WO2023162071A1 - Production method for rotor for rotating electrical machine - Google Patents

Production method for rotor for rotating electrical machine Download PDF

Info

Publication number
WO2023162071A1
WO2023162071A1 PCT/JP2022/007510 JP2022007510W WO2023162071A1 WO 2023162071 A1 WO2023162071 A1 WO 2023162071A1 JP 2022007510 W JP2022007510 W JP 2022007510W WO 2023162071 A1 WO2023162071 A1 WO 2023162071A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor shaft
rotor
rotor core
manufacturing
shaft
Prior art date
Application number
PCT/JP2022/007510
Other languages
French (fr)
Japanese (ja)
Inventor
毅彦 安立
孝明 河島
功記 三好
信平 牧尾
浩彰 杉田
真梨子 齊藤
Original Assignee
株式会社アイシン
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社アイシン filed Critical 株式会社アイシン
Priority to PCT/JP2022/007510 priority Critical patent/WO2023162071A1/en
Publication of WO2023162071A1 publication Critical patent/WO2023162071A1/en

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K15/00Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines
    • H02K15/02Methods or apparatus specially adapted for manufacturing, assembling, maintaining or repairing of dynamo-electric machines of stator or rotor bodies

Definitions

  • the present disclosure relates to a method of manufacturing a rotor for a rotating electric machine.
  • press fitting and shrink fitting are used to secure the necessary interference between the rotor shaft and rotor core, and no technology using hydroforming is known.
  • hydroforming portions of the rotor shaft other than the portion fastened to the rotor core are also subjected to internal pressure radially outward, so depending on the hardness of these portions, undesirable phenomena (such as cracks) may occur.
  • An object of the present disclosure is to use hydroforming to secure the necessary interference between the rotor shaft and the rotor core while reducing undesirable phenomena at predetermined portions that receive internal pressure.
  • a method of manufacturing a rotor for a rotating electric machine comprising: providing a rotor core and a hollow rotor shaft; a hardness increasing step of increasing the hardness of a predetermined portion that is a part of the rotor shaft; an arranging step of arranging the rotor core and the rotor shaft in a manufacturing apparatus to form a state in which the rotor shaft is positioned radially inside the rotor core in the manufacturing apparatus; After the arranging step, an integration step of fastening the rotor shaft and the rotor core by increasing the internal pressure of the hollow portion of the rotor shaft while supporting the rotor shaft and the rotor core by the manufacturing apparatus.
  • a manufacturing method is provided in which the hardness increasing step is performed after the integrating step.
  • hydroforming can be used to ensure the necessary interference between the rotor shaft and the rotor core while reducing undesirable phenomena at predetermined sites that receive internal pressure. becomes.
  • FIG. 1 is a cross-sectional view schematically showing a cross-sectional structure of a motor according to one embodiment
  • FIG. 4 is a schematic flow chart showing the flow of a rotor manufacturing method
  • FIG. 3 is a cross-sectional view (part 1) schematically showing a state of a product during manufacture in the process shown in FIG. 2
  • FIG. 3 is a cross-sectional view (part 2) schematically showing the state of the product during manufacture in the process shown in FIG. 2
  • FIG. 3 is a cross-sectional view (part 3) schematically showing the state of the product during manufacture in the process shown in FIG. 2
  • FIG. 4 is a cross-sectional view (part 4) schematically showing the state of the product during manufacture in the process shown in FIG. 2
  • FIG. 3D is another cross-sectional view schematically showing the process according to FIG. 3D;
  • FIG. 5 is a cross-sectional view (No. 5) schematically showing the state of the product during manufacture in the process shown in FIG. 2 ;
  • FIG. 6 is a cross-sectional view (No. 6) schematically showing the state of the product during manufacture in the process shown in FIG. 2 ;
  • FIG. 7 is a cross-sectional view (No. 7) schematically showing the state of the product during manufacture in the process shown in FIG. 2 ;
  • FIG. 8 is a cross-sectional view (No. 8) schematically showing the state of the product during manufacture in the process shown in FIG. 2 ;
  • FIG. 1 is a cross-sectional view schematically showing a cross-sectional structure of a motor 1 (an example of a rotating electric machine) according to one embodiment.
  • the rotation axis I of the motor 1 is illustrated in FIG.
  • the axial direction refers to the direction in which the rotation axis (rotation center) I of the motor 1 extends
  • the radial direction refers to the radial direction with the rotation axis I as the center. Therefore, the radially outer side refers to the side away from the rotation axis I, and the radially inner side refers to the side toward the rotation axis I.
  • the circumferential direction corresponds to the direction of rotation about the rotation axis I. As shown in FIG.
  • the motor 1 may be a vehicle drive motor used in, for example, a hybrid vehicle or an electric vehicle. However, the motor 1 may be used for any other purpose.
  • the motor 1 is of the inner rotor type, and the stator 21 is provided so as to surround the radially outer side of the rotor 30 .
  • the radially outer side of the stator 21 is fixed to the motor housing 10 .
  • the stator 21 is made of, for example, an annular laminated magnetic steel plate, and a plurality of slots (not shown) around which the coils 22 are wound are formed in the inner peripheral portion of the stator 21 .
  • the rotor 30 is arranged radially inside the stator 21 .
  • the rotor 30 has a rotor core 32 and a rotor shaft 34 .
  • the rotor core 32 is fixed radially outwardly of the rotor shaft 34 and rotates together with the rotor shaft 34 .
  • the rotor shaft 34 is rotatably supported by the motor housing 10 via bearings 14a and 14b (an example of bearings). It should be noted that the rotor shaft 34 defines the rotation axis I of the motor 1 . Further, in this embodiment, the rotor shaft 34 has a circular cross-sectional shape, but the cross-sectional shape is arbitrary.
  • the rotor shaft 34 is connected to a power transmission mechanism 60 that transmits power to the wheels. That is, the rotor shaft 34 is connected to a power transmission mechanism 60 for transmitting the rotational torque of the motor 1 to an axle (not shown).
  • FIG. 1 shows a shaft member 61 forming part of the power transmission mechanism 60 .
  • the power transmission mechanism 60 may include a speed reduction mechanism, a differential gear mechanism, a clutch, a transmission, and the like.
  • the shaft member 61 is spline-connected to the radially outer side of the rotor shaft 34 .
  • the radially outer circumferential surface of the end of the rotor shaft 34 has a power transmission portion 345 forming a spline joint (a gear portion composed of a plurality of axially protruded streaks).
  • the shaft member 61 may be spline-connected to the radially inner side of the rotor shaft 34 .
  • the rotor core 32 is made of, for example, an annular magnetic layered steel plate. Permanent magnets 321 may be embedded inside the rotor core 32 . Alternatively, permanent magnets 321 may be embedded in the outer peripheral surface of rotor core 32 . In addition, when the permanent magnets 321 are provided, the arrangement of the permanent magnets 321 is arbitrary.
  • End plates 35A and 35B are attached to both sides of the rotor core 32 in the axial direction.
  • the end plates 35A and 35B may have the function of supporting the rotor core 32 as well as the function of adjusting the imbalance of the rotor 30 (the function of eliminating the imbalance by cutting or the like).
  • the rotor shaft 34 has a hollow portion 343 as shown in FIG.
  • the hollow portion 343 extends over the entire axial length of the rotor shaft 34 .
  • the rotor shaft 34 includes, in the axial direction, a section SC1 where the rotor core 32 is provided, a section SC2 where the bearings 14a and 14b are provided, a first ejection hole 341 and a second ejection hole 341 which will be described later. and the part of section SC3 where the ejection hole 342 is provided.
  • Section SC2 extends at both ends in the axial direction, and section SC3 extends axially between section SC1 and section SC2.
  • the rotor shaft 34 has a configuration in which the outer peripheral surface is recessed radially inward in the section SC2.
  • the rotor shaft 34 includes a large diameter portion 34A and a small diameter portion 34B having an outer diameter smaller than that of the large diameter portion 34A.
  • the small diameter portion 34B is formed on both sides of the large diameter portion 34A in the axial direction.
  • the bearings 14a, 14b are provided on the small diameter portion 34B.
  • the step in the radial direction between the large diameter portion 34A and the small diameter portion 34B may be formed substantially perpendicular to the rotation axis I, or may be formed in a tapered shape.
  • the step in the radial direction between the large-diameter portion 34A and the small-diameter portion 34B is formed substantially perpendicular to the rotation axis I on one end side (right side in the drawing) and on the other end side. (Left side of the figure) is formed in a tapered shape.
  • the rotor shaft 34 also has axial bearing support surfaces 34a, 34b.
  • the axial bearing support surfaces 34a, 34b support the bearings 14a, 14b by axially contacting the axial end surfaces of the inner races of the bearings 14a, 14b.
  • the axial bearing support surfaces 34a and 34b are formed by denting the outer peripheral surface of the small diameter portion 34B of the rotor shaft 34 radially inward.
  • the axial bearing support surfaces 34 a , 34 b may be formed along the entire circumference of the rotor shaft 34 .
  • the rotor shaft 34 has, along the circumferential direction, a thick portion 347 in the form of a projection projecting radially inward.
  • the thick portion 347 is formed at substantially the axial center position of the rotor shaft 34 (substantially the axial center position in the section SC1).
  • the thickened portion 347 may be slightly axially offset with respect to the axial center position of the rotor shaft 34, or may not be formed.
  • the thick portion 347 may be formed by, for example, casting, flow forming, friction welding, or the like. A method of forming the thick portion 347 by flow forming will be described later.
  • the rotor shaft 34 may be formed of two pieces that are axially split at the center position. Note that when the rotor shaft 34 includes the thick portion 347, the rigidity of the central portion of the section SC1 is higher than the rigidity of the end portions.
  • the rotor shaft 34 has first ejection holes 341 .
  • the first ejection hole 341 radially penetrates from the hollow portion 343 to the outside. That is, the first ejection hole 341 has an opening 341a that opens to the hollow portion 343 and an opening 341b that faces the coil end 22A of the coil 22, and extends between the opening 341a and the opening 341b.
  • the opening 341 b of the first ejection hole 341 is arranged at a position offset in the axial direction with respect to the rotor core 32 so as to face the coil end 22 A of the coil 22 .
  • a plurality of first ejection holes 341 may be formed in the circumferential direction.
  • the rotor shaft 34 further has a second ejection hole 342 at a different axial position from the first ejection hole 341 .
  • the second ejection hole 342 radially penetrates from the hollow portion 343 to the outside. That is, the second ejection hole 342 has an opening 342a that opens into the hollow portion 343, an opening 342b that faces the coil end 22B of the coil 22, and extends between the opening 342a and the opening 342b.
  • the opening 342 b of the second ejection hole 342 is arranged at a position offset in the axial direction with respect to the rotor core 32 in a manner facing the coil end 22 B of the coil 22 .
  • a plurality of second ejection holes 342 may be formed in the circumferential direction.
  • Oil supply 90 may include pump 94 .
  • the type and driving mode of the pump 94 are arbitrary.
  • the pump 94 may be a gear pump operated by the rotational torque of the motor 1. Oil is supplied into the rotor shaft 34 from one end (the right end in the drawing) of the rotor shaft 34 .
  • the pump 94 may be arranged in a housing (not shown) adjacent to the motor housing 10 and housing the power transmission mechanism 60 .
  • the oil supply source 90 includes a pipeline member 92 and a pump 94 connected to one end (right end in the drawing) of the pipeline member 92 .
  • the pipeline member 92 is formed hollow and defines an oil path 801 inside. That is, the pipe member 92 has a hollow portion 92A that functions as the oil passage 801 .
  • the hollow portion 92A extends over the entire length of the pipe member 92 in the axial direction. However, the hollow part 92A does not open at one end (the end on the left side in the drawing, which is the end on the side opposite to the pump 94 side). That is, the pipe member 92 is closed at one end (left end in the figure).
  • the pipe member 92 extends inside the rotor shaft 34 in a manner having a gap in the radial direction with respect to the inner peripheral surface 340 of the rotor shaft 34 .
  • the conduit member 92 has an outer diameter r4.
  • the outer diameter r4 is significantly smaller than the inner diameters r1 and r3 in the sections SC1 and SC3 of the inner peripheral surface 340 of the rotor shaft 34 (in FIG. 1, the inner diameters r1 and r3 in the sections SC1 and SC3 are the same). be).
  • the outer diameter r4 is substantially equal to the inner diameter r2 of the inner peripheral surface 340 of the rotor shaft 34 at the section SC2, for example.
  • the conduit member 92 has a discharge hole 93 radially penetrating from the inside to the outside.
  • the discharge holes 93 are provided at a position in the axial direction corresponding to the substantially central position in the axial direction of the rotor core 32 and on both sides thereof.
  • the position, number, etc. of the discharge holes 93 in the axial direction are arbitrary.
  • the oil supplied from the oil supply source 90 flows axially through the hollow portion 92A of the pipe member 92 (see arrow R1) and is discharged radially outward from the discharge hole 93 (see arrow R2).
  • the oil discharged radially outward from the discharge hole 93 hits the inner peripheral surface 340 of the rotor shaft 34 and travels along the inner peripheral surface 340 of the rotor shaft 34 to the first and second ejection holes 341 and 342 . direction (see arrows R3 and R4).
  • the oil flowing axially outward along the inner peripheral surface 340 of the rotor shaft 34 can absorb heat from the radially inner side of the rotor core 32 in the section SC1, and can efficiently cool the rotor core 32. .
  • the thick portion 347 since the thick portion 347 is provided, the oil discharged radially outward from the discharge hole 93 is substantially evenly distributed to the first injection hole 341 and the second injection hole 342. distributed. As a result, the oil distributed and guided to the coil ends 22A and 22B can be equalized. As a result, the rotor core 32 can be uniformly cooled from the radially inner side along the axial direction, and the coil ends 22A and 22B can be similarly cooled via the first ejection hole 341 and the second ejection hole 342, respectively.
  • the axial position of the discharge hole 93 and the axial position of the thick portion 347 are displaced, for example, so that the oil flowing to each of the first ejection hole 341 and the second ejection hole 342 is changed. It is also possible to actively set a difference between the flow rates of .
  • the thick portion 347 since the thick portion 347 is provided, the oil discharged radially outward from the discharge hole 93 has a certain thickness and is transmitted along the inner peripheral surface 340 of the rotor shaft 34 . can be done. In other words, the thick portion 347 functions as a weir, and the accumulation of oil on the inner peripheral surface 340 of the rotor shaft 34 is facilitated.
  • the oil that has flowed axially outward along the inner peripheral surface 340 of the rotor shaft 34 is discharged radially outward through the first ejection holes 341 due to the action of centrifugal force during rotation of the motor 1 ( See arrow R5).
  • the opening 341b of the first ejection hole 341 radially faces the coil end 22A as described above. Therefore, the oil discharged radially outward through the first ejection holes 341 hits the coil ends 22A and can efficiently cool the coil ends 22A.
  • the oil that has flowed axially outward along the inner peripheral surface 340 of the rotor shaft 34 is discharged radially outward through the second ejection holes 342 due to the action of centrifugal force during rotation of the motor 1 . (see arrow R6).
  • the opening 342b of the second ejection hole 342 radially faces the coil end 22B as described above. Therefore, the oil discharged radially outward through the second ejection holes 342 hits the coil ends 22B and can efficiently cool the coil ends 22B.
  • the rotor core 32 can be efficiently cooled from the radially inner side by the oil flowing along the inner peripheral surface 340 of the rotor shaft 34, and the coil ends 22A and 22B can be efficiently cooled through the first ejection hole 341 and the second ejection hole 342. can be effectively cooled.
  • the inner peripheral surface 340 of the rotor shaft 34 has an inner diameter r1 in the section SC1 that is significantly larger than an inner diameter r2 in the section SC2. That is, the inner peripheral surface 340 of the rotor shaft 34 is enlarged in the section SC1 where the rotor core 32 is provided. As a result, the weight of the rotor shaft 34 can be reduced, and the radial distance between the inner peripheral surface 340 of the rotor shaft 34 and the permanent magnet 321 can be shortened (compared to the case where the inner diameter r1 ⁇ the inner diameter r2). ), which can effectively enhance the magnet cooling performance.
  • FIG. 1 shows the motor 1 with a specific structure
  • the structure of the motor 1 is arbitrary as long as the rotor core 32 is fastened to the rotor shaft 34 having the hollow portion 343 . Therefore, for example, the pipeline member 92 and the like may be omitted.
  • the pipe member 92 when the pipe member 92 is omitted, oil may be supplied from the hollow portion of the shaft member 61 .
  • the shaft member 61 may be fitted radially inside the rotor shaft 34 .
  • the cooling method for the motor 1 is arbitrary. Therefore, for example, an oil passage may be formed in the rotor core 32, or oil may be dripped from the radially outer side toward the coil ends 22A and 22B from the oil passage in the motor housing 10. Further, in FIG. 1, the conduit member 92 of the oil supply source 90 is inserted into the rotor shaft 34 from the side connected to the power transmission mechanism 60 in the axial direction of the motor 1. It may be inserted into the rotor shaft 34 from the side opposite to the side connected to the power transmission mechanism 60 . Moreover, in addition to oil cooling, a water cooling system using cooling water may be used.
  • FIG. 3B a Z direction parallel to the axis of rotation I is defined along with Z1 and Z2 sides along the Z direction.
  • the Z direction corresponds to the vertical direction and the Z2 side is the lower side during the manufacturing process.
  • 3B and the like also show the reference axis I0 in the manufacturing apparatus 200. As shown in FIG.
  • the reference axis I0 constitutes the center axis for centering the workpiece and corresponds to the rotation axis I described above.
  • FIG. 2 is a schematic flow chart showing the flow of the manufacturing method of the rotor 30, and FIGS. 3A to 3I are sectional views schematically showing states of the rotor shaft 34 and the rotor core 32 in several steps shown in FIG. be.
  • 3B to 3D and 3F to 3I are cross-sectional views taken along a plane including the reference axis I0, and
  • FIG. 3E is a cross-sectional view taken along a plane perpendicular to the reference axis I0. be.
  • the method of manufacturing the rotor 30 includes a preparation step (step S500) of preparing the rotor shaft 34 and the rotor core 32 (not coupled to each other) as works.
  • the thick portion 347 of the rotor shaft 34 may be formed by flow forming, spinning, or the like.
  • the rotor shaft 34 of the workpiece has axial bearing support surfaces 34a, 34b (see also FIG. 1) on both sides in the axial direction.
  • the axial bearing support surface 34a is formed by a radial stepped portion on the outer peripheral surface of the small diameter portion 34B on one axial side of the rotor shaft 34, and the axial bearing support surface 34b is formed on the other axial side of the rotor shaft 34. It is formed by a stepped portion in the radial direction on the outer peripheral surface of the small diameter portion 34B on the side.
  • Axial bearing support surfaces 34a, 34b carry axial loads received through bearings 14a, 14b.
  • the rotor shaft 34 of the workpiece has radial bearing support surfaces 34c and 34d on both sides in the axial direction.
  • the radial bearing support surfaces 34c, 34d take up the radial loads received through the bearings 14a, 14b.
