WO2023162333A1 - Secondary battery and secondary battery module - Google Patents

Secondary battery and secondary battery module Download PDF

Info

Publication number
WO2023162333A1
WO2023162333A1 PCT/JP2022/039697 JP2022039697W WO2023162333A1 WO 2023162333 A1 WO2023162333 A1 WO 2023162333A1 JP 2022039697 W JP2022039697 W JP 2022039697W WO 2023162333 A1 WO2023162333 A1 WO 2023162333A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
negative electrode
case
shaped
box
Prior art date
Application number
PCT/JP2022/039697
Other languages
French (fr)
Japanese (ja)
Inventor
淳宣 松矢
Original Assignee
日本碍子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本碍子株式会社 filed Critical 日本碍子株式会社
Publication of WO2023162333A1 publication Critical patent/WO2023162333A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/04Construction or manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/28Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/24Alkaline accumulators
    • H01M10/30Nickel accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • H01M50/103Primary casings; Jackets or wrappings characterised by their shape or physical structure prismatic or rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/116Primary casings; Jackets or wrappings characterised by the material
    • H01M50/121Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/148Lids or covers characterised by their shape
    • H01M50/15Lids or covers characterised by their shape for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/147Lids or covers
    • H01M50/155Lids or covers characterised by the material
    • H01M50/16Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/218Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material
    • H01M50/22Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by the material of the casings or racks
    • H01M50/222Inorganic material
    • H01M50/224Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/233Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders characterised by physical properties of casings or racks, e.g. dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/30Arrangements for facilitating escape of gases
    • H01M50/342Non-re-sealable arrangements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to secondary batteries and secondary battery modules.
  • Alkaline secondary batteries such as nickel-zinc batteries, use an aqueous electrolyte such as an aqueous solution of potassium hydroxide, and are significantly safer than secondary batteries that use a non-aqueous electrolyte containing a flammable organic solvent. It is expensive.
  • aqueous electrolyte such as an aqueous solution of potassium hydroxide
  • Patent Document 1 (WO2021/024681) describes a laminated battery in which a plurality of unit cell elements having the structure of an alkaline secondary battery are laminated, and a resin box-shaped case in which the laminated battery is accommodated in the vertical direction. is disclosed, and it is proposed to provide a fragile portion with a reduced thickness in the lid portion of the box-shaped case with a predetermined thickness and area ratio. According to this configuration, when the internal pressure of the battery rises rapidly due to hydrogen combustion or the like, the fragile portion is preferentially and locally destroyed before the entire box-shaped case is destroyed. damage can be avoided, and as a result, safety can be improved.
  • Patent Document 1 also discloses an alkaline secondary battery module that includes a module case, which is a metal container with a lid, and a plurality of alkaline secondary batteries accommodated in the module case. ing.
  • Patent Document 1 Providing a box-shaped case with a weakened portion having a reduced thickness as disclosed in Patent Document 1 causes an increase in manufacturing cost. Therefore, it is desired to achieve the same function as the fragile portion at a lower manufacturing cost.
  • the present inventors have recently found that by providing the box-shaped case with a streak-shaped recess, the recess can function as a fragile portion that can be preferentially and locally destroyed when the internal pressure of the battery is excessively increased. As a result, the inventors have found that a secondary battery having a fragile portion can be provided at a lower cost.
  • an object of the present invention is to provide a secondary battery having a weak portion capable of coping with a rapid increase in battery internal pressure at a lower cost.
  • Aspect 1 an electrode laminate; an electrolyte; A box-shaped case made of resin that accommodates the electrode laminate and the electrolytic solution; A secondary battery comprising The box-shaped case has a streak-shaped recess, and the streak-shaped recess functions as a fragile portion that can be preferentially and locally destroyed when the internal pressure is excessively increased by the gas generated in the battery. , secondary battery.
  • Aspect 2 The secondary battery according to aspect 1, wherein the streaky concave portion is a weld line.
  • the box-shaped case has a bottom, a pair of long side walls parallel to the electrode laminate, a pair of short side walls perpendicular to the electrode laminate, and a lid, is provided in at least one of the short side wall portions, at least one of the long side wall portions, or the lid portion.
  • the secondary battery is an alkaline secondary battery, and the alkaline secondary battery is a nickel-zinc secondary battery.
  • the electrode laminate has a plurality of unit cells each including the positive electrode layer, the separator, and the negative electrode layer, whereby the plurality of unit cells form a multilayer cell as a whole. next battery.
  • a pressure release valve capable of releasing gas in the box-shaped case at a predetermined operating pressure or higher.
  • FIG. 1 is a perspective view schematically showing an example of a secondary battery according to the present invention
  • FIG. FIG. 2 is a top view schematically showing the positional relationship between the secondary battery and the side wall of the module shown in FIG. 1
  • 1 is a cross-sectional view schematically showing an example of the internal structure of a secondary battery according to the present invention
  • FIG. 4 is a diagram schematically showing a cross section of the secondary battery shown in FIG. 3 taken along line A-A'
  • FIG. FIG. 4 is a perspective view schematically showing an electrode laminate of the secondary battery shown in FIG. 3
  • FIG. 4 is a cross-sectional view schematically showing an electrode laminate of the secondary battery shown in FIG. 3
  • 1 is a schematic cross-sectional view showing an example of a secondary battery module according to the present invention
  • the present invention relates to secondary batteries.
  • the secondary battery in the present invention is preferably a nickel-hydrogen secondary battery, a lead-acid battery, or an alkaline secondary battery, more preferably an alkaline secondary battery.
  • the alkaline secondary battery is not particularly limited as long as it is a secondary battery using an alkaline electrolyte (typically an aqueous alkali metal hydroxide solution), but a zinc secondary battery using zinc as a negative electrode is preferred.
  • Examples of zinc secondary batteries include nickel-zinc secondary batteries, silver-zinc oxide secondary batteries, manganese-zinc oxide secondary batteries, and various other alkaline zinc secondary batteries.
  • Nickel-zinc secondary batteries are particularly preferred. be. Therefore, although the following description may refer to the construction of zinc secondary batteries such as nickel-zinc secondary batteries, the present invention is not limited to zinc secondary batteries.
  • the secondary battery 10 includes an electrode laminate 11 , an electrolytic solution 18 , and a box-shaped resin case 20 that accommodates the electrode laminate 11 and the electrolytic solution 18 .
  • the box-shaped case 20 accommodates the electrode laminate 11 and the electrolytic solution 18 .
  • the box-shaped case 20 has a streak-shaped recess 20a, and the streak-shaped recess 20a is a fragile portion that can be preferentially and locally destroyed when the internal pressure is excessively increased by the gas generated in the secondary battery 10.
  • the recess 20a can function as a fragile portion that can be preferentially and locally destroyed when the internal pressure of the battery is excessively increased. , a secondary battery having a fragile portion can be provided at a lower cost.
  • Patent Document 1 As described above, providing a box-shaped case with a weakened portion having a reduced thickness as disclosed in Patent Document 1 leads to an increase in manufacturing cost. That is, such a conventional fragile portion is formed, for example, by forming a depression-shaped rupture portion and a through hole in the lid portion, and fitting and welding a separately manufactured thin rupture plate to the rupture portion. , the formation and processing of the rupture portion, the fabrication of the rupture plate, and the fitting and welding of these members, which increase the manufacturing cost.
  • the box-shaped case 20 is provided with the streak-like recessed portion 20a by a very simple method, and the recessed portion 20a is opened when the internal pressure of the battery is excessively increased (for example, It can act as a preferentially locally destructible weakened portion (in the direction indicated by arrow B in FIG. 1). It is believed that the streak-like shape of the recessed portions 20a makes it easier to disperse the pressure when the recessed portions 20a are cleaved, and promotes preferential and local breakage. As a result, secondary battery 10 having a fragile portion can be provided at a lower cost.
  • streak-shaped concave portion 20a are not particularly limited as long as it can function as a fragile portion that can be preferentially and locally destroyed when the internal pressure of the battery is excessively increased.
  • a particularly preferable streaky recess 20a is a weld line.
  • a "weld line” is a general technical term in the field of injection molding, and is defined as a linear trace that appears at the junction of molten resins in a mold during injection molding.
  • the box-shaped case 20 is made of resin, by controlling the position of the inlet (gate) into which the resin is poured and the injection conditions when the box-shaped case 20 is injection molded, and by designing the rib structure of the outer surface of the box-shaped case 20, A weld line can be formed at the same desired position each time. Therefore, by utilizing the weld line as the streak-like concave portion 20a, the weak portion can be formed by an extremely simple and low-cost method.
  • the box-shaped case 20 (the case body and the lid portion 20e) produced by injection molding has a weld line, which is likely to cause breakage when the internal pressure rises.
  • the box-shaped case 20 typically includes a bottom portion 20b, a pair of long side walls 20c parallel to the electrode laminate 11, a pair of short side walls 20d perpendicular to the electrode laminate 11, and a lid. 20e.
  • the streak-like recess 20a is preferably provided in at least one of the short side walls 20d, at least one of the long side walls 20c, or the lid 20e, and particularly preferably in at least one of the short side walls 20d. be.
  • a method of reinforcing such a structure is not particularly limited, and the side wall may be thickened as shown in FIG. 2, or a reinforcing member may be provided on the side wall.
  • the electrode laminate 11 is a laminate including a plurality of electrode layers.
  • the electrode stack 11 includes a positive electrode layer 12, a negative electrode layer 14, and a separator 16 that separates the positive electrode layer 12 and the negative electrode layer 14 from each other. Therefore, the electrode laminate 11 can be said to be a battery element that functions as the secondary battery 10 when the electrolyte 18 is permeated.
  • the electrode laminate 11 includes a plurality of positive electrode layers 12, a plurality of negative electrode layers 14, and a plurality of separators 16, as shown in FIGS. It is preferably in the form of a positive/negative electrode laminate in which 14 units are stacked repeatedly.
  • the electrode laminate 11 preferably has a plurality of unit cells 10a each including the positive electrode layer 12, the separator 16, and the negative electrode layer 14, so that the plurality of unit cells 10a as a whole form a multi-layer cell.
  • This is a so-called assembled battery or laminated battery configuration, and is advantageous in that a high voltage and a large current can be obtained.
  • the positive electrode layer 12 may include a positive electrode active material layer.
  • the positive electrode active material constituting the positive electrode active material layer may be appropriately selected from known positive electrode materials according to the type of secondary battery, and is not particularly limited.
  • a positive electrode containing nickel hydroxide and/or nickel oxyhydroxide may be used.
  • the air electrode may be used as the positive electrode.
  • the cathode layer 12 may further include a cathode current collector (not shown).
  • the positive electrode current collector preferably has a positive electrode current collecting tab 12b that extends in a predetermined direction (eg, upward) from the end (eg, upper end) of the positive electrode layer 12 .
  • the positive electrode current collector include nickel porous substrates such as foamed nickel plates.
  • a positive electrode plate composed of a positive electrode/positive current collector can be preferably produced by uniformly applying a paste containing an electrode active material such as nickel hydroxide onto a nickel porous substrate and drying the paste.
  • the positive electrode layer 12 shown in FIG. 6 includes a positive electrode current collector (for example, nickel foam), it is not shown.
  • the positive electrode collector tab 12b may be made of the same material as the positive electrode collector, or may be made of a different material.
  • the positive electrode current collector is a nickel porous substrate such as a foamed nickel plate, it can be processed into a tab shape by pressing. In any case, such a tab may be supplemented with another current collecting member such as a tab lead to extend the positive electrode current collecting tab 12b.
  • a plurality of positive electrode current collecting tabs 12b are joined to one positive electrode terminal 26 or a member electrically connected thereto to form a positive electrode tab joining portion (not shown). By doing so, current collection can be performed with good space efficiency with a simple configuration, and connection to the positive electrode terminal 26 is also facilitated.
  • the positive electrode current collecting tab 12b and a member such as a terminal may be joined using a known joining method such as ultrasonic welding (ultrasonic joining), laser welding, TIG welding, or resistance welding.
  • the positive electrode layer 12 may contain at least one additive selected from the group consisting of silver compounds, manganese compounds, and titanium compounds. can promote Moreover, the positive electrode layer 12 may further contain cobalt. Cobalt is preferably contained in the positive electrode layer 12 in the form of cobalt oxyhydroxide. In the positive electrode layer 12, cobalt functions as a conductive aid, thereby contributing to an improvement in charge/discharge capacity.
  • the negative electrode layer 14 can include a negative electrode active material layer 14a.
  • the negative electrode active material forming the negative electrode active material layer 14a contains at least one selected from the group consisting of zinc, zinc oxide, zinc alloys and zinc compounds.
  • Zinc may be contained in any form of zinc metal, zinc compound, and zinc alloy as long as it has electrochemical activity suitable for the negative electrode.
  • Preferred examples of the negative electrode material include zinc oxide, zinc metal, calcium zincate, etc., and a mixture of zinc metal and zinc oxide is more preferred.
  • the negative electrode active material may be configured in a gel form, or may be mixed with the electrolytic solution 18 to form a negative electrode mixture.
  • a gelled negative electrode can be easily obtained by adding an electrolytic solution and a thickener to the negative electrode active material.
  • the thickener include polyvinyl alcohol, polyacrylate, CMC, alginic acid, etc.
  • Polyacrylic acid is preferable because of its excellent chemical resistance to strong alkali.
  • the zinc alloy it is possible to use a zinc alloy that does not contain mercury and lead, which is known as a zinc-free zinc alloy.
  • a zinc alloy containing 0.01 to 0.1% by mass of indium, 0.005 to 0.02% by mass of bismuth, and 0.0035 to 0.015% by mass of aluminum has the effect of suppressing hydrogen gas generation. Therefore, it is preferable.
  • Indium and bismuth are particularly advantageous in terms of improving discharge performance.
  • the use of a zinc alloy for the negative electrode slows down the rate of self-dissolution in an alkaline electrolyte, thereby suppressing the generation of hydrogen gas and improving safety.
  • the shape of the negative electrode material is not particularly limited, it is preferably powdered, which increases the surface area and enables high-current discharge.
  • the average particle size of the preferred negative electrode material is in the range of 3 to 100 ⁇ m in minor axis. It is easy to mix uniformly with the agent, and is easy to handle during battery assembly.
  • the negative electrode layer 14 may further include a negative electrode current collector 14b.
  • the negative electrode current collector 14b is preferably provided inside and/or on the surface of the negative electrode active material layer 14a except for the portion extending as the negative electrode current collecting tab 14c. That is, the negative electrode active material layer 14a may be arranged on both sides of the negative electrode current collector 14b, or the negative electrode active material layer 14a may be arranged only on one side of the negative electrode current collector 14b. good. Then, the negative electrode current collector 14c extends from the end (eg, upper end) of the negative electrode layer 14 in a predetermined direction (eg, upward) at a position that does not overlap the positive electrode current collector tab 12b.
