WO2023160444A1 - 核电厂供热装置控制系统及方法 - Google Patents

核电厂供热装置控制系统及方法 Download PDF

Info

Publication number
WO2023160444A1
WO2023160444A1 PCT/CN2023/076173 CN2023076173W WO2023160444A1 WO 2023160444 A1 WO2023160444 A1 WO 2023160444A1 CN 2023076173 W CN2023076173 W CN 2023076173W WO 2023160444 A1 WO2023160444 A1 WO 2023160444A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
module
signal
pressure
extraction
Prior art date
Application number
PCT/CN2023/076173
Other languages
English (en)
French (fr)
Inventor
吴放
徐国彬
张秉卓
李建伟
王翔宇
蔡向阳
周勇锋
宋达
邢照凯
谢红军
王珊珊
杨金凤
黄翔
Original Assignee
山东核电有限公司
国核电力规划设计研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山东核电有限公司, 国核电力规划设计研究院有限公司 filed Critical 山东核电有限公司
Publication of WO2023160444A1 publication Critical patent/WO2023160444A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K17/00Using steam or condensate extracted or exhausted from steam engine plant
    • F01K17/02Using steam or condensate extracted or exhausted from steam engine plant for heating purposes, e.g. industrial, domestic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D17/00Regulating or controlling by varying flow
    • F01D17/10Final actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/34Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being of extraction or non-condensing type; Use of steam for feed-water heating
    • F01K7/345Control or safety-means particular thereto
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D3/00Control of nuclear power plant
    • G21D3/08Regulation of any parameters in the plant
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21DNUCLEAR POWER PLANT
    • G21D9/00Arrangements to provide heat for purposes other than conversion into power, e.g. for heating buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Definitions

