WO2023162172A1 - 回転体および回転電機並びに電動圧縮機、回転体の製造方法 - Google Patents

回転体および回転電機並びに電動圧縮機、回転体の製造方法 Download PDF

Info

Publication number
WO2023162172A1
WO2023162172A1 PCT/JP2022/008009 JP2022008009W WO2023162172A1 WO 2023162172 A1 WO2023162172 A1 WO 2023162172A1 JP 2022008009 W JP2022008009 W JP 2022008009W WO 2023162172 A1 WO2023162172 A1 WO 2023162172A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotating shaft
pressure side
outer peripheral
rotor
pair
Prior art date
Application number
PCT/JP2022/008009
Other languages
English (en)
French (fr)
Inventor
直道 柴田
永護 加藤
航 山田
敬信 吉澤
真 小川
孝昭 吉澤
佑紀 八鍬
雄志 大迫
Original Assignee
三菱重工エンジン&ターボチャージャ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジン&ターボチャージャ株式会社 filed Critical 三菱重工エンジン&ターボチャージャ株式会社
Priority to PCT/JP2022/008009 priority Critical patent/WO2023162172A1/ja
Publication of WO2023162172A1 publication Critical patent/WO2023162172A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/278Surface mounted magnets; Inset magnets

Definitions

  • the present disclosure relates to a rotating body, a rotating electrical machine, an electric compressor, and a method for manufacturing a rotating body.
  • an electric motor (motor) applied to an electric compressor is generally applied with an air bearing to prevent lubricating oil from mixing into compressed air, and is operated by supplying compressed air to the air bearing.
  • Patent Document 1 As such an electric compressor, for example, there is one described in Patent Document 1 below.
  • the electric compressor described in Patent Literature 1 has a magnet arranged in an axially intermediate portion of a rotating shaft and a sleeve arranged outside thereof.
  • the rotating shaft is rotatably supported with respect to the housing by air bearings at one axial end and the other axial end of the sleeve.
  • the outer peripheral surface of the rotating shaft and the inner peripheral surface of the bearing are in contact with each other when compressed air is not supplied.
  • compressed air is supplied to the air bearing, separating the outer peripheral surface of the rotating rotating shaft from the inner peripheral surface of the bearing, and the air bearing allows the rotating shaft to rotate freely at a predetermined position. to support. That is, when the rotating shaft starts to rotate, it rotates while the outer peripheral surface of the rotating shaft and the inner peripheral surface of the bearing are in contact with each other, which causes wear. Therefore, the rotating shaft (sleeve) is generally provided with a wear-resistant coating on the outer peripheral surface facing the air bearing.
  • the outer peripheral surface of the sleeve is coated with a wear-resistant coating, and then the sleeve is fixed to the outer peripheral surface of the rotating shaft by shrink fitting.
  • the heat treatment temperature for shrink fitting of the sleeve exceeds the application temperature of the wear-resistant coating, the coating layer may deteriorate. Therefore, it becomes difficult to manage the application temperature of the wear-resistant coating and the heat treatment temperature for shrink fitting.
  • the present disclosure is intended to solve the above-described problems, and provides a rotating body, a rotating electric machine, an electric compressor, and a method for manufacturing a rotating body that can appropriately secure a wear-resistant coating for air bearings. With the goal.
  • a rotating body of the present disclosure for achieving the above object comprises a rotating shaft made of a magnetic material, a rotor fixed to the rotating shaft, and a cylindrical end portion of the rotor in the axial direction and the other end portion in the axial direction. a pair of air bearing bearing sleeves attached to the ends and having a wear-resistant coating layer on an outer peripheral surface, wherein the pair of air bearing bearing sleeves are attached to the wear-resistant before being assembled to the rotating shaft.
  • a protective coating layer is provided.
  • the rotating electrical machine of the present disclosure includes a housing having a hollow shape, a stator having a cylindrical shape and fixed to the inner peripheral surface of the housing, and the rotor forming a gap on the inner peripheral surface of the stator.
  • a pair of air bearings provided in the housing so as to face each other with a gap between the outer peripheral surfaces of the pair of air bearing bearing sleeves; Prepare.
  • the electric compressor of the present disclosure includes the rotating electrical machine, a low-pressure wheel fixed to one axial direction of the rotating shaft, and a high-pressure wheel fixed to the other axial direction of the rotating shaft.
  • the method for manufacturing a rotating body of the present disclosure includes the steps of placing an iron core on the outer peripheral portion of a rotating shaft made of a magnetic material, fixing a holding sleeve to the outer peripheral surface of the iron core by shrink fitting, and attaching a pair of air bearing bearing sleeves having a wear-resistant coating layer to one axial end and the other axial end of the rotating shaft.
  • the rotating body According to the rotating body, the rotating electric machine, the electric compressor, and the manufacturing method of the rotating body of the present disclosure, it is possible to appropriately secure the wear-resistant coating for the air bearing.
  • FIG. 1 is a longitudinal sectional view showing the internal configuration of the electric compressor of this embodiment.
  • FIG. 2 is a longitudinal sectional view showing the rotating body of this embodiment.
  • FIG. 3 is a cross-sectional view taken along line III-III in FIG. 2 showing the relationship between the rotating shaft, rotor core and holding sleeve.
  • FIG. 4 is a sectional view taken along line IV-IV in FIG. 2 showing the relationship between the rotating shaft and the holding sleeve.
  • FIG. 5 is a cross-sectional view taken along the line VV in FIG. 2 showing the relationship between the rotating shaft and the bearing sleeve.
  • FIG. 6 is an exploded sectional view for explaining a method of assembling the rotor.
  • the rotating body is applied to a rotating electrical machine, and the rotating electrical machine (motor) is applied to an electric compressor.
  • the configuration is not limited to this, and the rotating body may be applied to a general electric motor as a rotating electrical machine.
  • FIG. 1 is a longitudinal sectional view showing the internal configuration of the electric compressor of the first embodiment.
  • the electric compressor 10 includes a housing 11, a rotating shaft 12, a stator 13, a rotor 14, a low pressure wheel 15 and a high pressure wheel 16.
  • the rotating body is composed of the rotating shaft 12 and the rotor 14 .
  • a rotating electric machine is composed of a housing 11 , a rotating shaft 12 , a stator 13 and a rotor 14 .
  • the housing 11 has a motor housing 21 , a low pressure side bearing housing 22 and a high pressure side bearing housing 23 .
  • the motor housing 21 has a cylindrical shape and has an enlarged diameter end on one axial side (right side in FIG. 1).
  • the low pressure side bearing housing 22 has a disk shape and is arranged on one side of the motor housing 21 in the axial direction.
  • the low pressure side bearing housing 22 is detachably fastened to one axial end of the motor housing 21 with a plurality of bolts.
  • the high pressure side bearing housing 23 has a disk shape and is arranged on the other side of the motor housing 21 in the axial direction.
  • the high pressure side bearing housing 23 is detachably fastened to the other axial end of the motor housing 21 with a plurality of bolts.
  • the cylindrical motor housing 21 has one axial opening closed by the low pressure side bearing housing 22 and the other axial opening closed by the high pressure side bearing housing 23 . Therefore, the housing 11 has a hollow shape by fastening the low pressure side bearing housing 22 and the high pressure side bearing housing 23 to the motor housing 21 .
  • the stator 13 is fixed to the inner periphery of the motor housing 21 .
  • the stator 13 has a cylindrical shape.
  • the stator 13 has a stator core 31 and stator coils 32 .
  • the stator core 31 has a cylindrical shape and is fixed so that its outer peripheral surface is in close contact with the inner peripheral surface of the motor housing 21 .
  • the stator coil 32 is housed inside the stator core 31 .
  • the rotating shaft 12 is arranged inside the housing 11 .
  • the rotary shaft 12 is arranged along an axis O that is concentric with the housing 11 and is rotatably supported by the housing 11 about the axis O.
  • a rotor 14 is fixed to the outer peripheral portion of the rotating shaft 12 at an intermediate position in the axial direction.
  • the rotor 14 has a rotor iron core (permanent magnet) 33 and a retaining sleeve 34 .
  • the rotor core 33 has a cylindrical shape and is arranged on the outer peripheral surface of the rotating shaft 12 .
  • the retaining sleeve 34 has a cylindrical shape and is arranged outside the rotor core 33 .
  • the inner and outer peripheral surfaces of the stator 13 and the rotor 14 face each other in the radial direction.
  • a gap is provided between the inner peripheral surface and the outer peripheral surface of the stator 13 and the rotor 14 . Therefore, when a current flows through the stator coil 32 of the stator 13, the rotor 14 rotates due to the attraction and repulsion forces of the generated magnetic force, and the rotating shaft 12 outputs rotational force.
  • the rotating shaft 12 is rotatably supported by a low pressure side air bearing 35 and a high pressure side air bearing 36 .
