WO2023162325A1 - Floating body - Google Patents

Floating body Download PDF

Info

Publication number
WO2023162325A1
WO2023162325A1 PCT/JP2022/037984 JP2022037984W WO2023162325A1 WO 2023162325 A1 WO2023162325 A1 WO 2023162325A1 JP 2022037984 W JP2022037984 W JP 2022037984W WO 2023162325 A1 WO2023162325 A1 WO 2023162325A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
pressure
tank
return line
pressurized tank
Prior art date
Application number
PCT/JP2022/037984
Other languages
French (fr)
Japanese (ja)
Inventor
大祐 山田
一志 桑畑
照裕 本田
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022105488A external-priority patent/JP2023124764A/en
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Publication of WO2023162325A1 publication Critical patent/WO2023162325A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B11/00Interior subdivision of hulls
    • B63B11/04Constructional features of bunkers, e.g. structural fuel tanks, or ballast tanks, e.g. with elastic walls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63HMARINE PROPULSION OR STEERING
    • B63H21/00Use of propulsion power plant or units on vessels
    • B63H21/38Apparatus or methods specially adapted for use on marine vessels, for handling power plant or unit liquids, e.g. lubricants, coolants, fuels or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/30Use of alternative fuels, e.g. biofuels

Definitions

  • Patent Literature 1 discloses a fuel supply system for ships including a supply line for supplying liquefied ammonia stored in an ammonia storage tank to a main engine, and a return line for returning the liquefied ammonia from the main engine to the ammonia storage tank. disclosed.
  • liquefied ammonia returned from the main engine is cooled by a heat exchanger and pressure-reduced by a first Joule-Thomson valve before being returned to the ammonia storage tank.
  • the floating body includes a floating body main body, a fuel tank provided in the floating body main body and storing ammonia, and a first fuel tank in which the ammonia from the fuel tank is stored in a pressurized state
  • an engine a first return line that returns the ammonia that has passed through the engine to the first pressurized tank, and a first pressure regulator that is provided in the first return line and capable of regulating the pressure of the ammonia in the engine.
  • a cooling section provided downstream of the first pressure regulating valve in the first return line to cool the ammonia; and between the first pressure regulating valve and the cooling section in the first return line.
  • a pressure holding unit that holds the pressure of the ammonia in the engine to a pressure that is lower than the pressure of the ammonia in the engine and that can maintain the ammonia in a liquid state.
  • the ammonia in the pipe is handled in a liquid phase instead of a gas-liquid mixture, thereby suppressing the occurrence of problems such as thinning due to erosion, and using a cooling part with low pressure resistance. It is possible to reduce the cost by doing things.
  • FIG. 1 is a side view of a floating body according to a first embodiment of the present disclosure
  • FIG. 1 is a diagram showing a schematic configuration of an ammonia fuel supply system according to a first embodiment of the present disclosure
  • FIG. FIG. 3 is a diagram corresponding to FIG. 2 in the second embodiment of the present disclosure
  • FIG. 3 is a diagram corresponding to FIG. 3 in the third embodiment of the present disclosure
  • FIG. 5 is a diagram corresponding to FIG. 4 in a modification of the third embodiment of the present disclosure
  • FIG. 6 is a diagram corresponding to FIG. 5 in a modification of the fourth embodiment of the present disclosure
  • FIG. 6 is a diagram corresponding to FIG. 5 in a modification of the fifth embodiment of the present disclosure;
  • FIG. 1 is a side view of a floating body according to the first embodiment of the present disclosure;
  • FIG. (Structure of floating body) As shown in FIG. 1, the floating body 1 of this embodiment includes a floating body body 2, an upper structure 4, a combustion device (engine) 8, an ammonia tank 10, an ammonia fuel supply system 20, and a fuel supply device chamber 30. and have.
  • the floating body 1 of the present embodiment will be described as an example of a vessel that can be navigated by a main engine or the like.
  • the ship type of the floating body 1 is not limited to a specific ship type. Examples of ship types of the floating body 1 include liquefied gas carriers, ferries, RORO ships, car carriers, and passenger ships.
  • the floating body body 2 has a pair of shipboard sides 5A and 5B and a ship bottom 6 that form its outer shell.
  • the shipboard sides 5A, 5B are provided with a pair of shipboard skins forming the starboard and port sides, respectively.
  • the ship's bottom 6 includes a ship's bottom shell plate that connects the sides 5A and 5B.
  • the pair of sides 5A and 5B and the ship bottom 6 form a U-shaped outer shell of the floating body 2 in a cross section perpendicular to the fore-aft direction FA.
  • the floating body body 2 further includes an upper deck 7 which is a through deck arranged in the uppermost layer.
  • the superstructure 4 is formed on this upper deck 7 .
  • a living quarter and the like are provided in the upper structure 4 .
  • a cargo space (not shown) for loading cargo is provided closer to the bow 3a in the bow-stern direction FA than the superstructure 4 is.
  • the combustion device 8 is a device that generates thermal energy by burning fuel, and is provided inside the floating body main body 2 described above.
  • Examples of the combustion device 8 include an internal combustion engine used as a main engine for propelling the floating body 1, an internal combustion engine used for power generation equipment that supplies electricity to the ship, a boiler that generates steam as a working fluid, and the like.
  • the combustion device 8 of this embodiment can use at least ammonia as fuel.
  • the combustion device 8 may be configured to be able to switch between ammonia and another fuel such as light oil, which is different from ammonia.
  • the ammonia tank (fuel tank) 10 is a tank that stores liquid ammonia (in other words, liquefied ammonia).
  • liquid ammonia in other words, liquefied ammonia
  • the ammonia tank 10 of the present embodiment stores liquefied ammonia as fuel for the combustion device 8 .
  • the ammonia fuel supply system 20 connects the combustion device 8 and the ammonia tank 10 and is configured to be able to supply at least ammonia stored in the ammonia tank 10 to the combustion device 8 .
  • the fuel supply device room 30 is a compartment that houses ammonia fuel equipment that constitutes part of the ammonia fuel supply system 20 .
  • the fuel supply device chamber 30 of this embodiment is provided on the upper deck 7 on the bow 3a side of the superstructure 4, the arrangement of the fuel supply device chamber 30 is is not limited to the upper deck 7 on the bow 3a side.
  • the ammonia fuel supply system 20 described above connects the combustion device 8 and the ammonia tank 10 via the fuel supply device chamber 30 .
  • FIG. 2 is a diagram showing a schematic configuration of an ammonia fuel supply system according to the first embodiment of the present disclosure
  • the ammonia fuel supply system 20 of the first embodiment includes a fuel tank lead-out line 41, a low pressure pump 42, a first heat exchanger 43, a first pressurized tank 44, a supply line 45 , booster pump 46, first return line 47, first pressure regulating valve 48, first pressure sensor 49, first flow sensor 50, second heat exchanger (cooling unit) 51, second A pressure regulating valve (pressure holding portion) 52, a second pressure sensor 53, a first liquid level adjusting portion 54, a first inert gas supply portion 55, a first gas release portion 56, and a fuel tank return line 57.
  • ammonia fuel supply system 20 is separately connected to an inert gas supply device or the like for purging the fuel.
  • the fuel tank lead-out line 41 leads liquefied ammonia (hereinafter simply referred to as ammonia) from the ammonia tank 10 toward the first pressurized tank 44 .
  • the fuel tank lead-out line 41 communicates the liquid phase of the ammonia tank 10 and the first pressurized tank 44 .
  • the low-pressure pump 42 is provided in the fuel tank lead-out line 41 to pressurize (for example, about 2.5 MPa) the ammonia in the ammonia tank 10 and send it out toward the first pressurization tank 44 .
  • the low-pressure pump 42 may be of a so-called deep well type or a submerged type that is directly installed in the tank.
  • the first heat exchanger 43 is provided in the fuel tank lead-out line 41 and controls the temperature of the ammonia pressurized by the low-pressure pump 42 .
  • ammonia is heated up to about 40°C.
  • the first pressurized tank 44 stores ammonia introduced from the ammonia tank 10 in a pressurized state.
  • the first pressurized tank 44 of this embodiment is in a pressurized state with a pressure slightly lower (for example, about 2.3 MPa) than the ammonia immediately after being pressurized by the low-pressure pump 42, for example.
  • a supply line 45 leads ammonia from the first pressurized tank 44 .
  • a supply line 45 supplies liquid-phase ammonia in the first pressurized tank 44 to the combustion device 8 .
  • the booster pump 46 is provided in the supply line 45 and boosts the pressure of the ammonia drawn out from the first pressurization tank 44 .
  • the boosting pump 46 can boost the ammonia flowing through the supply line 45 to a pressure higher than that required by the combustion device 8 .
  • a first return line 47 returns ammonia that has passed through the combustion device 8 to the first pressurized tank 44 .
  • the first return line 47 is a line that returns to the first pressurization tank 44 the excess ammonia that has not been burned in the combustion device 8 out of the ammonia supplied to the combustion device 8 through the supply line 45 .
  • a first return line 47 in this embodiment returns the ammonia that has passed through the combustion device 8 to the first pressurized tank 44 .
  • the first pressure sensor 49 detects the pressure of ammonia flowing in the first return line 47 closer to the combustion device 8 than the first pressure regulating valve 48 is. A detection result of the first pressure sensor 49 is input to the first pressure regulating valve 48 .
  • the first flow rate sensor 50 detects the flow rate of ammonia flowing through the side of the first return line 47 closer to the pressurized tank than the first pressure regulating valve 48 . A detection result of the first flow sensor 50 is input to the first pressure regulating valve 48 .
  • a first pressure regulating valve 48 is provided in the first return line 47 so that the pressure of ammonia in the combustion device 8 can be adjusted.
  • the pressure of ammonia inside the combustion device 8 is maintained at a predetermined pressure (for example, about 8 MPa) required inside the combustion device 8 by adjusting the degree of opening of the first pressure regulating valve 48 . That is, the booster pump 46 boosts the ammonia to a predetermined pressure or more required in the combustion device 8, and the first pressure regulating valve 48, based on the detection result of the first pressure sensor 49,
  • the valve opening degree is increased when the ammonia pressure in the combustion device 8 is high, while the valve opening degree is decreased when the ammonia pressure in the combustion device 8 is low.
  • the first pressure regulating valve 48 determines that the flow rate of ammonia flowing through the first return line 47 reaches a predetermined lower limit based on the detection result of the first flow rate sensor 50 regardless of the detection result of the first pressure sensor 49.
  • the valve opening is adjusted to exceed By setting the flow rate of ammonia above the predetermined lower limit value in this way, for example, ammonia is prevented from being overheated, and components in the combustion device 8 are prevented from being overheated.
  • the second heat exchanger 51 is provided downstream of the first pressure regulating valve 48 in the first return line 47 .
  • a second heat exchanger 51 cools the ammonia flowing through the first return line 47 . More specifically, the ammonia flowing through the first return line 47 is cooled to a temperature at which it remains liquid and does not vaporize when returned to the first pressurized tank 44 .
  • ammonia is stored at about 2.3 MPa
  • the second heat exchanger 51 stores ammonia at a temperature of 45° C. or less at which ammonia does not vaporize under this pressure. is cooling.
  • the second pressure sensor 53 detects the pressure of ammonia flowing through the first return line 47 between the first pressure regulating valve 48 and the second pressure regulating valve 52 . A detection result of the second pressure sensor 53 is input to the second pressure regulating valve 52 .
  • the second pressure regulating valve 52 is provided between the second heat exchanger 51 of the first return line 47 and the first pressurized tank 44 .
  • the second pressure regulating valve 52 is capable of regulating the pressure of ammonia flowing at least between the first pressure regulating valve 48 in the first return line 47 and the second heat exchanger 51 .
  • the second pressure regulating valve 52 of this embodiment adjusts the pressure in the first return line 47 between the first pressure regulating valve 48 and the second pressure regulating valve 52 based on the detection result of the second pressure sensor 53. , at a pressure lower than the pressure of the ammonia in the combustion device 8 and capable of maintaining the ammonia in a liquid state.
  • the second pressure regulating valve 52 at the ammonia temperature (eg, 70° C.) immediately after flowing through the first return line 47 from the combustion device 8 and passing through the first pressure regulating valve 48 , The pressure is adjusted to maintain the liquid state (for example, about 3.25 MPa).
  • the first liquid level adjuster 54 maintains the liquid level of the first pressure tank 44 within a predetermined range.
  • the first liquid level adjusting section 54 includes a first liquid level detecting section 62 and a first liquid level adjusting valve 63 .
  • the first liquid level detector 62 detects the liquid level of the first pressurized tank 44 .
  • the detection result of the first liquid level detector 62 is input to the first liquid level adjustment valve 63 .
  • the first liquid level adjustment valve 63 adjusts the valve opening degree based on the detection result of the first liquid level detection unit 62, thereby adjusting the flow rate of ammonia flowing from the ammonia tank 10 into the first pressurization tank 44. .
  • the first inert gas supply unit 55 supplies inert gas into the first pressurized tank 44 .
  • the first inert gas supply unit 55 supplies the first pressurized tank 44 with the same pressure as the pressure in the first pressurized tank 44 (eg, 2.3 MPa) or a slightly higher pressure (eg, 2.35 MPa). etc.) can be supplied.
  • the first inert gas supply unit 55 supplies the first pressurized tank 44 with Inert gas is supplied inside the first pressurization tank 44 so that the pressure drop in the first pressurization tank 44 does not occur.
  • the inert gas supplied by the first inert gas supply section 55 is stored in the gas phase in the first pressurized tank 44 .
  • the first gas discharge part 56 discharges the vapor-phase gas in the first pressurized tank 44 to the outside of the first pressurized tank 44 .
  • the first gas discharge part 56 of the present embodiment for example, when the pressure in the first pressurization tank 44 rises too much (for example, 2.36 2.8 MPa), the vapor-phase gas in the first pressurization tank 44 is released to the atmosphere. That is, the pressure in the first pressurization tank 44 is maintained within a predetermined pressure range by the first inert gas supply section 55 and the first gas discharge section 56 .
  • the fuel tank return line 57 is a line that diverts the ammonia flowing through the fuel tank lead-out line 41 toward the first pressurization tank 44 and returns it to the ammonia tank 10 .
  • a flow control valve 58 is provided in the fuel tank return line 57 to control the flow rate of ammonia flowing through the fuel tank return line 57 . For example, when the liquid level of the first pressurization tank 44 reaches a predetermined upper limit, surplus ammonia is returned to the ammonia tank 10 by the fuel tank return line 57 and the flow control valve 58 . If the low-pressure pump 42 is a variable flow type pump, the fuel tank return line 57 and the flow control valve 58 may be omitted.
  • the supply return line 59 is branched to the supply line 45 and joined to the fuel tank lead-out line 41 between the first liquid level control valve 63 and the first heat exchanger 43 . That is, the supply return line 59 returns the ammonia flowing through the supply line 45 to the first pressurized tank 44 via the first heat exchanger 43 .
  • a third pressure sensor 61 detects the pressure in the supply return line 59 .
  • a detection result of the third pressure sensor 61 is input to the third pressure regulating valve 60 .
  • the third pressure sensor 61 may detect the pressure in the supply line 45 closer to the combustion device 8 than the boost pump 46 .
  • a third pressure regulating valve 60 is provided in the supply return line 59 .
  • the third pressure regulating valve 60 can adjust the flow rate of ammonia flowing through the supply return line 59 .
  • the third pressure regulating valve 60 allows the ammonia to escape through the supply return line 59, thereby regulating the pressure in the supply line 45 closer to the combustion device 8 than the boost pump 46 in the supply line 45.
  • the third pressure regulating valve 60 of this embodiment keeps the pressure in the supply line 45 closer to the combustion device 8 than the boost pump 46 to a predetermined pressure or less. do.
  • the third pressure regulating valve 60 is used as a valve for releasing ammonia in order to prevent overpressure in the supply line 45, and the pressure of the ammonia supplied to the combustion device 8 is controlled by the first pressure regulating valve 48.
  • the third pressure adjustment valve 60 may be used to adjust the pressure of ammonia supplied to the combustion device 8 .
  • the boosting pump 46 may be equipped with an inverter to have a function of adjusting the discharge pressure.
  • the first pressure regulating valve 48 provided in the first return line 47 can bring the fuel in the combustion device 8 to the required pressure. Further, even if the ammonia flowing through the first return line 47 is decompressed downstream of the first pressure regulating valve 48, the second pressure regulating valve 52 can easily maintain the pressure at which the liquid state can be maintained. can. Therefore, while disposing the second heat exchanger 51 (cooling section) downstream of the first pressure regulating valve 48 having a low pressure, ammonia is generated between the first pressure regulating valve 48 and the second heat exchanger 51. Evaporation can be suppressed. Therefore, it is possible to suppress the occurrence of troubles such as erosion by handling the ammonia in the pipe in a liquid phase instead of a gas-liquid mixture state, and it is possible to use the second heat exchanger 51 with low pressure resistance. Cost reduction can be achieved.
  • the first liquid level detection unit 62 that detects the liquid level in the first pressurization tank 44 and the first Since the liquid level adjusting valve 63 is provided, the liquid level in the first pressurized tank 44 can be easily maintained within a predetermined liquid level range according to load fluctuations of the combustion device 8 or the like. As a result, it is possible to prevent air bubbles from entering the supply line 45 .
  • the floating body 101 in this second embodiment includes a floating body body 2, an upper structure 4, a combustion device 8, an ammonia tank 10, an ammonia fuel supply system 20, and a fuel supply device chamber 30.
  • FIG. 3 is a diagram corresponding to FIG. 2 in the second embodiment of the present disclosure.
  • the ammonia fuel supply system 20 of the second embodiment includes a fuel tank lead-out line 41, a low pressure pump 42, a first heat exchanger 43, a first Pressure tank 44, supply line 45, booster pump 46, first return line 47, first pressure regulating valve 48, first pressure sensor 49, first flow sensor 50, second heat exchanger ( cooling unit) 51, second pressure regulating valve (pressure holding unit) 52, second pressure sensor 53, first liquid level detecting unit 62, first liquid level regulating valve 63, and first inert gas supply a portion 55, a first gas release portion 56, a fuel tank return line 57, a flow control valve 58, a supply return line 59, a third pressure control valve 60, and a third pressure sensor 61.
  • the ammonia fuel supply system 20 of the second embodiment includes a second pressurized tank 70, a second inert gas supply unit 71, a second gas release unit 72, and a second liquid level adjustment A portion 73 , a bypass line 74 , a first switching valve 75 and a second switching valve 76 are provided.
  • the second pressurized tank 70 is provided in the first return line 47 between the second heat exchanger 51 and the first pressurized tank 44 .
  • the second pressurized tank 70 can store ammonia flowing through the first return line 47 .
  • the second pressurized tank 70 has a liquid phase and a gas phase inside.
  • an upstream line 47 ⁇ /b>A on the upstream side of the second pressurization tank 70 communicates with the second pressurization tank 70 .
  • a downstream line 47 ⁇ /b>B on the downstream side of the second pressurization tank 70 communicates with the liquid phase of the second pressurization tank 70 .
  • the second inert gas supply unit 71 supplies inert gas into the second pressurized tank 70 .
  • the second inert gas supply unit 71 supplies the second pressurized tank 70 with the same pressure as the pressure in the second pressurized tank 70 (eg, 2.5 MPa) or a slightly higher pressure (eg, 2.55 MPa). etc.) can be supplied.
  • the second inert gas supply unit 71 supplies the second pressurized tank 70 with An inert gas is supplied inside the second pressurization tank 70 so that the pressure drop in the second pressurization tank 70 does not occur.
  • the inert gas supplied by the second inert gas supply section 71 is stored in the vapor phase inside the second pressurized tank 70 .
  • the second gas discharge part 72 discharges the vapor-phase gas in the second pressurization tank 70 to the outside of the second pressurization tank 70 .
  • the second gas discharge part 72 of the present embodiment for example, when the pressure in the second pressurization tank 70 rises too much (for example, 3.0 MPa ), the vapor-phase gas in the second pressurization tank 70 is released to the atmosphere. That is, the second inert gas supply section 71 and the second gas discharge section 72 maintain the pressure in the second pressurization tank 70 within a predetermined pressure range.
  • the second liquid level adjuster 73 maintains the liquid level of the second pressurized tank 70 within a predetermined range.
  • the second liquid level adjusting section 73 includes a second liquid level detecting section 77 and a second liquid level adjusting valve 78 .
  • the second liquid level detector 77 detects the liquid level of the second pressurization tank 70 .
  • the detection result of the second liquid level detector 77 is input to the second liquid level adjustment valve 78 .
  • the second liquid level adjustment valve 78 adjusts the valve opening degree based on the detection result of the second liquid level detector 77 , so that the liquid is discharged from the second pressurized tank 70 through the downstream line 47 B of the first return line 47 . Adjust the flow rate of ammonia to be discharged.
  • the bypass line 74 is a line that bypasses the second pressurized tank 70 and allows the ammonia flowing through the upstream line 47A to flow into the downstream line 47B.
  • the first switching valve 75 is provided in the upstream line 47A. More specifically, the first switching valve 75 is provided in the upstream line 47 ⁇ /b>A closer to the second pressurized tank 70 than the branch point of the bypass line 74 .
  • the first switching valve 75 is always open, and is closed when an abnormality occurs, such as when the liquid level adjustment function of the second pressurization tank 70 fails.
  • a second switching valve 76 is provided in the bypass line 74 .
  • the second switching valve 76 is normally closed, and is opened when an abnormality occurs as described above. That is, the first switching valve 75 and the second switching valve 76 make it possible to switch the destination of the ammonia flowing through the upstream line 47A to either the second pressurized tank 70 or the bypass line 74. ing.
  • the second pressurized tank 70 is provided in the middle of the first return line 47, maintenance, fuel switching, etc. When purging ammonia from the fuel system, the second pressurized tank 70 can recover liquid ammonia. Moreover, since the amount of the purge gas which flows into the 1st pressurization tank 44 can be reduced in that case, the capacity
  • the gas phase can be formed in the second pressurization tank 70 by the second inert gas supply unit 71, it is possible to suppress the inclusion of air bubbles in the liquid phase.
  • the inert gas can be supplied into the second pressurized tank 70 by the second inert gas supply unit 71, it is possible to prevent the pressure in the second pressurized tank 70 from decreasing and the liquid ammonia from vaporizing. can.
  • the second liquid level detection unit 77 that detects the liquid level in the second pressurization tank 70, and the ammonia discharged from the second pressurization tank 70 through the first return line 47 and a second liquid level control valve 78 that adjusts the flow rate of the second pressurized liquid ammonia flowing into the second pressurized tank 70 according to the load fluctuation of the combustion device 8 Even if the flow rate of liquid ammonia discharged from the tank 70 fluctuates, the liquid level in the second pressurized tank 70 can be easily maintained within a predetermined liquid level range.
  • the floating body 201 in this third embodiment includes a floating body body 2, an upper structure 4, a combustion device 8, an ammonia tank 10, an ammonia fuel supply system 20, and a fuel supply device chamber 30.
  • FIG. 4 is a diagram corresponding to FIG. 3 in the third embodiment of the present disclosure.
  • the ammonia fuel supply system 20 of the third embodiment includes a fuel tank lead-out line 41, a low pressure pump 42, a first heat exchanger 43, a first pressurized tank 44, a supply line 45 , canned motor pump 146, second return line 80, first return line 47, first pressure regulating valve 48, first pressure sensor 49, first flow sensor 50, second heat exchanger ( cooling unit) 51, second pressure regulating valve (pressure holding unit) 52, second pressure sensor 53, first liquid level detecting unit 62, first liquid level regulating valve 63, and first inert gas supply portion 55, first gas release portion 56, fuel tank return line 57, flow control valve 58, supply return line 59, third pressure control valve 60, third pressure sensor 61, second pressurization A tank 70, a second inert gas supply unit 71, a second gas release unit 72, a second liquid level adjustment unit 73, a bypass line 74, a first
  • the canned motor pump 146 is provided in the supply line 45 and pressurizes the ammonia drawn out from the first pressurized tank 44, like the booster pump 46 of the first embodiment.
  • the canned motor pump 146 is capable of boosting the ammonia flowing through the supply line 45 to a pressure higher than that required by the combustion device 8 .
  • the canned motor pump 146 is a type of pump in which a pump body (not shown) and a motor portion (not shown) are integrally formed and which does not have a shaft seal. This canned motor pump 146 uses part of the ammonia flowing through the supply line 45 as a coolant for the motor section.
  • a second return line 80 is a line for returning part of the ammonia used as a coolant in the canned motor pump 146 to the gas phase of the first pressure tank 44 .
  • the second return line 80 is connected to the third heat exchanger. 81 may be provided to cool the temperature of the ammonia flowing through the second return line 80 to below the above upper temperature limit.
  • the canned motor pump 146 since the canned motor pump 146 is used, ammonia leakage from the shaft seal does not occur, so reliability can be improved. Furthermore, since a gas phase can be formed in the first pressurized tank 44 by the first inert gas supply unit 55, the ammonia used as the cooling liquid for the canned motor pump 146 can be transferred to a place away from the canned motor pump 146. There is no need to return to a tank with a gas phase such as a fuel tank installed in the Therefore, even if the ammonia used as the coolant for the canned motor pump 146 is contaminated with oil or the like, the ammonia outside the fuel supply system of the combustion device 8 can be prevented from being contaminated.
  • the gas phase is formed in the first pressurization tank 44, it is possible to prevent air bubbles from entering the liquid phase of ammonia.
  • the inert gas into the first pressurization tank 44, it is possible to prevent the pressure in the first pressurization tank 44 from decreasing and evaporating liquid ammonia.
  • FIG. 5 is a diagram corresponding to FIG. 4 in a modification of the third embodiment of the present disclosure.
  • the case where one canned motor pump 146 is provided as the boosting pump has been described as an example.
  • the number of boost pumps for boosting the ammonia flowing through the supply line 45 is not limited to one.
  • a first canned motor pump 246A and a second canned motor pump 246B are provided as two booster pumps. Furthermore, in the floating body of the modified example of the third embodiment, a second return line 80 that returns part of the ammonia used as the coolant in the first canned motor pump 246A to the gas phase of the first pressurization tank 44, and a third return line 280 that returns a portion of the ammonia used as coolant in the second canned motor pump 246B to the vapor phase of the first pressurized tank 44 .
  • the ammonia pressure required by the combustion device 8 can be increased by adding or removing boost pumps. pressure can be increased. Furthermore, since a plurality of booster pumps are provided in series, the canned motor pump is less expensive than a single pump that boosts the ammonia flowing through the supply line 45 to a pressure higher than that required by the combustion device 8. can be used to reduce costs.
  • the second A third heat exchanger 81 may be provided in the second return line 80 or a fourth heat exchanger 281 may be provided in the third return line 280 to cool the ammonia.
  • a fifth heat exchanger 85 may be provided to cool the ammonia discharged from the second canned motor pump 246B. In situations where the fifth heat exchanger 85 is provided, the above-described first heat exchanger 43 may be omitted.
  • booster pumps in the modified example of the third embodiment, the case where two booster pumps are provided has been described, but three or more booster pumps may be provided. Furthermore, in the supply line 45 of the first embodiment, a plurality of booster pumps may be provided in series.
  • a floating body 301 in the fourth embodiment includes a floating body body 2, an upper structure 4, a combustion device 8, an ammonia tank 10, an ammonia fuel supply system 20, and a fuel supply device chamber 30.
  • FIG. 6 is a diagram corresponding to FIG. 4 in the fourth embodiment of the present disclosure.
  • the ammonia fuel supply system 20 of the fourth embodiment includes a fuel tank lead-out line 41, a low pressure pump 42, a first heat exchanger 43, a first pressurized tank 44, a supply line 45 , canned motor pump 146 , second return line 80 , fourth return line 180 (second pressurized tank return line), third switching valve 91 , fourth switching valve 92 , first return line 47 , the first pressure regulating valve 48, the first pressure sensor 49, the first flow sensor 50, the second heat exchanger (cooling section) 51, the second pressure regulating valve (pressure holding section) 52, the Two pressure sensors 53, a first liquid level detection unit 62, a first liquid level adjustment valve 63, a first inert gas supply unit 55, a first gas discharge unit 56, a fuel tank return line 57, and a flow rate Regulating valve 58 , supply return line 59 , third pressure regulating valve 60 ,
  • the canned motor pump 146 has the same configuration as the canned motor pump 146 of the third embodiment, and is provided in the supply line 45 to pressurize the ammonia drawn out from the first pressurization tank 44 .
  • Canned motor pump 146 uses a portion of the ammonia flowing through supply line 45 as a coolant for the motor section.
  • a second return line 80 is a line for returning part of the ammonia used as a coolant in the canned motor pump 146 to the gas phase of the first pressure tank 44 .
  • the fourth return line 180 is a line that returns part of the ammonia used as the coolant in the canned motor pump 146 to the vapor phase of the second pressurization tank 70 .
  • the third switching valve 91 adjusts the flow rate of ammonia flowing through the second return line 80 .
  • the fourth switching valve 92 adjusts the flow rate of ammonia flowing through the fourth return line 180 .
  • These third switching valve 91 and fourth switching valve 92 are configured to be freely openable and closable from fully open to fully closed.
  • a part of the ammonia used as the coolant in the canned motor pump 146 can be distributed to the first pressurization tank 44 and the second pressurization tank 70 by the third switching valve 91 and the fourth switching valve 92 . It's becoming For example, by opening the third switching valve 91 and closing the fourth switching valve 92, part of the ammonia used as the coolant in the canned motor pump 146 is transferred to the gas phase of the first pressurized tank 44. can be returned to On the other hand, by closing the third switching valve 91 and opening the fourth switching valve 92, part of the ammonia used as the coolant in the canned motor pump 146 is transferred to the gas in the second pressurization tank 70.
  • the case where the second return line 80 is provided with the third switching valve 91 and the fourth return line 180 is provided with the fourth switching valve 92 is exemplified, but the configuration is not limited to this. . Any configuration may be employed as long as a portion of the ammonia used as the coolant in the canned motor pump 146 can be distributed between the first pressurization tank 44 and the second pressurization tank 70 . Further, although the case where the third switching valve 91 and the fourth switching valve 92 are capable of adjusting the flow rate has been described, valves that can only be opened and closed may be used. In this case, the return destination of part of the ammonia used as the cooling liquid in the canned motor pump 146 is alternatively selected from the first pressurization tank 44 and the second pressurization tank 70 .
  • the second return line 80 is provided with a third heat exchanger 81 to cool the temperature of the ammonia flowing through the second return line 80 to be lower than the upper limit temperature, or a sixth heat exchanger 93 is provided in the fourth return line 180. It may be provided to cool the temperature of the ammonia flowing through the fourth return line 180 to be lower than the above upper limit temperature.
  • the ammonia used as the cooling liquid for the canned motor pump 146 is It is possible to selectively return to
  • FIG. 7 is a diagram corresponding to FIG. 5 in a modification of the fourth embodiment of the present disclosure.
  • the case where one canned motor pump 146 is provided as a boosting pump has been described as an example.
  • the number of boost pumps for boosting the ammonia flowing through the supply line 45 is not limited to one.
  • This modification of the fourth embodiment includes a first canned motor pump 246A and a second canned motor pump 246B as two booster pumps. Furthermore, in the floating body of the modification of the fourth embodiment, the ammonia used as the coolant for the canned motor pump 246A is selected for the first pressurization tank 44 and the second pressurization tank 70 in which the gas phase is formed. In order to return the It has
  • the ammonia used as the cooling liquid for the second canned motor pump 246B is stored in the first pressurization tank 44 and the second pressurization tank 70 in which the gas phase is formed.
  • a third return line 280, a fifth return line 380 (second pressurized tank return line), a fifth switching valve 94, and a sixth switching valve 95 are provided to selectively return to .
  • the third return line 280 is a line that returns part of the ammonia used as coolant in the second canned motor pump 246B to the gas phase of the first pressurization tank 44 .
  • the fifth return line 380 is a line that returns part of the ammonia used as the coolant in the second canned motor pump 246B to the vapor phase of the second pressurization tank 70 .
  • the fifth switching valve 94 adjusts the flow rate of ammonia flowing through the third return line 280 .
  • the sixth switching valve 95 adjusts the flow rate of ammonia flowing through the fifth return line 380 .
  • These fifth switching valve 94 and sixth switching valve 95 are configured to be freely openable and closable from fully open to fully closed.
  • a part of the ammonia used as the coolant in the canned motor pump 246B can be distributed to the first pressurization tank 44 and the second pressurization tank 70 by the fifth switching valve 94 and the sixth switching valve 95. It's becoming For example, by opening the fifth switching valve 94 and closing the sixth switching valve 95, part of the ammonia used as the coolant in the canned motor pump 246B is transferred to the gas phase of the first pressurization tank 44. can be returned to On the other hand, by closing the fifth switching valve 94 and opening the sixth switching valve 95, part of the ammonia used as the coolant in the canned motor pump 246B is transferred to the gas in the second pressurization tank 70. can
  • the ammonia pressure required by the combustion device 8 can be increased. pressure can be increased. Furthermore, since a plurality of booster pumps are provided in series, the canned motor pump is less expensive than a single pump that boosts the ammonia flowing through the supply line 45 to a pressure higher than that required by the combustion device 8. can be used to reduce costs.
  • the ammonia used as the cooling liquid for the first canned motor pump 246A and the second canned motor pump 246B is used in the first pressurization tank 44 and the second It becomes possible to distribute and return to the pressurized tank 70 .
  • the second return line 80 may be provided with a third heat exchanger 81
  • the third return line 280 may be provided with a fourth heat exchanger 281
  • the fourth return line 180 may be provided with a sixth heat exchanger.
  • a second return line 80, a third return line 280, a fourth return line 180, and a fifth return line 380 are respectively provided with an exchanger 93 and a fifth return line 380 with a seventh heat exchanger 96. may be cooled.
  • ammonia may be selectively returned from each canned motor pump to the first pressurized tank 44 and the second pressurized tank 70 .
  • a floating body 401 in the fifth embodiment includes a floating body body 2, an upper structure 4, a combustion device 8, an ammonia tank 10, an ammonia fuel supply system 20, and a fuel supply device chamber 30.
  • FIG. 8 is a diagram corresponding to FIG. 4 in the fifth embodiment of the present disclosure.
  • the ammonia fuel supply system 20 of the fifth embodiment includes a fuel tank lead-out line 41, a low pressure pump 42, a first heat exchanger 43, a first pressurized tank 44, a supply line 45 , canned motor pump 146, fourth return line 180 (second pressurized tank return line), first return line 47, first pressure regulating valve 48, first pressure sensor 49, first flow sensor 50, second heat exchanger 51, second pressure regulating valve 52, second pressure sensor 53, fuel tank return line 57, supply return line 59, third pressure regulating valve 60, third pressure.
  • a sensor 61 a second pressurized tank 70, a second inert gas supply section 71, a second gas release section 72, a second liquid level adjustment section 73, a bypass line 74, and a first switching valve 75. , a second switching valve 76 , a fourth pressure sensor 162 and a fourth pressure regulating valve 158 .
  • the canned motor pump 146 of the fifth embodiment returns the ammonia used as the coolant for the motor part only to the vapor phase of the second pressurization tank 70 through the fourth return line 180 .
  • the ammonia used as the coolant for the motor portion of the canned motor pump 146 is not returned to the first pressurization tank 44 .
  • the first pressurized tank 44 of the fifth embodiment is managed so as not to form a gas phase inside.
  • the first pressurized tank 44 is filled with liquefied ammonia. Therefore, in the first pressurized tank 44 of the fifth embodiment, the first inert gas supply unit 55 and the first gas discharge unit 56 provided for the purpose of maintaining the pressure of the gas phase in each of the above-described embodiments not connected.
  • a configuration for supplying an inert gas and a configuration for discharging the gas inside the first pressurization tank 44 may be provided.
  • the first pressurization tank 44 of the fifth embodiment is managed so as not to form a gas phase, instead of the first liquid level detector 62 of the first embodiment, the first pressurization tank 44 A fourth pressure sensor 162 is provided to detect the internal fluid pressure. Furthermore, a fourth pressure regulating valve 158 is provided in place of the flow regulating valve 58 of the first embodiment. The fourth pressure regulating valve 158 adjusts the valve opening degree based on the detection result of the fourth pressure sensor 162 . The fourth pressure regulating valve 158 regulates the pressure inside the first pressurized tank 44 so that it does not exceed a predetermined upper limit pressure. Also in the fifth embodiment, the sixth heat exchanger 93 may be provided in the fourth return line 180 as in the fourth embodiment.
  • FIG. 9 is a diagram corresponding to FIG. 5 in a modification of the fifth embodiment of the present disclosure.
  • the case where one canned motor pump 146 is provided as the boosting pump has been described as an example.
  • the number of boost pumps for boosting the ammonia flowing through the supply line 45 is not limited to one.
  • the floating body of the modification of the fifth embodiment shown in FIG. 9 may have a plurality of canned motor pumps provided in series in the supply line 45.
  • two canned motor pumps are a first canned motor pump 246A and a second canned motor pump 246B.
  • the ammonia used as the coolant for the motor portion of the first canned motor pump 246A is transferred from the first canned motor pump 246A to the second pressure tank 70 through the fourth return line 180. reverting to phase.
  • the ammonia used as the coolant for the motor portion of the second canned motor pump 246B is transferred from the second canned motor pump 246B to the second pressurized tank 70 through the fifth return line 380 (second pressurized tank return line). returned to the gas phase.
  • a sixth heat exchanger 93 is provided in the fourth return line 180
  • a seventh heat exchanger 96 is provided in the fifth return line 380, so that the fourth return line 180 and the fifth return line 380 are provided with The flowing ammonia may be cooled.
  • the ammonia pressure required by the combustion device 8 can be increased. pressure can be increased. Furthermore, since a plurality of booster pumps are provided in series, the canned motor pump is less expensive than a single pump that boosts the ammonia flowing through the supply line 45 to a pressure higher than that required by the combustion device 8. can be used to reduce costs. Moreover, since it is no longer necessary to form a gas phase in the first pressurization tank 44, it is no longer necessary to adjust the liquid level. Since the pressure of the first pressurization tank 44 can be adjusted by the low-pressure pump 42, the number of parts can be reduced and the configuration can be simplified.
  • the present disclosure is not limited to the configuration of each embodiment described above, and design changes are possible without departing from the scope of the present disclosure.
  • the floating body 1 is a ship that can be navigated by a main engine or the like
  • the floating body is not limited to a ship as long as it can store ammonia.
  • the second pressure regulating valve 52 is provided in the first return line 47 between the second heat exchanger 51 and the first pressurized tank 44 .
  • the pressure in the first pressurized tank 44 can be kept lower than the pressure of the ammonia in the combustion device 8 by the low-pressure pump 42, and the ammonia can be maintained in a liquid state. pressure.
  • the first inert gas supply section 55 and the low-pressure pump 42 constitute the pressure holding section in the present disclosure.
  • the piping of the first return line 47 from the second pressure regulating valve 52 to the first pressurized tank 44, the first pressurized tank 44 This is advantageous in terms of cost reduction compared to the case where the second pressure regulating valve 52 is not provided because the pressure resistance performance of the second pressure regulating valve 52 can be lowered.
  • the floating body includes a floating body main body, a fuel tank provided in the floating body main body and storing ammonia, and a first fuel tank in which the ammonia from the fuel tank is stored in a pressurized state.
  • a first pressure regulating valve 48 capable of regulating the pressure of the ammonia, a cooling section provided downstream of the first pressure regulating valve 48 in the first return line 47 to cool the ammonia, and the first return
  • the pressure of the ammonia between the first pressure regulating valve 48 in line 47 and the cooling section is lower than the pressure of the ammonia in the engine 8, and a pressure that can
  • Examples of the floating body 1 include ships such as liquefied gas carriers, ferries, RORO ships, car carriers, and passenger ships, FSUs (Floating Storage Units), FSRUs (Floating Storage and Regasification Units), and the like.
  • ammonia can be prevented from vaporizing between the first pressure regulating valve 48 and the cooling section while arranging the cooling section downstream of the first pressure regulating valve 48 having a low pressure. Therefore, troubles caused by erosion in the piping can be suppressed. In addition, since a cooling unit with low pressure resistance can be used, cost reduction can be achieved.
  • the floating body is the floating body of (1), and the pressure holding section is located between the cooling section of the first return line 47 and the first pressurized tank 44.
  • a second pressure regulating valve 52 is provided.
  • the floating body is the floating body of (1) or (2), and includes a plurality of booster pumps 46 provided in series in the supply line 45 .
  • the ammonia pressure required by the engine 8 can be boosted by adding the boost pump 46 in series.
  • the floating body is any one of (1) to (3)
  • the boost pump is provided in the supply line 45 and the first pressurization tank 44 and a canned motor pump 146 that uses part of the ammonia flowing through the supply line 45 as a cooling liquid for the motor unit, wherein the inert gas is added to the first pressurized tank 44 and a second return line 80 for returning the ammonia used as coolant in the canned motor pump 146 to the gas phase of the first pressurized tank 44 .
  • a gas phase can be formed in the first pressurization tank 44, so that it is possible to prevent air bubbles from entering the liquid phase of ammonia.
  • the inert gas by supplying the inert gas into the first pressurization tank 44, it is possible to prevent the pressure in the first pressurization tank 44 from decreasing and evaporating liquid ammonia.
  • the floating body is the floating body of (4), in which the first liquid level detection unit 62 for detecting the liquid level in the first pressurization tank 44 and the first pressurization and a first liquid level adjustment valve for adjusting the flow rate of the ammonia supplied into the tank 44 .
  • the floating body is any one of (1) to (5), and the first return line between the cooling section and the first pressure tank 44 47, a second pressurized tank 70 capable of storing the ammonia flowing through the first return line 47, and a second inert gas supply unit 71 for supplying inert gas into the second pressurized tank 70 And prepare.
  • the liquid ammonia can be recovered by the second pressurization tank 70 .
  • the amount of purge gas flowing into the first pressurization tank 44 can be reduced. Therefore, the capacity of the first pressurization tank 44 can be reduced. Therefore, the degree of freedom of arrangement of the first pressurization tank 44 can be improved.
  • the floating body is the floating body of (6), in which the second liquid level detection unit 77 for detecting the liquid level in the second pressurization tank 70 and the second pressurization and a second liquid level control valve for adjusting the flow rate of the ammonia discharged from the tank 70 through the first return line 47 .
  • the floating body is the floating body of (1) or (2)
  • the boost pump 146 is provided in the supply line 45 and discharged from the first pressurization tank 44.
  • a canned motor pump 146 that increases the pressure of the ammonia flowing through the supply line 45 and uses a part of the ammonia flowing through the supply line 45 as a cooling liquid for the motor unit, and is between the cooling unit and the first pressurization tank 44
  • a second pressurized tank 70 provided in the first return line 47 and capable of storing the ammonia flowing through the first return line 47;
  • An active gas supply unit 71 and a second pressurized tank return line 180 for returning part of the ammonia used as coolant in the canned motor pump 146 to the gas phase of the second pressurized tank 70 are further provided. As a result, part of the ammonia used as coolant in the canned motor pump 146 can be returned to the gas phase in the second pressurization tank 70 .
  • the floating body is the floating body of (8), and part of the ammonia used as the coolant in the canned motor pump 146 is returned to the second pressurized tank return line 180 It is possible to return only to the gas phase of the second pressurization tank 70, and the pressure detection part 162 that detects the pressure in the first pressurization tank 44 and the pressure in the first pressurization tank 44 are adjusted.
  • a pressure adjustment unit 42 , 158 is further provided. This eliminates the need to form a gas phase in the first pressurization tank 44, thereby eliminating the need to adjust the liquid level. Moreover, since the pressure of the first pressurization tank 44 can be adjusted by the pressure adjustment units 42 and 158, the number of parts can be reduced and the configuration can be simplified.
  • the floating body is the floating body of (8), and the second Switching units 91 and 92 for circulating part of the ammonia used as cooling liquid in the canned motor pump 146 to the return line 80 and at least one of the second return line 80 and the second pressurized tank return line 180. And further comprising.
  • This makes it possible to return part of the ammonia used as coolant in the canned motor pump 146 to at least one of the first pressurization tank 44 and the second pressurization tank 70 in which the vapor phase is formed.
  • This disclosure suppresses the occurrence of problems such as thinning due to erosion by handling ammonia in the pipe in a liquid phase instead of a gas-liquid mixture, and also reduces costs by using a cooling unit with low pressure resistance. can be planned.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