  • the disclosure relates to the technical field of nuclear energy heating, and in particular to a control system and method for a heating device of a nuclear power plant.
  • the heating system of nuclear power plants generally realizes the adjustment of steam extraction and heating supply parameters through manual operation. Since the change of steam extraction also involves the simultaneous adjustment of the exhaust pressure of the high pressure cylinder of the steam turbine (hereinafter referred to as the high exhaust pressure) and the electrical load, the high exhaust The stability of the pressure is directly related to the operation safety of the steam turbine, and the electrical load will directly affect the power generation efficiency of the nuclear power plant. Therefore, it is very important to adjust the heating and extraction volume to meet the requirements.
  • the first-stage pressure (representing the steam turbine load) is realized, and the tracking is based on the function curve of the steam turbine load and the first-stage pressure.
  • the corresponding relationship curve between the steam turbine load and the first stage pressure will deviate with the difference of the extraction steam for heating. If the function curve between the steam turbine load and the first-stage pressure under the original pure condensing condition is still maintained, it will lead to load matching errors in the coordinated operation of the reactor, and the greater the steam extraction volume, the greater the error caused, which will affect the reactor system ( The stability of the operating parameters of the primary circuit) will have a potential adverse effect on the safe and stable operation of the entire nuclear power unit.
  • the embodiment of the first aspect of the present disclosure proposes a control system for a heating device of a nuclear power plant, including:
  • the first-stage pressure measuring device is used to measure the first-stage pressure of the steam turbine to obtain the first-stage pressure signal
  • High exhaust pressure measuring device used to measure the exhaust pressure of the high pressure cylinder of the steam turbine to obtain the exhaust pressure signal
  • the extraction steam heating flow measurement device is used to measure the extraction steam heating flow to obtain the extraction steam heating flow signal
  • the data acquisition module is used to collect and measure the first stage pressure signal, the exhaust steam pressure signal and the extraction heat supply flow signal, and collect the collected first stage pressure signal, the exhaust steam pressure signal and the extraction heat supply flow letter The number is sent to the core operation processing module;
  • the core operation processing module is used to receive the primary pressure signal, the exhaust steam pressure signal and the extraction heat supply flow signal sent by the data acquisition module, and based on the primary pressure signal, the exhaust pressure
  • the signal and the steam extraction heat supply flow signal generate action commands for each valve in the heating device or use the received signal to determine the steam turbine load value, and at the same time send the action command or steam turbine load value to the signal output module;
  • the signal output module is used to receive the action command or the load value of the steam turbine from the core operation processing module, and send the action command or the load value of the steam turbine to each relevant control system and equipment respectively.
  • the embodiment of the second aspect of the present disclosure proposes a control method for a heating device of a nuclear power plant, including:
  • the quick-closing control valve of the extraction steam Based on the deviation and the heat supply flow signal of the extraction steam, the quick-closing control valve of the extraction steam, the steam intake control valve of the low-pressure cylinder of the steam turbine, and the steam intake control valve of the high-pressure cylinder of the steam turbine are respectively controlled to achieve the adjustment of the flow rate of the steam extraction and heat supply, the discharge of the high-pressure cylinder
  • the embodiment of the third aspect of the present disclosure proposes another method for controlling the heating device of a nuclear power plant, including
  • a load curve matching the heating and extraction steam flow is selected and a steam turbine load value is determined;
  • reactor power is regulated by a reactor power control system.
  • Fig. 1 is a structural diagram of a control system for a heating device of a nuclear power plant according to an embodiment of the present disclosure
  • Fig. 2 is a structural diagram of a control system for a heating device of a nuclear power plant according to an embodiment of the present disclosure
  • Fig. 3 is a first structure diagram of a core computing module in a control system of a heating device of a nuclear power plant according to an embodiment of the present disclosure
  • Fig. 4 is a second structural diagram of a core computing module in a control system of a heating device of a nuclear power plant according to an embodiment of the present disclosure
  • Fig. 5 is a third structure diagram of a core computing module in a control system of a heating device of a nuclear power plant according to an embodiment of the present disclosure
  • Fig. 6 is a fourth structure diagram of a core computing module in a control system of a heating device of a nuclear power plant according to an embodiment of the present disclosure
  • Fig. 7 is a fifth structural diagram of a core computing module in a control system of a heating device of a nuclear power plant according to an embodiment of the present disclosure
  • Fig. 8 is a sixth structural diagram of a core computing module in a control system of a heating device of a nuclear power plant according to an embodiment of the present disclosure
  • Fig. 9 is a seventh structural diagram of a core computing module in a control system of a heating device of a nuclear power plant according to an embodiment of the present disclosure.
  • Fig. 10 is a specific application structure diagram of a control system for a heating device of a nuclear power plant according to an embodiment of the present disclosure
  • Fig. 11 is a detailed functional block diagram of the action instructions of each valve in the heating device generated by the core operation processing module in the control system of the heating device of a nuclear power plant according to an embodiment of the present disclosure
  • Fig. 12 is a detailed functional block diagram for determining the steam turbine load value in the heat supply device generated by the core operation processing module in the control system of the heat supply device of a nuclear power plant according to an embodiment of the present disclosure
  • Fig. 13 is a curve diagram of the relationship between the pressure of the first stage and the load of the steam turbine corresponding to the pure condensing condition in a nuclear power plant extraction and heat supply unit stacker coordination control system according to an embodiment of the present disclosure
  • Fig. 14 is a curve diagram of the relationship between the pressure of the first stage and the load of the steam turbine corresponding to the 500t/h working condition in a coordinated control system of steam extraction and heat supply units in a nuclear power plant according to an embodiment of the present disclosure
  • Fig. 15 is a relationship curve between the pressure of the first stage and the load of the steam turbine corresponding to the 1000t/h working condition in a nuclear power plant steam extraction heating unit stacker coordination control system provided according to an embodiment of the present disclosure
  • Fig. 16 is a flow chart of generating valve action commands in a method for controlling a heating device of a nuclear power plant according to an embodiment of the present disclosure
  • Fig. 17 is a flow chart of determining a steam turbine load value in a method for controlling a heating device of a nuclear power plant according to an embodiment of the present disclosure
  • First-stage pressure measurement device 1 High exhaust pressure measurement device 2, steam extraction and heat supply flow measurement device 3, data acquisition module 4, core operation processing module 5, signal output module 6, man-machine interface processing module 7, steam turbine controller 8.
  • Nuclear island steam generator 9. Turbine high-pressure cylinder inlet steam regulating valve (GV) 10.
  • Steam turbine low-pressure cylinder steam inlet regulating valve (ICV) 11.
  • Extraction quick-closing regulating valve (FCV) 12. Heat network heater 13.
  • the present disclosure proposes a nuclear power plant heating device control system and method, the system includes: a first-stage pressure measurement device 1, a high exhaust pressure measurement device 2, a steam extraction heat supply flow measurement device 3, a data acquisition module 4, and a core calculation Processing module 5, signal output module 6, and human-machine interface processing module 7; based on the above devices and modules, generate extraction fast-closing control valve (FCV) 12, steam turbine high-pressure cylinder intake control valve (GV) 10 and steam turbine low-pressure cylinder intake steam
  • FCV extraction fast-closing control valve
  • GV steam turbine high-pressure cylinder intake control valve
  • GV steam turbine low-pressure cylinder intake steam
  • the operation of the control valve (ICV) 11 commands or determines the turbine load value, and then controls the field devices based on the operation command or the turbine load value.
  • the technical solution provided by the invention optimizes and improves the control mode of the manual heating device, realizes intelligent adjustment of system equipment related to heat supply and extraction, can improve the degree of automation of the system, and reduce errors caused by manual causes.
  • the non-disturbance switch of the control curve can avoid the disturbance of the parameters of the primary circuit caused by the load change of the steam turbine during the heating operation, and improve the safety and reliability of the operation of the nuclear power unit during the heating operation.
  • Fig. 1 is a structural diagram of a nuclear power plant heating device control system provided by an embodiment of the present disclosure. As shown in Fig. Steam heating flow measurement device 3, data acquisition module 4, core operation processing module 5 and signal output module 6;
  • the first-stage pressure measuring device 1 is used to measure the first-stage pressure of the steam turbine to obtain a first-stage pressure signal
  • the high exhaust pressure measuring device 2 is used to measure the exhaust pressure of the high-pressure cylinder of the steam turbine to obtain an exhaust pressure signal;
  • the extraction steam heating flow measurement device 3 is used to measure the extraction steam heating flow to obtain the extraction steam heating flow signal;
  • the data acquisition module 4 is used to collect and measure the first stage pressure signal, the exhaust steam pressure signal and the extraction heat supply flow signal, and collect the collected first stage pressure signal, the exhaust steam The steam pressure signal and the steam extraction heat supply flow signal are sent to the core operation processing module 5;
  • the core operation processing module 5 is configured to receive the primary pressure signal, the exhaust steam pressure signal and the extraction heat supply flow signal sent by the data acquisition module 4, and based on the primary pressure signal, the The exhaust steam pressure signal and the steam extraction heat supply flow signal generate action commands for each valve in the heating device or use the received signals to determine the steam turbine load value, and at the same time send the action command or steam turbine load value to the signal output module 6;
  • the signal output module 6 is used to receive the action command or the load value of the steam turbine from the core operation processing module 5, and send the action command or the load value of the steam turbine to the field device for control.
  • control system of the heating device of the nuclear power plant further includes: a man-machine interface processing module 7;
  • the man-machine interface processing module 7 is used for information interaction with the core operation processing module 5, wherein the information interaction includes: manual operation, fixed value input, signal display, alarm processing and function input in the core operation processing process. retreat.
  • the action commands of the valves in the heating device are generated or the steam turbine is determined by using the received signals.
  • the load value also include:
  • the preprocessing includes: performing two-out-of-three redundant processing on the first-stage pressure signal, exhaust steam pressure signal, and steam extraction and heat supply flow signal collected by multiple channels, and judging whether the range corresponding to the collected signal is Exceeding the preset range and judging whether the value of the collected signal is greater than the preset signal threshold, and sending an alarm when the range corresponding to the collected signal exceeds the preset range or the value of the collected signal is greater than the preset signal threshold The signal is sent to the man-machine interface processing module 7.
  • the core operation processing module 5 includes: an extraction steam flow constant value generating module 501, a heating flow automatic adjustment module 502, and a manual/automatic module 503;
  • the extraction steam flow fixed value generation module 501 is used to send the flow fixed value preset according to the heating network load demand or the fixed value given by the operator through the man-machine interface module to the heating flow automatic adjustment module 502;
  • the heating flow automatic adjustment module 502 is configured to receive the fixed value sent by the extraction steam flow fixed value generation module 501, and determine the deviation between the measured extraction steam heating flow and the fixed value, and then according to the Deviation carries out PID (proportional/integral/differential) operation, and described operation result is sent to manual/automatic module 503;
  • PID proportional/integral/differential
  • the manual/automatic module 503 is used to receive the calculation result sent by the heating flow automatic adjustment module 502, and control the extraction steam fast-closing control valve (FCV) 12 in the heating device based on the calculation result.
  • FCV extraction steam fast-closing control valve
  • the core operation processing module 5 further includes: a high discharge pressure fixed value generation module 505 and a high discharge pressure adjustment module 510;
  • the high discharge pressure fixed value generation module 505 is used to send the high discharge pressure fixed value preset according to the heating network load demand or the fixed value given by the operator through the man-machine interface module to the high discharge pressure adjustment module 510;
  • the high exhaust pressure adjustment module 510 is used to receive the measured exhaust pressure of the high pressure cylinder of the steam turbine and the exhaust pressure fixed value sent by the high exhaust pressure fixed value generation module 505, and determine the measured exhaust steam pressure and the fixed value. The deviation of the value, and then perform PID calculation according to the deviation to obtain the calculation result, and control the steam turbine low-pressure cylinder intake control valve (ICV) 11 based on the calculation result.
  • IOV steam turbine low-pressure cylinder intake control valve
  • the core operation processing module 5 further includes: a first voltage ratio low pass threshold module 506, a second voltage ratio low pass threshold module 507, and a condition module for triggering an over-delay function 508, over-late processing module 509 and over-late control module 504;
  • the first pressure ratio low pass threshold module 506 is used to compare the ratio of the measured exhaust pressure of the high pressure cylinder of the steam turbine to the measured first stage pressure signal with the preset first pressure ratio threshold, if the If the ratio of the measured exhaust pressure of the high-pressure cylinder of the steam turbine to the measured first-stage pressure signal is greater than the preset first pressure ratio threshold, then the first pressure ratio is low and passes through the threshold module 506 to the heat supply flow
  • the automatic adjustment module 502 sends a signal to close the extraction steam fast closing control valve (FCV) 12, so as to realize the slow closing of the extraction steam fast closing control valve (FCV) 12;
  • the second pressure ratio low pass threshold module 507 is used to compare the ratio of the measured exhaust pressure of the high-pressure cylinder of the steam turbine to the measured first-stage pressure signal with the preset second pressure ratio threshold, if the If the ratio of the measured exhaust pressure of the high-pressure cylinder of the steam turbine to the measured first-stage pressure signal is greater than the preset second pressure ratio threshold, the second pressure ratio will be sent to the late processing by the threshold module 507 Module 509 sends the signal that closes the steam extraction quick-closing control valve (FCV) 12, realizes Fast closing of the current extraction fast closing regulating valve (FCV) 12;
  • FCV steam extraction quick-closing control valve
  • the late processing module 509 is configured to receive a signal sent by the condition module 508 that triggers the late function, and the late processing module 509 sends a control instruction to the late control module 504, wherein the triggering of the late function Conditions include: heating exit, steam turbine trip, OPC action;
  • the over-delay control module 504 is arranged at the input end of the extraction steam fast-closing regulating valve (FCV) 12, and is used for receiving the control instruction sent by the over-delay processing module 509, and controls the extraction steam fast-closing regulating valve ( Fast closing of FCV) 12.
  • FCV extraction steam fast-closing regulating valve
  • first pressure ratio low pass threshold module 506 and the second pressure ratio low pass threshold module 507 have different fixed values, the latter is lower than the former, and the harm is more serious.
  • the first pressure ratio is low and passes the threshold value module 506 to send a closing signal to the heating flow automatic adjustment module 502
  • FCV extraction steam fast closing control valve
  • FCV extraction fast-closing regulating valve
  • the core operation processing module 5 further includes: a feedforward module 511;
  • the feed-forward module 511 is used to respond in advance to changes in the measured steam extraction and heat supply flow, and to speed up the response of the steam turbine low-pressure cylinder intake control valve (ICV) 11 .
  • IOV steam turbine low-pressure cylinder intake control valve
  • the core operation processing module 5 further includes: a heating flow load compensation algorithm module 512;
  • the heat supply flow load compensation algorithm module 512 is used to calculate and generate an electric load control instruction, which can automatically increase or decrease the electric load of the unit while maintaining the total load of the steam turbine to adjust the heat supply;
  • the heat supply flow load compensation algorithm module 512 outputs the increase or decrease command of the electric load, and sends it to the steam turbine controller 8 through the signal output module 6 to operate the steam turbine high-pressure cylinder intake regulating valve (GV) 10, so as to realize the adjustment of the electric load of the unit. Adjustment.
  • the core operation module 5 further includes: a first curve module 513, a second curve module 514, a third curve module 515, a first switching module 516 and a second switching module 517;
  • the first curve module 513 is provided with a pre-obtained load curve 1, which is used to determine the steam turbine load value corresponding to the measured first-stage pressure based on the load curve 1;
  • the second curve module 514 is provided with a pre-obtained load curve 2, which is used to determine the steam turbine load value corresponding to the measured first-stage pressure based on the load curve 2;
  • the third curve module 515 is provided with a pre-obtained load curve 3, which is used to determine the steam turbine load value corresponding to the measured first-stage pressure based on the load curve 3;
  • the first switching module 516 is configured to receive a switching signal and switch between the pre-obtained load curve 1 and the pre-obtained load curve 2;
  • the second switching module 517 is configured to receive a switching signal and switch between the pre-obtained load curve 2 and the pre-obtained load curve 3;
  • the number of the load curves is determined based on the type of working conditions of the heating and extraction steam flow rate, and the pre-obtained curve 1, curve 2 and curve 3 all take the power of the reactor as the abscissa, and the first stage pressure plotted for the ordinate.