  • the negative electrode current collecting tab 14c is preferably provided at a position not overlapping the positive electrode current collecting tab 12b.
  • the negative electrode collector tab 14c may be made of the same material as the negative electrode collector 14b, or may be made of a different material. In any case, such a tab may be supplemented with another current collecting member such as a tab lead to extend the negative electrode current collecting tab 14c. In any case, it is preferable that a plurality of negative electrode current collecting tabs 14c are joined to one negative electrode terminal 28 or a member electrically connected thereto to constitute the negative electrode tab joining portion 30. FIG. By doing so, current collection can be performed with good space efficiency with a simple configuration, and connection to the negative electrode terminal 28 is facilitated.
  • the bonding between the negative electrode current collecting tab 14c and a member such as a terminal may be performed using a known bonding method such as ultrasonic welding (ultrasonic bonding), laser welding, TIG welding, resistance welding, or the like.
  • a metal plate having a plurality (or a large number) of openings as the negative electrode current collector 14b.
  • Preferred examples of such a negative electrode current collector 14b include expanded metal, punched metal, metal mesh, and combinations thereof, more preferably copper expanded metal, copper punched metal, and combinations thereof, especially Copper expanded metal is preferred.
  • a mixture comprising zinc oxide powder and/or zinc powder and, if desired, a binder (for example, polytetrafluoroethylene particles) is applied onto a copper expanded metal to form a negative electrode composed of a negative electrode/a negative electrode current collector. Plates can be preferably made.
  • the expanded metal is a mesh-like metal plate obtained by expanding a metal plate with zigzag cuts by an expander and forming the cuts into a diamond shape or a tortoiseshell shape.
  • a perforated metal is also called a perforated metal, and is made by punching holes in a metal plate.
  • a metal mesh is a metal product with a wire mesh structure, and is different from expanded metal and perforated metal.
  • the separator 16 is preferably a hydroxide ion conducting separator.
  • a hydroxide ion-conducting separator 16 is provided to separate the positive electrode layer 12 and the negative electrode layer 14 so as to conduct hydroxide ions.
  • the negative electrode layer 14 may be covered or wrapped with a hydroxide ion conductive separator 16 .
  • a simple configuration in which the hydroxide ion conductive separator 16 is arranged on one side of the positive electrode layer 12 or the negative electrode layer 14 may also be used.
  • the hydroxide ion-conducting separator 16 is not particularly limited as long as it can separate the positive electrode layer 12 and the negative electrode layer 14 so that hydroxide ions can be conducted, but typically includes a hydroxide ion-conducting solid electrolyte. , is a separator that allows hydroxide ions to pass through exclusively by utilizing hydroxide ion conductivity.
  • Preferred hydroxide ion-conducting solid electrolytes are layered double hydroxides (LDH) and/or LDH-like compounds. Therefore, hydroxide ion conducting separator 16 is preferably an LDH separator.
  • LDH separator refers to a separator containing LDH and/or LDH-like compounds, which selectively removes hydroxide ions by exclusively utilizing the hydroxide ion conductivity of LDH and/or LDH-like compounds.
  • LDH-like compounds are hydroxides and/or oxides of layered crystal structure similar to LDH, although they may not be called LDH, and can be said to be equivalents of LDH.
  • LDH can be interpreted as including not only LDH but also LDH-like compounds.
  • the LDH separator is preferably composited with the porous substrate.
  • the LDH separator further includes a porous substrate, and the LDH and/or the LDH-like compound are combined with the porous substrate in a form in which the pores of the porous substrate are filled.
  • preferred LDH separators are those in which LDH and/or LDH-like compounds are porous so as to exhibit hydroxide ion conductivity and gas impermeability (and thus function as LDH separators exhibiting hydroxide ion conductivity). block the pores of the base material.
  • the porous substrate is preferably made of a polymeric material, and it is particularly preferable that the LDH is incorporated throughout the entire thickness direction of the porous substrate made of polymeric material.
  • a known LDH separator as disclosed in Patent Document 1 can be used.
  • the thickness of the LDH separator is preferably 5-100 ⁇ m, more preferably 5-80 ⁇ m, still more preferably 5-60 ⁇ m, particularly preferably 5-40 ⁇ m.
  • each of the positive electrode layer 12, the negative electrode layer 14, and the separator 16 is preferably arranged vertically so that the multi-layer cell is multi-layered in the horizontal direction. Moreover, it is preferable that the positive electrode current collecting tab 12b and the negative electrode current collecting tab 14c extend upward.
  • the electrode laminate 11 may further include a liquid retaining member 17 .
  • the liquid retaining member 17 is preferably provided at a position in contact with the positive electrode layer 12 and/or the negative electrode layer 14 .
  • the liquid retaining member 17 may be interposed between the positive electrode layer 12 and the negative electrode layer 14 .
  • a simple configuration in which the liquid retaining member 17 is arranged on one surface side of the positive electrode layer 12 or the negative electrode layer 14 may be employed.
  • the electrolytic solution 18 can be evenly present between the positive electrode layer 12 and/or the negative electrode layer 14 and the hydroxide ion conductive separator 16. and/The transfer of hydroxide ions between the negative electrode layer 14 and the hydroxide ion conductive separator 16 can be performed efficiently.
  • the liquid holding member 17 is not particularly limited as long as it can hold the electrolytic solution 18, but is preferably a sheet-like member.
  • Preferred examples of the liquid-retaining member 17 include non-woven fabric, water-absorbing resin, liquid-retaining resin, porous sheet, and various spacers, but non-woven fabric is particularly preferable because it enables the production of an electrode structure with good performance at low cost. be.
  • the liquid retaining member 17 or the nonwoven fabric preferably has a thickness of 10 to 200 ⁇ m, more preferably 20 to 200 ⁇ m, still more preferably 20 to 150 ⁇ m, particularly preferably 20 to 100 ⁇ m, most preferably 20 ⁇ m. ⁇ 60 ⁇ m.
  • a sufficient amount of the electrolytic solution 18 can be retained in the liquid retaining member 17 while keeping the overall size of the positive electrode structure and/or the negative electrode structure compact without waste.
  • the positive electrode layer 12 and/or the negative electrode layer 14 are covered or wrapped with the liquid retaining member 17 and/or the separator 16, their outer edges (sides from which the positive electrode current collecting tab 12b and the negative electrode current collecting tab 14c extend) except) preferably closed.
  • the liquid-retaining member 17 and/or the separator 16 has a closed outer edge by bending the liquid-retaining member 17 and/or the separator 16 or by sealing the liquid-retaining members 17 and/or the separators 16 together.
  • Preferred examples of sealing techniques include adhesives, heat welding, ultrasonic welding, adhesive tapes, sealing tapes, and combinations thereof.
  • an LDH separator containing a porous substrate made of a polymeric material has the advantage of being easy to bend because of its flexibility.
  • Thermal welding and ultrasonic welding may be performed using a commercially available heat sealer or the like.
  • the outer peripheral portion of the liquid retaining member 17 should be sandwiched between the LDH separators forming the outer peripheral portion. It is preferable to perform heat welding and ultrasonic welding by using the same method because more effective sealing can be performed.
  • commercially available adhesives, adhesive tapes, and sealing tapes may be used, but those containing an alkali-resistant resin are preferable in order to prevent deterioration in an alkaline electrolyte.
  • examples of preferable adhesives include epoxy resin adhesives, natural resin adhesives, modified olefin resin adhesives, and modified silicone resin adhesives. It is more preferable because it is particularly excellent in alkalinity.
  • a product example of the epoxy resin-based adhesive includes the epoxy adhesive Hysol (registered trademark) (manufactured by Henkel).
  • the outer edge of one side, which is the upper end of the separator 16 is open.
  • This open-top configuration makes it possible to deal with the problem of overcharging in nickel-zinc batteries and the like. That is, when a nickel-zinc battery or the like is overcharged, oxygen (O 2 ) may be generated in the positive electrode layer 12, but the LDH separator has a high degree of denseness that substantially allows only hydroxide ions to pass. Impervious to O2 .
  • O 2 can escape above the positive electrode layer 12 and be sent to the negative electrode layer 14 side through the upper open portion, thereby In 2 , Zn of the negative electrode active material can be oxidized and returned to ZnO.
  • overcharge resistance can be improved by using the electrode laminate 11 with an open top in a sealed zinc secondary battery.
  • a ventilation hole may be opened after sealing the outer edge of one side, which is the upper end of the LDH separator, or a part of the outer edge may be unsealed so that a ventilation hole is formed during sealing. good.
  • the electrolytic solution 18 preferably contains an aqueous alkali metal hydroxide solution.
  • the electrolytic solution 18 is only shown locally in FIG.
  • alkali metal hydroxides include potassium hydroxide, sodium hydroxide, lithium hydroxide and ammonium hydroxide, with potassium hydroxide being more preferred.
  • Zinc compounds such as zinc oxide and zinc hydroxide may be added to the electrolytic solution in order to suppress self-dissolution of zinc and/or zinc oxide.
  • the electrolyte may be mixed with the positive electrode active material and/or the negative electrode active material to exist in the form of a positive electrode mixture and/or a negative electrode mixture.
  • the electrolyte may be gelled to prevent leakage of the electrolyte.
  • the gelling agent it is desirable to use a polymer that absorbs the solvent of the electrolytic solution and swells, and polymers such as polyethylene oxide, polyvinyl alcohol and polyacrylamide, and starch are used.
  • the lid portion 20e is provided with a pressure release valve 32 capable of releasing the gas inside the box-shaped case 20 at a predetermined operating pressure or higher.
  • the bursting pressure (or operating pressure) of the fragile portion (recess 20 a ) is higher than the operating pressure of the pressure release valve 32 .
  • the pressure relief valve 32 copes with gradual pressure changes such as gradually discharging accumulated gas during normal battery operation, whereas the fragile portion (recess 20a) responds to a sudden pressure rise in an abnormal situation. It is for releasing the abnormal pressure of time.
  • FIG. 7 shows a preferred embodiment of a secondary battery module.
  • a secondary battery module 100 shown in FIG. 7 includes a module case 102 and a plurality of secondary batteries 10 .
  • the module case 102 is a lidded container made of metal.
  • a plurality of secondary batteries 10 are accommodated in the module case 102 parallel to each other (for example, the long side walls 20c face each other).
  • hydrogen combustion in the secondary battery 10 causes the fragile portion (recess 20a) to form. Even if the module ruptures, various troubles associated with the rupture (rapid rise in internal pressure, scattering of fragments, electrolyte leakage, fire, abnormal heat generation, etc.) can all be prevented within the module case 102. Safety can be sufficiently ensured.
  • each of the plurality of box-shaped cases 20 has the streaky recess 20a on the same side surface (for example, one surface of the short side wall portion 20d).
  • the side wall of the module case 102 facing the surface having the streak-like recessed portion 20a is reinforced.
  • the bursting pressure of the module case 102 (especially the side wall or the upper lid facing the recess 20a) is preferably higher than the bursting pressure of the recess 20a.
  • Rapid rise, scattering of fragments, leakage of electrolyte, fire, abnormal heat generation, etc. can be reliably prevented from occurring inside the module case 102 (in particular, the side wall facing the recess 20a or the upper lid 102b). Safety can be sufficiently ensured.
  • the module case 102 is a lidded container made of metal, and includes a container body 102a and an upper lid 102b. That is, in order to secure sufficient pressure resistance, heat resistance, and strength, the module case 102 includes both the container main body 102a and the upper lid 102b made of a metal plate.
  • the upper cover 102b is arranged near the recess 20a, it is desired to have sufficient pressure resistance, heat resistance and strength to withstand the pressure and temperature when the recess 20a bursts.
  • preferred examples of the metal plate forming the upper lid 102b include a steel plate and a stainless steel plate.
  • the thickness of the metal plate forming the upper lid 102b is preferably 1.0 to 3.0 mm, more preferably 1.5 to 2.5 mm.
  • preferred examples of the metal plate forming the container main body 102a include a steel plate and a stainless steel plate.
  • the thickness of the metal plate forming the container body 102a may be appropriately determined in consideration of the allowable weight as long as the desired pressure resistance or strength can be secured. It is preferably 1.0 to 2.0 mm. From the viewpoint of preventing an increase in internal pressure within the module case 102 due to the rupture of the recess 20a, it is desired that the upper lid 102b is firmly fixed to the container body 102a.
  • the fixing of the upper lid 102b to the container body is performed by bolt-nut connection, because the upper lid 102b can be removed when necessary (for example, during replacement or maintenance of the secondary battery 10) while ensuring sufficient pressure resistance.
  • the module case 102 is a container with a lid, it is desirable not to make it a completely closed container so that the internal pressure can escape to the outside.
  • the module case 102 preferably has a structure that releases internal pressure to the outside at a location that faces or communicates with the internal space above the secondary battery 10 .
  • one end of the module case 102 is provided with an intake port 102c, while the other end of the module case 102 is provided with an exhaust port 102d, and a fan 108 is attached to the exhaust port 102d.
  • Fan 108 may be a small ventilation fan. According to this configuration, by operating fan 108 , air flows through module case 102 and secondary battery 10 can be cooled.
  • a shield plate 104 is provided in the module case 102, an air intake passage 110 for supplying air from an air intake 102c to the lower side of the secondary battery 10, and a secondary It is preferable to separate the exhaust passage 112 that guides the air that escapes upward through the gaps between the batteries 10 to the exhaust port 102d.
  • the gaps between the secondary batteries 10 also constitute flow paths, but if the box-shaped case 20 has ribs R, the ribs R serve as spacers, thereby forming vertical ventilation holes. , and excellent heat dissipation can be ensured.
  • the lid portion 28e of the box-shaped case 20 is preferably separated from the upper lid 102b by a predetermined distance, preferably 10 to 50 mm, more preferably 20 to 30 mm. Similarly, in order to secure the air intake channel 110 and not block it, the bottom 28b of the box-shaped case 20 is preferably separated from the bottom surface of the container body 102a by a predetermined distance, preferably 3 to 20 mm, more preferably 5 to 15 mm.
  • a ventilable spacer such as a frame or rail is provided on the bottom surface of the module case 102, and the secondary battery 10 (that is, the box-shaped case) is placed thereon.
  • a case 20) is preferably arranged.
  • a fire spread prevention material 106 is preferably provided between adjacent secondary batteries 10 (that is, box-shaped cases 20). Since the box-shaped cases 20 are made of resin, if the box-shaped cases 20 are adjacent to each other, if one box-shaped case 20 catches fire, the other box-shaped cases 20 may catch fire. However, such fire spread can be suppressed by interposing the fire spread prevention material 106 between the adjacent box-shaped cases 20 . In order to realize this fire spread suppression effect more effectively, the side ends of the fire spread prevention material 106 reach the side walls of the module case 102, thereby separating the adjacent box-shaped cases 20 from each other so that the fire cannot spread. is particularly preferred.
  • the upper end of the fire spread prevention material 106 does not reach the upper lid 102b of the module case 102, and is set at approximately the same height as the secondary battery 10 so as not to obstruct the exhaust flow path 112 in the module case 102.
  • the lower end of the fire spread prevention material 106 does not reach the bottom surface of the container body 102a, and is set at the same height as the bottom surface of the secondary battery 10, so as not to block the intake flow path 110 inside the module case 102.
  • various known fire spread prevention materials can be used, such as an embossed mica plate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

