WO2023162246A1 - Current detection device and motor drive device provided with same - Google Patents

Current detection device and motor drive device provided with same Download PDF

Info

Publication number
WO2023162246A1
WO2023162246A1 PCT/JP2022/008357 JP2022008357W WO2023162246A1 WO 2023162246 A1 WO2023162246 A1 WO 2023162246A1 JP 2022008357 W JP2022008357 W JP 2022008357W WO 2023162246 A1 WO2023162246 A1 WO 2023162246A1
Authority
WO
WIPO (PCT)
Prior art keywords
current detection
detection circuit
current
offset
offset correction
Prior art date
Application number
PCT/JP2022/008357
Other languages
French (fr)
Japanese (ja)
Inventor
陽一郎 大井
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to PCT/JP2022/008357 priority Critical patent/WO2023162246A1/en
Priority to TW112102924A priority patent/TW202337131A/en
Publication of WO2023162246A1 publication Critical patent/WO2023162246A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass

Definitions

  • the present invention relates to a current detection device and a motor drive device including the same.
  • a motor drive device is provided with a current detection device that detects the current flowing through the motor in order to control the drive of the motor.
  • an auto-zero amplifier (2) configured to generate an output voltage (Vo) from which an input offset voltage ( ⁇ Vm) of the main operational amplifier (21) is removed, and a voltage measuring section (3) for measuring the output voltage (Vo) and a control circuit section (4) connected to the auto-zero amplifier (2) and the voltage measurement section (3), the control circuit section (4) operating the offset adjustment circuit (22) in an auto-zero mode.
  • an auto-zero amplifier circuit that corrects an offset of an input differential signal and a comparator circuit that converts an output signal output from the auto-zero amplifier circuit into a digital signal, wherein the auto-zero amplifier circuit and the comparator circuit is known as an arithmetic circuit configured in the same package (see, for example, Patent Document 2).
  • the offset correction of the current detection circuit is performed by measuring the output value of the current detection circuit as an offset in advance when the current input to the current detection circuit is set to 0 (zero) by stopping the operation of the motor drive device. This is realized by removing (subtracting) the offset equivalent amount from the current detection value by the current detection circuit in the subsequent normal operation. That is, in order to correct the offset, the input of the current detection circuit must be set to 0, so that the normal current detection process must be stopped once, which is inefficient. Further, if the current detection circuit continues to detect current in normal use, the offset of the current detection circuit changes due to temperature drift. Conventionally, since the offset measured in advance has been used as it is for offset correction, offset correction corresponding to the change in offset has not been performed. Therefore, there is a demand for a technique capable of continuously correcting the offset of the current detection circuit without stopping the current detection process.
  • a current detection device includes a main current detection circuit that detects a current on a current path and outputs digital data corresponding to the current, and a current detection circuit at the same detection location as the main current detection circuit.
  • a current detection circuit for offset correction that detects a current on a path and outputs digital data corresponding to the current, a short-circuit section that short-circuits the current input terminals of the AD converter in the current detection circuit for offset correction, and a short-circuit section.
  • a motor drive device includes the current detection device, and controls motor drive using an output corrected by the second offset correction section of the main current detection circuit.
  • FIG. 1 is a circuit diagram showing a current sensing device according to one embodiment of the present disclosure
  • FIG. FIG. 4 is a block diagram illustrating a method of calculating a second offset output from a main current detection circuit
  • Figure 4 shows a timing chart illustrating the operation of a current sensing device according to an embodiment of the present disclosure
  • 4 is a flow chart showing an operation flow of a current detection device according to an embodiment of the present disclosure
  • FIG. 4 is a circuit diagram showing a current detection device according to a modification of an embodiment of the present disclosure
  • 6 is a timing chart illustrating the operation of the current detection device shown in FIG. 5
  • FIG. 6 is a flow chart showing an operation flow of the current detection device shown in FIG. 5
  • 1 illustrates a motor drive device with a current sensing device according to an embodiment of the present disclosure
  • first offset the offset of the current detection circuit for offset correction
  • second offset the offset of the main current detection circuit
  • FIG. 1 is a circuit diagram showing a current detection device according to one embodiment of the present disclosure.
  • the same reference numerals in different drawings mean components having the same or similar functions.
  • a current detection device 1 includes a main current detection circuit 11, an offset correction current detection circuit 12, a short circuit section 13, a first offset correction section 14, and a second offset correction section 15. and
  • the main current detection circuit 11 detects the current on the current path 2 and outputs digital data corresponding to the current.
  • the main current detection circuit 11 may be any of a shunt resistor type current detection circuit, a hall element type current detection circuit, or a core type current detection circuit.
  • FIG. 1 shows a case where the main current detection circuit 11 is configured by a shunt resistor type current detection circuit.
  • the main current detection circuit 11 includes a current detection resistor (shunt resistor) 21 , an insulated AD converter 22 , filter resistors 31 and 32 , and a filter capacitor 33 .
  • Conversion methods of the AD converter 22 include successive approximation type, delta sigma type, double integration type, flash type (parallel comparison type), and pipeline type.
  • a filter composed of filter resistors 31 and 32 and a filter capacitor 33 is provided on the input side of the AD converter 22 .
  • a filter capacitor 33 is electrically connected between the non-inverting input terminal (+) and the inverting input terminal (-) of the AD converter 22, and filter resistors 31 and 32 are electrically connected to both terminals of the filter capacitor 33. Connected.
  • the AD converter 22 When a current flows through the current path 2, a potential difference occurs between both terminals of the current detection resistor 21, and each potential signal is applied to the non-inverting input terminal (+ ) and the inverting input terminal (-).
  • the AD converter 22 outputs digital data corresponding to the current on the current path 2 based on each input potential signal.
  • the digital data output from the AD converter 22 is input to an LSI (Large Scale Integrated Circuit) 40, which is a digital arithmetic circuit, subjected to offset correction, which will be described later, and then output to the outside as current value digital data.
  • LSI Large Scale Integrated Circuit
  • the offset correction current detection circuit 12 detects the current on the current path 2 at the same detection point as the main current detection circuit 11 and outputs digital data corresponding to the current.
  • the offset correction current detection circuit 12 may be a shunt resistor type current detection circuit, a hall element type current detection circuit, or a core type current detection circuit.
  • FIG. 1 shows, as an example, the case where the current detection circuit 12 for offset correction is configured by a shunt resistor type current detection circuit.
  • the offset correction current detection circuit 12 is preferably installed near the main current detection circuit 11 .
  • the offset correction current detection circuit 12 includes a current detection resistor (shunt resistor) 21 , an insulated AD converter 23 , filter resistors 34 and 35 , and a filter capacitor 36 .
  • a current detection resistor shunt resistor
  • the main current detection circuit 11 and the offset correction current detection circuit 12 are detected at the same detection point on the current path 2. Current can be detected.
  • Conversion methods of the AD converter 23 include successive approximation type, delta sigma type, double integration type, flash type (parallel comparison type), and pipeline type.
  • a filter composed of filter resistors 34 and 35 and a filter capacitor 36 is provided on the input side of the AD converter 23 .
  • a filter capacitor 36 is electrically connected between the non-inverting input terminal (+) and the inverting input terminal (-) of the AD converter 23, and filter resistors 34 and 35 are electrically connected to both terminals of the filter capacitor 36. Connected. When a current flows through the current path 2, a potential difference is generated between both terminals of the current detection resistor 21, and each potential signal is applied to the non-inverting input terminal (+ ) and the inverting input terminal (-).
  • the AD converter 23 outputs digital data corresponding to the current on the current path 2 based on each input potential signal. Digital data output from the AD converter 23 is input to an LSI (Large Scale Integrated Circuit) 40, which is a digital arithmetic circuit.
  • the short-circuit unit 13 is an open/close switch that short-circuits/opens the non-inverting input terminal (+) and the inverting input terminal (-) between the current input terminals of the AD converter 23 in the offset correction current detection circuit 12. .
  • the short circuit portion 13 is composed of a semiconductor switching element such as a unipolar transistor such as an FET, a bipolar transistor, an IGBT, a thyristor, or a GTO. It may be a semiconductor switching element. Under the control of the first offset correction section 14 in the LSI (Large Scale Integrated Circuit) 40, the shorting section 13 periodically repeats shorting and opening.
  • the first offset correction unit 14 measures the first offset output from the offset correction current detection circuit 12 when the current input terminals of the AD converter 23 are shorted by the short circuit 13, and the offset correction current detection circuit 12 performs a correction that removes an amount corresponding to the first offset from the output of .
  • the AD in the offset correction current detection circuit 12 is Only the offset (that is, the first offset) of the offset correction current detection circuit 12 is output from the converter 23 .
  • the first offset correction unit 14 measures this first offset when the current input terminals of the AD converter 23 are short-circuited by the short-circuit unit 13, and outputs the first offset correction current detection circuit 12 after the measurement. A correction is performed to remove the amount corresponding to the first offset from the output of the current detection circuit 12 for offset correction so that the offset of is not included.
  • the measurement of the first offset by the first offset correction unit 14 and the correction of the output of the current detection circuit 12 for offset correction are performed when the current input terminals of the AD converter 23 are shorted by the short circuit unit 13. . Since the short-circuiting section 13 periodically repeats short-circuiting and opening, the measurement of the first offset by the first offset correction section 14 and the correction of the output of the current detection circuit 12 for offset correction are repeatedly executed at a predetermined cycle. will be Therefore, even if the first offset of the current detection circuit 12 for offset correction changes due to temperature drift, the output of the current detection circuit 12 for offset correction cannot be corrected when the current input terminals of the AD converter 23 are shorted by the short circuit 13.
  • the offset correction current detection circuit 12 When the current input terminals of the AD converter 23 are opened following the short circuit, the offset correction current detection circuit 12 outputs corrected digital data from which the first offset has been removed. . Therefore, the influence of temperature drift on the output of the offset correction current detection circuit 12 can be minimized.
  • the second offset correction unit 15 detects the main current obtained at the same detection timing when the short-circuiting unit 13 does not short-circuit the current input terminals of the AD converter 23 (that is, when the current input terminals of the AD converter 23 are open).
  • a second offset output from the main current detection circuit 11 is calculated based on the plurality of outputs of the circuit 11 and the plurality of outputs corrected by the first offset correction section 14 of the current detection circuit 12 for offset correction. , to remove (subtract) an amount corresponding to the second offset from the output of the main current detection circuit 11 .
  • the offset correction current detection circuit 12 outputs the first offset corrected digital data from which is removed is output.
  • the second offset correction section 15 combines a plurality of outputs of the main current detection circuit 11 obtained at the same detection timing with the current detection circuit for offset correction. A second offset output from the main current detection circuit 11 is calculated based on a plurality of corrected outputs from the first offset correction unit 14 of 12 .
  • the main current detection circuit 11 and the offset correction current detection circuit 12 The simultaneous detection (simultaneous input) of the current on the current path 2 is performed multiple times while the short-circuiting portion 13 does not short-circuit the current input terminals of the AD converter 23 .
  • FIG. 2 is a block diagram illustrating a method of calculating the second offset output from the main current detection circuit.
  • the short-circuiting portion 13 When the short-circuiting portion 13 does not short-circuit the current input terminals of the AD converter 23 (that is, when it is open), the value of the current on the current path 2 at time t is I(t), and the output of the main current detection circuit 11 is I 1 (t), and the output corrected by the first offset correction unit 14 of the current detection circuit 12 for offset correction is I 2 (t).
  • Equation 1 the output I 1 (t) of the main current detection circuit 11 at time t is given by Equation 1: expressed.
  • Equations 1 to 3 the output of the main current detection circuit 11 and the corrected output of the offset correction current detection circuit 12 obtained at the same detection timing at each of the two times are used to calculate the second
  • An example of calculating the offset is as follows.
  • the main current detection circuit 11 and the offset correction current detection circuit 12 Simultaneous detection (simultaneous input) of the current on the current path 2 in , is performed twice while the short-circuiting portion 13 does not short-circuit the current input terminals of the AD converter 23 .
  • the output I 1 (t 1 ) of the main current detection circuit 11 at time t 1 is The output I 2 (t 1 ) corrected by the first offset correction unit 14 of the offset correction current detection circuit 12 at time t 1 is expressed by Equation 5.
  • the output I 1 (t 2 ) of the main current detection circuit 11 at time t 2 is The output I 2 (t 2 ) corrected by the first offset correction unit 14 of the offset correction current detection circuit 12 at time t 2 is expressed by Equation 6.
  • Equation 8 is obtained.
  • Equation 9 is obtained.
  • Formula 10 is obtained by substituting formula 9 into formula 8 and arranging it.
  • Formula 12 is obtained by rearranging Formula 11.
  • the second offset correction unit 15 can calculate the second offset I of according to Equation (12).
  • the second offset is calculated based on each output obtained at the same detection timing at each of the two times, but each output obtained at the same detection timing at each of three or more times A second offset may be calculated based on .
  • Several modes for calculating the second offset based on outputs at three or more times are listed below.
  • the first form is to calculate the second offset based on the average of each output measured at each time.
  • a case is assumed in which the second offset is calculated based on the output of the main current detection circuit 11 and the corrected output of the offset correction current detection circuit 12 obtained at the same detection timing at each of the six times.
  • the first form will be described as an example.
  • the main current detection circuit 11 and the offset correction current detection circuit 12 Simultaneous detection (simultaneous input) of the current on the current path 2 in is performed six times while the short-circuiting portion 13 does not short-circuit the current input terminals of the AD converter 23 .
  • the output of the main current detection circuit 11 measured at time t 1 is I 1 ( t 1 )
  • the output of the main current detection circuit 11 measured at time t 2 is I 1 (t 2 )
  • the output of the main current detection circuit 11 measured at time t 3 is I 1 (t 3 )
  • time t 4 is I 1 (t 4 )
  • I 1 (t 5 ) is the output of the main current detection circuit 11 measured at time t 5
  • I 1 (t 5 ) is the output of the main current detection circuit 11 measured at time t 6 .
  • the current detection circuit 12 for offset correction measured at time t 1
  • the output corrected by the first offset correction unit 14 is I 2 (t 1 )
  • the output corrected by the first offset correction unit 14 of the offset correction current detection circuit 12 measured at time t 2 is I 2 .
  • the output corrected by the first offset correction unit 14 of the offset correction current detection circuit 12 measured at time t 3 is I 2 (t 3 ), the output for offset correction measured at time t 4
  • the corrected output by the first offset correction unit 14 of the current detection circuit 12 is I 2 (t 4 )
  • the corrected output by the first offset correction unit 14 of the current detection circuit 12 for offset correction measured at time t 5 is is I 2 (t 5 )
  • the output corrected by the first offset correction unit 14 of the offset correction current detection circuit 12 measured at time t 6 is I 2 (t 6 ).
  • Equation 12 I 1 (t 1 ), I 1 (t 2 ), I 2 (t 1 ) and I 2 (t 2 ) in Equation 12 are replaced by I' 1 (T 1 ), I ' 1 (T 2 ) and I ' 2 Substituting (T 1 ) and I′ 2 (T 2 ) yields the second offset I of as shown in Equation 17.
  • the second offset correction unit 15 can calculate the second offset I of according to Equation 17.
  • a second form computes a plurality of interim second offset values calculated based on the output for each of the two times and averages these interim second offset values to compute the final second offset. It is. Here, it is assumed that the second offset is calculated based on the output of the main current detection circuit 11 and the corrected output of the offset correction current detection circuit 12 obtained at the same detection timing at each of the four times.
  • the second form will be described as an example.
  • the main current detection circuit 11 and the offset correction current detection circuit 12 Simultaneous detection (simultaneous input) of the current on the current path 2 in is performed four times while the short-circuiting portion 13 does not short-circuit the current input terminals of the AD converter 23 .
  • the output of the main current detection circuit 11 measured at time t 1 is I 1 ( t 1 )
  • the output of the main current detection circuit 11 measured at time t 2 is I 1 (t 2 )
  • the output of the main current detection circuit 11 measured at time t 3 is I 1 (t 3 )
  • time t The output of the main current detection circuit 11 measured at 4 is I 1 (t 4 ).
  • the offset correction current detection circuit 12 measured at time t 1 The output corrected by the first offset correction unit 14 is I 2 (t 1 ), and the output corrected by the first offset correction unit 14 of the offset correction current detection circuit 12 measured at time t 2 is I 2 ( t 2 ), the output corrected by the first offset correction unit 14 of the offset correction current detection circuit 12 measured at time t 3 is I 2 (t 3 ), the offset correction current measured at time t 4 Let I 2 (t 4 ) be the output corrected by the first offset correction unit 14 of the detection circuit 12 .
  • Equation 18 A second provisional offset value I oft1 is obtained.
  • Equation 12 I 1 (t 1 ), I 1 (t 2 ), I 2 (t 1 ) and I 2 (t 2 ) in Equation 12 are replaced by I 1 (t 3 ), I 1 ( t 4 ) and I 2 . Substituting (t 3 ) and I 2 (t 4 ) yields the second interim offset value I oft2 as shown in Equation 19.
  • the second offset correction unit 15 can calculate the second offset I of according to Equation (20).
  • FIG. 3 shows a timing chart illustrating operation of a current sensing device according to one embodiment of the present disclosure.
  • execution timings of the first offset correction, the second offset correction, the measurement of the first offset by the current detection circuit 12 for offset correction, and the measurement of the current by the main current detection circuit 11 are expressed as " It is indicated by a bar-shaped thick line.
  • the short-circuit portion 13 is controlled by a first offset correction portion 14 in an LSI (Large Scale Integrated Circuit) 40 so that the current between the input terminals of the AD converter 23 in the current detection circuit 12 for offset correction is short circuit (ON) and open circuit (OFF) are repeated periodically.
  • LSI Large Scale Integrated Circuit
  • the main current detection circuit 11 detects the current on the current path 2 at a predetermined current detection cycle, regardless of the cycle of shorting (ON) and opening (OFF) by the shorting section 13 .
  • the current detection cycle by the main current detection circuit 11 is preferably shorter than the short-circuit (ON)/open-circuit (OFF) cycle by the short-circuit portion 13 .
  • the first offset correction unit 14 measures the first offset of the current detection circuit 12 for offset correction at time t1 .
  • correction is performed by removing (subtracting) the amount corresponding to the first offset from the output of the offset correction current detection circuit 12 .
  • the main current detection circuit 11 outputs "corrected digital data" from which the amount corresponding to the second offset Iof1 calculated in the previous cycle is removed.
  • the offset correction current detection circuit 12 detects the current at time t3 and time t4 , which are the detection timings of the main current detection circuit 11.
  • a current on current path 2 is detected.
  • the main current detection circuit 11 detects the current on the current path 2 at a predetermined current detection cycle.
  • the current detection period of the detection circuit 11 is monitored, and the current detection circuit 12 for offset correction is controlled to detect current at the timing that matches the detection timing of the main current detection circuit 11 .
  • the main current detection circuit 11 and the offset correction current detection circuit 12 detect the current on the current path 2 at the same detection timing, time t3 , and detect the current on the current path 2 at the same detection timing, time t4 . current is detected.
  • the second offset correction unit 15 compares the output of the main current detection circuit 11 obtained at times t3 and t4, which are the same detection timing, with the output of the offset correction current detection circuit 12 corrected by the first offset correction unit 14.
  • the second offset Iof2 output from the main current detection circuit 11 is calculated based on the output of the main current detection circuit 11 and the amount corresponding to the second offset Iof2 from the output of the main current detection circuit 11. Perform a correction that removes (subtracts).
  • the main current detection circuit 11 outputs "corrected digital data" from which the amount corresponding to the second offset Iof2 calculated at time t5 is removed.
  • the first offset correction section 14 causes the first offset correction current detection circuit 12 to turn on at time t6 . is measured, and correction is executed by removing (subtracting) the amount corresponding to the first offset from the output of the current detection circuit 12 for offset correction at time t7 .
  • the main current detection circuit 11 and the offset correction current detection circuit 12 open the current path 2 at time t8 , which is the same detection timing. The upper current is detected, and the current on the current path 2 is detected at the same detection timing, time t9 .
  • the second offset correction unit 15 compares the output of the main current detection circuit 11 obtained at times t8 and t9 , which are the same detection timing, with the output of the offset correction current detection circuit 12 corrected by the first offset correction unit 14.
  • the second offset Iof3 output from the main current detection circuit 11 is calculated based on the output of the main current detection circuit 11 and the amount corresponding to the second offset Iof3 from the output of the main current detection circuit 11. Perform a correction that removes (subtracts).
  • the main current detection circuit 11 outputs "corrected digital data" from which the amount corresponding to the second offset Iof3 calculated at time t10 is removed.
  • the same processes as described above are repeatedly executed.
  • the first offset correction unit 14 measures the first offset of the offset correction current detection circuit 12 at time t11 , and the output of the offset correction current detection circuit 12 changes to the first offset at time t12. Perform a correction to remove (subtract) the corresponding amount.
  • FIG. 4 is a flow chart showing the operation flow of the current detection device according to one embodiment of the present disclosure.
  • the main current detection circuit 11 continues to detect the current on the current path 2 at a predetermined current detection cycle regardless of the cycle of short-circuiting and opening by the short-circuiting portion 13 (step S200). It is preferable that the current detection cycle by the main current detection circuit 11 is shorter than the short circuit/open cycle by the short circuit portion 13 .
  • step S101 the non-inverting input terminal (+) and the inverting input terminal (-) between the current input terminals of the AD converter 23 in the offset correction current detection circuit 12 are short-circuited.
  • step S102 the first offset correction unit 14 measures the first offset output from the current detection circuit 12 for offset correction.
  • step S103 the first offset correction unit 14 performs correction by removing (subtracting) the amount corresponding to the first offset from the output of the current detection circuit 12 for offset correction.
  • step S104 the non-inverting input terminal (+) and the inverting input terminal (-) between the current input terminals of the AD converter 23 in the offset correction current detection circuit 12 are opened.
  • step S105 the offset correction current detection circuit 12 detects the current on the current path 2 at a plurality of times of the same detection timing as the main current detection circuit 11.
  • step S106 the second offset correction unit 15 compares the output of the main current detection circuit 11 obtained at the same detection timing and the output corrected by the first offset correction unit 14 of the offset correction current detection circuit 12. Based on this, the second offset output from the main current detection circuit 11 is calculated.
  • the second offset and the second offset provisional value there is a possibility that the denominators shown in Equations 12 and 17 to 19 will be zero.
  • the second offset calculated in step S106 diverges. In order to prevent such divergence, if the second offset calculated in step S106 diverges, the process returns to step S105, and the main current detection circuit 11 and the offset correction current detection circuit 12 detect the same timing again. Perform current sensing and subsequent calculation of a second offset in step S106.
  • step S ⁇ b>107 the second offset correction unit 15 executes correction by removing (subtracting) the amount corresponding to the second offset from the output of the main current detection circuit 11 .
  • the main current detection circuit 11 outputs "corrected digital data" from which the amount corresponding to the second offset is removed (step S200).
  • the process returns to step S101 and the above-described processing is executed again.
  • the current detection processing of the main current detection circuit 11 continues to be executed at a cycle different from that of the offset correction processing. offset correction can be performed continuously.
  • the current input terminals of the AD converter 23 in the offset correction current detection circuit 12 are short-circuited by the short circuit 13, but this short circuit affects the current detection processing of the main current detection circuit 11.
  • the current detection device 1 should be provided with such a configuration as not to Therefore, for example, when each of the main current detection circuit 11 and the offset correction current detection circuit 12 is a shunt resistor type current detection circuit, the filter resistor 31 provided on the input side of the AD converter 22 in the main current detection circuit 11 and 32, and filter resistors 34 and 35 provided on the input side of the AD converter 23 of the offset correction current detection circuit 12 are current detection resistors ( shunt resistor) 21.
  • the resistance value of each of the filter resistors 31, 32, 34 and 35 is set to be about 1000 times higher than the resistance value of the current detection resistor 21, for example.
  • the resistance value of the current detection resistor 21 is 6.4 m ⁇
  • the resistance values of the filter resistors 31, 32, 34 and 35 are each set to 22 ⁇ . Note that the numerical values given here are only examples, and other numerical values may be used. The same applies when the main current detection circuit 11 and the offset correction current detection circuit 12 are Hall element type current detection circuits or core type current detection circuits.
  • Filter resistors 31 and 32 provided on the side and filter resistors 34 and 35 provided on the input side of the AD converter 23 of the offset correction current detection circuit 12 are used in the main current detection circuit 11 and the offset correction current detection circuit 12. It is set to have a resistance value greater than the resistance value (impedance) of the shared Hall element or core.
  • FIG. 5 is a circuit diagram showing a current detection device according to a modification of one embodiment of the present disclosure.
  • a switch unit 51 is further provided in the current detection device 1 .
  • the switch unit 51 When the current input terminals of the AD converter 23 are short-circuited by the short-circuiting part 13, the switch unit 51 is turned off (OFF: open) in order to cut off the inflow of current from the current path 2 to the current input terminals of the AD converter 23.
  • the short-circuiting part 13 When the short-circuiting part 13 does not short-circuit the current input terminals of the AD converter 23, it is turned on (ON: closed) so as not to cut off the inflow of current from the current path 2 to the current input terminals of the AD converter 23.
  • the switch unit 51 is composed of semiconductor switching elements such as a unipolar transistor such as an FET, a bipolar transistor, an IGBT, a thyristor, and a GTO. It may be a semiconductor switching element.
  • the switch section 51 Under the control of the first offset correction section 14 in the LSI (Large Scale Integrated Circuit) 40, the switch section 51 is periodically turned off (OFF) and on (ON). Circuit components other than the switch unit 51 are the same as those shown in FIG. 1, so the same circuit components are denoted by the same reference numerals, and detailed description of the circuit components is omitted. .
  • FIG. 6 is a timing chart illustrating the operation of the current detection device shown in FIG.
  • execution timings of the first offset correction, the second offset correction, the measurement of the first offset by the current detection circuit 12 for offset correction, and the measurement of the current by the main current detection circuit 11 are expressed as " It is indicated by a bar-shaped thick line.
  • FIG. 6 further adds the operation state of the switch section 51 to the timing chart shown in FIG.
  • the switch part 51 When the current input terminals of the AD converter 23 are short-circuited (ON) by the short-circuiting part 13, the switch part 51 is turned off (OFF) in order to block the inflow of current from the current path 2 to the current input terminals of the AD converter 23.
  • the short-circuiting portion 13 does not short-circuit the current input terminals of the AD converter 23 (OFF), it is turned ON so as not to block the inflow of current from the current path 2 to the current input terminals of the AD converter 23 .
  • execution timings of the first offset correction, the second offset correction, the measurement of the first offset by the current detection circuit 12 for offset correction, and the measurement of the current by the main current detection circuit 11 are shown in FIG. , detailed description of each execution timing will be omitted.
  • FIG. 7 is a flow chart showing the operation flow of the current detection device shown in FIG.
  • the main current detection circuit 11 continues to detect the current on the current path 2 at a predetermined current detection cycle regardless of the cycle of short-circuiting and opening by the short-circuiting portion 13 (step S200).
  • the current detection cycle of the main current detection circuit 11 is preferably shorter than the short-circuit/open cycle of the short-circuit portion 13 and the open (OFF)/close (ON) cycle of the switch portion 51 .
  • step S ⁇ b>301 the switch unit 51 turns off (OFF) in order to block the inflow of current from the current path 2 to the current input terminal of the AD converter 23 .
  • step S302 the non-inverting input terminal (+) and the inverting input terminal (-) between the current input terminals of the AD converter 23 in the offset correction current detection circuit 12 are short-circuited.
  • step S303 the first offset correction unit 14 measures the first offset output from the current detection circuit 12 for offset correction.
  • step S304 the first offset correction unit 14 performs correction by removing (subtracting) the amount corresponding to the first offset from the output of the current detection circuit 12 for offset correction.
  • step S305 the non-inverting input terminal (+) and the inverting input terminal (-) between the current input terminals of the AD converter 23 in the offset correction current detection circuit 12 are opened.
  • step S306 it is turned on so as not to block the inflow of current from the current path 2 to the current input terminal of the AD converter 23.
  • step S307 the offset correction current detection circuit 12 detects the current on the current path 2 at a plurality of times of the same detection timing as the main current detection circuit 11.
  • step S308 the second offset correction unit 15 compares the output of the main current detection circuit 11 obtained at the same detection timing and the output corrected by the first offset correction unit 14 of the offset correction current detection circuit 12. Based on this, the second offset output from the main current detection circuit 11 is calculated.
  • the second offset and the second offset provisional value there is a possibility that the denominators shown in Equations 12 and 17 to 19 will be zero.
  • the second offset calculated in step S308 diverges. In order to prevent such divergence, if the second offset calculated in step S308 diverges, the process returns to step S307, and the main current detection circuit 11 and the offset correction current detection circuit 12 detect the same timing again. Perform current sensing, followed by calculation of a second offset in step S308.
  • step S ⁇ b>309 the second offset correction unit 15 executes correction by removing (subtracting) the amount corresponding to the second offset from the output of the main current detection circuit 11 .
  • the main current detection circuit 11 outputs "corrected digital data" from which the amount corresponding to the second offset is removed (step S200).
  • the process returns to step S301 and the above-described process is executed again.
  • the current detection processing of the main current detection circuit 11 continues to be executed at a cycle different from that of the offset correction processing. offset correction can be performed continuously.
  • the current detection device 1 Using the current detection device 1 according to the embodiment of the present disclosure and its modification described above, it is possible to detect the current flowing through the motor in order to control the driving of the motor.
  • FIG. 8 is a diagram showing a motor drive device including a current detection device according to one embodiment of the present disclosure.
  • the number of phases of the AC power supply 200 is three, but the number of phases of the AC power supply 200 does not particularly limit the present invention. It may be a phase AC power supply.
  • the AC power supply 200 include a three-phase 400V AC power supply, a three-phase 200V AC power supply, a three-phase 600V AC power supply, and a single-phase 100V AC power supply.
  • the number of phases of the motor 300 is three, but the number of phases of the motor 300 does not particularly limit the present invention. It may be a motor.
  • the motor 300 may be an induction motor or a synchronous motor. The motor 300 is used, for example, as a drive source for a feed shaft or spindle of a machine tool, or an arm of an industrial machine or an industrial robot.
  • the motor drive device 100 includes a converter 61 , an inverter 62 , a smoothing capacitor 63 , a motor control section 64 and a current detection device 1 .
  • the converter 61 converts the AC power supplied from the AC power supply 200 into DC power and outputs it to the DC link.
  • Converter 61 is configured as a three-phase bridge circuit when three-phase AC power is supplied from AC power supply 200 , and is configured as a single-phase bridge circuit when single-phase AC power is supplied from AC power supply 200 .
  • the AC power supply 200 is a three-phase AC power supply
  • the converter 61 is configured by a three-phase bridge circuit. There is a rectifier circuit of the system.
  • a smoothing capacitor 63 is provided in the DC link, which is a circuit portion that electrically connects the DC output side of the converter 61 and the DC input side of the inverter 62 .
  • a DC link may be referred to as a “DC link section,” “DC link,” “DC link section,” “DC bus,” or “DC intermediate circuit.”
  • the smoothing capacitor 63 is sometimes called a “DC link capacitor” or the like.
  • the smoothing capacitor 63 has a function of accumulating energy (DC power) in the DC link and a function of suppressing pulsation of the DC side output of the converter 61 . As the smoothing capacitor 63 is charged, DC power is accumulated in the DC link.
  • the inverter 62 converts the DC power in the DC link into AC power and outputs it to the motor 300 side.
  • the inverter 62 is composed of a switching element and a bridge circuit of diodes connected in anti-parallel to the switching element.
  • Inverter 62 is composed of a three-phase bridge circuit when motor 300 is a three-phase AC motor, and is composed of a single-phase bridge circuit when motor 300 is a single-phase AC motor.
  • the motor 300 is a three-phase AC motor, so the inverter 62 is configured with a three-phase bridge circuit.
  • Examples of the inverter 62 include a PWM inverter including semiconductor switching elements therein.
  • the semiconductor switching element is composed of, for example, a unipolar transistor such as an FET, a bipolar transistor, an IGBT, a thyristor, a GTO, or the like. may be
  • the current detection device 1 is provided on the power line connecting the inverter 62 and the motor 300 .
  • the motor control unit 64 generates a drive command for on/off controlling each semiconductor switching element of the inverter 62 and outputs it to the inverter 62 .
  • the motor control unit 64 receives the current value digital data output from the current detection device 1 (corrected by the second offset correction unit 15) and the rotation speed (speed feedback), a predetermined torque command, an operation program for the motor 300, and the like.
  • Motor 300 is controlled in speed, torque, or rotor position based on the AC power supplied from inverter 62 .
  • Note that the configuration of the motor control unit 64 described here is merely an example, and terms such as a position command generation unit, a position control unit, a speed control unit, a current control unit, and a torque command generation unit are included in the motor control unit.
  • a configuration of the portion 64 may be defined.
  • An arithmetic processing unit (processor) is provided in the motor control unit 64 .
  • arithmetic processing units include ICs, LSIs, CPUs, MPUs, and DSPs.
  • the motor control unit 64 having an arithmetic processing unit is, for example, a functional module implemented by a computer program executed on a processor.
  • a computer program for executing the processing of the motor control unit 64 may be provided in a form recorded in a computer-readable recording medium such as a semiconductor memory, magnetic recording medium, or optical recording medium.
  • the motor control unit 64 may be realized as a semiconductor integrated circuit in which a computer program for realizing the function is written.
  • the installation location and application of the current detection device 1 shown in FIG. 8 are an example.
  • the current detection device 1 may be provided on the power line on the input side of the converter 61 and used to detect the input current to the motor drive device 100 .
  • the current detection device 1 may be provided in a DC link and used to detect a DC link current.
  • the current detection device 1 may be used to detect various currents in a motor drive device that controls driving of a DC motor.
  • the current detection device 1 may be used for current detection in various electric devices such as computer products, home electric appliances, trains, automobiles, and aircrafts, as well as motor drive devices.
  • the current value digital data (corrected by the second offset correction unit 15) output from the current detection device 1 is used as the current detection value in the electrical equipment.

