WO2023162183A1 - Gas replacement device - Google Patents

Gas replacement device Download PDF

Info

Publication number
WO2023162183A1
WO2023162183A1 PCT/JP2022/008064 JP2022008064W WO2023162183A1 WO 2023162183 A1 WO2023162183 A1 WO 2023162183A1 JP 2022008064 W JP2022008064 W JP 2022008064W WO 2023162183 A1 WO2023162183 A1 WO 2023162183A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
water
gas
replacement device
gas replacement
Prior art date
Application number
PCT/JP2022/008064
Other languages
French (fr)
Japanese (ja)
Inventor
通夫 森田
紀仁 伊藤
Original Assignee
株式会社大栄製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社大栄製作所 filed Critical 株式会社大栄製作所
Priority to PCT/JP2022/008064 priority Critical patent/WO2023162183A1/en
Publication of WO2023162183A1 publication Critical patent/WO2023162183A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D19/00Degasification of liquids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01FMIXING, e.g. DISSOLVING, EMULSIFYING OR DISPERSING
    • B01F21/00Dissolving
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/18Absorbing units; Liquid distributors therefor

Definitions

  • the present invention relates to a gas replacement device, and more particularly to a gas replacement device capable of improving processing capacity.
  • Water is a compound of hydrogen and oxygen, and two hydrogen atoms and one oxygen atom form a water molecule by combining electrons.
  • the bond angle between the oxygen atom and the hydrogen atom is 104.5 degrees, and the electrons of the hydrogen atom are heavier (larger in electronegativity) than the hydrogen atom, so the hydrogen atom side is positive. , the oxygen atom side is negatively charged.
  • water molecules have a weak positive and negative electric attraction (dipole moment). Due to this electric attraction, when water is in a liquid state, it is thought that water molecules bind to each other in the form of hydrogen bonds to form clusters.
  • This cluster is predicted to be an assembly of 5-6 water molecules or a structure of 15-20 water molecules.
  • one water molecule is considered to have a regular tetrahedral structure in contact with four water molecules, that is, a structure with large gaps close to the molecular structure of ice. For this reason, water has gaps in about 62% of its volume, and it is considered that "a state in which gas is dissolved in water" is formed by enclosing gas in these gaps.
  • Aeration is a technique aimed at dissolving oxygen in water by air being forced into the water.
  • a common aeration method is aeration in fish tanks, and as is well known, the existence of air bubbles floating in the water can be confirmed in this aeration. The presence of air bubbles clearly indicates that most of the air bubbles (gases) are not dissolved in the water. In addition, as a recent technology of the aeration method, the use of nanobubbles has been attracting attention. Very little.
  • these aeration methods simply pass air through water, and it is difficult to dissolve a large amount of oxygen in water. It is considered that this is because the gas contained in the gaps of the water and the air supplied to the water have almost the same pressure, and it is difficult for these gases to be replaced.
  • the aeration tank for wastewater treatment is designed with this kind of pressure in mind.
  • an aeration tank using the activated sludge method is generally designed to have a depth of about 3 to 5 m. It is thought that the reason for designing for such a deep water depth is that we have learned from experience that air (oxygen) can be efficiently dissolved in water by using the pressure (water pressure) at that depth.
  • the water pressure at the water depth of 3 to 5 m is 0.03 to 0.05 MPa.
  • the gas contracts due to pressurization (Henry's law), making it easier for water to enter the gaps.
  • the pressure of the gas inside the container is higher than the pressure of the gas inside the container. Therefore, when the water comes into contact with the gas in the container, the gas (e.g., nitrogen) originally included in the gaps of the water is instantly replaced with the gas (e.g., oxygen) filled in the container. .
  • the gas released from the gaps in the water due to this replacement is discharged out of the container through the ventilation channel in order to reduce the purity of the gas in the container (the concentration of the gas intended for dissolution). This makes it possible to maintain the purity of the gas in the container, and to generate gas-dissolved water in which the gas in the container is dissolved at a high concentration.
  • the gas-dissolved water produced by the above-mentioned gas replacement device is in a state close to no bubbles (non-bubbles), and unlike the conventional aeration method in which the presence of bubbles can be confirmed, the target gas is almost completely removed (100 %) becomes dissolved.
  • the dissolution capacity of this gas replacement device is considered to be nearly 100 times as high as that of the conventional aeration system.
  • the saturated dissolved oxygen content of water under atmospheric pressure is 14.62 ppm when the water temperature is 0°C. ”.
  • oxygen-dissolved water when oxygen-dissolved water is generated by the above gas replacement device, the amount of dissolved oxygen is about the same as the above approximately 69.8 ppm.
  • High-concentration oxygen-dissolved water for example, activates microorganisms in water, and is therefore suitable for improving the environment of polluted water areas (rivers, lakes, aquaculture farms, etc.).
  • the abundant dissolved oxygen at the bottom of the water promotes the activity of microorganisms in the water, and organic contaminants are absorbed from the microorganisms to protozoa and the like, and then to fish and the like, thereby improving the environment.
  • bubble-free Another advantage of being bubble-free is that it can safely dissolve ozone gas. That is, since the ozone-dissolved water generated by the above gas replacement device is bubble-free, it can be used safely with very little release of dangerous ozone gas into the atmosphere. This ozone-dissolved water can be used, for example, for wastewater treatment.
  • the above gas replacement device can dissolve various gases such as nitrogen, carbon dioxide, hydrogen, and argon in water. It is possible to generate gas-dissolved water for various applications.
  • oxygen-depleted water can be produced by dissolving nitrogen in water at a concentration close to 100%.
  • Oxygen-removed water has the advantage that it does not rust even when metals such as iron come into contact with it, and the advantage that fish are less likely to rot (easier to maintain freshness) if they are preserved in ice obtained by freezing the oxygen-removed water.
  • water in which carbon dioxide is dissolved is given to plants such as algae and crops, photosynthesis can be promoted, and thus the growth of plants is promoted.
  • the gas replacement device described above can also generate microbubbles by adjusting the pressure of the gas in the container.
  • the inside of the container is pressurized at a pressure higher than the pressure at which the gas dissolves 100% in water, and the gas is dissolved in supersaturated water to produce gas-dissolved water.
  • fine bubbles are generated from the gas-dissolved water due to the pressure difference when returning from the pressurized state to the atmospheric pressure.
  • This microbubble can be used, for example, in the pressurized flotation method.
  • the treated water spirally flows down the rectifying plate provided around the ventilation path in the container. easily occur.
  • the sludge contained in the contaminated water tends to stay in the container, and the accumulation of this sludge also hinders the flow of treated water. do.
  • the conventional technique described above has a problem that it is difficult to increase the flow rate of the treated water, and the processing capacity of the gas replacement device cannot be sufficiently improved.
  • the present invention has been made to solve the above-mentioned problems, and aims to provide a gas replacement device capable of improving the processing capacity.
  • the gas replacement apparatus of the present invention comprises gas supply means for supplying gas, and a cylindrical container whose interior is pressurized to a pressure higher than the atmospheric pressure by the gas supplied from the gas supply means. , a plurality of rectifying plates fixed inside the container, and a treated water supply means for taking in the treated water flowed down by the plurality of rectifying plates from a water source and supplying the treated water to the container, and dissolving in the treated water
  • the rectifying plate includes a first rectifying plate inclined downward toward the first direction and a a second flow straightening vane inclined downward toward the second direction side, the first straightening vanes and the second straightening vanes are arranged alternately in the vertical direction, and the treated water flows through the first straightening vanes and the second straightening vanes; It flows down while meandering through the second rectifying plate.
  • the straightening plate includes the first straightening plate inclined downward in the first direction and the straightening plate downwardly inclined in the second direction opposite to the first straightening plate. Since the first straightening vanes and the second straightening vanes are arranged alternately in the vertical direction, the treated water flows down while meandering through the first straightening vanes and the second straightening vanes. . Compared to the conventional technology in which the treated water flows down spirally around the ventilation path, such a flow path of the treated water makes it difficult for the treated water to flow down. In some cases, it becomes difficult for sludge to stay in the container. Therefore, since the flow rate of the treated water can be increased, there is an effect that the processing capacity of the gas replacement device can be improved.
  • the following effects are achieved. Since the protrusions or recesses are formed at the downstream ends of the first straightening plate and the second straightening plate, the surface area of the treated water flowing down the protrusions or recesses can be increased. As a result, the contact area between the gas in the container and the treated water can be increased, so that the gas dissolved in the treated water can be efficiently replaced with the gas in the container (gas supplied from the gas supply means). be.
  • the following effects are achieved. Since the concave portion of the shape along the convex portion of the first straightening plate is formed in the second straightening plate, by cutting the plate along the convex portion of the first straightening plate (the concave portion of the second straightening plate), the second straightening plate can be cut. The protrusions and recesses of the first straightening plate and the second straightening plate can be formed at the same time. Therefore, there is an effect that the number of man-hours for molding the first rectifying plate and the second rectifying plate can be reduced.
  • the following effects are achieved.
  • the outer edges of the first straightening plate and the second straightening plate become circular.
  • the first straightening plate and the second straightening plate having the projections and recesses can be formed at the same time.
  • the following effects are achieved. Since the inclination angle of the first straightening vanes and the second straightening vanes with respect to the plane perpendicular to the axial direction of the container is 5° or less, the semicircular outer edges of the inclined first straightening vanes and the second straightening vanes and the cylindrical shape It is possible to suppress the occurrence of an excessive gap between the container and the inner peripheral surface of the container. Thereby, there is an effect that the outer edge of each rectifying plate and the inner peripheral surface of the container can be properly joined.
  • the following effects are achieved. Since the drainage port for discharging the treated water to the outside of the container is formed on the bottom inside the container, for example, when the treated water is polluted water, the sludge contained in the polluted water flows toward the drainage port. becomes easier. As a result, it is possible to suppress the sludge from remaining in the container, and the flow rate of the treated water can be increased, so that there is an effect that the treatment capacity of the gas replacement device can be improved.
  • the following effects are achieved. Since the bottom surface inside the container is inclined downward from the inner peripheral surface side of the container toward the drain port side, the sludge that has flowed down to the bottom surface side inside the container easily flows toward the drain port. As a result, it is possible to suppress the sludge from remaining on the bottom surface of the container, and the flow rate of the treated water can be increased, so that there is an effect that the treatment capacity of the gas replacement device can be improved.
  • the drain pipes connected to the drain port comprise a first drain pipe for returning treated water to the water source and a second drain pipe for draining the treated water to a location different from the water source. Accordingly, by adjusting the flow rate of the treated water (gas-dissolved water) discharged from the second drain pipe, it is possible to easily adjust the amount of treated water returned to the water source from the first drain pipe.
  • the container comprises a container body whose upper end side is open, a cylindrical body configured to be insertable from the upper end of the container body and fixed to the inner peripheral side of the container body, and the container body and the cylindrical body closing the upper end sides.
  • a lid body is provided, and the first rectifying plate and the second rectifying plate are fixed to the inner peripheral surface of the cylindrical body.
  • a second baffle can be arranged inside the container.
  • the first rectifying plate and the second rectifying plate can be fixed in advance (before being inserted into the container body) to a cylinder whose vertical dimension is smaller than that of the container body.
  • the cylindrical body has a flange projecting radially outward from its upper end side, and the outer diameter of the flange is larger than the inner diameter of the container body. It can be hung on the body. Thereby, the upper end sides of the container body and the cylinder can be closed with the lid while the relative position of the cylinder with respect to the container body is determined. Therefore, there is an effect that the workability of attaching the lid can be improved.
  • FIG. 1 is a cross-sectional view of a gas replacement device in one embodiment of the present invention
  • FIG. (a) is a top view of a rectifying plate
  • (b) is a top view of a disc that is a material of the rectifying plate.
  • (a) is a cross-sectional view of a cylindrical body showing a state in which straightening plates are welded
  • (b) is a partially enlarged cross-sectional view of the gas replacement device showing how a container is assembled.
  • FIG. 1 is a cross-sectional view of a gas replacement device 1 according to one embodiment of the present invention.
  • FIG. 1 shows a cross section taken along a plane including the axis of the cylindrical container 3 .
  • the gas replacement device 1 replaces gas (for example, nitrogen) originally dissolved in polluted water taken from a water area (water source) to be purified, such as a river or lake, with oxygen. It is a device for returning oxygen-dissolved water in which is dissolved in a high concentration to the water area to be purified.
  • gas for example, nitrogen
  • DO dissolved oxygen
  • the gas replacement device 1 is equipped with a water intake pipe 2 for taking in polluted water from the water area to be purified, and the polluted water taken in by this water intake pipe 2 is supplied to the inside of the container 3 .
  • the water intake pipe 2 is connected to a pump (not shown) for sucking up polluted water from the water area to be purified. It constitutes a supply means.
  • the container 3 includes a cylindrical container body 30 to which the water intake pipe 2 is connected on the side surface, a cylindrical body 31 inserted into the inner peripheral side of the container body 30, and a lid body 32 covering the upper part of the cylindrical body 31. Prepare.
  • a plurality of rectifying plates 4a and 4b are fixed to the inner peripheral surface of the cylindrical body 31, and the polluted water supplied from the water intake pipe 2 is rectified by these rectifying plates 4a and 4b and flows to the bottom of the container body 30. flow down toward A supply pipe 5 for supplying oxygen to the inside of the container 3 is connected to the lid 32 , and a compressor (not shown) for filling the container 3 with oxygen is connected to the supply pipe 5 .
  • the supply pipe 5 and the compressor constitute gas supply means for supplying oxygen to the container 3 .
  • the inside of the container 3 is pressurized to a pressure slightly higher than the atmospheric pressure (for example, 0.01 to 0.1 MPa higher) by oxygen supplied from the supply pipe 5, the gas dissolved in the polluted water (For example, nitrogen) is replaced with oxygen when the polluted water flows down the rectifying plates 4a and 4b. As a result, oxygen-dissolved water in which oxygen is dissolved at a high concentration is obtained.
  • a plurality of straightening plates 4a and 4b are arranged side by side in the vertical direction (vertical direction). Contaminated water from the water intake pipe 2 flows into the current plate 4a.
  • the straightening plate 4a is inclined downward toward the right side (first direction side) in FIG. 1, while the straightening plate 4b is inclined downward toward the left side (second direction side).
  • the upper surfaces of the straightening plates 4a and 4b are flat, and the straightening plates 4a and 4b are alternately arranged vertically. Therefore, the polluted water flowing down the rectifying plates 4a and 4b meanders down toward the bottom of the container 3 (see flow path A).
  • the flow rate of polluted water can be increased, and the processing capacity of the gas replacement device 1 can be improved.
  • the gas dissolved in the polluted water When the gas dissolved in the polluted water is replaced with oxygen, the gas originally dissolved in the polluted water (for example, nitrogen) is released inside the container 3 .
  • An exhaust pipe 6 for exhausting the released gas is connected to the lid 32 of the container 3 . Exhaust from the exhaust pipe 6 can be controlled by a known configuration, so a detailed description will be omitted.
  • a configuration for controlling the opening and closing of the on-off valve of the pipe 6 is exemplified (for example, International Publication No. 2017/191678).
  • opening and closing of the opening and closing valve of the exhaust pipe 6 may be performed by a timer, or may be performed manually.
  • the oxygen in the container 3 can be maintained at an appropriate concentration by appropriately exhausting the gas released from the polluted water through the exhaust pipe 6 when the dissolved gas is replaced.
  • the oxygen body-dissolved water in which oxygen is dissolved at a high concentration can always be obtained.
  • a convex portion 40a (see FIG. 2) that protrudes in the downstream direction of the polluted water is formed at the tip (downstream end) of the rectifying plate 4a.
  • a recessed portion 40b (see FIG. 2) is formed at the tip of the rectifying plate 4b so as to be recessed on the side opposite to the flowing direction of the polluted water. This makes it possible to increase the surface area of the polluted water flowing down the projections 40a and the recesses 40b, compared to the case where the straightening vanes 4a and 4b have straight ends.
  • the contact area between the oxygen and the polluted water can be increased, so that the gas dissolved in the polluted water can be efficiently replaced with oxygen.
  • the convex portion 40a by forming the convex portion 40a, a long distance to the tip of the rectifying plate 4a can be secured, and the polluted water flowing down the rectifying plate 4a tends to form a thin water film. gas can be efficiently replaced with oxygen.
  • a predetermined amount of the oxygen-dissolved water that has flowed down the current plates 4 a and 4 b is stored on the bottom side of the container body 30 .
  • This amount of storage is adjusted by a float-type water level sensor (not shown) floating on the liquid surface L of the oxygen-dissolved water, or the like. Therefore, detailed description is omitted.
  • a water level gauge 7 having both ends connected to the bottom of the container body 30 and the lid 32 is fixed to the container 3 .
  • the water level gauge 7 is formed using a light-transmitting material such as glass or resin, and the storage amount of polluted water in the container 3 (the level of the liquid level L) can be calculated from the liquid level in the water level gauge 7. I can confirm.
  • a drain port 30b for discharging the oxygen-dissolved water to the outside is formed on the bottom surface 30a inside the container body 30, and a drain pipe 8 is connected to the drain port 30b.
  • the container body 30 (container 3 ) is supported by a plurality of legs 9 so as to be separated from the installation surface in order to provide the drain pipe 8 below the container body 30 .
  • the drain port 30b By forming the drain port 30b on the bottom surface 30a of the container body 30, for example, compared to the case where the drain port 30b is formed on the inner peripheral surface 30c of the container 3, sludge contained in the polluted water is removed from the drain port 30b. be easily expelled from As a result, it is possible to suppress the sludge from remaining in the container 3, so that the flow rate of polluted water (oxygen-dissolved water) can be increased. Therefore, the processing capacity of the gas replacement device 1 can be improved.
  • the nitrogen originally dissolved in the contaminated water and the air bubbles such as oxygen filled in the container 3 are removed together with the contaminated water (oxygen-dissolved water). It may flow down to the bottom side of the body 30 . In such a case, air bubbles are mixed in the polluted water stored in the bottom portion of the container body 30 .
  • the drain port 30b on the bottom surface 30a of the container body 30 as described above, compared to the case where the drain port is formed on the inner peripheral surface 30c of the container body 30, air bubbles mixed in the polluted water are discharged. A long distance can be secured until reaching the port 30b. As a result, the air bubbles contained in the polluted water can be floated to the liquid surface L side before reaching the drain port 30b, so that the polluted water containing air bubbles can be suppressed from flowing out from the drain port 30b into the water area to be purified. . That is, non-bubble oxygen-dissolved water can be returned to the water area to be purified.
  • the drain pipe 8 connected to the drain port 30b branches into a first drain pipe 80 and a second drain pipe 81, and these first drain pipe 80 and second drain pipe 81 are opened and closed by an on-off valve (not shown). configured as possible.
  • the oxygen-dissolved water returned from the first drain pipe 80 to the water area to be purified can purify the water area.
  • the second drain pipe 81 connects the drain port 30b to, for example, a drain channel at a location different from the water area to be purified.
  • polluted water can be drained in a state in which oxygen is dissolved without being discharged directly to the outside of the water area to be purified, thereby suppressing contamination of the outside of the water area to be purified.
  • the flow rate of the oxygen-dissolved water discharged from the second drain pipe 81 the amount of the oxygen-dissolved water returned from the first drain pipe 80 to the water area to be purified can be adjusted.
  • the user separately prepares a means (such as a pipe) for dividing the oxygen-dissolved water. No need. That is, by simply connecting the first drain pipe 80 and the second drain pipe 81 to desired supply destinations, the oxygen-dissolved water can be diverted and the amount of supply to the diverted destinations can be adjusted. The convenience of the device 1 is improved.
  • the rectifying plates 4a and 4b can be fixed directly to the inner peripheral surface 30c of the container body 30, but with such a configuration, the container body 30 is relatively small in the vertical direction (axial direction). Since they are formed long, fixing (for example, welding) the rectifying plates 4a and 4b to the container body 30 requires time and effort. Therefore, in this embodiment, after fixing the cylindrical body 31 to which the straightening plates 4 a and 4 b are welded to the container body 30 , the upper end portion thereof is covered with the lid body 32 . This configuration will be described with reference to FIGS. 2 and 3. FIG.
  • FIG. 2(a) is a top view of the straightening vanes 4a and 4b
  • FIG. 2(b) is a top view of a disc 100 that is the material of the straightening vanes 4a and 4b
  • FIG. 3(a) is a cross-sectional view of a cylindrical body 31 showing a state in which the current plates 4a and 4b are welded
  • FIG. 3(b) is a partially enlarged cross-sectional view of the gas replacement device 1 showing how the container 3 is assembled. is.
  • FIG. 3 the cross section which cut
  • the projections 40a and the recesses 40b are formed at the tips of the straightening plates 4a and 4b.
  • the outer edge of the straightening plate 4a excluding the convex portion 40a and the linear portion 41a is formed as a semicircular arc portion 42a, and the linear portion 41a extends in the normal direction of the arc portion 42a. Further, the outer edge of the current plate 4b excluding the concave portion 40b and the linear portion 41b is configured as a semicircular arc portion 42b, and the linear portion 41b extends in the normal direction of the arc portion 42b.
  • the concave portion 40b of the straightening plate 4b has a shape along the convex portion 40a of the straightening plate 4a.
  • the outer edge along the arc portions 42a and 42b of 4b is circular.
  • FIG. 2(b) if one metal disk 100 is cut along a cutting line 101 along the shape of the convex portion 40a and the straight portion 41a of the straightening plate 4a, the convex The rectifying plates 4a and 4b having the portion 40a and the concave portion 40b can be molded. As a result, it is possible to reduce the number of man-hours for forming the rectifying plates 4a and 4b, and reduce the material cost of the rectifying plates 4a and 4b.
  • the convex portion 40a is formed at one point of the tip of the rectifying plate 4a, compared to the case where a plurality of concave and convex portions are formed at the tips of the rectifying plates 4a and 4b, for example, a semicircular shape having the convex portion 40a and the concave portion 40b is formed. can be easily formed from a single disk.
  • the tip of the convex portion 40a has a curved shape that is convex in the direction away from the arc portion 42a, and the connecting portion between the base end of the convex portion 40a and the straight portion 41a has a curved shape that is convex toward the arc portion 42a. It has become. That is, the projections 40a and the recesses 40b at the tips of the rectifying plates 4a and 4b are formed in smoothly curving waveforms.
  • the semicircular rectifying plates 4a and 4b having the convex portions 40a and the concave portions 40b can be easily formed from a single disk 100, compared to the case where the convex portions 40a and the concave portions 40b are saw-toothed (square mountain shapes), for example. can be formed to
  • arc portions 42a and 42b of the rectifying plates 4a and 4b are welded to the inner peripheral surface of the cylindrical body 31.
  • welding is performed in a state in which the current plates 4a and 4b are inclined with respect to a plane perpendicular to the axis of the cylindrical body 31 (horizontal direction in FIG. 3(a)). If the angle exceeds 5.degree.
  • the current plates 4a and 4b are formed by cutting one disk 100 (see FIG. 2). (curvature of the inner peripheral surface of the cylinder 31).
  • the straightening plates 4a and 4b are arranged such that the angle of inclination (angle of downward inclination) of the straightening plates 4a and 4b with respect to a plane orthogonal to the axis of the cylindrical body 31 is 5° or less (3° in this embodiment). is preferably welded to the cylinder 31 .
  • the angle of 5° or less is the angle of the straightening vanes 4a and 4b with respect to the horizontal direction after the gas replacement device 1 is assembled.
  • the current plates 4a and 4b can be easily welded to the cylinder 31, and the occurrence of a gap between the current plates 4a and 4b and the inner peripheral surface of the cylinder 31 after welding can be suppressed. . That is, the straightening plates 4a and 4b and the inner peripheral surface of the cylindrical body 31 can be appropriately welded.
  • the cylindrical body 31 is fixed to the container body 30.
  • the container body 30 is formed in a cylindrical shape with an open upper end, and the outer diameter of the cylindrical body 31 is slightly smaller than the inner diameter of the container body 30 . Therefore, when fixing the cylindrical body 31 to the container main body 30 , the cylindrical body 31 is inserted from the open portion of the upper end of the container 3 .
  • the intake port 30d passing through the side surface of the container body 30 and the through hole 31a passing through the side surface of the cylindrical body 31 are brought into communication.
  • the water intake port 30d and the through hole 31a are portions to which the above-described water intake pipe 2 (see FIG. 1) is connected.
  • a flange 30e projecting radially outward is formed at the upper end of the container body 30, and a flange 31b projecting radially outward is formed at the upper end of the cylindrical body 31 as well. Since the outer diameter of the flange 31b of the cylindrical body 31 is larger than the inner diameter of the container body 30, when the cylindrical body 31 is inserted into the container body 30, the flange 31b of the cylindrical body 31 is hooked on the flange 30e of the container body 30. be able to. As a result, the fixing of the cylindrical body 31 to the container body 30 and the fixing of the lid body 32 to the upper end side of the container body 30 and the cylindrical body 31 are performed in a state in which the relative position of the cylindrical body 31 to the container body 30 is determined. be able to. Therefore, workability of the fixing work can be improved.
  • the open portion on the upper end side of the cylindrical body 31 is covered with the lid body 32 .
  • the lid body 32 is formed in a substantially hemispherical shape with an open bottom, and a flange 32a protrudes radially outward from the lower end of the lid body 32 . Therefore, the assembly of the container 3 is completed by tightening the flanges 30e, 31b, and 32a of the container body 30, the cylinder 31, and the lid 32 together with bolts and nuts (not shown).
  • the container 3 of this embodiment includes a container body 30 whose upper end side is open, and a cylindrical body 31 which is configured so as to be insertable from the upper end of the container body 30 and fixed to the inner peripheral side of the container body 30. , and a lid 32 that closes the upper ends of the container body 30 and the cylindrical body 31 .
  • the rectifying plates 4a and 4b can be arranged on the inner peripheral side of the container body 30. As shown in FIG. That is, since it is sufficient to fix the rectifying plates 4a and 4b to the cylindrical body 31 having a smaller vertical (axial) dimension than the container body 30, workability of the fixing work can be improved.
  • the cylindrical body 31 has a flange 31b projecting radially outward from its upper end side, and the outer diameter of the flange 31b is larger than the inner diameter of the container body 30, so that the cylindrical body 31 can be inserted into the container body 30.
  • the flange 31b of the cylindrical body 31 can be hooked to the container body 30. As shown in FIG. Thereby, the workability of fixing the cover 32 to the upper end side of the cylinder 31 and the container main body 30 can be improved.
  • the intake pipe 2 is connected to the side surface of the container 3 (container main body 30), so that polluted water flows in along the extending direction of the current plate 4a (horizontal direction in FIG. 1).
  • the contaminated water may flow (fall) substantially vertically toward the upper surface of the current plate 4a (projections 40a).
  • the rectifying plate 4a (convex portion 40a) can receive the polluted water flowing down from the water intake pipe 2, so the rectifying plate 4a (convex portion 40a) reliably functions to turn the polluted water into a thin water film. can be exhibited.
  • the present invention is not necessarily limited to this.
  • a plurality of protrusions 40a and recesses 40b may be formed at the tips of the straightening plates 4a and 4b, or the protrusions 40a and recesses 40b may be formed in a sawtooth shape.
  • the convex portion 40a or the concave portion 40b may be formed only on one of the rectifying plates 4a and 4b, or the convex portion 40a and the concave portion 40b of the rectifying plates 4a and 4b may be omitted, and the tips of the rectifying plates 4a and 4b may be straight. It may be composed only of the portions 41a and 41b.
  • the convex portion 40a of the straightening plate 4a has a shape along the concave portion 40b of the straightening plate 4b, and the straightening plates 4a and 4b are formed from a single disk 100.
  • each of the rectifying plates 4a and 4b may be formed with a convex portion 40a (a concave portion 40b) having the same shape.
  • the rectifiers 4a and 4b may be cut out from a metal plate larger than the disk 100. Even in this configuration, it is preferable that at least the convex portions 40a of the straightening plates 4a and 4b have a shape along the concave portions 40b. Accordingly, by cutting the metal plate along the shape of the convex portions 40a (concave portions 40b), the convex portions 40a and the concave portions 40b of the straightening plates 4a and 4b can be formed at the same time. man-hours can be reduced.
  • the inclination angle of each of the straightening vanes 4a and 4b with respect to the horizontal direction is 3° (5° or less), but it is not necessarily limited to this.
  • the straightening vanes 4a and 4b may have an angle of more than 5° with respect to the horizontal direction, or may be parallel to the horizontal direction.
  • the angle of the rectifying plate 4a with respect to the horizontal direction may be larger (smaller) than the angle of the rectifying plate 4b.
  • the current plates 4a and 4b are welded to the inner peripheral surface of the cylindrical body 31, but the present invention is not necessarily limited to this.
  • the rectifying plates 4a and 4b may be joined to the inner peripheral surface of the cylindrical body 31 by known fixing means such as bolts and rivets. It is preferable to set the inclination angle of 4b to 3° (5° or less). As a result, it is possible to suppress the formation of gaps between the cylindrical body 31 and the rectifying plates 4a and 4b, so that they can be properly joined (the jointed cylindrical body 31 and the rectifying plates 4a and 4b can be properly joined together). It is possible to suppress the occurrence of gaps between them).
  • the container 3 is composed of the container body 30, the cylinder 31, and the lid 32, and the rectifying plates 4a and 4b are fixed to the inner peripheral surface of the cylinder 31.
  • the cylinder 31 may be omitted and the rectifying plates 4a and 4b may be directly fixed to the inner peripheral surface 30c of the container body 30, or the cylinder 31 and the lid 32 may be integrated.
  • the flanges 30e, 31b, and 32a of the container body 30, cylinder 31, and lid 32 are fastened together with bolts and nuts, but the invention is not necessarily limited to this.
  • the flange 31b of the cylindrical body 31 may be omitted, and a metal fitting for hooking the cylindrical body 31 may be provided on the inner peripheral surface 30c of the container body 30.
  • the tubular body 31 may be welded to the inner peripheral surface 30c of the container body 30 without using such a fitting for hooking the tubular body 31 .
  • the fixing method is not limited to the above embodiment.
  • the bottom surface 30a of the container body 30 is formed with the drain port 30b, and the bottom surface 30a is inclined downward from the inner peripheral surface 30c of the container body 30 toward the drain port 30b.
  • the drain port 30b may be formed on the inner peripheral surface 30c (side surface) of the container body 30, or the bottom surface 30a of the container body 30 may be parallel to the horizontal direction.
  • the gas supplied from the supply pipe 5 (gas supply means) to the container 3 is oxygen, but it is not necessarily limited to this.
  • other gases such as nitrogen, carbon dioxide, hydrogen, ozone, or argon may be supplied through supply pipe 5 .
  • the drain pipe 8 includes the first drain pipe 80 for returning the oxygen-dissolved water to the water area to be purified, and the second drain pipe 80 for discharging the oxygen-dissolved water to a place (drainage channel) different from the water area to be purified.
  • the drain pipe 8 may be composed only of the first drain pipe 80, or may be configured to provide another drain pipe in addition to the drain pipes 80 and 81.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)