  • the rotary shaft 12 is provided with a low-pressure side shaft portion 12a on one side of the rotor 14 in the axial direction, and a high-pressure side shaft portion 12b on the other side of the rotor 14 in the axial direction.
  • the rotary shaft 12 has a low pressure side bearing sleeve (air bearing sleeve) 37 mounted on the low pressure side shaft portion 12a so as to be capable of rotating integrally therewith, and a high pressure side bearing sleeve (air bearing sleeve) 38 on the high pressure side shaft portion 12b. It is mounted so that it can rotate integrally.
  • the low pressure side bearing sleeve 37 functions as a low pressure side shaft portion
  • the high pressure side bearing sleeve 38 functions as a high pressure side shaft portion.
  • the low pressure side air bearing 35 is provided integrally with the low pressure side bearing housing 22 .
  • the low-pressure side air bearing 35 has a cylindrical shape and extends from the inner surface of the low-pressure side bearing housing 22 toward the rotor 14 .
  • the low-pressure side air bearing 35 is arranged outside a low-pressure side bearing sleeve 37 attached to the rotating shaft 12 . When the rotary shaft 12 rotates, a low-pressure gap is secured between the inner peripheral surface of the low-pressure air bearing 35 and the outer peripheral surface of the low-pressure bearing sleeve 37 .
  • the high pressure side air bearing 36 is provided integrally with the high pressure side bearing housing 23 .
  • the high-pressure side air bearing 36 has a cylindrical shape and extends from the inner surface of the high-pressure side bearing housing 23 toward the rotor 14 .
  • the high pressure side air bearing 36 is arranged outside a high pressure side bearing sleeve 38 mounted on the rotating shaft 12 . When the rotary shaft 12 rotates, a high pressure side gap is secured between the inner peripheral surface of the high pressure side air bearing 36 and the outer peripheral surface of the high pressure side bearing sleeve 38 .
  • the rotating shaft 12 has a thrust disc 39 that constitutes a thrust bearing fixed to one side in the axial direction, and a low pressure side thrust sleeve 40 is arranged.
  • a thrust disk 39 is fixed between the low pressure side bearing sleeve 37 and the low pressure wheel 15 on the rotary shaft 12 .
  • the thrust disc 39 rotates integrally with the rotating shaft 12 .
  • the low-pressure side bearing housing 22 is provided with a low-pressure side space 41 around the axis O. As shown in FIG.
  • the thrust disk 39 is arranged in the low pressure side space portion 41 .
  • the low pressure side space portion 41 communicates with the low pressure gap between the inner peripheral surface of the low pressure side air bearing 35 and the outer peripheral surface of the low pressure side bearing sleeve 37 .
  • a low pressure side thrust sleeve 40 is arranged between the low pressure wheel 15 and the thrust disc 39 on the axis of rotation 12 .
  • the low pressure side thrust sleeve 40 rotates integrally with the rotating shaft 12 .
  • the low-pressure side thrust sleeve 40 is provided with a seal member (not shown) on its outer periphery. The outer peripheral portion of the sealing member contacts the inner peripheral surface of the low pressure side bearing housing 22 .
  • the low pressure side thrust sleeve 40 is rotatable with respect to the low pressure side bearing housing 22 .
  • a high pressure side thrust sleeve 42 is arranged on the other side of the rotating shaft 12 in the axial direction.
  • a high pressure side thrust sleeve 42 is arranged between the high pressure wheel 16 and the high pressure side bearing sleeve 38 on the rotating shaft 12 .
  • the high pressure side thrust sleeve 42 rotates integrally with the rotating shaft 12 .
  • the high pressure side thrust sleeve 42 is provided with a seal member (not shown) on the outer periphery. The outer peripheral portion of the sealing member contacts the inner peripheral surface of the high pressure side bearing housing 23 .
  • the high pressure side thrust sleeve 42 is rotatable with respect to the high pressure side bearing housing 23 .
  • the housing 11 has a low pressure compressor 51 arranged on the low pressure side bearing housing 22 side and a high pressure compressor 61 arranged on the high pressure side bearing housing 23 side.
  • the low pressure compressor 51 has a low pressure side housing 52 and a low pressure wheel 15 .
  • the high pressure compressor 61 has a high pressure side housing 62 and a high pressure wheel 16 .
  • the low pressure side housing 52 is fastened to the outer surface of the low pressure side bearing housing 22 with a plurality of bolts.
  • the low pressure wheel 15 is arranged inside the low pressure side housing 52 .
  • the low-pressure wheel 15 is fixed to one axial end of the rotary shaft 12 by a nut 53 so as to be rotatable together.
  • the low-pressure compressor 51 is provided with a suction port 54 , a diffuser 55 , a spiral scroll portion 56 and a discharge port (not shown) by a low-pressure side housing 52 and a low-pressure wheel 15 .
  • the high pressure side housing 62 is fastened to the outer surface of the high pressure side bearing housing 23 with a plurality of bolts.
  • the high pressure wheel 16 is located inside the high pressure side housing 62 .
  • the high-pressure wheel 16 is fixed to the other axial end portion of the rotating shaft 12 by a nut 63 so as to be integrally rotatable.
  • the high pressure compressor 61 is provided with a suction port 64, a diffuser 65, a spiral scroll portion 66, and a discharge port (not shown) by means of a high pressure side housing 62 and a high pressure wheel 16. As shown in FIG.
  • the low-pressure compressor 51 and the high-pressure compressor 61 are connected by a connection passage 71 at a discharge port (not shown) and a suction port 64 .
  • the low-pressure compressor 51 When the low-pressure wheel 15 rotates, the low-pressure compressor 51 sucks external air from the suction port 54 and is accelerated by the centrifugal force of the low-pressure wheel 15. After the accelerated air is decelerated and pressurized by the diffuser 55, the scroll It flows through the portion 56 and is discharged from the outlet. Low-pressure air compressed by the low-pressure compressor 51 is supplied to the high-pressure compressor 61 through the connecting flow path 71 .
  • the high-pressure compressor 61 When the high-pressure wheel 16 rotates, the high-pressure compressor 61 sucks external air from the suction port 64 and is accelerated by the centrifugal force of the high-pressure wheel 16 . It flows through the portion 66 and is discharged from the outlet.
  • the housing 11 is provided with a low pressure side air flow path 72 and a high pressure side air flow path 73 .
  • the low-pressure side air passage 72 supplies compressed air from the housing 11 to the low-pressure side air bearing 35 .
  • the low pressure side air flow path 72 is branched from the connection flow path 71 and supplies part of the compressed air to the low pressure side space portion 41 .
  • the compressed air in the low-pressure side space 41 is supplied to the low-pressure gap between the inner peripheral surface of the low-pressure side air bearing 35 and the outer peripheral surface of the low-pressure side bearing sleeve 37, thereby moving the rotating shaft 12 radially to a predetermined position. support in position. After that, the compressed air supplied to the low pressure side air bearing 35 flows into the gap between the stator 13 and the rotor 14 .
  • the high pressure side air flow path 73 supplies compressed air from the housing 11 to the high pressure side air bearing 36 .
  • the high pressure side air flow path 73 is branched from the connection flow path 71 and supplies part of the compressed air to the high pressure side air bearing 36 .
  • Compressed air is supplied to the high-pressure gap between the inner peripheral surface of the high-pressure side air bearing 36 and the outer peripheral surface of the high-pressure side bearing sleeve 38 to support the rotating shaft 12 at a predetermined position in the radial direction. After that, the compressed air supplied to the high pressure side air bearing 36 flows into the gap between the stator 13 and the rotor 14 .
  • ⁇ Rotating body> 2 is a vertical cross-sectional view showing the rotating body of the present embodiment
  • FIG. 3 is a III-III cross-sectional view of FIG. 2 showing the relationship between the rotating shaft, the rotor core and the holding sleeve
  • FIG. 5 is a sectional view taken along line IV-IV in FIG. 2 showing the relationship with the holding sleeve
  • FIG. 5 is a sectional view taken along line VV in FIG. 2 showing the relationship between the rotating shaft and the bearing sleeve.
  • the rotating body 80 has a rotating shaft 12 and a rotor 14 .
  • the rotor 14 has a rotor core 33 and a retaining sleeve 34 .
  • the rotor core 33 is a cylindrical permanent magnet and is arranged on the outer peripheral surface of the rotating shaft 12 .
  • the retaining sleeve 34 has a cylindrical shape and is arranged outside the rotor core 33 .
  • the rotating shaft 12 is a magnetic body having an axis O.
  • the rotating shaft 12 has a low pressure side shaft portion 12a, a high pressure side shaft portion 12b, and an intermediate shaft portion 12c.
  • the low pressure side shaft portion 12a is positioned on one side of the rotating shaft 12 in the axial direction.
  • the high pressure side shaft portion 12b is located on the other side of the rotating shaft 12 in the axial direction.
  • the intermediate shaft portion 12c is an intermediate portion in the axial direction of the rotating shaft 12 and is positioned between the low pressure side shaft portion 12a and the high pressure side shaft portion 12b.