  • the rotor shaft 34 of the workpiece has a power transmission portion 345 .
  • the power transmission portion 345 may be formed by cutting or the like.
  • the rotor shaft 34 at this stage may have an inner diameter r1' corresponding to the section SC1 slightly smaller than the inner diameter r1 in the product state (see FIG. 1).
  • the inner diameter r1' may be substantially the same as the inner diameter r1 in the product state (see FIG. 1).
  • the fastening process which will be described later, is a process for increasing the fastening force between the rotor shaft 34 and the rotor core 32 .
  • the outer diameter of the rotor core 32 at this stage may be slightly smaller than the outer diameter in the product state. This is because the rotor core 32 is slightly deformed radially outward as the diameter of the rotor shaft 34 expands in the fastening process, which will be described later.
  • the method for manufacturing the rotor 30 includes a step (step S501) of setting the rotor shaft 34 and the rotor core 32 in the manufacturing apparatus 200 (an example of the placement step).
  • the manufacturing apparatus 200 is in the form of manufacturing equipment, and includes various jigs and molds described below.
  • the manufacturing apparatus 200 includes a Z2-side fixed mold 201, and a Z2-side portion of the rotor shaft 34 (ends of the small diameter portion 34B and the large diameter portion 34A) is placed in the hollow portion 2011 of the fixed mold 201. ) is inserted.
  • the Z1 side portion of the rotor shaft 34 (ends of the small diameter portion 34B and the large diameter portion 34A on the side where the bearing 14a is provided) may be inserted into the hollow portion 2011 of the fixed mold 201 .
  • the fixed mold 201 has a support surface 2012 that supports the end surface 32b of the rotor core 32 on the Z2 side.
  • the support surface 2012 may support the entire end surface 32b of the rotor core 32 on the Z2 side, or may support a portion of the end surface 32b.
  • the fixed die 201 of the manufacturing apparatus 200 simultaneously supports the rotor shaft 34 and the rotor core 32 from the Z2 side. and restrains the movement (displacement) of the rotor shaft 34 and the rotor core 32 toward the Z2 side.
  • the outer diameter r11 of the rotor shaft 34 is equal to the inner diameter of the rotor core 32 ( diameter of the center hole) is slightly smaller than r12.
  • the rotor shaft 34 can be easily set radially inside the rotor core 32 .
  • the outer diameter r11 of the rotor shaft 34 may be substantially the same as the inner diameter (diameter of the axial hole) r12 of the rotor core 32 .
  • the rotor shaft 34 and the rotor core 32 do not necessarily need to be set on the fixed mold 201 of the manufacturing apparatus 200 at the same time, and may be set on the fixed mold 201 of the manufacturing apparatus 200 in order.
  • the method of manufacturing the rotor 30 includes a step of aligning the central axis I1 (see FIG. 3A) of the rotor shaft 34 with the reference axis I0 (step S502). That is, the method of manufacturing rotor 30 includes a step of centering rotor shaft 34 with respect to reference axis I0 defined in manufacturing apparatus 200 .
  • the centering of the rotor shaft 34 is realized by seal dies 202 and 203 of the manufacturing apparatus 200, as an example.
  • the seal dies 202 and 203 are components of the equipment that are accurately centered with respect to the reference axis I0.
  • the seal die 202 on the Z2 side moves from the Z2 side to the Z1 side along the Z direction with respect to the rotor shaft 34 and is set on the rotor shaft 34 .
  • the seal mold 202 has a portion 2021 having an outer diameter corresponding to the inner diameter of the small diameter portion 34B on the Z2 side of the rotor shaft 34 (see inner diameter r2 in FIG. 1).
  • the central axis of portion 2021 exactly coincides with reference axis I0.
  • the section 2021 has a circular outer shape when cut along a plane perpendicular to the reference axis I0, and the circular outer diameter is slightly smaller than the inner diameter of the small diameter portion 34B on the Z2 side of the rotor shaft 34. you can As a result, the rotor shaft 34 is radially centered from the inner side by the portion 2021 of the seal mold 202 that is accurately centered with respect to the reference axis I0.
  • the seal mold 202 may have a step surface 2022 extending radially outward on the Z2 side of the portion 2021, as shown in FIG. 3C.
  • the stepped surface 2022 of the seal mold 202 may axially face or abut on the end surface 348 b of the rotor shaft 34 on the Z2 side.
  • the Z1-side seal die 203 is set on the rotor shaft 34 by moving from the Z1 side to the Z2 side along the Z direction with respect to the rotor shaft 34 .
  • the seal mold 203 has a portion 2031 having an outer diameter corresponding to the inner diameter of the small diameter portion 34B on the Z1 side of the rotor shaft 34 (see inner diameter r2 in FIG. 1).
  • the central axis of portion 2031 exactly coincides with reference axis I0.
  • the section 2031 has a circular outer shape when cut along a plane perpendicular to the reference axis I0, and the circular outer diameter is slightly smaller than the inner diameter of the small diameter portion 34B of the rotor shaft 34 on the Z1 side. you can As a result, the rotor shaft 34 is radially centered from the inner side by the portion 2031 of the seal mold 203 that is accurately centered with respect to the reference axis I0.
  • the seal mold 203 may have a step surface 2032 extending radially outward on the Z1 side of the portion 2031, as shown in FIG. 3C.
  • the step surface 2032 of the seal mold 203 may axially face or abut on the Z1-side end surface 348 a of the rotor shaft 34 .
  • the stepped surface 2032 of the seal mold 203 is axially separated from the end surface 348a of the rotor shaft 34 on the Z1 side. and face.
  • the rotor shaft 34 is radially centered from the inside by the seal dies 202, 203 that are precisely centered with respect to the reference axis I0.
  • the rotor shaft 34 is positioned and oriented by the seal dies 202 and 203 so that the central axis I1 coincides with the reference axis I0. is corrected.
  • the rotor shaft 34 can be accurately centered from the radially inner side by the seal dies 202 and 203 .
  • the seal dies 202 and 203 may be set on the rotor shaft 34 at the same time, or may be set with a time lag.
  • seal mold 202 may be set against rotor shaft 34 and then seal mold 203 may be set against rotor shaft 34 .
  • the seal mold 202 may be a non-movable mold like the fixed mold 201 . In this case, the seal mold 202 may be integrated with the fixed mold 201 .
  • the method of manufacturing the rotor 30 includes a step of aligning the central axis I2 (see FIG. 3A) of the rotor core 32 with the reference axis I0 (step S503). That is, the method of manufacturing rotor 30 includes a step of centering rotor core 32 with respect to reference axis I0 defined in manufacturing apparatus 200 .
  • the centering of the rotor core 32 is realized by the centering device 204 of the manufacturing device 200, as an example.
  • the centering device 204 is movable in a plane perpendicular to the reference axis I0, and arranged to move back and forth with respect to the reference axis I0.
  • three or more centering devices 204 are provided, as shown in FIG. 3E.
  • the centering device 204 also preferably extends axially the entire axial length of the rotor core 32 so as to act over the entire axial length of the rotor core 32, as shown in FIG. 3D.
  • three centering devices 204 are provided at intervals of 120 degrees around the reference axis I0.
  • the centering device 204 advances toward the reference axis I0 (see arrow R300)
  • the radially inner tip portion 2041 of the centering device 204 comes into contact with the outer peripheral surface of the rotor core 32 .
  • Each centering device 204 moves toward the reference axis I0 until the distance from the tip 2041 to the reference axis I0 reaches a predetermined radius r30.
  • the predetermined radius r30 may correspond to the regular outer diameter of the rotor core 32 (the outer diameter centered on the rotation axis I). As a result, the rotor core 32 can be accurately centered with respect to the reference axis I0.
  • the rotor core 32 is centered from the radially outer side by the centering device 204 which advances to a precisely defined predetermined radius r30 towards the reference axis I0.
  • the position and attitude of the rotor core 32 are corrected by the centering device 204 so that the central axis I2 coincides with the reference axis I0. be.
  • the rotor core 32 can be accurately centered from the radially outer side by the centering device 204 .
  • the centering device 204 is formed such that the tip portion 2041 is in line contact (axial line contact) with the outer peripheral surface of the rotor core 32, but surface contact is not possible.
  • tip portion 2041 may have a curved surface along the outer peripheral surface of rotor core 32 when viewed in the direction along reference axis I0.
  • the rotor 30 manufacturing method includes a step (step S504) of firmly fixing the rotor core 32 to the manufacturing apparatus 200 in a state where the rotor core 32 has been centered in step S503.
  • the manufacturing apparatus 200 includes a movable die 205 on the Z1 side.
  • the movable mold 205 is capable of translational movement parallel to the reference axis I0.
  • the movable die 205 moves along the Z direction toward the end face 32a on the Z1 side of the rotor core 32 and contacts the end face 32a to fix the rotor core 32 to the manufacturing apparatus 200 .
  • the movable mold 205 has an annular shape with a hollow portion 2051 on the inner side in the radial direction, like the fixed mold 201 described above.
  • the Z1 side portion of the rotor shaft 34 ends of the small diameter portion 34 B and the large diameter portion 34 A is inserted into the hollow portion 2051 .
  • the movable die 205 of the manufacturing apparatus 200 simultaneously supports the rotor shaft 34 and the rotor core 32 from the Z1 side. and restrains the movement (displacement) of the rotor shaft 34 and the rotor core 32 toward the Z1 side.
  • the rotor core 32 when the rotor core 32 is set on the movable mold 205 of the manufacturing apparatus 200, the rotor core 32 is sandwiched between the movable mold 205 and the fixed mold 201 in the axial direction. Radial displacement is also constrained. Therefore, even if the centering device 204 moves (retracts) away from the rotor core 32 thereafter (see arrow R401 in FIG. 3F), the centered state of the rotor core 32 is maintained.
  • the method of manufacturing the rotor 30 includes a sealing step (step S505) of sealing the hollow portion 343 of the rotor core 32 from the outside of the rotor shaft 34 with the seal molds 202 and 203, as shown in FIG. 3G.
  • the sealing process includes moving the Z1 side seal mold 203 further along the Z direction from the Z1 side to the Z2 side with respect to the rotor shaft 34 (stationary mold 201). Thereby, the opening 349 of the axial end 348 on the Z1 side of the rotor shaft 34 can be sealed by the seal mold 203 .
  • the rotor shaft 34 is firmly fixed to the manufacturing apparatus 200 while being centered in step S502. In this way, the centering of the rotor shaft 34 may be achieved at some level in step S502 and fully achieved in this step S505.
  • the seal mold 203 in the sealing process, is further moved in the Z direction Z2 with respect to the rotor shaft 34, as described above.
  • the seal mold 203 preferably plastically deforms the axial end portion 348 of the rotor shaft 34 .
  • the axial end portion 348 of the rotor shaft 34 is plastically deformed mainly radially inward due to the action of the seal mold 203 .
  • the contact surface pressure between the seal mold 203 and the axial end portion 348 of the rotor shaft 34 can be effectively increased, and as a result, the sealing performance between the seal mold 203 and the rotor shaft 34 can be improved. be able to.
  • the seal mold 203 when the seal mold 203 is further moved in the Z direction Z2 side with respect to the rotor shaft 34 during the sealing process as described above, the rotor shaft 34 is directed toward the seal mold 202 by the seal mold 203. will be pressed down. That is, the rotor shaft 34 receives an axial pressing force between the seal molds 202 and 203 .
  • a metal seal similar to that on the Z1 side is realized on the Z2 side as well. That is, the seal mold 202 plastically deforms the Z2-side axial end 348 of the rotor shaft 34, thereby forming a seal (a so-called metal seal) between the Z2-side axial end 348 of the rotor shaft 34 and the seal mold 202. ).
  • the method of manufacturing the rotor 30 includes a fastening step (step S506) (an example of an integration step) for fixing (fastening) the rotor core 32 to the rotor shaft 34 by hydroforming.
  • a fastening step (step S506) (an example of an integration step) for fixing (fastening) the rotor core 32 to the rotor shaft 34 by hydroforming.
  • the fluid is introduced into the hollow portion 343 via the seal molds 202 and/or 203 while the rotor shaft 34 is pressed against the seal molds 202 and 203, thereby causing the fluid to flow.
  • a force (internal pressure) perpendicular to the inner peripheral surface 340 is applied to the inner peripheral surface 340 of the rotor shaft 34 (see arrows R31 and R32 in FIG. 3H).
  • the diameter of the rotor shaft 34 is expanded, and a radial interference is secured between the rotor shaft 34 and the rotor core 32 (see FIG. 3I). That is, as the inner diameter r1' of the rotor shaft 34 is expanded to the inner diameter r1, the outer diameter r11 is increased by that amount, and the interference is ensured. According to such hydroforming, it is possible to prevent problems that may occur in a method of fitting the rotor shaft 34 and the rotor core 32, such as press-fitting (for example, the rotor core 32 falls down during press-fitting).
  • the rotor core 32 is centered by the centering device 204 as described above before the fastening process of step S506. Therefore, the rotor core 32 and the rotor shaft 34 can be fastened with the rotor core 32 being centered. Further, in this embodiment, in the fastening process of step S506, the state in which axial and radial displacements are restrained between the fixed mold 201 and the movable mold 205 is maintained. Therefore, it is possible to reduce the possibility that the centered state of the rotor core 32 is damaged during the fastening process.
  • the diameter of the rotor shaft 34 is expanded while the rotor core 32 is centered. It will be centered by the rotor core 32 . As a result, the rotor core 32 and the rotor shaft 34 can be fastened while being accurately centered with respect to the reference axis I0.
  • the method of manufacturing the rotor 30 includes a hardness increasing step (step S507) of increasing the hardness of the predetermined portion 8, which is a part of the rotor shaft 34.
  • the predetermined portion 8 is preferably a portion that preferably has a relatively high hardness compared to other portions.
  • the predetermined portion 8 includes a portion forming the radial bearing support surfaces 34 c and 34 d and a portion forming the power transmission portion 345 .
  • the predetermined parts 8 are parts 81, 82, and 83 when the rotor shaft 34 is axially divided into four parts 80 to 83.
  • a portion 81 is a portion including the radial bearing support surface 34 c
  • a portion 82 is a portion including the radial bearing support surface 34 d
  • a portion 83 is a portion including the power transmission portion 345 .
  • the predetermined portion 8 may include only the portions 81, 82, and 83, or may include portions adjacent to the portions 81, 82, and 83 in the axial direction.
  • the predetermined portion 8 related to the portion 81 may include a portion axially inner than the axial bearing support surface 34a.
  • the hardness increasing process is optional as long as it is a process that can increase the hardness, and in this embodiment, it is a process of quenching.
  • Detailed conditions for the quenching treatment are arbitrary and may be appropriately set according to the hardness or the like to be ensured.
  • the hardening may be induction hardening, laser hardening, or the like.
  • the hardness increasing step may include plastic working such as forging, rolling, and rolling.
  • a treatment or the like for realizing recrystallization (refining of crystals) by heat treatment or the like may be included.
  • Hardening of the portions 81, 82 of the rotor shaft 34 forming the radial bearing support surfaces 34c, 34d may be performed only on the radially outer surfaces of the portions 81, 82.
  • the radially outer surfaces of the portions 81, 82 i.e., the radial bearing support surfaces 34c, 34d
  • the bearings of the portions 81, 82 are hardened. It is possible to increase the durability against the load received via 14a, 14b.
  • hardening of the portion 83 of the rotor shaft 34 forming the power transmission portion 345 may be performed only on the radially outer surface of the portion.
  • the hardness of the radially outer surface of the portion 83 that is, the radially outer power transmission portion 345 becomes higher than the radially inner surface of the portion 83, and the durability of the portion 83 (the power transmission portion 345) increases.
  • the power transmission portion 345 is formed radially inward of the rotor shaft 34
  • hardening of the portion 83 forming the power transmission portion 345 may be performed only on the radially inner surface of the portion 83 . .
  • the method for manufacturing the rotor 30 includes an ejection hole forming step (step S508) of forming holes corresponding to the first ejection holes 341 and the second ejection holes 342 in the rotor shaft .
  • the ejection hole forming step may be performed after the rotor shaft 34 is removed from the manufacturing apparatus 200 .
  • the ejection hole forming step (step S508) is completed, the final rotor shaft 34 is completed.
  • the ejection hole forming step may be performed before the hardness increasing process in step S507, if necessary.
  • the method for manufacturing the rotor 30 includes another finishing process (step S510).
  • Other finishing processes may include a process of fixing the permanent magnet 321, a process of magnetizing, a process of adjusting the rotational balance by the end plates 35A and 35B, and the like.
  • the rotor core 32 and the rotor shaft 34 can be integrated by hydroforming while maintaining the state.
  • the rotor 30 with reduced imbalance around the rotation axis I can be manufactured.
  • the diameter of the rotor shaft 34 can be expanded by hydroforming in the centered state, the interference associated with the fastening between the rotor core 32 and the rotor shaft 34 can be made uniform along the circumferential direction.
  • the predetermined portions 8 whose hardness is increased in the hardness increasing step (step S507) are the portions 81 and 82 forming the radial bearing support surfaces 34c and 34d, and the power transmission portion. 83 forming 345. Since these portions 81, 82, 83 are set in the small diameter portion 34B, they are included in the axial end portion 348 that is plastically deformed in the sealing process, or are located near the axial end portion 348. .
  • the hardness of the axial end portion 348 is increased by the hardness increasing step (step S507), so the sealing step plastic deformation at may not be realized in the desired manner.
  • the plastic deformation will be insufficient and the desired sealing performance will not be achieved, or the predetermined portion 8 of the axial end portion 348 will crack. may occur.
  • the durability of the mold such as the seal mold 203 may also deteriorate.
  • the hardness increasing step (step S507) is executed after the sealing step (step S505).
  • the sealing process is performed prior to the hardness increasing process (step S507). easier than it should be.
  • the predetermined portion 8 having a relatively high hardness is established at or near the axial end portion 348 of the rotor shaft 34, the axial end portion of the rotor shaft 34 is hardened during the sealing process.
  • the sealing at 348 can be enhanced.
  • the predetermined portion 8 forms the radial bearing support surfaces 34c and 34d and the power transmission portion 345, so relatively high dimensional accuracy is required.
  • the hardness increasing step (step S507) is executed after the sealing step (step S505), after the sealing step (step S505) and before the hardness increasing step (step S507), Processing (for example, cutting, etc.) for increasing the dimensional accuracy of the predetermined portion 8 is also possible.
  • the quenching of the portion 82 is continuously performed together with the quenching of the portions 81 and 83 in the hardness increasing step (step S507), so that the manufacturing method can be efficiently realized. Not limited. Since the portion 82 is not included in the axial end portion 348 , compared to the portions 81 and 83 , inconvenience due to the sealing process described above is less likely to occur. Therefore, the quenching of the portion 82 may be performed before the sealing step (step S505).
  • Reference Signs List 1 motor (rotary electric machine) 8 (81, 82, 83) predetermined portion 32 rotor core 34 rotor shaft 343 hollow portion 34B small diameter portion , 34A large diameter portion 14a, 14b bearing 60 power transmission mechanism 200 manufacturing apparatus