This floating body comprises: a fuel tank in which ammonia is stored; a first pressure tank in which the ammonia is stored in a pressurized state; a supply line through which the ammonia is derived from the first pressure tank; a booster pump which boosts the pressure of the ammonia flowing through the supply line; an engine to which the ammonia is supplied as fuel via the supply line; a first return line through which the ammonia having passed through the engine is returned to the first pressure tank; a first pressure regulating valve which is provided to the first return line and is capable of regulating the pressure of the ammonia in the engine; a cooling part which is provided to the downstream side of the first pressure regulating valve in the first return line and which cools the ammonia; and a pressure retaining part for retaining the ammonia present between the cooling part and the first pressure regulating valve in the first return line at a pressure that is lower than the pressure of the ammonia in the engine and that allows the ammonia to be maintained in a liquid state.

Description

浮体floating body
 本開示は、浮体に関する。
 本願は、2022年2月25日に、日本に出願された特願2022-027495号、及び、2022年6月30日に、日本に出願された特願2022-105488号に基づき優先権を主張し、その内容をここに援用する。
The present disclosure relates to floating bodies.
This application claims priority based on Japanese Patent Application No. 2022-027495 filed in Japan on February 25, 2022 and Japanese Patent Application No. 2022-105488 filed in Japan on June 30, 2022. and its contents are incorporated herein.
 特許文献1には、アンモニア貯蔵タンクに保管された液化アンモニアを、メインエンジンに供給する供給ラインと、メインエンジンから液化アンモニアをアンモニア貯蔵タンクにリターンするリターンラインと、を備える船舶用燃料供給システムが開示されている。この特許文献1では、メインエンジンからリターンされる液化アンモニアを、熱交換器で冷却して第一ジュールトムソン弁により圧力を降下させてからアンモニア貯蔵タンクに戻している。 Patent Literature 1 discloses a fuel supply system for ships including a supply line for supplying liquefied ammonia stored in an ammonia storage tank to a main engine, and a return line for returning the liquefied ammonia from the main engine to the ammonia storage tank. disclosed. In Patent Literature 1, liquefied ammonia returned from the main engine is cooled by a heat exchanger and pressure-reduced by a first Joule-Thomson valve before being returned to the ammonia storage tank.
日本国実用新案登録第3234399号公報Japanese Utility Model Registration No. 3234399
 特許文献1に記載の技術では、メインエンジンからリターンされる液化アンモニアを降圧させる前に熱交換器で冷却しているため、耐圧性能の高い熱交換器が必要になり、コストの低減が困難になるという課題がある。また、アンモニア貯蔵タンクの圧力によっては第一ジュールトムソン弁以降で気液混合状態となる為、配管にエロージョンを発生させる可能性がある。
 本開示は、上記事情に鑑みてなされたものであり、配管内のアンモニアを気液混合状態にせず液相で扱う事でエロージョンによる減肉等のトラブルが発生することを抑制するともに、耐圧性能の低い冷却部を用いる事によるコスト低減を図ることが可能な浮体を提供するものである。
In the technique described in Patent Document 1, since the liquefied ammonia returned from the main engine is cooled by a heat exchanger before it is lowered in pressure, a heat exchanger with high pressure resistance performance is required, making it difficult to reduce costs. There is a problem of becoming In addition, depending on the pressure of the ammonia storage tank, gas-liquid mixture occurs after the first Joule-Thomson valve, which may cause erosion in the piping.
The present disclosure has been made in view of the above circumstances, and by handling the ammonia in the pipes in a liquid phase instead of a gas-liquid mixture, it is possible to suppress the occurrence of problems such as thinning due to erosion. To provide a floating body capable of achieving cost reduction by using a cooling part with a low cooling rate.
 上記の課題を解決するために以下の構成を採用する。
 本開示の第一態様によれば、浮体は、浮体本体と、前記浮体本体に設けられ、アンモニアが貯留された燃料タンクと、前記燃料タンクからの前記アンモニアが加圧状態で貯留される第一加圧タンクと、前記第一加圧タンクから前記アンモニアが導出される供給ラインと、前記供給ラインを流れる前記アンモニアを昇圧する昇圧ポンプと、前記供給ラインを介して前記アンモニアが燃料として供給されるエンジンと、前記エンジンを経由した前記アンモニアを前記第一加圧タンクに戻す第一戻りラインと、前記第一戻りラインに設けられて前記エンジン内における前記アンモニアの圧力を調整可能な第一圧力調整弁と、前記第一戻りラインにおける前記第一圧力調整弁の下流側に設けられて前記アンモニアを冷却する冷却部と、前記第一戻りラインの前記第一圧力調整弁と前記冷却部との間の前記アンモニアの圧力を、前記エンジン内の前記アンモニアの圧力よりも低く、且つ、前記アンモニアを液体の状態に維持可能な圧力に保持する圧力保持部と、を備える。
In order to solve the above problems, the following configuration is adopted.
According to the first aspect of the present disclosure, the floating body includes a floating body main body, a fuel tank provided in the floating body main body and storing ammonia, and a first fuel tank in which the ammonia from the fuel tank is stored in a pressurized state A pressurized tank, a supply line through which the ammonia is led out from the first pressurized tank, a booster pump that pressurizes the ammonia flowing through the supply line, and the ammonia is supplied as fuel via the supply line. an engine, a first return line that returns the ammonia that has passed through the engine to the first pressurized tank, and a first pressure regulator that is provided in the first return line and capable of regulating the pressure of the ammonia in the engine. a cooling section provided downstream of the first pressure regulating valve in the first return line to cool the ammonia; and between the first pressure regulating valve and the cooling section in the first return line. a pressure holding unit that holds the pressure of the ammonia in the engine to a pressure that is lower than the pressure of the ammonia in the engine and that can maintain the ammonia in a liquid state.
 本開示に係る浮体によれば、配管内のアンモニアを気液混合状態にせず液相で扱う事でエロージョンによる減肉等のトラブルが発生することを抑制するとともに、耐圧性能の低い冷却部を用いる事によるコスト低減を図ることができる。 According to the floating body according to the present disclosure, the ammonia in the pipe is handled in a liquid phase instead of a gas-liquid mixture, thereby suppressing the occurrence of problems such as thinning due to erosion, and using a cooling part with low pressure resistance. It is possible to reduce the cost by doing things.
本開示の第一実施形態に係る浮体の側面図である。1 is a side view of a floating body according to a first embodiment of the present disclosure; FIG. 本開示の第一実施形態におけるアンモニア燃料供給系統の概略構成を示す図である。1 is a diagram showing a schematic configuration of an ammonia fuel supply system according to a first embodiment of the present disclosure; FIG. 本開示の第二実施形態における図2に相当する図である。FIG. 3 is a diagram corresponding to FIG. 2 in the second embodiment of the present disclosure; 本開示の第三実施形態における図3に相当する図である。FIG. 3 is a diagram corresponding to FIG. 3 in the third embodiment of the present disclosure; 本開示の第三実施形態の変形例における図4に相当する図である。FIG. 5 is a diagram corresponding to FIG. 4 in a modification of the third embodiment of the present disclosure; 本開示の第四実施形態における図4に相当する図である。It is a figure corresponding to FIG. 4 in the fourth embodiment of the present disclosure. 本開示の第四実施形態の変形例における図5に相当する図である。FIG. 6 is a diagram corresponding to FIG. 5 in a modification of the fourth embodiment of the present disclosure; 本開示の第五実施形態における図4に相当する図である。It is a figure corresponding to FIG. 4 in the fifth embodiment of the present disclosure. 本開示の第五実施形態の変形例における図5に相当する図である。FIG. 6 is a diagram corresponding to FIG. 5 in a modification of the fifth embodiment of the present disclosure;
[第一実施形態]
 以下、本開示の第一実施形態に係る浮体について、図面を参照して説明する。図1は、本開示の第一実施形態に係る浮体の側面図である。
(浮体の構成)
 図1に示すように、この実施形態の浮体1は、浮体本体2と、上部構造4と、燃焼装置(エンジン)8と、アンモニアタンク10と、アンモニア燃料供給系統20と、燃料供給装置室30と、を備えている。なお、本実施形態の浮体1は、主機等により航行可能な船舶を一例として説明する。浮体1の船種は、特定の船種に限られない。浮体1の船種としては、液化ガス運搬船、フェリー、RORO船、自動車運搬船、客船等を例示できる。
[First embodiment]
A floating body according to a first embodiment of the present disclosure will be described below with reference to the drawings. 1 is a side view of a floating body according to the first embodiment of the present disclosure; FIG.
(Structure of floating body)
As shown in FIG. 1, the floating body 1 of this embodiment includes a floating body body 2, an upper structure 4, a combustion device (engine) 8, an ammonia tank 10, an ammonia fuel supply system 20, and a fuel supply device chamber 30. and have. Note that the floating body 1 of the present embodiment will be described as an example of a vessel that can be navigated by a main engine or the like. The ship type of the floating body 1 is not limited to a specific ship type. Examples of ship types of the floating body 1 include liquefied gas carriers, ferries, RORO ships, car carriers, and passenger ships.
 浮体本体2は、その外殻をなす一対の舷側5A,5Bと船底6とを有している。舷側5A,5Bは、左右舷側をそれぞれ形成する一対の舷側外板を備える。船底6は、これら舷側5A,5Bを接続する船底外板を備える。これら一対の舷側5A,5B及び船底6により、浮体本体2の外殻は、船首尾方向FAに直交する断面においてU字状を成している。 The floating body body 2 has a pair of shipboard sides 5A and 5B and a ship bottom 6 that form its outer shell. The shipboard sides 5A, 5B are provided with a pair of shipboard skins forming the starboard and port sides, respectively. The ship's bottom 6 includes a ship's bottom shell plate that connects the sides 5A and 5B. The pair of sides 5A and 5B and the ship bottom 6 form a U-shaped outer shell of the floating body 2 in a cross section perpendicular to the fore-aft direction FA.
 浮体本体2は、最も上層に配置される全通甲板である上甲板7を更に備えている。上部構造4は、この上甲板7上に形成されている。上部構造4内には、居住区等が設けられている。本実施形態の浮体1では、例えば、上部構造4よりも船首尾方向FAの船首3aに近い側に、貨物を搭載するカーゴスペース(図示無し)が設けられている。 The floating body body 2 further includes an upper deck 7 which is a through deck arranged in the uppermost layer. The superstructure 4 is formed on this upper deck 7 . A living quarter and the like are provided in the upper structure 4 . In the floating body 1 of this embodiment, for example, a cargo space (not shown) for loading cargo is provided closer to the bow 3a in the bow-stern direction FA than the superstructure 4 is.
 燃焼装置8は、燃料を燃焼させることで熱エネルギーを発生させる装置であり、上記の浮体本体2内に設けられている。燃焼装置8としては、浮体1を推進させるための主機に用いられる内燃機関、船内に電気を供給する発電設備に用いられる内燃機関、作動流体としての蒸気を発生させるボイラー等を例示できる。本実施形態の燃焼装置8は、燃料として少なくともアンモニアを用いることが可能となっている。なお、燃焼装置8は、アンモニアとは異なる軽油などの他の燃料と、アンモニアとを切り替えて用いることが可能な構成であってもよい。 The combustion device 8 is a device that generates thermal energy by burning fuel, and is provided inside the floating body main body 2 described above. Examples of the combustion device 8 include an internal combustion engine used as a main engine for propelling the floating body 1, an internal combustion engine used for power generation equipment that supplies electricity to the ship, a boiler that generates steam as a working fluid, and the like. The combustion device 8 of this embodiment can use at least ammonia as fuel. Note that the combustion device 8 may be configured to be able to switch between ammonia and another fuel such as light oil, which is different from ammonia.
 アンモニアタンク(燃料タンク)10は、液体のアンモニア(言い換えれば、液化アンモニア)を貯留するタンクである。本実施形態では、アンモニアタンク10が上部構造4よりも船尾3bに近い側の上甲板7上に設置されている場合を例示している。また、本実施形態のアンモニアタンク10は、燃焼装置8の燃料として液化アンモニアを貯留している。 The ammonia tank (fuel tank) 10 is a tank that stores liquid ammonia (in other words, liquefied ammonia). In this embodiment, the case where the ammonia tank 10 is installed on the upper deck 7 closer to the stern 3b than the superstructure 4 is illustrated. Further, the ammonia tank 10 of the present embodiment stores liquefied ammonia as fuel for the combustion device 8 .
 アンモニア燃料供給系統20は、燃焼装置8とアンモニアタンク10とを接続し、少なくともアンモニアタンク10に貯留されたアンモニアを燃焼装置8へ供給可能に構成されている。 The ammonia fuel supply system 20 connects the combustion device 8 and the ammonia tank 10 and is configured to be able to supply at least ammonia stored in the ammonia tank 10 to the combustion device 8 .
 燃料供給装置室30は、アンモニア燃料供給系統20の一部を構成するアンモニア燃料機器を収容する区画である。本実施形態の燃料供給装置室30は、上部構造4よりも船首3a側の上甲板7上に設けられている場合を例示しているが、燃料供給装置室30の配置は、上部構造4よりも船首3a側の上甲板7上に限られない。上述したアンモニア燃料供給系統20は、この燃料供給装置室30内を経由して燃焼装置8とアンモニアタンク10とを接続している。 The fuel supply device room 30 is a compartment that houses ammonia fuel equipment that constitutes part of the ammonia fuel supply system 20 . Although the fuel supply device chamber 30 of this embodiment is provided on the upper deck 7 on the bow 3a side of the superstructure 4, the arrangement of the fuel supply device chamber 30 is is not limited to the upper deck 7 on the bow 3a side. The ammonia fuel supply system 20 described above connects the combustion device 8 and the ammonia tank 10 via the fuel supply device chamber 30 .
 図2は、本開示の第一実施形態におけるアンモニア燃料供給系統の概略構成を示す図である。
 図2に示すように、第一実施形態のアンモニア燃料供給系統20は、燃料タンク導出ライン41と、低圧ポンプ42と、第一熱交換器43と、第一加圧タンク44と、供給ライン45と、昇圧ポンプ46と、第一戻りライン47と、第一圧力調整弁48と、第一圧力センサー49と、第一流量センサー50と、第二熱交換器(冷却部)51と、第二圧力調整弁(圧力保持部)52と、第二圧力センサー53と、第一液位調整部54と、第一不活性ガス供給部55と、第一ガス放出部56と、燃料タンク戻りライン57と、流量調整弁58と、供給戻りライン59と、第三圧力調整弁60と、第三圧力センサー61と、を備えている。なお、図示を省略するが、アンモニア燃料供給系統20には、燃料パージを行うための不活性ガス供給装置等が別途接続されている。
FIG. 2 is a diagram showing a schematic configuration of an ammonia fuel supply system according to the first embodiment of the present disclosure;
As shown in FIG. 2, the ammonia fuel supply system 20 of the first embodiment includes a fuel tank lead-out line 41, a low pressure pump 42, a first heat exchanger 43, a first pressurized tank 44, a supply line 45 , booster pump 46, first return line 47, first pressure regulating valve 48, first pressure sensor 49, first flow sensor 50, second heat exchanger (cooling unit) 51, second A pressure regulating valve (pressure holding portion) 52, a second pressure sensor 53, a first liquid level adjusting portion 54, a first inert gas supply portion 55, a first gas release portion 56, and a fuel tank return line 57. , a flow control valve 58 , a supply return line 59 , a third pressure control valve 60 and a third pressure sensor 61 . Although illustration is omitted, the ammonia fuel supply system 20 is separately connected to an inert gas supply device or the like for purging the fuel.
 燃料タンク導出ライン41は、アンモニアタンク10から液化アンモニア(以下、単にアンモニアと称する)を第一加圧タンク44に向けて導出する。燃料タンク導出ライン41は、アンモニアタンク10の液相と、第一加圧タンク44とを連通させている。
 低圧ポンプ42は、燃料タンク導出ライン41に設けられて、アンモニアタンク10のアンモニアを昇圧(例えば、2.5MPa程度)して第一加圧タンク44に向けて送出する。低圧ポンプ42は、タンクに直接装備する所謂ディープウェル式やサブマージ式としても良い。
The fuel tank lead-out line 41 leads liquefied ammonia (hereinafter simply referred to as ammonia) from the ammonia tank 10 toward the first pressurized tank 44 . The fuel tank lead-out line 41 communicates the liquid phase of the ammonia tank 10 and the first pressurized tank 44 .
The low-pressure pump 42 is provided in the fuel tank lead-out line 41 to pressurize (for example, about 2.5 MPa) the ammonia in the ammonia tank 10 and send it out toward the first pressurization tank 44 . The low-pressure pump 42 may be of a so-called deep well type or a submerged type that is directly installed in the tank.
 第一熱交換器43は、燃料タンク導出ライン41に設けられて、低圧ポンプ42によって昇圧されたアンモニアを調温する。この実施形態では、例えば、40℃程度を上限として、アンモニアを加熱している。 The first heat exchanger 43 is provided in the fuel tank lead-out line 41 and controls the temperature of the ammonia pressurized by the low-pressure pump 42 . In this embodiment, for example, ammonia is heated up to about 40°C.
 第一加圧タンク44は、アンモニアタンク10から導入されたアンモニアを加圧状態で貯留する。この実施形態の第一加圧タンク44は、例えば、低圧ポンプ42によって昇圧された直後のアンモニアよりも僅かに低圧(例えば、2.3MPa程度)の加圧状態とされている。 The first pressurized tank 44 stores ammonia introduced from the ammonia tank 10 in a pressurized state. The first pressurized tank 44 of this embodiment is in a pressurized state with a pressure slightly lower (for example, about 2.3 MPa) than the ammonia immediately after being pressurized by the low-pressure pump 42, for example.
 供給ライン45は、第一加圧タンク44からアンモニアを導出する。供給ライン45は、第一加圧タンク44の液相のアンモニアを燃焼装置8へ供給する。
 昇圧ポンプ46は、供給ライン45に設けられて第一加圧タンク44から導出されるアンモニアを昇圧する。昇圧ポンプ46は、供給ライン45を流れるアンモニアを、燃焼装置8で必要な圧力以上まで昇圧可能とされている。
A supply line 45 leads ammonia from the first pressurized tank 44 . A supply line 45 supplies liquid-phase ammonia in the first pressurized tank 44 to the combustion device 8 .
The booster pump 46 is provided in the supply line 45 and boosts the pressure of the ammonia drawn out from the first pressurization tank 44 . The boosting pump 46 can boost the ammonia flowing through the supply line 45 to a pressure higher than that required by the combustion device 8 .
 第一戻りライン47は、燃焼装置8を経由したアンモニアを第一加圧タンク44に戻す。言い換えれば、第一戻りライン47は、供給ライン45によって燃焼装置8に供給されたアンモニアのうち、燃焼装置8で燃焼させなかった余剰分を第一加圧タンク44に戻すラインである。本実施形態の第一戻りライン47は、第一加圧タンク44に、燃焼装置8を経由したアンモニアを戻している。 A first return line 47 returns ammonia that has passed through the combustion device 8 to the first pressurized tank 44 . In other words, the first return line 47 is a line that returns to the first pressurization tank 44 the excess ammonia that has not been burned in the combustion device 8 out of the ammonia supplied to the combustion device 8 through the supply line 45 . A first return line 47 in this embodiment returns the ammonia that has passed through the combustion device 8 to the first pressurized tank 44 .
 第一圧力センサー49は、第一戻りライン47のうち、第一圧力調整弁48よりも燃焼装置8に近い側を流れるアンモニアの圧力を検出している。第一圧力センサー49の検出結果は、第一圧力調整弁48に入力される。
 第一流量センサー50は、第一戻りライン47のうち、第一圧力調整弁48よりも加圧タンクに近い側を流れるアンモニアの流量を検出している。第一流量センサー50の検出結果は、第一圧力調整弁48に入力される。
The first pressure sensor 49 detects the pressure of ammonia flowing in the first return line 47 closer to the combustion device 8 than the first pressure regulating valve 48 is. A detection result of the first pressure sensor 49 is input to the first pressure regulating valve 48 .
The first flow rate sensor 50 detects the flow rate of ammonia flowing through the side of the first return line 47 closer to the pressurized tank than the first pressure regulating valve 48 . A detection result of the first flow sensor 50 is input to the first pressure regulating valve 48 .
 第一圧力調整弁48は、第一戻りライン47に設けられて燃焼装置8内におけるアンモニアの圧力を調整可能になっている。燃焼装置8内におけるアンモニアの圧力は、この第一圧力調整弁48の開度を調整することで、燃焼装置8内で必要な所定の圧力(例えば、8MPa程度)に保持されている。つまり、上記の昇圧ポンプ46は、燃焼装置8内で必要な所定の圧力以上にアンモニアを昇圧しており、第一圧力調整弁48は、第一圧力センサー49の検出結果に基づいて、燃焼装置8内のアンモニアの圧力が高い場合に弁開度を大きくする一方で、燃焼装置8内のアンモニアの圧力が低い場合に弁開度を小さくしている。また、第一圧力調整弁48は、第一圧力センサー49の検出結果に関わらず、第一流量センサー50の検出結果に基づいて、第一戻りライン47に流れるアンモニアの流量が所定の下限値を上回るように弁開度を調整している。このように、アンモニアの流量を所定の下限値を上回るようにすることで、例えば、アンモニアが過熱状態になったり、燃焼装置8内の部品が過熱状態になったりすることを抑制している。 A first pressure regulating valve 48 is provided in the first return line 47 so that the pressure of ammonia in the combustion device 8 can be adjusted. The pressure of ammonia inside the combustion device 8 is maintained at a predetermined pressure (for example, about 8 MPa) required inside the combustion device 8 by adjusting the degree of opening of the first pressure regulating valve 48 . That is, the booster pump 46 boosts the ammonia to a predetermined pressure or more required in the combustion device 8, and the first pressure regulating valve 48, based on the detection result of the first pressure sensor 49, The valve opening degree is increased when the ammonia pressure in the combustion device 8 is high, while the valve opening degree is decreased when the ammonia pressure in the combustion device 8 is low. Also, the first pressure regulating valve 48 determines that the flow rate of ammonia flowing through the first return line 47 reaches a predetermined lower limit based on the detection result of the first flow rate sensor 50 regardless of the detection result of the first pressure sensor 49. The valve opening is adjusted to exceed By setting the flow rate of ammonia above the predetermined lower limit value in this way, for example, ammonia is prevented from being overheated, and components in the combustion device 8 are prevented from being overheated.