  • the rotating shaft 12 is provided with a low pressure side flange portion 12d between the low pressure side shaft portion 12a and the intermediate shaft portion 12c.
  • the rotary shaft 12 is provided with a high pressure side flange portion 12e between the high pressure side shaft portion 12b and the intermediate shaft portion 12c.
  • the low-pressure side flange portion 12d and the high-pressure side flange portion 12e are provided with an interval in the axial direction of the rotating shaft 12 therebetween.
  • the low pressure side flange portion 12d and the high pressure side flange portion 12e have the same outer diameter.
  • the rotating shaft 12 is provided with an axial recess 12f on the outer peripheral portion of the intermediate shaft portion 12c.
  • the axial recessed portion 12f has a shape recessed along the circumferential direction and toward the axial center O side between the low pressure side flange portion 12d and the high pressure side flange portion 12e.
  • the rotor core 33 is arranged outside the intermediate shaft portion 12c of the rotary shaft 12.
  • the rotor iron core 33 has split iron cores 33a and 33b divided into a plurality (two pieces in this embodiment) in the circumferential direction.
  • the split iron cores 33a and 33b may be formed integrally, or may be split into a plurality of parts in the axial direction.
  • the split iron cores 33a and 33b may be composed of laminated steel plates. Note that the number of divided iron cores 33a and 33b may be three or more.
  • the split iron cores 33a and 33b are attached to the outer peripheral surface of the intermediate shaft portion 12c of the rotating shaft 12. At this time, the split iron cores 33a and 33b are positioned in the axial direction by fitting the inner peripheral portions into the axial concave portion 12f formed in the intermediate shaft portion 12c. At this time, the inner peripheral surfaces of the split iron cores 33a and 33b are adhered to the outer peripheral surface of the axial recess 12f. Therefore, the split iron cores 33a and 33b are attached to the intermediate shaft portion 12c between the low pressure side flange portion 12d and the high pressure side flange portion 12e.
  • the outer diameter of the rotor core 33 is the same as or slightly smaller than the outer diameters of the low pressure side flange portion 12d and the high pressure side flange portion 12e.
  • the holding sleeve 34 is arranged outside the rotor core 33 .
  • the holding sleeve 34 is positioned outside the rotor core 33 and has one axial end fixed to the outer periphery of the low pressure side flange 12d and the other axial end fixed to the outer periphery of the high pressure side flange 12e.
  • the holding sleeve 34 is inserted from one side of the rotating shaft 12 in the axial direction to the outer peripheral portions of the low pressure side flange portion 12d and the high pressure side flange portion 12e.
  • the holding sleeve 34 is fixed by shrink fitting to the outer peripheral surfaces of the low pressure side flange portion 12d, the rotor core 33, and the high pressure side flange portion 12e.
  • the inner peripheral surface of the holding sleeve 34 is in close contact with the outer peripheral surface of the low pressure side flange portion 12 d , the outer peripheral surface of the high pressure side flange portion 12 e , and the outer peripheral surface of the rotor core 33 .
  • each end of the rotor core 33 is separated from the low pressure side flange portion 12d and the high pressure side flange portion 12e in the axial direction of the rotating shaft 12 by a predetermined distance. are placed as follows. Therefore, a low pressure side space 81 is provided between the rotor core 33 and the low pressure side flange 12d, and a high pressure side space 82 is provided between the rotor core 33 and the high pressure side flange 12e.
  • the low pressure side space 81 is defined by one axial end face of the rotor core 33 , the outer surface of the intermediate shaft portion 12 c , one side face of the low pressure side flange portion 12 d and the inner surface of the holding sleeve 34 .
  • the high pressure side space 82 is defined by the other axial end surface of the rotor core 33 , the outer surface of the intermediate shaft portion 12 c , one side surface of the high pressure side flange portion 12 e , and the inner surface of the holding sleeve 34 .
  • the low-voltage side space portion 81 and the high-voltage side space portion 82 are non-magnetic. Therefore, the low voltage side space portion 81 and the high voltage side space portion 82 may be filled with a non-magnetic resin material. By filling the low pressure side space 81 and the high pressure side space 82 with a resin material, the strength of the rotor core 33 can be increased.
  • the rotating shaft 12 has a low pressure side bearing sleeve 37 fixed to the low pressure side shaft portion 12a.
  • the low-pressure side bearing sleeve 37 has a cylindrical shape and is lightly press-fitted (clearance fit) to the low-pressure side shaft portion 12a.
  • Light press-fitting refers to press-fitting the low-pressure side bearing sleeve 37 to the rotating shaft 12 with a pressure that moves the low-pressure side bearing sleeve 37 in the axial direction when a predetermined stress acts on the low-pressure side bearing sleeve 37 in the axial direction. Therefore, the low pressure side bearing sleeve 37 can rotate integrally with the rotary shaft 12 .
  • a high pressure side bearing sleeve 38 is fixed to the high pressure side shaft portion 12b of the rotating shaft 12 .
  • the high-pressure side bearing sleeve 38 has a cylindrical shape and is lightly press-fitted (clearance fit) into the high-pressure side shaft portion 12b. Therefore, the high pressure side bearing sleeve 38 can rotate integrally with the rotating shaft 12 .
  • the low-pressure side bearing sleeve 37 is provided with a wear-resistant coating layer 37a by applying a wear-resistant coating to the outer peripheral surface.
  • the high-pressure side bearing sleeve 38 is provided with a wear-resistant coating layer 38a by applying a wear-resistant coating to its outer peripheral surface.
  • the wear-resistant coating on the low-pressure side bearing sleeve 37 and the wear-resistant coating on the high-pressure side bearing sleeve 38 are applied before assembly to the rotating shaft 12 .
  • a thrust disc 39 is inserted adjacent to the low pressure side bearing sleeve 37 on one side of the rotating shaft 12 in the axial direction, and a low pressure side thrust sleeve 40 is also inserted.
  • a low-pressure wheel 15 is attached to one axial end of the rotary shaft 12 and is fastened by a nut 53 so as to be rotatable together. At this time, the low pressure wheel 15 is pressed toward the stator 13 by the fastening force of the nut 53 to the rotating shaft 12 .
  • the pressing force of the low-pressure wheel 15 is transmitted to the low-pressure side bearing sleeve 37 via the low-pressure side thrust sleeve 40 and the thrust disk 39, and the low-pressure side bearing sleeve 37 abuts against the low-pressure side flange portion 12d and is positioned.
  • a high pressure side thrust sleeve 42 is inserted adjacent to the high pressure side bearing sleeve 38 on the other side of the rotating shaft 12 in the axial direction.
  • a high-pressure wheel 16 is attached to the other end in the axial direction of the rotating shaft 12 and is fastened with a nut 63 so as to be rotatable together. At this time, the high-pressure wheel 16 is pressed toward the stator 13 by the fastening force of the nut 63 to the rotating shaft 12 .
  • the pressing force of the high-pressure wheel 16 is transmitted to the high-pressure side bearing sleeve 38 through the high-pressure side thrust sleeve 42, and the high-pressure side bearing sleeve 38 abuts against the high-pressure side flange portion 12e and is positioned.
  • FIG. 6 is an exploded sectional view for explaining a method of assembling the rotor.
  • the rotating shaft 12 has a low pressure side flange portion 12d and a high pressure side flange portion 12e.
  • the rotor core 33 is composed of two divided cores 33a and 33b. First, the split iron cores 33a and 33b are positioned radially outward with respect to the intermediate shaft portion 12c of the rotating shaft 12, and the split iron cores 33a and 33b are positioned radially inward of the rotating shaft 12 as indicated by an arrow A1. , A2 direction to bring it into close contact with the intermediate shaft portion 12c.
  • the split iron cores 33a and 33b have their inner peripheral portions positioned in the axial recess 12f of the intermediate shaft portion 12c, and their inner peripheral surfaces adhered to the axial recess 12f. Therefore, the rotor iron core 33 is arranged such that one end in the axial direction is separated from the low pressure side flange portion 12d by a predetermined distance, and the other end in the axial direction is separated from the high pressure side flange portion 12e by a predetermined distance. placed.
  • the holding sleeve 34 is positioned in one axial direction with respect to the rotating shaft 12, and the holding sleeve 34 is moved in the direction of the arrow A3, which is the other axial direction of the rotating shaft 12, so that the low pressure side flange portion 12d and the It is arranged radially outward of the rotor core 33 and the high pressure side flange portion 12e.
  • the holding sleeve 34 is fixed to the low pressure side flange portion 12d, the rotor core 33 and the high pressure side flange portion 12e by shrink fitting.
  • the holding sleeve 34 is heated to expand and expand its inner diameter, and in this state, is positioned outside the low-pressure side flange portion 12d, the rotor core 33, and the high-pressure side flange portion 12e. Thereafter, when the holding sleeve 34 is cooled, it shrinks and the inner diameter narrows, and the inner peripheral surface of the holding sleeve 34 presses the outer peripheral surfaces of the low pressure side flange portion 12d, the rotor iron core 33, and the high pressure side flange portion 12e.