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

Disclosed herein is a production method for a rotor for a rotating electrical machine, said production method including a step for preparing a rotor core and a hollow rotor shaft, a hardness increasing step for heightening the hardness of a specified part which is a portion of the rotor shaft, a disposing step for disposing the rotor core and the rotor shaft in a production device and creating a state in which the rotor shaft is positioned radially inside of the rotor core in the production device, and an integrating step for, after the disposing step, fastening the rotor shaft and the rotor core together by heightening the internal pressure of the hollow part of the rotor shaft while supporting the rotor shaft and the rotor core with the production device, wherein the hardness increasing step is executed after the integrating step.

Description

回転電機用のロータの製造方法Manufacturing method of rotor for rotary electric machine
 本開示は、回転電機用のロータの製造方法に関する。 The present disclosure relates to a method of manufacturing a rotor for a rotating electric machine.
 鉄管部材に凸部をハイドロフォーミングで成形する技術が知られている。 A technique for forming convex parts on iron pipe members by hydroforming is known.
特開2009-184573号公報JP 2009-184573 A
 ところで、ロータシャフトとロータコアとの間の必要な締め代を確保するためには、圧入や焼き嵌めが利用されており、ハイドロフォーミングを利用する技術は知られていない。ハイドロフォーミングでは、ロータシャフトにおけるロータコアとの締結部以外の部位も径方向外側へと内圧を受けるので、当該部位の硬度によっては、望ましくない現象(例えば割れ等)が生じうる。 By the way, press fitting and shrink fitting are used to secure the necessary interference between the rotor shaft and rotor core, and no technology using hydroforming is known. In hydroforming, portions of the rotor shaft other than the portion fastened to the rotor core are also subjected to internal pressure radially outward, so depending on the hardness of these portions, undesirable phenomena (such as cracks) may occur.
 本開示は、ハイドロフォーミングを利用して、ロータシャフトとロータコアとの間の必要な締め代が確保しつつ、内圧を受ける所定部位における望ましくない現象を低減することを目的とする。 An object of the present disclosure is to use hydroforming to secure the necessary interference between the rotor shaft and the rotor core while reducing undesirable phenomena at predetermined portions that receive internal pressure.
 1つの側面では、回転電機用のロータの製造方法であって、
 ロータコアと、中空のロータシャフトとを準備する工程と、
 前記ロータシャフトの一部である所定部位の硬度を高める硬度増加工程と、
 前記ロータコアと前記ロータシャフトとを製造装置に配置し、前記製造装置において前記ロータコアの径方向内側に前記ロータシャフトが位置する状態を形成する配置工程と、
 前記配置工程の後に、前記製造装置により前記ロータシャフト及び前記ロータコアを支持しつつ、前記ロータシャフトの中空部の内圧を高めることで、前記ロータシャフトと前記ロータコアとを締結する一体化工程とを含み、
 前記硬度増加工程は、前記一体化工程の後に実行される、製造方法が提供される。
In one aspect, a method of manufacturing a rotor for a rotating electric machine, comprising:
providing a rotor core and a hollow rotor shaft;
a hardness increasing step of increasing the hardness of a predetermined portion that is a part of the rotor shaft;
an arranging step of arranging the rotor core and the rotor shaft in a manufacturing apparatus to form a state in which the rotor shaft is positioned radially inside the rotor core in the manufacturing apparatus;
After the arranging step, an integration step of fastening the rotor shaft and the rotor core by increasing the internal pressure of the hollow portion of the rotor shaft while supporting the rotor shaft and the rotor core by the manufacturing apparatus. ,
A manufacturing method is provided in which the hardness increasing step is performed after the integrating step.
 1つの側面では、本開示によれば、ハイドロフォーミングを利用して、ロータシャフトとロータコアとの間の必要な締め代が確保しつつ、内圧を受ける所定部位における望ましくない現象を低減することが可能となる。 In one aspect, according to the present disclosure, hydroforming can be used to ensure the necessary interference between the rotor shaft and the rotor core while reducing undesirable phenomena at predetermined sites that receive internal pressure. becomes.
一実施例によるモータの断面構造を概略的に示す断面図である。1 is a cross-sectional view schematically showing a cross-sectional structure of a motor according to one embodiment; FIG. ロータの製造方法の流れを示す概略フローチャートである。4 is a schematic flow chart showing the flow of a rotor manufacturing method; 図2に示す工程における製造途中の製品状態を概略的に示す断面図(その1)である。FIG. 3 is a cross-sectional view (part 1) schematically showing a state of a product during manufacture in the process shown in FIG. 2 ; 図2に示す工程における製造途中の製品状態を概略的に示す断面図(その2)である。FIG. 3 is a cross-sectional view (part 2) schematically showing the state of the product during manufacture in the process shown in FIG. 2 ; 図2に示す工程における製造途中の製品状態を概略的に示す断面図(その3)である。FIG. 3 is a cross-sectional view (part 3) schematically showing the state of the product during manufacture in the process shown in FIG. 2 ; 図2に示す工程における製造途中の製品状態を概略的に示す断面図(その4)である。FIG. 4 is a cross-sectional view (part 4) schematically showing the state of the product during manufacture in the process shown in FIG. 2 ; 図3Dに係る工程を概略的に示す別の断面図である。FIG. 3D is another cross-sectional view schematically showing the process according to FIG. 3D; 図2に示す工程における製造途中の製品状態を概略的に示す断面図(その5)である。FIG. 5 is a cross-sectional view (No. 5) schematically showing the state of the product during manufacture in the process shown in FIG. 2 ; 図2に示す工程における製造途中の製品状態を概略的に示す断面図(その6)である。FIG. 6 is a cross-sectional view (No. 6) schematically showing the state of the product during manufacture in the process shown in FIG. 2 ; 図2に示す工程における製造途中の製品状態を概略的に示す断面図(その7)である。FIG. 7 is a cross-sectional view (No. 7) schematically showing the state of the product during manufacture in the process shown in FIG. 2 ; 図2に示す工程における製造途中の製品状態を概略的に示す断面図(その8)である。FIG. 8 is a cross-sectional view (No. 8) schematically showing the state of the product during manufacture in the process shown in FIG. 2 ;
 以下、添付図面を参照しながら各実施例について詳細に説明する。なお、図面の寸法比率はあくまでも一例であり、これに限定されるものではなく、また、図面内の形状等は、説明の都合上、部分的に誇張している場合がある。例えば、図面上、隙間がない部材間であってもわずかな隙間(例えば必要なクリアランス分の隙間)が形成される場合がありえ、また、図面上、隙間がある部材間であっても隙間がない場合もありえる。 Each embodiment will be described in detail below with reference to the accompanying drawings. Note that the dimensional ratios in the drawings are merely examples, and the present invention is not limited to these, and shapes and the like in the drawings may be partially exaggerated for convenience of explanation. For example, even if there is no gap on the drawing, there may be a slight gap (for example, a gap for the required clearance) between members, and even if there is a gap on the drawing, there may be a gap It may not be.
 図1は、一実施例によるモータ1(回転電機の一例)の断面構造を概略的に示す断面図である。 FIG. 1 is a cross-sectional view schematically showing a cross-sectional structure of a motor 1 (an example of a rotating electric machine) according to one embodiment.
 図1には、モータ1の回転軸Iが図示されている。以下の説明において、軸方向とは、モータ1の回転軸(回転中心)Iが延在する方向を指し、径方向とは、回転軸Iを中心とした径方向を指す。従って、径方向外側とは、回転軸Iから離れる側を指し、径方向内側とは、回転軸Iに向かう側を指す。また、周方向とは、回転軸Iまわりの回転方向に対応する。 The rotation axis I of the motor 1 is illustrated in FIG. In the following description, the axial direction refers to the direction in which the rotation axis (rotation center) I of the motor 1 extends, and the radial direction refers to the radial direction with the rotation axis I as the center. Therefore, the radially outer side refers to the side away from the rotation axis I, and the radially inner side refers to the side toward the rotation axis I. Moreover, the circumferential direction corresponds to the direction of rotation about the rotation axis I. As shown in FIG.
 モータ1は、例えばハイブリッド車両や電気自動車で使用される車両駆動用のモータであってよい。ただし、モータ1は、他の任意の用途に使用されるものであってもよい。 The motor 1 may be a vehicle drive motor used in, for example, a hybrid vehicle or an electric vehicle. However, the motor 1 may be used for any other purpose.
 モータ1は、インナロータタイプであり、ステータ21がロータ30の径方向外側を囲繞するように設けられる。ステータ21は、径方向外側がモータハウジング10に固定される。ステータ21は、例えば円環状の磁性体の積層鋼板からなり、ステータ21の内周部には、コイル22が巻回される複数のスロット(図示せず)が形成される。 The motor 1 is of the inner rotor type, and the stator 21 is provided so as to surround the radially outer side of the rotor 30 . The radially outer side of the stator 21 is fixed to the motor housing 10 . The stator 21 is made of, for example, an annular laminated magnetic steel plate, and a plurality of slots (not shown) around which the coils 22 are wound are formed in the inner peripheral portion of the stator 21 .
 ロータ30は、ステータ21の径方向内側に配置される。ロータ30は、ロータコア32と、ロータシャフト34とを備える。ロータコア32は、ロータシャフト34の径方向外側に固定され、ロータシャフト34と一体となって回転する。ロータシャフト34は、モータハウジング10にベアリング14a、14b(軸受の一例)を介して回転可能に支持される。なお、ロータシャフト34は、モータ1の回転軸Iを画成する。また、本実施例では、ロータシャフト34は、円形の断面形状であるが、断面形状は任意である。 The rotor 30 is arranged radially inside the stator 21 . The rotor 30 has a rotor core 32 and a rotor shaft 34 . The rotor core 32 is fixed radially outwardly of the rotor shaft 34 and rotates together with the rotor shaft 34 . The rotor shaft 34 is rotatably supported by the motor housing 10 via bearings 14a and 14b (an example of bearings). It should be noted that the rotor shaft 34 defines the rotation axis I of the motor 1 . Further, in this embodiment, the rotor shaft 34 has a circular cross-sectional shape, but the cross-sectional shape is arbitrary.
 ロータシャフト34は、車輪に動力を伝達する動力伝達機構60に連結される。すなわち、ロータシャフト34には、モータ1の回転トルクを車軸(図示せず)に伝達するための動力伝達機構60が接続される。図1には、当該動力伝達機構60の一部を形成する軸部材61が図示されている。なお、動力伝達機構60は、減速機構や、差動歯車機構、クラッチ、変速機等を含んでよい。図1に示す例では、軸部材61は、ロータシャフト34の径方向外側にスプライン結合される。この場合、ロータシャフト34の端部の径方向外側の周面には、スプライン結合部(複数の軸方向の凸条からなる歯車部)を形成する動力伝達部345を有することになる。なお、軸部材61は、ロータシャフト34の径方向内側にスプライン結合されてもよい。 The rotor shaft 34 is connected to a power transmission mechanism 60 that transmits power to the wheels. That is, the rotor shaft 34 is connected to a power transmission mechanism 60 for transmitting the rotational torque of the motor 1 to an axle (not shown). FIG. 1 shows a shaft member 61 forming part of the power transmission mechanism 60 . Note that the power transmission mechanism 60 may include a speed reduction mechanism, a differential gear mechanism, a clutch, a transmission, and the like. In the example shown in FIG. 1 , the shaft member 61 is spline-connected to the radially outer side of the rotor shaft 34 . In this case, the radially outer circumferential surface of the end of the rotor shaft 34 has a power transmission portion 345 forming a spline joint (a gear portion composed of a plurality of axially protruded streaks). The shaft member 61 may be spline-connected to the radially inner side of the rotor shaft 34 .
 ロータコア32は、例えば円環状の磁性体の積層鋼板からなる。ロータコア32の内部には、永久磁石321が埋め込まれてよい。あるいは、永久磁石321は、ロータコア32の外周面に埋め込まれてもよい。なお、永久磁石321が設けられる場合、永久磁石321の配列等は任意である。 The rotor core 32 is made of, for example, an annular magnetic layered steel plate. Permanent magnets 321 may be embedded inside the rotor core 32 . Alternatively, permanent magnets 321 may be embedded in the outer peripheral surface of rotor core 32 . In addition, when the permanent magnets 321 are provided, the arrangement of the permanent magnets 321 is arbitrary.
 ロータコア32の軸方向の両側には、エンドプレート35A、35Bが取り付けられる。エンドプレート35A、35Bは、ロータコア32を支持する支持機能の他、ロータ30のアンバランスの調整機能(切削等されることでアンバランスを無くす機能)を有してよい。 End plates 35A and 35B are attached to both sides of the rotor core 32 in the axial direction. The end plates 35A and 35B may have the function of supporting the rotor core 32 as well as the function of adjusting the imbalance of the rotor 30 (the function of eliminating the imbalance by cutting or the like).
 ロータシャフト34は、図1に示すように、中空部343を有する。中空部343は、ロータシャフト34の軸方向の全長にわたり延在する。 The rotor shaft 34 has a hollow portion 343 as shown in FIG. The hollow portion 343 extends over the entire axial length of the rotor shaft 34 .
 ロータシャフト34は、図1に示すように、軸方向で、ロータコア32が設けられる区間SC1の部位と、ベアリング14a、14bが設けられる区間SC2の部位と、後述する第1噴出孔341及び第2噴出孔342が設けられる区間SC3の部位とを含む。区間SC2は、軸方向の両端部にそれぞれ延在し、区間SC3は、軸方向で区間SC1と区間SC2との間に延在する。 As shown in FIG. 1, the rotor shaft 34 includes, in the axial direction, a section SC1 where the rotor core 32 is provided, a section SC2 where the bearings 14a and 14b are provided, a first ejection hole 341 and a second ejection hole 341 which will be described later. and the part of section SC3 where the ejection hole 342 is provided. Section SC2 extends at both ends in the axial direction, and section SC3 extends axially between section SC1 and section SC2.
 本実施例では、一例として、ロータシャフト34は、区間SC2において、外周面が径方向内側に凹む形態である。ロータシャフト34は、大径部34Aと、大径部34Aよりも外径が小さい小径部34Bとを含む。小径部34Bは、図1に示すように、軸方向で大径部34Aの両側に形成される。ベアリング14a、14bは、小径部34Bに設けられる。なお、大径部34Aと小径部34Bとの間の径方向の段差は、回転軸Iに対して略直角に形成されてもよいし、テーパ状に形成されてもよい。本実施例では、一例として、大径部34Aと小径部34Bとの間の径方向の段差は、一端側(図の右側)では、回転軸Iに対して略直角に形成され、他端側(図の左側)では、テーパ状に形成されている。 In this embodiment, as an example, the rotor shaft 34 has a configuration in which the outer peripheral surface is recessed radially inward in the section SC2. The rotor shaft 34 includes a large diameter portion 34A and a small diameter portion 34B having an outer diameter smaller than that of the large diameter portion 34A. As shown in FIG. 1, the small diameter portion 34B is formed on both sides of the large diameter portion 34A in the axial direction. The bearings 14a, 14b are provided on the small diameter portion 34B. In addition, the step in the radial direction between the large diameter portion 34A and the small diameter portion 34B may be formed substantially perpendicular to the rotation axis I, or may be formed in a tapered shape. In this embodiment, as an example, the step in the radial direction between the large-diameter portion 34A and the small-diameter portion 34B is formed substantially perpendicular to the rotation axis I on one end side (right side in the drawing) and on the other end side. (Left side of the figure) is formed in a tapered shape.