 第二熱交換器51は、第一戻りライン47における第一圧力調整弁48の下流側に設けられている。第二熱交換器51は、第一戻りライン47を流れるアンモニアを冷却する。より具体的には、第一戻りライン47を流れるアンモニアを、当該アンモニアが第一加圧タンク44に戻された際に、液体の状態を維持して気化しない温度にまで冷却する。ここで、本実施形態の第一加圧タンク44では、上述した通り2.3MPa程度でアンモニアを貯留しており、第二熱交換器51は、この圧力下で気化しない45℃以下にまでアンモニアを冷却している。 The second heat exchanger 51 is provided downstream of the first pressure regulating valve 48 in the first return line 47 . A second heat exchanger 51 cools the ammonia flowing through the first return line 47 . More specifically, the ammonia flowing through the first return line 47 is cooled to a temperature at which it remains liquid and does not vaporize when returned to the first pressurized tank 44 . Here, in the first pressurized tank 44 of the present embodiment, as described above, ammonia is stored at about 2.3 MPa, and the second heat exchanger 51 stores ammonia at a temperature of 45° C. or less at which ammonia does not vaporize under this pressure. is cooling.
 第二圧力センサー53は、第一圧力調整弁48と第二圧力調整弁52との間の第一戻りライン47を流れるアンモニアの圧力を検出している。この第二圧力センサー53の検出結果は、第二圧力調整弁52に入力される。 The second pressure sensor 53 detects the pressure of ammonia flowing through the first return line 47 between the first pressure regulating valve 48 and the second pressure regulating valve 52 . A detection result of the second pressure sensor 53 is input to the second pressure regulating valve 52 .
 第二圧力調整弁52は、第一戻りライン47の第二熱交換器51と第一加圧タンク44との間に設けられている。第二圧力調整弁52は、少なくとも第一戻りライン47の第一圧力調整弁48と第二熱交換器51との間を流れるアンモニアの圧力を調整可能とされている。本実施形態の第二圧力調整弁52は、第二圧力センサー53の検出結果に基づいて、第一圧力調整弁48と第二圧力調整弁52との間の第一戻りライン47内の圧力を、燃焼装置8内のアンモニアの圧力よりも低く、且つ、アンモニアを液体の状態に維持可能な圧力に保持する。より具体的には、第二圧力調整弁52は、燃焼装置8から第一戻りライン47を流れて第一圧力調整弁48を通り抜けた直後のアンモニア温度(例えば、70℃)において、アンモニアを、液体の状態を維持する圧力(例えば、3.25MPa程度)に調整する。 The second pressure regulating valve 52 is provided between the second heat exchanger 51 of the first return line 47 and the first pressurized tank 44 . The second pressure regulating valve 52 is capable of regulating the pressure of ammonia flowing at least between the first pressure regulating valve 48 in the first return line 47 and the second heat exchanger 51 . The second pressure regulating valve 52 of this embodiment adjusts the pressure in the first return line 47 between the first pressure regulating valve 48 and the second pressure regulating valve 52 based on the detection result of the second pressure sensor 53. , at a pressure lower than the pressure of the ammonia in the combustion device 8 and capable of maintaining the ammonia in a liquid state. More specifically, the second pressure regulating valve 52 , at the ammonia temperature (eg, 70° C.) immediately after flowing through the first return line 47 from the combustion device 8 and passing through the first pressure regulating valve 48 , The pressure is adjusted to maintain the liquid state (for example, about 3.25 MPa).
 第一液位調整部54は、第一加圧タンク44の液位を、所定の範囲に維持する。第一液位調整部54は、第一液位検出部62と、第一液位調整弁63と、を備えている。
 第一液位検出部62は、第一加圧タンク44の液位を検出する。第一液位検出部62の検出結果は、第一液位調整弁63に入力される。
 第一液位調整弁63は、第一液位検出部62の検出結果に基づいて弁開度を調整することで、アンモニアタンク10から第一加圧タンク44に流入するアンモニアの流量を調整する。
The first liquid level adjuster 54 maintains the liquid level of the first pressure tank 44 within a predetermined range. The first liquid level adjusting section 54 includes a first liquid level detecting section 62 and a first liquid level adjusting valve 63 .
The first liquid level detector 62 detects the liquid level of the first pressurized tank 44 . The detection result of the first liquid level detector 62 is input to the first liquid level adjustment valve 63 .
The first liquid level adjustment valve 63 adjusts the valve opening degree based on the detection result of the first liquid level detection unit 62, thereby adjusting the flow rate of ammonia flowing from the ammonia tank 10 into the first pressurization tank 44. .
 第一不活性ガス供給部55は、第一加圧タンク44内に不活性ガスを供給する。第一不活性ガス供給部55は、第一加圧タンク44内に、第一加圧タンク44内の圧力と同一圧力(例えば、2.3MPaなど)又は僅かに高い圧力(例えば、2.35MPaなど)の不活性ガスを供給可能となっている。第一不活性ガス供給部55は、例えば、第一加圧タンク44の液面が低下するなどにより、第一加圧タンク44内の圧力が低下し過ぎた場合に、第一加圧タンク44内に不活性ガスを供給して、第一加圧タンク44内の圧力低下が生じないようにしている。これにより、上記第一加圧タンク44内の気相には、この第一不活性ガス供給部55により供給された不活性ガスが貯留される。 The first inert gas supply unit 55 supplies inert gas into the first pressurized tank 44 . The first inert gas supply unit 55 supplies the first pressurized tank 44 with the same pressure as the pressure in the first pressurized tank 44 (eg, 2.3 MPa) or a slightly higher pressure (eg, 2.35 MPa). etc.) can be supplied. For example, when the pressure in the first pressurized tank 44 drops too much due to a decrease in the liquid level of the first pressurized tank 44, the first inert gas supply unit 55 supplies the first pressurized tank 44 with Inert gas is supplied inside the first pressurization tank 44 so that the pressure drop in the first pressurization tank 44 does not occur. As a result, the inert gas supplied by the first inert gas supply section 55 is stored in the gas phase in the first pressurized tank 44 .
 第一ガス放出部56は、第一加圧タンク44の気相の気体を第一加圧タンク44の外部に排出する。本実施形態の第一ガス放出部56は、例えば、第一加圧タンク44の液面が上昇するなどにより、第一加圧タンク44内の圧力が上昇しすぎた場合(例えば、2.36~2.8MPa程度まで上昇した場合)に、第一加圧タンク44内の気相の気体を大気放出している。つまり、第一不活性ガス供給部55と、第一ガス放出部56とによって、第一加圧タンク44内の圧力が所定の圧力範囲を維持するようになっている。 The first gas discharge part 56 discharges the vapor-phase gas in the first pressurized tank 44 to the outside of the first pressurized tank 44 . The first gas discharge part 56 of the present embodiment, for example, when the pressure in the first pressurization tank 44 rises too much (for example, 2.36 2.8 MPa), the vapor-phase gas in the first pressurization tank 44 is released to the atmosphere. That is, the pressure in the first pressurization tank 44 is maintained within a predetermined pressure range by the first inert gas supply section 55 and the first gas discharge section 56 .
 燃料タンク戻りライン57は、燃料タンク導出ライン41を第一加圧タンク44へ向かって流れるアンモニアを分流させてアンモニアタンク10に戻すラインである。
 流量調整弁58は、燃料タンク戻りライン57に設けられて、この燃料タンク戻りライン57を流れるアンモニアの流量を調整する。例えば、第一加圧タンク44の液面が所定の上限に有る場合などには、これら燃料タンク戻りライン57及び流量調整弁58によって、余剰のアンモニアがアンモニアタンク10に戻される。なお、低圧ポンプ42が可変流量タイプのポンプである場合には、これら燃料タンク戻りライン57及び流量調整弁58を省略してもよい。
The fuel tank return line 57 is a line that diverts the ammonia flowing through the fuel tank lead-out line 41 toward the first pressurization tank 44 and returns it to the ammonia tank 10 .
A flow control valve 58 is provided in the fuel tank return line 57 to control the flow rate of ammonia flowing through the fuel tank return line 57 . For example, when the liquid level of the first pressurization tank 44 reaches a predetermined upper limit, surplus ammonia is returned to the ammonia tank 10 by the fuel tank return line 57 and the flow control valve 58 . If the low-pressure pump 42 is a variable flow type pump, the fuel tank return line 57 and the flow control valve 58 may be omitted.
 供給戻りライン59は、供給ライン45に分岐接続されると共に、第一液位調整弁63と第一熱交換器43との間の燃料タンク導出ライン41に合流接続されている。すなわち、供給戻りライン59は、供給ライン45に流れるアンモニアを、第一熱交換器43を介して第一加圧タンク44へ戻している。
 第三圧力センサー61は、供給戻りライン59内の圧力を検出している。この第三圧力センサー61の検出結果は、第三圧力調整弁60に入力される。なお、第三圧力センサー61は、供給ライン45のうち、昇圧ポンプ46よりも燃焼装置8に近い側の供給ライン45内の圧力を検出してもよい。
The supply return line 59 is branched to the supply line 45 and joined to the fuel tank lead-out line 41 between the first liquid level control valve 63 and the first heat exchanger 43 . That is, the supply return line 59 returns the ammonia flowing through the supply line 45 to the first pressurized tank 44 via the first heat exchanger 43 .
A third pressure sensor 61 detects the pressure in the supply return line 59 . A detection result of the third pressure sensor 61 is input to the third pressure regulating valve 60 . The third pressure sensor 61 may detect the pressure in the supply line 45 closer to the combustion device 8 than the boost pump 46 .
 第三圧力調整弁60は、供給戻りライン59に設けられている。第三圧力調整弁60は、供給戻りライン59を流れるアンモニアの流量を調整可能とされている。言い換えれば、第三圧力調整弁60は、供給戻りライン59によってアンモニアを逃がすことで、供給ライン45のうち、昇圧ポンプ46よりも燃焼装置8側の供給ライン45内の圧力調整可能とされている。本実施形態の第三圧力調整弁60は、第三圧力センサー61の検出結果に基づいて、昇圧ポンプ46よりも燃焼装置8に近い側の供給ライン45内の圧力を、所定の圧力以下に保持する。なお、本実施形態では、供給ライン45の過圧防止の為にアンモニアを逃がす弁として第三圧力調整弁60を使用し、第一圧力調整弁48で燃焼装置8へ供給されるアンモニアの圧力を調整する場合について説明したが、第三圧力調整弁60により、燃焼装置8へ供給されるアンモニアの圧力を調整しても良い。さらに、昇圧ポンプ46にインバータを装備して、吐出圧を調整する機能を持たせても良い。 A third pressure regulating valve 60 is provided in the supply return line 59 . The third pressure regulating valve 60 can adjust the flow rate of ammonia flowing through the supply return line 59 . In other words, the third pressure regulating valve 60 allows the ammonia to escape through the supply return line 59, thereby regulating the pressure in the supply line 45 closer to the combustion device 8 than the boost pump 46 in the supply line 45. . Based on the detection result of the third pressure sensor 61, the third pressure regulating valve 60 of this embodiment keeps the pressure in the supply line 45 closer to the combustion device 8 than the boost pump 46 to a predetermined pressure or less. do. In this embodiment, the third pressure regulating valve 60 is used as a valve for releasing ammonia in order to prevent overpressure in the supply line 45, and the pressure of the ammonia supplied to the combustion device 8 is controlled by the first pressure regulating valve 48. Although the case of adjustment has been described, the third pressure adjustment valve 60 may be used to adjust the pressure of ammonia supplied to the combustion device 8 . Further, the boosting pump 46 may be equipped with an inverter to have a function of adjusting the discharge pressure.
(作用効果)
 第一実施形態の浮体1によれば、第一戻りライン47に設けられた第一圧力調整弁48によって燃焼装置8内の燃料を要求圧力にすることができる。また、第一戻りライン47を流れるアンモニアが、第一圧力調整弁48よりも下流側で減圧されたとしても、第二圧力調整弁52によって液体状態を維持可能な圧力に容易に保持することができる。そのため、圧力の低い第一圧力調整弁48よりも下流側に第二熱交換器51(冷却部)を配置しつつ、第一圧力調整弁48と第二熱交換器51との間でアンモニアが気化することを抑制できる。したがって、配管内のアンモニアを気液混合状態にせず液相で扱う事でエロージョン等のトラブルの発生を抑制することができると共に、耐圧性能の低い第二熱交換器51を用いることができるため、コスト低減を図ることができる。
(Effect)
According to the floating body 1 of the first embodiment, the first pressure regulating valve 48 provided in the first return line 47 can bring the fuel in the combustion device 8 to the required pressure. Further, even if the ammonia flowing through the first return line 47 is decompressed downstream of the first pressure regulating valve 48, the second pressure regulating valve 52 can easily maintain the pressure at which the liquid state can be maintained. can. Therefore, while disposing the second heat exchanger 51 (cooling section) downstream of the first pressure regulating valve 48 having a low pressure, ammonia is generated between the first pressure regulating valve 48 and the second heat exchanger 51. Evaporation can be suppressed. Therefore, it is possible to suppress the occurrence of troubles such as erosion by handling the ammonia in the pipe in a liquid phase instead of a gas-liquid mixture state, and it is possible to use the second heat exchanger 51 with low pressure resistance. Cost reduction can be achieved.
 さらに、上記第一実施形態では、第一加圧タンク44内の液位を検出する第一液位検出部62と、第一加圧タンク44内に供給されるアンモニアの流量を調節する第一液位調整弁63と、を備えているため、燃焼装置8の負荷変動などに応じて、第一加圧タンク44内の液位を、所定の液位範囲に容易に維持することができる。その結果、供給ライン45に気泡が混入することを抑制できる。 Furthermore, in the above-described first embodiment, the first liquid level detection unit 62 that detects the liquid level in the first pressurization tank 44 and the first Since the liquid level adjusting valve 63 is provided, the liquid level in the first pressurized tank 44 can be easily maintained within a predetermined liquid level range according to load fluctuations of the combustion device 8 or the like. As a result, it is possible to prevent air bubbles from entering the supply line 45 .
[第二実施形態]
 次に、本開示の第二実施形態を図面に基づき説明する。この第二実施形態の浮体は、上述した第一実施形態に、第二加圧タンク70を加えたものである。そのため、第一実施形態の図1を援用して、上述した第一実施形態と同一部分に同一符号を付して説明するとともに、重複する説明を省略する。
[Second embodiment]
Next, a second embodiment of the present disclosure will be described based on the drawings. The floating body of this second embodiment is obtained by adding a second pressurized tank 70 to the first embodiment described above. Therefore, referring to FIG. 1 of the first embodiment, the same parts as in the above-described first embodiment are denoted by the same reference numerals, and overlapping descriptions are omitted.
 この第二実施形態における浮体101は、浮体本体2と、上部構造4と、燃焼装置8と、アンモニアタンク10と、アンモニア燃料供給系統20と、燃料供給装置室30と、を備えている。 The floating body 101 in this second embodiment includes a floating body body 2, an upper structure 4, a combustion device 8, an ammonia tank 10, an ammonia fuel supply system 20, and a fuel supply device chamber 30.
 図3は、本開示の第二実施形態における図2に相当する図である。
 図3に示すように、第二実施形態のアンモニア燃料供給系統20は、第一実施形態と同様に、燃料タンク導出ライン41と、低圧ポンプ42と、第一熱交換器43と、第一加圧タンク44と、供給ライン45と、昇圧ポンプ46と、第一戻りライン47と、第一圧力調整弁48と、第一圧力センサー49と、第一流量センサー50と、第二熱交換器(冷却部)51と、第二圧力調整弁(圧力保持部)52と、第二圧力センサー53と、第一液位検出部62と、第一液位調整弁63と、第一不活性ガス供給部55と、第一ガス放出部56と、燃料タンク戻りライン57と、流量調整弁58と、供給戻りライン59と、第三圧力調整弁60と、第三圧力センサー61と、を備えている。さらに、第二実施形態のアンモニア燃料供給系統20は、上記に加えて、第二加圧タンク70と、第二不活性ガス供給部71と、第二ガス放出部72と、第二液位調整部73と、バイパスライン74と、第一切替弁75と、第二切替弁76と、を備えている。
FIG. 3 is a diagram corresponding to FIG. 2 in the second embodiment of the present disclosure.
As shown in FIG. 3, the ammonia fuel supply system 20 of the second embodiment includes a fuel tank lead-out line 41, a low pressure pump 42, a first heat exchanger 43, a first Pressure tank 44, supply line 45, booster pump 46, first return line 47, first pressure regulating valve 48, first pressure sensor 49, first flow sensor 50, second heat exchanger ( cooling unit) 51, second pressure regulating valve (pressure holding unit) 52, second pressure sensor 53, first liquid level detecting unit 62, first liquid level regulating valve 63, and first inert gas supply a portion 55, a first gas release portion 56, a fuel tank return line 57, a flow control valve 58, a supply return line 59, a third pressure control valve 60, and a third pressure sensor 61. . Furthermore, in addition to the above, the ammonia fuel supply system 20 of the second embodiment includes a second pressurized tank 70, a second inert gas supply unit 71, a second gas release unit 72, and a second liquid level adjustment A portion 73 , a bypass line 74 , a first switching valve 75 and a second switching valve 76 are provided.
 第二加圧タンク70は、第二熱交換器51と第一加圧タンク44との間の第一戻りライン47に設けられている。第二加圧タンク70は、第一戻りライン47を流れるアンモニアを貯留可能となっている。第二加圧タンク70は、その内部に液相と気相とを有している。第一戻りライン47のうち、第二加圧タンク70よりも上流側の上流側ライン47Aは、第二加圧タンク70に連通されている。また、第一戻りライン47のうち、第二加圧タンク70よりも下流側の下流側ライン47Bは、第二加圧タンク70の液相に連通されている。 The second pressurized tank 70 is provided in the first return line 47 between the second heat exchanger 51 and the first pressurized tank 44 . The second pressurized tank 70 can store ammonia flowing through the first return line 47 . The second pressurized tank 70 has a liquid phase and a gas phase inside. Of the first return line 47 , an upstream line 47</b>A on the upstream side of the second pressurization tank 70 communicates with the second pressurization tank 70 . Further, of the first return line 47 , a downstream line 47</b>B on the downstream side of the second pressurization tank 70 communicates with the liquid phase of the second pressurization tank 70 .
 第二不活性ガス供給部71は、第二加圧タンク70内に不活性ガスを供給する。第二不活性ガス供給部71は、第二加圧タンク70内に、第二加圧タンク70内の圧力と同一圧力(例えば、2.5MPaなど)又は僅かに高い圧力(例えば、2.55MPaなど)の不活性ガスを供給可能となっている。第二不活性ガス供給部71は、例えば、第二加圧タンク70の液面が低下するなどにより、第二加圧タンク70内の圧力が低下し過ぎた場合に、第二加圧タンク70内に不活性ガスを供給して、第二加圧タンク70内の圧力低下が生じないようにしている。これにより、上記第二加圧タンク70内の気相には、この第二不活性ガス供給部71により供給された不活性ガスが貯留される。 The second inert gas supply unit 71 supplies inert gas into the second pressurized tank 70 . The second inert gas supply unit 71 supplies the second pressurized tank 70 with the same pressure as the pressure in the second pressurized tank 70 (eg, 2.5 MPa) or a slightly higher pressure (eg, 2.55 MPa). etc.) can be supplied. For example, when the pressure in the second pressurized tank 70 drops too much due to a decrease in the liquid level of the second pressurized tank 70, the second inert gas supply unit 71 supplies the second pressurized tank 70 with An inert gas is supplied inside the second pressurization tank 70 so that the pressure drop in the second pressurization tank 70 does not occur. As a result, the inert gas supplied by the second inert gas supply section 71 is stored in the vapor phase inside the second pressurized tank 70 .
 第二ガス放出部72は、第二加圧タンク70の気相の気体を第二加圧タンク70の外部に排出する。本実施形態の第二ガス放出部72は、例えば、第二加圧タンク70の液面が上昇するなどにより、第二加圧タンク70内の圧力が上昇しすぎた場合(例えば、3.0MPa以上まで上昇した場合)に、第二加圧タンク70内の気相の気体を大気放出している。つまり、第二不活性ガス供給部71と、第二ガス放出部72とによって、第二加圧タンク70内の圧力が所定の圧力範囲を維持するようになっている。 The second gas discharge part 72 discharges the vapor-phase gas in the second pressurization tank 70 to the outside of the second pressurization tank 70 . The second gas discharge part 72 of the present embodiment, for example, when the pressure in the second pressurization tank 70 rises too much (for example, 3.0 MPa ), the vapor-phase gas in the second pressurization tank 70 is released to the atmosphere. That is, the second inert gas supply section 71 and the second gas discharge section 72 maintain the pressure in the second pressurization tank 70 within a predetermined pressure range.
 第二液位調整部73は、第二加圧タンク70の液位を、所定の範囲に維持する。第二液位調整部73は、第二液位検出部77と、第二液位調整弁78と、を備えている。
 第二液位検出部77は、第二加圧タンク70の液位を検出する。第二液位検出部77の検出結果は、第二液位調整弁78に入力される。
 第二液位調整弁78は、第二液位検出部77の検出結果に基づいて弁開度を調整することで、第一戻りライン47の下流側ライン47Bによって第二加圧タンク70から排出されるアンモニアの流量を調整する。
The second liquid level adjuster 73 maintains the liquid level of the second pressurized tank 70 within a predetermined range. The second liquid level adjusting section 73 includes a second liquid level detecting section 77 and a second liquid level adjusting valve 78 .
The second liquid level detector 77 detects the liquid level of the second pressurization tank 70 . The detection result of the second liquid level detector 77 is input to the second liquid level adjustment valve 78 .