  • first switching module 516 and the second switching module 517 are also used to realize mutual automatic tracking of load curves before and after switching;
  • the quantity of the flow threshold module is consistent with the quantity of the switching module
  • the number of the flow threshold modules is determined based on the type of working condition of the heating and extraction flow.
  • the core computing module 5 further includes: a first flow threshold module 518, a second flow threshold module 519, and a heat supply on/off instruction processing module 520;
  • the first flow threshold module 518 is used to compare the measured heating and extraction steam flow with the preset threshold in the first flow threshold module 518, if the measured heating and extraction steam flow is greater than the set The preset threshold, then the first flow threshold module 518 sends an instruction to switch from load curve 1 to load curve 2 to the first switching module 516;
  • the second flow threshold module 519 is used to compare the measured heating and extraction steam flow with the preset threshold in the second flow threshold module 519, if the measured heating and extraction steam flow is greater than the set The preset threshold, then the second flow threshold module 519 sends an instruction to switch from load curve 2 to load curve 3 to the second switching module 517;
  • the heat supply on/off command processing module 520 is used to judge whether the heating device meets the heat supply on/off command based on the heat supply on/off command sent by the operator, and if so, send the heat supply on/off command.
  • control system provided by the embodiments of the present disclosure optimizes and improves the control mode of the manual heating device, realizes the intelligent adjustment of system equipment related to heating and extraction, and can improve the degree of automation.
  • control system through multi-operation control
  • the undisturbed switching of the curves avoids the disturbance of the primary circuit parameters of the reactor during the heating load change, and improves the safety and reliability of the operation of the nuclear power unit during the heating period.
  • this implementation shows the adjustment of the steam extraction fast-closing regulating valve (FCV) 12 in the heating device, the steam inlet regulating valve (GV) 10 of the high pressure cylinder of the steam turbine and the steam inlet regulating valve of the low pressure cylinder of the steam turbine
  • FCV steam extraction fast-closing regulating valve
  • GV steam inlet regulating valve
  • the control process of (ICV) 11, the control process includes: as shown in Figure 10, first, measure the first stage pressure of the steam turbine through the first stage pressure measuring device 1, and measure the exhaust steam of the high pressure cylinder of the steam turbine through the high discharge pressure measuring device 2 The pressure is measured by the steam extraction heat supply flow measurement device 3; secondly, the measured data is collected by the data acquisition module 4 and sent to the core operation processing module 5, and secondly, the core operation processing module 5 Receive the signal that described data acquisition module 4 sends, then utilize the signal that described core operation processing module 5 receives to generate steam extraction quick-closing control valve (FCV) 12, steam turbine high pressure cylinder inlet steam control valve (
  • a part of the exhaust steam of the high-pressure cylinder passes through the steam extraction pipeline and the quick-closing regulating valve 12, and then directly enters the heating network heater 13.
  • the heater 13 heats the heating circulating water entering it, and finally realizes external heating by heating the circulating water.
  • the core operation processing module 5 is used to receive the signal sent by the data acquisition module 4, and then use the signal to generate an extraction fast-closing regulating valve (FCV) 12, a steam turbine high-pressure cylinder intake regulating
  • FCV extraction fast-closing regulating valve
  • GV valve
  • IOV steam turbine low-pressure cylinder intake control valve
  • Figure 11 is a detailed functional block diagram inside the core operation processing module 5, and describes the modules 5 and 4 , The detailed relationship between 6 and 7. Referring to Fig. 11, the module 5 is responsible for key calculation and processing tasks.
  • the extraction steam flow constant value generation module 501 presets the flow constant value according to the heating network load demand or is operated by the operator through the man-machine interface module 7 Input the flow fixed value given by the operator into the extraction steam flow fixed value generation module 501, and then the extraction steam flow fixed value generation module 501 sends the flow fixed value to the heating flow automatic adjustment module 502, and at the same time, the data from The extraction heat supply flow signal of the acquisition module 4 is input to the heating flow automatic adjustment module 502, and the heating flow automatic adjustment module 502 will compare the deviation between the actual heating flow and the fixed value input by 501, and perform PID (proportional/integral) according to the deviation.
  • PID proportional/integral
  • the result is used as the action command of the FCV valve to control the valve switch, and then adjust the heating steam flow.
  • the manual/automatic module 503 and the over-delay control module 504 need to pass through the transmission of the FCV valve position command.
  • the manual/automatic module 503 realizes the manual/automatic switching function of the regulation loop.
  • the device outputs the instructions of the regulation algorithm module 502, In manual operation, the operator can set the valve position of the FCV through the man-machine interface to realize the manual control of the valve.
  • the late processing module 509 when the late processing module 509 receives the signal sent by the condition module 508 that triggers the late function, the late processing module 509 sends a control instruction to the late control module 504, and then the The over-delay control module 504 receives the control instruction sent by the over-delay processing module 509, and sends the received control instruction to the signal output module 6, and the signal output module 6 receives the control instruction, and sends the control instruction to the steam extraction fast Close the regulating valve (FCV) 12, and then control the extraction steam fast closing regulating valve (FCV) 12.
  • the conditions for triggering the over-delay function include: heat supply withdrawal, steam turbine tripping, and OPC action.
  • the high discharge pressure fixed value is determined by the module 505, and the high discharge pressure fixed value is sent to the high discharge pressure adjustment module 510, and the high discharge pressure adjustment module 510 determines the fixed value and Measure the deviation of the exhaust pressure of the high-pressure cylinder of the steam turbine, and then perform PID calculation according to the deviation, and the output result is used to control the opening of the inlet control valve (ICV) 11 of the low-pressure cylinder of the steam turbine to maintain the high exhaust pressure in line with the given value requirements.
  • IOV inlet control valve
  • the integrated command after adding the control command output of the high exhaust pressure regulation module 510 and the output of the feedforward processing module 511 is sent to the signal output module 6, and sent to the steam turbine controller 8 through the signal output module 6 to control the steam turbine
  • the high discharge pressure setting module 505 mainly determines the high discharge pressure setting based on the corresponding relationship between the first stage pressure (representing the turbine load) and the high discharge pressure or according to the operator setting from the man-machine interface module 7 .
  • the present invention also designs an additional protection circuit.
  • a feed-forward processing module 511 is added to speed up the response of the ICV; at the same time, the pressure ratio protection circuit is also considered, that is, through the first pressure ratio low pass threshold module 506 and the second pressure ratio are low and the threshold module 507 is used to close the FCV to avoid further deterioration of the working condition.
  • the first pressure ratio is low and passes the threshold module 506 to the heating flow automatic adjustment module 502 to send a signal to close the extraction fast closing control valve (FCV) 12 to the signal output module 6 , the signal output module 6 receives the signal of closing the extraction steam fast closing regulating valve (FCV) 12 and sends the received signal to the extraction steam fast closing regulating valve (FCV) 12 to realize the extraction steam fast closing regulating valve ( FCV) 12 is closed; when the ratio of the measured exhaust pressure of the high-pressure cylinder of the steam turbine to the measured first-stage pressure signal is greater than the preset second pressure ratio threshold, the second pressure ratio is low
  • the threshold module 507 sends a signal to close the extraction fast-closing regulating valve (FCV) 12 to the over-delay processing module 509 to realize closing of the extraction fast-closing regulating valve (FCV) 12 .
  • the electric load value of the unit that needs to be automatically increased or decreased is calculated by the heating flow load compensation algorithm module 512, and sent to the steam turbine through the output module 6
  • the controller 8 automatically increases or decreases the electric load to control the steam inlet regulating valve (GV) 10 of the high-pressure cylinder of the steam turbine to realize heat-electricity linkage.
  • GV steam inlet regulating valve
  • this embodiment shows that the process of determining the load value of the steam turbine in the heating device and controlling the field equipment includes: as shown in Figure 12, first, through the first The first-stage pressure measurement device 1 measures the first-stage pressure of the steam turbine, and measures the heat-supply and extraction flow through the extraction steam heating flow measurement device 3; secondly, the data acquisition module 4 is used to collect the first-stage pressure and the heat-supply extraction flow, And the signal of described collection is sent to core operation processing module 5; Next, described core operation processing module 5 is used to receive the first stage pressure signal that data acquisition module 4 sends, the exhaust pressure of steam turbine high-pressure cylinder and extraction steam The heating flow signal, using the received signal to determine the load value of the steam turbine, and sending the load value to the man-machine interface processing module 7 and the signal output module 6; then, the man-machine interface processing module 7 is used to receive the core The load value sent by the operation processing module 5 is displayed, and the signal output module 6 is used to
  • Part of the exhaust steam from the high-pressure cylinder passes through the steam extraction pipeline and the quick-closing regulating valve 12 and then directly enters the heating network heater 13.
  • the heating network heater 13 heats the heating circulating water entering it, and finally realizes external heating by heating the circulating water.
  • the core operation processing module 5 is used to receive the first-stage pressure signal and the steam extraction and heat supply flow signal sent by the data acquisition module 4, and using the received signal to determine the load value of the steam turbine includes: As shown in FIG. 12 , FIG. 12 is a detailed functional block diagram inside the core operation processing module 5 , and describes the detailed relationship between the module 5 and the modules 4 and 7 . Referring to Fig. 12, the module 5 is responsible for key calculation and processing tasks, and the first stage pressure signal of the steam turbine from the data acquisition module 4 is sent to the first curve module 513, the second curve module 514, and the third curve module 515 at the same time, wherein, the first curve module 513 A curve module 513 is provided with a pure condensation curve, i.e.
  • a curve 2 is provided with a second curve module 514, and a curve 3 is provided with a third curve module 515; it should be noted that among the three curves provided in this example, one of the curves represents the pure condensing curve (the relationship curve between the first stage pressure and the steam turbine load under the pure condensing condition), and the other two curves represent the corresponding first
  • the relationship curve between the stage pressure and the load of the steam turbine the selection of the extraction steam flow condition needs to be calculated and determined by comprehensively considering the influence of the maximum extraction steam volume and the deviation of the load curve.
  • the input end of the curve is the first-stage pressure of the steam turbine, and the output is the load value of the steam turbine converted linearly according to the curve.
  • the switching and selection of the pure condensation curve and curve 1 is completed through the first switching module 516, and the first input port 441 and the second input port 442 respectively represent the two inputs of the first switching module 516.
  • the first control port 443 is the control terminal of the first switching module 516, when the first control port 443 is logic "0", the first switching module 516 will output the load value of the pure condensation curve , when the first control port 443 is logic "1", the first switching module 516 will output the load value of the curve of the second curve module 514, in order to avoid the disturbance in the mutual switching process of the first input port 441 and the second input port 442,
  • the first switching module 516 can realize the mutual tracking of the data of the two input terminals, so as to ensure the non-disturbance during the switching process.
  • the second input port 442 will automatically track the value of the first input port 441, once the first switching module 516 detects that the first control port 443 is a logic "1" ", just quickly switch from the first input port 441 to the second input port 442 to run, because the second input port 442 has been tracking the value of the first input port 441, so the output of the first switching module 516 does not change at the moment of switching , after switching, its output will slowly change from the value of the first input port 441 to the second input port 442 at a preset rate (such as 5%/min, depending on actual engineering conditions), and vice versa.
  • a preset rate such as 5%/min, depending on actual engineering conditions
  • the operating principle of the second switching module 517 is the same as that of the first switching module 516 , and the second switching module 517 is used to select whether the system operates on curve 2 or curve 3 .
  • the switching instructions of the first switching module 516 and the second switching module 517 come from the first flow threshold module 518 and the second flow threshold module 519 respectively, and the principle of switching instruction generation is explained as follows by way of example:
  • the three curves are the relationship curves of the first stage pressure and steam turbine load corresponding to the three working conditions of pure condensing condition, extraction steam capacity of 500t/h and 1000t/h respectively, as shown in Figure 13, Figure 14 and Figure 15,
  • the setting value of the first flow threshold module 518 is assumed to be greater than 250t/h
  • the setting value of the second flow threshold module 519 is greater than 750t/h.
  • the operation operator issues a heat supply on/off command through the man-machine interface module 7, and the heat supply command enters the on/off command processing module 520 for further calculation and processing.
  • the cancel command processing module 520 outputs "1", which means that the heat supply is turned on.
  • the intelligent device can also display in real time on the man-machine interface which curve the current system is running on, which is convenient for operators to monitor.
  • the control system provided by the embodiment of the present disclosure realizes the intelligent adjustment of the system equipment related to heating and extraction, the exhaust pressure of the high-pressure cylinder and the electrical load of the steam turbine, reduces the probability of human error, and improves the degree of automation And the reliability and safety of equipment operation, and the system adjustment method is flexible and quick in response, making the operation of the heating unit safer, more efficient and more economical.
  • the control system provided by this embodiment also greatly reduces the cost of the original bill
  • the error of the system operating parameters caused by the root curve improves the stability of the nuclear island system during the heating period of the nuclear power unit.
  • the disturbance of the primary circuit parameters of the nuclear reactor during the heating load change is avoided, and the safety and reliability of the operation of the nuclear power unit during the heating period are improved.
  • Step 1 Obtain the measured pressure signal of the first stage of the steam turbine, the exhaust pressure signal of the high-pressure cylinder of the steam turbine, the flow signal of the steam extraction and heating supply, and the fixed value of the steam extraction and heating supply flow and the high exhaust pressure corresponding to the load demand of the heating network;
  • Step 2 Determine the deviation between the extracted steam flow signal and the fixed value of the extracted steam flow by using the extraction steam flow rate and the extraction steam flow signal respectively, and use the high exhaust
  • the pressure setting value and the exhaust steam pressure signal of the high pressure cylinder of the steam turbine determine the deviation between the exhaust steam pressure signal and the high exhaust pressure setting value
  • Step 3 Based on the deviation and the heat supply flow signal of the extraction steam, the extraction fast-closing control valve (FCV) 12, the steam turbine low-pressure cylinder intake control valve (ICV) 11 and the steam turbine high-pressure cylinder intake steam control valve (GV) 10 Take control.
  • FCV extraction fast-closing control valve
  • IV steam turbine low-pressure cylinder intake control valve
  • GV steam turbine high-pressure cylinder intake steam control valve
  • the extraction fast-closing control valve (FCV) 12, steam turbine low-pressure cylinder intake control valve (ICV) 11 and steam turbine high-pressure cylinder intake steam Governing valve (GV) 10 controls including:
  • FCV extraction steam fast-closing regulating valve
  • the electric load value of the unit that needs to be automatically increased or decreased is determined to control the steam inlet regulating valve (GV) 10 of the high pressure cylinder of the steam turbine.
  • control method provided by the embodiment of the present disclosure realizes the intelligent adjustment of the system equipment related to heating and extraction, the exhaust pressure of the high-pressure cylinder, and the electrical load of the steam turbine, and reduces the probability of human error in manual operation.
  • the degree of automation and the reliability and safety of equipment operation are improved, and the system adjustment mode is flexible and the response is fast, so that the operation of the heating unit Safer, more efficient and more economical.
  • the method for controlling the load of the steam turbine in the heating device based on the system provided in Embodiment 2 includes:
  • Step B1 Using the data acquisition module 4 to collect the first-stage pressure signal and the heating and extraction steam flow signal and perform preprocessing on the collected first-stage pressure signal and the extraction and heating flow signal ;
  • Step B2 Based on the preprocessed first-stage pressure signal and the heating and extraction steam flow signal, select a load curve matching the heating and extraction steam flow and determine the turbine load value;
  • Step B3 adjusting the power of the reactor primary circuit based on the steam turbine load value.
  • the selection of a load curve matching the heating and extraction steam flow based on the collected preprocessed first-stage pressure signal of the steam turbine and the heating and extraction steam flow signal and determining the load value of the steam turbine includes:
  • a load curve matching the heating and extraction steam flow is selected, and a steam turbine load value corresponding to the first-stage pressure signal is determined.
  • the load curve is determined based on the working conditions of the heating and extraction steam flow.
  • control method provided by this embodiment reduces the error of system operating parameters and improves the stability of the nuclear island system during the heating period of the nuclear power unit.
  • the disturbance of the parameters of the primary circuit of the reactor during the heat load change improves the safety and reliability of the operation of the nuclear power unit during the heating period.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Plasma & Fusion (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Control Of Turbines (AREA)