Abstract

This current detection device comprises: a main current detection circuit and an offset correction current detection circuit for detecting the current through a current pathway at the same detection position; a short-circuit unit for short-circuiting between the current input terminals of an AD converter in the offset correction current detection circuit; a first offset correction unit for measuring a first offset of the offset correction current detection circuit while short-circuiting is occurring between the current input terminals, and removing a first offset equivalent from the output of the offset correction current detection circuit; and a second offset correction unit for calculating a second offset amount of the main current detection circuit on the basis of the corrected output of the offset correction current detection circuit and the output of the main current detection circuit obtained at the same detection timing while no short-circuiting is occurring between the current input terminals, and removing a second offset equivalent from the output of the main current detection circuit.

Description

電流検出装置及びこれを備えるモータ駆動装置CURRENT DETECTION DEVICE AND MOTOR DRIVE DEVICE INCLUDING THE SAME
 本発明は、電流検出装置及びこれを備えるモータ駆動装置に関する。 The present invention relates to a current detection device and a motor drive device including the same.
 モータ駆動装置においては、モータの駆動を制御するためにモータに流れる電流を検出する電流検出装置が設けられる。 A motor drive device is provided with a current detection device that detects the current flowing through the motor in order to control the drive of the motor.
 例えば、メインオペアンプ(21)と、該メインオペアンプ(21)に接続したオフセット調整回路(22)とを有し、該オフセット調整回路(22)が動作したときに、上記メインオペアンプ(21)から、該メインオペアンプ(21)の入力オフセット電圧(ΔVm)を除去した出力電圧(Vo)が発生するよう構成されたオートゼロアンプ(2)と、上記出力電圧(Vo)を測定する電圧測定部(3)と、上記オートゼロアンプ(2)及び上記電圧測定部(3)に接続した制御回路部(4)とを備え、該制御回路部(4)は、上記オフセット調整回路(22)を動作させるオートゼロモードと、上記オフセット調整回路(22)を動作させない非オートゼロモードとを切り替え制御し、上記制御回路部(4)は、上記オートゼロモードから上記非オートゼロモードに切り替える前後で、上記出力電圧(Vo)をそれぞれ測定し、上記非オートゼロモードにおける上記出力電圧(Von)の測定値から上記オートゼロモードにおける上記出力電圧(Voa)の測定値を減算することにより、上記入力オフセット電圧(ΔVm)を算出し、その後、上記非オートゼロモードにおいて、上記出力電圧(Vo)の測定を行い、上記入力オフセット電圧(ΔVm)の算出値を用いて、上記出力電圧(Vo)の測定値を補正するよう構成されていることを特徴とする出力電圧測定システム(1)が知られている(例えば、特許文献1参照。)。 For example, having a main operational amplifier (21) and an offset adjustment circuit (22) connected to the main operational amplifier (21), when the offset adjustment circuit (22) operates, from the main operational amplifier (21), An auto-zero amplifier (2) configured to generate an output voltage (Vo) from which an input offset voltage (ΔVm) of the main operational amplifier (21) is removed, and a voltage measuring section (3) for measuring the output voltage (Vo) and a control circuit section (4) connected to the auto-zero amplifier (2) and the voltage measurement section (3), the control circuit section (4) operating the offset adjustment circuit (22) in an auto-zero mode. and a non-auto-zero mode in which the offset adjustment circuit (22) is not operated, and the control circuit (4) changes the output voltage (Vo) before and after switching from the auto-zero mode to the non-auto-zero mode. respectively, and subtracting the measured value of the output voltage (Voa) in the autozero mode from the measured value of the output voltage (Von) in the non-autozero mode to calculate the input offset voltage (ΔVm), and then and measuring the output voltage (Vo) in the non-autozero mode, and correcting the measured value of the output voltage (Vo) using the calculated value of the input offset voltage (ΔVm). An output voltage measurement system (1) characterized by is known (see, for example, Patent Document 1).
 例えば、入力される差動信号のオフセットを補正するオートゼロアンプ回路と、前記オートゼロアンプ回路から出力される出力信号をデジタル信号に変換するコンパレータ回路と、を備え、前記オートゼロアンプ回路と、前記コンパレータ回路とは、同一のパッケージ内に構成される、演算回路が知られている(例えば、特許文献2参照。)。 For example, an auto-zero amplifier circuit that corrects an offset of an input differential signal and a comparator circuit that converts an output signal output from the auto-zero amplifier circuit into a digital signal, wherein the auto-zero amplifier circuit and the comparator circuit is known as an arithmetic circuit configured in the same package (see, for example, Patent Document 2).
特開2016-208308号公報JP 2016-208308 A 特開2019-062450号公報JP 2019-062450 A
 従来、電流検出回路のオフセット補正は、モータ駆動装置の動作を止めることで電流検出回路に入力される電流を0(ゼロ)の状態にしたときにおける電流検出回路の出力値をオフセットとして事前に測定しておき、その後の通常動作時において電流検出回路による電流検出値からオフセット相当量を除去(減算)することで実現していた。すなわち、オフセット補正をするためには、電流検出回路の入力を0にするため通常の電流検出処理を一度停止しなければならず、効率が悪かった。また、通常の使用において電流検出回路により電流を検出し続けていると、温度ドリフトにより電流検出回路のオフセットが変化する。従来、事前に測定したオフセットをそのままオフセット補正に用い続けていたので、オフセットの変化に対応したオフセット補正がなされていなかった。したがって、電流検出処理を停止することなく電流検出回路のオフセットの補正を継続的に行うことができる技術が望まれている。 Conventionally, the offset correction of the current detection circuit is performed by measuring the output value of the current detection circuit as an offset in advance when the current input to the current detection circuit is set to 0 (zero) by stopping the operation of the motor drive device. This is realized by removing (subtracting) the offset equivalent amount from the current detection value by the current detection circuit in the subsequent normal operation. That is, in order to correct the offset, the input of the current detection circuit must be set to 0, so that the normal current detection process must be stopped once, which is inefficient. Further, if the current detection circuit continues to detect current in normal use, the offset of the current detection circuit changes due to temperature drift. Conventionally, since the offset measured in advance has been used as it is for offset correction, offset correction corresponding to the change in offset has not been performed. Therefore, there is a demand for a technique capable of continuously correcting the offset of the current detection circuit without stopping the current detection process.
 本開示の一態様によれば、電流検出装置は、電流経路上の電流を検出して該電流に対応するディジタルデータを出力するメイン電流検出回路と、メイン電流検出回路と同じ検出箇所にて電流経路上の電流を検出して該電流に対応するディジタルデータを出力するオフセット補正用電流検出回路と、オフセット補正用電流検出回路内のADコンバータの電流入力端子間を短絡する短絡部と、短絡部による電流入力端子間の短絡時にオフセット補正用電流検出回路から出力される第1のオフセットを測定し、オフセット補正用電流検出回路の出力から第1のオフセットに相当する量を除去する補正を実行する第1のオフセット補正部と、短絡部が電流入力端子間を短絡しない時において同じ検出タイミングで得られたメイン電流検出回路の出力とオフセット補正用電流検出回路の第1のオフセット補正部による補正済の出力とに基づいて、メイン電流検出回路から出力される第2のオフセットを計算し、メイン電流検出回路の出力から第2のオフセットに相当する量を除去する補正を実行する第2のオフセット補正部と、を備える。 According to one aspect of the present disclosure, a current detection device includes a main current detection circuit that detects a current on a current path and outputs digital data corresponding to the current, and a current detection circuit at the same detection location as the main current detection circuit. A current detection circuit for offset correction that detects a current on a path and outputs digital data corresponding to the current, a short-circuit section that short-circuits the current input terminals of the AD converter in the current detection circuit for offset correction, and a short-circuit section. measuring the first offset output from the current detection circuit for offset correction when the current input terminals are shorted by the current detection circuit, and performing correction to remove the amount corresponding to the first offset from the output of the current detection circuit for offset correction The output of the main current detection circuit obtained at the same detection timing when the first offset correction unit and the short-circuiting unit do not short-circuit the current input terminals and the output corrected by the first offset correction unit of the current detection circuit for offset correction. and calculating a second offset output from the main current sensing circuit based on the output of and performing a correction to remove an amount corresponding to the second offset from the output of the main current sensing circuit. and
 また、本開示の一態様によれば、モータ駆動装置は、上記電流検出装置を備え、メイン電流検出回路の第2のオフセット補正部による補正済の出力を用いてモータの駆動を制御する。 Further, according to one aspect of the present disclosure, a motor drive device includes the current detection device, and controls motor drive using an output corrected by the second offset correction section of the main current detection circuit.
 本開示の一態様によれば、電流検出処理を停止することなく電流検出回路のオフセットの補正を継続的に行うことができる。 According to one aspect of the present disclosure, it is possible to continuously correct the offset of the current detection circuit without stopping the current detection process.
本開示の一実施形態による電流検出装置を示す回路図である。1 is a circuit diagram showing a current sensing device according to one embodiment of the present disclosure; FIG. メイン電流検出回路から出力される第2のオフセットの計算方法について説明するブロック図である。FIG. 4 is a block diagram illustrating a method of calculating a second offset output from a main current detection circuit; FIG. 本開示の一実施形態による電流検出装置の動作を例示するタイミングチャートを示す図である。[0014] Figure 4 shows a timing chart illustrating the operation of a current sensing device according to an embodiment of the present disclosure; 本開示の一実施形態による電流検出装置の動作フローを示すフローチャートである。4 is a flow chart showing an operation flow of a current detection device according to an embodiment of the present disclosure; 本開示の一実施形態の変形例による電流検出装置を示す回路図である。FIG. 4 is a circuit diagram showing a current detection device according to a modification of an embodiment of the present disclosure; 図5に示す電流検出装置の動作を例示するタイミングチャートを示す図である。6 is a timing chart illustrating the operation of the current detection device shown in FIG. 5; FIG. 図5に示す電流検出装置の動作フローを示すフローチャートである。6 is a flow chart showing an operation flow of the current detection device shown in FIG. 5; 本開示の一実施形態による電流検出装置を備えるモータ駆動装置を示す図である。1 illustrates a motor drive device with a current sensing device according to an embodiment of the present disclosure; FIG.
 以下図面を参照して、電流検出装置及びこれを備えるモータ駆動装置について説明する。各図面において、同様の部材には同様の参照符号が付けられている。また、理解を容易にするために、これらの図面は縮尺を適宜変更している。図示される形態は実施をするための1つの例であり、これらの形態に限定されるものではない。また、以下の説明では、オフセット補正用電流検出回路のオフセットを「第1のオフセット」と称し、メイン電流検出回路のオフセットを「第2のオフセット」と称する。 A current detection device and a motor drive device including the same will be described below with reference to the drawings. In each drawing, similar parts are provided with similar reference numerals. Also, to facilitate understanding, the scales of these drawings are appropriately changed. The illustrated forms are examples of implementations and are not limited to these forms. Further, in the following description, the offset of the current detection circuit for offset correction is referred to as "first offset", and the offset of the main current detection circuit is referred to as "second offset".
 図1は、本開示の一実施形態による電流検出装置を示す回路図である。以降、異なる図面において同じ参照符号が付されたものは同じ機能または類似する機能を有する構成要素であることを意味するものとする。 FIG. 1 is a circuit diagram showing a current detection device according to one embodiment of the present disclosure. Hereinafter, the same reference numerals in different drawings mean components having the same or similar functions.
 本開示の一実施形態による電流検出装置1は、メイン電流検出回路11と、オフセット補正用電流検出回路12と、短絡部13と、第1のオフセット補正部14と、第2のオフセット補正部15とを備える。 A current detection device 1 according to an embodiment of the present disclosure includes a main current detection circuit 11, an offset correction current detection circuit 12, a short circuit section 13, a first offset correction section 14, and a second offset correction section 15. and
 メイン電流検出回路11は、電流経路2上の電流を検出して該電流に対応するディジタルデータを出力するものである。メイン電流検出回路11は、シャント抵抗方式電流検出回路、ホール素子方式電流検出回路、あるいはコア方式電流検出回路のいずれであってもよい。図1では、一例として、メイン電流検出回路11をシャント抵抗方式電流検出回路にて構成した場合を示している。 The main current detection circuit 11 detects the current on the current path 2 and outputs digital data corresponding to the current. The main current detection circuit 11 may be any of a shunt resistor type current detection circuit, a hall element type current detection circuit, or a core type current detection circuit. As an example, FIG. 1 shows a case where the main current detection circuit 11 is configured by a shunt resistor type current detection circuit.
 メイン電流検出回路11は、電流検出抵抗(シャント抵抗)21と、絶縁型のADコンバータ22と、フィルタ抵抗31及び32と、フィルタコンデンサ33とを備える。ADコンバータ22の変換方式としては、逐次比較型、デルタシグマ型、二重積分型、フラッシュ型(並列比較型)、及びパイプライン型などがある。ADコンバータ22の入力側には、フィルタ抵抗31及び32並びにフィルタコンデンサ33で構成されるフィルタが設けられる。ADコンバータ22の非反転入力端子(+)と反転入力端子(-)との間にフィルタコンデンサ33が電気的に接続され、フィルタコンデンサ33の両端子にはフィルタ抵抗31及び32がそれぞれ電気的に接続される。電流経路2上に電流が流れると、電流検出抵抗21の両端子間に電位差が生じ、各電位信号は、フィルタ抵抗31及び32並びにフィルタコンデンサ33を介してADコンバータ22の非反転入力端子(+)と反転入力端子(-)のそれぞれに入力される。ADコンバータ22は、入力された各電位信号に基づいて、電流経路2上の電流に対応するディジタルデータを出力する。ADコンバータ22から出力されたディジタルデータは、ディジタル演算回路であるLSI(大規模集積回路)40に入力され、後述のオフセット補正が施された後、電流値ディジタルデータとして外部に出力される。 The main current detection circuit 11 includes a current detection resistor (shunt resistor) 21 , an insulated AD converter 22 , filter resistors 31 and 32 , and a filter capacitor 33 . Conversion methods of the AD converter 22 include successive approximation type, delta sigma type, double integration type, flash type (parallel comparison type), and pipeline type. A filter composed of filter resistors 31 and 32 and a filter capacitor 33 is provided on the input side of the AD converter 22 . A filter capacitor 33 is electrically connected between the non-inverting input terminal (+) and the inverting input terminal (-) of the AD converter 22, and filter resistors 31 and 32 are electrically connected to both terminals of the filter capacitor 33. Connected. When a current flows through the current path 2, a potential difference occurs between both terminals of the current detection resistor 21, and each potential signal is applied to the non-inverting input terminal (+ ) and the inverting input terminal (-). The AD converter 22 outputs digital data corresponding to the current on the current path 2 based on each input potential signal. The digital data output from the AD converter 22 is input to an LSI (Large Scale Integrated Circuit) 40, which is a digital arithmetic circuit, subjected to offset correction, which will be described later, and then output to the outside as current value digital data.
 オフセット補正用電流検出回路12は、メイン電流検出回路11と同じ検出箇所にて電流経路2上の電流を検出して該電流に対応するディジタルデータを出力するものである。オフセット補正用電流検出回路12は、シャント抵抗方式電流検出回路、ホール素子方式電流検出回路、あるいはコア方式電流検出回路のいずれであってもよい。図1では、一例として、オフセット補正用電流検出回路12をシャント抵抗方式電流検出回路にて構成した場合を示している。オフセット補正用電流検出回路12は、メイン電流検出回路11の近傍に設置されるのが好ましい。 The offset correction current detection circuit 12 detects the current on the current path 2 at the same detection point as the main current detection circuit 11 and outputs digital data corresponding to the current. The offset correction current detection circuit 12 may be a shunt resistor type current detection circuit, a hall element type current detection circuit, or a core type current detection circuit. FIG. 1 shows, as an example, the case where the current detection circuit 12 for offset correction is configured by a shunt resistor type current detection circuit. The offset correction current detection circuit 12 is preferably installed near the main current detection circuit 11 .