The second liquid level adjustment valve 78 adjusts the valve opening degree based on the detection result of the second liquid level detector 77 , so that the liquid is discharged from the second pressurized tank 70 through the downstream line 47 B of the first return line 47 . Adjust the flow rate of ammonia to be discharged.
 バイパスライン74は、上流側ライン47Aを流れるアンモニアを、第二加圧タンク70をバイパスして、下流側ライン47Bへ流入させるラインである。
 第一切替弁75は、上流側ライン47Aに設けられている。より具体的には、第一切替弁75は、バイパスライン74の分岐点よりも第二加圧タンク70に近い側の上流側ライン47Aに設けられている。この第一切替弁75は、常時開放されており、例えば、第二加圧タンク70の液位調整機能が故障などした場合など、異常発生時に閉塞される。
 第二切替弁76は、バイパスライン74に設けられている。第二切替弁76は、常時閉塞されており、上記のような異常発生時に開放される。つまり、これら第一切替弁75と第二切替弁76とによって、上流側ライン47Aを流れるアンモニアの行先を、第二加圧タンク70とバイパスライン74との何れか一方に切り替えることが可能となっている。
The bypass line 74 is a line that bypasses the second pressurized tank 70 and allows the ammonia flowing through the upstream line 47A to flow into the downstream line 47B.
The first switching valve 75 is provided in the upstream line 47A. More specifically, the first switching valve 75 is provided in the upstream line 47</b>A closer to the second pressurized tank 70 than the branch point of the bypass line 74 . The first switching valve 75 is always open, and is closed when an abnormality occurs, such as when the liquid level adjustment function of the second pressurization tank 70 fails.
A second switching valve 76 is provided in the bypass line 74 . The second switching valve 76 is normally closed, and is opened when an abnormality occurs as described above. That is, the first switching valve 75 and the second switching valve 76 make it possible to switch the destination of the ammonia flowing through the upstream line 47A to either the second pressurized tank 70 or the bypass line 74. ing.
(作用効果)
 第二実施形態の浮体101によれば、上記第一実施形態の作用効果に加えて、第一戻りライン47の途中に第二加圧タンク70を備えているため、メンテナンスや燃料の切り替えなどで燃料系統のアンモニアをパージする際には、液体のアンモニアを第二加圧タンク70によって回収することが可能となる。また、その際に、第一加圧タンク44に流入するパージガスの量を低減できるため、第一加圧タンク44の容量を低減できる。
(Effect)
According to the floating body 101 of the second embodiment, in addition to the effects of the first embodiment, since the second pressurized tank 70 is provided in the middle of the first return line 47, maintenance, fuel switching, etc. When purging ammonia from the fuel system, the second pressurized tank 70 can recover liquid ammonia. Moreover, since the amount of the purge gas which flows into the 1st pressurization tank 44 can be reduced in that case, the capacity|capacitance of the 1st pressurization tank 44 can be reduced.
 さらに、第二不活性ガス供給部71によって第二加圧タンク70内に気相を形成できるため、液相への気泡の混入を抑制できる。また、第二不活性ガス供給部71によって、第二加圧タンク70内に不活性ガスを供給できるため、第二加圧タンク70内の圧力が低下して液体のアンモニアが気化することを抑制できる。 Furthermore, since the gas phase can be formed in the second pressurization tank 70 by the second inert gas supply unit 71, it is possible to suppress the inclusion of air bubbles in the liquid phase. In addition, since the inert gas can be supplied into the second pressurized tank 70 by the second inert gas supply unit 71, it is possible to prevent the pressure in the second pressurized tank 70 from decreasing and the liquid ammonia from vaporizing. can.
 また、第二実施形態では、第二加圧タンク70内の液位を検出する第二液位検出部77と、第二加圧タンク70内から第一戻りライン47を介して排出されるアンモニアの流量を調節する第二液位調節弁78と、を備えているため、燃焼装置8の負荷変動などに応じて第二加圧タンク70内に流入する液体のアンモニアの流量や第二加圧タンク70から排出される液体のアンモニアの流量が変動したとしても、第二加圧タンク70内の液位を、所定の液位範囲に容易に維持することができる。 Further, in the second embodiment, the second liquid level detection unit 77 that detects the liquid level in the second pressurization tank 70, and the ammonia discharged from the second pressurization tank 70 through the first return line 47 and a second liquid level control valve 78 that adjusts the flow rate of the second pressurized liquid ammonia flowing into the second pressurized tank 70 according to the load fluctuation of the combustion device 8 Even if the flow rate of liquid ammonia discharged from the tank 70 fluctuates, the liquid level in the second pressurized tank 70 can be easily maintained within a predetermined liquid level range.
[第三実施形態]
 次に、本開示の第三実施形態を図面に基づき説明する。この第三実施形態の浮体は、上述した第二実施形態の昇圧ポンプとしてキャンドモーターポンプを用いている点で相違する。そのため、第一実施形態の図1を援用して、上述した第一実施形態と同一部分に同一符号を付して説明するとともに、重複する説明を省略する。
[Third Embodiment]
Next, a third embodiment of the present disclosure will be described based on the drawings. The floating body of this third embodiment is different in that a canned motor pump is used as the booster pump of the above-described second embodiment. Therefore, referring to FIG. 1 of the first embodiment, the same parts as in the above-described first embodiment are denoted by the same reference numerals, and overlapping descriptions are omitted.
 この第三実施形態における浮体201は、浮体本体2と、上部構造4と、燃焼装置8と、アンモニアタンク10と、アンモニア燃料供給系統20と、燃料供給装置室30と、を備えている。 The floating body 201 in this third embodiment includes a floating body body 2, an upper structure 4, a combustion device 8, an ammonia tank 10, an ammonia fuel supply system 20, and a fuel supply device chamber 30.
 図4は、本開示の第三実施形態における図3に相当する図である。
 図4に示すように、第三実施形態のアンモニア燃料供給系統20は、燃料タンク導出ライン41と、低圧ポンプ42と、第一熱交換器43と、第一加圧タンク44と、供給ライン45と、キャンドモーターポンプ146と、第二戻りライン80と、第一戻りライン47と、第一圧力調整弁48と、第一圧力センサー49と、第一流量センサー50と、第二熱交換器(冷却部)51と、第二圧力調整弁(圧力保持部)52と、第二圧力センサー53と、第一液位検出部62と、第一液位調整弁63と、第一不活性ガス供給部55と、第一ガス放出部56と、燃料タンク戻りライン57と、流量調整弁58と、供給戻りライン59と、第三圧力調整弁60と、第三圧力センサー61と、第二加圧タンク70と、第二不活性ガス供給部71と、第二ガス放出部72と、第二液位調整部73と、バイパスライン74と、第一切替弁75と、第二切替弁76と、を備えている。
FIG. 4 is a diagram corresponding to FIG. 3 in the third embodiment of the present disclosure.
As shown in FIG. 4, the ammonia fuel supply system 20 of the third embodiment includes a fuel tank lead-out line 41, a low pressure pump 42, a first heat exchanger 43, a first pressurized tank 44, a supply line 45 , canned motor pump 146, second return line 80, first return line 47, first pressure regulating valve 48, first pressure sensor 49, first flow sensor 50, second heat exchanger ( cooling unit) 51, second pressure regulating valve (pressure holding unit) 52, second pressure sensor 53, first liquid level detecting unit 62, first liquid level regulating valve 63, and first inert gas supply portion 55, first gas release portion 56, fuel tank return line 57, flow control valve 58, supply return line 59, third pressure control valve 60, third pressure sensor 61, second pressurization A tank 70, a second inert gas supply unit 71, a second gas release unit 72, a second liquid level adjustment unit 73, a bypass line 74, a first switching valve 75, a second switching valve 76, It has
 キャンドモーターポンプ146は、第一実施形態の昇圧ポンプ46と同様に、供給ライン45に設けられて第一加圧タンク44から導出されるアンモニアを昇圧する。キャンドモーターポンプ146は、供給ライン45を流れるアンモニアを、燃焼装置8で必要な圧力以上まで昇圧可能とされている。キャンドモーターポンプ146は、ポンプ本体(図示せず)とモーター部(図示せず)とが一体に形成され、軸シールを有さないタイプのポンプである。このキャンドモーターポンプ146は、供給ライン45を流れるアンモニアの一部を、モーター部の冷却液として使用している。 The canned motor pump 146 is provided in the supply line 45 and pressurizes the ammonia drawn out from the first pressurized tank 44, like the booster pump 46 of the first embodiment. The canned motor pump 146 is capable of boosting the ammonia flowing through the supply line 45 to a pressure higher than that required by the combustion device 8 . The canned motor pump 146 is a type of pump in which a pump body (not shown) and a motor portion (not shown) are integrally formed and which does not have a shaft seal. This canned motor pump 146 uses part of the ammonia flowing through the supply line 45 as a coolant for the motor section.
 第二戻りライン80は、キャンドモーターポンプ146で冷却液として用いたアンモニアの一部を第一加圧タンク44の気相へ戻すラインである。
 なお、キャンドモーターポンプ146で冷却液として用いられたアンモニアの温度が、第一加圧タンク44に貯留されたアンモニアの上限温度よりも高い場合には、第二戻りライン80に第三熱交換器81を設けて、第二戻りライン80を流れるアンモニアの温度を、上記の上限温度よりも低くなるように冷却してもよい。
A second return line 80 is a line for returning part of the ammonia used as a coolant in the canned motor pump 146 to the gas phase of the first pressure tank 44 .
When the temperature of the ammonia used as the coolant in the canned motor pump 146 is higher than the upper limit temperature of the ammonia stored in the first pressurization tank 44, the second return line 80 is connected to the third heat exchanger. 81 may be provided to cool the temperature of the ammonia flowing through the second return line 80 to below the above upper temperature limit.
(作用効果)
 第三実施形態では、キャンドモーターポンプ146を用いていることで軸シールからのアンモニア漏洩が生じないため、信頼性を向上することができる。さらに、第一不活性ガス供給部55によって第一加圧タンク44内に気相を形成することができるため、キャンドモーターポンプ146の冷却液として用いたアンモニアを、キャンドモーターポンプ146から離れた場所に設置された燃料タンクなどの気相を有したタンクまで戻す必要が無くなる。したがって、キャンドモーターポンプ146の冷却液として用いたアンモニアが油等で汚染された場合であっても、燃焼装置8の燃料供給系統外のアンモニアが汚染されることを抑制できる。また、第一加圧タンク44内に気相が形成されているため、アンモニアの液相に気泡が混入することを抑制できる。また、第一加圧タンク44内に不活性ガスを供給することで、第一加圧タンク44内の圧力が低下して液体のアンモニアが気化することを抑制できる。
(Effect)
In the third embodiment, since the canned motor pump 146 is used, ammonia leakage from the shaft seal does not occur, so reliability can be improved. Furthermore, since a gas phase can be formed in the first pressurized tank 44 by the first inert gas supply unit 55, the ammonia used as the cooling liquid for the canned motor pump 146 can be transferred to a place away from the canned motor pump 146. There is no need to return to a tank with a gas phase such as a fuel tank installed in the Therefore, even if the ammonia used as the coolant for the canned motor pump 146 is contaminated with oil or the like, the ammonia outside the fuel supply system of the combustion device 8 can be prevented from being contaminated. In addition, since the gas phase is formed in the first pressurization tank 44, it is possible to prevent air bubbles from entering the liquid phase of ammonia. In addition, by supplying the inert gas into the first pressurization tank 44, it is possible to prevent the pressure in the first pressurization tank 44 from decreasing and evaporating liquid ammonia.
(第三実施形態の変形例)
 図5は、本開示の第三実施形態の変形例における図4に相当する図である。
 上述した第三実施形態では、昇圧ポンプとして一つのキャンドモーターポンプ146を備える場合を一例にして説明した。しかし、供給ライン45を流れるアンモニアを昇圧する昇圧ポンプは、一つに限られない。
(Modified example of the third embodiment)
FIG. 5 is a diagram corresponding to FIG. 4 in a modification of the third embodiment of the present disclosure.
In the third embodiment described above, the case where one canned motor pump 146 is provided as the boosting pump has been described as an example. However, the number of boost pumps for boosting the ammonia flowing through the supply line 45 is not limited to one.
 例えば、図5に示す第三実施形態の変形例の浮体のように、供給ライン45に直列に設けられた複数の昇圧ポンプを有していてもよい。この第三実施形態の変形例では、二つの昇圧ポンプとして、第一キャンドモーターポンプ246Aと、第二キャンドモーターポンプ246Bと、を備えている。さらに、第三実施形態の変形例の浮体においては、これら第一キャンドモーターポンプ246Aで冷却液として用いたアンモニアの一部を第一加圧タンク44の気相へ戻す第二戻りライン80と、第二キャンドモーターポンプ246Bで冷却液として用いたアンモニアの一部を第一加圧タンク44の気相へ戻す第三戻りライン280と、を備えている。 For example, like the floating body of the modification of the third embodiment shown in FIG. In this modification of the third embodiment, a first canned motor pump 246A and a second canned motor pump 246B are provided as two booster pumps. Furthermore, in the floating body of the modified example of the third embodiment, a second return line 80 that returns part of the ammonia used as the coolant in the first canned motor pump 246A to the gas phase of the first pressurization tank 44, and a third return line 280 that returns a portion of the ammonia used as coolant in the second canned motor pump 246B to the vapor phase of the first pressurized tank 44 .
 第三実施形態の変形例によれば、燃焼装置8の要求するアンモニアの圧力が、例えば、製造者によって異なる場合であっても、昇圧ポンプの追加・削減によって、燃焼装置8の要求するアンモニアの圧力まで昇圧することができる。さらに複数の昇圧ポンプが直列に設けられているため、供給ライン45を流れるアンモニアが燃焼装置8で必要な圧力以上となるように一つのポンプによって昇圧する場合と比較して、廉価なキャンドモーターポンプを用いてコストを低減することが可能となる。 According to the modified example of the third embodiment, even if the ammonia pressure required by the combustion device 8 differs, for example, depending on the manufacturer, the ammonia pressure required by the combustion device 8 can be increased by adding or removing boost pumps. pressure can be increased. Furthermore, since a plurality of booster pumps are provided in series, the canned motor pump is less expensive than a single pump that boosts the ammonia flowing through the supply line 45 to a pressure higher than that required by the combustion device 8. can be used to reduce costs.
 なお、上述した第三実施形態と同様に、第一、第二キャンドモーターポンプ246A,246Bから第一加圧タンク44の気相へ戻すアンモニアの温度が高い場合には、必要に応じて、第二戻りライン80に第三熱交換器81を設けたり、第三戻りライン280に第四熱交換器281を設けたりして、アンモニアを冷却してもよい。また、第二キャンドモーターポンプ246Bから吐出されたアンモニアを冷却する第五熱交換器85を設けてもよい。第五熱交換器85を設ける状況では、上述した第一熱交換器43を省略できる場合もある。 As in the above-described third embodiment, when the temperature of the ammonia returned from the first and second canned motor pumps 246A, 246B to the gas phase of the first pressurization tank 44 is high, the second A third heat exchanger 81 may be provided in the second return line 80 or a fourth heat exchanger 281 may be provided in the third return line 280 to cool the ammonia. A fifth heat exchanger 85 may be provided to cool the ammonia discharged from the second canned motor pump 246B. In situations where the fifth heat exchanger 85 is provided, the above-described first heat exchanger 43 may be omitted.
 また、第三実施形態の変形例では、昇圧ポンプを二つ設ける場合について説明したが、三つ以上の昇圧ポンプを設けてもよい。さらに、第一実施形態の供給ライン45において、複数の昇圧ポンプを直列に設けるようにしてもよい。 Also, in the modified example of the third embodiment, the case where two booster pumps are provided has been described, but three or more booster pumps may be provided. Furthermore, in the supply line 45 of the first embodiment, a plurality of booster pumps may be provided in series.
[第四実施形態]
 次に、本開示の第四実施形態を図面に基づき説明する。この第四実施形態の浮体は、上述した第三実施形態に対し、キャンドモーターポンプで冷却液として用いたアンモニアの一部の戻し先を追加している点で相違する。そのため、第一実施形態の図1を援用して、上述した第三実施形態と同一部分に同一符号を付して説明するとともに、重複する説明を省略する。
[Fourth embodiment]
Next, a fourth embodiment of the present disclosure will be described based on the drawings. The floating body of the fourth embodiment differs from the above-described third embodiment in that a return destination for part of the ammonia used as the coolant in the canned motor pump is added. Therefore, referring to FIG. 1 of the first embodiment, the same parts as those of the above-described third embodiment are given the same reference numerals, and overlapping descriptions are omitted.
 この第四実施形態における浮体301は、浮体本体2と、上部構造4と、燃焼装置8と、アンモニアタンク10と、アンモニア燃料供給系統20と、燃料供給装置室30と、を備えている。 A floating body 301 in the fourth embodiment includes a floating body body 2, an upper structure 4, a combustion device 8, an ammonia tank 10, an ammonia fuel supply system 20, and a fuel supply device chamber 30.
 図6は、本開示の第四実施形態における図4に相当する図である。
 図6に示すように、第四実施形態のアンモニア燃料供給系統20は、燃料タンク導出ライン41と、低圧ポンプ42と、第一熱交換器43と、第一加圧タンク44と、供給ライン45と、キャンドモーターポンプ146と、第二戻りライン80と、第四戻りライン180(第二加圧タンク戻しライン)と、第三切替弁91と、第四切替弁92と、第一戻りライン47と、第一圧力調整弁48と、第一圧力センサー49と、第一流量センサー50と、第二熱交換器(冷却部)51と、第二圧力調整弁(圧力保持部)52と、第二圧力センサー53と、第一液位検出部62と、第一液位調整弁63と、第一不活性ガス供給部55と、第一ガス放出部56と、燃料タンク戻りライン57と、流量調整弁58と、供給戻りライン59と、第三圧力調整弁60と、第三圧力センサー61と、第二加圧タンク70と、第二不活性ガス供給部71と、第二ガス放出部72と、第二液位調整部73と、バイパスライン74と、第一切替弁75と、第二切替弁76と、を備えている。
FIG. 6 is a diagram corresponding to FIG. 4 in the fourth embodiment of the present disclosure.
As shown in FIG. 6, the ammonia fuel supply system 20 of the fourth embodiment includes a fuel tank lead-out line 41, a low pressure pump 42, a first heat exchanger 43, a first pressurized tank 44, a supply line 45 , canned motor pump 146 , second return line 80 , fourth return line 180 (second pressurized tank return line), third switching valve 91 , fourth switching valve 92 , first return line 47 , the first pressure regulating valve 48, the first pressure sensor 49, the first flow sensor 50, the second heat exchanger (cooling section) 51, the second pressure regulating valve (pressure holding section) 52, the Two pressure sensors 53, a first liquid level detection unit 62, a first liquid level adjustment valve 63, a first inert gas supply unit 55, a first gas discharge unit 56, a fuel tank return line 57, and a flow rate Regulating valve 58 , supply return line 59 , third pressure regulating valve 60 , third pressure sensor 61 , second pressurized tank 70 , second inert gas supply section 71 , and second gas release section 72 , a second liquid level adjustment unit 73 , a bypass line 74 , a first switching valve 75 , and a second switching valve 76 .
 キャンドモーターポンプ146は、第三実施形態のキャンドモーターポンプ146と同様の構成であって、供給ライン45に設けられて第一加圧タンク44から導出されるアンモニアを昇圧する。キャンドモーターポンプ146は、供給ライン45を流れるアンモニアの一部を、モーター部の冷却液として使用する。 The canned motor pump 146 has the same configuration as the canned motor pump 146 of the third embodiment, and is provided in the supply line 45 to pressurize the ammonia drawn out from the first pressurization tank 44 . Canned motor pump 146 uses a portion of the ammonia flowing through supply line 45 as a coolant for the motor section.
 第二戻りライン80は、キャンドモーターポンプ146で冷却液として用いたアンモニアの一部を第一加圧タンク44の気相へ戻すラインである。
 第四戻りライン180は、キャンドモーターポンプ146で冷却液として用いたアンモニアの一部を第二加圧タンク70の気相へ戻すラインである。
A second return line 80 is a line for returning part of the ammonia used as a coolant in the canned motor pump 146 to the gas phase of the first pressure tank 44 .
The fourth return line 180 is a line that returns part of the ammonia used as the coolant in the canned motor pump 146 to the vapor phase of the second pressurization tank 70 .
 第三切替弁91は、第二戻りライン80を流れるアンモニアの流量を調整する。第四切替弁92は、第四戻りライン180を流れるアンモニアの流量を調整する。これら第三切替弁91及び第四切替弁92は、全開から全閉まで自在に開閉可能に構成されている。これら第三切替弁91及び第四切替弁92により、キャンドモーターポンプ146で冷却液として用いたアンモニアの一部は、第一加圧タンク44と第二加圧タンク70とに振り分けることが可能となっている。例えば、第三切替弁91を開放状態にして第四切替弁92を閉塞状態にすることで、キャンドモーターポンプ146で冷却液として用いたアンモニアの一部を、第一加圧タンク44の気相へ戻すことができる。一方で、第三切替弁91を閉塞状態にして第四切替弁92を開放状態にすることで、キャンドモーターポンプ146で冷却液として用いたアンモニアの一部を、第二加圧タンク70の気相へ戻すことができる。 The third switching valve 91 adjusts the flow rate of ammonia flowing through the second return line 80 . The fourth switching valve 92 adjusts the flow rate of ammonia flowing through the fourth return line 180 . These third switching valve 91 and fourth switching valve 92 are configured to be freely openable and closable from fully open to fully closed. A part of the ammonia used as the coolant in the canned motor pump 146 can be distributed to the first pressurization tank 44 and the second pressurization tank 70 by the third switching valve 91 and the fourth switching valve 92 . It's becoming For example, by opening the third switching valve 91 and closing the fourth switching valve 92, part of the ammonia used as the coolant in the canned motor pump 146 is transferred to the gas phase of the first pressurized tank 44. can be returned to On the other hand, by closing the third switching valve 91 and opening the fourth switching valve 92, part of the ammonia used as the coolant in the canned motor pump 146 is transferred to the gas in the second pressurization tank 70. can be reversed.