Abstract

Flow rectifying plates 4a are tilted downward toward a first direction side, and flow rectifying plates 4b are tilted downward toward a second direction side that is opposite from the first direction. These flow rectifying plates 4a, 4b are vertically arranged in an alternating manner, and thus polluted water that flows down the rectifying plates 4a, 4b meanders while flowing downward toward a bottom section of a vessel 3. Consequently, in comparison to previous technologies in which polluted water is made to flow downward in a helical manner around a ventilation passage, resistance to the downward flow of the polluted water is not readily produced, and additionally, retention within the vessel 3 of polluted sludge (sludge) that is included in the polluted water can be suppressed. The flow rate of the polluted water can therefore be increased, and thus the processing capability of a gas replacement device 1 can be increased.

Description

気体置換装置Gas replacement device
 本発明は、気体置換装置に関し、特に、処理能力を向上できる気体置換装置に関する。 The present invention relates to a gas replacement device, and more particularly to a gas replacement device capable of improving processing capacity.
 水は、水素と酸素の化合物であり、2つの水素原子と1つの酸素原子とが電子を共有して結合することによって水分子を構成する。酸素原子と水素原子との結合角度は104.5度であり、且つ水素原子の電子が水素原子よりも重い(電気陰性度が大きい)酸素原子側に偏っているため、水素原子側はプラスに、酸素原子側はマイナスに帯電する。この結果、水分子は弱いながらもプラスとマイナスの電気的な引力(双極子モーメント)を持つことになる。この電気的な引力により、水が液体の状態では、水分子同士が互いに水素結合という形で結び付いてクラスターを形成すると考えられる。 Water is a compound of hydrogen and oxygen, and two hydrogen atoms and one oxygen atom form a water molecule by combining electrons. The bond angle between the oxygen atom and the hydrogen atom is 104.5 degrees, and the electrons of the hydrogen atom are heavier (larger in electronegativity) than the hydrogen atom, so the hydrogen atom side is positive. , the oxygen atom side is negatively charged. As a result, water molecules have a weak positive and negative electric attraction (dipole moment). Due to this electric attraction, when water is in a liquid state, it is thought that water molecules bind to each other in the form of hydrogen bonds to form clusters.
 このクラスターは、5~6個の水分子の集合体、又は15~20個の水分子構造体と予測される。クラスターを形成している状態では、1個の水分子が4個の水分子に接する正四面体構造、即ち、氷の分子構造に近い隙間の大きな構造になっていると考えられる。このため、水は、その体積の約62%に隙間を有することになり、この隙間に気体が内包されることで「水に気体が溶解している状態」が形成されると考えられる。 This cluster is predicted to be an assembly of 5-6 water molecules or a structure of 15-20 water molecules. In the state of forming clusters, one water molecule is considered to have a regular tetrahedral structure in contact with four water molecules, that is, a structure with large gaps close to the molecular structure of ice. For this reason, water has gaps in about 62% of its volume, and it is considered that "a state in which gas is dissolved in water" is formed by enclosing gas in these gaps.
 これは、JIS K0102(2016年版)の「表32.1 水中の飽和溶存酸素量(1013hPa)」に示される通り、水温が低下するにつれて飽和溶存酸素量が上昇することからも説明がつく。即ち、水温が低下すると、水の分子構造が氷の分子構造(隙間の大きい正四面体構造)に近付くことに加え、水温の低下によって気体が収縮する。このため、水温が0℃に近付くにつれて、水の隙間により多くの気体が内包され易い状態となり、飽和溶存酸素量が上昇すると考えられる。 This can also be explained from the fact that the saturated dissolved oxygen amount increases as the water temperature decreases, as shown in "Table 32.1 Saturated dissolved oxygen amount in water (1013 hPa)" of JIS K0102 (2016 version). That is, when the water temperature drops, the molecular structure of water approaches the molecular structure of ice (regular tetrahedral structure with large gaps), and the gas contracts due to the drop in water temperature. For this reason, as the water temperature approaches 0° C., it is believed that more gas is likely to be included in the gaps in the water, increasing the saturated dissolved oxygen amount.
 このような水への気体溶解に関する技術として、水中に空気を送る曝気方式がある。曝気とは、水中に送られる空気によって水に酸素を溶解させることを目的にする技術である。 As a technology related to gas dissolution in water, there is an aeration method that sends air into water. Aeration is a technique aimed at dissolving oxygen in water by air being forced into the water.
 曝気方式の一般的なものとしては魚類の水槽におけるエアレーションが例示されるが、このエアレーションは、周知の通り水中を浮上する気泡の存在を確認できる。気泡が存在するということは、気泡(気体)の大半が水に溶解していないことが明らかである。また、曝気方式の近年の技術として、微細気泡(ナノバブル)を用いることが注目されているが、この微細気泡もその存在を水中で確認できるものに変わりはなく、水に溶解する気体の量は極僅かである。 A common aeration method is aeration in fish tanks, and as is well known, the existence of air bubbles floating in the water can be confirmed in this aeration. The presence of air bubbles clearly indicates that most of the air bubbles (gases) are not dissolved in the water. In addition, as a recent technology of the aeration method, the use of nanobubbles has been attracting attention. Very little.
 つまり、これらの曝気方式は、単に空気が水中を通過しているだけであり、酸素を水に多く溶解させることは困難である。これは、水の隙間に内包されている気体と、水に供給される空気とがほぼ同圧になっており、それらの気体が置換され難いためだと考えられる。 In other words, these aeration methods simply pass air through water, and it is difficult to dissolve a large amount of oxygen in water. It is considered that this is because the gas contained in the gaps of the water and the air supplied to the water have almost the same pressure, and it is difficult for these gases to be replaced.
 このような圧力を考慮して設計されているのが排水処理の曝気槽である。例えば活性汚泥法を用いた曝気槽は、水深が3~5m程度に設計されることが一般的である。このような深い水深に設計されるのは、その程度の水深の圧力(水圧)を利用すれば、空気(酸素)を水に効率良く溶解できることを経験から学んだためと考えられる。なお、この水深3~5mにおける水圧は、0.03~0.05MPaである。 The aeration tank for wastewater treatment is designed with this kind of pressure in mind. For example, an aeration tank using the activated sludge method is generally designed to have a depth of about 3 to 5 m. It is thought that the reason for designing for such a deep water depth is that we have learned from experience that air (oxygen) can be efficiently dissolved in water by using the pressure (water pressure) at that depth. The water pressure at the water depth of 3 to 5 m is 0.03 to 0.05 MPa.
 本願の発明者の森田通夫による以上の知見に基づき、上記の曝気方式とは真逆の発想を利用した気体置換装置を本願出願人は既に開発している(例えば、特許文献1など)。この気体置換装置は、溶解を目的とする気体(例えば、酸素)を容器に充填することによって容器内を大気圧以上に加圧し、その加圧された容器内に水を通過させるものである。 Based on the above findings by the inventor of the present application, Michio Morita, the applicant of the present application has already developed a gas replacement device that utilizes a completely opposite idea from the aeration method described above (for example, Patent Document 1, etc.). This gas replacement device pressurizes the inside of the container above the atmospheric pressure by filling the container with a gas (for example, oxygen) to be dissolved, and allows water to pass through the pressurized container.
 この気体置換装置では、加圧によって気体が収縮し(ヘンリーの法則)、水の隙間に入り込み易い状態になることに加え、大気圧下から容器内に導入される水(水の隙間に内包されている気体)の圧力よりも、容器内の気体の圧力が高くなっている。よって、水が容器内の気体に接触することにより、元々水の隙間に内包されている気体(例えば、窒素)が、容器内に充填されている気体(例えば、酸素)に瞬時に置換される。 In this gas replacement device, the gas contracts due to pressurization (Henry's law), making it easier for water to enter the gaps. The pressure of the gas inside the container is higher than the pressure of the gas inside the container. Therefore, when the water comes into contact with the gas in the container, the gas (e.g., nitrogen) originally included in the gaps of the water is instantly replaced with the gas (e.g., oxygen) filled in the container. .
 この置換によって水の隙間から放出された気体は、容器内の気体の純度(溶解を目的とする気体の濃度)を下げるため、通気路を通して容器外へ排出される。これにより、容器内の気体の純度を維持することが可能になり、かかる容器内の気体を高濃度に溶解させた気体溶解水を生成できる。 The gas released from the gaps in the water due to this replacement is discharged out of the container through the ventilation channel in order to reduce the purity of the gas in the container (the concentration of the gas intended for dissolution). This makes it possible to maintain the purity of the gas in the container, and to generate gas-dissolved water in which the gas in the container is dissolved at a high concentration.
 このように、容器内を大気圧以上に加圧することにより、上記の曝気槽のように水深を深くする(水圧を利用する)ことと同様の効果が得られる。即ち、例えば気体置換装置の容器内を酸素によって大気圧よりも0.03~0.05MPa高く加圧することにより、水深3~5mの水深圧を再現できるため、排水処理においてわざわざ深い水槽を設けなくとも(例えば3m未満の浅水でも)必要な溶存酸素の溶解が可能になる。 In this way, by pressurizing the inside of the container above the atmospheric pressure, the same effect as deepening the water depth (using water pressure) as in the above aeration tank can be obtained. That is, for example, by pressurizing the inside of the container of the gas replacement device with oxygen by 0.03 to 0.05 MPa higher than the atmospheric pressure, it is possible to reproduce the water depth pressure of 3 to 5 m. Both (for example, even in shallow water of less than 3 m) enable the dissolution of the necessary dissolved oxygen.
 また、上記の気体置換装置で生成した気体溶解水は、無気泡(ノンバブル)に近い状態であり、気泡の存在が確認できる従来の曝気方式とは異なり、目的とする気体がほぼ完全に(100%)溶解された状態になる。この気体置換装置の溶解能力は、従来の曝気方式に比べて最高で100倍近くの能力であると考えられる。では、気体がほぼ完全に溶解できている状態とは、具体的にどの程度の濃度であるかについて、上記の水の隙間論に基づいて検討する。 In addition, the gas-dissolved water produced by the above-mentioned gas replacement device is in a state close to no bubbles (non-bubbles), and unlike the conventional aeration method in which the presence of bubbles can be confirmed, the target gas is almost completely removed (100 %) becomes dissolved. The dissolution capacity of this gas replacement device is considered to be nearly 100 times as high as that of the conventional aeration system. Now, we will examine the specific concentration of the state in which the gas is almost completely dissolved based on the above theory of gaps in water.
 上記のJIS規格に示される通り、大気圧下(自然界)の水の飽和溶存酸素量は、水温が0℃の時に14.62ppmであるが、この水の隙間に内包されている気体が「空気」であると定義する。空気(大気)の成分は、窒素が78.08%、酸素が20.95%、アルゴンが0.93%、及びその他の気体である。よって、上記の大気圧下(自然界)の水に溶解している空気が全て酸素に置換された場合、即ち、水の隙間に内包される酸素の量が20.95%から100%になった場合、水の溶存酸素量は14.62ppm×(100/20.95)%=約69.8ppmとなる。 As shown in the JIS standard above, the saturated dissolved oxygen content of water under atmospheric pressure (in the natural world) is 14.62 ppm when the water temperature is 0°C. ”. The composition of air (atmosphere) is 78.08% nitrogen, 20.95% oxygen, 0.93% argon, and other gases. Therefore, when all the air dissolved in the water under the atmospheric pressure (natural world) is replaced with oxygen, that is, the amount of oxygen included in the gaps in the water changes from 20.95% to 100%. In this case, the amount of dissolved oxygen in water is 14.62 ppm×(100/20.95)%=about 69.8 ppm.
 上記の気体置換装置によって酸素溶解水を生成した場合、上記の約69.8ppmと同程度の溶存酸素量になることが確認されている。高濃度の酸素溶解水は、例えば水中の微生物を活性化させるため、汚濁した水域(河川、湖沼、又は水産養殖場など)の環境改善に適している。 It has been confirmed that when oxygen-dissolved water is generated by the above gas replacement device, the amount of dissolved oxygen is about the same as the above approximately 69.8 ppm. High-concentration oxygen-dissolved water, for example, activates microorganisms in water, and is therefore suitable for improving the environment of polluted water areas (rivers, lakes, aquaculture farms, etc.).
 このような環境改善を行う場合には、汚濁した水底部から吸い上げた水に上記の気体置換装置で酸素を溶解させて水底部へ戻す。これにより、高濃度の酸素溶解水が水底部に滞留するため、水底部の溶存酸素量を上昇させることができる。溶存酸素量の上昇によって水底部の好気性微生物が活性化するため、例えば水底部の汚泥から水への栄養塩の溶出を抑制できると共に、アオコの発生(腐敗)による悪臭を抑制できる。即ち、水底部における豊富な溶存酸素は、水中の微生物の活性促進を図り、微生物から原虫等へ、そして魚等へと有機汚濁が吸収され、環境改善が図られる。 In the case of such environmental improvement, oxygen is dissolved in the water sucked up from the polluted bottom of the water by the above gas replacement device and returned to the bottom of the water. As a result, the high-concentration oxygen-dissolved water stays at the bottom of the water, so that the amount of dissolved oxygen at the bottom of the water can be increased. Since aerobic microorganisms at the bottom of the water are activated by an increase in the amount of dissolved oxygen, elution of nutrients from sludge at the bottom of the water into the water can be suppressed, and offensive odors caused by the generation (rottenness) of blue-green algae can be suppressed. That is, the abundant dissolved oxygen at the bottom of the water promotes the activity of microorganisms in the water, and organic contaminants are absorbed from the microorganisms to protozoa and the like, and then to fish and the like, thereby improving the environment.
 このような水底部における溶存酸素量の向上は、上記の曝気方式では不可能である。これは、上述した通り、曝気方式では気泡(酸素)が水底部に留まることなく浮上していくことに加え、そもそも水に溶解する酸素量が少ないためである。更に、例えば純酸素を曝気方式で水中に供給する場合、気泡(純酸素)に直接触れる微生物に悪影響を及ぼす可能性がある。一方、上記の気体置換装置で生成した酸素溶解水は無気泡(ノンバブル)に近い状態(即ち、水に酸素が内包されており、微生物に酸素が直接触れ難い状態)であり、微生物への悪影響もない。 It is impossible to improve the amount of dissolved oxygen at the bottom of the water with the aeration method described above. This is because, as described above, in the aeration method, air bubbles (oxygen) float to the surface without remaining at the bottom of the water, and the amount of oxygen dissolved in water is small in the first place. Furthermore, for example, when pure oxygen is supplied into water by an aeration method, microorganisms in direct contact with air bubbles (pure oxygen) may be adversely affected. On the other hand, the oxygen-dissolved water produced by the above gas replacement device is in a state close to bubble-free (that is, oxygen is included in the water, and oxygen is difficult to come into direct contact with microorganisms), and has an adverse effect on microorganisms. Nor.
 その他、無気泡(ノンバブル)であるという利点は、オゾンガスを安全に溶解できる点にもある。即ち、上記の気体置換装置で生成したオゾン溶解水は無気泡であるため、危険なオゾンガスの大気放出が極めて少なく安全に利用できる。このオゾン溶解水は、例えば排水処理に利用できる。 Another advantage of being bubble-free is that it can safely dissolve ozone gas. That is, since the ozone-dissolved water generated by the above gas replacement device is bubble-free, it can be used safely with very little release of dangerous ozone gas into the atmosphere. This ozone-dissolved water can be used, for example, for wastewater treatment.