 オフセット補正用電流検出回路12は、電流検出抵抗(シャント抵抗)21と、絶縁型のADコンバータ23と、フィルタ抵抗34及び35と、フィルタコンデンサ36とを備える。メイン電流検出回路11とオフセット補正用電流検出回路12とで電流検出抵抗21を共有することで、メイン電流検出回路11とオフセット補正用電流検出回路12とは同じ検出箇所にて電流経路2上の電流を検出することができる。ADコンバータ23の変換方式としては、逐次比較型、デルタシグマ型、二重積分型、フラッシュ型(並列比較型)、及びパイプライン型などがある。ADコンバータ23の入力側には、フィルタ抵抗34及び35並びにフィルタコンデンサ36で構成されるフィルタが設けられる。ADコンバータ23の非反転入力端子(+)と反転入力端子(-)との間にフィルタコンデンサ36が電気的に接続され、フィルタコンデンサ36の両端子にはフィルタ抵抗34及び35がそれぞれ電気的に接続される。電流経路2上に電流が流れると、電流検出抵抗21の両端子間に電位差が生じ、各電位信号は、フィルタ抵抗34及び35並びにフィルタコンデンサ36を介してADコンバータ23の非反転入力端子(+)及び反転入力端子(-)のそれぞれに入力される。ADコンバータ23は、入力された各電位信号に基づいて、電流経路2上の電流に対応するディジタルデータを出力する。ADコンバータ23から出力されたディジタルデータは、ディジタル演算回路であるLSI(大規模集積回路)40に入力される。 The offset correction current detection circuit 12 includes a current detection resistor (shunt resistor) 21 , an insulated AD converter 23 , filter resistors 34 and 35 , and a filter capacitor 36 . By sharing the current detection resistor 21 between the main current detection circuit 11 and the offset correction current detection circuit 12, the main current detection circuit 11 and the offset correction current detection circuit 12 are detected at the same detection point on the current path 2. Current can be detected. Conversion methods of the AD converter 23 include successive approximation type, delta sigma type, double integration type, flash type (parallel comparison type), and pipeline type. A filter composed of filter resistors 34 and 35 and a filter capacitor 36 is provided on the input side of the AD converter 23 . A filter capacitor 36 is electrically connected between the non-inverting input terminal (+) and the inverting input terminal (-) of the AD converter 23, and filter resistors 34 and 35 are electrically connected to both terminals of the filter capacitor 36. Connected. When a current flows through the current path 2, a potential difference is generated between both terminals of the current detection resistor 21, and each potential signal is applied to the non-inverting input terminal (+ ) and the inverting input terminal (-). The AD converter 23 outputs digital data corresponding to the current on the current path 2 based on each input potential signal. Digital data output from the AD converter 23 is input to an LSI (Large Scale Integrated Circuit) 40, which is a digital arithmetic circuit.
 短絡部13は、オフセット補正用電流検出回路12内のADコンバータ23の電流入力端子間である非反転入力端子(+)と反転入力端子(-)との間を短絡・開放する開閉スイッチである。短絡部13は、FETなどのユニポーラトランジスタ、バイポーラトランジスタ、IGBT、サイリスタ、GTOなどの半導体スイッチング素子にて構成されるが、半導体スイッチング素子の種類自体は本実施形態を限定するものではなく、その他の半導体スイッチング素子であってもよい。LSI(大規模集積回路)40内の第1のオフセット補正部14による制御により、短絡部13は短絡と開放とを周期的に繰り返す。 The short-circuit unit 13 is an open/close switch that short-circuits/opens the non-inverting input terminal (+) and the inverting input terminal (-) between the current input terminals of the AD converter 23 in the offset correction current detection circuit 12. . The short circuit portion 13 is composed of a semiconductor switching element such as a unipolar transistor such as an FET, a bipolar transistor, an IGBT, a thyristor, or a GTO. It may be a semiconductor switching element. Under the control of the first offset correction section 14 in the LSI (Large Scale Integrated Circuit) 40, the shorting section 13 periodically repeats shorting and opening.
 第1のオフセット補正部14は、短絡部13によるADコンバータ23の電流入力端子間の短絡時にオフセット補正用電流検出回路12から出力される第1のオフセットを測定し、オフセット補正用電流検出回路12の出力から第1のオフセットに相当する量を除去する補正を実行する。 The first offset correction unit 14 measures the first offset output from the offset correction current detection circuit 12 when the current input terminals of the AD converter 23 are shorted by the short circuit 13, and the offset correction current detection circuit 12 performs a correction that removes an amount corresponding to the first offset from the output of .
 短絡部13によるADコンバータ23の電流入力端子間の短絡時には、電流経路2からオフセット補正用電流検出回路12内のADコンバータ23には電流は流れ込まないので、オフセット補正用電流検出回路12内のADコンバータ23からはオフセット補正用電流検出回路12のオフセット(すなわち第1のオフセット)のみが出力される。第1のオフセット補正部14は、この第1のオフセットを短絡部13によるADコンバータ23の電流入力端子間の短絡時に測定し、当該測定時以降のオフセット補正用電流検出回路12の出力に第1のオフセットが含まれないよう、オフセット補正用電流検出回路12の出力から第1のオフセットに相当する量を除去する補正を実行する。 When the current input terminals of the AD converter 23 are shorted by the short circuit 13, no current flows from the current path 2 into the AD converter 23 in the offset correction current detection circuit 12. Therefore, the AD in the offset correction current detection circuit 12 is Only the offset (that is, the first offset) of the offset correction current detection circuit 12 is output from the converter 23 . The first offset correction unit 14 measures this first offset when the current input terminals of the AD converter 23 are short-circuited by the short-circuit unit 13, and outputs the first offset correction current detection circuit 12 after the measurement. A correction is performed to remove the amount corresponding to the first offset from the output of the current detection circuit 12 for offset correction so that the offset of is not included.
 このように、第1のオフセット補正部14による第1のオフセットの測定及びオフセット補正用電流検出回路12の出力に対する補正は、短絡部13によるADコンバータ23の電流入力端子間の短絡時に実行される。短絡部13は短絡と開放とを周期的に繰り返すので、第1のオフセット補正部14による第1のオフセットの測定及びオフセット補正用電流検出回路12の出力に対する補正は、あらかじめ定めた周期で繰り返し実行されることになる。よって、温度ドリフトによりオフセット補正用電流検出回路12の第1のオフセットが変化しても、短絡部13によるADコンバータ23の電流入力端子間の短絡時にオフセット補正用電流検出回路12の出力に対する補正がすぐに実行され、当該短絡に続くADコンバータ23の電流入力端子間の開放時には、オフセット補正用電流検出回路12からは第1のオフセットが除去された補正済のディジタルデータが出力されることになる。よって、オフセット補正用電流検出回路12の出力について、温度ドリフトの影響を最小限に抑えることができる。 Thus, the measurement of the first offset by the first offset correction unit 14 and the correction of the output of the current detection circuit 12 for offset correction are performed when the current input terminals of the AD converter 23 are shorted by the short circuit unit 13. . Since the short-circuiting section 13 periodically repeats short-circuiting and opening, the measurement of the first offset by the first offset correction section 14 and the correction of the output of the current detection circuit 12 for offset correction are repeatedly executed at a predetermined cycle. will be Therefore, even if the first offset of the current detection circuit 12 for offset correction changes due to temperature drift, the output of the current detection circuit 12 for offset correction cannot be corrected when the current input terminals of the AD converter 23 are shorted by the short circuit 13. When the current input terminals of the AD converter 23 are opened following the short circuit, the offset correction current detection circuit 12 outputs corrected digital data from which the first offset has been removed. . Therefore, the influence of temperature drift on the output of the offset correction current detection circuit 12 can be minimized.
 第2のオフセット補正部15は、短絡部13がADコンバータ23の電流入力端子間を短絡しない時(すなわちADコンバータ23の電流入力端子間の開放時)において同じ検出タイミングで得られたメイン電流検出回路11の複数の出力とオフセット補正用電流検出回路12の第1のオフセット補正部14による補正済の複数の出力とに基づいて、メイン電流検出回路11から出力される第2のオフセットを計算し、メイン電流検出回路11の出力から第2のオフセットに相当する量を除去(減算)する補正を実行する。 The second offset correction unit 15 detects the main current obtained at the same detection timing when the short-circuiting unit 13 does not short-circuit the current input terminals of the AD converter 23 (that is, when the current input terminals of the AD converter 23 are open). A second offset output from the main current detection circuit 11 is calculated based on the plurality of outputs of the circuit 11 and the plurality of outputs corrected by the first offset correction section 14 of the current detection circuit 12 for offset correction. , to remove (subtract) an amount corresponding to the second offset from the output of the main current detection circuit 11 .
 上述のように短絡部13がADコンバータ23の電流入力端子間を短絡しない時(すなわちADコンバータ23の電流入力端子間の開放時)には、オフセット補正用電流検出回路12からは第1のオフセットが除去された補正済のディジタルデータが出力されている。第2のオフセット補正部15は、短絡部13がADコンバータ23の電流入力端子間を短絡しない時において、同じ検出タイミングで得られたメイン電流検出回路11の複数の出力とオフセット補正用電流検出回路12の第1のオフセット補正部14による補正済の複数の出力とに基づいて、メイン電流検出回路11から出力される第2のオフセットを計算する。メイン電流検出回路11の複数の出力とオフセット補正用電流検出回路12の第1のオフセット補正部14による補正済の複数の出力を得るために、メイン電流検出回路11及びオフセット補正用電流検出回路12における電流経路2上の電流の同時検出(同時入力)が、短絡部13がADコンバータ23の電流入力端子間を短絡しない間に、複数回行われる。 As described above, when the short-circuiting portion 13 does not short-circuit the current input terminals of the AD converter 23 (that is, when the current input terminals of the AD converter 23 are open), the offset correction current detection circuit 12 outputs the first offset corrected digital data from which is removed is output. When the short-circuiting section 13 does not short-circuit the current input terminals of the AD converter 23, the second offset correction section 15 combines a plurality of outputs of the main current detection circuit 11 obtained at the same detection timing with the current detection circuit for offset correction. A second offset output from the main current detection circuit 11 is calculated based on a plurality of corrected outputs from the first offset correction unit 14 of 12 . In order to obtain a plurality of outputs of the main current detection circuit 11 and a plurality of outputs corrected by the first offset correction section 14 of the offset correction current detection circuit 12, the main current detection circuit 11 and the offset correction current detection circuit 12 The simultaneous detection (simultaneous input) of the current on the current path 2 is performed multiple times while the short-circuiting portion 13 does not short-circuit the current input terminals of the AD converter 23 .
 ここで、メイン電流検出回路11から出力される第2のオフセットの計算方法について説明する。図2は、メイン電流検出回路から出力される第2のオフセットの計算方法について説明するブロック図である。 Here, a method for calculating the second offset output from the main current detection circuit 11 will be described. FIG. 2 is a block diagram illustrating a method of calculating the second offset output from the main current detection circuit.
 短絡部13がADコンバータ23の電流入力端子間を短絡しない時(すなわち開放時)において、時刻tにおける電流経路2上の電流の値をI(t)、メイン電流検出回路11の出力をI1(t)、オフセット補正用電流検出回路12の第1のオフセット補正部14による補正済の出力をI2(t)とする。 When the short-circuiting portion 13 does not short-circuit the current input terminals of the AD converter 23 (that is, when it is open), the value of the current on the current path 2 at time t is I(t), and the output of the main current detection circuit 11 is I 1 (t), and the output corrected by the first offset correction unit 14 of the current detection circuit 12 for offset correction is I 2 (t).
 メイン電流検出回路11のゲインをG1、メイン電流検出回路11の第2のオフセットをIofとしたとき、時刻tにおけるメイン電流検出回路11の出力I1(t)は、式1のように表される。 Assuming that the gain of the main current detection circuit 11 is G 1 and the second offset of the main current detection circuit 11 is I of , the output I 1 (t) of the main current detection circuit 11 at time t is given by Equation 1: expressed.
 オフセット補正用電流検出回路12のゲインをG2としたとき、時刻tにおけるオフセット補正用電流検出回路12の第1のオフセット補正部14による補正済の出力I2(t)は、式2のように表される。オフセット補正用電流検出回路12の出力I2(t)は、ADコンバータ23の電流入力端子間の当該開放時よりも前の短絡時に第1のオフセット補正部14により既に補正されているので、第1のオフセットは0であり、すなわち式2には第1のオフセットは現れない。 Assuming that the gain of the offset correction current detection circuit 12 is G2 , the corrected output I2 (t) by the first offset correction section 14 of the offset correction current detection circuit 12 at time t is given by Equation 2. is represented by Since the output I 2 (t) of the current detection circuit 12 for offset correction has already been corrected by the first offset correction unit 14 at the time of the short circuit between the current input terminals of the AD converter 23 before the open time, the output I 2 (t) is An offset of 1 is 0, ie the first offset does not appear in Equation 2.
 式1に式2を代入すると、式3が得られる。 By substituting formula 2 into formula 1, formula 3 is obtained.
 式1~式3を利用して、2つの時刻のそれぞれにおいて同じ検出タイミングで得られたメイン電流検出回路11の出力とオフセット補正用電流検出回路12の補正済の出力とに基づいて第2のオフセットを計算する例について説明すると次の通りである。 Using Equations 1 to 3, the output of the main current detection circuit 11 and the corrected output of the offset correction current detection circuit 12 obtained at the same detection timing at each of the two times are used to calculate the second An example of calculating the offset is as follows.
 メイン電流検出回路11の2つの出力とオフセット補正用電流検出回路12の第1のオフセット補正部14による補正済の2つの出力を得るために、メイン電流検出回路11及びオフセット補正用電流検出回路12における電流経路2上の電流の同時検出(同時入力)、短絡部13がADコンバータ23の電流入力端子間を短絡しない間に、2回行われる。 In order to obtain two outputs of the main current detection circuit 11 and two outputs corrected by the first offset correction section 14 of the offset correction current detection circuit 12, the main current detection circuit 11 and the offset correction current detection circuit 12 Simultaneous detection (simultaneous input) of the current on the current path 2 in , is performed twice while the short-circuiting portion 13 does not short-circuit the current input terminals of the AD converter 23 .
 短絡部13がADコンバータ23の電流入力端子間を短絡しない時(すなわちADコンバータ23の電流入力端子間の開放時)において、時刻t1におけるメイン電流検出回路11の出力I1(t1)は式4で表され、時刻t1におけるオフセット補正用電流検出回路12の第1のオフセット補正部14による補正済の出力I2(t1)は式5で表される。 When the short-circuiting portion 13 does not short-circuit the current input terminals of the AD converter 23 (that is, when the current input terminals of the AD converter 23 are open), the output I 1 (t 1 ) of the main current detection circuit 11 at time t 1 is The output I 2 (t 1 ) corrected by the first offset correction unit 14 of the offset correction current detection circuit 12 at time t 1 is expressed by Equation 5.
 短絡部13がADコンバータ23の電流入力端子間を短絡しない時(すなわちADコンバータ23の電流入力端子間の開放時)において、時刻t2におけるメイン電流検出回路11の出力I1(t2)は式6で表され、時刻t2におけるオフセット補正用電流検出回路12の第1のオフセット補正部14による補正済の出力I2(t2)は式7で表される。 When the short-circuiting portion 13 does not short-circuit the current input terminals of the AD converter 23 (that is, when the current input terminals of the AD converter 23 are open), the output I 1 (t 2 ) of the main current detection circuit 11 at time t 2 is The output I 2 (t 2 ) corrected by the first offset correction unit 14 of the offset correction current detection circuit 12 at time t 2 is expressed by Equation 6.
 式4と式6との辺々を引くと、式8が得られる。 By subtracting the sides of Equation 4 and Equation 6, Equation 8 is obtained.
 式5と式7との辺々を引くと、式9が得られる。 By subtracting the sides of Equation 5 and Equation 7, Equation 9 is obtained.
 式8に式9を代入して整理すると、式10が得られる。 Formula 10 is obtained by substituting formula 9 into formula 8 and arranging it.
 t=t1のときの式3に式10を代入すると、式11が得られる。 Substituting Equation 10 into Equation 3 when t=t 1 yields Equation 11.
 式11を整理すると、式12が得られる。 Formula 12 is obtained by rearranging Formula 11.
 第2のオフセット補正部15は、式12に従って、第2のオフセットであるIofを計算することができる。 The second offset correction unit 15 can calculate the second offset I of according to Equation (12).
 上述の実施形態では、2つの時刻のそれぞれにおいて同じ検出タイミングで得られた各出力に基づいて第2のオフセットを計算したが、3つ以上の時刻のそれぞれにおいて同じ検出タイミングで得られた各出力に基づいて第2のオフセットを計算してもよい。以下、3つ以上の時刻の各出力に基づいて第2のオフセットを計算する形態についていくつか列記する。 In the above-described embodiment, the second offset is calculated based on each output obtained at the same detection timing at each of the two times, but each output obtained at the same detection timing at each of three or more times A second offset may be calculated based on . Several modes for calculating the second offset based on outputs at three or more times are listed below.