 また、ロータシャフト34は、軸方向のベアリング支持面34a、34bを有する。軸方向のベアリング支持面34a、34bは、ベアリング14a、14bのインナレースの軸方向の端面に軸方向に当接することで、ベアリング14a、14bを支持する。軸方向のベアリング支持面34a、34bは、ロータシャフト34の小径部34Bにおいて外周面が径方向内側に凹むことで形成される。軸方向のベアリング支持面34a、34bは、ロータシャフト34の周方向の全周にわたり形成されてよい。 The rotor shaft 34 also has axial bearing support surfaces 34a, 34b. The axial bearing support surfaces 34a, 34b support the bearings 14a, 14b by axially contacting the axial end surfaces of the inner races of the bearings 14a, 14b. The axial bearing support surfaces 34a and 34b are formed by denting the outer peripheral surface of the small diameter portion 34B of the rotor shaft 34 radially inward. The axial bearing support surfaces 34 a , 34 b may be formed along the entire circumference of the rotor shaft 34 .
 ロータシャフト34は、径方向内側に凸となる凸部の形態の厚肉部347を周方向に沿って有する。厚肉部347は、ロータシャフト34の軸方向の略中心位置(区間SC1における軸方向の略中心位置)に形成される。ただし、変形例では、厚肉部347は、ロータシャフト34の軸方向の中心位置に対して軸方向でわずかにオフセットされてもよいし、形成されなくてもよい。厚肉部347は、例えば鋳造やフローフォーミング、摩擦圧接等により形成されてもよい。フローフォーミングによる厚肉部347の形成方法は、後述する。なお、摩擦圧接の場合、ロータシャフト34は、当該中心位置で軸方向に分割される2ピースにより形成されてもよい。なお、ロータシャフト34が厚肉部347を備える場合、区間SC1のうちの中央部の剛性が端部の剛性よりも高くなる。 The rotor shaft 34 has, along the circumferential direction, a thick portion 347 in the form of a projection projecting radially inward. The thick portion 347 is formed at substantially the axial center position of the rotor shaft 34 (substantially the axial center position in the section SC1). However, in a modification, the thickened portion 347 may be slightly axially offset with respect to the axial center position of the rotor shaft 34, or may not be formed. The thick portion 347 may be formed by, for example, casting, flow forming, friction welding, or the like. A method of forming the thick portion 347 by flow forming will be described later. In the case of friction welding, the rotor shaft 34 may be formed of two pieces that are axially split at the center position. Note that when the rotor shaft 34 includes the thick portion 347, the rigidity of the central portion of the section SC1 is higher than the rigidity of the end portions.
 ロータシャフト34は、第1噴出孔341を有する。第1噴出孔341は、中空部343から外部へと径方向に貫通する。すなわち、第1噴出孔341は、中空部343に開口する開口341aと、コイル22のコイルエンド22Aに対向する開口341bとを有し、開口341a及び開口341b間に延在する。第1噴出孔341の開口341bは、コイル22のコイルエンド22Aに対向する態様で、ロータコア32に対し軸方向にずれた位置に配置される。なお、第1噴出孔341は、周方向に複数個形成されてもよい。 The rotor shaft 34 has first ejection holes 341 . The first ejection hole 341 radially penetrates from the hollow portion 343 to the outside. That is, the first ejection hole 341 has an opening 341a that opens to the hollow portion 343 and an opening 341b that faces the coil end 22A of the coil 22, and extends between the opening 341a and the opening 341b. The opening 341 b of the first ejection hole 341 is arranged at a position offset in the axial direction with respect to the rotor core 32 so as to face the coil end 22 A of the coil 22 . A plurality of first ejection holes 341 may be formed in the circumferential direction.
 ロータシャフト34は、更に、第1噴出孔341とは異なる軸方向の位置に、第2噴出孔342を有する。第2噴出孔342は、中空部343から外部へと径方向に貫通する。すなわち、第2噴出孔342は、中空部343に開口する開口342aと、コイル22のコイルエンド22Bに対向する開口342bとを有し、開口342a及び開口342b間に延在する。第2噴出孔342の開口342bは、コイル22のコイルエンド22Bに対向する態様で、ロータコア32に対し軸方向にずれた位置に配置される。なお、第2噴出孔342は、周方向に複数個形成されてもよい。 The rotor shaft 34 further has a second ejection hole 342 at a different axial position from the first ejection hole 341 . The second ejection hole 342 radially penetrates from the hollow portion 343 to the outside. That is, the second ejection hole 342 has an opening 342a that opens into the hollow portion 343, an opening 342b that faces the coil end 22B of the coil 22, and extends between the opening 342a and the opening 342b. The opening 342 b of the second ejection hole 342 is arranged at a position offset in the axial direction with respect to the rotor core 32 in a manner facing the coil end 22 B of the coil 22 . A plurality of second ejection holes 342 may be formed in the circumferential direction.
 ロータシャフト34内は、油供給源90に接続される。油供給源90は、ポンプ94を含んでよい。この場合、ポンプ94の種類や駆動態様は任意である。例えば、ポンプ94は、モータ1の回転トルクにより動作するギアポンプであってもよい。ロータシャフト34内には、ロータシャフト34の一端(図の右側の端部)側から油が供給される。なお、ポンプ94は、モータハウジング10に隣接するハウジング(図示せず)であって、動力伝達機構60を収容するハウジング内に配置されてよい。 The inside of the rotor shaft 34 is connected to an oil supply source 90 . Oil supply 90 may include pump 94 . In this case, the type and driving mode of the pump 94 are arbitrary. For example, the pump 94 may be a gear pump operated by the rotational torque of the motor 1. Oil is supplied into the rotor shaft 34 from one end (the right end in the drawing) of the rotor shaft 34 . The pump 94 may be arranged in a housing (not shown) adjacent to the motor housing 10 and housing the power transmission mechanism 60 .
 図1では、一例として、油供給源90は、管路部材92と、管路部材92の一端(図の右側の端部)側に接続されるポンプ94とを含む。 In FIG. 1, as an example, the oil supply source 90 includes a pipeline member 92 and a pump 94 connected to one end (right end in the drawing) of the pipeline member 92 .
 管路部材92は、中空に形成され、内部が油路801を画成する。すなわち、管路部材92は、油路801として機能する中空部92Aを有する。中空部92Aは、管路部材92の軸方向の全長にわたり延在する。ただし、中空部92Aは、一端側(図の左側の端部であって、ポンプ94側とは逆側の端部)は開口しない。すなわち、管路部材92は、一端(図の左側の端部)が閉塞される。 The pipeline member 92 is formed hollow and defines an oil path 801 inside. That is, the pipe member 92 has a hollow portion 92A that functions as the oil passage 801 . The hollow portion 92A extends over the entire length of the pipe member 92 in the axial direction. However, the hollow part 92A does not open at one end (the end on the left side in the drawing, which is the end on the side opposite to the pump 94 side). That is, the pipe member 92 is closed at one end (left end in the figure).
 管路部材92は、ロータシャフト34の内周面340に対して径方向で隙間を有する態様でロータシャフト34内に延在する。具体的には、管路部材92は、外径r4を有する。外径r4は、ロータシャフト34の内周面340の、区間SC1、SC3での内径r1、r3よりも有意に小さい(なお、図1では、区間SC1、SC3での内径r1、r3は同じである)。外径r4は、例えばロータシャフト34の内周面340の、区間SC2での内径r2と略等しい。 The pipe member 92 extends inside the rotor shaft 34 in a manner having a gap in the radial direction with respect to the inner peripheral surface 340 of the rotor shaft 34 . Specifically, the conduit member 92 has an outer diameter r4. The outer diameter r4 is significantly smaller than the inner diameters r1 and r3 in the sections SC1 and SC3 of the inner peripheral surface 340 of the rotor shaft 34 (in FIG. 1, the inner diameters r1 and r3 in the sections SC1 and SC3 are the same). be). The outer diameter r4 is substantially equal to the inner diameter r2 of the inner peripheral surface 340 of the rotor shaft 34 at the section SC2, for example.
 管路部材92は、内部から外部へと径方向に貫通する吐出孔93を備える。吐出孔93は、ロータコア32の軸方向の略中心位置に対応する軸方向の位置と、その両側とに設けられる。なお、吐出孔93の軸方向の位置や数等は任意である。 The conduit member 92 has a discharge hole 93 radially penetrating from the inside to the outside. The discharge holes 93 are provided at a position in the axial direction corresponding to the substantially central position in the axial direction of the rotor core 32 and on both sides thereof. The position, number, etc. of the discharge holes 93 in the axial direction are arbitrary.
 次に、図1に示す矢印R1~R6を参照して、油供給源90からの油の流れについて概説する。図1には、油の流れが矢印R1~R6で模式的に示されている。 Next, the flow of oil from the oil supply source 90 will be outlined with reference to arrows R1 to R6 shown in FIG. In FIG. 1, the flow of oil is schematically indicated by arrows R1 to R6.
 油供給源90から供給される油は、管路部材92の中空部92Aを通って軸方向に流れ(矢印R1参照)、吐出孔93から径方向外側へと吐出される(矢印R2参照)。吐出孔93から径方向外側へと吐出された油は、ロータシャフト34の内周面340に当たり、ロータシャフト34の内周面340を伝って第1噴出孔341及び第2噴出孔342へと軸方向に流れる(矢印R3、R4参照)。なお、この場合、ロータシャフト34の内周面340を伝って軸方向外側へと流れる油は、区間SC1においてロータコア32の径方向内側から熱を奪うことができ、ロータコア32を効率的に冷却できる。 The oil supplied from the oil supply source 90 flows axially through the hollow portion 92A of the pipe member 92 (see arrow R1) and is discharged radially outward from the discharge hole 93 (see arrow R2). The oil discharged radially outward from the discharge hole 93 hits the inner peripheral surface 340 of the rotor shaft 34 and travels along the inner peripheral surface 340 of the rotor shaft 34 to the first and second ejection holes 341 and 342 . direction (see arrows R3 and R4). In this case, the oil flowing axially outward along the inner peripheral surface 340 of the rotor shaft 34 can absorb heat from the radially inner side of the rotor core 32 in the section SC1, and can efficiently cool the rotor core 32. .
 ここで、本実施例では、厚肉部347が設けられるので、吐出孔93から径方向外側へと吐出された油は、第1噴出孔341及び第2噴出孔342のそれぞれへと略均等に分配される。これにより、コイルエンド22A、22Bへと分配して導かれる油の均等化を図ることができる。この結果、ロータコア32を径方向内側から、軸方向に沿って均一に冷却できるとともに、第1噴出孔341及び第2噴出孔342を介してコイルエンド22A、22Bをそれぞれ同様に冷却できる。ただし、変形例では、吐出孔93の軸方向の位置と厚肉部347の軸方向の位置とにズレを設けること等によって、第1噴出孔341及び第2噴出孔342のそれぞれへと流れる油の流量の間に、差(すなわち分配量に関する差)を積極的に設定することも可能である。 Here, in the present embodiment, since the thick portion 347 is provided, the oil discharged radially outward from the discharge hole 93 is substantially evenly distributed to the first injection hole 341 and the second injection hole 342. distributed. As a result, the oil distributed and guided to the coil ends 22A and 22B can be equalized. As a result, the rotor core 32 can be uniformly cooled from the radially inner side along the axial direction, and the coil ends 22A and 22B can be similarly cooled via the first ejection hole 341 and the second ejection hole 342, respectively. However, in the modified example, the axial position of the discharge hole 93 and the axial position of the thick portion 347 are displaced, for example, so that the oil flowing to each of the first ejection hole 341 and the second ejection hole 342 is changed. It is also possible to actively set a difference between the flow rates of .
 また、本実施例では、厚肉部347が設けられるので、吐出孔93から径方向外側へと吐出された油は、ある程度の厚みを有しつつ、ロータシャフト34の内周面340を伝うことができる。すなわち、厚肉部347が堰部として機能し、ロータシャフト34の内周面340における油の溜まりが促進される。 Further, in the present embodiment, since the thick portion 347 is provided, the oil discharged radially outward from the discharge hole 93 has a certain thickness and is transmitted along the inner peripheral surface 340 of the rotor shaft 34 . can be done. In other words, the thick portion 347 functions as a weir, and the accumulation of oil on the inner peripheral surface 340 of the rotor shaft 34 is facilitated.
 ロータシャフト34の内周面340を伝って軸方向外側へと流れた油は、モータ1の回転時の遠心力の作用により、第1噴出孔341を通って径方向外側へと吐出される(矢印R5参照)。第1噴出孔341の開口341bは、上述のようにコイルエンド22Aに径方向で対向する。従って、第1噴出孔341を通って径方向外側へと吐出された油は、コイルエンド22Aに当たり、コイルエンド22Aを効率的に冷却できる。 The oil that has flowed axially outward along the inner peripheral surface 340 of the rotor shaft 34 is discharged radially outward through the first ejection holes 341 due to the action of centrifugal force during rotation of the motor 1 ( See arrow R5). The opening 341b of the first ejection hole 341 radially faces the coil end 22A as described above. Therefore, the oil discharged radially outward through the first ejection holes 341 hits the coil ends 22A and can efficiently cool the coil ends 22A.
 また、ロータシャフト34の内周面340を伝って軸方向外側へと流れた油は、モータ1の回転時の遠心力の作用により、第2噴出孔342を通って径方向外側へと吐出される(矢印R6参照)。第2噴出孔342の開口342bは、上述のようにコイルエンド22Bに径方向で対向する。従って、第2噴出孔342を通って径方向外側へと吐出された油は、コイルエンド22Bに当たり、コイルエンド22Bを効率的に冷却できる。 Further, the oil that has flowed axially outward along the inner peripheral surface 340 of the rotor shaft 34 is discharged radially outward through the second ejection holes 342 due to the action of centrifugal force during rotation of the motor 1 . (see arrow R6). The opening 342b of the second ejection hole 342 radially faces the coil end 22B as described above. Therefore, the oil discharged radially outward through the second ejection holes 342 hits the coil ends 22B and can efficiently cool the coil ends 22B.
 このように、本実施例では、ロータシャフト34の内周面340を伝う油の流れを促進することが可能となる。この結果、ロータシャフト34の内周面340を伝う油によりロータコア32を径方向内側から効率的に冷却できるとともに、第1噴出孔341及び第2噴出孔342を介してコイルエンド22A、22Bを効率的に冷却できる。 Thus, in this embodiment, it is possible to promote the flow of oil along the inner peripheral surface 340 of the rotor shaft 34 . As a result, the rotor core 32 can be efficiently cooled from the radially inner side by the oil flowing along the inner peripheral surface 340 of the rotor shaft 34, and the coil ends 22A and 22B can be efficiently cooled through the first ejection hole 341 and the second ejection hole 342. can be effectively cooled.
 特に、本実施例では、ロータシャフト34の内周面340は、区間SC1での内径r1が、区間SC2での内径r2よりも有意に大きい。すなわち、ロータシャフト34の内周面340は、ロータコア32が設けられる区間SC1において拡径されている。これにより、ロータシャフト34の軽量化が図られるとともに、ロータシャフト34の内周面340と永久磁石321との間の径方向の距離を短くでき(内径r1≒内径r2の場合に比べて短くでき)、磁石冷却性能を効果的に高めることができる。 In particular, in this embodiment, the inner peripheral surface 340 of the rotor shaft 34 has an inner diameter r1 in the section SC1 that is significantly larger than an inner diameter r2 in the section SC2. That is, the inner peripheral surface 340 of the rotor shaft 34 is enlarged in the section SC1 where the rotor core 32 is provided. As a result, the weight of the rotor shaft 34 can be reduced, and the radial distance between the inner peripheral surface 340 of the rotor shaft 34 and the permanent magnet 321 can be shortened (compared to the case where the inner diameter r1 ≈ the inner diameter r2). ), which can effectively enhance the magnet cooling performance.