Abstract

本公开提供了一种核电厂供热装置控制系统,包括:第一级压力测量装置,用于测量汽轮机的第一级压力以得到第一级压力信号;高排压力测量装置,用于测量汽轮机高压缸的排汽压力以得到排汽压力信号;抽汽供热流量测量装置,用于测量抽汽供热流量以得到抽汽供热流量信号;数据采集模块,用于采集测量得到第一级压力信号、排汽压力信号和抽汽供热流量信号,并将采集的第一级压力信号、排汽压力信号和抽汽供热流量信号发送到核心运算处理模块;核心运算处理模块;信号输出模块。

Description

核电厂供热装置控制系统及方法
相关申请的交叉引用
本申请基于申请号为202210169686.1、申请日为2022年2月24日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及核能供热技术领域,尤其涉及核电厂供热装置控制系统及方法。
背景技术
我国城市已普遍采用集中供热系统,而采暖能源仍以化石能源为主,难以避免碳氧化物的排放对环境造成影响。核能作为清洁高效稳定的能源,可为用户提供源源不断的热量,核能供热正逐渐成为核能的另一种能源供应型式。
当前核电厂供热系统一般通过手动操作的方法实现抽汽供热参数的调整,由于抽汽量的变化还涉及汽轮机高压缸排压力(以下简称高排压力)及电负荷的同步调整,高排压力的稳定直接关系到汽轮机的运行安全,而电负荷又会直接影响核电厂的发电效益,所以,供热抽汽量的调节是否满足要求至关重要。如果抽汽量通过手动的方式进行,供热负荷的波动时需同步监视及调整抽汽量、高排压力和电负荷多个参数,会增加运行人员的操作负担及人工操作失误的概率,而且手动操作前需要检查各个参数的符合性,热电负荷调整会存在较大的操作时间延迟,系统响应速度慢,从而造成部分发电量的损失并给机组的安全稳定运行带来潜在风险。同时,核电厂供热机组正常运行模式下(非供热季),汽轮机运行在纯凝工况,反应堆与汽轮机负荷协调运行(以下简称堆机协调)一般是通过反应堆功率控制系统自动跟踪汽轮机的第一级压力(代表汽轮机负荷)来实现的,跟踪的依据是汽轮机负荷与第一级压力的函数曲线。在抽汽供热投入运行的情况下,汽轮机负荷与第一级压力的对应关系曲线会随着供热抽汽量的不同而发生偏移。如果还是维持原纯凝工况下的汽轮机负荷与第一级压力的函数曲线运行,会导致堆机协调运行产生负荷匹配误差,而且抽汽量越大,造成的误差越大,影响反应堆系统(一回路)运行参数的稳定性,进而对整个核电机组的安全稳定运行产生潜在的不利影响。
发明内容
本公开第一方面实施例提出一种核电厂供热装置控制系统,包括:
第一级压力测量装置,用于测量汽轮机的第一级压力以得到第一级压力信号;
高排压力测量装置,用于测量汽轮机高压缸的排汽压力以得到排汽压力信号;
抽汽供热流量测量装置,用于测量抽汽供热流量以得到抽汽供热流量信号;
数据采集模块,用于采集测量得到所述第一级压力信号、所述排汽压力信号和所述抽汽供热流量信号,并将采集的所述一级压力信号、所述排汽压力信号和所述抽汽供热流量信 号发送到核心运算处理模块;
核心运算处理模块,用于接收数据采集模块发送的所述一级压力信号、所述排汽压力信号和所述抽汽供热流量信号,并基于所述一级压力信号、所述排汽压力信号和所述抽汽供热流量信号生成供热装置中各阀门的动作指令或利用接收到的信号确定所述汽轮机负荷值,同时将所述动作指令或汽轮机负荷值发送到信号输出模块;
信号输出模块,用于从核心运算处理模块接收所述动作指令或汽轮机负荷值,并将所述动作指令或汽轮机负荷值分别发送至各相关控制系统及设备。
本公开第二方面实施例提出一种核电厂供热装置的控制方法,包括:
获取测量得到的汽轮机第一级压力信号、汽轮机高压缸的排汽压力信号及抽汽供热流量信号和热网负荷需求对应的抽汽供热流量定值与高排压力定值;
分别利用所述抽汽供热流量定值和所述抽汽供热流量信号确定所述抽汽供热流量信号与所述抽汽供热流量定值的偏差,利用所述高排压力定值和所述汽轮机高压缸的排汽压力信号确定所述排汽压力信号与所述高排压力定值的偏差;
分别基于所述偏差与抽汽供热流量信号对抽汽快关调节阀、汽轮机低压缸进汽调节阀和汽轮机高压缸进汽调节阀进行控制,以达到调节抽汽供热流量、高压缸排汽压力及汽轮机组电负荷的目的。
本公开第三方面实施例提出另外一种核电厂供热装置的控制方法,包括
利用数据采集模块采集所述第一级压力信号和所述供热抽汽流量信号并对所述采集的所述第一级压力信号和所述抽汽供热流量信号进行预处理;
基于所述预处理后第一级压力信号和供热抽汽流量信号选择供热抽汽流量匹配的负荷曲线并确定汽轮机负荷值;
基于所述汽轮机负荷值,通过反应堆功率控制系统对反应堆功率进行调节。
本公开附加的方面以及优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
本公开上述的和/或附加的方面以及优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为根据本公开一个实施例提供的一种核电厂供热装置控制系统的结构图;
图2为根据本公开一个实施例提供的一种核电厂供热装置控制系统的结构图;
图3为根据本公开一个实施例提供的一种核电厂供热装置控制系统中核心运算模块的第一种结构图;
图4为根据本公开一个实施例提供的一种核电厂供热装置控制系统中核心运算模块的第二种结构图;
图5为根据本公开一个实施例提供的一种核电厂供热装置控制系统中核心运算模块的第三种结构图;
图6为根据本公开一个实施例提供的一种核电厂供热装置控制系统中核心运算模块的第四种结构图;
图7为根据本公开一个实施例提供的一种核电厂供热装置控制系统中核心运算模块的第五种结构图;
图8为根据本公开一个实施例提供的一种核电厂供热装置控制系统中核心运算模块的第六种结构图;
图9为根据本公开一个实施例提供的一种核电厂供热装置控制系统中核心运算模块的第七种结构图;
图10为根据本公开一个实施例提供的一种核电厂供热装置控制系统的具体应用结构图;
图11为根据本公开一个实施例提供的一种核电厂供热装置控制系统中核心运算处理模块生成供热装置中各阀门动作指令的详细功能框图;
图12为根据本公开一个实施例提供的一种核电厂供热装置控制系统中核心运算处理模块生成供热装置中确定汽轮机负荷值的详细功能框图;
图13为根据本公开一个实施例提供的一种核电厂抽汽供热机组堆机协调控制系统中纯凝工况下对应的第一级压力与汽轮机负荷关系曲线图;
图14为根据本公开一个实施例提供的一种核电厂抽汽供热机组堆机协调控制系统中500t/h工况下对应的第一级压力与汽轮机负荷关系曲线图;
图15为根据本公开一个实施例提供的一种核电厂抽汽供热机组堆机协调控制系统中1000t/h工况下对应的第一级压力与汽轮机负荷关系曲线;
图16为根据本公开一个实施例提供的一种核电厂供热装置控制方法中生成各阀门动作指令的流程图;
图17为根据本公开一个实施例提供的一种核电厂供热装置控制方法中确定汽轮机负荷值的流程图;
附图标记说明:
第一级压力测量装置1、高排压力测量装置2、抽汽供热流量测量装置3、数据采集模
块4、核心运算处理模块5、信号输出模块6、人机接口处理模块7、汽轮机控制器8、核岛蒸汽发生器9、汽轮机高压缸进汽调节阀(GV)10、汽轮机低压缸进汽调节阀(ICV)11、抽汽快关调节阀(FCV)12、热网加热器13、反应堆功率控制系统14、核反应堆15、抽汽流量定值生成模块501、供热流量自动调节模块502、手/自动模块503、超迟控制模块504、高排压力定值生成模块505、第一压比低通过阈值模块506、第二压比低通过阈值模块507、触发超迟功能的条件模块508、超迟处理模块509、高排压力调节模块510、前馈模块511、供热流量负荷补偿算法模块512、第一曲线模块513、第二曲线模块514、第三曲线模块515、第一切换模块516、第二切换模块517、第一流量阈值模块518、第二流量阈值模块519、供热投/退指令处理模块520、第一输入端口441、第二输入端口442、第一控制端口443、第三输入端口451、第四输入端口452和第二控制端口453。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
本公开提出的核电厂供热装置控制系统及方法,所述系统包括:第一级压力测量装置1、高排压力测量装置2、抽汽供热流量测量装置3、数据采集模块4、核心运算处理模块5、信号输出模块6及人机接口处理模块7;基于上述装置与模块生成抽汽快关调节阀(FCV)12、汽轮机高压缸进汽调节阀(GV)10和汽轮机低压缸进汽调节阀(ICV)11的动作指令或确定所述汽轮机负荷值,然后基于所述动作指令或所述汽轮机负荷值控制现场设备。本发明提供的技术方案,对手动供热装置的控制方式进行了优化改进,实现供热抽汽相关系统设备的智能化调节,可提高系统自动化程度,减少人工原因造成的失误,同时通过多运行控制曲线的无扰切换,可避免供热运行期间汽轮机负荷变化对一回路参数的扰动,提高核电机组供热期间运行的安全性、可靠性。
下面参考附图描述本公开实施例的核电厂供热装置控制系统及方法。
实施例1
图1为本公开实施例所提供的一种核电厂供热装置控制系统的结构图,如图1所示,所述系统包括:第一级压力测量装置1、高排压力测量装置2、抽汽供热流量测量装置3、数据采集模块4、核心运算处理模块5和信号输出模块6;
所述第一级压力测量装置1,用于测量汽轮机的第一级压力以得到第一级压力信号;
所述高排压力测量装置2,用于测量汽轮机高压缸的排汽压力以得到排汽压力信号;
所述抽汽供热流量测量装置3,用于测量抽汽供热流量以得到抽汽供热流量信号;
所述数据采集模块4,用于采集测量得到所述第一级压力信号、所述排汽压力信号和所述抽汽供热流量信号,并将采集的所述一级压力信号、所述排汽压力信号和所述抽汽供热流量信号发送到核心运算处理模块5;
所述核心运算处理模块5,用于接收数据采集模块4发送的所述一级压力信号、所述排汽压力信号和所述抽汽供热流量信号,并基于所述一级压力信号、所述排汽压力信号和所述抽汽供热流量信号生成供热装置中各阀门的动作指令或利用接收到的信号确定所述汽轮机负荷值,同时将所述动作指令或汽轮机负荷值发送到信号输出模块6;
所述信号输出模块6,用于从核心运算处理模块5接收所述动作指令或汽轮机负荷值,并将所述动作指令或汽轮机负荷值发送到现场设备进行控制。
在本公开实施例中,如图2所示,所述核电厂供热装置控制系统还包括:人机接口处理模块7;
所述人机接口处理模块7,用于与核心运算处理模块5进行信息交互,其中,所述信息交互包括:核心运算处理过程中的手动操作、定值输入、信号显示、报警处理及功能投退。
需要说明的是,所述基于所述一级压力信号、所述排汽压力信号和所述抽汽供热流量信号生成供热装置中各阀门的动作指令或利用接收到的信号确定所述汽轮机负荷值之前还 包括:
对接收到的所述第一级压力信号、排汽压力信号和抽汽供热流量信号进行预处理;
其中,所述预处理包括:分别对多个通道采集的第一级压力信号、排汽压力信号及抽汽供热流量信号进行三取二冗余处理,并判断所述采集信号对应的量程是否超出预设的量程和判断所述采集信号的值是否大于预先设置的信号阈值,当所述采集信号对应的量程超出预设的量程或所述采集信号的值大于预先设置的信号阈值时发送报警信号到人机接口处理模块7。
在本公开实施例中,如图3所示,所述核心运算处理模块5包括:抽汽流量定值生成模块501、供热流量自动调节模块502和手/自动模块503;