  • the holding sleeve 34 is firmly attached to the low-pressure side flange portion 12d, the rotor core 33, and the high-pressure side flange portion 12e. That is, the rotating shaft 12, the rotor core 33, and the holding sleeve 34 are integrally connected.
  • a low pressure side space 81 is formed between the rotor core 33 and the low pressure side flange 12d
  • a high pressure side space 82 is formed between the rotor core 33 and the high pressure side flange 12e.
  • the low-pressure side bearing sleeve 37 is positioned in one axial direction with respect to the rotating shaft 12, and the low-pressure side bearing sleeve 37 is moved in the direction of the arrow A4, which is the other axial direction of the rotating shaft 12. It is lightly press-fitted onto the shaft portion 12a. Further, by positioning the high-pressure side bearing sleeve 38 on the other side of the rotating shaft 12 in the axial direction and moving the high-pressure side bearing sleeve 38 in the direction of the arrow A5, which is one of the axial directions of the rotating shaft 12, the high-pressure side shaft It is lightly press-fitted into the portion 12b.
  • the low-pressure side bearing sleeve 37 and the high-pressure side bearing sleeve 38 are provided with wear-resistant coating layers 37a and 38a, respectively, by applying a wear-resistant coating to each outer peripheral surface before assembly.
  • the low-pressure wheel 15 is attached and fastened with a nut 53 .
  • the high-pressure wheel 16 is attached and fastened with the nut 63 .
  • ⁇ Action of electric compressor In the electric compressor 10, when a current (AC voltage) is passed through the stator coils 32 forming the stator 13, a magnetic field is generated around the stator 13, a rotating magnetic field (magnetic force) is generated, and a rotating magnetic field (magnetic force) is generated around the stator 13. N and S poles are generated in The rotor core 33 (rotor 14 ) is rotated by being attracted to the rotating magnetic field of the stator 13 . At this time, the rotor iron core 33 is a magnetic material, and magnetic flux is generated along the circumferential direction. A low pressure side space 81 is formed on one side of the rotor core 33 in the axial direction, and a high pressure side space 82 is formed on the other side.
  • the low-voltage side space 81 and the high-voltage side space 82 are made of a non-magnetic material, leakage of magnetic flux in the rotor iron core 33 in the axial direction is prevented.
  • the low pressure side space 81 and the high pressure side space 82 are filled with a resin material, the strength of the rotor core 33 increases.
  • the low pressure side flange portion 12 d and the high pressure side flange portion 12 e of the rotating shaft 12 have higher rigidity than the rotor core 33 . Therefore, when the holding sleeve 34 fixes the rotor core 33 to the rotating shaft 12 by shrink fitting, the holding sleeve 34 deforms toward the axial center O side at the intermediate portion in the axial direction, presses the rotor core 33, and presses the rotating shaft.
  • the contact area between 12, rotor core 33 and holding sleeve 34 increases, and strength against centrifugal force increases.
  • the rotating shaft 12 is a magnetic material, and the magnetic flux of the rotor iron core 33 flows through the rotating shaft 12 .
  • the rotational force of the rotor iron core 33 is transmitted to the holding sleeve 34 through the surface contact portion of the outer peripheral portion, and further through the surface contact between the holding sleeve 34 and the low pressure side flange portion 12d and the high pressure side flange portion 12e. It is transmitted to the rotating shaft 12 .
  • the low pressure wheel 15 and the high pressure wheel 16 connected at each end rotate and compress the air.
  • the rotating body according to the first aspect includes a rotating shaft 12 made of a magnetic material, a rotor 14 fixed to the rotating shaft 12, and a cylindrical rotor 14 at one end and the other end in the axial direction of the rotor 14.
  • a pair of bearing sleeves (bearing sleeves for air bearings) 37, 38 are mounted and have wear-resistant coating layers 37a, 38a on their outer peripheral surfaces. Wear-resistant coating layers 37a, 37b are provided in front.
  • the bearing sleeves 37, 38 supported by the air bearings 35, 36 are manufactured separately from the rotating shaft 12, and the wear-resistant coating layers 37a, 38a are applied.
  • the wear-resistant coating layers 37a and 38a can be suppressed, and the wear-resistant coating layers 37a and 38a can be secured appropriately.
  • the rotor 14 has a cylindrical shape and has a rotor iron core 33 composed of magnets which are divided into a plurality in the circumferential direction and arranged radially outside the rotating shaft 12 .
  • the split iron cores 33a and 33b can be mounted on the rotating shaft 12 by moving in the radial direction from the outside, and the assembling property of the rotor iron core 33 can be improved.
  • the rotating shaft 12 has a pair of flange portions 12d and 12e spaced apart in the axial direction, and the rotor iron core 33 is arranged between the pair of flange portions 12d and 12e.
  • One axial end and the other axial end of the cylindrical holding sleeve 34 are fixed to the outer periphery of the pair of flanges 12d and 12e, thereby integrally fixed to the rotary shaft 12.
  • the holding sleeve 34 is arranged outside the rotor core 33 to form a pair of flanges 12d and 12e.
  • the rotating body 80 By fixing to the flange portions 12d and 12e, the rotating body 80 can be easily assembled. In other words, the work of fixing the pair of end plates (the pair of flanges 12d and 12e) for fixing the holding sleeve 34 to the rotating shaft 12 by welding or the like becomes unnecessary. As a result, the number of parts can be reduced, and the assembling work can be simplified.
  • the holding sleeve 34 is fixed to the outer peripheral surface of the pair of flange portions 12d and 12e and the outer peripheral surface of the rotor core 33 by shrink fitting.
  • the rotating shaft 12, the rotor core 33, and the holding sleeve 34 can be integrally connected, and the assembling work can be simplified.
  • a compressive load is applied to the rotor core 33 by the holding sleeve 34, damage due to centrifugal force acting on the rotor core 33 during rotation can be suppressed.
  • the wear-resistant coating layers 37a and 38a can be prevented from being deteriorated by heat treatment for shrink fitting.
  • the rotor iron core 33 has a cylindrical shape and is disposed on the outer peripheral portion of the rotating shaft 12, and the holding sleeve 34 is fixed to the outer peripheral surface of the rotor iron core 33 by shrink fitting.
  • the rotating shaft 12 is provided with the pair of flanges 12d and 12e, and the split cores 33a and 33b are arranged between the pair of flanges 12d and 12e to form the rotor core 33. It is not limited to this configuration.
  • the rotor iron core 33 is made into an integral cylindrical shape, the rotor iron core 33 is inserted into the rotating shaft 12 from one axial direction of the rotating shaft 12, and the holding sleeve 34 is fixed to the outer peripheral surface of the rotor iron core 33 by shrink fitting. You may Thereby, the structure of the rotating shaft 12 can be simplified. Alternatively, the rotor core 33 may be fixed to the rotating shaft 12 with an adhesive, or the pair of end plates (the pair of flange portions 12d and 12e) may be fixed to the rotating shaft 12 by welding or the like.
  • the bearing sleeves 37 and 38 are lightly press-fitted to one axial end and the other axial end of the rotating shaft 12, respectively.
  • the bearing sleeves 37 and 38 can be temporarily positioned at predetermined positions with respect to the rotating shaft 12, and the assembling properties of the bearing sleeves 37 and 38 can be improved.
  • a rotary electric machine includes a hollow housing 11, a cylindrical stator 13 fixed to the inner peripheral surface of the housing 11, and a rotor 14 attached to the inner peripheral surface of the stator 13.
  • a rotating body 80 rotatably supported by the housing 11 so as to face each other with a gap therebetween, and a pair of air bearings provided in the housing 11 so as to face each other with a gap between the outer peripheral surfaces of the pair of bearing sleeves 37 and 38. 35, 36. Thereby, the wear-resistant coating layers 37a and 38a can be secured appropriately.
  • An electric compressor includes a rotating electrical machine, a low-pressure wheel 15 fixed to one axial direction of the rotating shaft 12, and a high-pressure wheel 16 fixed to the other axial direction of the rotating shaft 12. . Thereby, the wear-resistant coating layers 37a and 38a can be secured appropriately.
  • the manufacturing method of the rotating body according to the ninth aspect includes the steps of disposing the rotor core 33 on the outer peripheral portion of the rotating shaft 12 made of a magnetic material, and the holding sleeve 34 is mounted on the outer peripheral surface of the rotor core 33 by shrink fitting. and mounting a pair of bearing sleeves 37, 38 having wear-resistant coating layers 37a, 38a on one axial end and the other axial end of the rotating shaft 12. As shown in FIG. As a result, deterioration of the wear-resistant coating layers 37a, 38a can be suppressed, and the wear-resistant coating layers 37a, 38a can be secured appropriately.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