 なお、図1では、特定の構造のモータ1が示されるが、モータ1の構造は、中空部343を有するロータシャフト34にロータコア32が締結される限り、任意である。従って、例えば、管路部材92等は、省略されてもよい。例えば、管路部材92が省略される場合、軸部材61の中空部から油が供給されてもよい。この場合、軸部材61は、ロータシャフト34の径方向内側に嵌合されてもよい。 Although FIG. 1 shows the motor 1 with a specific structure, the structure of the motor 1 is arbitrary as long as the rotor core 32 is fastened to the rotor shaft 34 having the hollow portion 343 . Therefore, for example, the pipeline member 92 and the like may be omitted. For example, when the pipe member 92 is omitted, oil may be supplied from the hollow portion of the shaft member 61 . In this case, the shaft member 61 may be fitted radially inside the rotor shaft 34 .
 また、図1では、特定の冷却方法が開示されているが、モータ1の冷却方法は任意である。従って、例えば、ロータコア32に油路が形成されてもよいし、モータハウジング10内の油路により径方向外側からコイルエンド22A、22Bに向けて油が滴下されてもよい。また、図1では、油供給源90の管路部材92は、モータ1における軸方向で動力伝達機構60と接続される側から、ロータシャフト34内に挿入されるが、モータ1における軸方向で動力伝達機構60と接続される側とは逆側から、ロータシャフト34内に挿入されてもよい。また、油冷に加えて、冷却水を利用した水冷方式が利用されてもよい。 Also, although a specific cooling method is disclosed in FIG. 1, the cooling method for the motor 1 is arbitrary. Therefore, for example, an oil passage may be formed in the rotor core 32, or oil may be dripped from the radially outer side toward the coil ends 22A and 22B from the oil passage in the motor housing 10. Further, in FIG. 1, the conduit member 92 of the oil supply source 90 is inserted into the rotor shaft 34 from the side connected to the power transmission mechanism 60 in the axial direction of the motor 1. It may be inserted into the rotor shaft 34 from the side opposite to the side connected to the power transmission mechanism 60 . Moreover, in addition to oil cooling, a water cooling system using cooling water may be used.
 次に、図2及び図3A~図3Iを参照して、上述した実施例のモータ1におけるロータ30の製造方法の例について説明する。図3Bには、回転軸Iに平行なZ方向とともに、Z方向に沿ったZ1側とZ2側が定義されている。以下では、説明上、一例として、製造工程中において、Z方向が上下方向に対応し、Z2側が下側であるとする。また、図3B等には、製造装置200における基準軸I0が示される。基準軸I0は、ワークの芯出しの際の中心軸を構成し、上述した回転軸Iに対応する。 Next, an example of a method of manufacturing the rotor 30 in the motor 1 of the embodiment described above will be described with reference to FIGS. 2 and 3A to 3I. In FIG. 3B, a Z direction parallel to the axis of rotation I is defined along with Z1 and Z2 sides along the Z direction. In the following description, as an example, it is assumed that the Z direction corresponds to the vertical direction and the Z2 side is the lower side during the manufacturing process. 3B and the like also show the reference axis I0 in the manufacturing apparatus 200. As shown in FIG. The reference axis I0 constitutes the center axis for centering the workpiece and corresponds to the rotation axis I described above.
 図2は、ロータ30の製造方法の流れを示す概略フローチャートであり、図3A~図3Iは、図2に示すいくつかの工程におけるロータシャフト34及びロータコア32の状態を概略的に示す断面図である。なお、図3B~図3D及び図3F~図3Iは、基準軸I0を含む平面で切断した際の断面図であり、図3Eは、基準軸I0に垂直な平面で切断した際の断面図である。 FIG. 2 is a schematic flow chart showing the flow of the manufacturing method of the rotor 30, and FIGS. 3A to 3I are sectional views schematically showing states of the rotor shaft 34 and the rotor core 32 in several steps shown in FIG. be. 3B to 3D and 3F to 3I are cross-sectional views taken along a plane including the reference axis I0, and FIG. 3E is a cross-sectional view taken along a plane perpendicular to the reference axis I0. be.
 まず、ロータ30の製造方法は、ワークとして、ロータシャフト34及びロータコア32のそれぞれ(互いに結合されていない状態)を、準備する準備工程(ステップS500)を含む。なお、ロータシャフト34の厚肉部347は、フローフォーミング加工又はスピニング加工等により形成されてよい。 First, the method of manufacturing the rotor 30 includes a preparation step (step S500) of preparing the rotor shaft 34 and the rotor core 32 (not coupled to each other) as works. The thick portion 347 of the rotor shaft 34 may be formed by flow forming, spinning, or the like.
 図3Aに示すように、本実施例では、ワークのロータシャフト34は、軸方向両側に軸方向のベアリング支持面34a、34b(図1も参照)を有する。軸方向のベアリング支持面34aは、ロータシャフト34における軸方向一方側の小径部34Bの外周面における径方向の段差部より形成され、軸方向のベアリング支持面34bは、ロータシャフト34における軸方向他方側の小径部34Bの外周面における径方向の段差部により形成される。軸方向のベアリング支持面34a、34bは、ベアリング14a、14bを介して受ける軸方向の荷重を受け持つ。 As shown in FIG. 3A, in this embodiment, the rotor shaft 34 of the workpiece has axial bearing support surfaces 34a, 34b (see also FIG. 1) on both sides in the axial direction. The axial bearing support surface 34a is formed by a radial stepped portion on the outer peripheral surface of the small diameter portion 34B on one axial side of the rotor shaft 34, and the axial bearing support surface 34b is formed on the other axial side of the rotor shaft 34. It is formed by a stepped portion in the radial direction on the outer peripheral surface of the small diameter portion 34B on the side. Axial bearing support surfaces 34a, 34b carry axial loads received through bearings 14a, 14b.
 また、本実施例では、ワークのロータシャフト34は、軸方向両側に径方向のベアリング支持面34c、34dを有する。径方向のベアリング支持面34c、34dは、ベアリング14a、14bを介して受ける径方向の荷重を受け持つ。 In addition, in this embodiment, the rotor shaft 34 of the workpiece has radial bearing support surfaces 34c and 34d on both sides in the axial direction. The radial bearing support surfaces 34c, 34d take up the radial loads received through the bearings 14a, 14b.
 また、本実施例では、ワークのロータシャフト34は、動力伝達部345を有する。動力伝達部345は、切削等により形成されてよい。 Also, in this embodiment, the rotor shaft 34 of the workpiece has a power transmission portion 345 . The power transmission portion 345 may be formed by cutting or the like.
 なお、この段階でのロータシャフト34は、図3Aに示すように、区間SC1に対応する部分の内径r1’が、製品状態の内径r1(図1参照)よりもわずかに小さくてよい。ただし、変形例では、内径r1’は、製品状態の内径r1(図1参照)と略同じであってもよい。この場合、後述する締結工程は、ロータシャフト34とロータコア32との間の締結力を高めるための工程となる。 In addition, as shown in FIG. 3A, the rotor shaft 34 at this stage may have an inner diameter r1' corresponding to the section SC1 slightly smaller than the inner diameter r1 in the product state (see FIG. 1). However, in a modified example, the inner diameter r1' may be substantially the same as the inner diameter r1 in the product state (see FIG. 1). In this case, the fastening process, which will be described later, is a process for increasing the fastening force between the rotor shaft 34 and the rotor core 32 .
 また、ロータシャフト34と同様に、この段階でのロータコア32は、外径が製品状態の外径よりもわずかに小さくてよい。これは、後述する締結工程においてロータコア32は、ロータシャフト34の拡径に伴って径方向外側にわずかに変形するためである。 Also, like the rotor shaft 34, the outer diameter of the rotor core 32 at this stage may be slightly smaller than the outer diameter in the product state. This is because the rotor core 32 is slightly deformed radially outward as the diameter of the rotor shaft 34 expands in the fastening process, which will be described later.
 ついで、ロータ30の製造方法は、図3Bに示すように、ロータシャフト34及びロータコア32を、製造装置200に対してセットする工程(ステップS501)(配置工程の一例)を含む。製造装置200は、製造設備の形態であり、以下で説明する各種の治具や型を備える。図3Bに示す例では、製造装置200は、Z2側の固定型201を備え、固定型201の中空部2011内にロータシャフト34のZ2側の部位(小径部34B及び大径部34Aの端部)が挿入される。なお、変形例では、固定型201の中空部2011内にロータシャフト34のZ1側の部位(ベアリング14aが設けられる側の小径部34B及び大径部34Aの端部)が挿入されてもよい。 Next, as shown in FIG. 3B, the method for manufacturing the rotor 30 includes a step (step S501) of setting the rotor shaft 34 and the rotor core 32 in the manufacturing apparatus 200 (an example of the placement step). The manufacturing apparatus 200 is in the form of manufacturing equipment, and includes various jigs and molds described below. In the example shown in FIG. 3B , the manufacturing apparatus 200 includes a Z2-side fixed mold 201, and a Z2-side portion of the rotor shaft 34 (ends of the small diameter portion 34B and the large diameter portion 34A) is placed in the hollow portion 2011 of the fixed mold 201. ) is inserted. In a modified example, the Z1 side portion of the rotor shaft 34 (ends of the small diameter portion 34B and the large diameter portion 34A on the side where the bearing 14a is provided) may be inserted into the hollow portion 2011 of the fixed mold 201 .
 固定型201は、ロータコア32のZ2側の端面32bを支持する支持面2012を有する。支持面2012は、ロータコア32のZ2側の端面32b全体を支持してもよいし、端面32bの一部を支持してもよい。 The fixed mold 201 has a support surface 2012 that supports the end surface 32b of the rotor core 32 on the Z2 side. The support surface 2012 may support the entire end surface 32b of the rotor core 32 on the Z2 side, or may support a portion of the end surface 32b.
 このようにして、ロータシャフト34及びロータコア32が、製造装置200の固定型201に対してセットされた状態では、製造装置200の固定型201は、ロータシャフト34及びロータコア32を同時にZ2側から支持し、ロータシャフト34及びロータコア32のZ2側への移動(変位)を拘束する。 In this way, when the rotor shaft 34 and the rotor core 32 are set on the fixed die 201 of the manufacturing apparatus 200, the fixed die 201 of the manufacturing apparatus 200 simultaneously supports the rotor shaft 34 and the rotor core 32 from the Z2 side. and restrains the movement (displacement) of the rotor shaft 34 and the rotor core 32 toward the Z2 side.
 なお、ロータシャフト34及びロータコア32が、製造装置200の固定型201に対してセットされた状態では、図3Bに模式的に示すように、ロータシャフト34の外径r11は、ロータコア32の内径(軸心の孔の径)r12よりもわずかに小さい。これにより、ロータコア32の径方向内側にロータシャフト34を容易にセットできる。ただし、上述したように、変形例では、ロータシャフト34の外径r11は、ロータコア32の内径(軸心の孔の径)r12と略同じであってもよい。 Note that when the rotor shaft 34 and the rotor core 32 are set on the fixed mold 201 of the manufacturing apparatus 200, the outer diameter r11 of the rotor shaft 34 is equal to the inner diameter of the rotor core 32 ( diameter of the center hole) is slightly smaller than r12. Thereby, the rotor shaft 34 can be easily set radially inside the rotor core 32 . However, as described above, in the modified example, the outer diameter r11 of the rotor shaft 34 may be substantially the same as the inner diameter (diameter of the axial hole) r12 of the rotor core 32 .
 また、ロータシャフト34及びロータコア32は、必ずしも同時に製造装置200の固定型201に対してセットされる必要はなく、順に製造装置200の固定型201に対してセットされてもよい。 Also, the rotor shaft 34 and the rotor core 32 do not necessarily need to be set on the fixed mold 201 of the manufacturing apparatus 200 at the same time, and may be set on the fixed mold 201 of the manufacturing apparatus 200 in order.
 ついで、ロータ30の製造方法は、図3Cに示すように、ロータシャフト34の中心軸I1(図3A参照)を、基準軸I0に合わせる工程(ステップS502)を含む。すなわち、ロータ30の製造方法は、ロータシャフト34を、製造装置200において規定される基準軸I0に対して芯出しする工程を含む。 Next, as shown in FIG. 3C, the method of manufacturing the rotor 30 includes a step of aligning the central axis I1 (see FIG. 3A) of the rotor shaft 34 with the reference axis I0 (step S502). That is, the method of manufacturing rotor 30 includes a step of centering rotor shaft 34 with respect to reference axis I0 defined in manufacturing apparatus 200 .
 本実施例では、図3Cに示すように、ロータシャフト34の芯出しは、一例として、製造装置200のシール型202、203により実現される。なお、シール型202、203は、基準軸I0に対して正確に芯出しされている設備側の構成である。 In this embodiment, as shown in FIG. 3C, the centering of the rotor shaft 34 is realized by seal dies 202 and 203 of the manufacturing apparatus 200, as an example. Incidentally, the seal dies 202 and 203 are components of the equipment that are accurately centered with respect to the reference axis I0.
 具体的には、Z2側のシール型202は、ロータシャフト34に対してZ2側からZ方向に沿ってZ1側へと移動して、ロータシャフト34に対してセットされる。シール型202は、ロータシャフト34のZ2側の小径部34Bの内径(図1の内径r2参照)に対応する外径を有する部位2021を有する。部位2021の中心軸は、基準軸I0に対して正確に一致する。なお、部位2021は、基準軸I0に垂直な平面で切断した際の断面の外形が円形であり、当該円形の外径は、ロータシャフト34のZ2側の小径部34Bの内径よりもわずかに小さくてよい。これにより、ロータシャフト34は、基準軸I0に対して正確に芯出しされたシール型202の部位2021により、径方向内側から芯出しされる。 Specifically, the seal die 202 on the Z2 side moves from the Z2 side to the Z1 side along the Z direction with respect to the rotor shaft 34 and is set on the rotor shaft 34 . The seal mold 202 has a portion 2021 having an outer diameter corresponding to the inner diameter of the small diameter portion 34B on the Z2 side of the rotor shaft 34 (see inner diameter r2 in FIG. 1). The central axis of portion 2021 exactly coincides with reference axis I0. The section 2021 has a circular outer shape when cut along a plane perpendicular to the reference axis I0, and the circular outer diameter is slightly smaller than the inner diameter of the small diameter portion 34B on the Z2 side of the rotor shaft 34. you can As a result, the rotor shaft 34 is radially centered from the inner side by the portion 2021 of the seal mold 202 that is accurately centered with respect to the reference axis I0.
 なお、シール型202は、図3Cに示すように、部位2021のZ2側に径方向外側への段差面2022を有してよい。シール型202がロータシャフト34に対してセットされた状態では、シール型202の段差面2022は、ロータシャフト34のZ2側の端面348bに対して軸方向に対向又は当接してよい。 The seal mold 202 may have a step surface 2022 extending radially outward on the Z2 side of the portion 2021, as shown in FIG. 3C. When the seal mold 202 is set on the rotor shaft 34 , the stepped surface 2022 of the seal mold 202 may axially face or abut on the end surface 348 b of the rotor shaft 34 on the Z2 side.
 また、Z1側のシール型203は、ロータシャフト34に対してZ1側からZ方向に沿ってZ2側へと移動して、ロータシャフト34に対してセットされる。シール型203は、ロータシャフト34のZ1側の小径部34Bの内径(図1の内径r2参照)に対応する外径を有する部位2031を有する。部位2031の中心軸は、基準軸I0に対して正確に一致する。なお、部位2031は、基準軸I0に垂直な平面で切断した際の断面の外形が円形であり、当該円形の外径は、ロータシャフト34のZ1側の小径部34Bの内径よりもわずかに小さくてよい。これにより、ロータシャフト34は、基準軸I0に対して正確に芯出しされたシール型203の部位2031により、径方向内側から芯出しされる。 Also, the Z1-side seal die 203 is set on the rotor shaft 34 by moving from the Z1 side to the Z2 side along the Z direction with respect to the rotor shaft 34 . The seal mold 203 has a portion 2031 having an outer diameter corresponding to the inner diameter of the small diameter portion 34B on the Z1 side of the rotor shaft 34 (see inner diameter r2 in FIG. 1). The central axis of portion 2031 exactly coincides with reference axis I0. The section 2031 has a circular outer shape when cut along a plane perpendicular to the reference axis I0, and the circular outer diameter is slightly smaller than the inner diameter of the small diameter portion 34B of the rotor shaft 34 on the Z1 side. you can As a result, the rotor shaft 34 is radially centered from the inner side by the portion 2031 of the seal mold 203 that is accurately centered with respect to the reference axis I0.