 本実施形態では、第二戻りライン80に第三切替弁91が設けられ、第四戻りライン180に第四切替弁92が設けられている場合を例示しているが、この構成に限られない。キャンドモーターポンプ146で冷却液として用いたアンモニアの一部が、第一加圧タンク44と第二加圧タンク70とに振り分け可能な構成であれば良い。また、第三切替弁91、第四切替弁92が流量調整可能な場合について説明したが、開閉のみ可能な弁であってもよい。この場合、キャンドモーターポンプ146で冷却液として用いたアンモニアの一部の戻し先は、第一加圧タンク44と第二加圧タンク70とから択一的に選択される。 In the present embodiment, the case where the second return line 80 is provided with the third switching valve 91 and the fourth return line 180 is provided with the fourth switching valve 92 is exemplified, but the configuration is not limited to this. . Any configuration may be employed as long as a portion of the ammonia used as the coolant in the canned motor pump 146 can be distributed between the first pressurization tank 44 and the second pressurization tank 70 . Further, although the case where the third switching valve 91 and the fourth switching valve 92 are capable of adjusting the flow rate has been described, valves that can only be opened and closed may be used. In this case, the return destination of part of the ammonia used as the cooling liquid in the canned motor pump 146 is alternatively selected from the first pressurization tank 44 and the second pressurization tank 70 .
 なお、キャンドモーターポンプ146で冷却液として用いられたアンモニアの温度が、第一加圧タンク44や第二加圧タンク70に貯留されたアンモニアの上限温度よりも高い場合には、第二戻りライン80に第三熱交換器81を設けて第二戻りライン80を流れるアンモニアの温度を、上記の上限温度よりも低くなるように冷却したり、第四戻りライン180に第六熱交換器93を設けて第四戻りライン180を流れるアンモニアの温度を、上記の上限温度よりも低くなるように冷却したりしてもよい。 When the temperature of the ammonia used as the coolant in the canned motor pump 146 is higher than the upper limit temperature of the ammonia stored in the first pressurization tank 44 or the second pressurization tank 70, the second return line 80 is provided with a third heat exchanger 81 to cool the temperature of the ammonia flowing through the second return line 80 to be lower than the upper limit temperature, or a sixth heat exchanger 93 is provided in the fourth return line 180. It may be provided to cool the temperature of the ammonia flowing through the fourth return line 180 to be lower than the above upper limit temperature.
(作用効果)
 第四実施形態では、第三実施形態の作用効果に加えて、キャンドモーターポンプ146の冷却液として用いたアンモニアを、気相が形成されている第一加圧タンク44と第二加圧タンク70とに選択的に戻すことが可能となる。
(Effect)
In the fourth embodiment, in addition to the effects of the third embodiment, the ammonia used as the cooling liquid for the canned motor pump 146 is It is possible to selectively return to
(第四実施形態の変形例)
 図7は、本開示の第四実施形態の変形例における図5に相当する図である。
 上述した第四実施形態では、昇圧ポンプとして一つのキャンドモーターポンプ146を備える場合を一例にして説明した。しかし、供給ライン45を流れるアンモニアを昇圧する昇圧ポンプは、一つに限られない。
(Modified example of the fourth embodiment)
FIG. 7 is a diagram corresponding to FIG. 5 in a modification of the fourth embodiment of the present disclosure.
In the fourth embodiment described above, the case where one canned motor pump 146 is provided as a boosting pump has been described as an example. However, the number of boost pumps for boosting the ammonia flowing through the supply line 45 is not limited to one.
 例えば、図7に示す第四実施形態の変形例の浮体のように、供給ライン45に直列に設けられた複数の昇圧ポンプを有していてもよい。この第四実施形態の変形例では、二つの昇圧ポンプとして、第一キャンドモーターポンプ246Aと、第二キャンドモーターポンプ246Bと、を備えている。さらに、第四実施形態の変形例の浮体においては、キャンドモーターポンプ246Aの冷却液として用いたアンモニアを、気相が形成されている第一加圧タンク44と第二加圧タンク70とに選択的に戻すべく、第四実施形態と同様に、第二戻りライン80と、第四戻りライン180(第二加圧タンク戻しライン)と、第三切替弁91と、第四切替弁92と、を備えている。 For example, like the floating body of the modification of the fourth embodiment shown in FIG. This modification of the fourth embodiment includes a first canned motor pump 246A and a second canned motor pump 246B as two booster pumps. Furthermore, in the floating body of the modification of the fourth embodiment, the ammonia used as the coolant for the canned motor pump 246A is selected for the first pressurization tank 44 and the second pressurization tank 70 in which the gas phase is formed. In order to return the It has
 さらに、第四実施形態の変形例の浮体においては、第二キャンドモーターポンプ246Bの冷却液として用いたアンモニアを、気相が形成されている第一加圧タンク44と第二加圧タンク70とに選択的に戻すべく、第三戻りライン280と、第五戻りライン380(第二加圧タンク戻しライン)と、第五切替弁94と、第六切替弁95と、を備えている。 Furthermore, in the floating body of the modification of the fourth embodiment, the ammonia used as the cooling liquid for the second canned motor pump 246B is stored in the first pressurization tank 44 and the second pressurization tank 70 in which the gas phase is formed. A third return line 280, a fifth return line 380 (second pressurized tank return line), a fifth switching valve 94, and a sixth switching valve 95 are provided to selectively return to .
 第三戻りライン280は、第二キャンドモーターポンプ246Bで冷却液として用いたアンモニアの一部を第一加圧タンク44の気相へ戻すラインである。
 第五戻りライン380は、第二キャンドモーターポンプ246Bで冷却液として用いたアンモニアの一部を第二加圧タンク70の気相へ戻すラインである。
The third return line 280 is a line that returns part of the ammonia used as coolant in the second canned motor pump 246B to the gas phase of the first pressurization tank 44 .
The fifth return line 380 is a line that returns part of the ammonia used as the coolant in the second canned motor pump 246B to the vapor phase of the second pressurization tank 70 .
 第五切替弁94は、第三戻りライン280を流れるアンモニアの流量を調整する。第六切替弁95は、第五戻りライン380を流れるアンモニアの流量を調整する。これら第五切替弁94及び第六切替弁95は、全開から全閉まで自在に開閉可能に構成されている。これら第五切替弁94及び第六切替弁95により、キャンドモーターポンプ246Bで冷却液として用いたアンモニアの一部は、第一加圧タンク44と第二加圧タンク70とに振り分けることが可能となっている。例えば、第五切替弁94を開放状態にして第六切替弁95を閉塞状態にすることで、キャンドモーターポンプ246Bで冷却液として用いたアンモニアの一部を、第一加圧タンク44の気相へ戻すことができる。一方で、第五切替弁94を閉塞状態にして第六切替弁95を開放状態にすることで、キャンドモーターポンプ246Bで冷却液として用いたアンモニアの一部を、第二加圧タンク70の気相へ戻すことができる。 The fifth switching valve 94 adjusts the flow rate of ammonia flowing through the third return line 280 . The sixth switching valve 95 adjusts the flow rate of ammonia flowing through the fifth return line 380 . These fifth switching valve 94 and sixth switching valve 95 are configured to be freely openable and closable from fully open to fully closed. A part of the ammonia used as the coolant in the canned motor pump 246B can be distributed to the first pressurization tank 44 and the second pressurization tank 70 by the fifth switching valve 94 and the sixth switching valve 95. It's becoming For example, by opening the fifth switching valve 94 and closing the sixth switching valve 95, part of the ammonia used as the coolant in the canned motor pump 246B is transferred to the gas phase of the first pressurization tank 44. can be returned to On the other hand, by closing the fifth switching valve 94 and opening the sixth switching valve 95, part of the ammonia used as the coolant in the canned motor pump 246B is transferred to the gas in the second pressurization tank 70. can be reversed.
(作用効果)
 第四実施形態の変形例によれば、燃焼装置8の要求するアンモニアの圧力が、例えば、製造者によって異なる場合であっても、昇圧ポンプの追加・削減によって、燃焼装置8の要求するアンモニアの圧力まで昇圧することができる。さらに複数の昇圧ポンプが直列に設けられているため、供給ライン45を流れるアンモニアが燃焼装置8で必要な圧力以上となるように一つのポンプによって昇圧する場合と比較して、廉価なキャンドモーターポンプを用いてコストを低減することが可能となる。
 また、第四実施形態の変形例では、第一キャンドモーターポンプ246A及び第二キャンドモーターポンプ246Bの冷却液として用いたアンモニアを、それぞれ気相が形成されている第一加圧タンク44と第二加圧タンク70とに振り分けて戻すことが可能となる。
(Effect)
According to the modified example of the fourth embodiment, even if the ammonia pressure required by the combustion device 8 differs, for example, depending on the manufacturer, by adding or removing the boost pump, the ammonia pressure required by the combustion device 8 can be increased. pressure can be increased. Furthermore, since a plurality of booster pumps are provided in series, the canned motor pump is less expensive than a single pump that boosts the ammonia flowing through the supply line 45 to a pressure higher than that required by the combustion device 8. can be used to reduce costs.
Further, in the modification of the fourth embodiment, the ammonia used as the cooling liquid for the first canned motor pump 246A and the second canned motor pump 246B is used in the first pressurization tank 44 and the second It becomes possible to distribute and return to the pressurized tank 70 .
 なお、上述した第三実施形態の変形例と同様に、第一、第二キャンドモーターポンプ246A,246Bから第一加圧タンク44や第二加圧タンク70の気相へ戻すアンモニアの温度が高い場合には、必要に応じて、第二戻りライン80に第三熱交換器81を設けたり、第三戻りライン280に第四熱交換器281を設けたり、第四戻りライン180に第六熱交換器93を設けたり、第五戻りライン380に第七熱交換器96を設けたりして、それぞれ第二戻りライン80、第三戻りライン280、第四戻りライン180、及び第五戻りライン380に流れるアンモニアを冷却してもよい。また、第四実施形態の変形例では、キャンドモーターポンプを二つ設ける場合について説明したが、三つ以上のキャンドモーターポンプを設けてもよい。この場合、各キャンドモーターポンプから第一加圧タンク44と第二加圧タンク70とに選択的にアンモニアを戻すようにしてもよい。 Note that, similarly to the modification of the third embodiment described above, the temperature of ammonia returned from the first and second canned motor pumps 246A and 246B to the gas phase of the first pressurization tank 44 and the second pressurization tank 70 is high. In some cases, the second return line 80 may be provided with a third heat exchanger 81, the third return line 280 may be provided with a fourth heat exchanger 281, and the fourth return line 180 may be provided with a sixth heat exchanger. A second return line 80, a third return line 280, a fourth return line 180, and a fifth return line 380 are respectively provided with an exchanger 93 and a fifth return line 380 with a seventh heat exchanger 96. may be cooled. Also, in the modified example of the fourth embodiment, the case where two canned motor pumps are provided has been described, but three or more canned motor pumps may be provided. In this case, ammonia may be selectively returned from each canned motor pump to the first pressurized tank 44 and the second pressurized tank 70 .
[第五実施形態]
 次に、本開示の第五実施形態を図面に基づき説明する。この第五実施形態の浮体は、上述した第三実施形態に対し、キャンドモーターポンプで冷却液として用いたアンモニアの一部の戻し先が相違する。そのため、第一実施形態の図1を援用して、上述した第三実施形態と同一部分に同一符号を付して説明するとともに、重複する説明を省略する。
[Fifth embodiment]
Next, a fifth embodiment of the present disclosure will be described based on the drawings. The floating body of the fifth embodiment differs from the above-described third embodiment in the return destination of part of the ammonia used as the coolant in the canned motor pump. Therefore, referring to FIG. 1 of the first embodiment, the same parts as those of the above-described third embodiment are given the same reference numerals, and overlapping descriptions are omitted.
 この第五実施形態における浮体401は、浮体本体2と、上部構造4と、燃焼装置8と、アンモニアタンク10と、アンモニア燃料供給系統20と、燃料供給装置室30と、を備えている。 A floating body 401 in the fifth embodiment includes a floating body body 2, an upper structure 4, a combustion device 8, an ammonia tank 10, an ammonia fuel supply system 20, and a fuel supply device chamber 30.
 図8は、本開示の第五実施形態における図4に相当する図である。
 図8に示すように、第五実施形態のアンモニア燃料供給系統20は、燃料タンク導出ライン41と、低圧ポンプ42と、第一熱交換器43と、第一加圧タンク44と、供給ライン45と、キャンドモーターポンプ146と、第四戻りライン180(第二加圧タンク戻しライン)と、第一戻りライン47と、第一圧力調整弁48と、第一圧力センサー49と、第一流量センサー50と、第二熱交換器51と、第二圧力調整弁52と、第二圧力センサー53と、燃料タンク戻りライン57と、供給戻りライン59と、第三圧力調整弁60と、第三圧力センサー61と、第二加圧タンク70と、第二不活性ガス供給部71と、第二ガス放出部72と、第二液位調整部73と、バイパスライン74と、第一切替弁75と、第二切替弁76と、第四圧力センサー162と、第四圧力調整弁158と、を備えている。
FIG. 8 is a diagram corresponding to FIG. 4 in the fifth embodiment of the present disclosure.
As shown in FIG. 8, the ammonia fuel supply system 20 of the fifth embodiment includes a fuel tank lead-out line 41, a low pressure pump 42, a first heat exchanger 43, a first pressurized tank 44, a supply line 45 , canned motor pump 146, fourth return line 180 (second pressurized tank return line), first return line 47, first pressure regulating valve 48, first pressure sensor 49, first flow sensor 50, second heat exchanger 51, second pressure regulating valve 52, second pressure sensor 53, fuel tank return line 57, supply return line 59, third pressure regulating valve 60, third pressure. A sensor 61, a second pressurized tank 70, a second inert gas supply section 71, a second gas release section 72, a second liquid level adjustment section 73, a bypass line 74, and a first switching valve 75. , a second switching valve 76 , a fourth pressure sensor 162 and a fourth pressure regulating valve 158 .
 この第五実施形態のキャンドモーターポンプ146は、そのモーター部の冷却液として使用したアンモニアを、第四戻りライン180により第二加圧タンク70の気相にだけ戻している。つまり、キャンドモーターポンプ146のモーター部の冷却液として使用したアンモニアは、第一加圧タンク44に戻されない。 The canned motor pump 146 of the fifth embodiment returns the ammonia used as the coolant for the motor part only to the vapor phase of the second pressurization tank 70 through the fourth return line 180 . In other words, the ammonia used as the coolant for the motor portion of the canned motor pump 146 is not returned to the first pressurization tank 44 .
 また、この第五実施形態の第一加圧タンク44は、その内部に気相を形成しないように管理される。言い換えれば、第一加圧タンク44は、液化アンモニアで満たされる。そのため、この第五実施形態の第一加圧タンク44には、上述した各実施形態で気相の圧力保持を目的として設けられていた第一不活性ガス供給部55及び第一ガス放出部56を接続していない。なお、第一加圧タンク44内のパージを目的として、不活性ガスを供給する構成と、第一加圧タンク44内の気体を排出する構成を設けてもよい。 Also, the first pressurized tank 44 of the fifth embodiment is managed so as not to form a gas phase inside. In other words, the first pressurized tank 44 is filled with liquefied ammonia. Therefore, in the first pressurized tank 44 of the fifth embodiment, the first inert gas supply unit 55 and the first gas discharge unit 56 provided for the purpose of maintaining the pressure of the gas phase in each of the above-described embodiments not connected. For the purpose of purging the inside of the first pressurization tank 44, a configuration for supplying an inert gas and a configuration for discharging the gas inside the first pressurization tank 44 may be provided.
 また、この第五実施形態の第一加圧タンク44は、気相を形成しないように管理されるため、第一実施形態の第一液位検出部62に代えて、第一加圧タンク44内の液圧を検出する第四圧力センサー162が設けられている。さらに、第一実施形態の流量調整弁58に代えて第四圧力調整弁158が設けられている。第四圧力調整弁158は、第四圧力センサー162の検出結果に基づいて弁開度を調整する。この第四圧力調整弁158により、第一加圧タンク44内が所定の上限圧力以上とならないように調整される。なお、この第五実施形態においても、第四実施形態と同様に、第四戻りライン180に第六熱交換器93を設けるようにしてもよい。 In addition, since the first pressurization tank 44 of the fifth embodiment is managed so as not to form a gas phase, instead of the first liquid level detector 62 of the first embodiment, the first pressurization tank 44 A fourth pressure sensor 162 is provided to detect the internal fluid pressure. Furthermore, a fourth pressure regulating valve 158 is provided in place of the flow regulating valve 58 of the first embodiment. The fourth pressure regulating valve 158 adjusts the valve opening degree based on the detection result of the fourth pressure sensor 162 . The fourth pressure regulating valve 158 regulates the pressure inside the first pressurized tank 44 so that it does not exceed a predetermined upper limit pressure. Also in the fifth embodiment, the sixth heat exchanger 93 may be provided in the fourth return line 180 as in the fourth embodiment.
(作用効果)
 上記第五実施形態によれば、第一加圧タンク44に気相を形成する必要が無くなるため、液位を調整する必要が無くなる。そして、低圧ポンプ42によって第一加圧タンク44の圧力調整をすることができるため、部品点数を低減して構成を簡略化することができる。
(Effect)
According to the fifth embodiment, it is not necessary to form a gas phase in the first pressurization tank 44, so there is no need to adjust the liquid level. Since the pressure of the first pressurization tank 44 can be adjusted by the low-pressure pump 42, the number of parts can be reduced and the configuration can be simplified.
(第五実施形態の変形例)
 図9は、本開示の第五実施形態の変形例における図5に相当する図である。
 上述した第五実施形態では、昇圧ポンプとして一つのキャンドモーターポンプ146を備える場合を一例にして説明した。しかし、供給ライン45を流れるアンモニアを昇圧する昇圧ポンプは、一つに限られない。
(Modification of fifth embodiment)
FIG. 9 is a diagram corresponding to FIG. 5 in a modification of the fifth embodiment of the present disclosure.
In the fifth embodiment described above, the case where one canned motor pump 146 is provided as the boosting pump has been described as an example. However, the number of boost pumps for boosting the ammonia flowing through the supply line 45 is not limited to one.
 例えば、図9に示す第五実施形態の変形例の浮体のように、供給ライン45に直列に設けられた複数のキャンドモーターポンプを有していてもよい。この第五実施形態の変形例では、上述した第三実施形態の変形例や第四実施形態の変形例と同様に、二つのキャンドモーターポンプとして第一キャンドモーターポンプ246Aと第二キャンドモーターポンプ246Bとを備えている。 For example, like the floating body of the modification of the fifth embodiment shown in FIG. 9, it may have a plurality of canned motor pumps provided in series in the supply line 45. In this modified example of the fifth embodiment, as in the modified example of the third embodiment and the modified example of the fourth embodiment described above, two canned motor pumps are a first canned motor pump 246A and a second canned motor pump 246B. and
 そして、第五実施形態の変形例では、第一キャンドモーターポンプ246Aのモーター部の冷却液として使用したアンモニアを、第四戻りライン180により第一キャンドモーターポンプ246Aから第二加圧タンク70の気相に戻している。同様に、第二キャンドモーターポンプ246Bのモーター部の冷却液として使用したアンモニアを、第五戻りライン380(第二加圧タンク戻しライン)により第二キャンドモーターポンプ246Bから第二加圧タンク70の気相に戻している。つまり、第一キャンドモーターポンプ246A及び第二キャンドモーターポンプ246Bのモーター部の冷却液として使用したアンモニアは、何れも第一加圧タンク44に戻されない。なお、第四戻りライン180に第六熱交換器93を設けたり、第五戻りライン380に第七熱交換器96を設けたりして、それぞれ第四戻りライン180、及び第五戻りライン380に流れるアンモニアを冷却してもよい。 In the modified example of the fifth embodiment, the ammonia used as the coolant for the motor portion of the first canned motor pump 246A is transferred from the first canned motor pump 246A to the second pressure tank 70 through the fourth return line 180. reverting to phase. Similarly, the ammonia used as the coolant for the motor portion of the second canned motor pump 246B is transferred from the second canned motor pump 246B to the second pressurized tank 70 through the fifth return line 380 (second pressurized tank return line). returned to the gas phase. In other words, none of the ammonia used as the coolant for the motor parts of the first canned motor pump 246A and the second canned motor pump 246B is returned to the first pressurization tank 44 . A sixth heat exchanger 93 is provided in the fourth return line 180, and a seventh heat exchanger 96 is provided in the fifth return line 380, so that the fourth return line 180 and the fifth return line 380 are provided with The flowing ammonia may be cooled.
(作用効果)
 第五実施形態の変形例によれば、燃焼装置8の要求するアンモニアの圧力が、例えば、製造者によって異なる場合であっても、昇圧ポンプの追加・削減によって、燃焼装置8の要求するアンモニアの圧力まで昇圧することができる。さらに複数の昇圧ポンプが直列に設けられているため、供給ライン45を流れるアンモニアが燃焼装置8で必要な圧力以上となるように一つのポンプによって昇圧する場合と比較して、廉価なキャンドモーターポンプを用いてコストを低減することが可能となる。また、第一加圧タンク44に気相を形成する必要が無くなるため、液位を調整する必要が無くなる。そして、低圧ポンプ42によって第一加圧タンク44の圧力調整をすることができるため、部品点数を低減して構成を簡略化することができる。
(Effect)