 また、上記の気体置換装置は、オゾンの他にも、窒素、二酸化炭素、水素、又はアルゴン等、各種の気体を水に溶解できるため、それらの気体の種類や濃度を調整することにより、様々な用途に向けた気体溶解水を生成できる。
 例えば、窒素を100%に近い濃度で水に溶解させることにより、酸素を除去した酸素除去水を生成できる。酸素除去水は、鉄などの金属が触れても錆びないという利点や、酸素除去水を凍らせた氷で魚類を保存すれば魚類が腐り難い(鮮度が維持され易い)という利点を有する。また、二酸化炭素を溶解させた水を藻類や農作物などの植物に与えれば、光合成を促進させることができるので、植物の成長が促される。
In addition to ozone, the above gas replacement device can dissolve various gases such as nitrogen, carbon dioxide, hydrogen, and argon in water. It is possible to generate gas-dissolved water for various applications.
For example, oxygen-depleted water can be produced by dissolving nitrogen in water at a concentration close to 100%. Oxygen-removed water has the advantage that it does not rust even when metals such as iron come into contact with it, and the advantage that fish are less likely to rot (easier to maintain freshness) if they are preserved in ice obtained by freezing the oxygen-removed water. In addition, if water in which carbon dioxide is dissolved is given to plants such as algae and crops, photosynthesis can be promoted, and thus the growth of plants is promoted.
 更に、上記の気体置換装置は、容器内の気体の圧力を調整することにより、微細気泡を発生させることも可能である。微細気泡を発生させる場合には、気体が水に100%溶解する圧力よりも更に高い圧力で容器内を加圧し、気体を過飽和溶解させた気体溶解水を生成する。この気体が過飽和溶解した気体溶解水を外部に放出すると、加圧状態から大気圧に戻る時の圧力差によって気体溶解水から微細気泡(マイクロ又はナノバブル)が発生する。この微細気泡は、例えば加圧浮上法に利用できる。そして、上記の気体置換装置による微細気泡の生成は、単に気体溶解水を容器外に放出するだけで良いため、例えば微細気泡を生成させるためのノズルを吐出口に設けること等、特別な工夫や装置が不要である。 Furthermore, the gas replacement device described above can also generate microbubbles by adjusting the pressure of the gas in the container. When generating microbubbles, the inside of the container is pressurized at a pressure higher than the pressure at which the gas dissolves 100% in water, and the gas is dissolved in supersaturated water to produce gas-dissolved water. When the gas-dissolved water in which the gas is supersaturated and dissolved is released to the outside, fine bubbles (micro or nanobubbles) are generated from the gas-dissolved water due to the pressure difference when returning from the pressurized state to the atmospheric pressure. This microbubble can be used, for example, in the pressurized flotation method. Since the generation of microbubbles by the above-described gas replacement device can be achieved by simply discharging the gas-dissolved water out of the container, special devices such as providing a nozzle for generating microbubbles at the discharge port, for example, can be used. No equipment required.
国際公開第2017/191678号(例えば、段落0056~0058、図1)WO 2017/191678 (for example, paragraphs 0056-0058, Figure 1)
 しかしながら、上述した従来の技術では、容器内の通気路の周りに設けられた整流板を処理水が螺旋状に流下する構成であり、このような複雑な流路は、処理水の流下に対する抵抗が生じ易い。また、例えば処理水が汚濁水である場合、上記のような複雑な流路であると汚濁水に含まれる汚泥(ヘドロ)が容器内に留まり易く、この汚泥の蓄積も処理水の流下を阻害する。即ち、上述した従来の技術では、処理水の流量を多くすることが困難であり、気体置換装置の処理能力を十分に向上できないという問題点があった。 However, in the above-described conventional technology, the treated water spirally flows down the rectifying plate provided around the ventilation path in the container. easily occur. In addition, for example, when the treated water is contaminated water, if the flow path is complicated as described above, the sludge contained in the contaminated water tends to stay in the container, and the accumulation of this sludge also hinders the flow of treated water. do. In other words, the conventional technique described above has a problem that it is difficult to increase the flow rate of the treated water, and the processing capacity of the gas replacement device cannot be sufficiently improved.
 本発明は、上述した問題点を解決するためになされたものであり、処理能力を向上できる気体置換装置を提供することを目的としている。 The present invention has been made to solve the above-mentioned problems, and aims to provide a gas replacement device capable of improving the processing capacity.
 この目的を達成するために本発明の気体置換装置は、気体を供給する気体供給手段と、その気体供給手段から供給される前記気体によって内部が大気圧以上に加圧される円筒状の容器と、その容器の内部に固定される複数の整流板と、それら複数の整流板で流下させる処理水を水源から取水して前記容器に供給する処理水供給手段とを備え、前記処理水に溶解している気体を、前記気体供給手段から供給される気体に置換させるものであり、前記整流板は、第1方向側に向けて下降傾斜する第1整流板と、前記第1方向とは反対の第2方向側に向けて下降傾斜する第2整流板とを備え、上下方向において前記第1整流板と前記第2整流板とが交互に並べて設けられ、前記処理水が前記第1整流板および前記第2整流板を蛇行しながら流下する。 To achieve this object, the gas replacement apparatus of the present invention comprises gas supply means for supplying gas, and a cylindrical container whose interior is pressurized to a pressure higher than the atmospheric pressure by the gas supplied from the gas supply means. , a plurality of rectifying plates fixed inside the container, and a treated water supply means for taking in the treated water flowed down by the plurality of rectifying plates from a water source and supplying the treated water to the container, and dissolving in the treated water The rectifying plate includes a first rectifying plate inclined downward toward the first direction and a a second flow straightening vane inclined downward toward the second direction side, the first straightening vanes and the second straightening vanes are arranged alternately in the vertical direction, and the treated water flows through the first straightening vanes and the second straightening vanes; It flows down while meandering through the second rectifying plate.
 請求項1記載の気体置換装置によれば、整流板は、第1方向側に向けて下降傾斜する第1整流板と、その第1整流板とは反対の第2方向側に向けて下降傾斜する第2整流板とを備え、上下方向において第1整流板と第2整流板とが交互に並べて設けられるので、第1整流板および第2整流板を蛇行するようにして処理水が流下する。このような処理水の流路は、通気路の周りで処理水が螺旋状に流下する従来技術に比べ、処理水の流下に対する抵抗が生じ難くなることに加え、例えば処理水が汚濁水である場合に汚泥(ヘドロ)が容器内に留まり難くなる。よって、処理水の流量を多くすることできるので、気体置換装置の処理能力を向上できるという効果がある。 According to the gas replacement device of claim 1, the straightening plate includes the first straightening plate inclined downward in the first direction and the straightening plate downwardly inclined in the second direction opposite to the first straightening plate. Since the first straightening vanes and the second straightening vanes are arranged alternately in the vertical direction, the treated water flows down while meandering through the first straightening vanes and the second straightening vanes. . Compared to the conventional technology in which the treated water flows down spirally around the ventilation path, such a flow path of the treated water makes it difficult for the treated water to flow down. In some cases, it becomes difficult for sludge to stay in the container. Therefore, since the flow rate of the treated water can be increased, there is an effect that the processing capacity of the gas replacement device can be improved.
 請求項2記載の気体置換装置によれば、請求項1記載の気体置換装置の奏する効果に加え、次の効果を奏する。第1整流板および第2整流板の下流側の端部に凸部または凹部が形成されるので、凸部または凹部を流下する処理水の表面積を大きくできる。これにより、容器内の気体と処理水との接触面積を大きくできるので、処理水に溶解している気体を容器内の気体(気体供給手段から供給される気体)に効率良く置換できるという効果がある。 According to the gas replacement device of claim 2, in addition to the effects of the gas replacement device of claim 1, the following effects are achieved. Since the protrusions or recesses are formed at the downstream ends of the first straightening plate and the second straightening plate, the surface area of the treated water flowing down the protrusions or recesses can be increased. As a result, the contact area between the gas in the container and the treated water can be increased, so that the gas dissolved in the treated water can be efficiently replaced with the gas in the container (gas supplied from the gas supply means). be.
 請求項3記載の気体置換装置によれば、請求項2記載の気体置換装置の奏する効果に加え、次の効果を奏する。第1整流板の凸部に沿う形状の凹部が第2整流板に形成されるので、第1整流板の凸部(第2整流板の凹部)に沿う形で板を切断することにより、第1整流板および第2整流板の凸部および凹部を同時に形成できる。よって、第1整流板および第2整流板を成形する際の工数を低減できるという効果がある。 According to the gas replacement device of claim 3, in addition to the effects of the gas replacement device of claim 2, the following effects are achieved. Since the concave portion of the shape along the convex portion of the first straightening plate is formed in the second straightening plate, by cutting the plate along the convex portion of the first straightening plate (the concave portion of the second straightening plate), the second straightening plate can be cut. The protrusions and recesses of the first straightening plate and the second straightening plate can be formed at the same time. Therefore, there is an effect that the number of man-hours for molding the first rectifying plate and the second rectifying plate can be reduced.
 請求項4記載の気体置換装置によれば、請求項3記載の気体置換装置の奏する効果に加え、次の効果を奏する。凸部を凹部に嵌めるようにして第1整流板および第2整流板同士を突き合わせた場合に、第1整流板および第2整流板の外縁が円形になる。これにより、凸部(凹部)の形状に沿って1枚の円板を切断することにより、凸部および凹部を備える第1整流板および第2整流板を同時に成形できる。これにより、第1整流板および第2整流板の材料コストを低減できるという効果がある。 According to the gas replacement device of claim 4, in addition to the effects of the gas replacement device of claim 3, the following effects are achieved. When the first straightening plate and the second straightening plate are butted against each other so that the convex portion is fitted in the concave portion, the outer edges of the first straightening plate and the second straightening plate become circular. As a result, by cutting one disk along the shape of the projections (recesses), the first straightening plate and the second straightening plate having the projections and recesses can be formed at the same time. As a result, there is an effect that the material cost of the first rectifying plate and the second rectifying plate can be reduced.
 請求項5記載の気体置換装置によれば、請求項4記載の気体置換装置の奏する効果に加え、次の効果を奏する。容器の軸方向と直交する平面に対する第1整流板および第2整流板の傾斜角度が5°以下であるので、傾斜する第1整流板および第2整流板の半円状の外縁と、円筒状の容器の内周面との間に過大な隙間が生じることを抑制できる。これにより、各整流板の外縁と容器の内周面とを適切に接合できるという効果がある。 According to the gas replacement device of claim 5, in addition to the effects of the gas replacement device of claim 4, the following effects are achieved. Since the inclination angle of the first straightening vanes and the second straightening vanes with respect to the plane perpendicular to the axial direction of the container is 5° or less, the semicircular outer edges of the inclined first straightening vanes and the second straightening vanes and the cylindrical shape It is possible to suppress the occurrence of an excessive gap between the container and the inner peripheral surface of the container. Thereby, there is an effect that the outer edge of each rectifying plate and the inner peripheral surface of the container can be properly joined.
 請求項6記載の気体置換装置によれば、請求項1から5のいずれかに記載の気体置換装置の奏する効果に加え、次の効果を奏する。処理水を容器の外部に排出する排水口が容器の内部の底面に形成されるので、例えば処理水が汚濁水である場合に、汚濁水に含まれる汚泥(ヘドロ)が排水口に向けて流れ易くなる。これにより、汚泥が容器内に留まることを抑制でき、処理水の流量を多くすることできるので、気体置換装置の処理能力を向上できるという効果がある。 According to the gas replacement device according to claim 6, in addition to the effects of the gas replacement device according to any one of claims 1 to 5, the following effects are achieved. Since the drainage port for discharging the treated water to the outside of the container is formed on the bottom inside the container, for example, when the treated water is polluted water, the sludge contained in the polluted water flows toward the drainage port. becomes easier. As a result, it is possible to suppress the sludge from remaining in the container, and the flow rate of the treated water can be increased, so that there is an effect that the treatment capacity of the gas replacement device can be improved.
 請求項7記載の気体置換装置によれば、請求項6記載の気体置換装置の奏する効果に加え、次の効果を奏する。容器の内部の底面は、容器の内周面側から排水口側に向けて下降傾斜しているので、容器の内部の底面側に流下した汚泥が排水口に向けて流れ易くなる。これにより、汚泥が容器内の底面に留まることを抑制でき、処理水の流量を多くすることできるので、気体置換装置の処理能力を向上できるという効果がある。 According to the gas replacement device of claim 7, in addition to the effects of the gas replacement device of claim 6, the following effects are achieved. Since the bottom surface inside the container is inclined downward from the inner peripheral surface side of the container toward the drain port side, the sludge that has flowed down to the bottom surface side inside the container easily flows toward the drain port. As a result, it is possible to suppress the sludge from remaining on the bottom surface of the container, and the flow rate of the treated water can be increased, so that there is an effect that the treatment capacity of the gas replacement device can be improved.
 請求項8記載の気体置換装置によれば、請求項6又は7に記載の気体置換装置の奏する効果に加え、次の効果を奏する。排水口に接続される排水管は、処理水を水源に戻すための第1排水管と、処理水を該水源とは異なる場所に排水するための第2排水管とを備える。これにより、第2排水管から排水する処理水(気体溶解水)の流量を調整することにより、第1排水管から水源に戻す処理水の量を容易に調整できるという効果がある。 According to the gas replacement device of claim 8, in addition to the effects of the gas replacement device of claim 6 or 7, the following effects are achieved. The drain pipes connected to the drain port comprise a first drain pipe for returning treated water to the water source and a second drain pipe for draining the treated water to a location different from the water source. Accordingly, by adjusting the flow rate of the treated water (gas-dissolved water) discharged from the second drain pipe, it is possible to easily adjust the amount of treated water returned to the water source from the first drain pipe.
 請求項9記載の気体置換装置によれば、請求項1から8のいずれかに記載の気体置換装置の奏する効果に加え、次の効果を奏する。容器は、上端側が開放される容器本体と、その容器本体の上端から挿入可能に構成され、容器本体の内周側に固定される筒体と、それら容器本体および筒体の上端側を閉塞する蓋体とを備え、第1整流板および第2整流板は、筒体の内周面に固定される。これにより、第1整流板および第2整流板が固定された筒体を容器本体に挿入および固定した後、容器本体および筒体の上端側を蓋体で閉塞することにより、第1整流板および第2整流板を容器の内部に配置できる。 According to the gas replacement device of claim 9, in addition to the effects of the gas replacement device of any one of claims 1 to 8, the following effects are achieved. The container comprises a container body whose upper end side is open, a cylindrical body configured to be insertable from the upper end of the container body and fixed to the inner peripheral side of the container body, and the container body and the cylindrical body closing the upper end sides. A lid body is provided, and the first rectifying plate and the second rectifying plate are fixed to the inner peripheral surface of the cylindrical body. Thus, after inserting and fixing the cylindrical body to which the first straightening vanes and the second straightening vanes are fixed into the container main body, the upper end sides of the container main body and the tubular body are closed with the lid, whereby the first straightening vanes and the second straightening vanes are closed. A second baffle can be arranged inside the container.