 なお、シール型203は、図3Cに示すように、部位2031のZ1側に径方向外側への段差面2032を有してよい。シール型203がロータシャフト34に対してセットされた状態では、シール型203の段差面2032は、ロータシャフト34のZ1側の端面348aに対して軸方向に対向又は当接してよい。本実施例では、好ましい例として、シール型203がロータシャフト34に対してセットされた状態では、シール型203の段差面2032は、ロータシャフト34のZ1側の端面348aに対して軸方向に離間して対向する。 The seal mold 203 may have a step surface 2032 extending radially outward on the Z1 side of the portion 2031, as shown in FIG. 3C. When the seal mold 203 is set on the rotor shaft 34 , the step surface 2032 of the seal mold 203 may axially face or abut on the Z1-side end surface 348 a of the rotor shaft 34 . In this embodiment, as a preferred example, when the seal mold 203 is set on the rotor shaft 34, the stepped surface 2032 of the seal mold 203 is axially separated from the end surface 348a of the rotor shaft 34 on the Z1 side. and face.
 このようにして、ロータシャフト34は、基準軸I0に対して正確に芯出しされたシール型202、203により、径方向内側から芯出しされる。この場合、ロータシャフト34の中心軸I1が基準軸I0に対してずれていると、ロータシャフト34は、シール型202、203により、中心軸I1が基準軸I0に一致するように、位置や姿勢が矯正される。これにより、ロータシャフト34は、ロータコア32が径方向外側に配置された状態においても、シール型202、203により径方向内側から精度良く芯出しされることができる。 In this way, the rotor shaft 34 is radially centered from the inside by the seal dies 202, 203 that are precisely centered with respect to the reference axis I0. In this case, if the central axis I1 of the rotor shaft 34 is deviated from the reference axis I0, the rotor shaft 34 is positioned and oriented by the seal dies 202 and 203 so that the central axis I1 coincides with the reference axis I0. is corrected. As a result, even when the rotor core 32 is arranged radially outward, the rotor shaft 34 can be accurately centered from the radially inner side by the seal dies 202 and 203 .
 なお、シール型202、203は、同時にロータシャフト34に対してセットされてもよいし、時間差を有する態様でセットされてもよい。例えば、シール型202がロータシャフト34に対してセットされ、ついで、シール型203がロータシャフト34に対してセットされてもよい。また、シール型202は、固定型201と同様、可動しない型であってもよい。この場合、シール型202は、固定型201と一体であってもよい。 The seal dies 202 and 203 may be set on the rotor shaft 34 at the same time, or may be set with a time lag. For example, seal mold 202 may be set against rotor shaft 34 and then seal mold 203 may be set against rotor shaft 34 . Also, the seal mold 202 may be a non-movable mold like the fixed mold 201 . In this case, the seal mold 202 may be integrated with the fixed mold 201 .
 ついで、ロータ30の製造方法は、図3Dに示すように、ロータコア32の中心軸I2(図3A参照)を、基準軸I0に合わせる工程(ステップS503)を含む。すなわち、ロータ30の製造方法は、ロータコア32を、製造装置200において規定される基準軸I0に対して芯出しする工程を含む。 Next, as shown in FIG. 3D, the method of manufacturing the rotor 30 includes a step of aligning the central axis I2 (see FIG. 3A) of the rotor core 32 with the reference axis I0 (step S503). That is, the method of manufacturing rotor 30 includes a step of centering rotor core 32 with respect to reference axis I0 defined in manufacturing apparatus 200 .
 本実施例では、図3Dに示すように、ロータコア32の芯出しは、一例として、製造装置200の芯出装置204により実現される。芯出装置204は、図3D及び図3Eに示すように、基準軸I0に対して垂直な平面内で移動可能であり、基準軸I0に対して進退可能に配置される。芯出装置204は、図3Eに示すように、好ましくは、3つ以上設けられる。また、芯出装置204は、図3Dに示すように、好ましくは、ロータコア32の軸方向の全長にわたり作用するように、ロータコア32の軸方向全体にわたり軸方向に延在する。 In this embodiment, as shown in FIG. 3D, the centering of the rotor core 32 is realized by the centering device 204 of the manufacturing device 200, as an example. As shown in FIGS. 3D and 3E, the centering device 204 is movable in a plane perpendicular to the reference axis I0, and arranged to move back and forth with respect to the reference axis I0. Preferably, three or more centering devices 204 are provided, as shown in FIG. 3E. The centering device 204 also preferably extends axially the entire axial length of the rotor core 32 so as to act over the entire axial length of the rotor core 32, as shown in FIG. 3D.
 図3D及び図3Eに示す例では、芯出装置204は、3つ、基準軸I0まわりに120度の間隔をおいて設けられる。芯出装置204が基準軸I0に向かって進むと(矢印R300参照)、ロータコア32の外周面に、芯出装置204の径方向内側の先端部2041が当接する。各芯出装置204は、先端部2041の基準軸I0までの距離が所定半径r30になるまで、基準軸I0に向かって移動する。所定半径r30は、ロータコア32の正規の外径(回転軸Iを中心とした外径)に対応してよい。これにより、ロータコア32を基準軸I0に対して精度良く芯出しすることができる。 In the example shown in FIGS. 3D and 3E, three centering devices 204 are provided at intervals of 120 degrees around the reference axis I0. When the centering device 204 advances toward the reference axis I0 (see arrow R300), the radially inner tip portion 2041 of the centering device 204 comes into contact with the outer peripheral surface of the rotor core 32 . Each centering device 204 moves toward the reference axis I0 until the distance from the tip 2041 to the reference axis I0 reaches a predetermined radius r30. The predetermined radius r30 may correspond to the regular outer diameter of the rotor core 32 (the outer diameter centered on the rotation axis I). As a result, the rotor core 32 can be accurately centered with respect to the reference axis I0.
 このようにして、ロータコア32は、基準軸I0に向かって正確に規定された所定半径r30まで進む芯出装置204により、径方向外側から芯出しされる。この場合、ロータコア32の中心軸I2が基準軸I0に対してずれていると、ロータコア32は、芯出装置204により、中心軸I2が基準軸I0に一致するように、位置や姿勢が矯正される。これにより、ロータコア32は、ロータシャフト34が径方向内側に配置された状態においても、芯出装置204により径方向外側から精度良く芯出しされることができる。 In this way, the rotor core 32 is centered from the radially outer side by the centering device 204 which advances to a precisely defined predetermined radius r30 towards the reference axis I0. In this case, if the central axis I2 of the rotor core 32 deviates from the reference axis I0, the position and attitude of the rotor core 32 are corrected by the centering device 204 so that the central axis I2 coincides with the reference axis I0. be. As a result, even when the rotor shaft 34 is arranged radially inward, the rotor core 32 can be accurately centered from the radially outer side by the centering device 204 .
 なお、図3D及び図3Eに示す例では、芯出装置204は、先端部2041がロータコア32の外周面に対して線接触(軸方向の線接触)するように形成されているが、面接触するように形成されてもよい。この場合、先端部2041は、基準軸I0に沿った方向に視て、ロータコア32の外周面に沿った湾曲面を有してよい。 In the example shown in FIGS. 3D and 3E, the centering device 204 is formed such that the tip portion 2041 is in line contact (axial line contact) with the outer peripheral surface of the rotor core 32, but surface contact is not possible. may be configured to In this case, tip portion 2041 may have a curved surface along the outer peripheral surface of rotor core 32 when viewed in the direction along reference axis I0.
 ついで、ロータ30の製造方法は、図3Fに示すように、ロータコア32をステップS503で芯出しされた状態で、製造装置200に対して強固に固定する工程(ステップS504)を含む。図3Fに示す例では、製造装置200は、Z1側の可動型205を備える。可動型205は、基準軸I0に平行に並進移動が可能である。可動型205は、ロータコア32のZ1側の端面32aに向かってZ方向に沿って移動し、端面32aに当接することで、ロータコア32を製造装置200に対して固定する。 Next, as shown in FIG. 3F, the rotor 30 manufacturing method includes a step (step S504) of firmly fixing the rotor core 32 to the manufacturing apparatus 200 in a state where the rotor core 32 has been centered in step S503. In the example shown in FIG. 3F, the manufacturing apparatus 200 includes a movable die 205 on the Z1 side. The movable mold 205 is capable of translational movement parallel to the reference axis I0. The movable die 205 moves along the Z direction toward the end face 32a on the Z1 side of the rotor core 32 and contacts the end face 32a to fix the rotor core 32 to the manufacturing apparatus 200 .
 また、本実施例では、可動型205は、上述した固定型201と同様に、径方向内側が中空部2051となる円環状の形態である。可動型205は、ロータコア32の端面32aに当接する状態では、中空部2051内にロータシャフト34のZ1側の部位(小径部34B及び大径部34Aの端部)が挿入される。 Also, in this embodiment, the movable mold 205 has an annular shape with a hollow portion 2051 on the inner side in the radial direction, like the fixed mold 201 described above. When the movable die 205 is in contact with the end surface 32 a of the rotor core 32 , the Z1 side portion of the rotor shaft 34 (ends of the small diameter portion 34 B and the large diameter portion 34 A) is inserted into the hollow portion 2051 .
 このようにして、ロータシャフト34及びロータコア32が、製造装置200の可動型205に対してセットされた状態では、製造装置200の可動型205は、ロータシャフト34及びロータコア32を同時にZ1側から支持し、ロータシャフト34及びロータコア32のZ1側への移動(変位)を拘束する。 In this way, when the rotor shaft 34 and the rotor core 32 are set on the movable die 205 of the manufacturing apparatus 200, the movable die 205 of the manufacturing apparatus 200 simultaneously supports the rotor shaft 34 and the rotor core 32 from the Z1 side. and restrains the movement (displacement) of the rotor shaft 34 and the rotor core 32 toward the Z1 side.
 また、ロータコア32が製造装置200の可動型205に対してセットされた状態では、ロータコア32は、可動型205と固定型201の間で軸方向に挟持されることで、軸方向の押圧力によって径方向の変位も拘束される。従って、その後、芯出装置204がロータコア32から離れる方向に移動(退避)しても(図3Fの矢印R401参照)、ロータコア32の芯出しされた状態が維持される。 Further, when the rotor core 32 is set on the movable mold 205 of the manufacturing apparatus 200, the rotor core 32 is sandwiched between the movable mold 205 and the fixed mold 201 in the axial direction. Radial displacement is also constrained. Therefore, even if the centering device 204 moves (retracts) away from the rotor core 32 thereafter (see arrow R401 in FIG. 3F), the centered state of the rotor core 32 is maintained.
 ついで、ロータ30の製造方法は、図3Gに示すように、シール型202、203によりロータコア32の中空部343をロータシャフト34の外部に対してシールするシール工程(ステップS505)を含む。本実施例では、シール工程は、Z1側のシール型203を、ロータシャフト34(固定型201)に対してZ1側からZ方向に沿ってZ2側へと更に移動させることを含む。これにより、ロータシャフト34のZ1側の軸方向端部348の開口349をシール型203によりシールできる。また、この場合、ロータシャフト34は、ステップS502で芯出しされた状態で、製造装置200に対して強固に固定される。このようにして、ロータシャフト34の芯出しは、ステップS502ではある程度のレベルで実現され、本ステップS505において完全なレベルで実現されてもよい。 Next, the method of manufacturing the rotor 30 includes a sealing step (step S505) of sealing the hollow portion 343 of the rotor core 32 from the outside of the rotor shaft 34 with the seal molds 202 and 203, as shown in FIG. 3G. In this embodiment, the sealing process includes moving the Z1 side seal mold 203 further along the Z direction from the Z1 side to the Z2 side with respect to the rotor shaft 34 (stationary mold 201). Thereby, the opening 349 of the axial end 348 on the Z1 side of the rotor shaft 34 can be sealed by the seal mold 203 . Also, in this case, the rotor shaft 34 is firmly fixed to the manufacturing apparatus 200 while being centered in step S502. In this way, the centering of the rotor shaft 34 may be achieved at some level in step S502 and fully achieved in this step S505.
 本実施例では、シール工程では、上述したように、シール型203はロータシャフト34に対してZ方向Z2側に更に移動される。この際、シール型203は、好ましくは、ロータシャフト34の軸方向端部348を塑性変形させる。この場合、ロータシャフト34の軸方向端部348は、シール型203の作用により主に径方向内側で塑性変形する。これにより、シール型203とロータシャフト34の軸方向端部348との間の接触面圧を効果的に高めることができ、その結果、シール型203とロータシャフト34との間のシール性を高めることができる。 In this embodiment, in the sealing process, the seal mold 203 is further moved in the Z direction Z2 with respect to the rotor shaft 34, as described above. At this time, the seal mold 203 preferably plastically deforms the axial end portion 348 of the rotor shaft 34 . In this case, the axial end portion 348 of the rotor shaft 34 is plastically deformed mainly radially inward due to the action of the seal mold 203 . As a result, the contact surface pressure between the seal mold 203 and the axial end portion 348 of the rotor shaft 34 can be effectively increased, and as a result, the sealing performance between the seal mold 203 and the rotor shaft 34 can be improved. be able to.
 ところで、本実施例では、上述したようにシール工程の際にシール型203がロータシャフト34に対してZ方向Z2側に更に移動されると、シール型203によりロータシャフト34がシール型202に向けて押圧されることになる。すなわち、ロータシャフト34がシール型202とシール型203との間で軸方向の押圧力を受ける。この結果、Z2側においても、上述したZ1側と同様のメタルシールが実現される。すなわち、シール型202がロータシャフト34のZ2側の軸方向端部348を塑性変形させることで、ロータシャフト34のZ2側の軸方向端部348とシール型202との間のシール(いわゆるメタルシール)を実現する。 By the way, in this embodiment, when the seal mold 203 is further moved in the Z direction Z2 side with respect to the rotor shaft 34 during the sealing process as described above, the rotor shaft 34 is directed toward the seal mold 202 by the seal mold 203. will be pressed down. That is, the rotor shaft 34 receives an axial pressing force between the seal molds 202 and 203 . As a result, a metal seal similar to that on the Z1 side is realized on the Z2 side as well. That is, the seal mold 202 plastically deforms the Z2-side axial end 348 of the rotor shaft 34, thereby forming a seal (a so-called metal seal) between the Z2-side axial end 348 of the rotor shaft 34 and the seal mold 202. ).
 ついで、ロータ30の製造方法は、図3Hに示すように、ハイドロフォーミングによりロータシャフト34にロータコア32を固定(締結)する締結工程(ステップS506)(一体化工程の一例)を含む。例えば、図3Hに模式的に示すように、ロータシャフト34がシール型202、203に押さえられた状態で、中空部343内にシール型202及び/又は203を介して流体が導入され、流体を加圧することで、ロータシャフト34の内周面340に対して内周面340に垂直な力(内圧)を付与する(図3Hの矢印R31、矢印R32参照)。これにより、ロータシャフト34が拡径し、ロータシャフト34とロータコア32との間の径方向の締め代が確保される(図3I参照)。すなわち、ロータシャフト34の内径r1’が内径r1へと拡大されるのに伴い、その分だけ外径r11が増加し、締め代が確保される。このようなハイドロフォーミングによれば、圧入のような、ロータシャフト34とロータコア32の嵌合方法で生じうる不都合(例えば圧入の際のロータコア32の倒れ等)を防止できる。 Next, as shown in FIG. 3H, the method of manufacturing the rotor 30 includes a fastening step (step S506) (an example of an integration step) for fixing (fastening) the rotor core 32 to the rotor shaft 34 by hydroforming. For example, as schematically shown in FIG. 3H, the fluid is introduced into the hollow portion 343 via the seal molds 202 and/or 203 while the rotor shaft 34 is pressed against the seal molds 202 and 203, thereby causing the fluid to flow. By applying pressure, a force (internal pressure) perpendicular to the inner peripheral surface 340 is applied to the inner peripheral surface 340 of the rotor shaft 34 (see arrows R31 and R32 in FIG. 3H). As a result, the diameter of the rotor shaft 34 is expanded, and a radial interference is secured between the rotor shaft 34 and the rotor core 32 (see FIG. 3I). That is, as the inner diameter r1' of the rotor shaft 34 is expanded to the inner diameter r1, the outer diameter r11 is increased by that amount, and the interference is ensured. According to such hydroforming, it is possible to prevent problems that may occur in a method of fitting the rotor shaft 34 and the rotor core 32, such as press-fitting (for example, the rotor core 32 falls down during press-fitting).