 第1の形態は、各時刻で測定された各出力の平均に基づいて第2のオフセットを計算するものである。ここで、6つの時刻のそれぞれにおいて同じ検出タイミングで得られたメイン電流検出回路11の出力とオフセット補正用電流検出回路12の補正済の出力とに基づいて、第2のオフセットを計算する場合を例にとり第1の形態について説明する。 The first form is to calculate the second offset based on the average of each output measured at each time. Here, a case is assumed in which the second offset is calculated based on the output of the main current detection circuit 11 and the corrected output of the offset correction current detection circuit 12 obtained at the same detection timing at each of the six times. The first form will be described as an example.
 メイン電流検出回路11の6つの出力とオフセット補正用電流検出回路12の第1のオフセット補正部14による補正済の6つの出力を得るために、メイン電流検出回路11及びオフセット補正用電流検出回路12における電流経路2上の電流の同時検出(同時入力)、短絡部13がADコンバータ23の電流入力端子間を短絡しない間に、6回行われる。 In order to obtain six outputs of the main current detection circuit 11 and six outputs corrected by the first offset correction section 14 of the offset correction current detection circuit 12, the main current detection circuit 11 and the offset correction current detection circuit 12 Simultaneous detection (simultaneous input) of the current on the current path 2 in is performed six times while the short-circuiting portion 13 does not short-circuit the current input terminals of the AD converter 23 .
 短絡部13がADコンバータ23の電流入力端子間を短絡しない時(すなわちADコンバータ23の電流入力端子間の開放時)において、時刻t1において測定されたメイン電流検出回路11の出力をI1(t1)、時刻t2において測定されたメイン電流検出回路11の出力をI1(t2)、時刻t3において測定されたメイン電流検出回路11の出力をI1(t3)、時刻t4において測定されたメイン電流検出回路11の出力をI1(t4)、時刻t5において測定されたメイン電流検出回路11の出力をI1(t5)、時刻t6において測定されたメイン電流検出回路11の出力をI1(t6)とする。 When the short-circuiting portion 13 does not short-circuit the current input terminals of the AD converter 23 (that is, when the current input terminals of the AD converter 23 are open), the output of the main current detection circuit 11 measured at time t 1 is I 1 ( t 1 ), the output of the main current detection circuit 11 measured at time t 2 is I 1 (t 2 ), the output of the main current detection circuit 11 measured at time t 3 is I 1 (t 3 ), time t 4 is I 1 (t 4 ), I 1 (t 5 ) is the output of the main current detection circuit 11 measured at time t 5 , and I 1 (t 5 ) is the output of the main current detection circuit 11 measured at time t 6 . Let the output of the current detection circuit 11 be I 1 (t 6 ).
 I1(t1)、I1(t2)及びI1(t3)の平均出力I’1(T1)は、式13のようになる。 The average output I ' 1 (T 1 ) of I 1 (t 1 ), I 1 (t 2 ) and I 1 (t 3 ) is given by Equation 13.
 I1(t4)、I1(t5)及びI1(t6)の平均出力I’1(T2)は、式14のようになる。 The average output I ' 1 (T 2 ) of I 1 (t 4 ), I 1 (t 5 ) and I 1 (t 6 ) is given by Equation 14.
 同様に、短絡部13がADコンバータ23の電流入力端子間を短絡しない時(すなわちADコンバータ23の電流入力端子間の開放時)において、時刻t1において測定されたオフセット補正用電流検出回路12の第1のオフセット補正部14による補正済の出力をI2(t1)、時刻t2において測定されたオフセット補正用電流検出回路12の第1のオフセット補正部14による補正済の出力をI2(t2)、時刻t3において測定されたオフセット補正用電流検出回路12の第1のオフセット補正部14による補正済の出力をI2(t3)、時刻t4において測定されたオフセット補正用電流検出回路12の第1のオフセット補正部14による補正済の出力をI2(t4)、時刻t5において測定されたオフセット補正用電流検出回路12の第1のオフセット補正部14による補正済の出力をI2(t5)、時刻t6において測定されたオフセット補正用電流検出回路12の第1のオフセット補正部14による補正済の出力をI2(t6)とする。 Similarly, when the short-circuiting portion 13 does not short-circuit the current input terminals of the AD converter 23 (that is, when the current input terminals of the AD converter 23 are open), the current detection circuit 12 for offset correction measured at time t 1 The output corrected by the first offset correction unit 14 is I 2 (t 1 ), and the output corrected by the first offset correction unit 14 of the offset correction current detection circuit 12 measured at time t 2 is I 2 . (t 2 ), the output corrected by the first offset correction unit 14 of the offset correction current detection circuit 12 measured at time t 3 is I 2 (t 3 ), the output for offset correction measured at time t 4 The corrected output by the first offset correction unit 14 of the current detection circuit 12 is I 2 (t 4 ), and the corrected output by the first offset correction unit 14 of the current detection circuit 12 for offset correction measured at time t 5 is is I 2 (t 5 ), and the output corrected by the first offset correction unit 14 of the offset correction current detection circuit 12 measured at time t 6 is I 2 (t 6 ).
 I2(t1)、I2(t2)及びI2(t3)の平均出力I’2(T1)は、式15のようになる。 The average output I ' 2 (T 1 ) of I 2 (t 1 ), I 2 (t 2 ) and I 2 (t 3 ) is given by Equation 15.
 I2(t4)、I2(t5)及びI2(t6)の平均出力I’2(T2)は、式16のようになる。 The average output I ' 2 (T 2 ) of I 2 (t 4 ), I 2 (t 5 ) and I 2 ( t 6 ) is given by Equation 16.
 式12のI1(t1)、I1(t2)、I2(t1)及びI2(t2)をI’1(T1)、I’1(T2)、I’2(T1)及びI’2(T2)に置き換えると、式17に示されるような第2のオフセットIofが得られる。第2のオフセット補正部15は、式17に従って、第2のオフセットIofを計算することができる。 I 1 (t 1 ), I 1 (t 2 ), I 2 (t 1 ) and I 2 (t 2 ) in Equation 12 are replaced by I' 1 (T 1 ), I ' 1 (T 2 ) and I ' 2 Substituting (T 1 ) and I′ 2 (T 2 ) yields the second offset I of as shown in Equation 17. The second offset correction unit 15 can calculate the second offset I of according to Equation 17.
 第2の形態は、2つの時刻ごとの出力に基づいて計算された第2のオフセット暫定値を複数計算しこれら第2のオフセット暫定値の平均をとって最終的な第2のオフセットを計算するものである。ここで、4つの時刻のそれぞれにおいて同じ検出タイミングで得られたメイン電流検出回路11の出力とオフセット補正用電流検出回路12の補正済の出力とに基づいて、第2のオフセットを計算する場合を例にとり第2の形態について説明する。 A second form computes a plurality of interim second offset values calculated based on the output for each of the two times and averages these interim second offset values to compute the final second offset. It is. Here, it is assumed that the second offset is calculated based on the output of the main current detection circuit 11 and the corrected output of the offset correction current detection circuit 12 obtained at the same detection timing at each of the four times. The second form will be described as an example.
 メイン電流検出回路11の4つの出力とオフセット補正用電流検出回路12の第1のオフセット補正部14による補正済の4つの出力を得るために、メイン電流検出回路11及びオフセット補正用電流検出回路12における電流経路2上の電流の同時検出(同時入力)、短絡部13がADコンバータ23の電流入力端子間を短絡しない間に、4回行われる。 In order to obtain the four outputs of the main current detection circuit 11 and the four outputs corrected by the first offset correction section 14 of the offset correction current detection circuit 12, the main current detection circuit 11 and the offset correction current detection circuit 12 Simultaneous detection (simultaneous input) of the current on the current path 2 in is performed four times while the short-circuiting portion 13 does not short-circuit the current input terminals of the AD converter 23 .
 短絡部13がADコンバータ23の電流入力端子間を短絡しない時(すなわちADコンバータ23の電流入力端子間の開放時)において、時刻t1において測定されたメイン電流検出回路11の出力をI1(t1)、時刻t2において測定されたメイン電流検出回路11の出力をI1(t2)、時刻t3において測定されたメイン電流検出回路11の出力をI1(t3)、時刻t4において測定されたメイン電流検出回路11の出力をI1(t4)とする。また、短絡部13がADコンバータ23の電流入力端子間を短絡しない時(すなわちADコンバータ23の電流入力端子間の開放時)において、時刻t1において測定されたオフセット補正用電流検出回路12の第1のオフセット補正部14による補正済の出力をI2(t1)、時刻t2において測定されたオフセット補正用電流検出回路12の第1のオフセット補正部14による補正済の出力をI2(t2)、時刻t3において測定されたオフセット補正用電流検出回路12の第1のオフセット補正部14による補正済の出力をI2(t3)、時刻t4において測定されたオフセット補正用電流検出回路12の第1のオフセット補正部14による補正済の出力をI2(t4)とする。 When the short-circuiting portion 13 does not short-circuit the current input terminals of the AD converter 23 (that is, when the current input terminals of the AD converter 23 are open), the output of the main current detection circuit 11 measured at time t 1 is I 1 ( t 1 ), the output of the main current detection circuit 11 measured at time t 2 is I 1 (t 2 ), the output of the main current detection circuit 11 measured at time t 3 is I 1 (t 3 ), time t The output of the main current detection circuit 11 measured at 4 is I 1 (t 4 ). Further, when the short-circuiting portion 13 does not short-circuit the current input terminals of the AD converter 23 (that is, when the current input terminals of the AD converter 23 are open), the offset correction current detection circuit 12 measured at time t 1 The output corrected by the first offset correction unit 14 is I 2 (t 1 ), and the output corrected by the first offset correction unit 14 of the offset correction current detection circuit 12 measured at time t 2 is I 2 ( t 2 ), the output corrected by the first offset correction unit 14 of the offset correction current detection circuit 12 measured at time t 3 is I 2 (t 3 ), the offset correction current measured at time t 4 Let I 2 (t 4 ) be the output corrected by the first offset correction unit 14 of the detection circuit 12 .
 時刻t1において測定されたメイン電流検出回路11出力I1(t1)及びオフセット補正用電流検出回路12の補正済の出力I2(t1)と、時刻t2において測定されたメイン電流検出回路11の出力I1(t2)及びオフセット補正用電流検出回路12の第1のオフセット補正部14による補正済の出力I2(t2)を式12に代入すると、式18に示されるような第2のオフセット暫定値Ioft1が得られる。 Output I 1 (t 1 ) of main current detection circuit 11 measured at time t 1 , corrected output I 2 (t 1 ) of current detection circuit 12 for offset correction, and main current detection measured at time t 2 Substituting the output I 1 (t 2 ) of the circuit 11 and the output I 2 (t 2 ) corrected by the first offset correction section 14 of the current detection circuit 12 for offset correction into Equation 12, Equation 18 gives: A second provisional offset value I oft1 is obtained.
 同様に、式12のI1(t1)、I1(t2)、I2(t1)及びI2(t2)をI1(t3)、I1(t4)、I2(t3)及びI2(t4)に置き換えると、式19に示されるような第2のオフセット暫定値Ioft2が得られる。 Similarly, I 1 (t 1 ), I 1 (t 2 ), I 2 (t 1 ) and I 2 (t 2 ) in Equation 12 are replaced by I 1 (t 3 ), I 1 ( t 4 ) and I 2 . Substituting (t 3 ) and I 2 (t 4 ) yields the second interim offset value I oft2 as shown in Equation 19.
 式18で示される第2のオフセット暫定値Ioft1と式19で示される第2のオフセットI暫定値oft2との平均をとると、最終的には式20に示されるような第2のオフセットIofが得られる。第2のオフセット補正部15は、式20に従って、第2のオフセットIofを計算することができる。 By averaging the second interim offset I oft1 given by Equation 18 and the second interim offset I oft2 given by Equation 19, the final second offset I oft2 given by Equation 20 is obtained. of is obtained. The second offset correction unit 15 can calculate the second offset I of according to Equation (20).
 続いて、本開示の一実施形態による電流検出装置の動作について、具体例を示して説明する。図3は、本開示の一実施形態による電流検出装置の動作を例示するタイミングチャートを示す図である。図3において、第1のオフセット補正、第2のオフセット補正、オフセット補正用電流検出回路12による第1のオフセットの測定、及びメイン電流検出回路11による電流の測定のそれぞれについての実行タイミングを、「棒状の太線」で示している。 Subsequently, the operation of the current detection device according to the embodiment of the present disclosure will be described with a specific example. FIG. 3 shows a timing chart illustrating operation of a current sensing device according to one embodiment of the present disclosure. In FIG. 3, execution timings of the first offset correction, the second offset correction, the measurement of the first offset by the current detection circuit 12 for offset correction, and the measurement of the current by the main current detection circuit 11 are expressed as " It is indicated by a bar-shaped thick line.
 ここでは、2つの時刻のそれぞれにおいて同じ検出タイミングで得られたメイン電流検出回路11の出力とオフセット補正用電流検出回路12の補正済の出力とに基づいて第2のオフセットを計算する例について説明する Here, an example of calculating the second offset based on the output of the main current detection circuit 11 and the corrected output of the offset correction current detection circuit 12 obtained at the same detection timing at each of two times will be described. do
 図3に示すように、短絡部13は、LSI(大規模集積回路)40内の第1のオフセット補正部14による制御により、オフセット補正用電流検出回路12内のADコンバータ23の電流入力端子間の短絡(ON)と開放(OFF)とを周期的に繰り返す。 As shown in FIG. 3, the short-circuit portion 13 is controlled by a first offset correction portion 14 in an LSI (Large Scale Integrated Circuit) 40 so that the current between the input terminals of the AD converter 23 in the current detection circuit 12 for offset correction is short circuit (ON) and open circuit (OFF) are repeated periodically.
 メイン電流検出回路11は、短絡部13による短絡(ON)・開放(OFF)の周期と関係なく、所定の電流検出周期で電流経路2上の電流を検出する。メイン電流検出回路11による電流検出周期は、短絡部13による短絡(ON)・開放(OFF)の周期よりも短い方が好ましい。 The main current detection circuit 11 detects the current on the current path 2 at a predetermined current detection cycle, regardless of the cycle of shorting (ON) and opening (OFF) by the shorting section 13 . The current detection cycle by the main current detection circuit 11 is preferably shorter than the short-circuit (ON)/open-circuit (OFF) cycle by the short-circuit portion 13 .
 短絡部13によるADコンバータ23の電流入力端子間の短絡(ON)時において、第1のオフセット補正部14は、時刻t1でオフセット補正用電流検出回路12の第1のオフセットを測定し、時刻t2でオフセット補正用電流検出回路12の出力から第1のオフセットに相当する量を除去(減算)する補正を実行する。なお、この時点ではメイン電流検出回路11は、1つ前の周期で計算された第2のオフセットIof1に相当する量が除去された「補正済のディジタルデータ」を出力している。当該短絡(ON)に続くADコンバータ23の電流入力端子間の開放(OFF)時において、オフセット補正用電流検出回路12は、メイン電流検出回路11の検出タイミングである時刻t3及び時刻t4で電流経路2上の電流を検出する。上述のようにメイン電流検出回路11は所定の電流検出周期で電流経路2上の電流を検出しているので、第1のオフセット補正部14を有するLSI(大規模集積回路)40は、メイン電流検出回路11による電流検出周期を監視し、メイン電流検出回路11の検出タイミングと一致するタイミングでオフセット補正用電流検出回路12に電流を検出させるように制御する。これにより、メイン電流検出回路11及びオフセット補正用電流検出回路12は、同じ検出タイミングである時刻t3で電流経路2上の電流を検出し、同じ検出タイミングである時刻t4で電流経路2上の電流を検出する。第2のオフセット補正部15は、同じ検出タイミングである時刻t3及びt4で得られたメイン電流検出回路11の出力とオフセット補正用電流検出回路12の第1のオフセット補正部14による補正済の出力とに基づいて、時刻t5において、メイン電流検出回路11から出力される第2のオフセットIof2を計算し、メイン電流検出回路11の出力から第2のオフセットIof2に相当する量を除去(減算)する補正を実行する。時刻t5以降、メイン電流検出回路11は、時刻t5で計算された第2のオフセットIof2に相当する量が除去された「補正済のディジタルデータ」を出力することになる。 When the current input terminals of the AD converter 23 are short-circuited (ON) by the short-circuit unit 13, the first offset correction unit 14 measures the first offset of the current detection circuit 12 for offset correction at time t1 , At t 2 , correction is performed by removing (subtracting) the amount corresponding to the first offset from the output of the offset correction current detection circuit 12 . At this time, the main current detection circuit 11 outputs "corrected digital data" from which the amount corresponding to the second offset Iof1 calculated in the previous cycle is removed. When the current input terminals of the AD converter 23 are opened (OFF) following the short circuit (ON), the offset correction current detection circuit 12 detects the current at time t3 and time t4 , which are the detection timings of the main current detection circuit 11. A current on current path 2 is detected. As described above, the main current detection circuit 11 detects the current on the current path 2 at a predetermined current detection cycle. The current detection period of the detection circuit 11 is monitored, and the current detection circuit 12 for offset correction is controlled to detect current at the timing that matches the detection timing of the main current detection circuit 11 . As a result, the main current detection circuit 11 and the offset correction current detection circuit 12 detect the current on the current path 2 at the same detection timing, time t3 , and detect the current on the current path 2 at the same detection timing, time t4 . current is detected. The second offset correction unit 15 compares the output of the main current detection circuit 11 obtained at times t3 and t4, which are the same detection timing, with the output of the offset correction current detection circuit 12 corrected by the first offset correction unit 14. At time t5 , the second offset Iof2 output from the main current detection circuit 11 is calculated based on the output of the main current detection circuit 11 and the amount corresponding to the second offset Iof2 from the output of the main current detection circuit 11. Perform a correction that removes (subtracts). After time t5 , the main current detection circuit 11 outputs "corrected digital data" from which the amount corresponding to the second offset Iof2 calculated at time t5 is removed.