The present invention provides, at a lower cost, a secondary battery that has a weak part which makes it possible to address a sudden increase in the internal pressure of the battery. This secondary battery comprises an electrode laminate, an electrolyte, and a box-shaped case that is made of resin and that houses the electrode laminate and the electrolyte. The box-shaped case has a stripe-shaped recessed portion. The stripe-shaped recessed portion functions as a weak part that can be destroyed preferentially and in a localized manner when internal pressure rises excessively due to gas produced inside the battery.

Description

二次電池及び二次電池モジュールSecondary battery and secondary battery module
 本発明は、二次電池及び二次電池モジュールに関するものである。 The present invention relates to secondary batteries and secondary battery modules.
 ニッケル亜鉛電池等のアルカリ二次電池は、水酸化カリウム水溶液等の水系電解液を用いる点で、可燃性の有機溶媒を含む非水系電解液を用いる二次電池と比べて、安全性が格段に高いものである。しかしながら、アルカリ二次電池の安全性をさらに高めるためには、最悪の異常事態をリスクとして想定し、それに対して万全の策を講じることが望まれる。そして、そのような想定されうる最悪の異常事態としては、水系電解液の分解により水素が発生して、短絡等による着火によって水素燃焼を引き起こす場合が考えられる。 Alkaline secondary batteries, such as nickel-zinc batteries, use an aqueous electrolyte such as an aqueous solution of potassium hydroxide, and are significantly safer than secondary batteries that use a non-aqueous electrolyte containing a flammable organic solvent. It is expensive. However, in order to further improve the safety of alkaline secondary batteries, it is desirable to assume the worst possible abnormal situation as a risk and take all possible measures against it. As the worst possible abnormal situation, it is conceivable that hydrogen is generated by the decomposition of the aqueous electrolytic solution, and hydrogen combustion is caused by ignition due to short circuit or the like.
 そこで、水素燃焼等による電池内圧の急激な上昇による被害を最小限に抑えることが可能な積層電池型のアルカリ二次電池が提案されている。例えば、特許文献1(WO2021/024681)には、アルカリ二次電池の構成を有する複数の単電池要素が積層された積層電池と、積層電池が縦向きに収容される樹脂製の箱型ケースとを備えた、アルカリ二次電池が開示されており、箱型ケースの蓋部に厚さが低減された脆弱部を所定の厚さ及び面積割合で設けることが提案されている。この構成によれば、水素燃焼等による電池内圧の急激な上昇時に、箱型ケースが全体的に破壊される前に脆弱部が優先的かつ局所的に破壊されるため、箱型ケースの全体的な破壊を免れることができ、その結果、安全性を向上できる。 Therefore, a laminated battery-type alkaline secondary battery has been proposed that can minimize the damage caused by a rapid increase in the internal pressure of the battery due to hydrogen combustion or the like. For example, Patent Document 1 (WO2021/024681) describes a laminated battery in which a plurality of unit cell elements having the structure of an alkaline secondary battery are laminated, and a resin box-shaped case in which the laminated battery is accommodated in the vertical direction. is disclosed, and it is proposed to provide a fragile portion with a reduced thickness in the lid portion of the box-shaped case with a predetermined thickness and area ratio. According to this configuration, when the internal pressure of the battery rises rapidly due to hydrogen combustion or the like, the fragile portion is preferentially and locally destroyed before the entire box-shaped case is destroyed. damage can be avoided, and as a result, safety can be improved.
 また、更なる大容量化及び高出力化のために、積層電池を内在した電池ユニットを複数個配列させて電池モジュール化することも一般的に行われている。この点、上述の特許文献1には、金属製の蓋付容器であるモジュールケースと、モジュールケース内に収容される複数個のアルカリ二次電池とを備えた、アルカリ二次電池モジュールも開示されている。 In addition, in order to further increase the capacity and output, it is common practice to arrange a plurality of battery units each containing a laminated battery to form a battery module. In this regard, the above-mentioned Patent Document 1 also discloses an alkaline secondary battery module that includes a module case, which is a metal container with a lid, and a plurality of alkaline secondary batteries accommodated in the module case. ing.
WO2021/024681WO2021/024681
 特許文献1に開示されるような厚さが低減された脆弱部を箱型ケースに設けることは、製造コストの増大を招く。したがって、より低い製造コストで脆弱部と同等の機能を実現することが望まれる。 Providing a box-shaped case with a weakened portion having a reduced thickness as disclosed in Patent Document 1 causes an increase in manufacturing cost. Therefore, it is desired to achieve the same function as the fragile portion at a lower manufacturing cost.
 本発明者らは、今般、箱型ケースに筋状の凹部を持たせることで、この凹部を電池内圧の過度な上昇時に優先的かつ局所的に破壊可能な脆弱部として機能させることができ、その結果、脆弱部を有する二次電池をより低コストで提供できるとの知見を得た。 The present inventors have recently found that by providing the box-shaped case with a streak-shaped recess, the recess can function as a fragile portion that can be preferentially and locally destroyed when the internal pressure of the battery is excessively increased. As a result, the inventors have found that a secondary battery having a fragile portion can be provided at a lower cost.
 したがって、本発明の目的は、電池内圧の急激な上昇に対処可能な脆弱部を有する二次電池をより低コストで提供することにある。 Therefore, an object of the present invention is to provide a secondary battery having a weak portion capable of coping with a rapid increase in battery internal pressure at a lower cost.
 本発明によれば、以下の態様が提供される。
[態様1]
 電極積層体と、
 電解液と、
 前記電極積層体及び前記電解液が収容される、樹脂製の箱型ケースと、
を備えた、二次電池であって、
 前記箱型ケースが筋状の凹部を有し、前記筋状の凹部が、前記電池内で発生するガスによって内圧が過度に上昇した際に優先的かつ局所的に破壊可能な脆弱部として機能する、二次電池。
[態様2]
 前記筋状の凹部がウェルドラインである、態様1に記載の二次電池。
[態様3]
 前記箱型ケースが、底部と、前記電極積層体と平行な1対の長手側壁部と、前記電極積層体と垂直な1対の短手側壁部と、蓋部とを有し、前記筋状の凹部が、前記短手側壁部の少なくとも一方、前記長手側壁部の少なくとも一方、又は前記蓋部に設けられる、態様1又は2に記載の二次電池。
[態様4]
 前記二次電池が、ニッケル水素二次電池、鉛蓄電池、及びアルカリ二次電池からなる群から選択される、態様1~3のいずれか一つに記載の二次電池。
[態様5]
 前記二次電池がアルカリ二次電池であり、前記アルカリ二次電池がニッケル亜鉛二次電池である、態様4に記載の二次電池。
[態様6]
 前記電極積層体が、正極層、負極層、並びに前記正極層及び前記負極層を互いに隔離するセパレータを含む、態様1~5のいずれか一つに記載の二次電池。
[態様7]
 前記電極積層体が、前記正極層、前記セパレータ及び前記負極層を含む単位セルを複数個有し、それにより複数個の前記単位セルが全体として多層セルをなしている、態様6に記載の二次電池。
[態様8]
 前記二次電池が、前記箱型ケース内のガスを所定の作動圧以上で放出可能な放圧弁をさらに備える、態様1~7のいずれか一つに記載の二次電池。
[態様9]
 前記脆弱部の破裂圧が前記放圧弁の作動圧よりも高い、態様8に記載の二次電池。
[態様10]
 金属製の蓋付容器であるモジュールケースと、
 前記モジュールケース内に互いに平行に収容される、複数個の態様1~9のいずれか一つに記載の二次電池と、
を備えた、二次電池モジュール。
[態様11]
 複数個の前記箱型ケースが、それぞれ同じ側の面に前記筋状の凹部を有している、態様10に記載の二次電池モジュール。
[態様12]
 前記筋状の凹部を有する面と向かい合う前記モジュールケースの側壁が補強されている、態様11に記載の二次電池モジュール。
[態様13]
 前記モジュールケースの破裂圧が前記脆弱部の破裂圧よりも高い、態様11又は12に記載の二次電池モジュール。
According to the present invention, the following aspects are provided.
[Aspect 1]
an electrode laminate;
an electrolyte;
A box-shaped case made of resin that accommodates the electrode laminate and the electrolytic solution;
A secondary battery comprising
The box-shaped case has a streak-shaped recess, and the streak-shaped recess functions as a fragile portion that can be preferentially and locally destroyed when the internal pressure is excessively increased by the gas generated in the battery. , secondary battery.
[Aspect 2]
The secondary battery according to aspect 1, wherein the streaky concave portion is a weld line.
[Aspect 3]
The box-shaped case has a bottom, a pair of long side walls parallel to the electrode laminate, a pair of short side walls perpendicular to the electrode laminate, and a lid, is provided in at least one of the short side wall portions, at least one of the long side wall portions, or the lid portion.
[Aspect 4]
The secondary battery according to any one of aspects 1 to 3, wherein the secondary battery is selected from the group consisting of nickel-hydrogen secondary batteries, lead-acid batteries, and alkaline secondary batteries.
[Aspect 5]
The secondary battery according to aspect 4, wherein the secondary battery is an alkaline secondary battery, and the alkaline secondary battery is a nickel-zinc secondary battery.
[Aspect 6]
The secondary battery according to any one of aspects 1 to 5, wherein the electrode laminate includes a positive electrode layer, a negative electrode layer, and a separator separating the positive electrode layer and the negative electrode layer from each other.
[Aspect 7]
7. The second embodiment according to aspect 6, wherein the electrode laminate has a plurality of unit cells each including the positive electrode layer, the separator, and the negative electrode layer, whereby the plurality of unit cells form a multilayer cell as a whole. next battery.
[Aspect 8]
The secondary battery according to any one of modes 1 to 7, further comprising a pressure release valve capable of releasing gas in the box-shaped case at a predetermined operating pressure or higher.
[Aspect 9]
The secondary battery according to aspect 8, wherein the bursting pressure of the fragile portion is higher than the operating pressure of the pressure relief valve.
[Aspect 10]
a module case, which is a container with a lid made of metal;
a plurality of secondary batteries according to any one of aspects 1 to 9, which are accommodated in parallel in the module case;
A secondary battery module with
[Aspect 11]
11. The secondary battery module according to aspect 10, wherein the plurality of box-shaped cases each have the streak-shaped concave portion on the same side surface.
[Aspect 12]
The secondary battery module according to aspect 11, wherein a side wall of the module case facing the surface having the streaky recess is reinforced.
[Aspect 13]
The secondary battery module according to aspect 11 or 12, wherein the module case has a higher burst pressure than the weak portion.
本発明による二次電池の一例を模式的に示す斜視図である。1 is a perspective view schematically showing an example of a secondary battery according to the present invention; FIG. 図1に示される二次電池とモジュール側壁との位置関係を模式的に示す上面図である。FIG. 2 is a top view schematically showing the positional relationship between the secondary battery and the side wall of the module shown in FIG. 1; 本発明による二次電池の内部構造の一例を模式的に示す断面図である。1 is a cross-sectional view schematically showing an example of the internal structure of a secondary battery according to the present invention; FIG. 図3に示される二次電池のA-A’線断面を模式的に示す図である。4 is a diagram schematically showing a cross section of the secondary battery shown in FIG. 3 taken along line A-A'; FIG. 図3に示される二次電池の電極積層体を模式的に示す斜視図である。FIG. 4 is a perspective view schematically showing an electrode laminate of the secondary battery shown in FIG. 3; 図3に示される二次電池の電極積層体を模式的に示す断面図である。FIG. 4 is a cross-sectional view schematically showing an electrode laminate of the secondary battery shown in FIG. 3; 本発明による二次電池モジュールの一例を示す模式断面図である。1 is a schematic cross-sectional view showing an example of a secondary battery module according to the present invention; FIG.
 二次電池
 本発明は、二次電池に関する。本発明における二次電池は、ニッケル水素二次電池、鉛蓄電池、又はアルカリ二次電池であるのが好ましく、より好ましくはアルカリ二次電池である。アルカリ二次電池は、アルカリ電解液(典型的にはアルカリ金属水酸化物水溶液)を用いた二次電池であれば特に限定されないが、亜鉛を負極として用いた亜鉛二次電池が好ましい。亜鉛二次電池の例としては、ニッケル亜鉛二次電池、酸化銀亜鉛二次電池、酸化マンガン亜鉛二次電池、その他各種のアルカリ亜鉛二次電池が挙げられ、特に好ましくはニッケル亜鉛二次電池である。したがって、以下の説明は、ニッケル亜鉛二次電池等の亜鉛二次電池の構成に言及することがあるが、本発明は亜鉛二次電池に限定されるものではない。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to secondary batteries. The secondary battery in the present invention is preferably a nickel-hydrogen secondary battery, a lead-acid battery, or an alkaline secondary battery, more preferably an alkaline secondary battery. The alkaline secondary battery is not particularly limited as long as it is a secondary battery using an alkaline electrolyte (typically an aqueous alkali metal hydroxide solution), but a zinc secondary battery using zinc as a negative electrode is preferred. Examples of zinc secondary batteries include nickel-zinc secondary batteries, silver-zinc oxide secondary batteries, manganese-zinc oxide secondary batteries, and various other alkaline zinc secondary batteries. Nickel-zinc secondary batteries are particularly preferred. be. Therefore, although the following description may refer to the construction of zinc secondary batteries such as nickel-zinc secondary batteries, the present invention is not limited to zinc secondary batteries.
 図1~6に本発明による二次電池10の一例を示す。二次電池10は、電極積層体11と、電解液18と、電極積層体11及び電解液18が収容される樹脂製の箱型ケース20とを備える。箱型ケース20には、電極積層体11及び電解液18が収容される。箱型ケース20は筋状の凹部20aを有し、筋状の凹部20aが、二次電池10内で発生するガスによって内圧が過度に上昇した際に優先的かつ局所的に破壊可能な脆弱部として機能する。このように箱型ケース20に筋状の凹部20aを持たせることで、この凹部20aを電池内圧の過度な上昇時に優先的かつ局所的に破壊可能な脆弱部として機能させることができ、その結果、脆弱部を有する二次電池をより低コストで提供できる。 1 to 6 show an example of a secondary battery 10 according to the present invention. The secondary battery 10 includes an electrode laminate 11 , an electrolytic solution 18 , and a box-shaped resin case 20 that accommodates the electrode laminate 11 and the electrolytic solution 18 . The box-shaped case 20 accommodates the electrode laminate 11 and the electrolytic solution 18 . The box-shaped case 20 has a streak-shaped recess 20a, and the streak-shaped recess 20a is a fragile portion that can be preferentially and locally destroyed when the internal pressure is excessively increased by the gas generated in the secondary battery 10. function as By providing the box-shaped case 20 with the streaky recess 20a in this manner, the recess 20a can function as a fragile portion that can be preferentially and locally destroyed when the internal pressure of the battery is excessively increased. , a secondary battery having a fragile portion can be provided at a lower cost.
 前述のとおり、特許文献1に開示されるような厚さが低減された脆弱部を箱型ケースに設けることは、製造コストの増大を招く。すなわち、そのような従来の脆弱部は、例えば、蓋部に窪み状のラプチャー部と貫通孔とを形成し、別途作製した薄いラプチャー板をラプチャー部に嵌合及び溶着することにより形成されるため、ラプチャー部の形成及び加工、ラプチャー板の作製、これらの部材の嵌合及び溶着といった追加の作業工程を経なければならず、製造コストが増大する。これに対して、本発明の二次電池10によれば、箱型ケース20に筋状の凹部20aを持たせるだけという極めて簡便な手法で、この凹部20aを電池内圧の過度な上昇時に(例えば図1において矢印Bで示される方向に)優先的かつ局所的に破壊可能な脆弱部として機能させることができる。凹部20aが筋状であることで、凹部20aの開裂時の圧を分散させやすくなり、優先的かつ局所的な破壊を促進するものと考えられる。その結果、脆弱部を有する二次電池10をより低コストで提供することができる。 As described above, providing a box-shaped case with a weakened portion having a reduced thickness as disclosed in Patent Document 1 leads to an increase in manufacturing cost. That is, such a conventional fragile portion is formed, for example, by forming a depression-shaped rupture portion and a through hole in the lid portion, and fitting and welding a separately manufactured thin rupture plate to the rupture portion. , the formation and processing of the rupture portion, the fabrication of the rupture plate, and the fitting and welding of these members, which increase the manufacturing cost. On the other hand, according to the secondary battery 10 of the present invention, the box-shaped case 20 is provided with the streak-like recessed portion 20a by a very simple method, and the recessed portion 20a is opened when the internal pressure of the battery is excessively increased (for example, It can act as a preferentially locally destructible weakened portion (in the direction indicated by arrow B in FIG. 1). It is believed that the streak-like shape of the recessed portions 20a makes it easier to disperse the pressure when the recessed portions 20a are cleaved, and promotes preferential and local breakage. As a result, secondary battery 10 having a fragile portion can be provided at a lower cost.
