WO2023160477A1 - 电压控制方法和装置 - Google Patents

电压控制方法和装置 Download PDF

Info

Publication number
WO2023160477A1
WO2023160477A1 PCT/CN2023/076906 CN2023076906W WO2023160477A1 WO 2023160477 A1 WO2023160477 A1 WO 2023160477A1 CN 2023076906 W CN2023076906 W CN 2023076906W WO 2023160477 A1 WO2023160477 A1 WO 2023160477A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery
voltage
working condition
condition information
rate
Prior art date
Application number
PCT/CN2023/076906
Other languages
English (en)
French (fr)
Inventor
王德海
Original Assignee
北京车和家汽车科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京车和家汽车科技有限公司 filed Critical 北京车和家汽车科技有限公司
Publication of WO2023160477A1 publication Critical patent/WO2023160477A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00302Overcharge protection
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • H02J7/0048Detection of remaining charge capacity or state of charge [SOC]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/007Regulation of charging or discharging current or voltage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure relates to the technical field of voltage control, and in particular to a voltage control method, device, electronic equipment, vehicle and storage medium.
  • the low-voltage battery in the low-voltage power supply system has changed from Lead-acid batteries are developed into lithium batteries. Since the energy density of lithium batteries is much greater than that of lead-acid batteries, the purpose of reducing the total vehicle volume can be achieved. In addition, lithium batteries can be quickly charged and discharged, and also have a long service life and low maintenance costs.
  • the disclosure provides a voltage control method, device, electronic equipment, vehicle and storage medium, which can avoid overcharging of a lithium battery, reduce the risk of lithium ion precipitation, and prolong the service life of the lithium battery.
  • the present disclosure provides a voltage control method, comprising:
  • the output voltage of the DC converter is controlled to be less than the maximum charging voltage of the battery.
  • the first working condition information includes at least one of the output current, the output voltage, the voltage overshoot amount of the output voltage, the voltage overshoot duration of the output voltage, the rate of change of the output current, and the rate of change of the output voltage.
  • the second working condition information includes at least one of battery state of charge, battery temperature, battery charging capability, battery anti-charging capability, battery discharge duration, and battery discharge capability.
  • the generating the voltage control signal according to the first working condition information of the DC converter and the second working condition information of the battery includes:
  • the voltage control signal is generated in response to the rate of change of the output current being greater than a predetermined rate of change and the state of charge of the battery being greater than a predetermined state of charge.
  • the generating the voltage control signal according to the first working condition information of the DC converter and the second working condition information of the battery includes:
  • the voltage control signal is generated in response to the rate of change of the output current being greater than a preset rate of change and the charging capacity of the battery being less than a preset charging capacity.
  • the generating the voltage control signal according to the first working condition information of the DC converter and the second working condition information of the battery includes:
  • the voltage control signal is generated in response to the rate of change of the output current being greater than a predetermined rate of change, the state of charge of the battery being greater than a predetermined state of charge, and the charging capacity of the battery being less than a predetermined charging capacity.
  • the controlling the output voltage of the DC converter to be less than the maximum charging voltage of the battery according to the voltage control signal includes:
  • the output voltage is controlled to decrease to a first target voltage within a first preset time range, and the first target voltage is determined based on the voltage overshoot of the output voltage in a load dump state .
  • the first target voltage is determined based on a voltage overshoot of the output voltage in a load dump state and a requested charging voltage of the battery.
  • the voltage control method also includes:
  • the output voltage is controlled to be less than the maximum charging voltage of the battery, and the second preset time range is based on the voltage overshoot duration of the output voltage in the load dump state and the state of charge of the battery definite.
  • the minimum value of the second preset time range is the voltage overshoot duration of the output voltage in the load dump state; the maximum value of the second preset time range is based on the state of charge of the battery The determined time required for the remaining charge of the battery to be fully discharged.
  • the voltage control method also includes:
  • the controlling the output voltage to increase to a second target voltage includes:
  • the target discharge duration is determined.
  • the present disclosure provides a voltage control device, comprising:
  • a signal generating module configured to generate a voltage control signal according to the first working condition information of the DC converter and the second working condition information of the battery;
  • a control module configured to control the output voltage of the DC converter to be less than the The maximum charging voltage of the battery.
  • the present disclosure provides an electronic device, including: a processor configured to execute a computer program stored in a memory, and when the computer program is executed by the processor, any one of the functions provided in the first aspect can be implemented. steps of the method.
  • the present disclosure provides a vehicle comprising:
  • a battery for providing power to the load
  • a DC converter for reducing the voltage and transmitting the reduced voltage signal to the battery
  • the vehicle controller is configured to execute the steps of any method provided in the first aspect.
  • the present disclosure provides a computer-readable storage medium, on which a computer program is stored, and when the computer program is executed by a processor, the steps of any method provided in the first aspect are implemented.
  • the present disclosure provides a computer program product, which, when running on a computer, causes the computer to execute the steps for realizing any one of the methods provided in the first aspect.
  • the voltage control signal is generated according to the first working condition information of the DC converter and the second working condition information of the battery; according to the voltage control signal, the output voltage of the DC converter is controlled to be less than the maximum charge of the battery In this way, the output voltage of the DC converter is the charging voltage of the battery. Controlling the charging voltage of the battery below the maximum charging voltage can avoid battery overcharging and reduce the risk of lithium ion precipitation in the battery. Thereby, the service life of the battery can be extended.
  • FIG. 1 is a schematic diagram of an application scenario provided by the present disclosure
  • FIG. 2 is a schematic flowchart of a voltage control method provided by the present disclosure
  • FIG. 3 is a schematic flowchart of another voltage control method provided by the present disclosure.
  • FIG. 4 is a schematic flowchart of another voltage control method provided by the present disclosure.
  • FIG. 5 is a schematic flowchart of another voltage control method provided by the present disclosure.
  • FIG. 6 is a schematic flowchart of another voltage control method provided by the present disclosure.
  • FIG. 7 is a schematic flowchart of another voltage control method provided by the present disclosure.
  • FIG. 8 is a schematic flowchart of another voltage control method provided by the present disclosure.
  • FIG. 9 is a schematic flowchart of another voltage control method provided by the present disclosure.
  • FIG. 10 is a schematic structural diagram of a voltage control device provided by the present disclosure.
  • Fig. 11 is a schematic structural diagram of a vehicle provided by the present disclosure.
  • Fig. 12 is a schematic structural diagram of an electronic device provided by the present disclosure.
  • FIG. 1 is a schematic diagram of an application scenario provided by the present disclosure.
  • the input end of the DC converter 110 is electrically connected to the output end of the high-voltage battery 120, and the output end of the DC converter 110 is connected to the input end of the battery 130.
  • the output end of the battery 130 is electrically connected to the load 140 .
  • the DC converter 110 is a DC voltage reducer, which can convert the high-voltage signal output by the high-voltage battery 120 into a low-voltage signal suitable for charging the battery 130 , and the low-voltage signal output by the battery 130 can provide electric energy to the load 140 .
  • the high-voltage battery provides electrical energy to the motor and other high-voltage components, and can also provide electrical energy to the low-voltage battery through a DC converter.
  • the low-voltage battery here is the battery in the present disclosure, and the low-voltage battery can supply to the vehicle
  • the low-voltage loads in the vehicle provide electric energy, such as brakes, steering wheels, automatic driving systems, instruments, etc.
  • the battery in the present disclosure may be a lithium battery.
  • the battery When the actual charging voltage of the battery is greater than the maximum charging voltage that the battery can withstand, the battery will be overcharged. At this time, the lithium ions in the battery are relatively easy to precipitate, and the precipitation of lithium ions is irreversible. , which will affect the service life of the lithium battery.
  • the DC converter Under normal circumstances, the DC converter will charge the battery, but when the wiring harness is aging, the contact is poor, or the vehicle is in some special working conditions, the battery will be disconnected from the low-voltage load. At this time, the DC converter will output a voltage Higher and longer duration surge voltage, this situation is called load dump.
  • the output voltage of the DC converter will increase instantaneously, that is, the charging voltage of the battery will instantly increase. Increase, greater than the maximum charging voltage that the battery can withstand, so when the whole vehicle throws a large low-voltage load, it is more likely to cause the problem of battery overcharging.
  • the technical solution provided by the present disclosure generates a voltage control signal according to the first working condition information of the DC converter and the second working condition information of the battery; according to the voltage control signal, the output voltage of the DC converter is controlled to be lower than that of the battery In this way, the output voltage of the DC converter is the charging voltage of the battery. Controlling the charging voltage of the battery below the maximum charging voltage can avoid battery overcharging and reduce the lithium ion precipitation in the battery. risk, thereby prolonging the service life of the battery.
  • FIG. 2 is a schematic flowchart of a voltage control method provided in the present disclosure, as shown in FIG. 2 , including steps S101 and S102.
  • the first working condition information may be at least one of output current, output voltage, voltage overshoot amount of output voltage, voltage overshoot duration of output voltage, rate of change of output current, rate of change of output voltage, etc.
  • the second working condition information may be at least one of battery state of charge (Stat of Charge, SOC), battery temperature, battery charging capability, battery anti-charging capability, battery discharge duration, battery discharge capability, and the like.
  • the output terminal of the DC converter is electrically connected to the input terminal of the battery.
  • the DC converter can convert the high voltage output by the high-voltage battery into a low voltage.
  • the battery can be charged based on the low voltage signal output by the DC converter, that is, DC conversion
  • the output voltage of the device is the charging voltage of the battery.
  • it can be determined whether the current working condition of the vehicle is load dumping, and when it is determined that the vehicle is currently in a load dumping state, it can also be determined whether the current dumping load is larger loads.
  • the output voltage of the DC converter when the output voltage of the DC converter is greater than the requested charging voltage of the battery, or when the rate of change of the output current of the DC converter is relatively large, it can be determined that the current working condition of the vehicle is a load dump state; the output voltage of the DC converter is greater than that of the battery When the tolerable maximum charging voltage is reached, or when the rate of change of the output current of the DC converter is greater than a preset rate of change, it can be determined that the load currently thrown by the vehicle is a relatively large load.
  • the load currently thrown by the vehicle is a relatively large load, it may be determined whether to reduce the output voltage of the DC converter, that is, the charging voltage of the battery, according to the second working condition information.
  • a voltage control signal is generated to control the lowering of the charging voltage of the battery. For example, if the battery state of charge is high and the battery charging capacity is weak, it can be determined that the charging voltage of the battery needs to be reduced at this time, and a voltage control signal will be generated; if the battery state of charge is high or the battery charging capacity is strong, it can be determined There is no need to reduce the battery charging voltage at this time, and no voltage control signal is generated.
  • the charging voltage of the battery when the vehicle is currently throwing a large load, the charging voltage of the battery is greater than the maximum charging voltage that the battery can withstand. At this time, the charging voltage of the battery can be controlled to be reduced according to the voltage control signal, so that the The final charging voltage is lower than the maximum charging voltage that the battery can withstand, so as to avoid the problem of overcharging of the battery.
  • the maximum charging voltage that the battery can withstand is 14V.
  • the output voltage of the DC converter is 14.2V.
  • the voltage control signal which can control the charging voltage of the battery to decrease from 14.2V to less than or equal to 14V.
  • the DC converter by generating a voltage control signal according to the first working condition information of the DC converter and the second working condition information of the battery, the DC converter is used to reduce the voltage, and the output voltage of the DC converter is controlled to be less than the maximum charge of the battery In this way, the output voltage of the DC converter is the charging voltage of the battery. Controlling the charging voltage of the battery below the maximum charging voltage can avoid battery overcharging and reduce the risk of lithium ion precipitation in the battery. Thereby, the service life of the battery can be extended.
  • FIG. 3 is a schematic flow chart of another voltage control method provided by the present disclosure.