 つまり、容器本体よりも上下方向寸法が小さい筒体に第1整流板および第2整流板を予め(容器本体への挿入前に)固定することができる。これにより、例えば容器本体に第1整流板および第2整流板を固定する場合に比べ、その固定作業の作業性を向上できるという効果がある。 That is, the first rectifying plate and the second rectifying plate can be fixed in advance (before being inserted into the container body) to a cylinder whose vertical dimension is smaller than that of the container body. As a result, compared with the case where the first straightening vane and the second straightening vane are fixed to the container body, for example, there is an effect that the workability of the fixing work can be improved.
 請求項10記載の気体置換装置によれば、請求項9記載の気体置換装置の奏する効果に加え、次の効果を奏する。筒体は、その上端側から径方向外側に張り出すフランジを備え、そのフランジの外径が容器本体の内径よりも大きいので、容器本体に筒体を挿入することにより、筒体のフランジを容器本体に引っ掛けることができる。これにより、容器本体に対する筒体の相対位置を定めた状態で、容器本体および筒体の上端側を蓋体で閉塞できる。よって、蓋体を取付ける作業の作業性を向上できるという効果がある。 According to the gas replacement device of claim 10, in addition to the effects of the gas replacement device of claim 9, the following effects are obtained. The cylindrical body has a flange projecting radially outward from its upper end side, and the outer diameter of the flange is larger than the inner diameter of the container body. It can be hung on the body. Thereby, the upper end sides of the container body and the cylinder can be closed with the lid while the relative position of the cylinder with respect to the container body is determined. Therefore, there is an effect that the workability of attaching the lid can be improved.
本発明の一実施形態における気体置換装置の断面図である。1 is a cross-sectional view of a gas replacement device in one embodiment of the present invention; FIG. (a)は、整流板の上面図であり、(b)は、整流板の材料となる円板の上面図である。(a) is a top view of a rectifying plate, and (b) is a top view of a disc that is a material of the rectifying plate. (a)は、整流板を溶接した状態を示す筒体の断面図であり、(b)は、容器を組み立てる様子を示す気体置換装置の部分拡大断面図である。(a) is a cross-sectional view of a cylindrical body showing a state in which straightening plates are welded, and (b) is a partially enlarged cross-sectional view of the gas replacement device showing how a container is assembled.
 以下、本発明の好ましい実施形態について、添付図面を参照して説明する。まず、図1を参照して、気体置換装置1の構成を説明する。図1は、本発明の一実施形態における気体置換装置1の断面図である。なお、図1では、筒状の容器3の軸を含む平面で切断した断面を図示している。 Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. First, the configuration of the gas replacement device 1 will be described with reference to FIG. FIG. 1 is a cross-sectional view of a gas replacement device 1 according to one embodiment of the present invention. In addition, FIG. 1 shows a cross section taken along a plane including the axis of the cylindrical container 3 .
 図1に示すように、気体置換装置1は、例えば河川や湖沼などの被浄化水域(水源)から取水した汚濁水に元々溶解している気体(例えば、窒素)を酸素に置換し、その酸素を高濃度に溶解させた酸素溶解水を再び被浄化水域へ還元するための装置である。酸素溶解水を被浄化水域へ還元することにより、該被浄化水域における溶存酸素(DO)量が増加し、該被浄化水域における微生物が活性化される。その結果、該被浄化水域における有機物の分解が促進され、該被浄化水域の水質が向上する。 As shown in FIG. 1, the gas replacement device 1 replaces gas (for example, nitrogen) originally dissolved in polluted water taken from a water area (water source) to be purified, such as a river or lake, with oxygen. It is a device for returning oxygen-dissolved water in which is dissolved in a high concentration to the water area to be purified. By returning the oxygen-dissolved water to the water area to be purified, the amount of dissolved oxygen (DO) in the water area to be purified increases, and microorganisms in the water area to be purified are activated. As a result, the decomposition of organic matter in the water area to be purified is promoted, and the water quality of the water area to be purified is improved.
 気体置換装置1は、被浄化水域から汚濁水を取水する取水管2を備え、この取水管2で取水された汚濁水が容器3の内部に供給される。取水管2には、汚濁水を被浄化水域から吸い上げるためのポンプ(図示せず)が接続されており、これらの取水管2及びポンプが容器3に処理水(汚濁水)を供給する処理水供給手段を構成している。 The gas replacement device 1 is equipped with a water intake pipe 2 for taking in polluted water from the water area to be purified, and the polluted water taken in by this water intake pipe 2 is supplied to the inside of the container 3 . The water intake pipe 2 is connected to a pump (not shown) for sucking up polluted water from the water area to be purified. It constitutes a supply means.
 容器3は、側面に取水管2が接続される円筒状の容器本体30と、その容器本体30の内周側に挿入される筒体31と、その筒体31の上部を覆う蓋体32とを備える。 The container 3 includes a cylindrical container body 30 to which the water intake pipe 2 is connected on the side surface, a cylindrical body 31 inserted into the inner peripheral side of the container body 30, and a lid body 32 covering the upper part of the cylindrical body 31. Prepare.
 筒体31の内周面には複数の整流板4a,4bが固定されており、取水管2から供給される汚濁水は、これらの整流板4a,4bによって整流されつつ容器本体30の底部に向けて流下する。蓋体32には、容器3の内部に酸素を供給する供給管5が接続され、供給管5には、容器3に酸素を充填するためのコンプレッサ(図示せず)が接続されている。これらの供給管5及びコンプレッサが容器3に酸素を供給する気体供給手段を構成している。 A plurality of rectifying plates 4a and 4b are fixed to the inner peripheral surface of the cylindrical body 31, and the polluted water supplied from the water intake pipe 2 is rectified by these rectifying plates 4a and 4b and flows to the bottom of the container body 30. flow down toward A supply pipe 5 for supplying oxygen to the inside of the container 3 is connected to the lid 32 , and a compressor (not shown) for filling the container 3 with oxygen is connected to the supply pipe 5 . The supply pipe 5 and the compressor constitute gas supply means for supplying oxygen to the container 3 .
 容器3の内部は、供給管5から供給される酸素によって大気圧よりも若干高い(例えば、0.01~0.1MPa高い)圧力に加圧されているため、汚濁水に溶解している気体(例えば、窒素)は、汚濁水が整流板4a,4bを流下する時に酸素に置換される。これにより、酸素が高濃度に溶解した酸素溶解水が得られる。 Since the inside of the container 3 is pressurized to a pressure slightly higher than the atmospheric pressure (for example, 0.01 to 0.1 MPa higher) by oxygen supplied from the supply pipe 5, the gas dissolved in the polluted water (For example, nitrogen) is replaced with oxygen when the polluted water flows down the rectifying plates 4a and 4b. As a result, oxygen-dissolved water in which oxygen is dissolved at a high concentration is obtained.
 整流板4a,4bは、上下方向(鉛直方向)に複数(本実施形態では、2枚ずつ)並べて設けられており、それら複数の整流板4a,4bのうち、最も容器3の上端側に位置する整流板4aに取水管2からの汚濁水が流入する。 A plurality of straightening plates 4a and 4b (in this embodiment, two each) are arranged side by side in the vertical direction (vertical direction). Contaminated water from the water intake pipe 2 flows into the current plate 4a.
 整流板4aは、図1の右側(第1方向側)に向けて下降傾斜する一方、整流板4bは、左側(第2方向側)に向けて下降傾斜している。整流板4a,4bの上面は平面であり、これらの整流板4a,4bが互い違いに上下に並べられている。よって、整流板4a,4bを流下する汚濁水は、容器3の底部に向けて蛇行しながら流下する(流路A参照)。これにより、通気路の周りで汚濁水を螺旋状に流下させる従来技術に比べ、汚濁水の流下に対する抵抗が生じ難くなることに加え、汚濁水に含まれる汚泥(ヘドロ)が容器3内に留まることを抑制できる。よって、汚濁水の流量を多くすることできるので、気体置換装置1の処理能力を向上できる。 The straightening plate 4a is inclined downward toward the right side (first direction side) in FIG. 1, while the straightening plate 4b is inclined downward toward the left side (second direction side). The upper surfaces of the straightening plates 4a and 4b are flat, and the straightening plates 4a and 4b are alternately arranged vertically. Therefore, the polluted water flowing down the rectifying plates 4a and 4b meanders down toward the bottom of the container 3 (see flow path A). As a result, compared to the conventional technology in which the polluted water spirals down around the ventilation path, resistance against the polluted water flowing down is less likely to occur, and the sludge contained in the polluted water stays inside the container 3. can be suppressed. Therefore, the flow rate of polluted water can be increased, and the processing capacity of the gas replacement device 1 can be improved.
 汚濁水に溶解する気体が酸素に置換される際、元々汚濁水に溶解していた気体(例えば、窒素)が容器3の内部に放出される。この放出された気体を排気するための排気管6が容器3の蓋体32に接続される。排気管6からの排気の制御は公知の構成が採用可能であるので詳細な説明を省略するが、例えば容器3内の酸素濃度を検出するセンサ(図示せず)の検出結果に応じて、排気管6の開閉弁の開閉を制御する構成が例示される(例えば、国際公開第2017/191678号)。なお、排気管6の開閉弁の開閉は、タイマーで行っても良いし、手動で行っても良い。 When the gas dissolved in the polluted water is replaced with oxygen, the gas originally dissolved in the polluted water (for example, nitrogen) is released inside the container 3 . An exhaust pipe 6 for exhausting the released gas is connected to the lid 32 of the container 3 . Exhaust from the exhaust pipe 6 can be controlled by a known configuration, so a detailed description will be omitted. A configuration for controlling the opening and closing of the on-off valve of the pipe 6 is exemplified (for example, International Publication No. 2017/191678). In addition, opening and closing of the opening and closing valve of the exhaust pipe 6 may be performed by a timer, or may be performed manually.
 このように、溶解される気体の置換時に汚濁水から放出される気体を排気管6から適宜排気することにより、容器3内の酸素を適切な濃度に維持できる。これにより、酸素を高濃度に溶解させた酸素体溶解水を常に得ることができる。 In this way, the oxygen in the container 3 can be maintained at an appropriate concentration by appropriately exhausting the gas released from the polluted water through the exhaust pipe 6 when the dissolved gas is replaced. As a result, the oxygen body-dissolved water in which oxygen is dissolved at a high concentration can always be obtained.
 整流板4a,4bの詳細構成は後述するが、整流板4aの先端(下流側の端部)には、汚濁水の流下方向に突出する凸部40a(図2参照)が形成される。一方、整流板4bの先端には、汚濁水の流下方向とは反対側に凹む凹部40b(図2参照)が形成される。これにより、例えば各整流板4a,4bの先端が直線状である場合に比べ、凸部40aや凹部40bを流下する汚濁水の表面積を大きくできる。これにより、酸素と汚濁水との接触面積を大きくできるので、汚濁水に溶解している気体を酸素に効率良く置換できる。更に、凸部40aを形成することによって整流板4aの先端までの距離を長く確保でき、該整流板4aを流下する汚濁水が薄い水膜になり易いため、これによっても汚濁水に溶解している気体を酸素に効率良く置換できる。 Although the detailed configuration of the rectifying plates 4a and 4b will be described later, a convex portion 40a (see FIG. 2) that protrudes in the downstream direction of the polluted water is formed at the tip (downstream end) of the rectifying plate 4a. On the other hand, a recessed portion 40b (see FIG. 2) is formed at the tip of the rectifying plate 4b so as to be recessed on the side opposite to the flowing direction of the polluted water. This makes it possible to increase the surface area of the polluted water flowing down the projections 40a and the recesses 40b, compared to the case where the straightening vanes 4a and 4b have straight ends. As a result, the contact area between the oxygen and the polluted water can be increased, so that the gas dissolved in the polluted water can be efficiently replaced with oxygen. Furthermore, by forming the convex portion 40a, a long distance to the tip of the rectifying plate 4a can be secured, and the polluted water flowing down the rectifying plate 4a tends to form a thin water film. gas can be efficiently replaced with oxygen.
 整流板4a,4bを流下した酸素溶解水は、容器本体30の底部側に所定量貯留される。この貯留量の調整は、酸素溶解水の液面Lに浮かぶフロート式の水位センサ(図示せず)などによって行われるが、公知の調整方法(例えば、国際公開第2017/191678号)が採用可能であるので詳細な説明を省略する。 A predetermined amount of the oxygen-dissolved water that has flowed down the current plates 4 a and 4 b is stored on the bottom side of the container body 30 . This amount of storage is adjusted by a float-type water level sensor (not shown) floating on the liquid surface L of the oxygen-dissolved water, or the like. Therefore, detailed description is omitted.
 容器3には、容器本体30の底部と蓋体32とに両端が接続される水位ゲージ7が固定される。水位ゲージ7は、ガラスや樹脂などの光透過性の材料を用いて形成されており、この水位ゲージ7内の液面レベルから容器3内の汚濁水の貯留量(液面Lのレベル)を確認できる。 A water level gauge 7 having both ends connected to the bottom of the container body 30 and the lid 32 is fixed to the container 3 . The water level gauge 7 is formed using a light-transmitting material such as glass or resin, and the storage amount of polluted water in the container 3 (the level of the liquid level L) can be calculated from the liquid level in the water level gauge 7. I can confirm.
 容器本体30内の底面30aには、酸素溶解水を外部に排出するための排水口30bが形成され、この排水口30bには排水管8が接続される。なお、容器本体30の下方に排水管8を設けるために、容器本体30(容器3)は複数の脚部9によって設置面から離隔した状態で支持される。 A drain port 30b for discharging the oxygen-dissolved water to the outside is formed on the bottom surface 30a inside the container body 30, and a drain pipe 8 is connected to the drain port 30b. Note that the container body 30 (container 3 ) is supported by a plurality of legs 9 so as to be separated from the installation surface in order to provide the drain pipe 8 below the container body 30 .
 排水口30bを容器本体30の底面30aに形成することにより、例えば、かかる排水口30bを容器3の内周面30cに形成する場合に比べ、汚濁水に含まれる汚泥(ヘドロ)が排水口30bから排出され易くなる。これにより、汚泥が容器3内に留まることを抑制できるので、汚濁水(酸素溶解水)の流量を多くできる。よって、気体置換装置1の処理能力を向上できる。 By forming the drain port 30b on the bottom surface 30a of the container body 30, for example, compared to the case where the drain port 30b is formed on the inner peripheral surface 30c of the container 3, sludge contained in the polluted water is removed from the drain port 30b. be easily expelled from As a result, it is possible to suppress the sludge from remaining in the container 3, so that the flow rate of polluted water (oxygen-dissolved water) can be increased. Therefore, the processing capacity of the gas replacement device 1 can be improved.