According to the modified example of the fifth embodiment, even if the ammonia pressure required by the combustion device 8 differs, for example, depending on the manufacturer, by adding or removing the boost pump, the ammonia pressure required by the combustion device 8 can be increased. pressure can be increased. Furthermore, since a plurality of booster pumps are provided in series, the canned motor pump is less expensive than a single pump that boosts the ammonia flowing through the supply line 45 to a pressure higher than that required by the combustion device 8. can be used to reduce costs. Moreover, since it is no longer necessary to form a gas phase in the first pressurization tank 44, it is no longer necessary to adjust the liquid level. Since the pressure of the first pressurization tank 44 can be adjusted by the low-pressure pump 42, the number of parts can be reduced and the configuration can be simplified.
(他の実施形態)
 本開示は上述した各実施形態の構成に限られるものではなく、その要旨を逸脱しない範囲で設計変更可能である。
 例えば、上記の実施形態では、浮体1が主機等により航行可能な船舶である場合について説明したが、アンモニアを貯蔵可能な浮体であれば船舶に限られない。
(Other embodiments)
The present disclosure is not limited to the configuration of each embodiment described above, and design changes are possible without departing from the scope of the present disclosure.
For example, in the above-described embodiment, the case where the floating body 1 is a ship that can be navigated by a main engine or the like has been described, but the floating body is not limited to a ship as long as it can store ammonia.
 第一実施形態では、第二熱交換器51と、第一加圧タンク44との間の第一戻りライン47に、第二圧力調整弁52を設ける場合について説明した。しかし、第二圧力調整弁52を設けずに、低圧ポンプ42によって第一加圧タンク44内の圧力を、燃焼装置8内のアンモニアの圧力よりも低く、且つ、アンモニアを液体の状態に維持可能な圧力にするようにしてもよい。この場合、第一不活性ガス供給部55及び低圧ポンプ42が、本開示における圧力保持部を構成する。第一実施形態のように、第二圧力調整弁52を設けた場合は、第二圧力調整弁52から第一加圧タンク44までの第一戻りライン47の配管や、第一加圧タンク44の耐圧性能を低くすることができる分だけ、第二圧力調整弁52を設けない場合よりもコスト低減の点で有利となる。 In the first embodiment, the case where the second pressure regulating valve 52 is provided in the first return line 47 between the second heat exchanger 51 and the first pressurized tank 44 has been described. However, without providing the second pressure regulating valve 52, the pressure in the first pressurized tank 44 can be kept lower than the pressure of the ammonia in the combustion device 8 by the low-pressure pump 42, and the ammonia can be maintained in a liquid state. pressure. In this case, the first inert gas supply section 55 and the low-pressure pump 42 constitute the pressure holding section in the present disclosure. When the second pressure regulating valve 52 is provided as in the first embodiment, the piping of the first return line 47 from the second pressure regulating valve 52 to the first pressurized tank 44, the first pressurized tank 44 This is advantageous in terms of cost reduction compared to the case where the second pressure regulating valve 52 is not provided because the pressure resistance performance of the second pressure regulating valve 52 can be lowered.
<付記>
 実施形態に記載の浮体は、例えば以下のように把握される。
<Appendix>
The floating bodies described in the embodiments are understood, for example, as follows.
(1)第1の態様によれば浮体は、浮体本体と、前記浮体本体に設けられ、アンモニアが貯留された燃料タンクと、前記燃料タンクからの前記アンモニアが加圧状態で貯留される第一加圧タンク44と、前記第一加圧タンク44から前記アンモニアが導出される供給ライン45と、前記供給ライン45を流れる前記アンモニアを昇圧する昇圧ポンプ46と、前記供給ライン45を介して前記アンモニアが燃料として供給されるエンジン8と、前記エンジン8を経由した前記アンモニアを前記第一加圧タンク44に戻す第一戻りライン47と、前記第一戻りライン47に設けられて前記エンジン8内における前記アンモニアの圧力を調整可能な第一圧力調整弁48と、前記第一戻りライン47における前記第一圧力調整弁48の下流側に設けられて前記アンモニアを冷却する冷却部と、前記第一戻りライン47の前記第一圧力調整弁48と前記冷却部との間の前記アンモニアの圧力を、前記エンジン8内の前記アンモニアの圧力よりも低く、且つ、前記アンモニアを液体の状態に維持可能な圧力に保持する圧力保持部と、を備える。
 浮体1の例としては、液化ガス運搬船、フェリー、RORO船、自動車運搬船、客船等の船舶、FSU(Floating Storage Unit)、FSRU(Floating Storage and Regasification Unit)等が挙げられる。
(1) According to the first aspect, the floating body includes a floating body main body, a fuel tank provided in the floating body main body and storing ammonia, and a first fuel tank in which the ammonia from the fuel tank is stored in a pressurized state. A pressurized tank 44, a supply line 45 through which the ammonia is led out from the first pressurized tank 44, a boost pump 46 that pressurizes the ammonia flowing through the supply line 45, and the ammonia is supplied as fuel, a first return line 47 that returns the ammonia that has passed through the engine 8 to the first pressurized tank 44, and the first return line 47 is provided in the engine 8 A first pressure regulating valve 48 capable of regulating the pressure of the ammonia, a cooling section provided downstream of the first pressure regulating valve 48 in the first return line 47 to cool the ammonia, and the first return The pressure of the ammonia between the first pressure regulating valve 48 in line 47 and the cooling section is lower than the pressure of the ammonia in the engine 8, and a pressure that can maintain the ammonia in a liquid state. and a pressure holding part that holds the pressure.
Examples of the floating body 1 include ships such as liquefied gas carriers, ferries, RORO ships, car carriers, and passenger ships, FSUs (Floating Storage Units), FSRUs (Floating Storage and Regasification Units), and the like.
 これにより、圧力の低い第一圧力調整弁48よりも下流側に冷却部を配置しつつ、第一圧力調整弁48と冷却部との間でアンモニアが気化することを抑制できる。したがって、配管内のエロージョンによるトラブルを抑えることができる。また、耐圧性能の低い冷却部を用いることができるため、コスト低減を図ることができる。 As a result, ammonia can be prevented from vaporizing between the first pressure regulating valve 48 and the cooling section while arranging the cooling section downstream of the first pressure regulating valve 48 having a low pressure. Therefore, troubles caused by erosion in the piping can be suppressed. In addition, since a cooling unit with low pressure resistance can be used, cost reduction can be achieved.
(2)第2の態様によれば浮体は、(1)の浮体であって、前記圧力保持部は、前記第一戻りライン47の前記冷却部と前記第一加圧タンク44との間に設けられた第二圧力調整弁52を備える。
 これにより、第一戻りライン47の第一圧力調整弁48と冷却部との間のアンモニアの圧力を、アンモニアを液体の状態に維持可能な圧力に容易に保持することができる。
(2) According to the second aspect, the floating body is the floating body of (1), and the pressure holding section is located between the cooling section of the first return line 47 and the first pressurized tank 44. A second pressure regulating valve 52 is provided.
As a result, the pressure of ammonia between the first pressure regulating valve 48 of the first return line 47 and the cooling section can be easily maintained at a pressure at which ammonia can be maintained in a liquid state.
(3)第3の態様によれば浮体は、(1)又は(2)の浮体であって、前記供給ライン45に直列に設けられた複数の前記昇圧ポンプ46を備える。
 これにより、エンジン8の要求するアンモニアの圧力が、例えば、製造者によって異なる場合であっても、昇圧ポンプ46を直列に追加することによって、エンジン8の要求するアンモニアの圧力まで昇圧することができる。さらに、エンジン8の要求する圧力以上となるように一つの昇圧ポンプによって昇圧する場合と比較して、廉価な昇圧ポンプを用いることができるため、コストを低減することが可能となる。
(3) According to the third aspect, the floating body is the floating body of (1) or (2), and includes a plurality of booster pumps 46 provided in series in the supply line 45 .
As a result, even if the ammonia pressure required by the engine 8 differs, for example, depending on the manufacturer, the ammonia pressure required by the engine 8 can be boosted by adding the boost pump 46 in series. . Furthermore, compared to the case where a single booster pump is used to boost the pressure to the level higher than the pressure required by the engine 8, it is possible to use an inexpensive booster pump, so that costs can be reduced.
(4)第4の態様によれば浮体は、(1)から(3)の何れか一つの浮体であって、前記昇圧ポンプは、前記供給ライン45に設けられて前記第一加圧タンク44から導出される前記アンモニアを昇圧すると共に、前記供給ライン45を流れる前記アンモニアの一部をモーター部の冷却液として用いるキャンドモーターポンプ146であって、前記第一加圧タンク44内に不活性ガスを供給する第一不活性ガス供給部55と、前記キャンドモーターポンプ146で冷却液として用いた前記アンモニアを前記第一加圧タンク44の気相へ戻す第二戻りライン80と、を備える。
 これにより、第一加圧タンク44内に気相を形成することができるため、アンモニアの液相に気泡が混入することを抑制できる。また、第一加圧タンク44内に不活性ガスを供給することで、第一加圧タンク44内の圧力が低下して液体のアンモニアが気化することを抑制できる。また、冷却液として用いたアンモニアを、キャンドモーターポンプ146から離れた場所に設置されて気相を有した燃料タンクなどのタンクまで戻す必要が無くなる。したがって、キャンドモーターポンプ146の冷却液として用いたアンモニアが油等で汚染された場合であっても、エンジン8の燃料供給系統外のアンモニアが汚染されることを抑制できる。
(4) According to the fourth aspect, the floating body is any one of (1) to (3), and the boost pump is provided in the supply line 45 and the first pressurization tank 44 and a canned motor pump 146 that uses part of the ammonia flowing through the supply line 45 as a cooling liquid for the motor unit, wherein the inert gas is added to the first pressurized tank 44 and a second return line 80 for returning the ammonia used as coolant in the canned motor pump 146 to the gas phase of the first pressurized tank 44 .
As a result, a gas phase can be formed in the first pressurization tank 44, so that it is possible to prevent air bubbles from entering the liquid phase of ammonia. In addition, by supplying the inert gas into the first pressurization tank 44, it is possible to prevent the pressure in the first pressurization tank 44 from decreasing and evaporating liquid ammonia. In addition, it is not necessary to return the ammonia used as the coolant to a tank such as a fuel tank installed at a location away from the canned motor pump 146 and having a gas phase. Therefore, even if the ammonia used as the coolant for the canned motor pump 146 is contaminated with oil or the like, the ammonia outside the fuel supply system of the engine 8 can be prevented from being contaminated.
(5)第5の態様によれば浮体は、(4)の浮体であって、前記第一加圧タンク44内の液位を検出する第一液位検出部62と、前記第一加圧タンク44内に供給される前記アンモニアの流量を調節する第一液位調整弁と、を備える。
 これにより、エンジン8の負荷変動などに応じて第一加圧タンク44から排出されるアンモニアの流量が変動したとしても、第一加圧タンク44内の液位を、所定の液位範囲に容易に維持することができる。
(5) According to the fifth aspect, the floating body is the floating body of (4), in which the first liquid level detection unit 62 for detecting the liquid level in the first pressurization tank 44 and the first pressurization and a first liquid level adjustment valve for adjusting the flow rate of the ammonia supplied into the tank 44 .
As a result, even if the flow rate of ammonia discharged from the first pressurization tank 44 fluctuates according to the load fluctuation of the engine 8, etc., the liquid level in the first pressurization tank 44 can be easily kept within a predetermined liquid level range. can be maintained.
(6)第6の態様によれば浮体は、(1)から(5)の何れか一つの浮体であって、前記冷却部と前記第一加圧タンク44との間の前記第一戻りライン47に設けられ、前記第一戻りライン47を流れる前記アンモニアを貯留可能な第二加圧タンク70と、前記第二加圧タンク70内に不活性ガスを供給する第二不活性ガス供給部71と、を備える。
 これにより、メンテナンスや燃料の切り替えなどで燃料系統のアンモニアをパージする際には、液体のアンモニアを第二加圧タンク70によって回収することが可能となる。また、第一加圧タンク44に流入するパージガスの量を低減できる。そのため、第一加圧タンク44の容量を低減できる。したがって、第一加圧タンク44の配置自由度を向上できる。
(6) According to the sixth aspect, the floating body is any one of (1) to (5), and the first return line between the cooling section and the first pressure tank 44 47, a second pressurized tank 70 capable of storing the ammonia flowing through the first return line 47, and a second inert gas supply unit 71 for supplying inert gas into the second pressurized tank 70 And prepare.
As a result, when purging the ammonia in the fuel system for maintenance or fuel switching, the liquid ammonia can be recovered by the second pressurization tank 70 . Also, the amount of purge gas flowing into the first pressurization tank 44 can be reduced. Therefore, the capacity of the first pressurization tank 44 can be reduced. Therefore, the degree of freedom of arrangement of the first pressurization tank 44 can be improved.
(7)第7の態様によれば浮体は、(6)の浮体であって、前記第二加圧タンク70内の液位を検出する第二液位検出部77と、前記第二加圧タンク70内から前記第一戻りライン47を介して排出される前記アンモニアの流量を調節する第二液位調節弁と、を備える。
 これにより、エンジン8の負荷変動などに応じて第二加圧タンク70内に流入する液体のアンモニアの流量や第二加圧タンク70から排出される液体のアンモニアの流量が変動したとしても、第二加圧タンク70内の液位を、所定の液位範囲に容易に維持することができる。
(7) According to the seventh aspect, the floating body is the floating body of (6), in which the second liquid level detection unit 77 for detecting the liquid level in the second pressurization tank 70 and the second pressurization and a second liquid level control valve for adjusting the flow rate of the ammonia discharged from the tank 70 through the first return line 47 .
As a result, even if the flow rate of the liquid ammonia flowing into the second pressurization tank 70 or the flow rate of the liquid ammonia discharged from the second pressurization tank 70 fluctuates according to the load fluctuation of the engine 8, the The liquid level in the second pressurization tank 70 can be easily maintained within a predetermined liquid level range.
(8)第8の態様によれば浮体は、(1)又は(2)の浮体であって、前記昇圧ポンプ146は、前記供給ライン45に設けられて前記第一加圧タンク44から導出される前記アンモニアを昇圧すると共に、前記供給ライン45を流れる前記アンモニアの一部をモーター部の冷却液として用いるキャンドモーターポンプ146であって、前記冷却部と前記第一加圧タンク44との間の前記第一戻りライン47に設けられ、前記第一戻りライン47を流れる前記アンモニアを貯留可能な第二加圧タンク70と、前記第二加圧タンク70内に不活性ガスを供給する第二不活性ガス供給部71と、前記キャンドモーターポンプ146で冷却液として用いた前記アンモニアの一部を前記第二加圧タンク70の気相へ戻す第二加圧タンク戻しライン180と、を更に備える。
 これにより、キャンドモーターポンプ146で冷却液として用いたアンモニアの一部を第二加圧タンク70の気相へ戻すことができる。
(8) According to the eighth aspect, the floating body is the floating body of (1) or (2), and the boost pump 146 is provided in the supply line 45 and discharged from the first pressurization tank 44. A canned motor pump 146 that increases the pressure of the ammonia flowing through the supply line 45 and uses a part of the ammonia flowing through the supply line 45 as a cooling liquid for the motor unit, and is between the cooling unit and the first pressurization tank 44 A second pressurized tank 70 provided in the first return line 47 and capable of storing the ammonia flowing through the first return line 47; An active gas supply unit 71 and a second pressurized tank return line 180 for returning part of the ammonia used as coolant in the canned motor pump 146 to the gas phase of the second pressurized tank 70 are further provided.
As a result, part of the ammonia used as coolant in the canned motor pump 146 can be returned to the gas phase in the second pressurization tank 70 .
(9)第9の態様によれば浮体は、(8)の浮体であって、前記キャンドモーターポンプ146で冷却液として用いた前記アンモニアの一部は、第二加圧タンク戻しライン180により前記第二加圧タンク70の気相にのみ戻すことが可能とされ、前記第一加圧タンク44内の圧力を検出する圧力検出部162と、前記第一加圧タンク44内の圧力を調整する圧力調整部42,158と、を更に備える。
 これにより、第一加圧タンク44に気相を形成する必要が無くなるため、液位を調整する必要が無くなる。そして、圧力調整部42,158によって第一加圧タンク44の圧力調整をすることができるため、部品点数を低減して構成を簡略化することができる。
(9) According to the ninth aspect, the floating body is the floating body of (8), and part of the ammonia used as the coolant in the canned motor pump 146 is returned to the second pressurized tank return line 180 It is possible to return only to the gas phase of the second pressurization tank 70, and the pressure detection part 162 that detects the pressure in the first pressurization tank 44 and the pressure in the first pressurization tank 44 are adjusted. A pressure adjustment unit 42 , 158 is further provided.
This eliminates the need to form a gas phase in the first pressurization tank 44, thereby eliminating the need to adjust the liquid level. Moreover, since the pressure of the first pressurization tank 44 can be adjusted by the pressure adjustment units 42 and 158, the number of parts can be reduced and the configuration can be simplified.
(10)第10の態様によれば浮体は、(8)の浮体であって、前記キャンドモーターポンプ146で冷却液として用いた前記アンモニアの一部を前記第一加圧タンク44へ戻す第二戻りライン80と、前記第二戻りライン80と前記第二加圧タンク戻しライン180との少なくとも一方へ前記キャンドモーターポンプ146で冷却液として用いた前記アンモニアの一部を流通させる切替部91,92と、を更に備える。
 これにより、キャンドモーターポンプ146で冷却液として用いたアンモニアの一部を気相が形成されている第一加圧タンク44と第二加圧タンク70との少なくとも一方に戻すことが可能となる。
(10) According to the tenth aspect, the floating body is the floating body of (8), and the second Switching units 91 and 92 for circulating part of the ammonia used as cooling liquid in the canned motor pump 146 to the return line 80 and at least one of the second return line 80 and the second pressurized tank return line 180. And further comprising.
This makes it possible to return part of the ammonia used as coolant in the canned motor pump 146 to at least one of the first pressurization tank 44 and the second pressurization tank 70 in which the vapor phase is formed.
 本開示は、配管内のアンモニアを気液混合状態にせず液相で扱う事でエロージョンによる減肉等のトラブルが発生することを抑制するとともに、耐圧性能の低い冷却部を用いる事によるコスト低減を図ることができる。 This disclosure suppresses the occurrence of problems such as thinning due to erosion by handling ammonia in the pipe in a liquid phase instead of a gas-liquid mixture, and also reduces costs by using a cooling unit with low pressure resistance. can be planned.
1,101,201…浮体 2…浮体本体 4…上部構造 5A,5B…舷側 6…船底 7…上甲板 8…燃焼装置(エンジン) 10…アンモニアタンク 20…アンモニア燃料供給系統 30…燃料供給装置室 41…燃料タンク導出ライン 42…低圧ポンプ 43…第一熱交換器 44…第一加圧タンク 45…供給ライン 46…昇圧ポンプ 47…第一戻りライン 47A…上流側ライン 47B…下流側ライン 48…第一圧力調整弁 49…第一圧力センサー 50…第一流量センサー 51…第二熱交換器(冷却部) 52…第二圧力調整弁(圧力保持部) 53…第二圧力センサー 54…第一液位調整部 55…第一不活性ガス供給部 56…第一ガス放出部 57…燃料タンク戻りライン 58…流量調整弁 59…供給戻りライン 60…第三圧力調整弁 61…第三圧力センサー 62…第一液位検出部 63…第一液位調整弁 70…第二加圧タンク 71…第二不活性ガス供給部 72…第二ガス放出部 73…第二液位調整部 74…バイパスライン 75…第一切替弁 76…第二切替弁 77…第二液位検出部 78…第二液位調整弁 80…第二戻りライン 81…第三熱交換器 85…第五熱交換器 91…第三切替弁(切替部) 92…第四切替弁(切替部) 93…第六熱交換器 94…第五切替弁 95…第六切替弁 96…第七熱交換器 146…キャンドモーターポンプ 158…第四圧力調整弁(圧力調整部) 162…第四圧力センサー(圧力検出部) 180…第四戻りライン(第二加圧タンク戻しライン) 246A…第一キャンドモーターポンプ 246B…第二キャンドモーターポンプ 280…第三戻りライン 281…第四熱交換器 380…第五戻りライン(第二加圧タンク戻しライン) 1, 101, 201... Floating body 2... Floating body main body 4... Superstructure 5A, 5B... Broadside 6... Ship bottom 7... Upper deck 8... Combustion device (engine) 10... Ammonia tank 20... Ammonia fuel supply system 30... Fuel supply device room 41... Fuel tank outlet line 42... Low pressure pump 43... First heat exchanger 44... First pressure tank 45... Supply line 46... Booster pump 47... First return line 47A... Upstream line 47B... Downstream line 48... First pressure regulating valve 49... First pressure sensor 50... First flow rate sensor 51... Second heat exchanger (cooling section) 52... Second pressure regulating valve (pressure holding section) 53... Second pressure sensor 54... First Liquid level adjustment part 55... First inert gas supply part 56... First gas release part 57... Fuel tank return line 58... Flow control valve 59... Supply return line 60... Third pressure control valve 61... Third pressure sensor 62 ... first liquid level detector 63... first liquid level adjustment valve 70... second pressure tank 71... second inert gas supply section 72... second gas release section 73... second liquid level adjustment section 74... bypass line 75... First switching valve 76... Second switching valve 77... Second liquid level detector 78... Second liquid level adjusting valve 80... Second return line 81... Third heat exchanger 85... Fifth heat exchanger 91... Third switching valve (switching part) 92... Fourth switching valve (switching part) 93... Sixth heat exchanger 94... Fifth switching valve 95... Sixth switching valve 96... Seventh heat exchanger 146... Canned motor pump 158 ... Fourth pressure regulating valve (pressure adjusting section) 162 ... Fourth pressure sensor (pressure detecting section) 180 ... Fourth return line (second pressurized tank return line) 246A ... First canned motor pump 246B ... Second canned motor Pump 280... 3rd return line 281... 4th heat exchanger 380... 5th return line (second pressure tank return line)