  • FIG. 3 is based on the embodiment shown in FIG. 2 , and a specific description of an implementation when executing S101 is as follows, including steps S201 to S203.
  • the first working condition information includes the rate of change of the output current.
  • the rate of change of the output current of the DC converter can be directly obtained from the first working condition information.
  • the rate of change of the output current of the DC converter obtained directly may be 1A/ms.
  • the rate of change of the output current can be positive or negative. If the rate of change of the output current is positive, the rate of change of the output current is the rate of rise of the output current. If the rate of change of the output current is negative, the rate of change of the output current is The rate of change of the output current is the decrease rate of the output current.
  • the second working condition information includes the battery SOC, so the battery SOC can be directly acquired from the second working condition information.
  • the second working condition information may include the voltage at both ends of the battery, and the battery SOC is determined based on the voltage at both ends of the battery.
  • the minimum output current change rate among all output current change rates under each large load state determine the minimum output current change rate as the preset Change rate, for example, the preset change rate can be 1A/ms. If the rate of change of the output current of the DC converter is greater than the preset rate of change, it means that the output current of the DC converter has increased instantaneously and the output voltage of the DC converter has exceeded the maximum charging voltage that the battery can withstand, that is, the current vehicle is in a high throwing state. the state of the load.
  • the preset SOC may be 80%. If the battery SOC is greater than the preset SOC, it means that the battery SOC is high and the remaining power in the battery is large. For a single load dump of the vehicle, the remaining power in the battery is enough to complete the load dump, thus avoiding battery overload. Put the problem, to ensure the normal use of the vehicle.
  • the rate of change of the output current is greater than the preset rate of change and the state of charge of the battery is greater than the preset state of charge, it means that the vehicle is in the state of throwing a large load and the SOC of the battery is relatively high.
  • the remaining power is enough to support this load dump.
  • a voltage control signal can be generated, so that while the charging voltage of the battery is reduced, the remaining power in the battery can be prevented from being fully discharged, thereby preventing the battery from being over-discharged.
  • the rate of change of the output current of the DC converter is determined according to the first working condition information; the state of charge of the battery is determined according to the second working condition information; if the rate of change of the output current is greater than the preset rate of change, and the battery The state of charge is greater than the preset state of charge, and a voltage control signal is generated to reduce the charging voltage of the battery. Due to the high SOC of the battery, the remaining power in the battery is large, so even if the charging voltage drops to cause the battery to discharge, it will not be completely charged. Releasing the remaining power in the battery can prevent the battery from being over-discharged, thereby prolonging the service life of the battery and ensuring the normal use of the vehicle.
  • Fig. 4 is a schematic flowchart of another voltage control method provided by the present disclosure
  • Fig. 4 is a schematic diagram of the embodiment shown in Fig. 2
  • another implementation manner of executing S101 is specifically described as follows, including steps S201, S202' and S203'.
  • the battery charging capacity can be measured by physical quantities such as charging rate, charging current, and charging time.
  • the charging rate is the multiple of the charging current relative to the rated capacity of the battery cell, expressed in C.
  • the rated capacity of the battery is 100Ah, charging with 100A current is 1C, which can be understood as 1h can be fully charged; charging with 200A current is 2C, which can be understood as 0.5h can be fully charged; charging with 50A current is 0.5C, which can be understood as 2h can be fully charged .
  • the second working condition information may include at least one of the charging rate, charging current, and charging time, so that at least one of the charging rate, charging current, and charging time can be directly obtained from the second working condition information
  • One based on at least one of charging rate, charging current, and charging time, determining the charging capacity of the battery. For example, the higher the charging rate, the stronger the battery charging capability; the larger the charging current, the stronger the battery charging capability; the shorter the charging time, the stronger the battery charging capability.
  • the second working condition information may include battery SOC and battery temperature
  • the battery charging capability is determined based on the battery SOC and battery temperature, wherein the lower the battery SOC, the stronger the battery charging capability, and the battery temperature is at a certain In the temperature range, the battery capacity is strong.
  • the minimum output current change rate among all output current change rates under each large load state determine the minimum output current change rate as the preset Change rate, for example, the preset change rate can be 1A/ms. If the rate of change of the output current of the DC converter is greater than the preset rate of change, it means that the output current of the DC converter has increased instantaneously and the output voltage of the DC converter has exceeded the maximum charging voltage that the battery can withstand, that is, the current vehicle is in a high throwing state. the state of the load.
  • the preset charging capacity can be determined based on the charging current corresponding to each stage in the battery charging process, for example, the preset charging capacity can be 30A. If the charging capacity of the battery is less than the preset charging capacity, it means that the charging capacity of the battery is weak. At this time, the requested charging current required by the battery is small, so the current charging capacity of the battery cannot withstand a large charging current. If the charging current is too large, It will cause irreversible damage to the inside of the battery.
  • the rate of change of the output current is greater than the preset rate of change and the battery charging capacity is less than the preset charging capacity, it means that the vehicle is in a state of throwing a large load and the battery charging capacity is weak, that is, the battery charging capacity Can withstand a small charging current.
  • a voltage control signal can be generated to reduce the charging voltage of the battery and at the same time reduce the charging current of the battery, so that the charging current of the battery matches the charging capacity of the battery, and avoid irreversible damage to the interior of the battery caused by excessive charging current.
  • the rate of change of the output current of the DC converter is determined according to the first working condition information; the state of charge of the battery and the charging capacity of the battery are determined according to the second working condition information; if the rate of change of the output current is greater than the preset change rate, and the charging capacity of the battery is less than the preset charging capacity, a voltage control signal is generated, so that the charging voltage of the battery is reduced, and the charging current of the corresponding battery is reduced.
  • the charging current matches the charging capacity of the battery to avoid irreversible damage to the inside of the battery caused by excessive charging current, thereby prolonging the service life of the battery.
  • Fig. 5 is a schematic flow chart of another voltage control method provided by the present disclosure. Fig. 5 is based on the embodiment shown in Fig. 2. The specific description of another implementation mode when executing S101 is as follows, including steps S201 and S202" and S203".
  • the rate of change of the output current of the DC converter is determined according to the first working condition information; the state of charge of the battery and the charging capacity of the battery are determined according to the second working condition information; if the rate of change of the output current is greater than the preset change rate, the state of charge of the battery is greater than the preset state of charge and the charging capacity of the battery is less than the preset charging capacity, and a voltage control signal is generated to reduce the charging voltage of the battery and at the same time avoid battery over-discharge, prolong the service life of the battery, and ensure that the vehicle normal use.
  • the charging voltage of the battery decreases, the corresponding charging current of the battery decreases, which can avoid irreversible damage to the inside of the battery caused by excessive charging current, thereby prolonging the service life of the battery.
  • Fig. 6 is a schematic flowchart of another voltage control method provided by the present disclosure, and Fig. 6 is a specific description of an implementation mode when executing S102 based on the embodiment shown in Fig. 2 , such as step S102'.
  • the first target voltage is determined based on a voltage overshoot of the output voltage in a load dump state.
  • the requested charging voltage of the battery is generated in real time, so the requested charging voltage of the battery is determined based on the actual working conditions of the battery, so the requested charging of the battery
  • the voltage changes in real time during the entire charging process. For example, when the battery SOC is low, the battery's requested charging voltage is larger, and when the battery SOC is high, the battery's requested charging voltage is smaller. In this way, the battery's charging voltage can be dynamically adjusted , making the performance and charging effect of the battery better.
  • the output voltage of the DC converter is greater than the requested charging voltage of the battery.
  • This situation can be called voltage overshoot, where the difference between the output voltage of the DC converter and the requested charging voltage of the battery is the voltage overshoot, and the duration for which the output voltage of the DC converter is greater than the requested charging voltage of the battery is the voltage overshoot duration.
  • the first target voltage can be determined according to the voltage overshoot of the output voltage in the load dump state and the requested charging voltage of the battery, and the output voltage of the DC converter can be reduced to the first target according to the voltage control signal Voltage, even if it continues to be affected by load dumping, the output voltage of the DC converter will remain at a state that is less than the maximum charging voltage of the battery.
  • the voltage overshoot is 0.2V
  • the requested charging voltage of the battery is 14V.
  • the first target voltage is 13.8V.
  • the charging voltage of the battery is controlled to decrease from 14V to 13.8V.
  • the charging voltage of the battery will increase, but it can always be to maintain less than 14V.
  • the control time required for the output voltage to drop to the first target voltage is t. If t is shorter than the response time of the voltage control signal, the response of the voltage control signal fails, so that the output voltage cannot be reduced to the first target voltage. If t is longer, it is longer than the time of a single load dump of the vehicle, so that the vehicle has completed a single load dump, but the output voltage has not yet dropped to the first target voltage, and the battery still has an overcharge problem.
  • the response time of the voltage control signal is determined as the minimum value of the first preset time range
  • the time for a single load dump of the vehicle is determined as the minimum value of the first preset time range
  • the output voltage is set to drop to the first target
  • the control time required for the voltage is within the first preset time range, which not only ensures a smooth response to the voltage control signal, but also reduces the risk of battery overcharging.
  • the first target voltage is determined based on the voltage overshoot of the output voltage in the load dump state
  • the charging voltage of the battery can be controlled to a voltage value that matches the current charging stage of the battery to meet the charging voltage requirements of the battery in the current charging stage, thereby ensuring the charging effect and performance of the battery.
  • reducing the output voltage within a preset time frame not only ensures a smooth response to the voltage control signal, but also reduces the risk of battery overcharging.
  • FIG. 7 is a schematic flow chart of another voltage control method provided by the present disclosure.
  • FIG. 7 is based on the embodiment shown in FIG. 2 and further includes step S103.
  • the second preset time range is determined based on the voltage overshoot duration of the output voltage in the load dump state and the state of charge of the battery.
  • the duration of the vehicle load dump state can be determined by the voltage of the output voltage Indicated by the overshoot time, it will cause the charging voltage of the battery to exceed the maximum charging voltage that the battery can withstand before the vehicle load dump is completed, which will increase the risk of battery overcharging.
  • the time during which the output voltage is lower than the maximum charging voltage of the battery cannot be too long. If the time during which the output voltage is lower than the maximum charging voltage of the battery is greater than the time required for the remaining charge of the battery to be completely released, the output voltage is less than the maximum charging voltage of the battery. Within a certain period of time, the battery is in a state of continuous discharge until the remaining charge of the battery is completely released, which is likely to cause the problem of battery over-discharge.
  • the voltage overshoot duration of the output voltage in the vehicle load-dumping state can be determined as the minimum value of the second preset time range, and the time required to completely release the remaining charge of the battery determined based on the state of charge of the battery can be taken as The maximum value of the second preset time range, thus, the second preset time range can be determined.
  • the output voltage is controlled to be less than the maximum charging voltage of the battery within the second preset time range, and the second preset time range is determined based on the voltage overshoot duration of the output voltage in the load dump state and the state of charge of the battery so that within the second preset time range, the charging voltage of the battery does not exceed the battery voltage before the vehicle load dump is completed.
  • the maximum charging voltage that can be tolerated can reduce the risk of battery overcharging.
  • the problem that the remaining charge of the battery is completely released can be avoided, so that the battery can be prevented from being over-discharged and the normal use of the vehicle can be ensured.
  • FIG. 8 is a schematic flowchart of another voltage control method provided by the present disclosure.
  • FIG. 8 is based on the embodiment shown in FIG. 2 and further includes step S104.