所述抽汽流量定值生成模块501,用于将根据热网负荷需求预设的流量定值或操作人员通过人机接口模块给出的定值发送到供热流量自动调节模块502;
所述供热流量自动调节模块502,用于接收所述抽汽流量定值生成模块501发送的定值,并确定测量得到的抽汽供热流量与所述定值的偏差,然后根据所述偏差进行PID(比例/积分/微分)运算,将所述运算结果发送到手/自动模块503;
所述手/自动模块503,用于接收供热流量自动调节模块502发送的运算结果,并基于所述运算结果控制供热装置中抽汽快关调节阀(FCV)12。
在本公开实施例中,如图4所示,所述核心运算处理模块5还包括:高排压力定值生成模块505和高排压力调节模块510;
所述高排压力定值生成模块505,用于将根据热网负荷需求预设的高排压力定值或操作人员通过人机接口模块给出的定值发送到高排压力调节模块510;
所述高排压力调节模块510,用于接收测量的汽轮机高压缸的排汽压力和高排压力定值生成模块505发送的排汽压力定值,并确定测得的排汽压力和所述定值的偏差,然后根据所述偏差进行PID运算,得到运算结果,并基于所述运算结果控制汽轮机低压缸进汽调节阀(ICV)11。
在本公开实施例中,如图5所示,所述核心运算处理模块5还包括:第一压比低通过阈值模块506、第二压比低通过阈值模块507、触发超迟功能的条件模块508、超迟处理模块509和超迟控制模块504;
所述第一压比低通过阈值模块506,用于将测量得到的汽轮机高压缸的排汽压力和测量得到的第一级压力信号的比值与预设的第一压比阈值相比,若所述测量得到的汽轮机高压缸的排汽压力和测量得到的第一级压力信号的比值大于所述预设的第一压比阈值,则所述第一压比低通过阈值模块506向供热流量自动调节模块502发送关闭抽汽快关调节阀(FCV)12的信号,实现抽汽快关调节阀(FCV)12的慢速关闭;
所述第二压比低通过阈值模块507,用于将测量得到的汽轮机高压缸的排汽压力和测量得到的第一级压力信号的比值与预设的第二压比阈值相比,若所述测量得到的汽轮机高压缸的排汽压力和测量得到的第一级压力信号的比值大于所述预设的第二压比阈值,则所述第二压比低通过阈值模块507向超迟处理模块509发送关闭抽汽快关调节阀(FCV)12的信号,实 现抽汽快关调节阀(FCV)12的快速关闭;
所述超迟处理模块509,用于接收触发超迟功能的条件模块508发送的信号时,所述超迟处理模块509向超迟控制模块504发送控制指令,其中,所述触发超迟功能的条件包括:供热退出、汽轮机跳闸、OPC动作;
所述超迟控制模块504设置在抽汽快关调节阀(FCV)12的输入端,用于接收超迟处理模块509发送的控制指令,并基于所述控制指令控制抽汽快关调节阀(FCV)12的快速关闭。
需要说明的是,所述第一压比低通过阈值模块506与第二压比低通过阈值模块507的定值不同,后者比前者更低,危害也更严重。当第一压比低通过阈值模块506向供热流量自动调节模块502发送关闭信号后,如果抽汽快关调节阀(FCV)12的慢速关闭动作并没有阻止压比的继续降低,则会继续触发第二压比低通过阈值模块507并通过超迟处理模块509和超迟控制模块504使抽汽快关调节阀(FCV)12快速保护关闭。另外,需说明的是当第二压比低通过阈值模块507动作时,第一压比低通过阈值模块506也会保持动作状态,直至压比值大于阈值模块本身的设定值。
在本公开实施例中,如图6所示,所述核心运算处理模块5还包括:前馈模块511;
所述前馈模块511,用于对测量得到的抽汽供热流量的变化提前做出反应,加快汽轮机低压缸进汽调节阀(ICV)11的响应。
在本公开实施例中,如图7所示,所述核心运算处理模块5还包括:供热流量负荷补偿算法模块512;
所述供热流量负荷补偿算法模块512,用于计算生成电负荷控制指令,可在保持汽轮机总负荷不变的情况下实现供热量调整的同时自动增减机组电负荷;
其中,供热流量负荷补偿算法模块512输出电负荷的增减指令,并通过信号输出模块6送至汽轮机控制器8来动作汽轮机高压缸进汽调节阀(GV)10,以实现机组电负荷的调整。
在本公开实施例中,如图8所示,所述核心运算模块5还包括:第一曲线模块513、第二曲线模块514、第三曲线模块515、第一切换模块516和第二切换模块517;
所述第一曲线模块513中设置有预先得到的负荷曲线1,用于基于所述负荷曲线1确定测量得到的第一级压力对应的汽轮机负荷值;
所述第二曲线模块514中设置有预先得到的负荷曲线2,用于基于所述负荷曲线2确定测量得到的第一级压力对应的汽轮机负荷值;
所述第三曲线模块515中设置有预先得到的负荷曲线3,用于基于所述负荷曲线3确定测量得到的第一级压力对应的汽轮机负荷值;
所述第一切换模块516,用于接收切换信号并进行预先得到的负荷曲线1与预先得到的负荷曲线2的切换;
所述第二切换模块517,用于接收切换信号并进行预先得到的负荷曲线2与预先得到的负荷曲线3的切换;
其中,所述负荷曲线的个数是基于供热抽汽流量的工况种类确定的,且预先得到的曲线1、曲线2及曲线3均是以反应堆的功率为横坐标,以第一级压力为纵坐标绘制的。
需要说明的是,所述第一切换模块516和第二切换模517块还用于实现切换前后负荷曲线的相互自动跟踪;
所述流量阈值模块的数量与切换模块的数量一致;
其中,所述流量阈值模块的数量是基于供热抽汽流量的工况种类确定的。
在本公开实施例中,如图9所示,所述核心运算模块5还包括:第一流量阈值模块518、第二流量阈值模块519和供热投/退指令处理模块520;
所述第一流量阈值模块518,用于根据测量得到的供热抽汽流量的大小与第一流量阈值模块518中预先设置的阈值相比,若所述测量得到的供热抽汽流量大于所述预先设置的阈值,则所述第一流量阈值模块518向第一切换模块516发送由负荷曲线1切换到负荷曲线2的指令;
所述第二流量阈值模块519,用于根据测量得到的供热抽汽流量的大小与第二流量阈值模块519中预先设置的阈值相比,若所述测量得到的供热抽汽流量大于所述预先设置的阈值,则所述第二流量阈值模块519向第二切换模块517发送由负荷曲线2切换到负荷曲线3的指令;
所述供热投/退指令处理模块520,用于基于运行操作人员发送的供热投/退指令,判断供热装置是否满足供热投入条件,若满足,则发送供热投入指令。
综上所述,本公开实施例提供的控制系统,对手动供热装置的控制方式进行了优化改进,实现供热抽汽相关系统设备的智能化调节,可提高自动化程度,同时通过多运行控制曲线的无扰切换,避免了供热负荷变化期间反应堆一回路参数的扰动,提高了核电机组供热期间运行的安全性、可靠性。
实施例2
基于上述实施例1提供的系统,本实施示出了对供热装置中的抽汽快关调节阀(FCV)12、汽轮机高压缸进汽调节阀(GV)10和汽轮机低压缸进汽调节阀(ICV)11的控制过程,所述控制过程包括:如图10所示,首先,通过第一级压力测量装置1测量汽轮机第一级压力,通过高排压力测量装置2测量汽轮机高压缸排汽压力,通过抽汽供热流量测量装置3测量供热抽汽流量;其次,利用数据采集模块4采集测量得到的数据,并发送到核心运算处理模块5,再其次,所述核心运算处理模块5接收所述数据采集模块4发送的信号,然后利用所述核心运算处理模块5接收到的信号生成抽汽快关调节阀(FCV)12、汽轮机高压缸进汽调节阀(GV)10和汽轮机低压缸进汽调节阀(ICV)11的动作指令,将所述动作指令发送到信号输出模块6,所述信号输出模块6将所述抽汽快关调节阀(FCV)12的动作指令发送到抽汽快关调节阀(FCV)12进行阀门的控制;所述控制过程还包括,所述人机接口处理模块7接收核心运算处理模块5发送的处理后的信号和在生成动作指令过程中的信息并进行展示;所述信号输出模块6接收核心运算处理模块5发送的动作指令,并将所述动作指令发送到汽轮机控制器8进行控制自动增减电负荷,以实现热-电的联动,或利用接收到的信号确定所述汽轮机负荷值,同时将汽轮机负荷值发送到信号输出模块6,所述信号输出模块6将所述信号发送到反应堆功率控制系统14,所述反应堆功率控制系统14基于接收到的信号控制核反应堆 15的热功率,然后核反应堆15一回路冷却剂加热核岛蒸汽发生器9产生蒸汽,主蒸汽经汽轮机高压缸进汽调节阀(GV)10进入汽轮机组的高压缸,再经汽轮机低压缸进汽调节阀(ICV)11进入低压缸,经高、低压缸做功后驱动发电机产生电力,高压缸排汽的一部分经过抽汽管道及快关调节阀12后直接进入热网加热器13,热网加热器13对进入其中的供热循环水进行加热,最终通过加热循环水实现对外供热。
在本公开实施例中,所述核心运算处理模块5用于接收所述数据采集模块4发送的信号,然后利用所述信号生成抽汽快关调节阀(FCV)12、汽轮机高压缸进汽调节阀(GV)10和汽轮机低压缸进汽调节阀(ICV)11的动作指令包括:如图11所示,图11为核心运算处理模块5内部的详细功能框图,并描述了模块5与模块4、6、7之间的详细关系。参考图11,所述模块5承担着关键的运算处理任务,具体的,将抽汽流量定值生成模块501中根据热网负荷需求预设流量定值或由运行操作人员通过人机接口模块7将操作人员给出的流量定值输入至抽汽流量定值生成模块501中,然后抽汽流量定值生成模块501将所述流量定值送至供热流量自动调节模块502,同时将来自数据采集模块4的抽汽供热流量信号输入至供热流量自动调节模块502,供热流量自动调节模块502会比较实际供热流量与501输入定值的偏差,并根据偏差进行PID(比例/积分/微分)运算,结果作为FCV阀门的动作指令来控制阀门开关,进而调节供热蒸汽流量。其中,FCV阀位指令传送途中还需要经过手/自动模块503和超迟控制模块504,手/自动模块503实现调节回路的手/自动切换功能,自动时,装置输出调节算法模块502的指令,手动时,运行人员可通过人机接口对FCV的阀位进行设定,以实现阀门的手动控制。
进一步的,如图11所示,当超迟处理模块509接收到触发超迟功能的条件模块508发送的信号时,所述超迟处理模块509向超迟控制模块504发送控制指令,进而所述超迟控制模块504接收超迟处理模块509发送的控制指令,将接收到的控制指令发送到信号输出模块6,信号输出模块6接收所述控制指令,并将所述控制指令发送到抽汽快关调节阀(FCV)12,进而控制抽汽快关调节阀(FCV)12。其中,所述触发超迟功能的条件包括:供热退出、汽轮机跳闸、OPC动作。
同时,如图11所示,利用所述模块505确定高排压力定值,并将所述高排压力定值发送到高排压力调节模块510,高排压力调节模块510确定所述定值和测量得到的汽轮机高压缸的排汽压力的偏差,然后根据所述偏差进行PID运算,输出结果用以控制汽轮机低压缸进汽调节阀(ICV)11的开度以维持高排压力符合给定值的要求。具体来讲,高排压力调节模块510的控制指令输出与前馈处理模块511的输出相加后的综合指令送至信号输出模块6,通过信号输出模块6送至汽轮机控制器8,来控制汽轮机低压缸进汽调节阀(ICV)11的开度。其中所述高排压力定值模块505主要是依据第一级压力(代表汽轮机负荷)与高排压力的对应关系或根据来自人机接口模块7的运行人员设定来确定高排压力定值。
需要说明的是,由于ICV的频繁动作可能会带来汽轮机负荷的扰动以及阀门机械部分的磨损,因此高排压力的调节需考虑预设一定死区,具体死区大小视工程实际情况而定并通过现场试验进行修正。