回転体および回転電機において、磁性体よりなる回転軸と、回転軸に固定される回転子と、円筒形状をなして回転子の軸方向の一端部および他端部に装着されると共に外周面に耐摩耗性コーティング層を有する一対の空気軸受用軸受スリーブと、を備え、一対の空気軸受用軸受スリーブは、回転軸への組み付け前に耐摩耗性コーティング層が設けられる。

Description

回転体および回転電機並びに電動圧縮機、回転体の製造方法
 本開示は、回転体および回転電機並びに電動圧縮機、回転体の製造方法に関するものである。
 例えば、燃料電池は、高い圧力の空気を必要とすることから、2段圧縮式の電動圧縮機が適用される。2段圧縮式の電動圧縮機の高効率化を図るためには、高速化することが必要である。電動圧縮機が遠心圧縮式の場合、高効率の翼の設計が可能となり、電動機の小型化や軽量化が可能になる。電動圧縮機に適用される電動機(モータ)は、一般的に、圧縮空気への潤滑油の混入を阻止するために空気軸受が適用され、圧縮空気を空気軸受に供給して作動させている。
 このような電動圧縮機としては、例えば、下記特許文献1に記載されたものがある。特許文献1に記載された電動圧縮機は、回転軸における軸方向の中間部に磁石を配置し、その外側にスリーブを配置している。そして、回転軸は、スリーブにおける軸方向の一端部と他端部が空気軸受によりハウジングに対して回転自在に支持されている。
特許第6845953号公報
 空気軸受は、圧縮空気が供給されていない状態で、回転軸の外周面と軸受の内周面とが接触している。そして、回転軸が回転すると、圧縮空気が空気軸受に供給されることで、回転する回転軸の外周面と軸受の内周面が離間し、空気軸受は、回転軸を所定の位置で回転自在に支持する。すなわち、回転軸の回転開始時に、回転軸の外周面と軸受の内周面が接触した状態で回転するため、摩耗が発生する。そのため、回転軸(スリーブ)は、一般的に、空気軸受に対向する外周面に耐摩耗性コーティングが施工される。ところが、従来の電動圧縮機は、構造上、スリーブの外周面に耐摩耗性コーティングを施工した後、スリーブを焼き嵌めにより回転軸の外周面に固定することとなる。この場合、スリーブにおける焼き嵌めの加熱処理温度が、耐摩耗性コーティングの施工温度を超えると、コーティング層が劣化を受けるおそれがある。そのため、耐摩耗性コーティングの施工温度の管理や焼き嵌めの加熱処理温度の管理が困難なものとなる。
 本開示は、上述した課題を解決するものであり、空気軸受のための耐摩耗性コーティングを適切に確保することができる回転体および回転電機並びに電動圧縮機、回転体の製造方法を提供することを目的とする。
 上記の目的を達成するための本開示の回転体は、磁性体よりなる回転軸と、前記回転軸に固定される回転子と、円筒形状をなして前記回転子の軸方向の一端部および他端部に装着されると共に外周面に耐摩耗性コーティング層を有する一対の空気軸受用軸受スリーブと、を備え、前記一対の空気軸受用軸受スリーブは、前記回転軸への組み付け前に前記耐摩耗性コーティング層が設けられる。
 また、本開示の回転電機は、中空形状をなすハウジングと、円筒形状をなして前記ハウジングの内周面に固定される固定子と、前記回転子が前記固定子の内周面に隙間を空けて対向するように前記ハウジングに回転自在に支持される前記回転体と、前記一対の空気軸受用軸受スリーブの外周面に隙間を空けて対向するように前記ハウジングに設けられる一対の空気軸受と、を備える。
 また、本開示の電動圧縮機は、前記回転電機と、前記回転軸における軸方向の一方に固定される低圧ホイールと、前記回転軸における軸方向の他方に固定される高圧ホイールと、を備える。
 また、本開示の回転体の製造方法は、磁性体よりなる回転軸の外周部に鉄芯を配置する工程と、前記鉄芯の外周面に対して焼き嵌めにより保持スリーブを固定する工程と、耐摩耗性コーティング層を有する一対の空気軸受用軸受スリーブを前記回転軸の軸方向の一端部および他端部に装着する工程と、を有する。
 本開示の回転体および回転電機並びに電動圧縮機、回転体の製造方法によれば、空気軸受のための耐摩耗性コーティングを適切に確保することができる。
図1は、本実施形態の電動圧縮機の内部構成を表す縦断面図である。 図2は、本実施形態の回転体を表す縦断面図である。 図3は、回転軸とロータ鉄芯と保持スリーブとの関係を表す図2のIII-III断面図である。 図4は、回転軸と保持スリーブとの関係を表す図2のIV-IV断面図である。 図5は、回転軸と軸受スリーブとの関係を表す図2のV-V断面図である。 図6は、回転体の組立方法を説明するための分解断面図である。
 以下に図面を参照して、本開示の好適な実施形態を詳細に説明する。なお、この実施形態により本開示が限定されるものではなく、また、実施形態が複数ある場合には、各実施形態を組み合わせて構成するものも含むものである。また、実施形態における構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。
 本実施形態にて、回転体は、回転電機に適用され、回転電機(モータ)は、電動圧縮機が適用される。但し、この構成に限定されるものではなく、回転体は、回転電機としての一般的な電動機に適用されてもよい。
<電動圧縮機の構成>
 図1は、第1実施形態の電動圧縮機の内部構成を表す縦断面図である。
 図1に示すように、電動圧縮機10は、ハウジング11と、回転軸12と、固定子13と、回転子14と、低圧ホイール15と、高圧ホイール16とを備える。なお、回転体は、回転軸12と回転子14により構成される。回転電機は、ハウジング11と回転軸12と固定子13と回転子14により構成される。
 ハウジング11は、モータハウジング21と、低圧側軸受ハウジング22と、高圧側軸受ハウジング23とを有する。モータハウジング21は、円筒形状をなし、軸方向の一方側(図1の右方側)の端部が拡径している。低圧側軸受ハウジング22は、円盤形状をなし、モータハウジング21における軸方向の一方側に配置される。低圧側軸受ハウジング22は、モータハウジング21における軸方向の一方側の端部に複数のボルトにより着脱自在に締結される。高圧側軸受ハウジング23は、円盤形状をなし、モータハウジング21における軸方向の他方側に配置される。高圧側軸受ハウジング23は、モータハウジング21における軸方向の他方側の端部に複数のボルトにより着脱自在に締結される。
 円筒形状をなすモータハウジング21は、軸方向の一方の開口が低圧側軸受ハウジング22により閉塞され、軸方向の他方の開口が高圧側軸受ハウジング23により閉塞される。そのため、ハウジング11は、モータハウジング21に低圧側軸受ハウジング22と高圧側軸受ハウジング23が締結されることで、中空形状をなす。
 モータハウジング21は、内周部に固定子13が固定される。固定子13は、円筒形状をなす。固定子13は、ステータ鉄芯31と、ステータコイル32とを有する。ステータ鉄芯31は、円筒形状をなし、外周面がモータハウジング21の内周面に密着するように固定される。ステータコイル32は、ステータ鉄芯31の内部に収納される。
 回転軸12は、ハウジング11の内部に配置される。回転軸12は、ハウジング11と同心の軸心Oに沿って配置され、軸心Oを中心にハウジング11に回転自在に支持される。回転軸12は、軸方向における中間位置の外周部に回転子14が固定される。回転子14は、ロータ鉄芯(永久磁石)33と、保持スリーブ34とを有する。ロータ鉄芯33は、円筒形状をなし、回転軸12の外周面に配置される。保持スリーブ34は、円筒形状をなし、ロータ鉄芯33の外側に配置される。
 固定子13と回転子14は、内周面と外周面が径方向に対向する。固定子13と回転子14は、内周面と外周面との間に隙間が設けられる。そのため、固定子13のステータコイル32に電流が流れると、発生する磁力の吸引力および反発力により回転子14が回転し、回転軸12が回転力を出力する。
 回転軸12は、低圧側空気軸受35と高圧側空気軸受36により回転自在に支持される。回転軸12は、回転子14より軸方向の一方側に低圧側軸部12aが設けられ、回転子14より軸方向の他方側に高圧側軸部12bが設けられる。回転軸12は、低圧側軸部12aに低圧側軸受スリーブ(空気軸受用軸受スリーブ)37が一体回転可能に装着され、高圧側軸部12bに高圧側軸受スリーブ(空気軸受用軸受スリーブ)38が一体回転可能に装着される。低圧側軸受スリーブ37は、低圧側軸部として機能し、高圧側軸受スリーブ38は、高圧側軸部として機能する。
 低圧側空気軸受35は、低圧側軸受ハウジング22に一体に設けられる。低圧側空気軸受35は、円筒形状をなし、低圧側軸受ハウジング22の内面から回転子14側に延出して形成される。低圧側空気軸受35は、回転軸12に装着された低圧側軸受スリーブ37の外方に配置される。回転軸12が回転すると、低圧側空気軸受35の内周面と低圧側軸受スリーブ37の外周面との間に低圧側隙間が確保される。
 高圧側空気軸受36は、高圧側軸受ハウジング23に一体に設けられる。高圧側空気軸受36は、円筒形状をなし、高圧側軸受ハウジング23の内面から回転子14側に延出して形成される。高圧側空気軸受36は、回転軸12に装着された高圧側軸受スリーブ38の外方に配置される。回転軸12が回転すると、高圧側空気軸受36の内周面と高圧側軸受スリーブ38の外周面との間に高圧側隙間が確保される。
 回転軸12は、軸方向の一方側にスラスト軸受を構成するスラスト円板39が固定されると共に、低圧側スラストスリーブ40が配置される。スラスト円板39は、回転軸12における低圧側軸受スリーブ37と低圧ホイール15との間に固定される。スラスト円板39は、回転軸12と一体に回転する。低圧側軸受ハウジング22は、軸心Oの外周辺に低圧側空間部41が設けられる。スラスト円板39は、低圧側空間部41に配置される。低圧側空間部41は、低圧側空気軸受35の内周面と低圧側軸受スリーブ37の外周面との低圧隙間に連通する。低圧側スラストスリーブ40は、回転軸12における低圧ホイール15とスラスト円板39との間に配置される。低圧側スラストスリーブ40は、回転軸12と一体に回転する。低圧側スラストスリーブ40は、外周部にシール部材(図示略)が設けられる。シール部材は、外周部が低圧側軸受ハウジング22の内周面に接触する。低圧側スラストスリーブ40は、低圧側軸受ハウジング22に対して回転自在である。
 回転軸12は、軸方向の他方側に高圧側スラストスリーブ42が配置される。高圧側スラストスリーブ42は、回転軸12における高圧ホイール16と高圧側軸受スリーブ38との間に配置される。高圧側スラストスリーブ42は、回転軸12と一体に回転する。高圧側スラストスリーブ42は、外周部にシール部材(図示略)が設けられる。シール部材は、外周部が高圧側軸受ハウジング23の内周面に接触する。高圧側スラストスリーブ42は、高圧側軸受ハウジング23に対して回転自在である。