  • the second target voltage is a voltage determined based on the second working condition information before generating the voltage control signal.
  • the output voltage is reduced to be less than the maximum charging voltage of the battery, the voltage control signal is released, and the output voltage is controlled to rise from a voltage value less than the maximum charging voltage of the battery to the second target voltage, and the second target voltage can be is the requested voltage of the battery before the voltage control signal acts. Since the requested voltage of the battery is determined based on the second working condition information of the battery, the second target voltage can be determined based on the second working condition information of the battery.
  • the first working condition information of the DC converter and the second working condition information of the battery can be continuously monitored, and when the voltage control signal generation condition is satisfied, return to S101, so that Continuously monitor the charging state of the battery, reduce the risk of overcharging during the whole process of battery use, and prolong the service life of the battery.
  • the requested voltage of the battery is 14V
  • the vehicle is in the working condition of turning the steering wheel on the spot
  • the corresponding voltage overshoot is 0.2V.
  • a voltage control signal is generated.
  • the battery requests The charging voltage is reduced from 14V to 13.8V, so the charging voltage of the battery is maintained at no more than 14V.
  • the voltage control signal is released, and the requested charging voltage of the battery is raised from 13.8V to 14V, so that the charging voltage of the battery is raised to 14V.
  • the second target voltage is the voltage determined based on the second working condition information before the voltage control signal is generated, the charging state of the battery can be continuously monitored, and the battery usage can be reduced. The risk of overcharging during the whole process prolongs the service life of the battery.
  • Fig. 9 is a schematic flowchart of another voltage control method provided by the present disclosure, and Fig. 9 is a specific description of an implementation manner when executing S104 based on the embodiment shown in Fig. 8 , such as S104'.
  • the preset lift rate is within a preset rate range, and the preset rate range is determined based on the performance of components in the vehicle and the target discharge time of the battery.
  • the rate of increase of the output voltage should not be too high. If the rate of increase of the output voltage is too high, the rapidly rising voltage that the components in the vehicle cannot withstand will cause the components in the vehicle to damage, making the vehicle unusable. In addition, the rate of increase of the output voltage should not be too low. If the rate of increase of the output voltage is too low, the discharge time of the battery will increase, and the remaining power of the battery will be completely released, resulting in over-discharge of the battery.
  • a lift rate can be determined according to the performance of the components in the vehicle, for example, the adaptability of each component in the vehicle to the instantaneous voltage, and the lift rate can be determined as the maximum value of the preset range of lift rates.
  • the target discharge time of the battery can be determined according to the remaining power when the output voltage starts to rise.
  • the target discharge time is the time required for the output voltage to rise to the second target voltage. In this way, another rise rate can be determined. Determined as the minimum value of the preset lift rate range.
  • Controlling the output voltage to rise to the second target voltage at any preset rising rate within the preset rising rate can not only avoid damage to the components in the vehicle, ensure the normal use of the vehicle, but also prevent the battery from being over-discharged and prolong the battery life. service life.
  • the preset rate of increase is within the range of the preset rate, and the range of the preset rate is based on the performance of the components in the vehicle and the target discharge of the battery
  • the duration is determined, which can not only avoid damage to the components in the vehicle, ensure the normal use of the vehicle, but also avoid over-discharge of the battery and prolong the service life of the battery.
  • FIG. 10 is a schematic structural diagram of a voltage control device provided in the present disclosure. As shown in FIG. 10 , the voltage control device includes a signal generation module 210 and a control module 220 .
  • the signal generation module 210 is configured to generate a voltage control signal according to the first working condition information of the DC converter and the second working condition information of the battery.
  • the control module 220 is configured to control the output voltage of the DC converter to be lower than the maximum charging voltage of the battery according to the voltage control signal.
  • the signal generation module 210 is further configured to determine the rate of change of the output current of the DC converter according to the first working condition information; determine the state of charge of the battery according to the second working condition information; The voltage control signal is generated in response to the rate of change of the output current being greater than a predetermined rate of change and the state of charge of the battery being greater than a predetermined state of charge.
  • the signal generation module 210 is further configured to determine the rate of change of the output current of the DC converter according to the first working condition information; determine the battery charging capacity according to the second working condition information; respond The voltage control signal is generated when the rate of change of the output current is greater than a preset rate of change and the charging capacity of the battery is less than a preset charging capacity.
  • the signal generation module 210 is further configured to determine the rate of change of the output current of the DC converter according to the first working condition information; determine the battery state of charge and Battery charging capability: generating the voltage control signal in response to the rate of change of the output current being greater than a preset rate of change, the state of charge of the battery being greater than a preset state of charge, and the charging capability of the battery being less than a preset charging capability.
  • control module 220 is further configured to control the output voltage to drop to a first target voltage within a first preset time range according to the voltage control signal, and the first target voltage is based on load dump state is determined by the voltage overshoot of the output voltage.
  • control module 220 is further configured to control the output voltage to be less than the maximum charging voltage of the battery within a second preset time range, and the second preset time range is based on the It is determined by the voltage overshoot duration of the output voltage and the state of charge of the battery.
  • control module 220 is further configured to control the output voltage to rise to a second target voltage, the second target voltage is determined based on the second working condition information before generating the voltage control signal Voltage.
  • control module 220 is further configured to control the output voltage to increase to the second target voltage at a preset rate of increase, the preset rate of increase is within a preset rate range, and the preset rate of increase is The rate range is determined based on the performance of the components in the vehicle and the target discharge time for the battery.
  • the device provided by the embodiment of the present invention can execute the method provided by any embodiment of the present invention, and has corresponding functional modules and beneficial effects for executing the method.
  • FIG. 11 is a schematic structural diagram of a vehicle provided by the present disclosure. As shown in FIG. 11 , the vehicle includes: a DC converter 110, a battery 130, and a vehicle controller 150. 150 is electrically connected to the battery 130 and the DC converter 110 respectively, and the input terminal of the battery 130 is electrically connected to the output terminal of the DC converter 110 .
  • the battery 130 is used to provide power to the load.
  • the DC converter 110 is used to reduce the voltage and transmit the reduced voltage signal to the battery 130 .
  • the vehicle controller 150 can be used to implement the method provided by any embodiment of the present invention.
  • the vehicle provided in this embodiment includes a vehicle controller, which can execute the method provided in any embodiment of the present invention, and the vehicle controller has corresponding functional modules and beneficial effects for executing the method, and the vehicle also has the same functions as the vehicle. The same beneficial effect of the car controller will not be repeated here.
  • the present disclosure also provides an electronic device, including: a processor, the processor is configured to execute a computer program stored in a memory, and when the computer program is executed by the processor, the steps of the foregoing method embodiments are implemented.
  • Fig. 12 is a schematic structural diagram of an electronic device provided by the present disclosure, and Fig. 12 shows a block diagram of an exemplary electronic device suitable for implementing an embodiment of the present invention.
  • the electronic device shown in FIG. 12 is only an example, and should not limit the functions and scope of use of this embodiment of the present invention.
  • electronic device 12 takes the form of a general-purpose computing device.
  • Components of electronic device 12 may include, but are not limited to: one or more processors 16, system memory 28, bus 18 connecting various system components including system memory 28 and processor 16.
  • Bus 18 represents one or more of several types of bus structures, including a memory bus or memory controller, a peripheral bus, an accelerated graphics port, a processor, or a local bus using any of a variety of bus structures.
  • bus structures include, by way of example, but are not limited to Industry Standard Architecture (ISA) bus, Micro Channel Architecture (MAC) bus, Enhanced ISA bus, Video Electronics Standards Association (VESA) local bus, and Peripheral Component Interconnect ( PCI) bus.
  • ISA Industry Standard Architecture
  • MAC Micro Channel Architecture
  • VESA Video Electronics Standards Association
  • PCI Peripheral Component Interconnect
  • Electronic device 12 typically includes a variety of computer system readable media. These media can be any media that can be accessed by electronic device 12 and include both volatile and nonvolatile media, removable and non-removable media.
  • System memory 28 may include computer system readable media in the form of volatile memory, such as random access memory (RAM) 30 and/or cache memory 32 .
  • the electronic device 12 may further include other removable/non-removable, volatile/nonvolatile computer system storage media.
  • storage system 34 may be used to read from and write to non-removable, non-volatile magnetic media (commonly referred to as a "hard drive”).
  • Disk drives for reading and writing to removable non-volatile disks (such as "floppy disks") and drives for reading and writing to removable non-volatile optical disks (such as CD-ROM, DVD-ROM, or other optical media) may be provided.
  • CD drive In these cases, each drive may be connected to bus 18 via one or more data media interfaces.
  • System memory 28 may include at least one program product having a set (eg, at least one) of program modules configured to perform the functions of various embodiments of the present invention.
  • Program/utility 40 may be stored, for example, in system memory 28 as a set (at least one) of program modules 42 including, but not limited to, an operating system, one or more application programs, other program modules, and program Data, each or some combination of these examples includes the implementation of the network environment.
  • the program module 42 generally executes the functions and/or methods in the embodiments described in the embodiments of the present invention.
  • the processor 16 executes various functional applications and information processing by running at least one of the multiple programs stored in the system memory 28 , such as implementing the method embodiments provided by the embodiments of the present invention.
  • the present disclosure also provides a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the above method embodiments are implemented.
  • the computer readable medium may be a computer readable signal medium or a computer readable storage medium.
  • a computer-readable storage medium may be, for example, but not limited to, an electrical, magnetic, optical, electromagnetic, infrared, or semiconductor system, device, or device, or any combination thereof. More specific examples (non-exhaustive list) of computer readable storage media include: electrical connections with one or more leads, portable computer disks, hard disks, random access memory (RAM), read only memory (ROM), Erasable programmable read-only memory (EPROM or flash memory), optical fiber, portable compact disk read-only memory (CD-ROM), optical storage device, magnetic storage device, or any suitable combination of the above.
  • a computer-readable storage medium may be any tangible medium that contains or stores a program that can be used by or in conjunction with an instruction execution system, apparatus, or device.
  • a computer readable signal medium may include a data signal carrying computer readable program code in baseband or as part of a carrier wave. Such propagated data signals may take many forms, including but not limited to electromagnetic signals, optical signals, or any suitable combination of the foregoing.
  • a computer-readable signal medium may also be any computer-readable medium other than a computer-readable storage medium, which can send, propagate, or transmit a program for use by or in conjunction with an instruction execution system, apparatus, or device. .
  • Program code embodied on a computer readable medium may be transmitted using any appropriate medium, including but not limited to wireless, wireline, optical fiber cable, RF, etc., or any suitable combination of the foregoing.
  • Computer program code for carrying out the operations of the present invention may be written in one or more programming languages, or combinations thereof, including object-oriented programming languages—such as Java, Smalltalk, C++, and conventional Procedural Programming Language - such as "C" or a similar programming language.
  • the program code may execute entirely on the user's computer, partly on the user's computer, as a stand-alone software package, partly on the user's computer and partly on a remote computer or entirely on the remote computer or server.
  • the remote computer may be connected to the user computer through any kind of network, including a local area network (LAN) or wide area network (WAN) domain, or may be connected to an external computer (such as through an Internet service provider) Internet connection).
  • LAN local area network
  • WAN wide area network
  • Internet service provider Internet service provider
  • the present disclosure also provides a computer program product, which, when running on a computer, causes the computer to execute the steps for implementing the above method embodiments.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Secondary Cells (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