 また、汚濁水が容器本体30の底部に向けて流下する際には、汚濁水に元々溶解していた窒素や、容器3に充填される酸素などの気泡も汚濁水(酸素溶解水)と共に容器本体30の底部側に流下することがある。このような場合、容器本体30の底部に貯留される汚濁水には気泡が混入する。 Further, when the contaminated water flows down toward the bottom of the container body 30, the nitrogen originally dissolved in the contaminated water and the air bubbles such as oxygen filled in the container 3 are removed together with the contaminated water (oxygen-dissolved water). It may flow down to the bottom side of the body 30 . In such a case, air bubbles are mixed in the polluted water stored in the bottom portion of the container body 30 .
 これに対し、上述した通り排水口30bを容器本体30の底面30aに形成することにより、例えば排水口を容器本体30の内周面30cに形成する場合に比べ、汚濁水に混入する気泡が排水口30bに到達するまでの距離を長く確保できる。これにより、汚濁水に含まれる気泡が排水口30bに到達する前に液面L側に浮上させることができるので、気泡を含む汚濁水が排水口30bから被浄化水域に流出することを抑制できる。即ち、無気泡(ノンバブル)の酸素溶解水を被浄化水域に還元できる。 On the other hand, by forming the drain port 30b on the bottom surface 30a of the container body 30 as described above, compared to the case where the drain port is formed on the inner peripheral surface 30c of the container body 30, air bubbles mixed in the polluted water are discharged. A long distance can be secured until reaching the port 30b. As a result, the air bubbles contained in the polluted water can be floated to the liquid surface L side before reaching the drain port 30b, so that the polluted water containing air bubbles can be suppressed from flowing out from the drain port 30b into the water area to be purified. . That is, non-bubble oxygen-dissolved water can be returned to the water area to be purified.
 容器本体30の底面30aは、容器本体30の内周面30cから排水口30bに向けて下降傾斜しているので、容器本体30の底面30a側に流下した汚泥が排水口30bに向けて流れ易くなる。これによっても、汚泥が容器3内の底面30aに留まることを抑制できる。 Since the bottom surface 30a of the container body 30 is inclined downward from the inner peripheral surface 30c of the container body 30 toward the drain port 30b, the sludge flowing down to the bottom surface 30a side of the container body 30 easily flows toward the drain port 30b. Become. This also prevents the sludge from staying on the bottom surface 30a inside the container 3. As shown in FIG.
 排水口30bに接続される排水管8は、第1排水管80及び第2排水管81に分岐しており、これらの第1排水管80及び第2排水管81は、図示しない開閉弁によって開閉可能に構成される。 The drain pipe 8 connected to the drain port 30b branches into a first drain pipe 80 and a second drain pipe 81, and these first drain pipe 80 and second drain pipe 81 are opened and closed by an on-off valve (not shown). configured as possible.
 第1排水管80は、排水口30bを被浄化水域に接続しているため、第1排水管80から被浄化水域に還元される酸素溶解水によって該水域を浄化できる。一方、第2排水管81は、被浄化水域とは異なる場所であって、例えば排水路に排水口30bを接続する。これにより、被浄化水域の外部に汚濁水を直接排水することなく、酸素を溶解させた状態で排水できるので、被浄化水域の外部が汚染されることを抑制できる。また、第2排水管81から排水される酸素溶解水の流量を調整することにより、第1排水管80から被浄化水域に還元する酸素溶解水の量を調整できる。 Since the first drain pipe 80 connects the drain port 30b to the water area to be purified, the oxygen-dissolved water returned from the first drain pipe 80 to the water area to be purified can purify the water area. On the other hand, the second drain pipe 81 connects the drain port 30b to, for example, a drain channel at a location different from the water area to be purified. As a result, polluted water can be drained in a state in which oxygen is dissolved without being discharged directly to the outside of the water area to be purified, thereby suppressing contamination of the outside of the water area to be purified. Further, by adjusting the flow rate of the oxygen-dissolved water discharged from the second drain pipe 81, the amount of the oxygen-dissolved water returned from the first drain pipe 80 to the water area to be purified can be adjusted.
 このように、気体置換装置1に第1排水管80及び第2排水管81を予め設けておけば、そのような酸素溶解水の分流を行うための手段(配管など)をユーザが別途用意する必要がない。即ち、第1排水管80や第2排水管81を所望の供給先に接続するだけで、酸素溶解水を分流させることや、その分流先への供給量を調整することができるので、気体置換装置1の利便性が向上する。 Thus, if the first drain pipe 80 and the second drain pipe 81 are provided in advance in the gas replacement device 1, the user separately prepares a means (such as a pipe) for dividing the oxygen-dissolved water. No need. That is, by simply connecting the first drain pipe 80 and the second drain pipe 81 to desired supply destinations, the oxygen-dissolved water can be diverted and the amount of supply to the diverted destinations can be adjusted. The convenience of the device 1 is improved.
 ここで、整流板4a,4bは、容器本体30の内周面30cに直接固定することも可能であるが、このような構成であると、容器本体30が上下方向(軸方向)で比較的長く形成されるため、容器本体30に対する整流板4a,4bの固定(例えば、溶接)作業に手間を要する。よって本実施形態では、整流板4a,4bが溶接された筒体31を容器本体30に固定した後、それらの上端部分を蓋体32で覆う構成を採用している。この構成について、図2及び図3を参照して説明する。 Here, the rectifying plates 4a and 4b can be fixed directly to the inner peripheral surface 30c of the container body 30, but with such a configuration, the container body 30 is relatively small in the vertical direction (axial direction). Since they are formed long, fixing (for example, welding) the rectifying plates 4a and 4b to the container body 30 requires time and effort. Therefore, in this embodiment, after fixing the cylindrical body 31 to which the straightening plates 4 a and 4 b are welded to the container body 30 , the upper end portion thereof is covered with the lid body 32 . This configuration will be described with reference to FIGS. 2 and 3. FIG.
 図2(a)は、整流板4a,4bの上面図であり、図2(b)は、整流板4a,4bの材料となる円板100の上面図である。図3(a)は、整流板4a,4bを溶接した状態を示す筒体31の断面図であり、図3(b)は、容器3を組み立てる様子を示す気体置換装置1の部分拡大断面図である。なお、図3では、図1に対応する位置で切断した断面を図示している。 FIG. 2(a) is a top view of the straightening vanes 4a and 4b, and FIG. 2(b) is a top view of a disc 100 that is the material of the straightening vanes 4a and 4b. FIG. 3(a) is a cross-sectional view of a cylindrical body 31 showing a state in which the current plates 4a and 4b are welded, and FIG. 3(b) is a partially enlarged cross-sectional view of the gas replacement device 1 showing how the container 3 is assembled. is. In addition, in FIG. 3, the cross section which cut|disconnected in the position corresponding to FIG. 1 is illustrated.
 気体置換装置1を組み立てる場合には先ず、図2(a)に示すように、半円状の整流板4a,4bを成形する。整流板4a,4bの先端には、上述した通り凸部40aや凹部40bが形成されるが、この凸部40aや凹部40bが形成されていない領域を直線部41a,41bと定義する。 When assembling the gas replacement device 1, first, as shown in FIG. As described above, the projections 40a and the recesses 40b are formed at the tips of the straightening plates 4a and 4b.
 整流板4aの凸部40a及び直線部41aを除く外縁は、半円弧状の円弧部42aとして構成され、直線部41aは、円弧部42aの法線方向に延びている。また、整流板4bの凹部40b及び直線部41bを除く外縁は、半円弧状の円弧部42bとして構成され、直線部41bは、円弧部42bの法線方向に延びている。 The outer edge of the straightening plate 4a excluding the convex portion 40a and the linear portion 41a is formed as a semicircular arc portion 42a, and the linear portion 41a extends in the normal direction of the arc portion 42a. Further, the outer edge of the current plate 4b excluding the concave portion 40b and the linear portion 41b is configured as a semicircular arc portion 42b, and the linear portion 41b extends in the normal direction of the arc portion 42b.
 整流板4bの凹部40bは、整流板4aの凸部40aに沿った形状であり、凸部40aを凹部40bに嵌めるようにして整流板4a,4bの先端同士を突き合わせた場合、整流板4a,4bの円弧部42a,42bに沿う外縁が円形となる。これにより、図2(b)に示すように、1枚の金属製の円板100を、整流板4aの凸部40a及び直線部41aの形状に沿う切断線101に沿って切断すれば、凸部40a及び凹部40bを備える整流板4a,4bを成形できる。これにより、整流板4a,4bを成形する際の工数を低減できると共に、整流板4a,4bの材料コストを低減できる。 The concave portion 40b of the straightening plate 4b has a shape along the convex portion 40a of the straightening plate 4a. The outer edge along the arc portions 42a and 42b of 4b is circular. As a result, as shown in FIG. 2(b), if one metal disk 100 is cut along a cutting line 101 along the shape of the convex portion 40a and the straight portion 41a of the straightening plate 4a, the convex The rectifying plates 4a and 4b having the portion 40a and the concave portion 40b can be molded. As a result, it is possible to reduce the number of man-hours for forming the rectifying plates 4a and 4b, and reduce the material cost of the rectifying plates 4a and 4b.
 また、整流板4aの先端の1箇所に凸部40aが形成されるので、例えば整流板4a,4bの先端に複数の凹凸を形成する場合に比べ、凸部40a及び凹部40bを備える半円状の整流板4a,4bを1枚の円板から容易に形成できる。 In addition, since the convex portion 40a is formed at one point of the tip of the rectifying plate 4a, compared to the case where a plurality of concave and convex portions are formed at the tips of the rectifying plates 4a and 4b, for example, a semicircular shape having the convex portion 40a and the concave portion 40b is formed. can be easily formed from a single disk.
 更に、凸部40aの先端は、円弧部42aから離れる方向に凸の湾曲形状であり、凸部40aの基端と直線部41aとの接続部分は、円弧部42a側に向けて凸の湾曲形状になっている。即ち、整流板4a,4bの先端の凸部40a及び凹部40bは、滑らかに湾曲する波形に形成されている。これにより、例えば凸部40a及び凹部40bが鋸歯状(角ばった山形)である場合に比べ、凸部40a及び凹部40bを備える半円状の整流板4a,4bを1枚の円板100から容易に形成できる。 Furthermore, the tip of the convex portion 40a has a curved shape that is convex in the direction away from the arc portion 42a, and the connecting portion between the base end of the convex portion 40a and the straight portion 41a has a curved shape that is convex toward the arc portion 42a. It has become. That is, the projections 40a and the recesses 40b at the tips of the rectifying plates 4a and 4b are formed in smoothly curving waveforms. As a result, the semicircular rectifying plates 4a and 4b having the convex portions 40a and the concave portions 40b can be easily formed from a single disk 100, compared to the case where the convex portions 40a and the concave portions 40b are saw-toothed (square mountain shapes), for example. can be formed to
 図3(a)に示すように、整流板4a,4bを成形した後、その整流板4a,4bの円弧部42a,42bを円筒状の筒体31の内周面に溶接する。この時、筒体31の軸と直交する平面(図3(a)の左右方向)に対して整流板4a,4bを傾斜させた状態で溶接を行うが、この傾斜角度を大きくし過ぎる(例えば5°を超える角度にする)と、円弧部42a,42bと筒体31の内周面との間に過大な隙間が形成されてしまう。これは、1枚の円板100(図2参照)を切断して整流板4a,4bを形成しており、かかる円板100の外径(円弧部42a,42bの曲率)と、筒体31の内径(筒体31の内周面の曲率)とが一致しているためである。 As shown in FIG. 3(a), after forming the rectifying plates 4a and 4b, arc portions 42a and 42b of the rectifying plates 4a and 4b are welded to the inner peripheral surface of the cylindrical body 31. As shown in FIG. At this time, welding is performed in a state in which the current plates 4a and 4b are inclined with respect to a plane perpendicular to the axis of the cylindrical body 31 (horizontal direction in FIG. 3(a)). If the angle exceeds 5.degree. The current plates 4a and 4b are formed by cutting one disk 100 (see FIG. 2). (curvature of the inner peripheral surface of the cylinder 31).
 よって、筒体31の軸と直交する平面に対し、整流板4a,4bの傾斜角度(下降傾斜する角度)が5°以下(本実施形態では、3°)になるように整流板4a,4bを筒体31に溶接することが好ましい。なお、この5°以下という角度は、気体置換装置1を組み立てた後の水平方向に対する整流板4a,4bの角度である。このような角度で整流板4a,4bを筒体31に溶接することにより、整流板4a,4bの円弧部42a,42bと筒体31の内周面との間に過大な隙間が生じることを抑制できる。これにより、筒体31に対する整流板4a,4bの溶接を容易に行うことができると共に、溶接後の整流板4a,4bと筒体31の内周面との間に隙間が生じることを抑制できる。即ち、整流板4a,4bと筒体31の内周面との溶接を適切に行うことができる。 Therefore, the straightening plates 4a and 4b are arranged such that the angle of inclination (angle of downward inclination) of the straightening plates 4a and 4b with respect to a plane orthogonal to the axis of the cylindrical body 31 is 5° or less (3° in this embodiment). is preferably welded to the cylinder 31 . The angle of 5° or less is the angle of the straightening vanes 4a and 4b with respect to the horizontal direction after the gas replacement device 1 is assembled. By welding the rectifying plates 4a and 4b to the cylindrical body 31 at such an angle, it is possible to avoid the occurrence of excessive gaps between the arc portions 42a and 42b of the rectifying plates 4a and 4b and the inner peripheral surface of the cylindrical body 31. can be suppressed. As a result, the current plates 4a and 4b can be easily welded to the cylinder 31, and the occurrence of a gap between the current plates 4a and 4b and the inner peripheral surface of the cylinder 31 after welding can be suppressed. . That is, the straightening plates 4a and 4b and the inner peripheral surface of the cylindrical body 31 can be appropriately welded.
 図3(b)に示すように、筒体31に整流板4a,4bを溶接した後、その筒体31を容器本体30に固定する。容器本体30は、上端が開放する筒状に形成され、筒体31の外径は、容器本体30の内径よりも僅かに小さく形成されている。よって、容器本体30に筒体31を固定する際には、容器3の上端の開放部分から筒体31を挿入する。 As shown in FIG. 3(b), after welding the current plates 4a and 4b to the cylindrical body 31, the cylindrical body 31 is fixed to the container body 30. The container body 30 is formed in a cylindrical shape with an open upper end, and the outer diameter of the cylindrical body 31 is slightly smaller than the inner diameter of the container body 30 . Therefore, when fixing the cylindrical body 31 to the container main body 30 , the cylindrical body 31 is inserted from the open portion of the upper end of the container 3 .
 この筒体31の挿入時に、容器本体30の側面に貫通する取水口30dと、筒体31の側面に貫通する貫通孔31aとを連通させる。これらの取水口30d及び貫通孔31aは、上述した取水管2(図1参照)が接続される部位である。 When the cylindrical body 31 is inserted, the intake port 30d passing through the side surface of the container body 30 and the through hole 31a passing through the side surface of the cylindrical body 31 are brought into communication. The water intake port 30d and the through hole 31a are portions to which the above-described water intake pipe 2 (see FIG. 1) is connected.
 容器本体30の上端には、径方向外側に向けて張り出すフランジ30eが形成され、筒体31の上端にも径方向外側に張り出すフランジ31bが形成される。筒体31のフランジ31bの外径は、容器本体30の内径よりも大きいので、容器本体30に筒体31を挿入した際には、筒体31のフランジ31bを容器本体30のフランジ30eに引っ掛けることができる。これにより、容器本体30への筒体31の固定や、容器本体30及び筒体31の上端側への蓋体32の固定を、容器本体30に対する筒体31の相対位置を定めた状態で行うことができる。よって、それらの固定作業の作業性を向上できる。 A flange 30e projecting radially outward is formed at the upper end of the container body 30, and a flange 31b projecting radially outward is formed at the upper end of the cylindrical body 31 as well. Since the outer diameter of the flange 31b of the cylindrical body 31 is larger than the inner diameter of the container body 30, when the cylindrical body 31 is inserted into the container body 30, the flange 31b of the cylindrical body 31 is hooked on the flange 30e of the container body 30. be able to. As a result, the fixing of the cylindrical body 31 to the container body 30 and the fixing of the lid body 32 to the upper end side of the container body 30 and the cylindrical body 31 are performed in a state in which the relative position of the cylindrical body 31 to the container body 30 is determined. be able to. Therefore, workability of the fixing work can be improved.