 ここで、本実施例では、ステップS506の締結工程の前に、上述したように、ロータコア32は、芯出装置204により芯出しされている。従って、ロータコア32が芯出しされた状態で、ロータコア32とロータシャフト34とを締結できる。また、本実施例では、ステップS506の締結工程は、固定型201と可動型205との間で軸方向及び径方向の変位が拘束された状態が維持される。従って、締結工程中にロータコア32の芯出しされた状態が損なわれてしまう可能性を低減できる。 Here, in this embodiment, the rotor core 32 is centered by the centering device 204 as described above before the fastening process of step S506. Therefore, the rotor core 32 and the rotor shaft 34 can be fastened with the rotor core 32 being centered. Further, in this embodiment, in the fastening process of step S506, the state in which axial and radial displacements are restrained between the fixed mold 201 and the movable mold 205 is maintained. Therefore, it is possible to reduce the possibility that the centered state of the rotor core 32 is damaged during the fastening process.
 また、本実施例では、上述したように、ロータコア32が芯出しされた状態で、ロータシャフト34が拡径されるので、拡径されたロータシャフト34は、径方向外側においても、芯出しされたロータコア32によって芯出しされることになる。これにより、ロータコア32及びロータシャフト34とを、基準軸I0に対して精度良く芯出しされた状態で締結できる。 Further, in this embodiment, as described above, the diameter of the rotor shaft 34 is expanded while the rotor core 32 is centered. It will be centered by the rotor core 32 . As a result, the rotor core 32 and the rotor shaft 34 can be fastened while being accurately centered with respect to the reference axis I0.
 ついで、ロータ30の製造方法は、ロータシャフト34の一部である所定部位8の硬度を高める硬度増加工程(ステップS507)を含む。所定部位8は、好ましくは、他の部位に比べて比較的高い硬度を有することが好適である部位である。本実施例では、一例として、所定部位8は、径方向のベアリング支持面34c、34dを形成する部位と、動力伝達部345を形成する部位とを含む。 Next, the method of manufacturing the rotor 30 includes a hardness increasing step (step S507) of increasing the hardness of the predetermined portion 8, which is a part of the rotor shaft 34. The predetermined portion 8 is preferably a portion that preferably has a relatively high hardness compared to other portions. In this embodiment, as an example, the predetermined portion 8 includes a portion forming the radial bearing support surfaces 34 c and 34 d and a portion forming the power transmission portion 345 .
 この場合、本実施例において、所定部位8は、図3Aに示すように、ロータシャフト34を軸方向で4つの部位80~83に分けたときの、部位81、82、83であるものとする。部位81は、径方向のベアリング支持面34cを含む部位であり、部位82は、径方向のベアリング支持面34dを含む部位であり、部位83は、動力伝達部345を含む部位である。なお、所定部位8は、部位81、82、83のみを含んでもよいが、部位81、82、83に対して軸方向に隣接する部位を含んでもよい。例えば、部位81に係る所定部位8は、軸方向のベアリング支持面34aよりも軸方向内側の部位を含んでもよい。 In this case, in this embodiment, as shown in FIG. 3A, the predetermined parts 8 are parts 81, 82, and 83 when the rotor shaft 34 is axially divided into four parts 80 to 83. . A portion 81 is a portion including the radial bearing support surface 34 c , a portion 82 is a portion including the radial bearing support surface 34 d , and a portion 83 is a portion including the power transmission portion 345 . The predetermined portion 8 may include only the portions 81, 82, and 83, or may include portions adjacent to the portions 81, 82, and 83 in the axial direction. For example, the predetermined portion 8 related to the portion 81 may include a portion axially inner than the axial bearing support surface 34a.
 硬度増加工程は、硬度を高めることができる処理を行う工程であれば任意であり、本実施例では、焼入れを行う工程である。なお、焼入れ処理の詳細な条件は、任意であり、確保されるべき硬度等に応じて適宜設定されてよい。また、焼入れは、高周波焼入れやレーザー焼入れ等であってよい。なお、硬度増加工程は、焼入れ等の各種熱処理以外にも、例えば鍛造、圧延加工、転圧加工等の塑性加工を含んでよく、また、これらの組み合わせとして、所定部位8を塑性変形させてから熱処理等により再結晶化(結晶の微細化)を実現する処理等を含んでもよい。 The hardness increasing process is optional as long as it is a process that can increase the hardness, and in this embodiment, it is a process of quenching. Detailed conditions for the quenching treatment are arbitrary and may be appropriately set according to the hardness or the like to be ensured. The hardening may be induction hardening, laser hardening, or the like. In addition to various heat treatments such as quenching, the hardness increasing step may include plastic working such as forging, rolling, and rolling. A treatment or the like for realizing recrystallization (refining of crystals) by heat treatment or the like may be included.
 ロータシャフト34のうちの、径方向のベアリング支持面34c、34dを形成する部位81、82に対する焼入れは、当該部位81、82の径方向外側の表面に対してのみ実行されてよい。これにより、部位81、82の径方向外側の表面(すなわち径方向のベアリング支持面34c、34d)の硬度が、部位81、82の径方向内側の表面よりも高くなり、部位81、82のベアリング14a、14bを介して受ける荷重に対する耐久性を高めることができる。 Hardening of the portions 81, 82 of the rotor shaft 34 forming the radial bearing support surfaces 34c, 34d may be performed only on the radially outer surfaces of the portions 81, 82. As a result, the radially outer surfaces of the portions 81, 82 (i.e., the radial bearing support surfaces 34c, 34d) are harder than the radially inner surfaces of the portions 81, 82, and the bearings of the portions 81, 82 are hardened. It is possible to increase the durability against the load received via 14a, 14b.
 また、ロータシャフト34のうちの、動力伝達部345を形成する部位83に対する焼入れは、当該部位の径方向外側の表面に対してのみ実行されてよい。これにより、部位83の径方向外側の表面(すなわち径方向外側の動力伝達部345)の硬度が、部位83の径方向内側の表面よりも高くなり、部位83(動力伝達部345)の耐久性を高めることができる。なお、動力伝達部345がロータシャフト34の径方向内側に形成される場合、動力伝達部345を形成する部位83に対する焼入れは、当該部位83の径方向内側の表面に対してのみ実行されてよい。 Further, hardening of the portion 83 of the rotor shaft 34 forming the power transmission portion 345 may be performed only on the radially outer surface of the portion. As a result, the hardness of the radially outer surface of the portion 83 (that is, the radially outer power transmission portion 345) becomes higher than the radially inner surface of the portion 83, and the durability of the portion 83 (the power transmission portion 345) increases. can increase Note that when the power transmission portion 345 is formed radially inward of the rotor shaft 34 , hardening of the portion 83 forming the power transmission portion 345 may be performed only on the radially inner surface of the portion 83 . .
 ついで、ロータ30の製造方法は、ロータシャフト34において第1噴出孔341及び第2噴出孔342に対応する孔を形成する噴出孔形成工程(ステップS508)を含む。なお、噴出孔形成工程は、ロータシャフト34を製造装置200から取り出してから実行されてよい。噴出孔形成工程(ステップS508)が終了すると、最終的なロータシャフト34が出来上がる。なお、噴出孔形成工程は、必要に応じて、ステップS507の硬度増加処理の前に実行されてもよい。 Next, the method for manufacturing the rotor 30 includes an ejection hole forming step (step S508) of forming holes corresponding to the first ejection holes 341 and the second ejection holes 342 in the rotor shaft . Note that the ejection hole forming step may be performed after the rotor shaft 34 is removed from the manufacturing apparatus 200 . When the ejection hole forming step (step S508) is completed, the final rotor shaft 34 is completed. Note that the ejection hole forming step may be performed before the hardness increasing process in step S507, if necessary.
 ついで、ロータ30の製造方法は、その他の仕上げ工程(ステップS510)を含む。その他の仕上げ工程は、永久磁石321を固定する工程や、着磁を行う工程や、エンドプレート35A、35Bにより回転バランスを調整する工程等を含んでよい。 Next, the method for manufacturing the rotor 30 includes another finishing process (step S510). Other finishing processes may include a process of fixing the permanent magnet 321, a process of magnetizing, a process of adjusting the rotational balance by the end plates 35A and 35B, and the like.
 このようにして、図2及び図3A~図3Iを参照して説明したロータ30の製造方法によれば、ロータコア32及びロータシャフト34が、製造装置200の基準軸I0に対して芯出しされた状態を形成し、かつ、当該状態を維持しつつ、ハイドロフォーミングによりロータコア32とロータシャフト34を一体化できる。これにより、回転軸Iまわりのアンバランスが低減されたロータ30を製造できる。また、芯出しされた状態でハイドロフォーミングによりロータシャフト34を拡径できるので、ロータコア32とロータシャフト34との締結に係る締め代を周方向に沿って均一化できる。 Thus, according to the method of manufacturing the rotor 30 described with reference to FIGS. A state is formed, and the rotor core 32 and the rotor shaft 34 can be integrated by hydroforming while maintaining the state. As a result, the rotor 30 with reduced imbalance around the rotation axis I can be manufactured. In addition, since the diameter of the rotor shaft 34 can be expanded by hydroforming in the centered state, the interference associated with the fastening between the rotor core 32 and the rotor shaft 34 can be made uniform along the circumferential direction.
 ところで、本実施例では、上述したように、硬度増加工程(ステップS507)で硬度が高められる所定部位8は、径方向のベアリング支持面34c、34dを形成する部位81、82と、動力伝達部345を形成する部位83とを含む。そして、これらの部位81、82、83は、小径部34Bに設定されるので、シール工程において塑性変形される軸方向端部348に含まれるか、あるいは、軸方向端部348の近傍に位置する。 By the way, in this embodiment, as described above, the predetermined portions 8 whose hardness is increased in the hardness increasing step (step S507) are the portions 81 and 82 forming the radial bearing support surfaces 34c and 34d, and the power transmission portion. 83 forming 345. Since these portions 81, 82, 83 are set in the small diameter portion 34B, they are included in the axial end portion 348 that is plastically deformed in the sealing process, or are located near the axial end portion 348. .
 この点、硬度増加工程(ステップS507)がシール工程(ステップS505)よりも前に実行される比較例では、硬度増加工程(ステップS507)により軸方向端部348の硬度が高められるので、シール工程における塑性変形が所望の態様で実現されないおそれがある。例えば、上述したようにシール工程において軸方向端部348を塑性変形させようとすると、塑性変形が不十分となり所望のシール性が実現されなくなったり、軸方向端部348における所定部位8の割れが生じたりするおそれがある。また、軸方向端部348における所定部位8の比較的高い硬度に起因して、シール型203等の型の耐久性も低下するおそれがある。 In this respect, in the comparative example in which the hardness increasing step (step S507) is performed before the sealing step (step S505), the hardness of the axial end portion 348 is increased by the hardness increasing step (step S507), so the sealing step plastic deformation at may not be realized in the desired manner. For example, if an attempt is made to plastically deform the axial end portion 348 in the sealing process as described above, the plastic deformation will be insufficient and the desired sealing performance will not be achieved, or the predetermined portion 8 of the axial end portion 348 will crack. may occur. In addition, due to the relatively high hardness of the predetermined portion 8 of the axial end portion 348, the durability of the mold such as the seal mold 203 may also deteriorate.
 これに対して、本実施例によれば、上述したように、硬度増加工程(ステップS507)がシール工程(ステップS505)よりも後に実行されるので、上述した比較例で生じるおそれのある不都合を低減できる。すなわち、本実施例によれば、上述したように、硬度増加工程(ステップS507)に先立ってシール工程が実行されるので、シール工程において軸方向端部348を塑性変形させることが、比較例の場合よりも容易となる。これにより、上述した比較例で生じるおそれのある不都合を低減できる。このようにして、本実施例によれば、硬度が比較的高い所定部位8をロータシャフト34の軸方向端部348において又はその近傍において成立させつつ、シール工程においてロータシャフト34の軸方向端部348でのシール性を高めることができる。 On the other hand, according to the present embodiment, as described above, the hardness increasing step (step S507) is executed after the sealing step (step S505). can be reduced. That is, according to the present embodiment, as described above, the sealing process is performed prior to the hardness increasing process (step S507). easier than it should be. As a result, it is possible to reduce the inconvenience that may occur in the comparative example described above. In this manner, according to this embodiment, while the predetermined portion 8 having a relatively high hardness is established at or near the axial end portion 348 of the rotor shaft 34, the axial end portion of the rotor shaft 34 is hardened during the sealing process. The sealing at 348 can be enhanced.
 なお、本実施例では、所定部位8は、径方向のベアリング支持面34c、34dや、動力伝達部345を形成するので、比較的高い寸法精度が要求される。この点、硬度増加工程(ステップS507)がシール工程(ステップS505)よりも後に実行されるので、シール工程(ステップS505)の後であって、硬度増加工程(ステップS507)の前に、適宜、所定部位8の寸法精度を高めるための処理(例えば切削等)も可能である。 In this embodiment, the predetermined portion 8 forms the radial bearing support surfaces 34c and 34d and the power transmission portion 345, so relatively high dimensional accuracy is required. In this regard, since the hardness increasing step (step S507) is executed after the sealing step (step S505), after the sealing step (step S505) and before the hardness increasing step (step S507), Processing (for example, cutting, etc.) for increasing the dimensional accuracy of the predetermined portion 8 is also possible.
 なお、本実施例では、部位82に対する焼入れは、硬度増加工程(ステップS507)において、部位81及び部位83に対する焼入れとともに連続的に実行されるので、効率的に製造方法を実現できるが、これに限られない。部位82は、軸方向端部348に含まれないことから、部位81及び部位83に比べて、上述したシール工程に起因した不都合が生じがたい。従って、部位82に対する焼入れは、シール工程(ステップS505)よりも前に実行されてもよい。 In this embodiment, the quenching of the portion 82 is continuously performed together with the quenching of the portions 81 and 83 in the hardness increasing step (step S507), so that the manufacturing method can be efficiently realized. Not limited. Since the portion 82 is not included in the axial end portion 348 , compared to the portions 81 and 83 , inconvenience due to the sealing process described above is less likely to occur. Therefore, the quenching of the portion 82 may be performed before the sealing step (step S505).
 以上、各実施例について詳述したが、特定の実施例に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。また、前述した実施例の構成要素を全部又は複数を組み合わせることも可能である。また、各実施形態の効果のうちの、従属項に係る効果は、上位概念(独立項)とは区別した付加的効果である。 Although each embodiment has been described in detail above, it is not limited to a specific embodiment, and various modifications and changes are possible within the scope described in the claims. It is also possible to combine all or more of the constituent elements of the above-described embodiments. Further, among the effects of each embodiment, the effects related to dependent claims are additional effects distinguished from generic concepts (independent claims).
1・・・モータ(回転電機)、8(81、82、83)・・・所定部位、32・・・ロータコア、34・・・ロータシャフト、343・・・中空部、34B・・・小径部、34A・・・大径部、14a、14b・・・ベアリング(軸受)、60・・・動力伝達機構、200・・・製造装置 Reference Signs List 1 motor (rotary electric machine) 8 (81, 82, 83) predetermined portion 32 rotor core 34 rotor shaft 343 hollow portion 34B small diameter portion , 34A large diameter portion 14a, 14b bearing 60 power transmission mechanism 200 manufacturing apparatus