需要说明的是,如图11所示,高排压力对核电汽轮机运行特别是末级叶片的安全至关重要,本发明除了考虑正常调节控制以外,还设计了额外保护回路。为了防止FCV的抽汽流量调节变化过快造成高排压力的波动,增加前馈处理模块511,以加快ICV的响应;同时还考虑了压比保护回路,即通过第一压比低通过阈值模块506和第二压比低通过阈值模块507实现FCV的关闭,避免工况进一步恶化,具体的,当所述测量得到的汽轮机高压缸的排汽压力和测量得到的第一级压力信号的比值大于所述预设的第一压比阈值,则所述第一压比低通过阈值模块506向供热流量自动调节模块502发送关闭抽汽快关调节阀(FCV)12的信号到信号输出模块6,信号输出模块6接收所述关闭抽汽快关调节阀(FCV)12的信号并将所述接收到的信号发送到抽汽快关调节阀(FCV)12,实现抽汽快关调节阀(FCV)12的关闭;当所述测量得到的汽轮机高压缸的排汽压力和测量得到的第一级压力信号的比值大于所述预设的第二压比阈值,则所述第二压比低通过阈值模块507向超迟处理模块509发送关闭抽汽快关调节阀(FCV)12的信号,实现抽汽快关调节阀(FCV)12的关闭。
需要说明的是,如图11所示,当所述抽汽流量的变化时通过供热流量负荷补偿算法模块512计算得出需要自动增减的机组电负荷值,并通过输出模块6送至汽轮机控制器8中自动增减电负荷控制汽轮机高压缸进汽调节阀(GV)10,以实现热-电的联动。
在本公开实施例中,基于上述实施例1提供的系统,本实施示出了对供热装置中确定汽轮机负荷值并对现场设备进行控制的过程包括:如图12所示,首先,通过第一级压力测量装置1测量汽轮机第一级压力,通过抽汽供热流量测量装置3测量供热抽汽流量;其次,利用数据采集模块4采集所述第一级压力、供热抽汽流量,并将所述采集的信号发送到核心运算处理模块5;再其次,所述核心运算处理模块5用于接收数据采集模块4发送的第一级压力信号、汽轮机高压缸的排汽压力和抽汽供热流量信号,利用接收到的所述信号确定汽轮机负荷值,将所述负荷值发送到人机接口处理模块7及信号输出模块6;然后,所述人机接口处理模块7用于接收核心运算处理模块5发送的负荷值进行展示,所述信号输出模块6用于接收核心运算处理模块5发送的汽轮机负荷值将所述汽轮机负荷值发送到反应堆功率控制系统14,最后,反应堆功率控制系统14基于所述负荷值控制核反应堆15冷却剂进入蒸汽发生器9,蒸汽发生器是核电站一回路和二回路的连接桥梁(蒸汽发生器传热管一侧是容纳反应堆冷却剂的一回路,另一侧是常规岛冷却水的二回路),反应堆冷却剂在蒸汽发生器中加热二回路水的同时也带走一回路的热量,冷却了反应堆堆芯,二回路水在蒸汽发生器内加热后蒸汽发生器出口生成主蒸汽,主蒸汽进入汽轮机组的高压缸中经高压缸做功,驱动发电机产生电力,高压缸排汽的一部分经过抽汽管道及快关调节阀12后直接进入热网加热器13,热网加热器13对进入其中的供热循环水进行加热,最终通过加热循环水实现对外供热。
在本公开实施例中,所述核心运算处理模块5用于接收数据采集模块4发送的第一级压力信号和抽汽供热流量信号,利用接收到的所述信号确定汽轮机负荷值包括:如图12所示,图12为核心运算处理模块5内部的详细功能框图,并描述了模块5与模块4、7的详细关系。参考图12,模块5承担着关键的运算处理任务,来自数据采集模块4的汽轮机第一级压力信号同时送至第一曲线模块513、第二曲线模块514、第三曲线模块515,其中,第 一曲线模块513中设置有纯凝曲线即曲线1,第二曲线模块514中设置有曲线2,第三曲线模块515中设置有曲线3;需要说明的是本实例提供的三条曲线,其中一条曲线代表纯凝曲线(纯凝工况下的第一级压力与汽轮机负荷关系曲线),另外两条曲线分别代表两种抽汽流量工况(比如500t/h及1000t/h)下对应的第一级压力与汽轮机负荷关系曲线,抽汽流量工况的选择需要综合考虑最大抽汽量以及负荷曲线偏差的影响而计算确定。曲线的输入端是汽轮机第一级压力,输出为根据曲线进行线性转换而来的汽轮机负荷值。
进一步的,如图12所示,纯凝曲线及曲线1的切换选取是通过第一切换模块516完成的,第一输入端口441及第二输入端口442分别代表第一切换模块516的两个输入(分别来自两个曲线的输出),第一控制端口443为第一切换模块516的控制端,当第一控制端口443为逻辑“0”时第一切换模块516会输出纯凝曲线的负荷值,当第一控制端口443为逻辑“1”时第一切换模块516会输出第二曲线模块514曲线的负荷值,为了避免第一输入端口441和第二输入端口442互相切换过程中的扰动,第一切换模块516可以实现两个输入端数据的相互跟踪,确保切换过程中的无扰。比如,第一切换模块516处在第一输入端口441运行时,第二输入端口442就自动跟踪第一输入端口441的值,一旦第一切换模块516检测到第一控制端口443为逻辑“1”时,就快速由第一输入端口441切换到第二输入端口442运行,由于第二输入端口442一直在跟踪第一输入端口441的值,所以切换的瞬间第一切换模块516的输出不变,切换之后其输出会以预设定好的速率(比如5%/min,具体根据工程实际情况而定)由第一输入端口441的值缓慢变化到第二输入端口442,反之亦然。
进一步的,如图12所示,第二切换模块517的动作原理同第一切换模块516,第二切换模块517用来选择系统是在曲线2还是曲线3运行。第一切换模块516和第二切换模块517的切换指令分别来自第一流量阈值模块518和第二流量阈值模块519,切换指令产生的原理举例解释如下:
假设3条曲线分别是纯凝工况、抽汽量500t/h及1000t/h三种工况分别对应的第一级压力与汽轮机负荷关系曲线,如图13、图14及图15所示,此时的第一流量阈值模块518设定值假设为大于250t/h动作,第二流量阈值模块519设定值为大于750t/h动作,动作过程实例为:机组投入抽汽供热时,首先由运行操作人员通过人机接口模块7发出供热投/退指令,该供热指令进入投/退指令处理模块520进一步计算处理,如果满足供热投入的条件(已准备就绪),则投/退指令处理模块520输出“1”,代表供热投入。当抽汽供热流量在低于250t/h时,第一流量阈值模块518和第二流量阈值模块519均不动作,第一控制端口443与第二控制端口453的值均为“0”,使第一切换模块516和第二切换模块517分别将第一输入端口441和第三输入端口451的值进行输出,这样纯凝曲线的汽轮机负荷值被输出;当抽汽供热流量在大于250t/h且小与750t/h时,第一流量阈值模块518动作输出“1”,由于此时投/退指令处理模块520输出也为“1”,第二流量阈值模块519取“非”运算后也为“1”,所以第一流量阈值模块518之后的“与”逻辑门输出“1”,这样第一切换模块516对应的第一控制端口443为“1”,使第一切换模块516从第一输入端口441切换至端口第二输入端口442,即由纯凝曲线切换至500t/h曲线运行;同理,当抽汽供热流量在大于750t/h时,第 二流量阈值模块519动作输出“1”,由于此时投/退指令处理模块520输出也为“1”,所以第二流量阈值模块519之后的“与”逻辑门输出“1”,这样第二切换模块517对应的第二控制端口453为1,使第二切换模块517的输出由第三输入端口451切换至第四输入端口452,会由500t/h曲线切换至1000t/h曲线运行。该智能装置除了可以根据不同的抽汽供热流量,自动完成负荷匹配曲线的选取外,还能够在人机界面上实时显示当前系统处于哪条曲线运行,方便运行人员监控。
综上所述,本公开实施例提供的控制系统,实现了对供热抽汽相关系统设备、高压缸排汽压力及汽轮机电负荷等的智能化调节,减少人因失误概率,提高了自动化程度以及设备操作的可靠性、安全性,而且系统调节方式灵活、响应快速,使供热机组的运行更加安全、高效、经济,同时,本实施例提供的控制系统,也较大程度地降低了原单根曲线造成的系统运行参数误差,提高了核电机组供热期间核岛系统运行的稳定性。同时,通过多运行控制曲线的无扰切换,避免了供热负荷变化期间核反应堆一回路参数的扰动,提高了核电机组供热期间运行的安全性、可靠性。
实施例3
如图16所示,基于实施例2中提供的系统对应的控制供热装置中的抽汽快关调节阀(FCV)12、汽轮机高压缸进汽调节阀(GV)10和汽轮机低压缸进汽调节阀(ICV)11的方法包括:
步骤1:获取测量得到的汽轮机第一级压力信号、汽轮机高压缸的排汽压力信号及抽汽供热流量信号和热网负荷需求对应的抽汽供热流量定值与高排压力定值;
步骤2:分别利用所述抽汽供热流量定值和所述抽汽供热流量信号确定所述抽汽供热流量信号与所述抽汽供热流量定值的偏差,利用所述高排压力定值和所述汽轮机高压缸的排汽压力信号确定所述排汽压力信号与所述高排压力定值的偏差;
步骤3:分别基于所述偏差与抽汽供热流量信号对抽汽快关调节阀(FCV)12、汽轮机低压缸进汽调节阀(ICV)11和汽轮机高压缸进汽调节阀(GV)10进行控制。
在本公开实施例中,所述分别基于所述偏差与抽汽供热流量信号对抽汽快关调节阀(FCV)12、汽轮机低压缸进汽调节阀(ICV)11和汽轮机高压缸进汽调节阀(GV)10进行控制,包括:
基于所述抽汽供热流量信号与所述抽汽供热流量定值的偏差对抽汽快关调节阀(FCV)12进行控制;
基于所述排汽压力信号与所述高排压力定值的偏差对汽轮机低压缸进汽调节阀(ICV)11进行控制;
基于抽汽供热流量信号确定需要自动增减的机组电负荷值对汽轮机高压缸进汽调节阀(GV)10进行控制。
综上所述,本公开实施例提供的控制方法,实现了对供热抽汽相关系统设备、高压缸排汽压力及汽轮机电负荷等的智能化调节,减少了手动操作的人因失误概率,提高了自动化程度以及设备操作的可靠性、安全性,而且系统调节方式灵活、响应快速,使供热机组的运 行更加安全、高效、经济。
实施例4
如图17所示,基于实施例2中提供的系统对应的控制供热装置中汽轮机负荷的方法包括:
步骤B1:利用数据采集模块4采集所述第一级压力信号和所述供热抽汽流量信号并对所述采集的所述第一级压力信号和所述抽汽供热流量信号进行预处理;
步骤B2:基于所述预处理后第一级压力信号和供热抽汽流量信号选择供热抽汽流量匹配的负荷曲线并确定汽轮机负荷值;
步骤B3:基于所述汽轮机负荷值对反应堆一回路的功率进行调节。
在本公开实施例中,所述基于所述采集的预处理后的汽轮机第一级压力信号和供热抽汽流量信号选择供热抽汽流量匹配的负荷曲线并确定汽轮机负荷值,包括:
根据预先设置的供热抽汽流量阈值和采集的供热抽汽流量信号的大小确定阈值模块输出的切换指令;
基于所述切换指令选择供热抽汽流量匹配的负荷曲线,并确定所述第一级压力信号对应的汽轮机负荷值。
在本公开实施例中,所述负荷曲线是基于供热抽汽流量的工况确定的。
综上所述,本实施例提供的控制方法,降低了系统运行参数误差,提高了核电机组供热期间核岛系统运行的稳定性,同时,通过多运行控制曲线的无扰切换,避免了供热负荷变化期间反应堆一回路参数的扰动,提高了核电机组供热期间运行的安全性、可靠性。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现定制逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本公开的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本公开的实施例所属技术领域的技术人员所理解。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (13)