 容器本体30に筒体31を挿入した後、筒体31の上端側の開放部分を蓋体32によって覆う。蓋体32は、下方が開放する略半球状に形成されており、蓋体32の下端からは径方向外側にフランジ32aが張り出している。よって、容器本体30、筒体31、及び蓋体32の各フランジ30e,31b,32aを重ね合わせた状態で、図示しないボルト及びナットで共締めすることにより、容器3の組立が完了する。 After inserting the cylindrical body 31 into the container main body 30 , the open portion on the upper end side of the cylindrical body 31 is covered with the lid body 32 . The lid body 32 is formed in a substantially hemispherical shape with an open bottom, and a flange 32a protrudes radially outward from the lower end of the lid body 32 . Therefore, the assembly of the container 3 is completed by tightening the flanges 30e, 31b, and 32a of the container body 30, the cylinder 31, and the lid 32 together with bolts and nuts (not shown).
 このように、本実施形態の容器3は、上端側が開放される容器本体30と、その容器本体30の上端から挿入可能に構成され、容器本体30の内周側に固定される筒体31と、それら容器本体30及び筒体31の上端側を閉塞する蓋体32とを備え、整流板4a,4bは、筒体31の内周面に固定されるので、容器本体30に筒体31を固定することによって整流板4a,4bを容器本体30の内周側に配置できる。つまり、容器本体30に比べて上下方向(軸方向)寸法が小さい筒体31に整流板4a,4bを固定すれば良いため、その固定作業の作業性を向上できる。 As described above, the container 3 of this embodiment includes a container body 30 whose upper end side is open, and a cylindrical body 31 which is configured so as to be insertable from the upper end of the container body 30 and fixed to the inner peripheral side of the container body 30. , and a lid 32 that closes the upper ends of the container body 30 and the cylindrical body 31 . By fixing them, the rectifying plates 4a and 4b can be arranged on the inner peripheral side of the container body 30. As shown in FIG. That is, since it is sufficient to fix the rectifying plates 4a and 4b to the cylindrical body 31 having a smaller vertical (axial) dimension than the container body 30, workability of the fixing work can be improved.
 また、筒体31は、その上端側から径方向外側に張り出すフランジ31bを備え、そのフランジ31bの外径が容器本体30の内径よりも大きいので、容器本体30に筒体31を挿入することにより、筒体31のフランジ31bを容器本体30に引っ掛けることができる。これにより、筒体31及び容器本体30の上端側に蓋体32を固定する作業の作業性を向上できる。 Further, the cylindrical body 31 has a flange 31b projecting radially outward from its upper end side, and the outer diameter of the flange 31b is larger than the inner diameter of the container body 30, so that the cylindrical body 31 can be inserted into the container body 30. Thus, the flange 31b of the cylindrical body 31 can be hooked to the container body 30. As shown in FIG. Thereby, the workability of fixing the cover 32 to the upper end side of the cylinder 31 and the container main body 30 can be improved.
 以上、上記実施形態に基づき本発明を説明したが、本発明は上記形態に何ら限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の変形改良が可能であることは容易に推察できるものである。例えば、上記の背景技術で説明した気体置換装置に関する構成を上記実施形態の気体置換装置1に適用することは当然可能である。 Although the present invention has been described based on the above embodiments, the present invention is by no means limited to the above embodiments, and it will be easily understood that various modifications and improvements are possible without departing from the scope of the present invention. It can be inferred. For example, it is naturally possible to apply the configuration related to the gas replacement device described in the background art above to the gas replacement device 1 of the above embodiment.
 上記実施形態では、容器3(容器本体30)の側面に取水管2が接続されることにより、整流板4aの延設方向(図1の左右方向)に沿って汚濁水が流入する場合を説明したが、必ずしもこれに限られるものではない。例えば、取水管2を容器3の上面(蓋体32)に接続することにより、整流板4a(凸部40a)の上面に向けて略垂直に汚濁水を流入(落下)させる構成でも良い。この構成であれば、取水管2から流下する汚濁水を整流板4a(凸部40a)で受けることができるので、整流板4a(凸部40a)によって汚濁水を薄い水膜にする機能を確実に発揮させることができる。 In the above-described embodiment, the intake pipe 2 is connected to the side surface of the container 3 (container main body 30), so that polluted water flows in along the extending direction of the current plate 4a (horizontal direction in FIG. 1). However, it is not necessarily limited to this. For example, by connecting the water intake pipe 2 to the upper surface (cover 32) of the container 3, the contaminated water may flow (fall) substantially vertically toward the upper surface of the current plate 4a (projections 40a). With this configuration, the rectifying plate 4a (convex portion 40a) can receive the polluted water flowing down from the water intake pipe 2, so the rectifying plate 4a (convex portion 40a) reliably functions to turn the polluted water into a thin water film. can be exhibited.
 上記実施形態では、整流板4a,4bの先端の1箇所に波形の凸部40a及び凹部40bが形成される場合を説明したが、必ずしもこれに限られるものではない。例えば、整流板4a,4bの先端に複数の凸部40a及び凹部40bを形成しても良いし、凸部40a及び凹部40bの形状を鋸歯状に形成しても良い。また、整流板4a,4bの片方のみに凸部40a又は凹部40bを形成しても良いし、整流板4a,4bの凸部40a及び凹部40bを省略し、整流板4a,4bの先端を直線部41a,41bのみから構成しても良い。 In the above embodiment, the case where the wavy convex portion 40a and the wavy concave portion 40b are formed at one point at the tip of the current plate 4a, 4b has been described, but the present invention is not necessarily limited to this. For example, a plurality of protrusions 40a and recesses 40b may be formed at the tips of the straightening plates 4a and 4b, or the protrusions 40a and recesses 40b may be formed in a sawtooth shape. Alternatively, the convex portion 40a or the concave portion 40b may be formed only on one of the rectifying plates 4a and 4b, or the convex portion 40a and the concave portion 40b of the rectifying plates 4a and 4b may be omitted, and the tips of the rectifying plates 4a and 4b may be straight. It may be composed only of the portions 41a and 41b.
 上記実施形態では、整流板4aの凸部40aが整流板4bの凹部40bに沿う形状であり、1枚の円板100から整流板4a,4bを形成する場合を説明したが、必ずしもこれに限られるものではない。例えば、整流板4a,4bの各々に同一形状の凸部40a(凹部40b)を形成しても良い。また、互いの凹凸部同士を嵌め合わせるようにして整流板4a,4bの先端を突き合わせた場合に、1枚の円板にならない構成でも良いし、それらの凹凸部同士の嵌め合わせが不可能な構成でも良い。即ち、1枚の円板100を材料にして整流板4a,4bを成形する構成に限定されるものではない。 In the above embodiment, the convex portion 40a of the straightening plate 4a has a shape along the concave portion 40b of the straightening plate 4b, and the straightening plates 4a and 4b are formed from a single disk 100. However, this is not necessarily the case. It is not something that can be done. For example, each of the rectifying plates 4a and 4b may be formed with a convex portion 40a (a concave portion 40b) having the same shape. In addition, it is also possible to adopt a configuration in which the rectifying plates 4a and 4b do not form a single disk when the ends of the rectifying plates 4a and 4b are brought into contact with each other so that the uneven portions are fitted to each other. Configuration is fine. That is, the present invention is not limited to the configuration in which the rectifying plates 4a and 4b are formed using one disc 100 as a material.
 また、1枚の円板100から整流板4a,4bを成形するのではなく、円板100よりも大きい金属板から整流板4a,4bを切り出す構成でも良い。この構成の場合においても、少なくとも整流板4a,4bの凸部40aが凹部40bに沿う形状であることが好ましい。これにより、金属板を凸部40a(凹部40b)の形状に沿って切断することにより、整流板4a,4bの凸部40a及び凹部40bを同時に形成できるので、整流板4a,4bを成形する際の工数を低減できる。 Further, instead of forming the rectifiers 4a and 4b from a single disk 100, the rectifiers 4a and 4b may be cut out from a metal plate larger than the disk 100. Even in this configuration, it is preferable that at least the convex portions 40a of the straightening plates 4a and 4b have a shape along the concave portions 40b. Accordingly, by cutting the metal plate along the shape of the convex portions 40a (concave portions 40b), the convex portions 40a and the concave portions 40b of the straightening plates 4a and 4b can be formed at the same time. man-hours can be reduced.
 上記実施形態では、水平方向に対する整流板4a,4bの各々の傾斜角度が3°(5°以下)である場合を説明したが、必ずしもこれに限られるものではない。例えば、整流板4a,4bは、水平方向に対する角度が5°を超えていても良いし、水平方向に対して平行であっても良い。また、水平方向に対する整流板4aの角度が整流板4bの角度よりも大きく(小さく)ても良い。 In the above embodiment, the inclination angle of each of the straightening vanes 4a and 4b with respect to the horizontal direction is 3° (5° or less), but it is not necessarily limited to this. For example, the straightening vanes 4a and 4b may have an angle of more than 5° with respect to the horizontal direction, or may be parallel to the horizontal direction. Further, the angle of the rectifying plate 4a with respect to the horizontal direction may be larger (smaller) than the angle of the rectifying plate 4b.
 上記実施形態では、整流板4a,4bが筒体31の内周面に溶接によって接合される場合を説明したが、必ずしもこれに限られるものではない。例えば、ボルトやリベットなどの締結手段等、公知の固定手段によって整流板4a,4bを筒体31の内周面に接合する構成でも良く、このような構成においても、水平方向に対する整流板4a,4bの傾斜角度を3°(5°以下)にすることが好ましい。これにより、筒体31と整流板4a,4bとの間に隙間が生じることを抑制できるので、それらの接合を適切に行うことができる(接合後の筒体31と整流板4a,4bとの間に隙間が生じることを抑制できる)。 In the above embodiment, the current plates 4a and 4b are welded to the inner peripheral surface of the cylindrical body 31, but the present invention is not necessarily limited to this. For example, the rectifying plates 4a and 4b may be joined to the inner peripheral surface of the cylindrical body 31 by known fixing means such as bolts and rivets. It is preferable to set the inclination angle of 4b to 3° (5° or less). As a result, it is possible to suppress the formation of gaps between the cylindrical body 31 and the rectifying plates 4a and 4b, so that they can be properly joined (the jointed cylindrical body 31 and the rectifying plates 4a and 4b can be properly joined together). It is possible to suppress the occurrence of gaps between them).
 上記実施形態では、容器3が容器本体30、筒体31、及び蓋体32から構成され、筒体31の内周面に整流板4a,4bが固定される場合を説明したが、必ずしもこれに限られるものではない。例えば、筒体31を省略し、整流板4a,4bを容器本体30の内周面30cに直接固定しても良いし、筒体31と蓋体32とが一体であっても良い。 In the above embodiment, the container 3 is composed of the container body 30, the cylinder 31, and the lid 32, and the rectifying plates 4a and 4b are fixed to the inner peripheral surface of the cylinder 31. However, this is not necessarily the case. It is not limited. For example, the cylinder 31 may be omitted and the rectifying plates 4a and 4b may be directly fixed to the inner peripheral surface 30c of the container body 30, or the cylinder 31 and the lid 32 may be integrated.
 上記実施形態では、容器本体30、筒体31及び蓋体32の各フランジ30e,31b,32aがボルト及びナットによって共締めされる場合を説明したが、必ずしもこれに限られるものではない。例えば、筒体31のフランジ31bを省略し、筒体31を引っ掛けるための金具を容器本体30の内周面30cに設ける構成でも良い。また、そのような筒体31を引っ掛けるような金具を使うことなく、容器本体30の内周面30cに筒体31を溶接しても良い。即ち、容器本体30の内周側に筒体31を固定できる構成であれば、その固定方法は上記の形態に限定されるものではない。 In the above embodiment, the flanges 30e, 31b, and 32a of the container body 30, cylinder 31, and lid 32 are fastened together with bolts and nuts, but the invention is not necessarily limited to this. For example, the flange 31b of the cylindrical body 31 may be omitted, and a metal fitting for hooking the cylindrical body 31 may be provided on the inner peripheral surface 30c of the container body 30. FIG. Alternatively, the tubular body 31 may be welded to the inner peripheral surface 30c of the container body 30 without using such a fitting for hooking the tubular body 31 . In other words, as long as the cylindrical body 31 can be fixed to the inner peripheral side of the container body 30, the fixing method is not limited to the above embodiment.
 上記実施形態では、容器本体30の底面30aに排水口30bが形成され、かかる底面30aが容器本体30の内周面30cから排水口30b側に向けて下降傾斜する場合を説明したが、必ずしもこれに限られるものではない。例えば、容器本体30の内周面30c(側面)に排水口30bを形成しても良いし、容器本体30の底面30aが水平方向に対して平行である構成でも良い。 In the above embodiment, the bottom surface 30a of the container body 30 is formed with the drain port 30b, and the bottom surface 30a is inclined downward from the inner peripheral surface 30c of the container body 30 toward the drain port 30b. is not limited to For example, the drain port 30b may be formed on the inner peripheral surface 30c (side surface) of the container body 30, or the bottom surface 30a of the container body 30 may be parallel to the horizontal direction.
 上記実施形態では、供給管5(気体供給手段)から容器3に供給される気体が酸素である場合を説明したが、必ずしもこれに限られるものではない。例えば、窒素、二酸化炭素、水素、オゾン、又はアルゴン等の他の気体を供給管5から供給しても良い。 In the above embodiment, the gas supplied from the supply pipe 5 (gas supply means) to the container 3 is oxygen, but it is not necessarily limited to this. For example, other gases such as nitrogen, carbon dioxide, hydrogen, ozone, or argon may be supplied through supply pipe 5 .
 上記実施形態では、排水管8は、酸素溶解水を被浄化水域に還元するための第1排水管80と、酸素溶解水を被浄化水域とは異なる場所(排水路)に排水するための第2排水管81とを備える場合を説明したが、必ずしもこれに限られるものではない。例えば、排水管8は、第1排水管80のみから構成しても良いし、排水管80,81に加え、更に別の排水管を設ける構成でも良い。 In the above embodiment, the drain pipe 8 includes the first drain pipe 80 for returning the oxygen-dissolved water to the water area to be purified, and the second drain pipe 80 for discharging the oxygen-dissolved water to a place (drainage channel) different from the water area to be purified. Although the case of having two drain pipes 81 has been described, it is not necessarily limited to this. For example, the drain pipe 8 may be composed only of the first drain pipe 80, or may be configured to provide another drain pipe in addition to the drain pipes 80 and 81.
1        気体置換装置
2        取水管(処理水供給手段)
3        容器
30       容器本体
30a      底面
30b      排水口
30c      内周面
31       筒体
31b      フランジ
32       蓋体
4a       整流板(第1整流板)
40a      凸部
4b       整流板(第2整流板)
40b      凹部
5        供給管(気体供給手段)
8        排水管
80       第1排水管
81       第2排水管
1 gas replacement device 2 water intake pipe (treated water supply means)
3 Container 30 Container main body 30a Bottom surface 30b Drain port 30c Inner circumferential surface 31 Cylindrical body 31b Flange 32 Lid 4a Straightening plate (first straightening plate)
40a convex portion 4b rectifying plate (second rectifying plate)
40b recess 5 supply pipe (gas supply means)
8 drain pipe 80 first drain pipe 81 second drain pipe