 上記開放(OFF)に続く短絡部13によるADコンバータ23の電流入力端子間の短絡(ON)時において、第1のオフセット補正部14は、時刻t6でオフセット補正用電流検出回路12の第1のオフセットを測定し、時刻t7でオフセット補正用電流検出回路12の出力から第1のオフセットに相当する量を除去(減算)する補正を実行する。当該短絡(ON)に続くADコンバータ23の電流入力端子間の開放(OFF)時において、メイン電流検出回路11及びオフセット補正用電流検出回路12は、同じ検出タイミングである時刻t8で電流経路2上の電流を検出し、同じ検出タイミングである時刻t9で電流経路2上の電流を検出する。第2のオフセット補正部15は、同じ検出タイミングである時刻t8及びt9で得られたメイン電流検出回路11の出力とオフセット補正用電流検出回路12の第1のオフセット補正部14による補正済の出力とに基づいて、時刻t10において、メイン電流検出回路11から出力される第2のオフセットIof3を計算し、メイン電流検出回路11の出力から第2のオフセットIof3に相当する量を除去(減算)する補正を実行する。時刻t10以降、メイン電流検出回路11は、時刻t10で計算された第2のオフセットIof3に相当する量が除去された「補正済のディジタルデータ」を出力することになる。時刻t10以降も、上述の同様の各処理が繰り返し実行される。すなわち、第1のオフセット補正部14は、時刻t11でオフセット補正用電流検出回路12の第1のオフセットを測定し、時刻t12でオフセット補正用電流検出回路12の出力から第1のオフセットに相当する量を除去(減算)する補正を実行する。 When the current input terminals of the AD converter 23 are short-circuited (ON) by the short-circuit section 13 subsequent to the opening (OFF), the first offset correction section 14 causes the first offset correction current detection circuit 12 to turn on at time t6 . is measured, and correction is executed by removing (subtracting) the amount corresponding to the first offset from the output of the current detection circuit 12 for offset correction at time t7 . When the current input terminals of the AD converter 23 are opened (OFF) following the short circuit (ON), the main current detection circuit 11 and the offset correction current detection circuit 12 open the current path 2 at time t8 , which is the same detection timing. The upper current is detected, and the current on the current path 2 is detected at the same detection timing, time t9 . The second offset correction unit 15 compares the output of the main current detection circuit 11 obtained at times t8 and t9 , which are the same detection timing, with the output of the offset correction current detection circuit 12 corrected by the first offset correction unit 14. At time t10 , the second offset Iof3 output from the main current detection circuit 11 is calculated based on the output of the main current detection circuit 11 and the amount corresponding to the second offset Iof3 from the output of the main current detection circuit 11. Perform a correction that removes (subtracts). After time t10 , the main current detection circuit 11 outputs "corrected digital data" from which the amount corresponding to the second offset Iof3 calculated at time t10 is removed. After time t10 , the same processes as described above are repeatedly executed. That is, the first offset correction unit 14 measures the first offset of the offset correction current detection circuit 12 at time t11 , and the output of the offset correction current detection circuit 12 changes to the first offset at time t12. Perform a correction to remove (subtract) the corresponding amount.
 図4は、本開示の一実施形態による電流検出装置の動作フローを示すフローチャートである。 FIG. 4 is a flow chart showing the operation flow of the current detection device according to one embodiment of the present disclosure.
 メイン電流検出回路11は、短絡部13による短絡・開放の周期と関係なく、所定の電流検出周期で電流経路2上の電流を検出し続ける(ステップS200)。メイン電流検出回路11による電流検出周期は、短絡部13による短絡・開放の周期よりも短い方が好ましい。 The main current detection circuit 11 continues to detect the current on the current path 2 at a predetermined current detection cycle regardless of the cycle of short-circuiting and opening by the short-circuiting portion 13 (step S200). It is preferable that the current detection cycle by the main current detection circuit 11 is shorter than the short circuit/open cycle by the short circuit portion 13 .
 ステップS101において、オフセット補正用電流検出回路12内のADコンバータ23の電流入力端子間である非反転入力端子(+)と反転入力端子(-)との間を短絡する。 In step S101, the non-inverting input terminal (+) and the inverting input terminal (-) between the current input terminals of the AD converter 23 in the offset correction current detection circuit 12 are short-circuited.
 ステップS102において、第1のオフセット補正部14は、オフセット補正用電流検出回路12から出力される第1のオフセットを測定する。 In step S102, the first offset correction unit 14 measures the first offset output from the current detection circuit 12 for offset correction.
 ステップS103において、第1のオフセット補正部14は、オフセット補正用電流検出回路12の出力から第1のオフセットに相当する量を除去(減算)する補正を実行する。 In step S103, the first offset correction unit 14 performs correction by removing (subtracting) the amount corresponding to the first offset from the output of the current detection circuit 12 for offset correction.
 ステップS104において、オフセット補正用電流検出回路12内のADコンバータ23の電流入力端子間である非反転入力端子(+)と反転入力端子(-)との間を開放する。 In step S104, the non-inverting input terminal (+) and the inverting input terminal (-) between the current input terminals of the AD converter 23 in the offset correction current detection circuit 12 are opened.
 ステップS105において、オフセット補正用電流検出回路12は、メイン電流検出回路11と同じ検出タイミングの複数の時刻で電流経路2上の電流を検出する。 In step S105, the offset correction current detection circuit 12 detects the current on the current path 2 at a plurality of times of the same detection timing as the main current detection circuit 11.
 ステップS106において、第2のオフセット補正部15は、同じ検出タイミングで得られたメイン電流検出回路11の出力とオフセット補正用電流検出回路12の第1のオフセット補正部14による補正済の出力とに基づいて、メイン電流検出回路11から出力される第2のオフセットを計算する。なお、第2のオフセット及び第2のオフセット暫定値については、式12及び式17~式19に示される分母が0になる可能性がある。式12及び式17~式19に示される分母が0になると、ステップS106において算出された第2のオフセットが発散してしまう。このような発散を防ぐために、ステップS106において算出された第2のオフセットが発散してしまう場合にはステップS105に戻り、再度、メイン電流検出回路11及びオフセット補正用電流検出回路12による同じタイミングの電流検出、及びそれに続くステップS106における第2のオフセットの計算を実行する。 In step S106, the second offset correction unit 15 compares the output of the main current detection circuit 11 obtained at the same detection timing and the output corrected by the first offset correction unit 14 of the offset correction current detection circuit 12. Based on this, the second offset output from the main current detection circuit 11 is calculated. For the second offset and the second offset provisional value, there is a possibility that the denominators shown in Equations 12 and 17 to 19 will be zero. When the denominators shown in Equations 12 and 17 to 19 become 0, the second offset calculated in step S106 diverges. In order to prevent such divergence, if the second offset calculated in step S106 diverges, the process returns to step S105, and the main current detection circuit 11 and the offset correction current detection circuit 12 detect the same timing again. Perform current sensing and subsequent calculation of a second offset in step S106.
 ステップS107において、第2のオフセット補正部15は、メイン電流検出回路11の出力から第2のオフセットに相当する量を除去(減算)する補正を実行する。これにより、メイン電流検出回路11は、第2のオフセットに相当する量が除去された「補正済のディジタルデータ」を出力することになる(ステップS200)。その後、ステップS101に戻り、上述の処理が再び実行される。このように、メイン電流検出回路11の電流検出処理は、オフセット補正処理とは異なる周期で実行され続けるので、メイン電流検出回路11の電流検出処理を停止することなくメイン電流検出回路11の第2のオフセットの補正を継続的に行うことができる。 In step S<b>107 , the second offset correction unit 15 executes correction by removing (subtracting) the amount corresponding to the second offset from the output of the main current detection circuit 11 . As a result, the main current detection circuit 11 outputs "corrected digital data" from which the amount corresponding to the second offset is removed (step S200). After that, the process returns to step S101 and the above-described processing is executed again. As described above, the current detection processing of the main current detection circuit 11 continues to be executed at a cycle different from that of the offset correction processing. offset correction can be performed continuously.
 なお、上述の実施形態では、短絡部13によりオフセット補正用電流検出回路12内のADコンバータ23の電流入力端子間を短絡させるが、この短絡がメイン電流検出回路11の電流検出処理に影響を与えないような構成を電流検出装置1に設けるべきである。このため、例えばメイン電流検出回路11及びオフセット補正用電流検出回路12の各々がシャント抵抗方式電流検出回路である場合は、メイン電流検出回路11内のADコンバータ22の入力側に設けられるフィルタ抵抗31及び32、並びにオフセット補正用電流検出回路12のADコンバータ23の入力側に設けられるフィルタ抵抗34及び35は、メイン電流検出回路11及びオフセット補正用電流検出回路12内で共有される電流検出抵抗(シャント抵抗)21よりも大きい抵抗値を有するように設定する。電流検出抵抗21の抵抗値に対してフィルタ抵抗31、32、34及び35の各抵抗値を例えば1000倍程度に高くするのが好ましい。例えば、電流検出抵抗21の抵抗値6.4mΩに対し、フィルタ抵抗31、32、34及び35の各抵抗値はそれぞれ22Ωに設定する。なお、ここで挙げた数値はあくまでも一例であって、これ以外の数値であってもよい。なお、メイン電流検出回路11及びオフセット補正用電流検出回路12の各々がホール素子方式電流検出回路あるいはコア方式電流検出回路である場合も同様であり、メイン電流検出回路11内のADコンバータ22の入力側に設けられるフィルタ抵抗31及び32、並びにオフセット補正用電流検出回路12のADコンバータ23の入力側に設けられるフィルタ抵抗34及び35は、メイン電流検出回路11及びオフセット補正用電流検出回路12内で共有されるホール素子またはコアの抵抗値(インピーダンス)よりも大きい抵抗値を有するように設定する。 In the above-described embodiment, the current input terminals of the AD converter 23 in the offset correction current detection circuit 12 are short-circuited by the short circuit 13, but this short circuit affects the current detection processing of the main current detection circuit 11. The current detection device 1 should be provided with such a configuration as not to Therefore, for example, when each of the main current detection circuit 11 and the offset correction current detection circuit 12 is a shunt resistor type current detection circuit, the filter resistor 31 provided on the input side of the AD converter 22 in the main current detection circuit 11 and 32, and filter resistors 34 and 35 provided on the input side of the AD converter 23 of the offset correction current detection circuit 12 are current detection resistors ( shunt resistor) 21. It is preferable that the resistance value of each of the filter resistors 31, 32, 34 and 35 is set to be about 1000 times higher than the resistance value of the current detection resistor 21, for example. For example, the resistance value of the current detection resistor 21 is 6.4 mΩ, and the resistance values of the filter resistors 31, 32, 34 and 35 are each set to 22Ω. Note that the numerical values given here are only examples, and other numerical values may be used. The same applies when the main current detection circuit 11 and the offset correction current detection circuit 12 are Hall element type current detection circuits or core type current detection circuits. Filter resistors 31 and 32 provided on the side and filter resistors 34 and 35 provided on the input side of the AD converter 23 of the offset correction current detection circuit 12 are used in the main current detection circuit 11 and the offset correction current detection circuit 12. It is set to have a resistance value greater than the resistance value (impedance) of the shared Hall element or core.
 続いて、本開示の一実施形態の変形例による電流検出装置について説明する。 Next, a current detection device according to a modification of one embodiment of the present disclosure will be described.
 図5は、本開示の一実施形態の変形例による電流検出装置を示す回路図である。 FIG. 5 is a circuit diagram showing a current detection device according to a modification of one embodiment of the present disclosure.
 本変形例では、短絡部13によりオフセット補正用電流検出回路12内のADコンバータ23の電流入力端子間を短絡がメイン電流検出回路11の電流検出処理により確実に影響を与えないようにするためのスイッチ部51を電流検出装置1にさらに設けたものである。 In this modification, the short circuit between the current input terminals of the AD converter 23 in the current detection circuit 12 for offset correction by the short circuit 13 surely does not affect the current detection processing of the main current detection circuit 11. A switch unit 51 is further provided in the current detection device 1 .
 スイッチ部51は、短絡部13によるADコンバータ23の電流入力端子間の短絡時は電流経路2からADコンバータ23の電流入力端子への電流の流入を遮断するためにオフ(OFF:開放)し、短絡部13がADコンバータ23の電流入力端子間を短絡しない時は電流経路2からADコンバータ23の電流入力端子への電流の流入を遮断しないためにオン(ON:閉成)する。スイッチ部51は、FETなどのユニポーラトランジスタ、バイポーラトランジスタ、IGBT、サイリスタ、GTOなどの半導体スイッチング素子にて構成されるが、半導体スイッチング素子の種類自体は本実施形態を限定するものではなく、その他の半導体スイッチング素子であってもよい。LSI(大規模集積回路)40内の第1のオフセット補正部14による制御により、スイッチ部51はオフ(OFF)とオン(ON)を周期的に繰り返す。なお、スイッチ部51以外の回路構成要素については図1に示す回路構成要素と同様であるので、同一の回路構成要素には同一符号を付して当該回路構成要素についての詳細な説明は省略する。 When the current input terminals of the AD converter 23 are short-circuited by the short-circuiting part 13, the switch unit 51 is turned off (OFF: open) in order to cut off the inflow of current from the current path 2 to the current input terminals of the AD converter 23. When the short-circuiting part 13 does not short-circuit the current input terminals of the AD converter 23, it is turned on (ON: closed) so as not to cut off the inflow of current from the current path 2 to the current input terminals of the AD converter 23. FIG. The switch unit 51 is composed of semiconductor switching elements such as a unipolar transistor such as an FET, a bipolar transistor, an IGBT, a thyristor, and a GTO. It may be a semiconductor switching element. Under the control of the first offset correction section 14 in the LSI (Large Scale Integrated Circuit) 40, the switch section 51 is periodically turned off (OFF) and on (ON). Circuit components other than the switch unit 51 are the same as those shown in FIG. 1, so the same circuit components are denoted by the same reference numerals, and detailed description of the circuit components is omitted. .
 図6は、図5に示す電流検出装置の動作を例示するタイミングチャートを示す図である。図6において、第1のオフセット補正、第2のオフセット補正、オフセット補正用電流検出回路12による第1のオフセットの測定、及びメイン電流検出回路11による電流の測定のそれぞれについての実行タイミングを、「棒状の太線」で示している。図6は、特に図3に示したタイミングチャートにおいてスイッチ部51の動作状態をさらに付加したものである。 FIG. 6 is a timing chart illustrating the operation of the current detection device shown in FIG. In FIG. 6, execution timings of the first offset correction, the second offset correction, the measurement of the first offset by the current detection circuit 12 for offset correction, and the measurement of the current by the main current detection circuit 11 are expressed as " It is indicated by a bar-shaped thick line. FIG. 6 further adds the operation state of the switch section 51 to the timing chart shown in FIG.
 スイッチ部51は、短絡部13によるADコンバータ23の電流入力端子間の短絡(ON)時は電流経路2からADコンバータ23の電流入力端子への電流の流入を遮断するためにオフ(OFF)し、短絡部13がADコンバータ23の電流入力端子間を短絡しない(OFF)時は電流経路2からADコンバータ23の電流入力端子への電流の流入を遮断しないためにオン(ON)する。なお、第1のオフセット補正、第2のオフセット補正、オフセット補正用電流検出回路12による第1のオフセットの測定、及びメイン電流検出回路11による電流の測定のそれぞれについての実行タイミングについては、図3を参照して説明したものと同様であるので、各実行タイミングについての詳細な説明は省略する。 When the current input terminals of the AD converter 23 are short-circuited (ON) by the short-circuiting part 13, the switch part 51 is turned off (OFF) in order to block the inflow of current from the current path 2 to the current input terminals of the AD converter 23. When the short-circuiting portion 13 does not short-circuit the current input terminals of the AD converter 23 (OFF), it is turned ON so as not to block the inflow of current from the current path 2 to the current input terminals of the AD converter 23 . Note that execution timings of the first offset correction, the second offset correction, the measurement of the first offset by the current detection circuit 12 for offset correction, and the measurement of the current by the main current detection circuit 11 are shown in FIG. , detailed description of each execution timing will be omitted.
 図7は、図5に示す電流検出装置の動作フローを示すフローチャートである。 FIG. 7 is a flow chart showing the operation flow of the current detection device shown in FIG.
 メイン電流検出回路11は、短絡部13による短絡・開放の周期と関係なく、所定の電流検出周期で電流経路2上の電流を検出し続ける(ステップS200)。メイン電流検出回路11による電流検出周期は、短絡部13による短絡・開放の周期及びスイッチ部51の開放(OFF)・閉成(ON)の周期よりも短い方が好ましい。 The main current detection circuit 11 continues to detect the current on the current path 2 at a predetermined current detection cycle regardless of the cycle of short-circuiting and opening by the short-circuiting portion 13 (step S200). The current detection cycle of the main current detection circuit 11 is preferably shorter than the short-circuit/open cycle of the short-circuit portion 13 and the open (OFF)/close (ON) cycle of the switch portion 51 .