  1. 一种核电厂供热装置控制系统,包括:
    第一级压力测量装置,用于测量汽轮机的第一级压力以得到第一级压力信号;
    高排压力测量装置,用于测量汽轮机高压缸的排汽压力以得到排汽压力信号;
    抽汽供热流量测量装置,用于测量抽汽供热流量以得到抽汽供热流量信号;
    数据采集模块,用于采集测量得到所述第一级压力信号、所述排汽压力信号和所述抽汽供热流量信号,并将采集的所述第一级压力信号、所述排汽压力信号和所述抽汽供热流量信号发送到核心运算处理模块;
    核心运算处理模块,用于接收数据采集模块发送的所述第一级压力信号、所述排汽压力信号和所述抽汽供热流量信号,并基于所述第一级压力信号、所述排汽压力信号和所述抽汽供热流量信号生成供热装置中各阀门的动作指令或利用接收到的信号确定所述汽轮机负荷值,同时将所述动作指令或汽轮机负荷值发送到信号输出模块;
    信号输出模块,用于从核心运算处理模块接收所述动作指令或汽轮机负荷值,并将所述动作指令或汽轮机负荷值发送到现场设备进行控制。
  2. 如权利要求1所述的核电厂供热装置控制系统,还包括:
    人机接口处理模块,用于与核心运算处理模块进行信息交互;
    其中,所述信息交互包括:核心运算处理过程中的手动操作指令、定值输入、信号显示、报警处理及功能投退等。
  3. 如权利要求2所述的核电厂供热装置控制系统,其中,所述基于所述一级压力信号、所述排汽压力信号和所述抽汽供热流量信号生成供热装置中各阀门的动作指令或利用接收到的信号确定所述汽轮机负荷值之前还包括:
    对接收到的所述第一级压力信号、排汽压力信号和抽汽供热流量信号进行预处理;
    其中,所述预处理包括:分别对多个通道采集的第一级压力信号、排汽压力信号及抽汽供热流量信号进行三取二冗余处理,并判断所述采集信号对应的量程是否超出预设的量程和判断所述采集信号的值是否大于预先设置的信号阈值,当所述采集信号对应的量程超出预设的量程或所述采集信号的值大于预先设置的信号阈值时发送报警信号到人机接口处理模块。
  4. 如权利要求1所述的核电厂供热装置控制系统,其中,所述核心运算处理模块包括:
    抽汽流量定值生成模块,用于将根据热网负荷需求预设的流量定值或操作人员通过人机接口模块给出的定值发送到供热流量自动调节模块;
    供热流量自动调节模块,用于接收所述抽汽流量定值生成模块发送的定值,并确定测量得到的抽汽供热流量与所述定值的偏差,然后根据所述偏差进行PID运算,将所述运算结果发送到手/自动模块;
    手/自动模块,用于接收供热流量自动调节模块发送的运算结果,并基于所述运算结果控制供热装置中抽汽快关调节阀FCV。
  5. 如权利要求2所述的核电厂供热装置控制系统,其中,所述核心运算处理模块还包括:
    高排压力定值生成模块,用于将根据汽轮机的设计要求预设的高排压力定值或操作人员通过人机接口模块给出的定值发送到高排压力调节模块;
    高排压力调节模块,用于接收测量的汽轮机高压缸的排汽压力和高排压力定值生成模块发送的排汽压力定值,并确定测得的排汽压力和所述定值的偏差,然后根据所述偏差进行PID运算,得到运算结果,并基于所述运算结果控制汽轮机低压缸进汽调节阀ICV。
  6. 如权利要求1所述的核电厂供热装置控制系统,其中,所述核心运算处理模块还包括:
    第一压比低通过阈值模块,用于将测量得到的汽轮机高压缸的排汽压力和测量得到的第一级压力信号的比值与预设的第一压比阈值相比,若所述测量得到的汽轮机高压缸的排汽压力和测量得到的第一级压力信号的比值大于所述预设的第一压比阈值,则所述第一压比低通过阈值模块向供热流量自动调节模块发送关闭抽汽快关调节阀的信号,实现抽汽快关调节阀的关闭;
    第二压比低通过阈值模块,用于将测量得到的汽轮机高压缸的排汽压力和测量得到的第一级压力信号的比值与预设的第二压比阈值相比,若所述测量得到的汽轮机高压缸的排汽压力和测量得到的第一级压力信号的比值大于所述预设的第二压比阈值,则所述第二压比低通过阈值模块向超迟处理模块发送关闭抽汽快关调节阀的信号,实现抽汽快关调节阀的快速关闭;
    超迟处理模块,用于接收触发超迟功能的条件模块发送的信号时,所述超迟处理模块向超迟控制模块发送控制指令,其中,所述触发超迟功能的条件包括:供热退出、汽轮机跳闸、OPC动作;
    超迟控制模块设置在抽汽快关调节阀的输入端,用于接收超迟处理模块发送的控制指令,并基于所述控制指令控制抽汽快关调节阀。
  7. 如权利要求5所述的核电厂供热装置控制系统,其中,所述核心运算处理模块还包括:
    前馈模块,用于对测量得到的抽汽供热流量的变化提前做出反应,使汽轮机低压缸进汽调节阀ICV提前动作,以便快速调节高排压力。
  8. 如权利要求4所述的核电厂供热装置控制系统,其中,所述核心运算处理模块还包括:
    供热流量负荷补偿算法模块,用于计算生成控制指令并在保持汽轮机总负荷不变的情况下,供热量调整的同时自动增减机组电负荷;
    其中,电负荷的增减是通过汽轮机控制器动作汽轮机高压缸进汽调节阀GV来完成的。
  9. 如权利要求1所述的核电厂供热装置控制系统,其中,所述核心运算模块还包括:
    第一曲线模块中设置有预先得到的负荷曲线1,用于基于所述负荷曲线1确定测量得到的第一级压力对应的汽轮机负荷值;
    第二曲线模块中设置有预先得到的负荷曲线2,用于基于所述负荷曲线2确定测量得到的第一级压力对应的汽轮机负荷值;
    第三曲线模块中设置有预先得到的负荷曲线3,用于基于所述负荷曲线3确定测量得到的第一级压力对应的汽轮机负荷值;
    第一切换模块,用于接收切换信号并进行预先得到的负荷曲线1与预先得到的负荷曲线2的切换;
    第二切换模块,用于接收切换信号并进行预先得到的负荷曲线2与预先得到的负荷曲线3的切换;
    其中,所述负荷曲线的个数是基于供热抽汽流量的工况种类确定的。
  10. 如权利要求9所述的核电厂供热装置控制系统,其中,所述核心运算模块还包括:
    第一流量阈值模块,用于根据测量得到的供热抽汽流量的大小与第一流量阈值模块中预先设置的阈值相比,若所述测量得到的供热抽汽流量大于所述预先设置的阈值,则所述第一流量阈值模块向第一切换模块发送由负荷曲线1切换到负荷曲线2的指令;
    第二流量阈值模块,用于根据测量得到的供热抽汽流量的大小与第二流量阈值模块中预先设置的阈值相比,若所述测量得到的供热抽汽流量大于所述预先设置的阈值,则所述第二流量阈值模块向第二切换模块发送由负荷曲线2切换到负荷曲线3的指令;
    供热投/退指令处理模块,用于基于运行操作人员发送的供热投/退指令,判断供热装置是否满足供热投入条件,若满足,则发送供热投入指令。
  11. 如权利要求9所述的核电厂供热装置控制系统,其中,所述第一切换模块和第二切换模块还用于实现切换前后负荷曲线的相互自动跟踪;
    所述流量阈值模块的数量与切换模块的数量一致;
    其中,所述流量阈值模块的数量是基于供热抽汽流量的工况种类确定的。
  12. 基于上述权利要求1-8任一项所述的核电厂供热装置控制系统的核电厂供热装置的控制方法,包括:
    获取测量得到的汽轮机第一级压力信号、汽轮机高压缸的排汽压力信号及抽汽供热流量信号和热网负荷需求对应的抽汽供热流量定值与高排压力定值;
    分别利用所述抽汽供热流量定值和所述抽汽供热流量信号确定所述抽汽供热流量信号与所述抽汽供热流量定值的偏差,利用所述高排压力定值和所述汽轮机高压缸的排汽压力信号确定所述排汽压力信号与所述高排压力定值的偏差;
    分别基于所述偏差与抽汽供热流量信号对抽汽快关调节阀、汽轮机低压缸进汽调节阀和汽轮机高压缸进汽调节阀进行控制。
  13. 基于上述权利要求1-3、9-11任一项所述的核电厂供热装置控制系统的核电厂供热装置的控制方法,包括:
    利用数据采集模块采集所述第一级压力信号和所述供热抽汽流量信号并对所述采集的所述第一级压力信号和所述抽汽供热流量信号进行预处理;
    基于所述预处理后第一级压力信号和供热抽汽流量信号选择供热抽汽流量匹配的负荷曲线并确定汽轮机负荷值;
    基于所述汽轮机负荷值对反应堆功率进行调节。
PCT/CN2023/076173 2022-02-24 2023-02-15 核电厂供热装置控制系统及方法 WO2023160444A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210169686.1 2022-02-24
CN202210169686.1A CN114233423B (zh) 2022-02-24 2022-02-24 核电厂供热装置控制系统及方法