Claims (10)

  1.  気体を供給する気体供給手段と、その気体供給手段から供給される前記気体によって内部が大気圧以上に加圧される円筒状の容器と、その容器の内部に固定される複数の整流板と、それら複数の整流板で流下させる処理水を水源から取水して前記容器に供給する処理水供給手段と、を備え、前記処理水に溶解している気体を、前記気体供給手段から供給される気体に置換させる気体置換装置において、
     前記整流板は、第1方向側に向けて下降傾斜する第1整流板と、前記第1方向とは反対の第2方向側に向けて下降傾斜する第2整流板とを備え、
     上下方向において前記第1整流板と前記第2整流板とが交互に並べて設けられ、前記処理水が前記第1整流板および前記第2整流板を蛇行しながら流下することを特徴とする気体置換装置。
    a gas supply means for supplying gas; a cylindrical container whose interior is pressurized to atmospheric pressure or higher by the gas supplied from the gas supply means; and a plurality of rectifying plates fixed inside the container; a treated water supply means for supplying the treated water flowing down by the plurality of rectifying plates from a water source to the container, wherein the gas dissolved in the treated water is supplied from the gas supply means. In the gas replacement device to replace
    The rectifying plate includes a first rectifying plate that slopes downward in a first direction, and a second straightening plate that slopes downward in a second direction opposite to the first direction,
    The gas replacement, wherein the first straightening vanes and the second straightening vanes are arranged alternately in a vertical direction, and the treated water flows down while meandering through the first straightening vanes and the second straightening vanes. Device.
  2.  前記第1整流板および前記第2整流板は、その下流側の端部に形成される凸部または凹部を備えることを特徴とする請求項1記載の気体置換装置。 The gas replacement device according to claim 1, wherein the first rectifying plate and the second rectifying plate are provided with a convex portion or a concave portion formed at their downstream end portions.
  3.  前記第1整流板は、前記凸部を備え、
     前記第2整流板は、前記凸部に沿う形状の前記凹部を備えることを特徴とする請求項2記載の気体置換装置。
    The first straightening plate includes the convex portion,
    3. The gas replacement device according to claim 2, wherein the second rectifying plate has the concave portion having a shape along the convex portion.
  4.  前記凸部を前記凹部に嵌めるようにして前記第1整流板および前記第2整流板を突き合わせた場合に、前記第1整流板および前記第2整流板の外縁が円形になることを特徴とする請求項3記載の気体置換装置。 The outer edges of the first straightening plate and the second straightening plate are circular when the first straightening plate and the second straightening plate are butted against each other such that the convex portion is fitted in the concave portion. The gas replacement device according to claim 3.
  5.  前記容器の軸方向と直交する平面に対する前記第1整流板および前記第2整流板の傾斜角度が5°以下であることを特徴とする請求項4記載の気体置換装置。 5. The gas replacement device according to claim 4, wherein the inclination angle of the first rectifying plate and the second rectifying plate with respect to a plane perpendicular to the axial direction of the container is 5° or less.
  6.  前記容器の内部の底面に形成され、前記処理水を前記容器の外部に排出する排水口を備えることを特徴とする請求項1から5のいずれかに記載の気体置換装置。 6. The gas replacement device according to any one of claims 1 to 5, further comprising a drain port formed on the bottom surface inside the container for discharging the treated water to the outside of the container.
  7.  前記容器の内部の底面は、前記容器の内周面側から前記排水口側に向けて下降傾斜していることを特徴とする請求項6記載の気体置換装置。 The gas replacement device according to claim 6, wherein the bottom surface inside the container is inclined downward from the inner peripheral surface side of the container toward the drain port side.
  8.  前記排水口に接続される排水管を備え、
     前記排水管は、前記処理水を前記水源に戻すための第1排水管と、前記処理水を前記水源とは異なる場所に排水するための第2排水管とを備えることを特徴とする請求項6又は7に記載の気体置換装置。
    A drain pipe connected to the drain outlet,
    4. The drain pipe comprises a first drain pipe for returning the treated water to the water source, and a second drain pipe for draining the treated water to a location different from the water source. 8. The gas replacement device according to 6 or 7.
  9.  前記容器は、上端側が開放される容器本体と、その容器本体の上端から挿入可能に構成され、前記容器本体の内周側に固定される筒体と、それら容器本体および筒体の上端側を閉塞する蓋体とを備え、
     前記第1整流板および前記第2整流板は、前記筒体の内周面に固定され、
     前記容器本体よりも前記筒体の上下方向寸法が小さいことを特徴とする請求項1から8のいずれかに記載の気体置換装置。
    The container comprises a container body whose upper end side is open, a cylindrical body configured so as to be insertable from the upper end of the container body and fixed to the inner peripheral side of the container body, and upper end sides of the container body and the cylindrical body. and a closing lid,
    The first straightening plate and the second straightening plate are fixed to the inner peripheral surface of the cylindrical body,
    9. The gas replacement device according to any one of claims 1 to 8, wherein the vertical dimension of the cylindrical body is smaller than that of the container body.
  10.  前記筒体は、その上端側から径方向外側に張り出すフランジを備え、
     前記フランジの外径が前記容器本体の内径よりも大きいことを特徴とする請求項9記載の気体置換装置。
    The cylindrical body has a flange projecting radially outward from its upper end side,
    10. The gas replacement device according to claim 9, wherein the outer diameter of said flange is larger than the inner diameter of said container body.
PCT/JP2022/008064 2022-02-25 2022-02-25 Gas replacement device WO2023162183A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/008064 WO2023162183A1 (en) 2022-02-25 2022-02-25 Gas replacement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/008064 WO2023162183A1 (en) 2022-02-25 2022-02-25 Gas replacement device