Claims (10)

  1.  浮体本体と、
     前記浮体本体に設けられ、アンモニアが貯留された燃料タンクと、
     前記燃料タンクからの前記アンモニアが加圧状態で貯留される第一加圧タンクと、
     前記第一加圧タンクから前記アンモニアが導出される供給ラインと、
     前記供給ラインを流れる前記アンモニアを昇圧する昇圧ポンプと、
     前記供給ラインを介して前記アンモニアが燃料として供給されるエンジンと、
     前記エンジンを経由した前記アンモニアを前記第一加圧タンクに戻す第一戻りラインと、
     前記第一戻りラインに設けられて前記エンジン内における前記アンモニアの圧力を調整可能な第一圧力調整弁と、
     前記第一戻りラインにおける前記第一圧力調整弁の下流側に設けられて前記アンモニアを冷却する冷却部と、
     前記第一戻りラインの前記第一圧力調整弁と前記冷却部との間の前記アンモニアの圧力を、前記エンジン内の前記アンモニアの圧力よりも低く、且つ、前記アンモニアを液体の状態に維持可能な圧力に保持する圧力保持部と、
    を備える浮体。
    a floating body body;
    a fuel tank provided in the floating body main body and storing ammonia;
    a first pressurized tank in which the ammonia from the fuel tank is stored in a pressurized state;
    a supply line through which the ammonia is led out from the first pressurized tank;
    a booster pump that boosts the ammonia flowing through the supply line;
    an engine to which the ammonia is supplied as fuel through the supply line;
    a first return line returning the ammonia that has passed through the engine to the first pressurized tank;
    a first pressure regulating valve provided in the first return line and capable of regulating the pressure of the ammonia in the engine;
    a cooling unit provided downstream of the first pressure regulating valve in the first return line to cool the ammonia;
    The pressure of the ammonia between the first pressure regulating valve in the first return line and the cooling section is lower than the pressure of the ammonia in the engine and capable of maintaining the ammonia in a liquid state. a pressure retainer that retains the pressure;
    float.
  2.  前記圧力保持部は、前記第一戻りラインの前記冷却部と前記第一加圧タンクとの間に設けられた第二圧力調整弁を備える
     請求項1に記載の浮体。
    The floating body according to claim 1, wherein the pressure holding section includes a second pressure regulating valve provided between the cooling section of the first return line and the first pressurization tank.
  3.  前記供給ラインに直列に設けられた複数の前記昇圧ポンプを備える
    請求項1又は2に記載の浮体。
    The floating body according to claim 1 or 2, comprising a plurality of said booster pumps provided in series with said supply line.
  4.  前記昇圧ポンプは、
     前記供給ラインに設けられて前記第一加圧タンクから導出される前記アンモニアを昇圧すると共に、前記供給ラインを流れる前記アンモニアの一部をモーター部の冷却液として用いるキャンドモーターポンプであって、
     前記第一加圧タンク内に不活性ガスを供給する第一不活性ガス供給部と、
     前記キャンドモーターポンプで冷却液として用いた前記アンモニアの一部を前記第一加圧タンクの気相へ戻す第二戻りラインと、
    を備える
    請求項1又は2に記載の浮体。
    The boost pump is
    A canned motor pump that is provided in the supply line and uses a part of the ammonia flowing through the supply line as a cooling liquid for a motor unit, while increasing the pressure of the ammonia that is led out from the first pressurization tank,
    a first inert gas supply unit that supplies inert gas into the first pressurized tank;
    a second return line returning a portion of the ammonia used as coolant in the canned motor pump to the gas phase of the first pressurized tank;
    The floating body according to claim 1 or 2.
  5.  前記第一加圧タンク内の液位を検出する第一液位検出部と、
     前記第一加圧タンク内に供給される前記アンモニアの流量を調節する第一液位調整弁と、
    を備える
    請求項4に記載の浮体。
    a first liquid level detector that detects the liquid level in the first pressurized tank;
    a first liquid level adjustment valve that adjusts the flow rate of the ammonia supplied into the first pressurized tank;
    The floating body according to claim 4, comprising:
  6.  前記冷却部と前記第一加圧タンクとの間の前記第一戻りラインに設けられ、前記第一戻りラインを流れる前記アンモニアを貯留可能な第二加圧タンクと、
     前記第二加圧タンク内に不活性ガスを供給する第二不活性ガス供給部と、を備える
    請求項1又は2に記載の浮体。
    a second pressurized tank provided in the first return line between the cooling unit and the first pressurized tank and capable of storing the ammonia flowing through the first return line;
    The floating body according to claim 1 or 2, further comprising a second inert gas supply unit that supplies inert gas into the second pressurized tank.
  7.  前記第二加圧タンク内の液位を検出する第二液位検出部と、
     前記第二加圧タンク内から前記第一戻りラインを介して排出される前記アンモニアの流量を調節する第二液位調節弁と、
    を備える
    請求項6に記載の浮体。
    a second liquid level detector that detects the liquid level in the second pressurized tank;
    a second liquid level control valve that adjusts the flow rate of the ammonia discharged from the second pressurized tank through the first return line;
    The floating body according to claim 6, comprising:
  8.  前記昇圧ポンプは、
     前記供給ラインに設けられて前記第一加圧タンクから導出される前記アンモニアを昇圧すると共に、前記供給ラインを流れる前記アンモニアの一部をモーター部の冷却液として用いるキャンドモーターポンプであって、
     前記冷却部と前記第一加圧タンクとの間の前記第一戻りラインに設けられ、前記第一戻りラインを流れる前記アンモニアを貯留可能な第二加圧タンクと、
     前記第二加圧タンク内に不活性ガスを供給する第二不活性ガス供給部と、
     前記キャンドモーターポンプで冷却液として用いた前記アンモニアの一部を前記第二加圧タンクの気相へ戻す第二加圧タンク戻しラインと、
    を更に備える
    請求項1又は2に記載の浮体。
    The boost pump is
    A canned motor pump that is provided in the supply line and uses a part of the ammonia flowing through the supply line as a cooling liquid for a motor unit, while increasing the pressure of the ammonia that is led out from the first pressurization tank,
    a second pressurized tank provided in the first return line between the cooling unit and the first pressurized tank and capable of storing the ammonia flowing through the first return line;
    a second inert gas supply unit that supplies inert gas into the second pressurized tank;
    a second pressurized tank return line returning part of the ammonia used as coolant in the canned motor pump to the gas phase of the second pressurized tank;
    The floating body according to claim 1 or 2, further comprising:
  9.  前記キャンドモーターポンプで冷却液として用いた前記アンモニアの一部は、前記第二加圧タンク戻しラインにより前記第二加圧タンクの気相にのみ戻すことが可能とされ、
     前記第一加圧タンク内の圧力を検出する圧力検出部と、
     前記第一加圧タンク内の圧力を調整する圧力調整部と、
    を更に備える
    請求項8に記載の浮体。
    A part of the ammonia used as a coolant in the canned motor pump can be returned only to the gas phase of the second pressurized tank through the second pressurized tank return line,
    a pressure detection unit that detects the pressure in the first pressurized tank;
    a pressure adjustment unit that adjusts the pressure in the first pressurized tank;
    The floating body according to claim 8, further comprising:
  10.  前記キャンドモーターポンプで冷却液として用いた前記アンモニアの一部を前記第一加圧タンクへ戻す第二戻りラインと、
     前記第二戻りラインと前記第二加圧タンク戻しラインとの少なくとも一方へ前記キャンドモーターポンプで冷却液として用いた前記アンモニアの一部を流通させる切替部と、を更に備える
    請求項8に記載の浮体。
    a second return line returning a portion of the ammonia used as coolant in the canned motor pump to the first pressurized tank;
    9. The switching unit according to claim 8, further comprising a switching unit that circulates a part of the ammonia used as a coolant in the canned motor pump to at least one of the second return line and the second pressurized tank return line. floating body.
PCT/JP2022/037984 2022-02-25 2022-10-12 Floating body WO2023162325A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-027495 2022-02-25
JP2022027495 2022-02-25
JP2022-105488 2022-06-30
JP2022105488A JP2023124764A (en) 2022-02-25 2022-06-30 floating body