 筋状の凹部20aは、電池内圧の過度な上昇時に優先的かつ局所的に破壊可能な脆弱部として機能できるかぎり、その構造及び形状は特に限定されない。特に好ましい筋状の凹部20aはウェルドラインである。「ウェルドライン」とは、射出成形の分野における一般的な技術用語であり、射出成形において金型内で溶融樹脂の合流部分に現れる線状跡として定義される。箱型ケース20は樹脂製であるから、箱型ケース20を射出成形する際に樹脂を流し込む入口(ゲート)の位置と射出条件を制御すること及び箱型ケース20外面のリブ構造の設計により、毎回同じ所望の位置にウェルドラインを形成することができる。したがって、筋状の凹部20aとしてウェルドラインを活用することで、極めて簡便かつ低コストの手法で脆弱部を形成することができる。実際、本発明者は、射出成型で作製した箱型ケース20(ケース本体や蓋部20e)には、ウェルドラインが発生し内圧上昇時の破損の起点になりやすく、高温保存評価試験においてウェルドラインを起点とした貫通クラックが生じてそこから内部発生ガスが漏出することを知見している。この本来ならば成形不良ともいうべきウェルドラインを、敢えて筋状の凹部20aとして活用して脆弱部として機能させることに、本態様の技術的価値があるといえる。 The structure and shape of the streak-shaped concave portion 20a are not particularly limited as long as it can function as a fragile portion that can be preferentially and locally destroyed when the internal pressure of the battery is excessively increased. A particularly preferable streaky recess 20a is a weld line. A "weld line" is a general technical term in the field of injection molding, and is defined as a linear trace that appears at the junction of molten resins in a mold during injection molding. Since the box-shaped case 20 is made of resin, by controlling the position of the inlet (gate) into which the resin is poured and the injection conditions when the box-shaped case 20 is injection molded, and by designing the rib structure of the outer surface of the box-shaped case 20, A weld line can be formed at the same desired position each time. Therefore, by utilizing the weld line as the streak-like concave portion 20a, the weak portion can be formed by an extremely simple and low-cost method. In fact, the present inventor found that the box-shaped case 20 (the case body and the lid portion 20e) produced by injection molding has a weld line, which is likely to cause breakage when the internal pressure rises. It is known that a penetrating crack originating from is generated and the internally generated gas leaks from there. It can be said that the technical value of this embodiment is that the weld line, which should be called a molding defect, is intentionally utilized as the streak-like recessed portion 20a to function as a weak portion.
 箱型ケース20は、典型的には、底部20bと、電極積層体11と平行な1対の長手側壁部20cと、電極積層体11と垂直な1対の短手側壁部20dと、蓋部20eとを有する。この場合、筋状の凹部20aは、短手側壁部20dの少なくとも一方、長手側壁部20cの少なくとも一方、又は蓋部20eに設けられるのが好ましく、特に好ましくは短手側壁部20dの少なくとも一方である。このように筋状の凹部20aを所定の位置に決めておくことで、箱型ケース20の周囲に存在する構造物(例えば図2に示されるモジュールケース102)の特定位置(例えば図2に矢印Bで示されるように凹部20aに隣接するモジュールケース102の側壁)のみを凹部20aの破裂に備えて補強すれば足りる。そのような構造物の補強手法は、特に限定されず、図2に示されるように側壁を厚くしてもよいし、補強部材を側壁に設けてもよい。 The box-shaped case 20 typically includes a bottom portion 20b, a pair of long side walls 20c parallel to the electrode laminate 11, a pair of short side walls 20d perpendicular to the electrode laminate 11, and a lid. 20e. In this case, the streak-like recess 20a is preferably provided in at least one of the short side walls 20d, at least one of the long side walls 20c, or the lid 20e, and particularly preferably in at least one of the short side walls 20d. be. By setting the streak-shaped recessed portion 20a at a predetermined position in this way, a structure existing around the box-shaped case 20 (for example, the module case 102 shown in FIG. 2) can be positioned at a specific position (for example, an arrow in FIG. Only the side walls of the module case 102 adjacent to the recess 20a, as indicated at B), need be reinforced against rupture of the recess 20a. A method of reinforcing such a structure is not particularly limited, and the side wall may be thickened as shown in FIG. 2, or a reinforcing member may be provided on the side wall.
 電極積層体11は複数枚の電極層を含む積層体である。典型的には、電極積層体11は、正極層12、負極層14、並びに正極層12及び負極層14を互いに隔離するセパレータ16を含む。したがって、電極積層体11は電解液18が浸透されることで二次電池10としての機能を呈する電池要素といえる。特に、電極積層体11は、図5及び6に示されるように、複数枚の正極層12と、複数枚の負極層14、複数枚のセパレータ16を備え、正極層12/セパレータ16/負極層14の単位が繰り返されるように積層された正負極積層体の形態とされるのが好ましい。すなわち、電極積層体11は、正極層12、セパレータ16及び負極層14を含む単位セル10aを複数個有し、それにより複数個の単位セル10aが全体として多層セルをなしているのが好ましい。これはいわゆる組電池ないし積層電池の構成であり、高電圧や大電流が得られる点で有利である。 The electrode laminate 11 is a laminate including a plurality of electrode layers. Typically, the electrode stack 11 includes a positive electrode layer 12, a negative electrode layer 14, and a separator 16 that separates the positive electrode layer 12 and the negative electrode layer 14 from each other. Therefore, the electrode laminate 11 can be said to be a battery element that functions as the secondary battery 10 when the electrolyte 18 is permeated. In particular, the electrode laminate 11 includes a plurality of positive electrode layers 12, a plurality of negative electrode layers 14, and a plurality of separators 16, as shown in FIGS. It is preferably in the form of a positive/negative electrode laminate in which 14 units are stacked repeatedly. That is, the electrode laminate 11 preferably has a plurality of unit cells 10a each including the positive electrode layer 12, the separator 16, and the negative electrode layer 14, so that the plurality of unit cells 10a as a whole form a multi-layer cell. This is a so-called assembled battery or laminated battery configuration, and is advantageous in that a high voltage and a large current can be obtained.
 正極層12は、正極活物質層を含みうる。正極活物質層を構成する正極活物質は、二次電池の種類に応じて公知の正極材料を適宜選択すればよく、特に限定されない。例えば、ニッケル亜鉛二次電池の場合には、水酸化ニッケル及び/又はオキシ水酸化ニッケルを含む正極を用いればよい。あるいは、空気亜鉛二次電池の場合には、空気極を正極として用いればよい。正極層12は正極集電体(図示せず)をさらに含みうる。正極集電体は正極層12の端部(例えば上端)から所定方向に(例えば上方向に)延出する正極集電タブ12bを有するのが好ましい。正極集電体の好ましい例としては、発泡ニッケル板等のニッケル製多孔質基板が挙げられる。この場合、例えば、ニッケル製多孔質基板上に水酸化ニッケル等の電極活物質を含むペーストを均一に塗布して乾燥させることにより正極/正極集電体からなる正極板を好ましく作製することができる。その際、乾燥後の正極板(すなわち正極/正極集電体)にプレス処理を施して、電極活物質の脱落防止や電極密度の向上を図ることも好ましい。なお、図6に示される正極層12は正極集電体(例えば発泡ニッケル)を含むものであるが図示されていない。これは、ニッケル亜鉛二次電池の場合、正極集電体が正極活物質と渾然一体化しているため、正極集電体を個別に描出できないためである。正極集電タブ12bは正極集電体と同じ材料で構成されていてもよいし、異なる材料で構成されていてもよい。正極集電体が発泡ニッケル板等のニッケル製多孔質基板の場合、これをプレスすることでタブ状に加工することができる。いずれにしても、そのようなタブにタブリード等の別の集電部材を継ぎ足して正極集電タブ12bを延長してもよい。いずれにしても、複数枚の正極集電タブ12bが1つの正極端子26又はそれと電気的に接続された部材に接合されて正極タブ接合部(図示せず)を構成するのが好ましい。こうすることで簡素な構成でスペース効率良く集電を行えるとともに、正極端子26への接続もしやすくなる。正極集電タブ12bと端子等の部材との接合は、超音波溶接(超音波接合)、レーザ溶接、TIG溶接、抵抗溶接等の公知の接合手法を用いて行えばよい。 The positive electrode layer 12 may include a positive electrode active material layer. The positive electrode active material constituting the positive electrode active material layer may be appropriately selected from known positive electrode materials according to the type of secondary battery, and is not particularly limited. For example, in the case of a nickel-zinc secondary battery, a positive electrode containing nickel hydroxide and/or nickel oxyhydroxide may be used. Alternatively, in the case of a zinc-air secondary battery, the air electrode may be used as the positive electrode. The cathode layer 12 may further include a cathode current collector (not shown). The positive electrode current collector preferably has a positive electrode current collecting tab 12b that extends in a predetermined direction (eg, upward) from the end (eg, upper end) of the positive electrode layer 12 . Preferred examples of the positive electrode current collector include nickel porous substrates such as foamed nickel plates. In this case, for example, a positive electrode plate composed of a positive electrode/positive current collector can be preferably produced by uniformly applying a paste containing an electrode active material such as nickel hydroxide onto a nickel porous substrate and drying the paste. . In this case, it is also preferable to press the dried positive electrode plate (that is, the positive electrode/positive electrode current collector) to prevent the electrode active material from falling off and improve the electrode density. Although the positive electrode layer 12 shown in FIG. 6 includes a positive electrode current collector (for example, nickel foam), it is not shown. This is because, in the case of the nickel-zinc secondary battery, the positive electrode current collector is integrated with the positive electrode active material, and thus the positive electrode current collector cannot be drawn separately. The positive electrode collector tab 12b may be made of the same material as the positive electrode collector, or may be made of a different material. When the positive electrode current collector is a nickel porous substrate such as a foamed nickel plate, it can be processed into a tab shape by pressing. In any case, such a tab may be supplemented with another current collecting member such as a tab lead to extend the positive electrode current collecting tab 12b. In any case, it is preferable that a plurality of positive electrode current collecting tabs 12b are joined to one positive electrode terminal 26 or a member electrically connected thereto to form a positive electrode tab joining portion (not shown). By doing so, current collection can be performed with good space efficiency with a simple configuration, and connection to the positive electrode terminal 26 is also facilitated. The positive electrode current collecting tab 12b and a member such as a terminal may be joined using a known joining method such as ultrasonic welding (ultrasonic joining), laser welding, TIG welding, or resistance welding.
 正極層12は、銀化合物、マンガン化合物、及びチタン化合物からなる群から選択される少なくとも1種である添加剤を含んでいてもよく、これにより自己放電反応により発生する水素ガスを吸収する正極反応を促進することができる。また、正極層12は、コバルトをさらに含んでいてもよい。コバルトは、オキシ水酸化コバルトの形態で正極層12に含まれるのが好ましい。正極層12において、コバルトは導電助剤として機能することで、充放電容量の向上に寄与する。 The positive electrode layer 12 may contain at least one additive selected from the group consisting of silver compounds, manganese compounds, and titanium compounds. can promote Moreover, the positive electrode layer 12 may further contain cobalt. Cobalt is preferably contained in the positive electrode layer 12 in the form of cobalt oxyhydroxide. In the positive electrode layer 12, cobalt functions as a conductive aid, thereby contributing to an improvement in charge/discharge capacity.
 負極層14は負極活物質層14aを含みうる。例えば、亜鉛二次電池の場合には、負極活物質層14aを構成する負極活物質は、亜鉛、酸化亜鉛、亜鉛合金及び亜鉛化合物からなる群から選択される少なくとも1種を含む。亜鉛は、負極に適した電気化学的活性を有するものであれば、亜鉛金属、亜鉛化合物及び亜鉛合金のいずれの形態で含まれていてもよい。負極材料の好ましい例としては、酸化亜鉛、亜鉛金属、亜鉛酸カルシウム等が挙げられるが、亜鉛金属及び酸化亜鉛の混合物がより好ましい。負極活物質はゲル状に構成してもよいし、電解液18と混合して負極合材としてもよい。例えば、負極活物質に電解液及び増粘剤を添加することにより容易にゲル化した負極を得ることができる。増粘剤の例としては、ポリビニルアルコール、ポリアクリル酸塩、CMC、アルギン酸等が挙げられるが、ポリアクリル酸が強アルカリに対する耐薬品性に優れているため好ましい。 The negative electrode layer 14 can include a negative electrode active material layer 14a. For example, in the case of a zinc secondary battery, the negative electrode active material forming the negative electrode active material layer 14a contains at least one selected from the group consisting of zinc, zinc oxide, zinc alloys and zinc compounds. Zinc may be contained in any form of zinc metal, zinc compound, and zinc alloy as long as it has electrochemical activity suitable for the negative electrode. Preferred examples of the negative electrode material include zinc oxide, zinc metal, calcium zincate, etc., and a mixture of zinc metal and zinc oxide is more preferred. The negative electrode active material may be configured in a gel form, or may be mixed with the electrolytic solution 18 to form a negative electrode mixture. For example, a gelled negative electrode can be easily obtained by adding an electrolytic solution and a thickener to the negative electrode active material. Examples of the thickener include polyvinyl alcohol, polyacrylate, CMC, alginic acid, etc. Polyacrylic acid is preferable because of its excellent chemical resistance to strong alkali.
 亜鉛合金として、無汞化亜鉛合金として知られている水銀及び鉛を含まない亜鉛合金を用いることができる。例えば、インジウムを0.01~0.1質量%、ビスマスを0.005~0.02質量%、アルミニウムを0.0035~0.015質量%を含む亜鉛合金が水素ガス発生の抑制効果があるので好ましい。とりわけ、インジウムやビスマスは放電性能を向上させる点で有利である。亜鉛合金の負極への使用は、アルカリ性電解液中での自己溶解速度を遅くすることで、水素ガス発生を抑制して安全性を向上できる。 As the zinc alloy, it is possible to use a zinc alloy that does not contain mercury and lead, which is known as a zinc-free zinc alloy. For example, a zinc alloy containing 0.01 to 0.1% by mass of indium, 0.005 to 0.02% by mass of bismuth, and 0.0035 to 0.015% by mass of aluminum has the effect of suppressing hydrogen gas generation. Therefore, it is preferable. Indium and bismuth are particularly advantageous in terms of improving discharge performance. The use of a zinc alloy for the negative electrode slows down the rate of self-dissolution in an alkaline electrolyte, thereby suppressing the generation of hydrogen gas and improving safety.
 負極材料の形状は特に限定されないが、粉末状とすることが好ましく、それにより表面積が増大して大電流放電に対応可能となる。好ましい負極材料の平均粒径は、亜鉛合金の場合、短径で3~100μmの範囲であり、この範囲内であると表面積が大きいことから大電流放電への対応に適するとともに、電解液及びゲル化剤と均一に混合しやすく、電池組み立て時の取り扱い性も良い。 Although the shape of the negative electrode material is not particularly limited, it is preferably powdered, which increases the surface area and enables high-current discharge. In the case of a zinc alloy, the average particle size of the preferred negative electrode material is in the range of 3 to 100 μm in minor axis. It is easy to mix uniformly with the agent, and is easy to handle during battery assembly.
 負極層14は、負極集電体14bをさらに含みうる。負極集電体14bは、負極集電タブ14cとして延出する部分を除いて、負極活物質層14aの内部及び/又は表面に設けられるのが好ましい。すなわち、負極集電体14bの両面に負極活物質層14aが配置される構成であってもよいし、負極集電体14bの片面にのみ負極活物質層14aが配置される構成であってもよい。そして、負極集電タブ14cが、負極集電体14bは負極層14の端部(例えば上端)から所定方向に(例えば上方向に)、正極集電タブ12bと重ならない位置で延出する。負極集電タブ14cは、正極集電タブ12bと重ならない位置に設けられるのが好ましい。負極集電タブ14cは負極集電体14bと同じ材料で構成されていてもよいし、異なる材料で構成されていてもよい。いずれにしても、そのようなタブにタブリード等の別の集電部材を継ぎ足して負極集電タブ14cを延長してもよい。いずれにしても、複数枚の負極集電タブ14cが1つの負極端子28又はそれと電気的に接続された部材に接合されて負極タブ接合部30を構成するのが好ましい。こうすることで簡素な構成でスペース効率良く集電を行えるとともに、負極端子28への接続もしやすくなる。負極集電タブ14cと端子等の部材との接合は、超音波溶接(超音波接合)、レーザ溶接、TIG溶接、抵抗溶接等の公知の接合手法を用いて行えばよい。 The negative electrode layer 14 may further include a negative electrode current collector 14b. The negative electrode current collector 14b is preferably provided inside and/or on the surface of the negative electrode active material layer 14a except for the portion extending as the negative electrode current collecting tab 14c. That is, the negative electrode active material layer 14a may be arranged on both sides of the negative electrode current collector 14b, or the negative electrode active material layer 14a may be arranged only on one side of the negative electrode current collector 14b. good. Then, the negative electrode current collector 14c extends from the end (eg, upper end) of the negative electrode layer 14 in a predetermined direction (eg, upward) at a position that does not overlap the positive electrode current collector tab 12b. The negative electrode current collecting tab 14c is preferably provided at a position not overlapping the positive electrode current collecting tab 12b. The negative electrode collector tab 14c may be made of the same material as the negative electrode collector 14b, or may be made of a different material. In any case, such a tab may be supplemented with another current collecting member such as a tab lead to extend the negative electrode current collecting tab 14c. In any case, it is preferable that a plurality of negative electrode current collecting tabs 14c are joined to one negative electrode terminal 28 or a member electrically connected thereto to constitute the negative electrode tab joining portion 30. FIG. By doing so, current collection can be performed with good space efficiency with a simple configuration, and connection to the negative electrode terminal 28 is facilitated. The bonding between the negative electrode current collecting tab 14c and a member such as a terminal may be performed using a known bonding method such as ultrasonic welding (ultrasonic bonding), laser welding, TIG welding, resistance welding, or the like.