 ステップS301において、スイッチ部51は、電流経路2からADコンバータ23の電流入力端子への電流の流入を遮断するためにオフ(OFF)する。 In step S<b>301 , the switch unit 51 turns off (OFF) in order to block the inflow of current from the current path 2 to the current input terminal of the AD converter 23 .
 ステップS302において、オフセット補正用電流検出回路12内のADコンバータ23の電流入力端子間である非反転入力端子(+)と反転入力端子(-)との間を短絡する。 In step S302, the non-inverting input terminal (+) and the inverting input terminal (-) between the current input terminals of the AD converter 23 in the offset correction current detection circuit 12 are short-circuited.
 ステップS303において、第1のオフセット補正部14は、オフセット補正用電流検出回路12から出力される第1のオフセットを測定する。 In step S303, the first offset correction unit 14 measures the first offset output from the current detection circuit 12 for offset correction.
 ステップS304において、第1のオフセット補正部14は、オフセット補正用電流検出回路12の出力から第1のオフセットに相当する量を除去(減算)する補正を実行する。 In step S304, the first offset correction unit 14 performs correction by removing (subtracting) the amount corresponding to the first offset from the output of the current detection circuit 12 for offset correction.
 ステップS305において、オフセット補正用電流検出回路12内のADコンバータ23の電流入力端子間である非反転入力端子(+)と反転入力端子(-)との間を開放する。 In step S305, the non-inverting input terminal (+) and the inverting input terminal (-) between the current input terminals of the AD converter 23 in the offset correction current detection circuit 12 are opened.
 ステップS306において、電流経路2からADコンバータ23の電流入力端子への電流の流入を遮断しないためにオン(ON)する。 In step S306, it is turned on so as not to block the inflow of current from the current path 2 to the current input terminal of the AD converter 23.
 ステップS307において、オフセット補正用電流検出回路12は、メイン電流検出回路11と同じ検出タイミングの複数の時刻で電流経路2上の電流を検出する。 In step S307, the offset correction current detection circuit 12 detects the current on the current path 2 at a plurality of times of the same detection timing as the main current detection circuit 11.
 ステップS308において、第2のオフセット補正部15は、同じ検出タイミングで得られたメイン電流検出回路11の出力とオフセット補正用電流検出回路12の第1のオフセット補正部14による補正済の出力とに基づいて、メイン電流検出回路11から出力される第2のオフセットを計算する。なお、第2のオフセット及び第2のオフセット暫定値については、式12及び式17~式19に示される分母が0になる可能性がある。式12及び式17~式19に示される分母が0になると、ステップS308において算出された第2のオフセットが発散してしまう。このような発散を防ぐために、ステップS308において算出された第2のオフセットが発散してしまう場合にはステップS307に戻り、再度、メイン電流検出回路11及びオフセット補正用電流検出回路12による同じタイミングの電流検出、及びそれに続くステップS308における第2のオフセットの計算を実行する。 In step S308, the second offset correction unit 15 compares the output of the main current detection circuit 11 obtained at the same detection timing and the output corrected by the first offset correction unit 14 of the offset correction current detection circuit 12. Based on this, the second offset output from the main current detection circuit 11 is calculated. For the second offset and the second offset provisional value, there is a possibility that the denominators shown in Equations 12 and 17 to 19 will be zero. When the denominators shown in Equations 12 and 17 to 19 become 0, the second offset calculated in step S308 diverges. In order to prevent such divergence, if the second offset calculated in step S308 diverges, the process returns to step S307, and the main current detection circuit 11 and the offset correction current detection circuit 12 detect the same timing again. Perform current sensing, followed by calculation of a second offset in step S308.
 ステップS309において、第2のオフセット補正部15は、メイン電流検出回路11の出力から第2のオフセットに相当する量を除去(減算)する補正を実行する。これにより、メイン電流検出回路11は、第2のオフセットに相当する量が除去された「補正済のディジタルデータ」を出力することになる(ステップS200)。その後、ステップS301に戻り、上述の処理が再び実行される。このように、メイン電流検出回路11の電流検出処理は、オフセット補正処理とは異なる周期で実行され続けるので、メイン電流検出回路11の電流検出処理を停止することなくメイン電流検出回路11の第2のオフセットの補正を継続的に行うことができる。 In step S<b>309 , the second offset correction unit 15 executes correction by removing (subtracting) the amount corresponding to the second offset from the output of the main current detection circuit 11 . As a result, the main current detection circuit 11 outputs "corrected digital data" from which the amount corresponding to the second offset is removed (step S200). After that, the process returns to step S301 and the above-described process is executed again. As described above, the current detection processing of the main current detection circuit 11 continues to be executed at a cycle different from that of the offset correction processing. offset correction can be performed continuously.
 上述した本開示の一実施形態及びその変形例による電流検出装置1を用いて、モータの駆動を制御するためにモータに流れる電流を検出することができる。 Using the current detection device 1 according to the embodiment of the present disclosure and its modification described above, it is possible to detect the current flowing through the motor in order to control the driving of the motor.
 図8は、本開示の一実施形態による電流検出装置を備えるモータ駆動装置を示す図である。 FIG. 8 is a diagram showing a motor drive device including a current detection device according to one embodiment of the present disclosure.
 一例として、三相の交流電源200に接続されたモータ駆動装置100により、三相交流のモータ300を制御する場合について説明する。なお、図示の例では、交流電源200の相数を三相としたが、交流電源200の相数は本発明を特に限定するものではなく、三相の他に、例えば単相やその他の多相の交流電源であってもよい。交流電源200の一例を挙げると、三相交流400V電源、三相交流200V電源、三相交流600V電源、単相交流100V電源などがある。また、図示の例では、モータ300の相数を三相としたが、モータ300の相数は本発明を特に限定するものではなく、三相の他に、例えば単相やその他の多相のモータであってもよい。また、モータ300は、誘導モータであっても同期モータであってもよい。モータ300は、例えば工作機械の送り軸や主軸、あるいは産業機械、産業用ロボットのアーム等の駆動源として用いられる。 As an example, a case of controlling a three-phase AC motor 300 by a motor drive device 100 connected to a three-phase AC power supply 200 will be described. In the illustrated example, the number of phases of the AC power supply 200 is three, but the number of phases of the AC power supply 200 does not particularly limit the present invention. It may be a phase AC power supply. Examples of the AC power supply 200 include a three-phase 400V AC power supply, a three-phase 200V AC power supply, a three-phase 600V AC power supply, and a single-phase 100V AC power supply. In the illustrated example, the number of phases of the motor 300 is three, but the number of phases of the motor 300 does not particularly limit the present invention. It may be a motor. Also, the motor 300 may be an induction motor or a synchronous motor. The motor 300 is used, for example, as a drive source for a feed shaft or spindle of a machine tool, or an arm of an industrial machine or an industrial robot.
 モータ駆動装置100は、コンバータ61と、インバータ62と、平滑コンデンサ63と、モータ制御部64、電流検出装置1とを備える。 The motor drive device 100 includes a converter 61 , an inverter 62 , a smoothing capacitor 63 , a motor control section 64 and a current detection device 1 .
 コンバータ61は、交流電源200から供給される交流電力を直流電力に変換してDCリンクへ出力する。コンバータ61は、交流電源200から三相交流電力が供給される場合は三相ブリッジ回路で構成され、交流電源200から単相交流電力が供給される場合は単相ブリッジ回路で構成される。図示の例では、交流電源200を三相交流電源としたので、コンバータ61は三相ブリッジ回路で構成されるコンバータ61の例としては、ダイオード整流回路、120度通電型整流回路、及びPWMスイッチング制御方式の整流回路などがある。 The converter 61 converts the AC power supplied from the AC power supply 200 into DC power and outputs it to the DC link. Converter 61 is configured as a three-phase bridge circuit when three-phase AC power is supplied from AC power supply 200 , and is configured as a single-phase bridge circuit when single-phase AC power is supplied from AC power supply 200 . In the illustrated example, since the AC power supply 200 is a three-phase AC power supply, the converter 61 is configured by a three-phase bridge circuit. There is a rectifier circuit of the system.
 コンバータ61の直流出力側とインバータ62の直流入力側とを電気的に接続する回路部分であるDCリンクには、平滑コンデンサ63が設けられる。DCリンクは、「DCリンク部」、「直流リンク」、「直流リンク部」、「直流母線」あるいは「直流中間回路」などと称されることがある。平滑コンデンサ63は、「DCリンクコンデンサ」などと称されることがある。平滑コンデンサ63は、DCリンクにおいてエネルギー(直流電力)を蓄積する機能及びコンバータ61の直流側の出力の脈動分を抑える機能を有する。平滑コンデンサ63に電荷が充電されることにより、DCリンクに直流電力が蓄積されることになる。 A smoothing capacitor 63 is provided in the DC link, which is a circuit portion that electrically connects the DC output side of the converter 61 and the DC input side of the inverter 62 . A DC link may be referred to as a "DC link section," "DC link," "DC link section," "DC bus," or "DC intermediate circuit." The smoothing capacitor 63 is sometimes called a "DC link capacitor" or the like. The smoothing capacitor 63 has a function of accumulating energy (DC power) in the DC link and a function of suppressing pulsation of the DC side output of the converter 61 . As the smoothing capacitor 63 is charged, DC power is accumulated in the DC link.
 インバータ62は、DCリンクにおける直流電力を交流電力に変換してモータ300側へ出力する。インバータ62は、スイッチング素子及びこれに逆並列に接続されたダイオードのブリッジ回路からなる。インバータ62は、モータ300が三相交流モータである場合は三相ブリッジ回路で構成され、モータ300が単相交流モータである場合は単相ブリッジ回路で構成される。図示の例では、モータ300を三相交流モータとしたので、インバータ62は三相ブリッジ回路で構成される。インバータ62の例としては、内部に半導体スイッチング素子を備えるPWMインバータなどがある。半導体スイッチング素子は、例えば、FETなどのユニポーラトランジスタ、バイポーラトランジスタ、IGBT、サイリスタ、GTOなどで構成されるが、半導体スイッチング素子の種類自体は本実施形態を限定するものではなく、その他の半導体スイッチング素子であってもよい。 The inverter 62 converts the DC power in the DC link into AC power and outputs it to the motor 300 side. The inverter 62 is composed of a switching element and a bridge circuit of diodes connected in anti-parallel to the switching element. Inverter 62 is composed of a three-phase bridge circuit when motor 300 is a three-phase AC motor, and is composed of a single-phase bridge circuit when motor 300 is a single-phase AC motor. In the illustrated example, the motor 300 is a three-phase AC motor, so the inverter 62 is configured with a three-phase bridge circuit. Examples of the inverter 62 include a PWM inverter including semiconductor switching elements therein. The semiconductor switching element is composed of, for example, a unipolar transistor such as an FET, a bipolar transistor, an IGBT, a thyristor, a GTO, or the like. may be
 例えばインバータ62とモータ300との間を結ぶ電力線上に電流検出装置1が設けられる。 For example, the current detection device 1 is provided on the power line connecting the inverter 62 and the motor 300 .
 モータ制御部64は、インバータ62の各半導体スイッチング素子をオンオフ制御するための駆動指令を生成し、これをインバータ62へ出力する。モータ制御部64は、電流検出装置1から出力された電流値ディジタルデータ(第2のオフセット補正部15による補正済)、位置検出器(図示せず)により検出されたモータ300の回転速度(速度フィードバック)、所定のトルク指令、及びモータ300の動作プログラムなどに基づいて、インバータ62の電力変換動作を制御する。モータ300は、インバータ62から供給される交流電力に基づいて、速度、トルクまたは回転子の位置が制御される。なお、ここで説明したモータ制御部64の構成はあくまでも一例であって、例えば、位置指令生成部、位置制御部、速度制御部、電流制御部、トルク指令作成部などの用語を含めてモータ制御部64の構成を規定してもよい。モータ制御部64内には、演算処理装置(プロセッサ)が設けられる。演算処理装置としては、例えばIC、LSI、CPU、MPU、DSPなどがある。演算処理装置を有するモータ制御部64は、例えば、プロセッサ上で実行されるコンピュータプログラムにより実現される機能モジュールである。例えば、モータ制御部64をコンピュータプログラム形式で構築する場合は、演算処理装置をこのコンピュータプログラムに従って動作させることで、各部の機能を実現することができる。モータ制御部64の処理を実行するためのコンピュータプログラムは、半導体メモリ、磁気記録媒体または光記録媒体といった、コンピュータ読取可能な記録媒体に記録された形で提供されてもよい。またあるいは、モータ制御部64を、当該機能を実現するコンピュータプログラムを書き込んだ半導体集積回路として実現してもよい。 The motor control unit 64 generates a drive command for on/off controlling each semiconductor switching element of the inverter 62 and outputs it to the inverter 62 . The motor control unit 64 receives the current value digital data output from the current detection device 1 (corrected by the second offset correction unit 15) and the rotation speed (speed feedback), a predetermined torque command, an operation program for the motor 300, and the like. Motor 300 is controlled in speed, torque, or rotor position based on the AC power supplied from inverter 62 . Note that the configuration of the motor control unit 64 described here is merely an example, and terms such as a position command generation unit, a position control unit, a speed control unit, a current control unit, and a torque command generation unit are included in the motor control unit. A configuration of the portion 64 may be defined. An arithmetic processing unit (processor) is provided in the motor control unit 64 . Examples of arithmetic processing units include ICs, LSIs, CPUs, MPUs, and DSPs. The motor control unit 64 having an arithmetic processing unit is, for example, a functional module implemented by a computer program executed on a processor. For example, when the motor control section 64 is constructed in the form of a computer program, the function of each section can be realized by operating the arithmetic processing unit according to this computer program. A computer program for executing the processing of the motor control unit 64 may be provided in a form recorded in a computer-readable recording medium such as a semiconductor memory, magnetic recording medium, or optical recording medium. Alternatively, the motor control unit 64 may be realized as a semiconductor integrated circuit in which a computer program for realizing the function is written.
 なお、図8に示した電流検出装置1の設置個所及び用途は一例である。例えば、電流検出装置1は、コンバータ61の入力側の電力線に設けられてモータ駆動装置100への入力電流の検出に用いられてもよい。また例えば、電流検出装置1は、DCリンクに設けられてDCリンク電流の検出に用いられてもよい。また、電流検出装置1は、直流モータの駆動を制御するモータ駆動装置における各種電流の検出に用いられてもよい。また、電流検出装置1は、モータ駆動装置に限らず、コンピュータ製品、家電製品、電車、自動車、航空機など各種電気機器における電流検出に用いられてもよい。上述したいずれの適用例においても、電流検出装置1から出力された電流値ディジタルデータ(第2のオフセット補正部15による補正済)が、当該電気機器における電流検出値として利用される。 It should be noted that the installation location and application of the current detection device 1 shown in FIG. 8 are an example. For example, the current detection device 1 may be provided on the power line on the input side of the converter 61 and used to detect the input current to the motor drive device 100 . Further, for example, the current detection device 1 may be provided in a DC link and used to detect a DC link current. Further, the current detection device 1 may be used to detect various currents in a motor drive device that controls driving of a DC motor. In addition, the current detection device 1 may be used for current detection in various electric devices such as computer products, home electric appliances, trains, automobiles, and aircrafts, as well as motor drive devices. In any of the application examples described above, the current value digital data (corrected by the second offset correction unit 15) output from the current detection device 1 is used as the current detection value in the electrical equipment.
 以上、本発明に係る好適な実施形態を説明したが、本発明はこれら実施形態に限定されるものではなく、特許請求の範囲の記載内で様々な修正及び変更を施すことができる。 Although preferred embodiments according to the present invention have been described above, the present invention is not limited to these embodiments, and various modifications and changes can be made within the scope of claims.
 1  電流検出装置
 2  電流経路
 11  メイン電流検出回路
 12  オフセット補正用電流検出回路
 13  短絡部
 14  第1のオフセット補正部
 15  第2のオフセット補正部
 21  電流検出抵抗
 22、23  ADコンバータ
 31、32、34、35  フィルタ抵抗
 33、36  フィルタコンデンサ
 40  LSI(大規模集積回路)
 51  スイッチ部
 61  コンバータ
 62  インバータ
 63  平滑コンデンサ
 64  モータ制御部
 100  モータ駆動装置
 200  交流電源
 300  モータ
Reference Signs List 1 current detection device 2 current path 11 main current detection circuit 12 current detection circuit for offset correction 13 short-circuit portion 14 first offset correction portion 15 second offset correction portion 21 current detection resistor 22, 23 AD converter 31, 32, 34 , 35 filter resistor 33, 36 filter capacitor 40 LSI (Large Scale Integrated Circuit)
51 Switch Unit 61 Converter 62 Inverter 63 Smoothing Capacitor 64 Motor Control Unit 100 Motor Driving Device 200 AC Power Supply 300 Motor