本公开涉及一种电压控制方法、装置、电子设备、车辆和存储介质。该方法包括:根据直流转换器的第一工况信息和电池的第二工况信息,生成电压控制信号;根据所述电压控制信号,控制所述直流转换器的输出电压小于所述电池的最大充电电压。

Description

电压控制方法和装置
相关申请的交叉引用
本申请基于申请号为202210187471.2、申请日为2022年02月28日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及电压控制技术领域,尤其涉及一种电压控制方法、装置、电子设备、车辆和存储介质。
背景技术
随着新能源汽车行业的发展,新能源车辆各种性能都在不断优化,而低压供电系统作为用车安全和用户驾驶体验也越来越受到重视,其中,低压供电系统中的低压蓄电池已经从铅酸电池发展为锂电池。由于锂电池的能量密度远大于铅酸电池的能量密度,因此,可以达到降低整车总量的目的。此外,锂电池还可以快速充放电,且还具有较长的使用寿命和较低的维修成本。
然而,在车辆抛负载时,直流转换器的输出电压瞬时增大,容易导致锂电池出现过充的问题,从而使得电池中的锂离子析出,影响锂电池的寿命。
发明内容
本公开提供了一种电压控制方法、装置、电子设备、车辆和存储介质,能够避免锂电池过充,降低锂离子析出的风险,从而延长锂电池的使用寿命。
在第一方面中,本公开提供了一种电压控制方法,包括:
根据直流转换器的第一工况信息和电池的第二工况信息,生成电压控制信号;
根据所述电压控制信号,控制所述直流转换器的输出电压小于所述电池的最大充电电压。
在一些实施例中,所述第一工况信息包括输出电流、输出电压、输出电压的电压超调量、输出电压的电压超调时长、输出电流的变化率、输出电压的变化率中的至少一种;所述第二工况信息包括电池荷电状态、电池温度、电池充电能力、电池抗充电能力、电池放电时长、电池放电能力中的至少一种。
在一些实施例中,所述根据直流转换器的第一工况信息和电池的第二工况信息,生成电压控制信号,包括:
根据所述第一工况信息,确定所述直流转换器的输出电流变化率;
根据所述第二工况信息,确定电池荷电状态;
响应于所述输出电流变化率大于预设变化率,且所述电池荷电状态大于预设荷电状态,生成所述电压控制信号。
在一些实施例中,所述根据直流转换器的第一工况信息和电池的第二工况信息,生成电压控制信号,包括:
根据所述第一工况信息,确定所述直流转换器的输出电流变化率;
根据所述第二工况信息,确定电池充电能力;
响应于所述输出电流变化率大于预设变化率,且所述电池充电能力小于预设充电能力,生成所述电压控制信号。
在一些实施例中,所述根据直流转换器的第一工况信息和电池的第二工况信息,生成电压控制信号,包括:
根据所述第一工况信息,确定所述直流转换器的输出电流变化率;
根据所述第二工况信息,确定电池荷电状态和电池充电能力;
响应于所述输出电流变化率大于预设变化率、所述电池荷电状态大于预设荷电状态且所述电池充电能力小于预设充电能力,生成所述电压控制信号。
在一些实施例中,所述根据所述电压控制信号,控制所述直流转换器的输出电压小于所述电池的最大充电电压,包括:
根据所述电压控制信号,在第一预设时间范围内控制所述输出电压降低至第一目标电压,所述第一目标电压是基于抛负载状态下所述输出电压的电压超调量确定的。
在一些实施例中,所述第一目标电压是基于抛负载状态下所述输出电压的电压超调量,以及所述电池的请求充电电压确定的。
在一些实施例中,所述电压控制方法还包括:
第二预设时间范围内,控制所述输出电压小于所述电池的最大充电电压,所述第二预设时间范围是基于抛负载状态下所述输出电压的电压超调时长以及电池荷电状态确定的。
在一些实施例中,所述第二预设时间范围的最小值为抛负载状态下所述输出电压的电压超调时长;所述第二预设时间范围的最大值为基于所述电池电荷状态确定的所述电池的剩余电荷量完全释放所需的时间。
在一些实施例中,所述电压控制方法还包括:
控制所述输出电压升高至第二目标电压,所述第二目标电压为生成所述电压控制信号之前基于所述第二工况信息确定的电压。
在一些实施例中,所述控制所述输出电压升高至第二目标电压,包括:
控制所述输出电压以预设抬升速率升高至所述第二目标电压,所述预设抬升速率位于预设速率范围内,所述预设速率范围是基于车辆内器件的性能和所述电池的目标放电时长确定的。
在第二方面中,本公开提供了一种电压控制装置,包括:
信号生成模块,用于根据直流转换器的第一工况信息和电池的第二工况信息,生成电压控制信号;
控制模块,用于根据所述电压控制信号,控制所述直流转换器的输出电压小于所述 电池的最大充电电压。
在第三方面中,本公开提供了一种电子设备,包括:处理器,所述处理器用于执行存储于存储器的计算机程序,所述计算机程序被处理器执行时实现第一方面提供的任一种方法的步骤。
在第四方面中,本公开提供了一种车辆,包括:
电池,用于向负载提供电源;
直流转换器,用于降低电压,并将降低后的电压信号传输至所述电池;
整车控制器,用于执行第一方面提供的任一种方法的步骤。
在第五方面中,本公开提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行时实现第一方面提供的任一种方法的步骤。
在第六方面中,本公开提供了一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行实现第一方面提供的任一种方法的步骤。本公开提供的技术方案中,通过根据直流转换器的第一工况信息和电池的第二工况信息,生成电压控制信号;根据电压控制信号,控制直流转换器的输出电压小于电池的最大充电电压,如此,直流转换器的输出电压即为电池的充电电压,将电池的充电电压控制在可承受的最大充电电压之下,能够避免出现电池过充,降低电池中的锂离子析出的风险,从而能够延长电池的使用寿命。
附图说明
为了更清楚地说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,对于本领域普通技术人员而言,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本公开提供的一种应用场景的示意图;
图2为本公开提供的一种电压控制方法的流程示意图;
图3为本公开提供的另一种电压控制方法的流程示意图;
图4为本公开提供的又一种电压控制方法的流程示意图;
图5为本公开提供的又一种电压控制方法的流程示意图;
图6为本公开提供的又一种电压控制方法的流程示意图;
图7为本公开提供的又一种电压控制方法的流程示意图;
图8为本公开提供的又一种电压控制方法的流程示意图;
图9为本公开提供的又一种电压控制方法的流程示意图;
图10为本公开提供的一种电压控制装置的结构示意图;
图11为本公开提供的一种车辆的结构示意图;
图12为本公开提供的一种电子设备的结构示意图。
具体实施方式
为了能够更清楚地理解本公开的上述目的、特征和优点,下面将对本公开的方案进行进一步描述。需要说明的是,在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本公开,但本公开还可以采用其他不同于在此描述的方式来实施;显然,说明书中的实施例只是本公开的一部分实施例,而不是全部的实施例。
图1为本公开提供的一种应用场景的示意图,如图1所示,直流转换器110的输入端与高压电池120的输出端电连接,直流转换器110的输出端与电池130的输入端电连接,电池130的输出端与负载140电连接。直流转换器110是一种直流降压器,可以将高压电池120输出的高电压信号转换为适用于电池130充电的低电压信号,电池130输出的低电压信号可以向负载140提供电能。示例性的,在车辆中,高电压电池向电机以及其他高压部件提供电能,还可以通过直流转换器向低压电池提供电能,这里的低压电池即为本公开中的电池,低压电池可以向车辆中的低压负载提供电能,车辆中的低压负载例如可以是刹车、方向盘、自动驾驶系统、仪表等。
本公开中的电池可以是锂电池,电池的实际充电电压大于电池可承受的最大充电电压时,电池出现过充问题,此时,电池中的锂离子比较容易析出,锂离子的析出是不可逆的,从而会影响锂电池的使用寿命。正常情况下,直流转换器会向电池充电,但是当线束老化、接触不良或车辆处于某些特殊工况时,会出现电池与低压负载断开的情况,此时,直流转换器会输出一个电压较高且持续时间较长浪涌电压,这种情况就称之为抛负载。
车辆行驶过程中,若整车抛较大的低压负载,例如,原地急打方向盘、急踩刹车、开启自动驾驶等,直流转换器的输出电压会瞬时增大,即电池的充电电压会瞬时增大,大于电池可承受的最大充电电压,如此,在整车抛较大的低压负载时,比较容易出现电池过充的问题。
基于上述问题,本公开提供的技术方案,通过根据直流转换器的第一工况信息和电池的第二工况信息,生成电压控制信号;根据电压控制信号,控制直流转换器的输出电压小于电池的最大充电电压,如此,直流转换器的输出电压即为电池的充电电压,将电池的充电电压控制在可承受的最大充电电压之下,能够避免出现电池过充,降低电池中的锂离子析出的风险,从而能够延长电池的使用寿命。
图2为本公开提供的一种电压控制方法的流程示意图,如图2所示,包括步骤S101和S102。
S101,根据直流转换器的第一工况信息和电池的第二工况信息,生成电压控制信号。
示例性的,第一工况信息可以是输出电流、输出电压、输出电压的电压超调量、输出电压的电压超调时长、输出电流的变化率、输出电压的变化率等中的至少一种。第二工况信息可以是电池荷电状态(Stat of Charge,SOC)、电池温度、电池充电能力、电池抗充电能力、电池放电时长、电池放电能力等中的至少一种。
直流转换器的输出端与电池的输入端电连接,直流转换器可以将高压电池输出的高电压转换为低电压,电池可以基于直流转换器输出的低电压信号进行充电,也就是说,直流转换器的输出电压即为电池的充电电压。示例性的,基于直流转换器的第一工况信息,可以确定出车辆当前的工况是否为抛负载,且在确定出车辆当前处于抛负载状态时,还可以确定出当前抛的负载是否为较大的负载。例如,直流转换器的输出电压大于电池的请求充电电压时,或直流转换器的输出电流的变化率较大时,可以确定车辆当前的工况为抛负载状态;直流转换器的输出电压大于电池可承受的最大充电电压时,或直流转换器的输出电流的变化率大于预设变化率时,可以确定车辆当前抛的负载为较大的负载。
在确定车辆当前抛的负载为较大的负载的情况下,可以根据第二工况信息,确定是否需要降低直流转换器的输出电压,即电池的充电电压。在确定需要降低电池的充电电压的情况下,生成电压控制信号,来控制降低电池的充电电压。例如,若电池荷电状态较高且电池充电能力较弱,可以确定此时需要降低电池的充电电压,则会生成电压控制信号;若电池荷电状态较高或电池充电能力较强,可以确定此时无需降低电池充电电压,则不会生成电压控制信号。
S102,根据所述电压控制信号,控制所述直流转换器的输出电压小于所述电池的最大充电电压。
示例性的,基于上述实施例,在车辆当前抛较大的负载时,电池的充电电压大于电池可承受的最大充电电压,此时,可以根据电压控制信号,控制降低电池的充电电压,使得降低后的充电电压小于电池可承受的最大充电电压,以避免电池出现过充的问题。
例如,电池可承受的最大充电电压为14V,车辆在原地急打方向盘的工况下,车辆处于抛较大负载的状态,此种情况下,直流转换器的输出电压为14.2V,根据电压控制信号,可以控制电池的充电电压从14.2V降低为小于等于14V。
本公开实施例中,通过根据直流转换器的第一工况信息和电池的第二工况信息,生成电压控制信号,直流转换器用于降低电压,控制直流转换器的输出电压小于电池的最大充电电压,如此,直流转换器的输出电压即为电池的充电电压,将电池的充电电压控制在可承受的最大充电电压之下,能够避免出现电池过充,降低电池中的锂离子析出的风险,从而能够延长电池的使用寿命。
图3为本公开提供的另一种电压控制方法的流程示意图,图3为图2所示实施例的基础上,执行S101时的一种实现方式的具体描述如下,包括步骤S201至步骤S203。
S201,根据所述第一工况信息,确定所述直流转换器的输出电流变化率。