 負極集電体14bは複数(又は多数)の開口部を有する金属板を用いるのが、負極活物質を集電体に固定する観点から好ましい。そのような負極集電体14bの好ましい例としては、エキスパンドメタル、パンチングメタル、及びメタルメッシュ、及びそれらの組合せが挙げられ、より好ましくは、銅エキスパンドメタル、銅パンチングメタル、及びそれらの組合せ、特に好ましくは銅エキスパンドメタルが挙げられる。この場合、例えば、銅エキスパンドメタル上に、酸化亜鉛粉末及び/又は亜鉛粉末、並びに所望によりバインダー(例えばポリテトラフルオロエチレン粒子)を含んでなる混合物を塗布して負極/負極集電体からなる負極板を好ましく作製することができる。その際、乾燥後の負極板(すなわち負極/負極集電体)にプレス処理を施して、電極活物質の脱落防止や電極密度の向上を図ることも好ましい。なお、エキスパンドメタルとは、金属板をエキスパンド製造機によって千鳥状に切れ目を入れながら押し広げ、その切れ目を菱形や亀甲形に成形したメッシュ状の金属板である。パンチングメタルは、打抜金網(perforated metal)とも呼ばれ、金属板に打ち抜き加工により孔を開けたものである。メタルメッシュとは、金網構造の金属製品であり、エキスパンドメタルやパンチングメタルとは異なるものである。 From the viewpoint of fixing the negative electrode active material to the current collector, it is preferable to use a metal plate having a plurality (or a large number) of openings as the negative electrode current collector 14b. Preferred examples of such a negative electrode current collector 14b include expanded metal, punched metal, metal mesh, and combinations thereof, more preferably copper expanded metal, copper punched metal, and combinations thereof, especially Copper expanded metal is preferred. In this case, for example, a mixture comprising zinc oxide powder and/or zinc powder and, if desired, a binder (for example, polytetrafluoroethylene particles) is applied onto a copper expanded metal to form a negative electrode composed of a negative electrode/a negative electrode current collector. Plates can be preferably made. At that time, it is also preferable to press the dried negative electrode plate (that is, the negative electrode/negative electrode current collector) to prevent the electrode active material from falling off and to improve the electrode density. The expanded metal is a mesh-like metal plate obtained by expanding a metal plate with zigzag cuts by an expander and forming the cuts into a diamond shape or a tortoiseshell shape. A perforated metal is also called a perforated metal, and is made by punching holes in a metal plate. A metal mesh is a metal product with a wire mesh structure, and is different from expanded metal and perforated metal.
 セパレータ16は、水酸化物イオン伝導セパレータであるのが好ましい。水酸化物イオン伝導セパレータ16は、正極層12及び負極層14を水酸化物イオン伝導可能に隔離するように設けられる。例えば、図6に示されるように、負極層14が、水酸化物イオン伝導セパレータ16で覆われ又は包み込まれる構成としてもよい。こうすることで、水酸化物イオン伝導セパレータ16と電池容器との煩雑な封止接合を不要にして、亜鉛デンドライト伸展を防止可能な亜鉛二次電池(特にその積層電池)を極めて簡便にかつ高い生産性で作製することが可能となる。もっとも、正極層12又は負極層14の一面側に水酸化物イオン伝導セパレータ16が配置されるシンプルな構成であってもよい。 The separator 16 is preferably a hydroxide ion conducting separator. A hydroxide ion-conducting separator 16 is provided to separate the positive electrode layer 12 and the negative electrode layer 14 so as to conduct hydroxide ions. For example, as shown in FIG. 6, the negative electrode layer 14 may be covered or wrapped with a hydroxide ion conductive separator 16 . This eliminates the need for complicated sealing bonding between the hydroxide ion conductive separator 16 and the battery container, and makes it possible to manufacture a zinc secondary battery (especially a laminated battery thereof) that can prevent zinc dendrite extension in a very simple and costly manner. It becomes possible to produce with productivity. However, a simple configuration in which the hydroxide ion conductive separator 16 is arranged on one side of the positive electrode layer 12 or the negative electrode layer 14 may also be used.
 水酸化物イオン伝導セパレータ16は、正極層12及び負極層14を水酸化物イオン伝導可能に隔離可能なセパレータであれば特に限定されないが、典型的には、水酸化物イオン伝導固体電解質を含み、専ら水酸化物イオン伝導性を利用して水酸化物イオンを選択的に通すセパレータである。好ましい水酸化物イオン伝導固体電解質は、層状複水酸化物(LDH)及び/又はLDH様化合物である。したがって、水酸化物イオン伝導セパレータ16はLDHセパレータであるのが好ましい。本明細書において「LDHセパレータ」は、LDH及び/又はLDH様化合物を含むセパレータであって、専らLDH及び/又はLDH様化合物の水酸化物イオン伝導性を利用して水酸化物イオンを選択的に通すものとして定義される。本明細書において「LDH様化合物」は、LDHとは呼べないかもしれないがLDHに類する層状結晶構造の水酸化物及び/又は酸化物であり、LDHの均等物といえるものである。もっとも、広義の定義として、「LDH」はLDHのみならずLDH様化合物を包含するものとして解釈することも可能である。LDHセパレータは多孔質基材と複合化されているのが好ましい。したがって、LDHセパレータは、多孔質基材を更に含み、LDH及び/又はLDH様化合物が多孔質基材の孔に充填された形態で多孔質基材と複合化されているのが好ましい。すなわち、好ましいLDHセパレータは、水酸化物イオン伝導性及びガス不透過性を呈するように(それ故水酸化物イオン伝導性を呈するLDHセパレータとして機能するように)LDH及び/又はLDH様化合物が多孔質基材の孔を塞いでいる。多孔質基材は高分子材料製であるのが好ましく、LDHは高分子材料製多孔質基材の厚さ方向の全域にわたって組み込まれているのが特に好ましい。例えば、特許文献1に開示されるような公知のLDHセパレータが使用可能である。LDHセパレータの厚さは、5~100μmが好ましく、より好ましくは5~80μm、さらに好ましくは5~60μm、特に好ましくは5~40μmである。 The hydroxide ion-conducting separator 16 is not particularly limited as long as it can separate the positive electrode layer 12 and the negative electrode layer 14 so that hydroxide ions can be conducted, but typically includes a hydroxide ion-conducting solid electrolyte. , is a separator that allows hydroxide ions to pass through exclusively by utilizing hydroxide ion conductivity. Preferred hydroxide ion-conducting solid electrolytes are layered double hydroxides (LDH) and/or LDH-like compounds. Therefore, hydroxide ion conducting separator 16 is preferably an LDH separator. As used herein, the term "LDH separator" refers to a separator containing LDH and/or LDH-like compounds, which selectively removes hydroxide ions by exclusively utilizing the hydroxide ion conductivity of LDH and/or LDH-like compounds. defined as passing through In the present specification, "LDH-like compounds" are hydroxides and/or oxides of layered crystal structure similar to LDH, although they may not be called LDH, and can be said to be equivalents of LDH. However, as a broad definition, "LDH" can be interpreted as including not only LDH but also LDH-like compounds. The LDH separator is preferably composited with the porous substrate. Therefore, it is preferable that the LDH separator further includes a porous substrate, and the LDH and/or the LDH-like compound are combined with the porous substrate in a form in which the pores of the porous substrate are filled. That is, preferred LDH separators are those in which LDH and/or LDH-like compounds are porous so as to exhibit hydroxide ion conductivity and gas impermeability (and thus function as LDH separators exhibiting hydroxide ion conductivity). block the pores of the base material. The porous substrate is preferably made of a polymeric material, and it is particularly preferable that the LDH is incorporated throughout the entire thickness direction of the porous substrate made of polymeric material. For example, a known LDH separator as disclosed in Patent Document 1 can be used. The thickness of the LDH separator is preferably 5-100 μm, more preferably 5-80 μm, still more preferably 5-60 μm, particularly preferably 5-40 μm.
 図1~6に示されるように、正極層12、負極層14、及びセパレータ16の各々は縦向きに配置されて、それにより多層セルが横方向に多層化されているのが好ましい。また、正極集電タブ12b及び負極集電タブ14cが上向きに延在しているのが好ましい。 As shown in FIGS. 1 to 6, each of the positive electrode layer 12, the negative electrode layer 14, and the separator 16 is preferably arranged vertically so that the multi-layer cell is multi-layered in the horizontal direction. Moreover, it is preferable that the positive electrode current collecting tab 12b and the negative electrode current collecting tab 14c extend upward.
 電極積層体11は保液部材17をさらに含んでいてもよい。保液部材17は、正極層12及び/又は負極層14に接触する位置に設けられるのが好ましい。例えば、正極層12及び負極層14の間に、水酸化物イオン伝導セパレータ16のみならず、保液部材17が介在されていてもよい。そして、図6に示されるように、正極層12及び/又は負極層14が保液部材17で覆われる又は包み込まれているのが好ましい。もっとも、正極層12又は負極層14の一面側に保液部材17が配置するシンプルな構成であってもよい。いずれにしても、保液部材17を介在させることで、正極層12及び/負極層14と水酸化物イオン伝導セパレータ16の間に電解液18を万遍なく存在させることができ、正極層12及び/負極層14と水酸化物イオン伝導セパレータ16との間における水酸化物イオンの授受を効率良く行うことができる。保液部材17は電解液18を保持可能な部材であれば特に限定されないが、シート状の部材であるのが好ましい。保液部材17の好ましい例としては不織布、吸水性樹脂、保液性樹脂、多孔シート、各種スペーサが挙げられるが、特に好ましくは、低コストで性能の良い電極構造体を作製できる点で不織布である。保液部材17ないし不織布は10~200μmの厚さを有するのが好ましく、より好ましくは20~200μmであり、さらに好ましくは20~150μmであり、特に好ましくは20~100μmであり、最も好ましくは20~60μmである。上記範囲内の厚さであると、正極構造体及び/又は負極構造体の全体サイズを無駄無くコンパクトに抑えながら、保液部材17内に十分な量の電解液18を保持させることができる。 The electrode laminate 11 may further include a liquid retaining member 17 . The liquid retaining member 17 is preferably provided at a position in contact with the positive electrode layer 12 and/or the negative electrode layer 14 . For example, not only the hydroxide ion conductive separator 16 but also the liquid retaining member 17 may be interposed between the positive electrode layer 12 and the negative electrode layer 14 . Then, as shown in FIG. 6, it is preferable that the positive electrode layer 12 and/or the negative electrode layer 14 is covered or wrapped with the liquid retaining member 17 . However, a simple configuration in which the liquid retaining member 17 is arranged on one surface side of the positive electrode layer 12 or the negative electrode layer 14 may be employed. In any case, by interposing the liquid retaining member 17, the electrolytic solution 18 can be evenly present between the positive electrode layer 12 and/or the negative electrode layer 14 and the hydroxide ion conductive separator 16. and/The transfer of hydroxide ions between the negative electrode layer 14 and the hydroxide ion conductive separator 16 can be performed efficiently. The liquid holding member 17 is not particularly limited as long as it can hold the electrolytic solution 18, but is preferably a sheet-like member. Preferred examples of the liquid-retaining member 17 include non-woven fabric, water-absorbing resin, liquid-retaining resin, porous sheet, and various spacers, but non-woven fabric is particularly preferable because it enables the production of an electrode structure with good performance at low cost. be. The liquid retaining member 17 or the nonwoven fabric preferably has a thickness of 10 to 200 μm, more preferably 20 to 200 μm, still more preferably 20 to 150 μm, particularly preferably 20 to 100 μm, most preferably 20 μm. ~60 μm. When the thickness is within the above range, a sufficient amount of the electrolytic solution 18 can be retained in the liquid retaining member 17 while keeping the overall size of the positive electrode structure and/or the negative electrode structure compact without waste.
 正極層12及び/又は負極層14が、保液部材17及び/又はセパレータ16で覆われる又は包み込まれる場合、それらの外縁が(正極集電タブ12bや負極集電タブ14cが延出される辺を除いて)閉じられているのが好ましい。この場合、保液部材17及び/又はセパレータ16の外縁の閉じられた辺が、保液部材17及び/又はセパレータ16の折り曲げや、保液部材17同士及び/又はセパレータ16同士の封止により実現されているのが好ましい。封止手法の好ましい例としては、接着剤、熱溶着、超音波溶着、接着テープ、封止テープ、及びそれらの組合せが挙げられる。特に、高分子材料製の多孔質基材を含むLDHセパレータはフレキシブル性を有するが故に折り曲げやすいとの利点を有するため、LDHセパレータを長尺状に形成してそれを折り曲げることで、外縁の1辺が閉じた状態を形成するのが好ましい。熱溶着及び超音波溶着は市販のヒートシーラー等を用いて行えばよいが、LDHセパレータ同士の封止の場合、外周部分を構成するLDHセパレータの間に保液部材17の外周部分を挟み込むようにして熱溶着及び超音波溶着を行うのが、より効果的な封止を行える点で好ましい。一方、接着剤、接着テープ及び封止テープは市販品を用いればよいが、アルカリ電解液中での劣化を防ぐため、耐アルカリ性を有する樹脂を含むものが好ましい。かかる観点から、好ましい接着剤の例としては、エポキシ樹脂系接着剤、天然樹脂系接着剤、変性オレフィン樹脂系接着剤、及び変成シリコーン樹脂系接着剤が挙げられ、中でもエポキシ樹脂系接着剤が耐アルカリ性に特に優れる点でより好ましい。エポキシ樹脂系接着剤の製品例としては、エポキシ接着剤Hysol(登録商標)(Henkel製)が挙げられる。 When the positive electrode layer 12 and/or the negative electrode layer 14 are covered or wrapped with the liquid retaining member 17 and/or the separator 16, their outer edges (sides from which the positive electrode current collecting tab 12b and the negative electrode current collecting tab 14c extend) except) preferably closed. In this case, the liquid-retaining member 17 and/or the separator 16 has a closed outer edge by bending the liquid-retaining member 17 and/or the separator 16 or by sealing the liquid-retaining members 17 and/or the separators 16 together. preferably. Preferred examples of sealing techniques include adhesives, heat welding, ultrasonic welding, adhesive tapes, sealing tapes, and combinations thereof. In particular, an LDH separator containing a porous substrate made of a polymeric material has the advantage of being easy to bend because of its flexibility. It is preferred to form closed sides. Thermal welding and ultrasonic welding may be performed using a commercially available heat sealer or the like. However, in the case of sealing between LDH separators, the outer peripheral portion of the liquid retaining member 17 should be sandwiched between the LDH separators forming the outer peripheral portion. It is preferable to perform heat welding and ultrasonic welding by using the same method because more effective sealing can be performed. On the other hand, commercially available adhesives, adhesive tapes, and sealing tapes may be used, but those containing an alkali-resistant resin are preferable in order to prevent deterioration in an alkaline electrolyte. From this point of view, examples of preferable adhesives include epoxy resin adhesives, natural resin adhesives, modified olefin resin adhesives, and modified silicone resin adhesives. It is more preferable because it is particularly excellent in alkalinity. A product example of the epoxy resin-based adhesive includes the epoxy adhesive Hysol (registered trademark) (manufactured by Henkel).
 セパレータ16の上端となる1辺の外縁は開放されているのが好ましい。この上部開放型の構成はニッケル亜鉛電池等における過充電時の問題への対処を可能とするものである。すなわち、ニッケル亜鉛電池等において過充電されると正極層12で酸素(O)が発生しうるが、LDHセパレータは水酸化物イオンしか実質的に通さないといった高度な緻密性を有するが故に、Oを通さない。この点、上部開放型の構成によれば、箱型ケース20内において、Oを正極層12の上方に逃がして上部開放部を介して負極層14側へと送り込むことができ、それによってOで負極活物質のZnを酸化してZnOへと戻すことができる。このような酸素反応サイクルを経ることで、上部開放型の電極積層体11を密閉型亜鉛二次電池に用いることで過充電耐性を向上させることができる。なお、セパレータ16や保液部材17の上端となる1辺の外縁が閉じられている場合であっても、閉じられた外縁の一部に通気孔を設けることで上記開放型の構成と同様の効果が期待できる。例えば、LDHセパレータの上端となる1辺の外縁を封止した後に通気孔を開けてもよいし、封止の際、通気孔が形成されるように上記外縁の一部を非封止としてもよい。 It is preferable that the outer edge of one side, which is the upper end of the separator 16, is open. This open-top configuration makes it possible to deal with the problem of overcharging in nickel-zinc batteries and the like. That is, when a nickel-zinc battery or the like is overcharged, oxygen (O 2 ) may be generated in the positive electrode layer 12, but the LDH separator has a high degree of denseness that substantially allows only hydroxide ions to pass. Impervious to O2 . In this respect, according to the configuration of the top open type, in the box-shaped case 20, O 2 can escape above the positive electrode layer 12 and be sent to the negative electrode layer 14 side through the upper open portion, thereby In 2 , Zn of the negative electrode active material can be oxidized and returned to ZnO. Through such an oxygen reaction cycle, overcharge resistance can be improved by using the electrode laminate 11 with an open top in a sealed zinc secondary battery. Note that even when the outer edge of one side, which is the upper end of the separator 16 or the liquid retaining member 17, is closed, by providing a ventilation hole in a part of the closed outer edge, the same structure as the open type can be obtained. expected to be effective. For example, a ventilation hole may be opened after sealing the outer edge of one side, which is the upper end of the LDH separator, or a part of the outer edge may be unsealed so that a ventilation hole is formed during sealing. good.