Claims (4)

  1.  回転電機用のロータの製造方法であって、
     ロータコアと、中空のロータシャフトとを準備する工程と、
     前記ロータシャフトの一部である所定部位の硬度を高める硬度増加工程と、
     前記ロータコアと前記ロータシャフトとを製造装置に配置し、前記製造装置において前記ロータコアの径方向内側に前記ロータシャフトが位置する状態を形成する配置工程と、
     前記配置工程の後に、前記製造装置により前記ロータシャフト及び前記ロータコアを支持しつつ、前記ロータシャフトの中空部の内圧を高めることで、前記ロータシャフトと前記ロータコアとを締結する一体化工程とを含み、
     前記硬度増加工程は、前記一体化工程の後に実行される、製造方法。
    A method for manufacturing a rotor for a rotating electrical machine, comprising:
    providing a rotor core and a hollow rotor shaft;
    a hardness increasing step of increasing the hardness of a predetermined portion that is a part of the rotor shaft;
    an arranging step of arranging the rotor core and the rotor shaft in a manufacturing apparatus to form a state in which the rotor shaft is positioned radially inside the rotor core in the manufacturing apparatus;
    After the arranging step, an integration step of fastening the rotor shaft and the rotor core by increasing the internal pressure of the hollow portion of the rotor shaft while supporting the rotor shaft and the rotor core by the manufacturing apparatus. ,
    The manufacturing method, wherein the hardness increasing step is performed after the integrating step.
  2.  前記一体化工程の前かつ前記配置工程の後に、前記製造装置により前記ロータシャフトの軸方向端部を塑性変形させることで、前記ロータシャフトの中空部を外部に対してシールするシール工程を更に含む、請求項1に記載の製造方法。 It further includes a sealing step of sealing the hollow portion of the rotor shaft from the outside by plastically deforming the axial end portion of the rotor shaft by the manufacturing apparatus before the integrating step and after the arranging step. , the manufacturing method according to claim 1.
  3.  前記ロータシャフトは、前記ロータコアと締結される大径部と、前記大径部よりも外径が小さくかつ前記軸方向端部を含む小径部とを有し、
     前記所定部位は、前記小径部に設定される、請求項2に記載の製造方法。
    The rotor shaft has a large-diameter portion fastened to the rotor core, and a small-diameter portion having a smaller outer diameter than the large-diameter portion and including the axial end,
    3. The manufacturing method according to claim 2, wherein said predetermined portion is set at said small diameter portion.
  4.  前記所定部位は、前記ロータシャフトにおける軸受が設けられる部位、及び、前記ロータシャフトにおける動力伝達機構に接続される部位のうちの、少なくともいずれか一方を含む、請求項3に記載の製造方法。 The manufacturing method according to claim 3, wherein the predetermined portion includes at least one of a portion of the rotor shaft provided with a bearing and a portion of the rotor shaft connected to a power transmission mechanism.
PCT/JP2022/007510 2022-02-24 2022-02-24 Production method for rotor for rotating electrical machine WO2023162071A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/007510 WO2023162071A1 (en) 2022-02-24 2022-02-24 Production method for rotor for rotating electrical machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/007510 WO2023162071A1 (en) 2022-02-24 2022-02-24 Production method for rotor for rotating electrical machine

Publications (1)

Publication Number Publication Date
WO2023162071A1 true WO2023162071A1 (en) 2023-08-31

Family

ID=87764976

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007510 WO2023162071A1 (en) 2022-02-24 2022-02-24 Production method for rotor for rotating electrical machine

Country Status (1)

Country Link
WO (1) WO2023162071A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021083174A (en) * 2019-11-15 2021-05-27 アイシン・エィ・ダブリュ株式会社 Rotor manufacturing method
JP2021087268A (en) * 2019-11-26 2021-06-03 アイシン・エィ・ダブリュ株式会社 Rotor manufacturing method
JP2021087267A (en) * 2019-11-26 2021-06-03 アイシン・エィ・ダブリュ株式会社 Rotor manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021083174A (en) * 2019-11-15 2021-05-27 アイシン・エィ・ダブリュ株式会社 Rotor manufacturing method
JP2021087268A (en) * 2019-11-26 2021-06-03 アイシン・エィ・ダブリュ株式会社 Rotor manufacturing method
JP2021087267A (en) * 2019-11-26 2021-06-03 アイシン・エィ・ダブリュ株式会社 Rotor manufacturing method

Similar Documents

Publication Publication Date Title
US10554092B2 (en) Rotary electric machine
US7986068B2 (en) Motor
JP5718391B2 (en) Rotating electric machine
EP2050583A1 (en) Raceway ring member for bearing unit, bearing unit, and method and device for producing raceway ring member for bearing unit
CN101468435B (en) Method of forming cam shaft
JP7327116B2 (en) Rotor manufacturing method
WO2023162071A1 (en) Production method for rotor for rotating electrical machine
WO2023162056A1 (en) Method for manufacturing rotor for rotating electric machine
JP2020198742A (en) Method for manufacturing rotary electric machine rotor
EP2781714B1 (en) Method for manufacturing drive plate of electromagnetic-fan clutch, and manufactured drive plate
JP7452352B2 (en) Manufacturing method of rotor for rotating electric machine
JP7435383B2 (en) Manufacturing method of rotor for rotating electric machine
JP2008045719A (en) Bearing unit
WO2023162070A1 (en) Method for manufacturing rotor for rotating electric machine
JP7151576B2 (en) Method for manufacturing rotor for rotary electric machine and rotor for rotary electric machine
JP7452351B2 (en) Manufacturing method of rotor for rotating electric machine
US10962058B2 (en) Rotator support shaft, method for manufacturing rotator support shaft, and roller bearing
JP2012200757A (en) Method of manufacturing rotor core of electric rotating machine
JP7404800B2 (en) Rotor manufacturing method
JP7327115B2 (en) Rotor manufacturing method
JP2022052555A (en) Manufacturing method of rotor for rotary electric machine
JP2022052501A (en) Manufacturing method of rotor for rotary electric machine
JP2022052526A (en) Manufacturing method of rotor for rotary electric machine
JP2022052557A (en) Manufacturing method of rotor for rotary electric machine
JP2022075125A (en) Manufacturing method and manufacturing apparatus of rotor for rotary electric machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928600

Country of ref document: EP

Kind code of ref document: A1