在车辆处于抛负载状态,直流转换器的输出电压瞬时增大,则直流转换器的输出电流相应的快速抬升,直流转换器的输出电流变化率会明显增大。示例性的,第一工况信息中包括输出电流变化率,如此,可以从第一工况信息中直接获取直流转换器的输出电流变化率,例如,在车辆的工况为原地急打方向盘,直接获取到的直流转换器的输出电流变化率可以是1A/ms。输出电流变化率可以是正值也可以是负值,若输出电流变化率为正值,则输出电流变化率即为输出电流的抬升速率,若输出电流变化率为负值,则输 出电流变化率即为输出电流的降低速率。
在其他实施方式中,可以是第一工况信息中包括各个时刻直流转换器的输出电流,基于各个时刻直流转换器的输出电流,可以确定出直流转换器的输出电流变化率。例如,在车辆的工况为原地急打方向盘,第一工况信息中包括各个时刻的输出电流,根据时刻T的输出电流I1和时刻T+20ms的输出电流I2,确定20ms输出电流的变化量I2-I1=20A,故而可以确定直流转换器的输出电流变化率为20A/20ms,即1A/ms。
S202,根据所述第二工况信息,确定电池荷电状态。
电池SOC能够反映电池的剩余容量,通常采用电池的剩余容量与其完全充电时的容量的比值,电池SOC=0表示电池放电完全,电池SOC=1表示电池完全充满,电池SOC越高,电池内的剩余电量较多,电池两端的电压越大。示例性的,第二工况信息中包括电池SOC,如此,从第二工况信息中可以直接获取到电池SOC。
在其他实施方式中,可以是第二工况信息中包括电池两端的电压,基于电池两端的电压确定出电池SOC。
S203,响应于所述输出电流变化率大于预设变化率,且所述电池荷电状态大于预设荷电状态,生成所述电压控制信号。
示例性的,综合考虑各种车辆抛较大负载的工况,确定各抛较大负载状态下,所有输出电流变化率中最小的输出电流变化率,并将最小输出电流变化率确定为预设变化率,例如,预设变化率可以为1A/ms。若直流转换器的输出电流变化率大于预设变化率,则说明直流转换器的输出电流瞬时增大且直流转换器的输出电压已超过电池可承受的最大充电电压,即当前车辆处于抛较大负载的状态。
示例性的,综合考虑各种车辆抛较大负载的工况,确定各抛较大负载状态下,电池的所有单次放电量中的最大的单次放电量,并基于最大单次放电量确定预设SOC,例如,预设SOC可以是80%。若电池SOC大于预设SOC,则说明电池SOC较高,电池内的剩余电量较多,针对车辆的单次抛负载,电池内的剩余电量足够支持完成此次抛负载,从而可以避免出现电池过放的问题,确保车辆的正常使用。
基于上述实施例,若输出电流变化率大于预设变化率且电池荷电状态大于预设荷电状态,则说明车辆处于抛较大负载的状态下,电池SOC较高,也就是说,电池内的剩余电量足够支持此次抛负载。此时可以生成电压控制信号,使得电池的充电电压降低的同时,可以避免电池内的剩余电量完全释放,从而避免电池过放。
本公开实施例中,通过根据第一工况信息,确定直流转换器的输出电流变化率;根据第二工况信息,确定电池荷电状态;若输出电流变化率大于预设变化率,且电池荷电状态大于预设荷电状态,生成电压控制信号,使得电池的充电电压降低,由于电池SOC较高,电池内的剩余电量较多,因此,即使充电电压降低导致电池放电,也不会完全释放电池内的剩余电量,能够避免电池过放,从而能够延长电池的使用寿命,确保车辆的正常使用。
图4为本公开提供的又一种电压控制方法的流程示意图,图4为图2所示实施例的 基础上,执行S101时另的一种实现方式的具体描述如下,包步骤S201、S202’和S203’。
S201,根据所述第一工况信息,确定所述直流转换器的输出电流变化率。
S202’,根据所述第二工况信息,确定电池充电能力。
电池充电能力可以以充电倍率、充电电流、充电时间等物理量进行衡量,其中,充电倍率为充电电流相对电芯额定容量的倍数,以C表示。例如,电池额定容量为100Ah,用100A电流充电就是1C,可理解为1h可充满;用200A电流充电就是2C,可理解为0.5h可充满;用50A电流充电就是0.5C,可理解为2h充满。示例性的,第二工况信息中可以包括充电倍率、充电电流、充电时间中的至少一种,如此,从第二工况信息中可以直接获取到充电倍率、充电电流、充电时间中的至少一种,基于充电倍率、充电电流、充电时间中的至少一种,确定电池充电能力。例如,充电倍率越高,则电池充电能力越强;充电电流越大,则电池充电能力越强;充电时间越短,则电池充电能力越强。
在其他实施方式中,可以是第二工况信息中包括电池SOC和电池温度,基于电池SOC和电池温度来确定电池充电能力,其中,电池SOC越低,电池充电能力越强,电池温度在一定温度范围内,电池能力较强。
S203’,响应于所述输出电流变化率大于预设变化率,且所述电池充电能力小于预设充电能力,生成所述电压控制信号。
示例性的,综合考虑各种车辆抛较大负载的工况,确定各抛较大负载状态下,所有输出电流变化率中最小的输出电流变化率,并将最小输出电流变化率确定为预设变化率,例如,预设变化率可以为1A/ms。若直流转换器的输出电流变化率大于预设变化率,则说明直流转换器的输出电流瞬时增大且直流转换器的输出电压已超过电池可承受的最大充电电压,即当前车辆处于抛较大负载的状态。
示例性的,可以基于电池充电过程中各个阶段相应的充电电流,确定预设充电能力,例如,预设充电能力可以为30A。若电池充电能力小于预设充电能力,则说明电池充电能力较弱,此时电池所需的请求充电电流较小,故而电池当前的充电能力无法承受较大的充电电流,若充电电流过大,会对电池内部造成不可逆的损坏。
基于上述实施例,若输出电流变化率大于预设变化率且电池充电能力小于预设充电能力,则说明车辆处于抛较大负载的状态下,电池充电能力较弱,也就是说,电池充电能力能够承受较小的充电电流。此时可以生成电压控制信号,使得电池的充电电压降低的同时,降低电池的充电电流,使得电池的充电电流与电池充电能力匹配,避免充电电流过大对电池内部造成不可逆的损坏。
本公开实施例中,通过根据第一工况信息,确定直流转换器的输出电流变化率;根据第二工况信息,确定电池荷电状态和电池充电能力;若输出电流变化率大于预设变化率,且电池充电能力小于预设充电能力,生成电压控制信号,使得电池的充电电压降低,相应的电池的充电电流降低,由于电池充电能力较弱,可承受的充电电流较小,因此,电池的充电电流与电池充电能力匹配,避免充电电流过大对电池内部造成不可逆的损坏,从而能够延长电池的使用寿命。
图5为本公开提供的又一种电压控制方法的流程示意图,图5为图2所示实施例的基础上,执行S101时又的一种实现方式的具体描述如下,包括步骤S201、S202”和S203”。
S201,根据所述第一工况信息,确定所述直流转换器的输出电流变化率。
S202”,根据所述第二工况信息,确定电池荷电状态和电池充电能力。
针对S202”的详细描述,可参考上述实施例中S202和S202’相关的具体描述,这里不再赘述。
S203”,若所述输出电流变化率大于预设变化率、所述电池荷电状态大于预设荷电状态且所述电池充电能力小于预设充电能力,生成所述电压控制信号。
针对S203”的详细描述,可参考上述实施例中S203和S203’相关的具体描述,这里不再赘述。
本公开实施例中,通过根据第一工况信息,确定直流转换器的输出电流变化率;根据第二工况信息,确定电池荷电状态和电池充电能力;若输出电流变化率大于预设变化率、电池荷电状态大于预设荷电状态且电池充电能力小于预设充电能力,生成电压控制信号,使得电池的充电电压降低的同时,能够避免电池过放,延长电池的使用寿命,确保车辆的正常使用。此外,随着电池的充电电压降低,相应的电池的充电电流降低,能够避免充电电流过大对电池内部造成不可逆的损坏,从而延长电池的使用寿命。
图6为本公开提供的又一种电压控制方法的流程示意图,图6为图2所示实施例的基础上,执行S102时的一种实现方式的具体描述如步骤S102’。
S102’,根据所述电压控制信号,在第一预设时间范围内控制所述输出电压降低至第一目标电压。
所述第一目标电压是基于抛负载状态下所述输出电压的电压超调量确定的。
基于电池在充电过程中所处的充电阶段、电池的剩余电量、电池SOC等,实时生成电池的请求充电电压,如此电池的请求充电电压是基于电池的实际工况确定的,故而电池的请求充电电压在整个充电过程中是实时变化的,例如,电池SOC较低时,电池的请求充电电压较大,电池SOC较高时,电池的请求充电电压较小,如此,可以动态调整电池的充电电压,使得电池的性能和充电效果较好。在车辆处于抛负载的状态下,直流转换器的输出电压大于电池的请求充电电压,这种情况可以称之为电压超调,其中,直流转换器的输出电压与电池的请求充电电压的差值为电压超调量,直流转换器的输出电压大于电池的请求充电电压的维持时长为电压超调时长。
示例性的,可以根据抛负载状态下输出电压的电压超调量,以及电池的请求充电电压,确定出第一目标电压,根据电压控制信号,可以将直流转换器的输出电压降低至第一目标电压,即使后续继续受到抛负载的影响,直流转换器的输出电压也会维持在小于电池的最大充电电压的状态。例如,车辆处于原地急打方向盘的工况下,电压超调量为0.2V,电池的请求充电电压为14V,基于电压超调量和请求充电电压的差值14V-0.2V,可以确定出第一目标电压为13.8V,在电压控制信号的作用下,控制将电池的充电电压从14V降低至13.8V,随着抛负载的过程的持续,电池的充电电压会增大,但是始终可 以维持小于14V。
输出电压降低至第一目标电压所需的控制时间为t,若t较短,小于电压控制信号的响应时间,导致电压控制信号的响应失败,从而无法实现输出电压降低至第一目标电压。若t较长,大于车辆单次抛负载的时间,使得车辆已经完成单次抛负载,但是输出电压还未降低至第一目标电压,电池仍然出现过充问题。基于此,将电压控制信号的响应时间确定为第一预设时间范围的最小值,将车辆单次抛负载的时间确定为第一预设时间范围的最小值,设置输出电压降低至第一目标电压所需的控制时间位于第一预设时间范围内,不仅可以确保电压控制信号的顺利响应,而且可以降低电池过充的风险。
本公开实施例中,通过根据电压控制信号,在第一预设时间范围内控制输出电压降低至第一目标电压,第一目标电压是基于抛负载状态下输出电压的电压超调量确定的,能够将电池的充电电压控制至与电池当前充电阶段匹配的电压值,满足电池在当前充电阶段对充电电压的需求,从而能够保证电池的充电效果和电池性能。此外,在预设时间范围完成降低输出电压,不仅可以确保电压控制信号的顺利响应,而且可以降低电池过充的风险。
图7为本公开提供的又一种电压控制方法的流程示意图,图7为图2所示实施例的基础上,还包括步骤S103。
S103,第二预设时间范围内,控制所述输出电压小于所述电池的最大充电电压。
所述第二预设时间范围是基于抛负载状态下所述输出电压的电压超调时长以及电池荷电状态确定的。
控制输出电压降低至小于电池的最大充电电压后,需要在车辆完成抛负载之前,输出电压小于电池的最大充电电压的状态需要维持一段时间,使得在车辆抛负载的全部过程中,电池的充电电压持续不会超过电池能够承受的最大充电电压,从而降低电池过充的风险。故而输出电压小于电池的最大充电电压的时间不能过短,若输出电压小于电池的最大充电电压的时间小于车辆抛负载状态的持续时间,其中,车辆抛负载状态的持续时间可以通过输出电压的电压超调时长来表示,会导致在车辆抛负载完成之前电池的充电电压超过电池能够承受的最大充电电压,使得电池过充的风险增加。
此外,输出电压小于电池的最大充电电压的时间也不能过长,若输出电压小于电池的最大充电电压的时间大于电池的剩余电荷量完全释放所需的时间,输出电压小于电池的最大充电电压的时间内,电池处于持续放电状态直至完全释放电池的剩余电荷量,容易造成电池过放问题。
基于上述实施例,可以将车辆抛负载状态下输出电压的电压超调时长确定为第二预设时间范围的最小值,将基于电池电荷状态确定的电池的剩余电荷量完全释放所需的时间作为第二预设时间范围的最大值,如此,可以确定第二预设时间范围。