 電解液18はアルカリ金属水酸化物水溶液を含むのが好ましい。図6において電解液18は局所的にしか図示されていないが、これは正極層12及び負極層14の全体に行き渡っているためである。アルカリ金属水酸化物の例としては、水酸化カリウム、水酸化ナトリウム、水酸化リチウム、水酸化アンモニウム等が挙げられるが、水酸化カリウムがより好ましい。亜鉛及び/又は酸化亜鉛の自己溶解を抑制するために、電解液中に酸化亜鉛、水酸化亜鉛等の亜鉛化合物を添加してもよい。前述のとおり、電解液は正極活物質及び/又は負極活物質と混合させて正極合材及び/又は負極合材の形態で存在させてもよい。また、電解液の漏洩を防止するために電解液をゲル化してもよい。ゲル化剤としては電解液の溶媒を吸収して膨潤するようなポリマーを用いるのが望ましく、ポリエチレンオキサイド、ポリビニルアルコール、ポリアクリルアミドなどのポリマーやデンプンが用いられる。 The electrolytic solution 18 preferably contains an aqueous alkali metal hydroxide solution. The electrolytic solution 18 is only shown locally in FIG. Examples of alkali metal hydroxides include potassium hydroxide, sodium hydroxide, lithium hydroxide and ammonium hydroxide, with potassium hydroxide being more preferred. Zinc compounds such as zinc oxide and zinc hydroxide may be added to the electrolytic solution in order to suppress self-dissolution of zinc and/or zinc oxide. As described above, the electrolyte may be mixed with the positive electrode active material and/or the negative electrode active material to exist in the form of a positive electrode mixture and/or a negative electrode mixture. Also, the electrolyte may be gelled to prevent leakage of the electrolyte. As the gelling agent, it is desirable to use a polymer that absorbs the solvent of the electrolytic solution and swells, and polymers such as polyethylene oxide, polyvinyl alcohol and polyacrylamide, and starch are used.
 蓋部20eには、箱型ケース20内のガスを所定の作動圧以上で放出可能な放圧弁32が設けられるのが好ましい。この場合、脆弱部(凹部20a)の破裂圧(又は作動圧)が放圧弁32の作動圧よりも高いのが好ましい。こうすることで、放圧弁32の機能を損なうことなく、放圧弁32ではもはや対処しきれない程度に内圧上昇が生じた異常事態にのみ脆弱部(凹部20a)が破壊可能となる。すなわち、放圧弁32は通常の電池運転時に徐々に溜まったガスを排出するといったような緩やかな圧力変化に対処するものであるのに対し、脆弱部(凹部20a)は異常事態における急激な圧力上昇時の異常圧力を放出するためのものである。 It is preferable that the lid portion 20e is provided with a pressure release valve 32 capable of releasing the gas inside the box-shaped case 20 at a predetermined operating pressure or higher. In this case, it is preferable that the bursting pressure (or operating pressure) of the fragile portion (recess 20 a ) is higher than the operating pressure of the pressure release valve 32 . By doing so, the fragile portion (recess 20a) can be destroyed only in an abnormal situation in which the internal pressure rises to the extent that the pressure relief valve 32 cannot cope with it, without impairing the function of the pressure relief valve 32 . That is, the pressure relief valve 32 copes with gradual pressure changes such as gradually discharging accumulated gas during normal battery operation, whereas the fragile portion (recess 20a) responds to a sudden pressure rise in an abnormal situation. It is for releasing the abnormal pressure of time.
 二次電池モジュール
 複数個の二次電池10を用いて二次電池モジュールを構成するのが好ましい。図7に、二次電池モジュールの好ましい態様が示される。図7に示される二次電池モジュール100は、モジュールケース102と、複数個の二次電池10とを含む。モジュールケース102は、金属製の蓋付容器である。複数個の二次電池10は、モジュールケース102内に互いに平行に(例えば長手側壁部20c同士が互いに向かい合うように)収容される。このように金属製の蓋付容器であるモジュールケース102内に二次電池10を収容することで、二次電池10(例えばニッケル亜鉛二次電池)内の水素燃焼により脆弱部(凹部20a)が破裂したとしても、破裂に伴う様々なトラブル(内圧の急激な上昇、破片の散乱、電解液の漏洩、出火、異常発熱等)を全てモジュールケース102内で食い止めることができ、モジュールケース102外の安全性を十分に確保することができる。
Secondary Battery Module It is preferable to construct a secondary battery module using a plurality of secondary batteries 10 . FIG. 7 shows a preferred embodiment of a secondary battery module. A secondary battery module 100 shown in FIG. 7 includes a module case 102 and a plurality of secondary batteries 10 . The module case 102 is a lidded container made of metal. A plurality of secondary batteries 10 are accommodated in the module case 102 parallel to each other (for example, the long side walls 20c face each other). By housing the secondary battery 10 in the module case 102, which is a metal container with a lid, hydrogen combustion in the secondary battery 10 (for example, a nickel-zinc secondary battery) causes the fragile portion (recess 20a) to form. Even if the module ruptures, various troubles associated with the rupture (rapid rise in internal pressure, scattering of fragments, electrolyte leakage, fire, abnormal heat generation, etc.) can all be prevented within the module case 102. Safety can be sufficiently ensured.
 図2を参照して前述したように、複数個の箱型ケース20が、それぞれ同じ側の面(例えば短手側壁部20dの一方の面)に筋状の凹部20aを有しているのが好ましい。また、筋状の凹部20aを有する面と向かい合うモジュールケース102の側壁が補強されているのが好ましい。このように筋状の凹部20aを所定の位置に決めておくことで、筋状の凹部20aに対応するモジュールケース102の側壁のみを凹部20aの破裂に備えて補強すれば足りる。したがって、低コストで安全性の高い二次電池モジュール100を提供することができる。 As described above with reference to FIG. 2, each of the plurality of box-shaped cases 20 has the streaky recess 20a on the same side surface (for example, one surface of the short side wall portion 20d). preferable. Moreover, it is preferable that the side wall of the module case 102 facing the surface having the streak-like recessed portion 20a is reinforced. By positioning the streak-like recesses 20a at predetermined positions, it is sufficient to reinforce only the side walls of the module case 102 corresponding to the streak-like recesses 20a in case the recesses 20a burst. Therefore, the secondary battery module 100 can be provided at low cost and with high safety.
 凹部20aの破裂に伴う内圧上昇をモジュールケース102内で効果的に食い止める観点から、モジュールケース102(特に凹部20aと向かい合う側壁又は上蓋)の破裂圧は、凹部20aの破裂圧よりも高いのが好ましい。こうすることで、仮にモジュールケース102内で1個の二次電池10(例えばニッケル亜鉛二次電池)の凹部20aが破裂を引き起こす水素燃焼が発生したとしても、破裂に伴う様々なトラブル(内圧の急激な上昇、破片の散乱、電解液の漏洩、出火、異常発熱等)を全てモジュールケース102内で(特に凹部20aと向かい合う側壁又は上蓋102b)で確実に食い止めることができ、モジュールケース102外の安全性を十分に確保することができる。 From the viewpoint of effectively stopping the increase in internal pressure within the module case 102 due to the bursting of the recess 20a, the bursting pressure of the module case 102 (especially the side wall or the upper lid facing the recess 20a) is preferably higher than the bursting pressure of the recess 20a. . By doing so, even if hydrogen combustion occurs to cause the recess 20a of one secondary battery 10 (for example, a nickel-zinc secondary battery) to explode in the module case 102, various troubles (increased internal pressure) due to the explosion will occur. Rapid rise, scattering of fragments, leakage of electrolyte, fire, abnormal heat generation, etc.) can be reliably prevented from occurring inside the module case 102 (in particular, the side wall facing the recess 20a or the upper lid 102b). Safety can be sufficiently ensured.
 モジュールケース102は金属製の蓋付容器であり、容器本体102a及び上蓋102bを備える。すなわち、モジュールケース102は十分な耐圧性、耐熱性及び強度を確保するため、容器本体102aも上蓋102bも金属板で構成される。特に、上蓋102bは凹部20aの近くに配置されることになるため、凹部20aの破裂時の圧力及び温度に十分耐えうる耐圧性、耐熱性及び強度が望まれる。かかる観点から、上蓋102bを構成する金属板の好ましい例としては、鋼板やステンレス鋼板が挙げられる。また、上蓋102bを構成する金属板の厚さは、好ましくは1.0~3.0mm、より好ましくは1.5~2.5mmである。一方、容器本体102aを構成する金属板の好ましい例としては、鋼板やステンレス鋼板が挙げられる。また、容器本体102aを構成する金属板の厚さは、所望の耐圧性ないし強度を確保できれば許容可能な重量との兼ね合いで適宜決定すればよいが、好ましくは0.8~2.5mm、より好ましくは1.0~2.0mmである。凹部20aの破裂に伴う内圧上昇をモジュールケース102内で食い止める観点から、上蓋102bは容器本体102aにしっかりと固定されていることが望まれる。上蓋102bの容器本体への固定はボルトナット結合により行うのが、十分な耐圧性を確保しながら必要な時(例えば二次電池10の交換やメンテナンス時)に上蓋102bを外すことができる点で好ましい。モジュールケース102は蓋付容器とはいえ、内圧を外に逃がせるようにするため、完全な密閉容器にしないことが望まれる。例えば、モジュールケース102は、二次電池10の上方の内部空間に面した又は連通した箇所に内圧を外に逃がす構造を有するのが好ましい。 The module case 102 is a lidded container made of metal, and includes a container body 102a and an upper lid 102b. That is, in order to secure sufficient pressure resistance, heat resistance, and strength, the module case 102 includes both the container main body 102a and the upper lid 102b made of a metal plate. In particular, since the upper cover 102b is arranged near the recess 20a, it is desired to have sufficient pressure resistance, heat resistance and strength to withstand the pressure and temperature when the recess 20a bursts. From this point of view, preferred examples of the metal plate forming the upper lid 102b include a steel plate and a stainless steel plate. Moreover, the thickness of the metal plate forming the upper lid 102b is preferably 1.0 to 3.0 mm, more preferably 1.5 to 2.5 mm. On the other hand, preferred examples of the metal plate forming the container main body 102a include a steel plate and a stainless steel plate. Further, the thickness of the metal plate forming the container body 102a may be appropriately determined in consideration of the allowable weight as long as the desired pressure resistance or strength can be secured. It is preferably 1.0 to 2.0 mm. From the viewpoint of preventing an increase in internal pressure within the module case 102 due to the rupture of the recess 20a, it is desired that the upper lid 102b is firmly fixed to the container body 102a. The fixing of the upper lid 102b to the container body is performed by bolt-nut connection, because the upper lid 102b can be removed when necessary (for example, during replacement or maintenance of the secondary battery 10) while ensuring sufficient pressure resistance. preferable. Although the module case 102 is a container with a lid, it is desirable not to make it a completely closed container so that the internal pressure can escape to the outside. For example, the module case 102 preferably has a structure that releases internal pressure to the outside at a location that faces or communicates with the internal space above the secondary battery 10 .
 モジュールケース102内には二次電池10を冷却するために空気を流すための流路が形成されることが望ましい。好ましくは、モジュールケース102の一端に吸気口102cが設けられる一方、モジュールケース102の他端には排気口102dが設けられ、排気口102dにはファン108が取り付けられる。ファン108は小型の換気扇でありうる。この構成によれば、ファン108を作動させることによりモジュールケース102内を空気が流れて、二次電池10を冷却することができる。二次電池10の冷却を効率的に行うためには、モジュールケース102内に遮蔽板104を設けて、吸気口102cから二次電池10の下方に空気を供給する吸気流路110と、二次電池10間の隙間を通って上方に抜けた空気を排気口102dへと導く排気流路112とを区画するのが好ましい。この場合、二次電池10間の隙間も流路を構成することになるが、箱型ケース20がリブRを有する場合、リブRがスペーサをなし、それにより縦方向の通気孔を形成することができ、優れた放熱性を確保することができる。排気流路112を確保しかつ妨げないために、箱型ケース20の蓋部28eは上蓋102bから所定距離離れているのが好ましく、好ましい離間距離は10~50mm、より好ましくは20~30mmである。同様に、吸気流路110を確保しかつ妨げないために、箱型ケース20の底部28bは容器本体102aの底面から所定距離離れているのが好ましく、好ましい離間距離は3~20mm、より好ましくは5~15mmである。箱型ケース20の底部28bをモジュールケース102の底面よりも高く保持するために、モジュールケース102の底面にフレームやレール等の通気可能なスペーサを設け、その上に二次電池10(すなわち箱型ケース20)を配置するのが好ましい。 It is desirable to form a flow path for flowing air in order to cool the secondary battery 10 in the module case 102 . Preferably, one end of the module case 102 is provided with an intake port 102c, while the other end of the module case 102 is provided with an exhaust port 102d, and a fan 108 is attached to the exhaust port 102d. Fan 108 may be a small ventilation fan. According to this configuration, by operating fan 108 , air flows through module case 102 and secondary battery 10 can be cooled. In order to efficiently cool the secondary battery 10, a shield plate 104 is provided in the module case 102, an air intake passage 110 for supplying air from an air intake 102c to the lower side of the secondary battery 10, and a secondary It is preferable to separate the exhaust passage 112 that guides the air that escapes upward through the gaps between the batteries 10 to the exhaust port 102d. In this case, the gaps between the secondary batteries 10 also constitute flow paths, but if the box-shaped case 20 has ribs R, the ribs R serve as spacers, thereby forming vertical ventilation holes. , and excellent heat dissipation can be ensured. In order to secure the exhaust flow path 112 and not block it, the lid portion 28e of the box-shaped case 20 is preferably separated from the upper lid 102b by a predetermined distance, preferably 10 to 50 mm, more preferably 20 to 30 mm. . Similarly, in order to secure the air intake channel 110 and not block it, the bottom 28b of the box-shaped case 20 is preferably separated from the bottom surface of the container body 102a by a predetermined distance, preferably 3 to 20 mm, more preferably 5 to 15 mm. In order to hold the bottom portion 28b of the box-shaped case 20 higher than the bottom surface of the module case 102, a ventilable spacer such as a frame or rail is provided on the bottom surface of the module case 102, and the secondary battery 10 (that is, the box-shaped case) is placed thereon. A case 20) is preferably arranged.
 隣り合う二次電池10(すなわち箱型ケース20)間には延焼防止材106が設けられるのが好ましい。箱型ケース20は樹脂製であるため、箱型ケース20同士が隣接していると1個の箱型ケース20で出火した場合に他の箱型ケース20に燃え移る可能性がある。しかし、延焼防止材106が隣り合う箱型ケース20間に介在することで、そのような延焼を抑制することができる。この延焼抑制効果をより効果的に実現するためには、延焼防止材106の側端がモジュールケース102の側壁に到達し、それにより隣り合う箱型ケース20が互いに延焼不能に隔離されている構成にするのが特に好ましい。ただし、延焼防止材106の上端はモジュールケース102の上蓋102bに達しておらず、二次電池10と概ね同じ高さに設定され、モジュールケース102内の排気流路112を妨げないように構成されるのが好ましい。同様に、延焼防止材106の下端は容器本体102aの底面に達しておらず、二次電池10の底面と同じ高さに設定され、モジュールケース102内の吸気流路110を妨げないように構成されるのが好ましい。延焼防止材106としては、公知の様々な延焼防止材を用いることができ、例えばエンボスマイカ板である。 A fire spread prevention material 106 is preferably provided between adjacent secondary batteries 10 (that is, box-shaped cases 20). Since the box-shaped cases 20 are made of resin, if the box-shaped cases 20 are adjacent to each other, if one box-shaped case 20 catches fire, the other box-shaped cases 20 may catch fire. However, such fire spread can be suppressed by interposing the fire spread prevention material 106 between the adjacent box-shaped cases 20 . In order to realize this fire spread suppression effect more effectively, the side ends of the fire spread prevention material 106 reach the side walls of the module case 102, thereby separating the adjacent box-shaped cases 20 from each other so that the fire cannot spread. is particularly preferred. However, the upper end of the fire spread prevention material 106 does not reach the upper lid 102b of the module case 102, and is set at approximately the same height as the secondary battery 10 so as not to obstruct the exhaust flow path 112 in the module case 102. preferably Similarly, the lower end of the fire spread prevention material 106 does not reach the bottom surface of the container body 102a, and is set at the same height as the bottom surface of the secondary battery 10, so as not to block the intake flow path 110 inside the module case 102. preferably. As the fire spread prevention material 106, various known fire spread prevention materials can be used, such as an embossed mica plate.