Publications (1)

Publication Number Publication Date
WO2023162183A1 true WO2023162183A1 (en) 2023-08-31

Family

ID=87765137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008064 WO2023162183A1 (en) 2022-02-25 2022-02-25 Gas replacement device

Country Status (1)

Country Link
WO (1) WO2023162183A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1738543A (en) * 1928-05-18 1929-12-10 Travers Lewis Process Corp Process for removing odors from gases and air
US2570460A (en) * 1948-10-19 1951-10-09 Paper Chemistry Inst Oxidizer for black liquor
JPS5918383A (en) * 1982-07-21 1984-01-30 Hitachi Ltd Liquid/liquid direct contact type heat exchanger
JP2001046802A (en) * 1999-06-03 2001-02-20 Nippon Shokubai Co Ltd Method and apparatus for refining of organic compound containing easily blockable substance
JP2008086896A (en) * 2006-09-29 2008-04-17 Daiei Kk Gas dissolving device
US20110286297A1 (en) * 2010-05-21 2011-11-24 Robert Scott Decker Infuser for supersaturating a liquid with a gas
JP2013027814A (en) * 2011-07-28 2013-02-07 Daiei Seisakusho:Kk Gas dissolving device
JP2014188458A (en) * 2013-03-27 2014-10-06 Cti Engineering Co Ltd Oxygen-dissolved water supply system to object water zone for water environment improvement
WO2017191678A1 (en) * 2016-05-02 2017-11-09 株式会社大栄製作所 Gas replacement device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1738543A (en) * 1928-05-18 1929-12-10 Travers Lewis Process Corp Process for removing odors from gases and air
US2570460A (en) * 1948-10-19 1951-10-09 Paper Chemistry Inst Oxidizer for black liquor
JPS5918383A (en) * 1982-07-21 1984-01-30 Hitachi Ltd Liquid/liquid direct contact type heat exchanger
JP2001046802A (en) * 1999-06-03 2001-02-20 Nippon Shokubai Co Ltd Method and apparatus for refining of organic compound containing easily blockable substance
JP2008086896A (en) * 2006-09-29 2008-04-17 Daiei Kk Gas dissolving device
US20110286297A1 (en) * 2010-05-21 2011-11-24 Robert Scott Decker Infuser for supersaturating a liquid with a gas
JP2013027814A (en) * 2011-07-28 2013-02-07 Daiei Seisakusho:Kk Gas dissolving device
JP2014188458A (en) * 2013-03-27 2014-10-06 Cti Engineering Co Ltd Oxygen-dissolved water supply system to object water zone for water environment improvement
WO2017191678A1 (en) * 2016-05-02 2017-11-09 株式会社大栄製作所 Gas replacement device

Similar Documents

Publication Publication Date Title
CN1120808C (en) Bottle water disinfection system
JP2018516753A (en) Nanobubble and hydroxyl radical generator and system for treating sewage without using chemicals using the same
CN1819868B (en) Method, device, and system for controlling dissolved amount of gas
FI100794B (en) Method and apparatus for water treatment
JP2004510567A (en) Gas dissolving apparatus and method
MXPA05007119A (en) Water circulation systems for ponds, lakes, and other bodies of water.
CN103313941A (en) Method and apparatus employing sterilise water in reduced pressure zone
US20210276902A1 (en) Wastewater treatment system
EP1272430B1 (en) Device and method for water treatment by foaming
WO2023162183A1 (en) Gas replacement device
JP2008086896A (en) Gas dissolving device
US8133394B2 (en) Method for purifying wastewater
JP5792212B2 (en) Water purification device using hydropower
KR101001570B1 (en) If the check rises to the surface and the waste water agitation system which does to be made to agitate
JP2008200604A (en) Bubble treatment device and water treatment apparatus
KR20180113329A (en) Bubble generator for air purification
JP5689453B2 (en) Water purification equipment
RU25504U1 (en) WATER TREATMENT PLANT
CN216038865U (en) Blue algae preventing and removing device and copper pipe algae removing device
JP5091404B2 (en) Liquid purification device
RU2380322C1 (en) Device for aerating purified liquid
US20230068072A1 (en) Negative Pressure Aeration And Organic Growth Suppression System
RU190340U1 (en) FLOATING AERATION SYSTEM WITH A SEAL BOX
WO2018151587A1 (en) Self-contained floating mechanism for aerating bodies of water
JP4253301B2 (en) Purification processing equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927613

Country of ref document: EP

Kind code of ref document: A1