 ハウジング11は、低圧側軸受ハウジング22側に低圧圧縮機51が配置され、高圧側軸受ハウジング23側に高圧圧縮機61が配置される。低圧圧縮機51は、低圧側ハウジング52と、低圧ホイール15とを有する。高圧圧縮機61は、高圧側ハウジング62と、高圧ホイール16とを有する。
 低圧側ハウジング52は、低圧側軸受ハウジング22の外面に複数のボルトにより締結される。低圧ホイール15は、低圧側ハウジング52の内部に配置される。低圧ホイール15は、回転軸12における軸方向の一端部にナット53により一体回転可能に固定される。低圧圧縮機51は、低圧側ハウジング52と低圧ホイール15により、吸入口54、ディフューザ55、渦巻き形状をなすスクロール部56、吐出口(図示略)が設けられる。
 高圧側ハウジング62は、高圧側軸受ハウジング23の外面に複数のボルトにより締結される。高圧ホイール16は、高圧側ハウジング62の内部に配置される。高圧ホイール16は、回転軸12における軸方向の他端部にナット63により一体回転可能に固定される。高圧圧縮機61は、高圧側ハウジング62と高圧ホイール16により、吸入口64、ディフューザ65、渦巻き形状をなすスクロール部66、吐出口(図示略)が設けられる。
 また、低圧圧縮機51と高圧圧縮機61は、吐出口(図示略)と吸入口64とが連結流路71により連結される。
 低圧圧縮機51は、低圧ホイール15が回転すると、外部の空気が吸入口54から吸入されて低圧ホイール15の遠心力により加速され、加速された空気がディフューザ55により減速加圧された後、スクロール部56を流れ、吐出口から排出される。低圧圧縮機51により圧縮された低圧空気は、連結流路71により高圧圧縮機61に送給される。高圧圧縮機61は、高圧ホイール16が回転すると、外部の空気が吸入口64から吸入されて高圧ホイール16の遠心力により加速され、加速された空気がディフューザ65により減速加圧された後、スクロール部66を流れ、吐出口から排出される。
 また、ハウジング11は、低圧側空気流路72と、高圧側空気流路73が設けられる。低圧側空気流路72は、圧縮空気をハウジング11から低圧側空気軸受35に供給する。低圧側空気流路72は、連結流路71から分岐して設けられ、圧縮空気の一部を低圧側空間部41に供給する。そして、低圧側空間部41の圧縮空気は、低圧側空気軸受35の内周面と低圧側軸受スリーブ37の外周面との低圧隙間に供給されることで、回転軸12を径方向の所定の位置に支持する。その後、低圧側空気軸受35に供給された圧縮空気は、固定子13と回転子14との隙間に流れる。
 高圧側空気流路73は、圧縮空気をハウジング11から高圧側空気軸受36に供給する。高圧側空気流路73は、連結流路71から分岐して設けられ、圧縮空気の一部を高圧側空気軸受36に供給する。圧縮空気は、高圧側空気軸受36の内周面と高圧側軸受スリーブ38の外周面との高圧隙間に供給されることで、回転軸12を径方向の所定の位置に支持する。その後、高圧側空気軸受36に供給された圧縮空気は、固定子13と回転子14との隙間に流れる。
<回転体>
 図2は、本実施形態の回転体を表す縦断面図、図3は、回転軸とロータ鉄芯と保持スリーブとの関係を表す図2のIII-III断面図、図4は、回転軸と保持スリーブとの関係を表す図2のIV-IV断面図、図5は、回転軸と軸受スリーブとの関係を表す図2のV-V断面図である。
 図2に示すように、回転体80は、回転軸12と、回転子14と有する。回転子14は、ロータ鉄芯33と、保持スリーブ34とを有する。ロータ鉄芯33は、円筒形状をなす永久磁石であり、回転軸12の外周面に配置される。保持スリーブ34は、円筒形状をなし、ロータ鉄芯33の外側に配置される。
 回転軸12は、軸心Oを有する磁性体である。回転軸12は、低圧側軸部12aと、高圧側軸部12bと、中間軸部12cとを有する。低圧側軸部12aは、回転軸12の軸方向の一方側に位置する。高圧側軸部12bは、回転軸12の軸方向の他方側に位置する。中間軸部12cは、回転軸12の軸方向における中間部であって低圧側軸部12aと高圧側軸部12bとの間に位置する。また、回転軸12は、低圧側軸部12aと中間軸部12cとの間に低圧側フランジ部12dが設けられる。回転軸12は、高圧側軸部12bと中間軸部12cとの間に高圧側フランジ部12eが設けられる。低圧側フランジ部12dと高圧側フランジ部12eとは、回転軸12の軸方向に間隔を空けて設けられる。低圧側フランジ部12dおよび高圧側フランジ部12eは、外径が同径である。
 また、回転軸12は、中間軸部12cの外周部に軸方向凹部12fが設けられる。軸方向凹部12fは、低圧側フランジ部12dと高圧側フランジ部12eとの間に、周方向に沿うと共に軸心O側に向けて凹む形状をなす。
 図2および図3に示すように、ロータ鉄芯33は、回転軸12における中間軸部12cの外側に配置される。ロータ鉄芯33は、周方向に複数(本実施形態では、2個)に分割された分割鉄芯33a,33bを有する。分割鉄芯33a,33bは、一体成形でもよいし、軸方向に複数に分割されていてもよい。また、分割鉄芯33a,33bは、積層鋼板で構成してもよい。なお、分割鉄芯33a,33bの分割個数は、3個以上であってもよい。
 分割鉄芯33a,33bは、回転軸12における中間軸部12cの外周面に装着される。このとき、分割鉄芯33a,33bは、内周部が中間軸部12cに形成された軸方向凹部12fに嵌合することで、軸方向の位置決めがなされる。このとき、分割鉄芯33a,33bは、内周面が軸方向凹部12fの外周面に接着される。そのため、分割鉄芯33a,33bは、低圧側フランジ部12dと高圧側フランジ部12eとの間で、中間軸部12cに装着される。なお、ロータ鉄芯33の外径は、低圧側フランジ部12dおよび高圧側フランジ部12eの外径と同径、または、若干小径である。
 保持スリーブ34は、ロータ鉄芯33の外側に配置される。保持スリーブ34は、ロータ鉄芯33の外側に位置し、軸方向の一端部が低圧側フランジ部12dの外周部に固定され、他端部が高圧側フランジ部12eの外周部に固定される。保持スリーブ34は、回転軸12における軸方向の一方側から、低圧側フランジ部12dおよび高圧側フランジ部12eの外周部に挿入される。保持スリーブ34は、低圧側フランジ部12dとロータ鉄芯33と高圧側フランジ部12eの外周面に対して焼き嵌めにより固定される。そのため、保持スリーブ34は、内周面が低圧側フランジ部12dの外周面、高圧側フランジ部12eの外周面、ロータ鉄芯33の外周面に密着する。
 そして、図2及び図4に示すように、ロータ鉄芯33は、各端部が低圧側フランジ部12dおよび高圧側フランジ部12eと、予め設定された所定間隔だけ回転軸12の軸方向に離間して配置される。そのため、ロータ鉄芯33と低圧側フランジ部12dとの間に低圧側空間部81が設けられ、ロータ鉄芯33と高圧側フランジ部12eとの間に高圧側空間部82が設けられる。低圧側空間部81は、ロータ鉄芯33の軸方向の一端面と、中間軸部12cの外面と、低圧側フランジ部12dの一側面と、保持スリーブ34の内面とにより区画される。高圧側空間部82は、ロータ鉄芯33の軸方向の他端面と、中間軸部12cの外面と、高圧側フランジ部12eの一側面と、保持スリーブ34の内面とにより区画される。
 なお、低圧側空間部81および高圧側空間部82は、非磁性体である。そのため、低圧側空間部81および高圧側空間部82は、非磁性体である樹脂材料が充填されていてもよい。低圧側空間部81および高圧側空間部82に樹脂材料が充填されることで、ロータ鉄芯33の強度を高めることができる。
 図1および図5に示すように、回転軸12は、低圧側軸部12aに低圧側軸受スリーブ37が固定される。低圧側軸受スリーブ37は、円筒形状をなし、低圧側軸部12aに軽圧入(隙間嵌め)される。軽圧入とは、低圧側軸受スリーブ37に対して軸方向に所定の応力が作用したとき、回転軸12に対して低圧側軸受スリーブ37が軸方向に移動する圧力で圧入することである。そのため、低圧側軸受スリーブ37は、回転軸12と一体回転可能である。
 回転軸12は、高圧側軸部12bに高圧側軸受スリーブ38が固定される。高圧側軸受スリーブ38は、円筒形状をなし、高圧側軸部12bに軽圧入(隙間嵌め)される。そのため、高圧側軸受スリーブ38は、回転軸12と一体回転可能である。
 低圧側軸受スリーブ37は、外周面に耐摩耗性コーティングが施工されることで、耐摩耗性コーティング層37aが設けられる。高圧側軸受スリーブ38は、外周面に耐摩耗性コーティングが施工されることで、耐摩耗性コーティング層38aが設けられる。低圧側軸受スリーブ37に対する耐摩耗性コーティングと、高圧側軸受スリーブ38に対する耐摩耗性コーティングは、回転軸12に対する組付前に施工される。
 回転軸12は、軸方向の一方側に低圧側軸受スリーブ37に隣接してスラスト円板39が挿入されると共に、低圧側スラストスリーブ40が挿入される。そして、回転軸12は、軸方向の一端部に低圧ホイール15が装着され、ナット53により一体回転可能に締結される。このとき、回転軸12に対するナット53の締結力により低圧ホイール15が固定子13側に押圧される。すると、低圧ホイール15の押圧力が低圧側スラストスリーブ40およびスラスト円板39を介して低圧側軸受スリーブ37に伝達され、低圧側軸受スリーブ37が低圧側フランジ部12dに当接して位置決めされる。
 回転軸12は、軸方向の他方側に高圧側軸受スリーブ38に隣接して高圧側スラストスリーブ42が挿入される。そして、回転軸12は、軸方向の他端部に高圧ホイール16が装着され、ナット63により一体回転可能に締結される。このとき、回転軸12に対するナット63の締結力により高圧ホイール16が固定子13側に押圧される。すると、高圧ホイール16の押圧力が高圧側スラストスリーブ42を介して高圧側軸受スリーブ38に伝達され、高圧側軸受スリーブ38が高圧側フランジ部12eに当接して位置決めされる。
<回転体の組立方法>
 図6は、回転体の組立方法を説明するための分解断面図である。
 図6に示すように、回転軸12は、低圧側フランジ部12dと高圧側フランジ部12eを有する。ロータ鉄芯33は、2個の分割鉄芯33a,33bから構成される。まず、回転軸12の中間軸部12cに対して、径方向の外方に分割鉄芯33a,33bを位置し、分割鉄芯33a,33bを回転軸12の径方向の内方である矢印A1,A2方向に移動することで、中間軸部12cに密着させる。