Claims (13)

  1.  電極積層体と、
     電解液と、
     前記電極積層体及び前記電解液が収容される、樹脂製の箱型ケースと、
    を備えた、二次電池であって、
     前記箱型ケースが筋状の凹部を有し、前記筋状の凹部が、前記電池内で発生するガスによって内圧が過度に上昇した際に優先的かつ局所的に破壊可能な脆弱部として機能する、二次電池。
    an electrode laminate;
    an electrolyte;
    A box-shaped case made of resin that accommodates the electrode laminate and the electrolytic solution;
    A secondary battery comprising
    The box-shaped case has a streak-shaped recess, and the streak-shaped recess functions as a fragile portion that can be preferentially and locally destroyed when the internal pressure is excessively increased by the gas generated in the battery. , secondary battery.
  2.  前記筋状の凹部がウェルドラインである、請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the streak-shaped recess is a weld line.
  3.  前記箱型ケースが、底部と、前記電極積層体と平行な1対の長手側壁部と、前記電極積層体と垂直な1対の短手側壁部と、蓋部とを有し、前記筋状の凹部が、前記短手側壁部の少なくとも一方、前記長手側壁部の少なくとも一方、又は前記蓋部に設けられる、請求項1又は2に記載の二次電池。 The box-shaped case has a bottom, a pair of long side walls parallel to the electrode laminate, a pair of short side walls perpendicular to the electrode laminate, and a lid, 3. The secondary battery according to claim 1, wherein the recess is provided in at least one of the short side wall portions, at least one of the long side wall portions, or the lid portion.
  4.  前記二次電池が、ニッケル水素二次電池、鉛蓄電池、及びアルカリ二次電池からなる群から選択される、請求項1又は2に記載の二次電池。 The secondary battery according to claim 1 or 2, wherein the secondary battery is selected from the group consisting of nickel-hydrogen secondary batteries, lead-acid batteries, and alkaline secondary batteries.
  5.  前記二次電池がアルカリ二次電池であり、前記アルカリ二次電池がニッケル亜鉛二次電池である、請求項4に記載の二次電池。 The secondary battery according to claim 4, wherein said secondary battery is an alkaline secondary battery, and said alkaline secondary battery is a nickel-zinc secondary battery.
  6.  前記電極積層体が、正極層、負極層、並びに前記正極層及び前記負極層を互いに隔離するセパレータを含む、請求項1又は2に記載の二次電池。 The secondary battery according to claim 1 or 2, wherein the electrode laminate includes a positive electrode layer, a negative electrode layer, and a separator that separates the positive electrode layer and the negative electrode layer from each other.
  7.  前記電極積層体が、前記正極層、前記セパレータ及び前記負極層を含む単位セルを複数個有し、それにより複数個の前記単位セルが全体として多層セルをなしている、請求項6に記載の二次電池。 7. The electrode laminate according to claim 6, wherein the electrode laminate has a plurality of unit cells each including the positive electrode layer, the separator, and the negative electrode layer, whereby the plurality of unit cells form a multi-layer cell as a whole. secondary battery.
  8.  前記二次電池が、前記箱型ケース内のガスを所定の作動圧以上で放出可能な放圧弁をさらに備える、請求項1又は2に記載の二次電池。 The secondary battery according to claim 1 or 2, further comprising a pressure release valve capable of releasing gas in the box-shaped case at a predetermined operating pressure or higher.
  9.  前記脆弱部の破裂圧が前記放圧弁の作動圧よりも高い、請求項8に記載の二次電池。 The secondary battery according to claim 8, wherein the bursting pressure of said fragile portion is higher than the operating pressure of said pressure relief valve.
  10.  金属製の蓋付容器であるモジュールケースと、
     前記モジュールケース内に互いに平行に収容される、複数個の請求項1又は2に記載の二次電池と、
    を備えた、二次電池モジュール。
    a module case, which is a container with a lid made of metal;
    a plurality of secondary batteries according to claim 1 or 2, which are accommodated in parallel with each other in the module case;
    A secondary battery module with
  11.  複数個の前記箱型ケースが、それぞれ同じ側の面に前記筋状の凹部を有している、請求項10に記載の二次電池モジュール。 11. The secondary battery module according to claim 10, wherein the plurality of box-shaped cases each have the streak-shaped recesses on the same side surface.
  12.  前記筋状の凹部を有する面と向かい合う前記モジュールケースの側壁が補強されている、請求項11に記載の二次電池モジュール。 The secondary battery module according to claim 11, wherein the sidewall of the module case facing the surface having the streaky recess is reinforced.
  13.  前記モジュールケースの破裂圧が前記脆弱部の破裂圧よりも高い、請求項11に記載の二次電池モジュール。 The secondary battery module according to claim 11, wherein the bursting pressure of the module case is higher than the bursting pressure of the fragile portion.
PCT/JP2022/039697 2022-02-25 2022-10-25 Secondary battery and secondary battery module WO2023162333A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022028174 2022-02-25
JP2022-028174 2022-02-25