本公开实施例中,通过第二预设时间范围内,控制输出电压小于电池的最大充电电压,第二预设时间范围是基于抛负载状态下输出电压的电压超调时长以及电池荷电状态确定的,使得在第二预设时间范围内,车辆抛负载完成之前电池的充电电压不超过电池 能够承受的最大充电电压,能够降低电池过充的风险。此外,能够避免电池的剩余电荷量完全释放的问题,从而能够避免电池过放,确保车辆的正常使用。
图8为本公开提供的又一种电压控制方法的流程示意图,图8为图2所示实施例的基础上,还包括步骤S104。
S104,控制所述输出电压升高至第二目标电压。
所述第二目标电压为生成所述电压控制信号之前基于所述第二工况信息确定的电压。
在电压控制信号的作用下,输出电压降低至小于电池的最大充电电压,释放电压控制信号,并控制输出电压从小于电池的最大充电电压的电压值上升至第二目标电压,第二目标电压可以是在电压控制信号作用之前,电池的请求电压,由于电池的请求电压是基于电池的第二工况信息确定的,因此,第二目标电压可以基于电池的第二工况信息来确定。输出电压升高至第二目标电压的过程中,可以继续监测直流转换器的第一工况信息和电池的第二工况信息,在满足电压控制信号的生成条件下,返回执行S101,如此能够持续性监测电池的充电状态,降低电池使用全过程中的过充风险,延长电池的使用寿命。
例如,电池的请求电压为14V,车辆的发生原地急打方向盘的工况,相应的电压超调量为0.2V,此时生成电压控制信号,在电压控制信号的作用下,将电池的请求充电电压从14V降低为13.8V,故而电池的充电电压维持在不超过14V。在原地急打方向盘的工况结束后,释放电压控制信号,将电池的请求充电电压从13.8V抬升至14V,使得电池的充电电压抬升至14V。
本公开实施例中,通过控制输出电压升高至第二目标电压,第二目标电压为生成电压控制信号之前基于第二工况信息确定的电压,能够持续性监测电池的充电状态,降低电池使用全过程中的过充风险,延长电池的使用寿命。
图9为本公开提供的又一种电压控制方法的流程示意图,图9为图8所示实施例的基础上,执行S104时的一种实现方式的具体描述如S104’。
S104’,控制所述输出电压以预设抬升速率升高至所述第二目标电压。
所述预设抬升速率位于预设速率范围内,所述预设速率范围是基于车辆内器件的性能和所述电池的目标放电时长确定的。
输出电压升高至第二目标电压的过程中,输出电压的升高速率不能太高,若输出电压的升高速率太高,车辆内器件无法承受的快速升高的电压,会导致车辆内器件的损坏,使得车辆无法正常使用。此外,输出电压的升高速率也不能太低,若输出电压的升高速率太低,电池的放电时间增长,会使电池的剩余电量完全释放,导致电池过放。
基于此,可以根据车辆内器件的性能,例如,车辆内各器件对于瞬间电压的适应能力,确定一个抬升速率,将该抬升速率确定为预设抬升速率范围的最大值。可以根据输出电压开始抬升时的剩余电量,确定电池的目标放电时长,目标放电时长即为输出电压抬升速率至第二目标电压所需的时长,如此可以确定出另一个抬升速率,将该抬升速率 确定为预设抬升速率范围的最小值。控制输出电压以预设抬升速率内的任一预设抬升速率升高至第二目标电压,既可以避免对车辆内的器件造成损坏,保证车辆可以正常使用,又可以避免电池过放,延长电池的使用寿命。
本公开实施例中,通过控制输出电压以预设抬升速率升高至第二目标电压,预设抬升速率位于预设速率范围内,预设速率范围是基于车辆内器件的性能和电池的目标放电时长确定的,既可以避免对车辆内的器件造成损坏,保证车辆正常使用,又可以避免电池过放,延长电池的使用寿命。
本公开还提供一种电压控制装置,图10为本公开提供的一种电压控制装置的结构示意图,如图10所示,电压控制装置包括信号生成模块210和控制模块220。
信号生成模块210,用于根据直流转换器的第一工况信息和电池的第二工况信息,生成电压控制信号。
控制模块220,用于根据所述电压控制信号,控制所述直流转换器的输出电压小于所述电池的最大充电电压。
在一些实施例中,信号生成模块210,进一步用于根据所述第一工况信息,确定所述直流转换器的输出电流变化率;根据所述第二工况信息,确定电池荷电状态;响应于所述输出电流变化率大于预设变化率,且所述电池荷电状态大于预设荷电状态,生成所述电压控制信号。
在一些实施例中,信号生成模块210,进一步用于根据所述第一工况信息,确定所述直流转换器的输出电流变化率;根据所述第二工况信息,确定电池充电能力;响应于所述输出电流变化率大于预设变化率,且所述电池充电能力小于预设充电能力,生成所述电压控制信号。
在一些实施例中,信号生成模块210,进一步用于根据所述第一工况信息,确定所述直流转换器的输出电流变化率;根据所述第二工况信息,确定电池荷电状态和电池充电能力;响应于所述输出电流变化率大于预设变化率、所述电池荷电状态大于预设荷电状态且所述电池充电能力小于预设充电能力,生成所述电压控制信号。
在一些实施例中,控制模块220,进一步用于根据所述电压控制信号,在第一预设时间范围内控制所述输出电压降低至第一目标电压,所述第一目标电压是基于抛负载状态下所述输出电压的电压超调量确定的。
在一些实施例中,控制模块220,还用于第二预设时间范围内,控制所述输出电压小于所述电池的最大充电电压,所述第二预设时间范围是基于抛负载状态下所述输出电压的电压超调时长以及电池荷电状态确定的。
在一些实施例中,控制模块220,还用于控制所述输出电压升高至第二目标电压,所述第二目标电压为生成所述电压控制信号之前基于所述第二工况信息确定的电压。
在一些实施例中,控制模块220,进一步用于控制所述输出电压以预设抬升速率升高至所述第二目标电压,所述预设抬升速率位于预设速率范围内,所述预设速率范围是基于车辆内器件的性能和所述电池的目标放电时长确定的。
本发明实施例所提供的装置可执行本发明任意实施例所提供的方法,具备执行方法相应的功能模块和有益效果。
本公开还提供一种车辆,图11为本公开提供的一种车辆的结构示意图,如图11所示,车辆包括:直流转换器110、电池130、和整车控制器150,整车控制器150分别与电池130和直流转换器110电连接,电池130的输入端与直流转换器110的输出端电连接。
电池130,用于向负载提供电源。直流转换器110,用于降低电压,并将降低后的电压信号传输至电池130。整车控制器150,可用于执行本发明任意实施例所提供的方法。
本实施例所提供的车辆包括整车控制器,整车控制器可执行本发明任意实施例所提供的方法,整车控制器具备执行方法相应的功能模块和有益效果,则车辆也具有与整车控制器相同的有益效果,这里不再赘述。
本公开还提供一种电子设备,包括:处理器,所述处理器用于执行存储于存储器的计算机程序,所述计算机程序被处理器执行时实现上述方法实施例的步骤。
图12为本公开提供的一种电子设备的结构示意图,图12示出了适于用来实现本发明实施例实施方式的示例性电子设备的框图。图12显示的电子设备仅仅是一个示例,不应对本发明实施例的功能和使用范围带来任何限制。
如图12所示,电子设备12以通用计算设备的形式表现。电子设备12的组件可以包括但不限于:一个或者多个处理器16,系统存储器28,连接不同系统组件(包括系统存储器28和处理器16)的总线18。
总线18表示几类总线结构中的一种或多种,包括存储器总线或者存储器控制器,外围总线,图形加速端口,处理器或者使用多种总线结构中的任意总线结构的局域总线。举例来说,这些体系结构包括但不限于工业标准体系结构(ISA)总线,微通道体系结构(MAC)总线,增强型ISA总线、视频电子标准协会(VESA)局域总线以及外围组件互连(PCI)总线。
电子设备12典型地包括多种计算机系统可读介质。这些介质可以是任何能够被电子设备12访问的介质,包括易失性和非易失性介质,可移动的和不可移动的介质。
系统存储器28可以包括易失性存储器形式的计算机系统可读介质,例如随机存取存储器(RAM)30和/或高速缓存存储器32。电子设备12可以进一步包括其它可移动/不可移动的、易失性/非易失性计算机系统存储介质。仅作为举例,存储系统34可以用于读写不可移动的、非易失性磁介质(通常称为“硬盘驱动器”)。可以提供用于对可移动非易失性磁盘(例如“软盘”)读写的磁盘驱动器,以及对可移动非易失性光盘(例如CD-ROM、DVD-ROM或者其它光介质)读写的光盘驱动器。在这些情况下,每个驱动器可以通过一个或者多个数据介质接口与总线18相连。系统存储器28可以包括至少一个程序产品,该程序产品具有一组(例如至少一个)程序模块,这些程序模块被配置以执行本发明实施例各实施例的功能。
具有一组(至少一个)程序模块42的程序/实用工具40,可以存储在例如系统存储器28中,这样的程序模块42包括但不限于操作系统、一个或者多个应用程序、其它程序模块以及程序数据,这些示例中的每一个或某种组合中包括网络环境的实现。程序模块42通常执行本发明实施例所描述的实施例中的功能和/或方法。
处理器16通过运行存储在系统存储器28中的多个程序中的至少一个程序,从而执行各种功能应用以及信息处理,例如实现本发明实施例所提供的方法实施例。
本公开还提供一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现上述方法实施例的步骤。
可以采用一个或多个计算机可读的介质的任意组合。计算机可读介质可以是计算机可读信号介质或者计算机可读存储介质。计算机可读存储介质例如可以是但不限于电、磁、光、电磁、红外线、或半导体的系统、装置或器件,或者任意以上的组合。计算机可读存储介质的更具体的例子(非穷举的列表)包括:具有一个或多个导线的电连接、便携式计算机磁盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦式可编程只读存储器(EPROM或闪存)、光纤、便携式紧凑磁盘只读存储器(CD-ROM)、光存储器件、磁存储器件、或者上述的任意合适的组合。在本文件中,计算机可读存储介质可以是任何包含或存储程序的有形介质,该程序可以被指令执行系统、装置或者器件使用或者与其结合使用。
计算机可读的信号介质可以包括在基带中或者作为载波一部分传播的数据信号,其中承载了计算机可读的程序代码。这种传播的数据信号可以采用多种形式,包括但不限于电磁信号、光信号或上述的任意合适的组合。计算机可读的信号介质还可以是计算机可读存储介质以外的任何计算机可读介质,该计算机可读介质可以发送、传播或者传输用于由指令执行系统、装置或者器件使用或者与其结合使用的程序。
计算机可读介质上包含的程序代码可以用任何适当的介质传输,包括但不限于无线、电线、光缆、RF等等,或者上述的任意合适的组合。
可以以一种或多种程序设计语言或其组合来编写用于执行本发明操作的计算机程序代码,所述程序设计语言包括面向对象的程序设计语言—诸如Java、Smalltalk、C++,还包括常规的过程式程序设计语言—诸如“C”语言或类似的程序设计语言。程序代码可以完全地在用户计算机上执行、部分地在用户计算机上执行、作为一个独立的软件包执行、部分在用户计算机上部分在远程计算机上执行、或者完全在远程计算机或服务器上执行。在涉及远程计算机的情形中,远程计算机可以通过任意种类的网络——包括局域网(LAN)或广域网(WAN)域连接到用户计算机,或者,可以连接到外部计算机(例如利用因特网服务提供商来通过因特网连接)。
本公开还提供一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行实现上述方法实施例的步骤。
需要说明的是,在本文中,诸如“第一”和“第二”等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操 作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上所述仅是本公开的具体实施方式,使本领域技术人员能够理解或实现本公开。对这些实施例的多种修改对本领域的技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本公开的精神或范围的情况下,在其它实施例中实现。因此,本公开将不会被限制于本文所述的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (16)