 このとき、分割鉄芯33a,33bは、内周部が中間軸部12cの軸方向凹部12fに位置決めされ、内周面が軸方向凹部12fに接着される。そのため、ロータ鉄芯33は、軸方向の一端部が低圧側フランジ部12dと所定間隔だけ離間して配置されると共に、軸方向の他端部が高圧側フランジ部12eと所定間隔だけ離間して配置される。
 次に、回転軸12に対して軸方向の一方に保持スリーブ34を位置し、保持スリーブ34を回転軸12の軸方向の他方である矢印A3方向に移動することで、低圧側フランジ部12dとロータ鉄芯33と高圧側フランジ部12eの径方向の外方に配置させる。このとき、保持スリーブ34を低圧側フランジ部12dとロータ鉄芯33と高圧側フランジ部12eに焼き嵌めにより固定する。すなわち、保持スリーブ34を加熱することで膨張させて内径を広げ、この状態で、低圧側フランジ部12dとロータ鉄芯33と高圧側フランジ部12eの外方に位置させる。その後、保持スリーブ34を冷却すると収縮して内径が狭まり、保持スリーブ34は、内周面が低圧側フランジ部12dとロータ鉄芯33と高圧側フランジ部12eの各外周面を押圧する。
 そのため、保持スリーブ34は、低圧側フランジ部12dとロータ鉄芯33と高圧側フランジ部12eに堅く結合された固着状態になる。つまり、回転軸12と、ロータ鉄芯33と、保持スリーブ34が一体に結合される。このとき、ロータ鉄芯33と低圧側フランジ部12dとの間に低圧側空間部81が形成され、ロータ鉄芯33と高圧側フランジ部12eとの間に高圧側空間部82が形成される。
 続いて、回転軸12に対して軸方向の一方に低圧側軸受スリーブ37を位置し、低圧側軸受スリーブ37を回転軸12の軸方向の他方である矢印A4方向に移動することで、低圧側軸部12aに軽圧入する。また、回転軸12に対して軸方向の他方に高圧側軸受スリーブ38を位置し、高圧側軸受スリーブ38を回転軸12の軸方向の一方である矢印A5方向に移動することで、高圧側軸部12bに軽圧入する。この場合、低圧側軸受スリーブ37および高圧側軸受スリーブ38は、組み付け前に各外周面に耐摩耗性コーティングが施工されることで、それぞれ耐摩耗性コーティング層37a,38aが設けられている。
 そして、図2に示すように、回転軸12の一端部にスラスト円板39および低圧側スラストスリーブ40を挿入した後、低圧ホイール15を装着され、ナット53により締結する。また、回転軸12の他端部に高圧側スラストスリーブ42を挿入した後、高圧ホイール16を装着し、ナット63により締結する。
<電動圧縮機の作用>
 電動圧縮機10は、固定子13を構成するステータコイル32に電流(交流電圧)を流すと、固定子13の周囲に磁界が発生し、回転磁界(磁力)が生成され、固定子13の周囲にN極とS極が発生する。ロータ鉄芯33(回転子14)は、固定子13の回転磁界に吸引されることで回転する。このとき、ロータ鉄芯33は、磁性体であり、周方向に沿う磁束が発生する。そして、ロータ鉄芯33における軸方向の一方側に低圧側空間部81が形成され、他方側に高圧側空間部82が形成される。低圧側空間部81と高圧側空間部82は、非磁性体であることから、ロータ鉄芯33における軸方向の磁束の漏れが防止される。低圧側空間部81および高圧側空間部82に樹脂材料が充填されていた場合、ロータ鉄芯33の強度が高まる。
 そして、回転軸12の低圧側フランジ部12dおよび高圧側フランジ部12eは、ロータ鉄芯33より剛性が高い。そのため、保持スリーブ34が焼き嵌めによりロータ鉄芯33を回転軸12に固定すると、保持スリーブ34は、軸方向の中間部が軸心O側に変形してロータ鉄芯33を押圧し、回転軸12とロータ鉄芯33と保持スリーブ34との接触面積が増加し、遠心力に対する強度が高まる。
 また、回転軸12は、磁性体であり、ロータ鉄芯33の磁束が回転軸12に流れる。そして、ロータ鉄芯33の回転力は、外周部の面接触部を介して保持スリーブ34に伝達され、さらに、保持スリーブ34と低圧側フランジ部12dおよび高圧側フランジ部12eの面接触を介して回転軸12に伝達される。回転軸12が回転すると、各端部に連結された低圧ホイール15および高圧ホイール16が回転し、空気を圧縮する。
[本実施形態の作用効果]
 第1の態様に係る回転体は、磁性体よりなる回転軸12と、回転軸12に固定される回転子14と、円筒形状をなして回転子14の軸方向の一端部および他端部に装着されると共に外周面に耐摩耗性コーティング層37a,38aを有する一対の軸受スリーブ(空気軸受用軸受スリーブ)37,38とを備え、一対の軸受スリーブ37,38は、回転軸12への組み付け前に耐摩耗性コーティング層37a,37bが設けられる。
 第1の態様に係る回転体によれば、空気軸受35,36により支持される軸受スリーブ37,38を回転軸12とは別体に製造し、耐摩耗性コーティング層37a,38aを施工してから回転軸12に組み付けることで、耐摩耗性コーティング層37a,38aの劣化を抑制し、耐摩耗性コーティング層37a,38aを適切に確保することができる。
 第2の態様に係る回転体は、回転子14が、円筒形状をなすと共に周方向に複数分割されて回転軸12の径方向の外側に配置される磁石からなるロータ鉄芯33を有する。これにより、回転軸12に対して分割鉄芯33a,33bを外側から径方向に移動して装着することができ、ロータ鉄芯33の組付性を向上することができる。
 第3の態様に係る回転体は、回転軸12が軸方向に間隔を空けて設けられる一対のフランジ部12d,12eを有し、ロータ鉄芯33が一対のフランジ部12d,12eの間に配置され、円筒形状をなす保持スリーブ34の軸方向の一端部および他端部が一対のフランジ部12d,12eの外周部に固定されることで、回転軸12に一体に固定される。これにより、回転軸12に一対のフランジ部12d,12eが設けられていることから、回転軸12ステータ鉄芯33を組み付けた後、保持スリーブ34をロータ鉄芯33の外側に配置して一対のフランジ部12d,12eに固定することで、回転体80を容易に組み立てることができる。すなわち、回転軸12に保持スリーブ34を固定するための一対の端板(一対のフランジ部12d,12e)を溶接などにより固定する作業が不要になる。その結果、部品点数の削減を図ることができると共に、組立作業の簡素化を図ることができる。
 第4の態様に係る回転体は、保持スリーブ34が一対のフランジ部12d,12eの外周面およびロータ鉄芯33の外周面に対して焼き嵌めにより固定される。これにより、回転軸12とロータ鉄芯33と保持スリーブ34とを一体に結合することができ、組立作業の簡素化を図ることができる。また、ロータ鉄芯33に対して保持スリーブ34により圧縮荷重が付与されることとなり、回転時にロータ鉄芯33に作用する遠心力による破損を抑制することができる。さらに、耐摩耗性コーティング層37a,38aが焼き嵌めのための熱処理による劣化を防止することができる。
 第5の態様に係る回転体は、ロータ鉄芯33は、円筒形状をなし、回転軸12の外周部に配置され、保持スリーブ34は、ロータ鉄芯33の外周面に対して焼き嵌めにより固定される。すなわち、上述の実施形態では、回転軸12に一対のフランジ部12d,12eを設け、分割鉄芯33a,33bを一対のフランジ部12d,12eの間に配置してロータ鉄芯33としたが、この構成に限定されない。ロータ鉄芯33を一体の円筒形状とし、ロータ鉄芯33を回転軸12の軸方向の一方から回転軸12に挿入し、ロータ鉄芯33の外周面に対して焼き嵌めにより保持スリーブ34を固定してもよい。これにより、回転軸12の構造を簡素化することができる。なお、ロータ鉄芯33を接着剤により回転軸12に固定したり、一対の端板(一対のフランジ部12d,12e)を溶接などにより回転軸12に固定したりしてもよい。
 第6の態様に係る回転体は、軸受スリーブ37,38が回転軸12の軸方向の一端部および他端部にそれぞれ軽圧入される。これにより、回転軸12に対して軸受スリーブ37,38を所定の位置に仮位置決めすることができ、軸受スリーブ37,38の組付性を向上することができる。
 第7の態様に係る回転電機は、中空形状をなすハウジング11と、円筒形状をなしてハウジング11の内周面に固定される固定子13と、回転子14が固定子13の内周面に隙間を空けて対向するようにハウジング11に回転自在に支持される回転体80と、一対の軸受スリーブ37,38の外周面に隙間を空けて対向するようにハウジング11に設けられる一対の空気軸受35,36とを備える。これにより、耐摩耗性コーティング層37a,38aを適切に確保することができる。
 第8の態様に係る電動圧縮機は、回転電機と、回転軸12における軸方向の一方に固定される低圧ホイール15と、回転軸12における軸方向の他方に固定される高圧ホイール16とを備える。これにより、耐摩耗性コーティング層37a,38aを適切に確保することができる。
 第9の態様に係る回転体の製造方法は、磁性体よりなる回転軸12の外周部にロータ鉄芯33を配置する工程と、ロータ鉄芯33の外周面に対して焼き嵌めにより保持スリーブ34を固定する工程と、耐摩耗性コーティング層37a,38aを有する一対の軸受スリーブ37,38を回転軸12の軸方向の一端部および他端部に装着する工程とを有する。これにより、耐摩耗性コーティング層37a,38aの劣化を抑制し、耐摩耗性コーティング層37a,38aを適切に確保することができる。
 10 電動圧縮機
 11 ハウジング
 12 回転軸
 12a 低圧側軸部
 12b 高圧側軸部
 12c 中間軸部
 12d 低圧側フランジ部
 12e 高圧側フランジ部
 12f 軸方向凹部
 13 固定子
 14 回転子
 15 低圧ホイール
 16 高圧ホイール
 21 モータハウジング
 22 低圧側軸受ハウジング
 23 高圧側軸受ハウジング
 31 ステータ鉄芯
 32 ステータコイル
 33 ロータ鉄芯
 33a,33b 分割鉄芯
 34 保持スリーブ
 35 低圧側空気軸受
 36 高圧側空気軸受
 37 低圧側軸受スリーブ(空気軸受用軸受スリーブ)
 37a 耐摩耗性コーティング層
 38 高圧側軸受スリーブ(空気軸受用軸受スリーブ)
 38a 耐摩耗性コーティング層
 39 スラスト円板
 40 低圧側スラストスリーブ
 41 低圧側空間部
 42 高圧側スラストスリーブ
 51 低圧圧縮機
 52 低圧側ハウジング
 53,63 ナット
 54,64 吸入口
 55,65 ディフューザ
 56,66 スクロール部
 61 高圧圧縮機
 62 高圧側ハウジング
 71 連結流路
 72 低圧側空気流路
 73 高圧側空気流路
 80 回転体
 81 低圧側空間部
 82 高圧側空間部