Claims (7)

  1.  電流経路上の電流を検出して該電流に対応するディジタルデータを出力するメイン電流検出回路と、
     前記メイン電流検出回路と同じ検出箇所にて前記電流経路上の前記電流を検出して該電流に対応するディジタルデータを出力するオフセット補正用電流検出回路と、
     前記オフセット補正用電流検出回路内のADコンバータの電流入力端子間を短絡する短絡部と、
     前記短絡部による前記電流入力端子間の短絡時に前記オフセット補正用電流検出回路から出力される第1のオフセットを測定し、前記オフセット補正用電流検出回路の出力から前記第1のオフセットに相当する量を除去する補正を実行する第1のオフセット補正部と、
     前記短絡部が前記電流入力端子間を短絡しない時において同じ検出タイミングで得られた前記メイン電流検出回路の出力と前記オフセット補正用電流検出回路の前記第1のオフセット補正部による補正済の出力とに基づいて、前記メイン電流検出回路から出力される第2のオフセットを計算し、前記メイン電流検出回路の出力から前記第2のオフセットに相当する量を除去する補正を実行する第2のオフセット補正部と、
    を備える、電流検出装置。
    a main current detection circuit that detects a current on the current path and outputs digital data corresponding to the current;
    an offset correction current detection circuit that detects the current on the current path at the same detection location as the main current detection circuit and outputs digital data corresponding to the current;
    a short-circuiting portion that short-circuits the current input terminals of the AD converter in the current detection circuit for offset correction;
    A first offset output from the offset-correcting current detection circuit when the current input terminals are short-circuited by the short-circuit portion is measured, and an amount equivalent to the first offset is obtained from the output of the offset-correcting current detection circuit. a first offset corrector that performs a correction to remove the
    The output of the main current detection circuit and the output corrected by the first offset correction section of the offset correction current detection circuit obtained at the same detection timing when the short-circuiting section does not short-circuit the current input terminals. a second offset correction that calculates a second offset output from the main current detection circuit based on and removes an amount corresponding to the second offset from the output of the main current detection circuit. Department and
    A current sensing device comprising:
  2.  前記第1のオフセット補正部は、予め定めた周期で前記第1のオフセットの測定及び前記オフセット補正用電流検出回路の出力に対する補正を実行する、請求項1に記載の電流検出装置。 The current detection device according to claim 1, wherein the first offset correction unit measures the first offset and corrects the output of the current detection circuit for offset correction at a predetermined cycle.
  3.  前記第2のオフセット補正部は、前記短絡部が前記電流入力端子間を短絡しない時において複数時刻のそれぞれにおいて同じ検出タイミングで得られた前記メイン電流検出回路の出力と前記オフセット補正用電流検出回路の前記第1のオフセット補正部による補正済の出力とに基づいて、前記第2のオフセットを計算する、請求項1または2に記載の電流検出装置。 The second offset correction section is adapted to output the output of the main current detection circuit and the current detection circuit for offset correction obtained at the same detection timing at each of a plurality of times when the short-circuiting section does not short-circuit the current input terminals. 3. The current detection device according to claim 1, wherein said second offset is calculated based on the output corrected by said first offset correction unit of .
  4.  前記短絡部が前記電流入力端子間を短絡しない時において、時刻t1における前記メイン電流検出回路の出力をI1(t1)、前記時刻t1における前記オフセット補正用電流検出回路の前記第1のオフセット補正部による補正済の出力をI2(t1)、時刻t2における前記メイン電流検出回路の出力をI1(t2)、前記時刻t2における前記オフセット補正用電流検出回路の前記第1のオフセット補正部による補正済の出力をI2(t2)としたとき、前記第2のオフセット補正部は、