Publications (1)

Publication Number Publication Date
WO2023162325A1 true WO2023162325A1 (en) 2023-08-31

Family

ID=87765345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/037984 WO2023162325A1 (en) 2022-02-25 2022-10-12 Floating body

Country Status (1)

Country Link
WO (1) WO2023162325A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681797A (en) * 1992-02-21 1994-03-22 Nikkiso Co Ltd Connection terminal structure of motor pump
WO2020230979A1 (en) * 2019-05-14 2020-11-19 대우조선해양 주식회사 Fuel supply system for environment-friendly ship
JP3234399U (en) * 2021-06-10 2021-10-07 ソンボ インダストリーズ カンパニー,リミテッド Marine fuel supply system
CN113719385A (en) * 2021-09-09 2021-11-30 大连船舶重工集团有限公司 Marine pipeline liquid ammonia recovery system
WO2022210377A1 (en) * 2021-03-31 2022-10-06 三菱造船株式会社 Watercraft

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0681797A (en) * 1992-02-21 1994-03-22 Nikkiso Co Ltd Connection terminal structure of motor pump
WO2020230979A1 (en) * 2019-05-14 2020-11-19 대우조선해양 주식회사 Fuel supply system for environment-friendly ship
WO2022210377A1 (en) * 2021-03-31 2022-10-06 三菱造船株式会社 Watercraft
JP3234399U (en) * 2021-06-10 2021-10-07 ソンボ インダストリーズ カンパニー,リミテッド Marine fuel supply system
CN113719385A (en) * 2021-09-09 2021-11-30 大连船舶重工集团有限公司 Marine pipeline liquid ammonia recovery system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ENGINEERING DEPARTMENT, ENGINEERING HEADQUARTERS: "Guideline for Alternative Fuel Ships Part C, ''Guidelines for Safety of Ships Using Ammonia as Fuel"", CLASSNK TECHNICAL JOURNAL, vol. 5, no. 1, 30 April 2022 (2022-04-30), pages 49 - 56, XP009549257 *

Similar Documents

Publication Publication Date Title
KR20200096083A (en) Gas treatment system and ship having the same
CN110475714B (en) Fuel tank inerting method and float
JP7162380B2 (en) Space-intensive LNG fuel supply system for small ships
KR102526828B1 (en) Ship
KR101559407B1 (en) A ship
JP2016049881A (en) Ship
CN111252197B (en) Ship with gas regasification system
CN110431075B (en) Floating body
KR101544810B1 (en) A ship
KR20100137758A (en) Bog venting structure
WO2023162325A1 (en) Floating body
CN110475713B (en) Ship with a detachable cover
KR102075296B1 (en) System that supplies fuel within a minimal ballast water using gas hydrates, replaces ballast water, and supplies fresh water
JP2023124764A (en) floating body
KR102113919B1 (en) Regasification System of liquefied Gas and Ship Having the Same
KR100952669B1 (en) Pressure regulating apparatus and lng carrier with the pressure regulating apparatus
JP7220706B2 (en) Apparatus and method for transferring pressurized liquid cargo
KR20220049030A (en) A system mounted on a ship for processing gases contained within tanks for storage and/or transport of gases in liquid and gaseous phases.
WO2024018768A1 (en) Floating structure
KR102592518B1 (en) Gas treatment system and ship having the same
WO2019031300A1 (en) Liquefied fuel gas vaporization system and temperature control method for same
KR20200120799A (en) Regasification System of liquefied Gas and Ship Having the Same
KR20200042641A (en) Fuel supply system for vessel engine
KR102623378B1 (en) Gas as Fuelled Pure Car Truck Carrier
KR102623372B1 (en) Gas as Fuelled Pure Car Truck Carrier

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928844

Country of ref document: EP

Kind code of ref document: A1