Claims (9)

  1.  磁性体よりなる回転軸と、
     前記回転軸に固定される回転子と、
     円筒形状をなして前記回転軸の軸方向の一端部および他端部に装着されると共に外周面に耐摩耗性コーティング層を有する一対の空気軸受用軸受スリーブと、
     を備え、
     前記一対の空気軸受用軸受スリーブは、前記回転軸への組み付け前に前記耐摩耗性コーティング層が設けられる、
     回転体。
  2.  前記回転子は、円筒形状をなすと共に周方向に複数分割されて前記回転軸の径方向の外側に配置される磁石からなる鉄芯を有する、
     請求項1に記載の回転体。
  3.  前記回転軸は、軸方向に間隔を空けて設けられる一対のフランジ部を有し、前記鉄芯は、前記一対のフランジ部の間に配置され、円筒形状をなす保持スリーブの軸方向の一端部および他端部が前記一対のフランジ部の外周部に固定されることで、前記回転軸に一体に固定される、
     請求項2に記載の回転体。
  4.  前記保持スリーブは、前記一対のフランジ部の外周面および前記鉄芯の外周面に対して焼き嵌めにより固定される、
     請求項3に記載の回転体。
  5.  鉄芯は、円筒形状をなし、前記回転軸の外周部に配置され、保持スリーブは、前記鉄芯の外周面に対して焼き嵌めにより固定される、
     請求項1に記載の回転体。
  6.  前記一対の空気軸受用軸受スリーブは、前記回転軸の軸方向の一端部および他端部にそれぞれ軽圧入される、
     請求項1から請求項5のいずれか一項に記載の回転体。
  7.  中空形状をなすハウジングと、
     円筒形状をなして前記ハウジングの内周面に固定される固定子と、
     前記回転子が前記固定子の内周面に隙間を空けて対向するように前記ハウジングに回転自在に支持される請求項1から請求項6のいずれか一項に記載の回転体と、
     前記一対の空気軸受用軸受スリーブの外周面に隙間を空けて対向するように前記ハウジングに設けられる一対の空気軸受と、
     を備える回転電機。
  8.  請求項7に記載の回転電機と、
     前記回転軸における軸方向の一方に固定される低圧ホイールと、
     前記回転軸における軸方向の他方に固定される高圧ホイールと、
     を備える電動圧縮機。
  9.  磁性体よりなる回転軸の外周部に鉄芯を配置する工程と、
     前記鉄芯の外周面に対して焼き嵌めにより保持スリーブを固定する工程と、
     耐摩耗性コーティング層を有する一対の空気軸受用軸受スリーブを前記回転軸の軸方向の一端部および他端部に装着する工程と、
     を有する回転体の製造方法。
PCT/JP2022/008009 2022-02-25 2022-02-25 回転体および回転電機並びに電動圧縮機、回転体の製造方法 WO2023162172A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/008009 WO2023162172A1 (ja) 2022-02-25 2022-02-25 回転体および回転電機並びに電動圧縮機、回転体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/008009 WO2023162172A1 (ja) 2022-02-25 2022-02-25 回転体および回転電機並びに電動圧縮機、回転体の製造方法

Publications (1)

Publication Number Publication Date
WO2023162172A1 true WO2023162172A1 (ja) 2023-08-31

Family

ID=87765158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/008009 WO2023162172A1 (ja) 2022-02-25 2022-02-25 回転体および回転電機並びに電動圧縮機、回転体の製造方法

Country Status (1)

Country Link
WO (1) WO2023162172A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09285049A (ja) * 1996-04-16 1997-10-31 Toshiba Corp 永久磁石ロータの組立方法
JP2002010543A (ja) * 2000-06-23 2002-01-11 Asmo Co Ltd 回転磁界型電動機
CN111490626A (zh) * 2019-01-29 2020-08-04 青岛海尔智能技术研发有限公司 电机驱动轴、电机
CN211623753U (zh) * 2020-01-20 2020-10-02 长城汽车股份有限公司 转子系统和空气压缩机
CN211852196U (zh) * 2020-03-16 2020-11-03 海德韦尔(太仓)能源科技有限公司 一种离心式空气压缩机转子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09285049A (ja) * 1996-04-16 1997-10-31 Toshiba Corp 永久磁石ロータの組立方法
JP2002010543A (ja) * 2000-06-23 2002-01-11 Asmo Co Ltd 回転磁界型電動機
CN111490626A (zh) * 2019-01-29 2020-08-04 青岛海尔智能技术研发有限公司 电机驱动轴、电机
CN211623753U (zh) * 2020-01-20 2020-10-02 长城汽车股份有限公司 转子系统和空气压缩机
CN211852196U (zh) * 2020-03-16 2020-11-03 海德韦尔(太仓)能源科技有限公司 一种离心式空气压缩机转子

Similar Documents

Publication Publication Date Title
CA2771922C (en) Turbomachine
EP1701428B1 (en) Motor
US10749402B2 (en) Rotary electric machine
US9157447B2 (en) Centrifugal gas compressor magnetic bearing thrust collar with mounting pilots
JP4447866B2 (ja) 排気タービン過給機
US9869319B2 (en) Vacuum pump
US20080232962A1 (en) Turbomachine and method for assembly thereof using a split housing design
AU2007298344A1 (en) Motor and compressor
JPH02241339A (ja) ターボチャージヤ直結回転機用永久磁石回転子
WO2007114079A1 (ja) 電機子コア、それを用いたモータおよびその製造方法
WO2020230507A1 (ja) ロータ及びそれを備えたモータ
US20170082115A1 (en) Electric supercharger
KR20190108825A (ko) 모터용 로터 조립체
TW201839282A (zh) 磁性軸承
CN115380167B (zh) 离心式压缩机
KR20160031457A (ko) 터보과급기용 고속 스위치 릴럭턴스 모터
WO2023162172A1 (ja) 回転体および回転電機並びに電動圧縮機、回転体の製造方法
WO2020209051A1 (ja) モーターローター
WO2023162171A1 (ja) 回転体および回転電機並びに電動圧縮機、回転体の製造方法
WO2000049296A1 (en) Centrifugal compressor aggregate and electric motor
CN105697395A (zh) 用于真空泵的转子设施及其制造方法
WO2020209050A1 (ja) モーターローター
WO2022202077A1 (ja) モータロータ及び過給機
CN112491246A (zh) 调磁环组件、磁力齿轮及相应的组装方法、复合电机
WO2023162220A1 (ja) 電動圧縮機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928699

Country of ref document: EP

Kind code of ref document: A1