    に従って前記第2のオフセットであるIofを計算する、請求項3に記載の電流検出装置。
    When the short-circuiting portion does not short-circuit the current input terminals, the output of the main current detection circuit at time t1 is I1 ( t1 ), and the output of the offset correction current detection circuit at time t1 is I1( t1 ). I 2 (t 1 ) is the output corrected by the offset correction unit of , I 1 (t 2 ) is the output of the main current detection circuit at time t 2 , and I 1 (t 2 ) is the output of the offset correction current detection circuit at time t 2 . When the output corrected by the first offset correction section is I 2 (t 2 ), the second offset correction section

    4. The current sensing device of claim 3, wherein the second offset Iof is calculated according to:
  5.  前記メイン電流検出回路及び前記オフセット補正用電流検出回路の各々は、シャント抵抗方式電流検出回路であり、
     前記メイン電流検出回路及び前記オフセット補正用電流検出回路の各々のADコンバータの入力側に設けられる各フィルタ抵抗は、前記メイン電流検出回路及び前記オフセット補正用電流検出回路内で共有されるシャント抵抗よりも大きい抵抗値を有する、請求項1~4のいずれか一項に記載の電流検出装置。
    each of the main current detection circuit and the offset correction current detection circuit is a shunt resistor type current detection circuit,
    Each filter resistor provided on the input side of each of the AD converters of the main current detection circuit and the offset correction current detection circuit has a shunt resistor shared by the main current detection circuit and the offset correction current detection circuit. The current detection device according to any one of claims 1 to 4, having a large resistance value.
  6.  前記短絡部による前記電流入力端子間の短絡時は前記電流経路から前記電流入力端子への電流の流入を遮断し、前記短絡部が前記電流入力端子間を短絡しない時は前記電流経路から前記電流入力端子への電流の流入を遮断しないスイッチ部をさらに備える、請求項1~5のいずれか一項に記載の電流検出装置。 When the current input terminals are short-circuited by the short-circuit portion, the inflow of current from the current path to the current input terminal is cut off, and when the short-circuit portion does not short-circuit the current input terminals, the current flows from the current path. The current detection device according to any one of claims 1 to 5, further comprising a switch section that does not block the inflow of current to the input terminal.
  7.  請求項1~6のいずれか一項に記載の電流検出装置を備え、
     前記メイン電流検出回路の前記第2のオフセット補正部による補正済の出力を用いてモータの駆動を制御する、モータ駆動装置。
    A current detection device according to any one of claims 1 to 6,
    A motor drive device that controls driving of a motor using the output corrected by the second offset correction section of the main current detection circuit.
PCT/JP2022/008357 2022-02-28 2022-02-28 Current detection device and motor drive device provided with same WO2023162246A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2022/008357 WO2023162246A1 (en) 2022-02-28 2022-02-28 Current detection device and motor drive device provided with same
TW112102924A TW202337131A (en) 2022-02-28 2023-01-30 Current detection device and motor drive device provided with same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/008357 WO2023162246A1 (en) 2022-02-28 2022-02-28 Current detection device and motor drive device provided with same

Publications (1)

Publication Number Publication Date
WO2023162246A1 true WO2023162246A1 (en) 2023-08-31

Family

ID=87765290

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008357 WO2023162246A1 (en) 2022-02-28 2022-02-28 Current detection device and motor drive device provided with same

Country Status (2)

Country Link
TW (1) TW202337131A (en)
WO (1) WO2023162246A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000201074A (en) * 1999-01-08 2000-07-18 Yokogawa Electric Corp A/d converting circuit
JP2010141776A (en) * 2008-12-15 2010-06-24 Toshiba Corp Correction method of a/d converter, a/d converter, and radio device
WO2012153371A1 (en) * 2011-05-12 2012-11-15 パナソニック株式会社 Delta-sigma a/d converter with dc offset correction function
JP2013106125A (en) * 2011-11-11 2013-05-30 Renesas Electronics Corp Ad converter circuit and method of correcting the same
JP2016012760A (en) * 2014-06-27 2016-01-21 ルネサスエレクトロニクス株式会社 Semiconductor device
JP2017096628A (en) * 2014-03-28 2017-06-01 三洋電機株式会社 Current detector, power supply system
JP2017161409A (en) * 2016-03-10 2017-09-14 住友電気工業株式会社 Voltage detector, current detector, and computer program

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000201074A (en) * 1999-01-08 2000-07-18 Yokogawa Electric Corp A/d converting circuit
JP2010141776A (en) * 2008-12-15 2010-06-24 Toshiba Corp Correction method of a/d converter, a/d converter, and radio device
WO2012153371A1 (en) * 2011-05-12 2012-11-15 パナソニック株式会社 Delta-sigma a/d converter with dc offset correction function
JP2013106125A (en) * 2011-11-11 2013-05-30 Renesas Electronics Corp Ad converter circuit and method of correcting the same
JP2017096628A (en) * 2014-03-28 2017-06-01 三洋電機株式会社 Current detector, power supply system
JP2016012760A (en) * 2014-06-27 2016-01-21 ルネサスエレクトロニクス株式会社 Semiconductor device
JP2017161409A (en) * 2016-03-10 2017-09-14 住友電気工業株式会社 Voltage detector, current detector, and computer program

Also Published As

Publication number Publication date
TW202337131A (en) 2023-09-16

Similar Documents

Publication Publication Date Title
US8334670B2 (en) Method and apparatus to monitor an electric motor control circuit
CN109275351B (en) Inverter control device and power conversion device
Yaghoubi et al. IGBT open-circuit fault diagnosis in a quasi-Z-source inverter
JP6673186B2 (en) Power converter controller
CN110426664B (en) Comprehensive diagnosis method for open-circuit fault and current sensor fault of three-phase three-wire system inverter power tube with two current sensors
KR20150122069A (en) Electric motor driving device
CN107112922B (en) Converter and method for operating a converter
JP2000341982A (en) Controller for sensorless brushless dc motor
CN108604876B (en) Motor control device
US8330295B2 (en) Uninterruptible power supply and method for selective tripping thereof
Schubert et al. Semiconductor temperature and condition monitoring using gate-driver-integrated inverter output voltage measurement
WO2023162246A1 (en) Current detection device and motor drive device provided with same
CN112313518B (en) Power conversion device
JP5131467B2 (en) Control device for power converter
Goswami et al. Brushless DC motor based E-rickshaw controller design
JP6219297B2 (en) Control method and system for correcting voltage applied to electric load
JP6890700B2 (en) Power converter
JP3614257B2 (en) Inverter parallel controller
JP2001218474A (en) Method and apparatus for detecting ground fault of inverter
JP2018057227A (en) Inverter device
JP2018148635A (en) Inverter overcurrent detection circuit
CN111830309A (en) Method for checking measured values of the current intensity of a current supplied by a six-phase current transformer to at least one electric machine
CN113728545A (en) Control device and failure determination method
WO2022264314A1 (en) Motor drive device calculating insulation resistance value of motor
US20220376601A1 (en) Current measuring circuit for a converter, converter circuit and converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928770

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024502763

Country of ref document: JP