  1. 一种电压控制方法,包括:
    根据直流转换器的第一工况信息和电池的第二工况信息,生成电压控制信号;
    根据所述电压控制信号,控制所述直流转换器的输出电压小于所述电池的最大充电电压。
  2. 根据权利要求1所述的方法,其中,所述第一工况信息包括输出电流、输出电压、输出电压的电压超调量、输出电压的电压超调时长、输出电流的变化率、输出电压的变化率中的至少一种;所述第二工况信息包括电池荷电状态、电池温度、电池充电能力、电池抗充电能力、电池放电时长、电池放电能力中的至少一种。
  3. 根据权利要求1或2所述的方法,其中,所述根据直流转换器的第一工况信息和电池的第二工况信息,生成电压控制信号,包括:
    根据所述第一工况信息,确定所述直流转换器的输出电流变化率;
    根据所述第二工况信息,确定电池荷电状态;
    响应于所述输出电流变化率大于预设变化率,且所述电池荷电状态大于预设荷电状态,生成所述电压控制信号。
  4. 根据权利要求1或2所述的方法,其中,所述根据直流转换器的第一工况信息和电池的第二工况信息,生成电压控制信号,包括:
    根据所述第一工况信息,确定所述直流转换器的输出电流变化率;
    根据所述第二工况信息,确定电池充电能力;
    响应于所述输出电流变化率大于预设变化率,且所述电池充电能力小于预设充电能力,生成所述电压控制信号。
  5. 根据权利要求1或2所述的方法,其中,所述根据直流转换器的第一工况信息和电池的第二工况信息,生成电压控制信号,包括:
    根据所述第一工况信息,确定所述直流转换器的输出电流变化率;
    根据所述第二工况信息,确定电池荷电状态和电池充电能力;
    响应于所述输出电流变化率大于预设变化率、所述电池荷电状态大于预设荷电状态且所述电池充电能力小于预设充电能力,生成所述电压控制信号。
  6. 根据权利要求1-5中任一项所述的方法,其中,所述根据所述电压控制信号,控制所述直流转换器的输出电压小于所述电池的最大充电电压,包括:
    根据所述电压控制信号,在第一预设时间范围内控制所述输出电压降低至第一目标电压,所述第一目标电压是基于抛负载状态下所述输出电压的电压超调量确定的。
  7. 根据权利要求6所述的方法,其中,所述第一目标电压是基于抛负载状态下所述输出电压的电压超调量,以及所述电池的请求充电电压确定的。
  8. 根据权利要求1-5中任一项所述的方法,还包括:
    第二预设时间范围内,控制所述输出电压小于所述电池的最大充电电压;其中,所述第二预设时间范围是基于抛负载状态下所述输出电压的电压超调时长以及电池荷电 状态确定的。
  9. 根据权利要求8所述的方法,其中,所述第二预设时间范围的最小值为抛负载状态下所述输出电压的电压超调时长;所述第二预设时间范围的最大值为基于所述电池电荷状态确定的所述电池的剩余电荷量完全释放所需的时间。
  10. 根据权利要求1-5中任一项所述的方法,还包括:
    控制所述输出电压升高至第二目标电压;其中,所述第二目标电压为生成所述电压控制信号之前基于所述第二工况信息确定的电压。
  11. 根据权利要求10所述的方法,其中,所述控制所述输出电压升高至第二目标电压,包括:
    控制所述输出电压以预设抬升速率升高至所述第二目标电压,所述预设抬升速率位于预设速率范围内,所述预设速率范围是基于车辆内器件的性能和所述电池的目标放电时长确定的。
  12. 一种电压控制装置,包括:
    信号生成模块,用于根据直流转换器的第一工况信息和电池的第二工况信息,生成电压控制信号;
    控制模块,用于根据所述电压控制信号,控制所述直流转换器的输出电压小于所述电池的最大充电电压。
  13. 一种电子设备,包括:处理器,所述处理器用于执行存储于存储器的计算机程序,所述计算机程序被处理器执行时实现权利要求1-11中任一项所述的方法的步骤。
  14. 一种车辆,包括:
    电池,用于向负载提供电源;
    直流转换器,用于降低电压,并将降低后的电压信号传输至所述电池;
    整车控制器,用于执行权利要求1-11中任一项所述的方法的步骤。
  15. 一种计算机可读存储介质,其上存储有计算机程序,其中,所述计算机程序被处理器执行时实现权利要求1-11中任一项所述的方法的步骤。
  16. 一种计算机程序产品,当所述计算机程序产品在计算机上运行时,使得所述计算机执行实现权利要求1-11中任一项所述的方法的步骤。
PCT/CN2023/076906 2022-02-28 2023-02-17 电压控制方法和装置 WO2023160477A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210187471.2A CN116707043A (zh) 2022-02-28 2022-02-28 电压控制方法、装置、电子设备、车辆和存储介质
CN202210187471.2 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023160477A1 true WO2023160477A1 (zh) 2023-08-31