Publications (1)

Publication Number Publication Date
WO2023162333A1 true WO2023162333A1 (en) 2023-08-31

Family

ID=87765377

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039697 WO2023162333A1 (en) 2022-02-25 2022-10-25 Secondary battery and secondary battery module

Country Status (1)

Country Link
WO (1) WO2023162333A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144279A (en) * 1996-11-07 1998-05-29 Fuji Elelctrochem Co Ltd Explosion-proof structure for rectangular electrochemical element
JP2000315486A (en) * 1999-04-30 2000-11-14 Matsushita Electric Ind Co Ltd Manganese dry battery
JP2020072051A (en) * 2018-11-02 2020-05-07 タイガースポリマー株式会社 Explosion proof valve structure of closed electrochemical device
WO2021024681A1 (en) * 2019-08-06 2021-02-11 日本碍子株式会社 Alkaline secondary battery and alkaline secondary battery module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10144279A (en) * 1996-11-07 1998-05-29 Fuji Elelctrochem Co Ltd Explosion-proof structure for rectangular electrochemical element
JP2000315486A (en) * 1999-04-30 2000-11-14 Matsushita Electric Ind Co Ltd Manganese dry battery
JP2020072051A (en) * 2018-11-02 2020-05-07 タイガースポリマー株式会社 Explosion proof valve structure of closed electrochemical device
WO2021024681A1 (en) * 2019-08-06 2021-02-11 日本碍子株式会社 Alkaline secondary battery and alkaline secondary battery module

Similar Documents

Publication Publication Date Title
KR100959090B1 (en) Pouch type secondary battery with enhanced stability
JP4990975B2 (en) Pouch-type secondary battery with unsealed residue
TWI508350B (en) Layer-built cell, battery pack including layer-built cell, and method for assembling layer-built cell
JP7227381B2 (en) Alkaline secondary battery and alkaline secondary battery module
KR101082196B1 (en) Secondary Battery and Manufacturing Method thereof
JP5776005B2 (en) Sealed secondary battery
US11942650B2 (en) Battery module with multiple secondary batteries
CN103125031A (en) Pouch and pouch type secondary battery
JP7364445B2 (en) alkaline secondary battery
US8765300B2 (en) Battery manufacturing method, battery, pre-welding positive plate manufacturing method, and pre-welding positive plate
WO2023162333A1 (en) Secondary battery and secondary battery module
KR20160147145A (en) Secondary battery and battery module having the same
EP1199759B1 (en) Battery module
JP2019102244A (en) Partition member and battery pack
KR100888286B1 (en) Secondary Battery Having Bottom Insulator with Endothermic Material
KR20070025687A (en) Lithium rechargeable battery
WO2022190460A1 (en) Zinc secondary battery
US20240014449A1 (en) Zinc secondary battery
KR100731426B1 (en) Can type rechargeable battery
JP2023124426A (en) Manufacturing method of secondary battery
WO2024029364A1 (en) Negative electrode plate and zinc secondary battery comprising same
JP2020030951A (en) Power storage module
JP7202407B2 (en) secondary battery
WO2023188490A1 (en) Zinc secondary battery
WO2022195943A1 (en) Zinc secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928851

Country of ref document: EP

Kind code of ref document: A1