯留する処理槽と、
     前記処理槽内に処理液を供給する処理液供給部と、
     複数の基板を保持して昇降し、前記処理槽に貯留された処理液中に前記複数の基板を浸漬するリフタと、
    を備え、
     前記リフタは、前記複数の基板のそれぞれの表面側に存在する空間の幅が一定となるように対向板を前記複数の基板に対して配置した状態で前記複数の基板を保持する基板処理装置。
    A substrate processing apparatus for surface-treating a plurality of substrates with a processing liquid,
    a processing tank for storing the processing liquid;
    a processing liquid supply unit that supplies a processing liquid into the processing tank;
    a lifter that holds a plurality of substrates and moves up and down to immerse the plurality of substrates in the processing liquid stored in the processing tank;
    with
    The substrate processing apparatus according to claim 1, wherein the lifter holds the plurality of substrates in a state in which the counter plate is arranged with respect to the plurality of substrates so that the width of the space existing on the surface side of each of the plurality of substrates is constant.
  10.  請求項9記載の基板処理装置において、
     前記対向板は、前記リフタに設けられた円形の背板を含む基板処理装置。
    In the substrate processing apparatus according to claim 9,
    The substrate processing apparatus, wherein the counter plate includes a circular back plate provided on the lifter.
  11.  請求項9または請求項10記載の基板処理装置において、
     前記対向板は、ダミー基板を含む基板処理装置。
    In the substrate processing apparatus according to claim 9 or 10,
    The substrate processing apparatus, wherein the opposing plate includes a dummy substrate.
  12.  請求項9から請求項11のいずれかに記載の基板処理装置において、
     前記処理槽に貯留された処理液に気泡を供給する気泡供給部をさらに備える基板処理装置。
    In the substrate processing apparatus according to any one of claims 9 to 11,
    A substrate processing apparatus further comprising a bubble supply unit that supplies bubbles to the processing liquid stored in the processing bath.
PCT/JP2022/041192 2022-02-22 2022-11-04 Substrate treatment method and substrate treatment device WO2023162355A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022025974A JP2023122329A (en) 2022-02-22 2022-02-22 Method for processing substrate and substrate processor
JP2022-025974 2022-02-22

Publications (1)

Publication Number Publication Date
WO2023162355A1 true WO2023162355A1 (en) 2023-08-31

Family

ID=87765453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/041192 WO2023162355A1 (en) 2022-02-22 2022-11-04 Substrate treatment method and substrate treatment device

Country Status (3)

Country Link
JP (1) JP2023122329A (en)
TW (1) TW202335118A (en)
WO (1) WO2023162355A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260893A (en) * 1998-03-13 1999-09-24 Sumitomo Heavy Ind Ltd Apparatus for detecting work housed in cassette
JP2005244162A (en) * 2004-01-30 2005-09-08 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
JP2005244130A (en) * 2004-02-27 2005-09-08 Ses Co Ltd Method and apparatus for processing substrate
JP2007251026A (en) * 2006-03-17 2007-09-27 Tokyo Electron Ltd Substrate processing apparatus, substrate processing method, and substrate processing program
JP2017069529A (en) * 2015-09-30 2017-04-06 東京エレクトロン株式会社 Substrate liquid processing device and substrate liquid processing method
US20200006050A1 (en) * 2018-06-29 2020-01-02 Taiwan Semiconductor Manufacturing Co., Ltd. Orientation chamber of substrate processing system with purging function

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260893A (en) * 1998-03-13 1999-09-24 Sumitomo Heavy Ind Ltd Apparatus for detecting work housed in cassette
JP2005244162A (en) * 2004-01-30 2005-09-08 Dainippon Screen Mfg Co Ltd Substrate processing apparatus
JP2005244130A (en) * 2004-02-27 2005-09-08 Ses Co Ltd Method and apparatus for processing substrate
JP2007251026A (en) * 2006-03-17 2007-09-27 Tokyo Electron Ltd Substrate processing apparatus, substrate processing method, and substrate processing program
JP2017069529A (en) * 2015-09-30 2017-04-06 東京エレクトロン株式会社 Substrate liquid processing device and substrate liquid processing method
US20200006050A1 (en) * 2018-06-29 2020-01-02 Taiwan Semiconductor Manufacturing Co., Ltd. Orientation chamber of substrate processing system with purging function

Also Published As

Publication number Publication date
JP2023122329A (en) 2023-09-01
TW202335118A (en) 2023-09-01

Similar Documents

Publication Publication Date Title
JP7064905B2 (en) Board processing method and board processing equipment
JP2023155279A (en) Substrate processing system and substrate processing method
KR102009597B1 (en) Substrate processing apparatus and substrate processing method
US20160035601A1 (en) Bake unit, substrate treating apparatus including the unit, and substrate treating method
KR101736854B1 (en) Substrate treating apparatus
KR102544412B1 (en) Substrate processing method and substrate processing apparatus
KR102182116B1 (en) Substrate processing method and substrate processing apparatus
TW202121566A (en) Substrate processing system, and substrate processing method
JP2022087065A (en) Apparatus for treating substrates
KR20190099518A (en) Substrate processing method and substrate processing apparatus
WO2023162355A1 (en) Substrate treatment method and substrate treatment device
JP2015092566A (en) Wafer entry port with gas concentration attenuators
CN109216180B (en) Substrate processing method and substrate processing apparatus
KR20170055141A (en) Substrate disposition apparatus and substrate disposition method
US20220051921A1 (en) Method for mask and substrate alignment
JP6823575B2 (en) Manufacturing method for substrate processing equipment, reaction tubes and semiconductor equipment
US20240030048A1 (en) Batch substrate treatment apparatus
US20240014050A1 (en) Batch substrate treatment apparatus
JP2024037214A (en) Substrate processing device and substrate processing method
KR20070000686A (en) Wafer lifting apparatus of semiconductor device manufacturing equipment
JP2024053261A (en) SUBSTRATE PROCESSING APPARATUS AND SUBSTRATE PROCESSING METHOD
US20160118309A1 (en) Minimal Contact Wet Processing Systems and Methods
KR20230125752A (en) Substrate processing system, substrate processing method, and recording medium
JP2022050234A (en) Substrate processing device and substrate processing method
KR20230135658A (en) Substrate processing method and substrate processing device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928873

Country of ref document: EP

Kind code of ref document: A1