Family

ID=87764675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/076906 WO2023160477A1 (zh) 2022-02-28 2023-02-17 电压控制方法和装置

Country Status (2)

Country Link
CN (1) CN116707043A (zh)
WO (1) WO2023160477A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200529A (ja) * 2009-02-26 2010-09-09 Omron Corp 充電制御装置および方法、充電装置、並びに、プログラム
US20170166080A1 (en) * 2015-12-14 2017-06-15 Hyundai Motor Company Method and system for controlling charging of low-voltage battery
CN107465218A (zh) * 2016-06-03 2017-12-12 现代自动车株式会社 用于控制电动车辆中的ldc的装置和方法
CN112531826A (zh) * 2020-11-25 2021-03-19 北京车和家信息技术有限公司 一种车载低压蓄电池充电方法及装置、车辆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010200529A (ja) * 2009-02-26 2010-09-09 Omron Corp 充電制御装置および方法、充電装置、並びに、プログラム
US20170166080A1 (en) * 2015-12-14 2017-06-15 Hyundai Motor Company Method and system for controlling charging of low-voltage battery
CN107465218A (zh) * 2016-06-03 2017-12-12 现代自动车株式会社 用于控制电动车辆中的ldc的装置和方法
CN112531826A (zh) * 2020-11-25 2021-03-19 北京车和家信息技术有限公司 一种车载低压蓄电池充电方法及装置、车辆

Also Published As

Publication number Publication date
CN116707043A (zh) 2023-09-05

Similar Documents

Publication Publication Date Title
US9963166B2 (en) Steering power system for electric vehicle and method controlling same
EP3444921B1 (en) Charging control apparatus and method capable of energy saving and quick cell balancing
CN111216596A (zh) 一种燃料电池整车能量管理方法、装置、车辆及存储介质
US11159039B2 (en) Apparatus and method for battery charging with lithium plating detection and battery degradation detection and separation
CN111114386B (zh) 电动汽车安全充电方法、电子设备及存储介质
JPWO2004055929A1 (ja) 2次電池を有する燃料電池システム
US20200351349A1 (en) SYSTEM AND METHOD FOR COMMUNICATION BETWEEN BMSs
CN114156968B (zh) 储能系统的充放电控制方法、装置、控制器和储能系统
CN112736311B (zh) 蓄电池的充电方法、装置和电子设备
WO2023160477A1 (zh) 电压控制方法和装置
KR102062706B1 (ko) 배터리 팩 및 이를 제어하는 방법
CN117220384A (zh) 一种电池并联运行的电流分配方法和电池并联系统
CN112952940A (zh) 高压充电系统和高压充电系统的充电方法
CN112104037A (zh) 电源系统及其控制方法、自动驾驶车辆和电源管理装置
CN116846016A (zh) 过压保护方法、储能设备及电池包
WO2022142745A1 (zh) 电压变换器的控制方法、装置以及电压控制系统
CN113013971B (zh) 稳压控制方法、装置、混合动力系统和存储介质
EP4104231A1 (en) Sodium-ion battery pack
WO2018201299A1 (zh) 电池管理系统、充电装置和充电方法
CN110266068B (zh) 高压电池控制电路、控制方法及存储介质
CN219257075U (zh) 制动控制系统和工程车辆
KR102324847B1 (ko) 배터리 관리 장치와 이를 포함하는 배터리 팩 및 자동차
CN107039692A (zh) 一种防止电池亏光的保护装置
WO2024045685A1 (zh) 车载多蓄电池的充电控制方法、系统及介质
CN106374562B (zh) 一种防止智能终端充电电压被拉高的方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759102

Country of ref document: EP

Kind code of ref document: A1