Publications (1)

Publication Number Publication Date
WO2023160444A1 true WO2023160444A1 (zh) 2023-08-31

Family

ID=80747870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/076173 WO2023160444A1 (zh) 2022-02-24 2023-02-15 核电厂供热装置控制系统及方法

Country Status (2)

Country Link
CN (1) CN114233423B (zh)
WO (1) WO2023160444A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117145589A (zh) * 2023-10-31 2023-12-01 华能济南黄台发电有限公司 一种汽轮机低压缸零出力旁路冷却蒸汽调节装置
CN117829558A (zh) * 2024-03-06 2024-04-05 天津迪比爱新能源科技有限公司 热电联产机组在调峰运行下的调整方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114233423B (zh) * 2022-02-24 2022-05-13 山东核电有限公司 核电厂供热装置控制系统及方法
CN115614112B (zh) * 2022-10-11 2024-06-18 中广核工程有限公司 核电厂汽轮发电机电功率控制方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106246251A (zh) * 2016-10-21 2016-12-21 上海电气电站设备有限公司 联合循环热电联供系统及其高排抽汽控制方法
CN106326534A (zh) * 2016-08-15 2017-01-11 上海交通大学 变工况亚临界火电机组的锅炉‑汽机控制模型构建方法
CN106703904A (zh) * 2016-11-18 2017-05-24 华能国际电力开发公司铜川照金电厂 一种基于数据挖掘技术的汽轮机配汽曲线优化方法
CN208040466U (zh) * 2017-11-17 2018-11-02 中国大唐集团科学技术研究院有限公司火力发电技术研究所 末级安全流量监测与控制系统
CN113361107A (zh) * 2021-06-08 2021-09-07 中国大唐集团科学技术研究院有限公司中南电力试验研究院 一种汽轮机甩负荷后转速飞升的静态仿真预测方法
CN114233423A (zh) * 2022-02-24 2022-03-25 山东核电有限公司 核电厂供热装置控制系统及方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH429311A (de) * 1959-11-20 1967-01-31 Franz Dipl Ing Pauker Verfahren zum Umsetzen von Wärme in mechanische Energie
CN106014514B (zh) * 2016-06-24 2017-09-15 南京化学工业园热电有限公司 热电联调控制系统及方法
CN108825316A (zh) * 2018-08-29 2018-11-16 山西格盟安全生产咨询有限公司 一种抽汽供热机组快速响应负荷系统
CN113357689A (zh) * 2021-06-29 2021-09-07 国网黑龙江省电力有限公司电力科学研究院 一种供热机组调节能力的提升方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106326534A (zh) * 2016-08-15 2017-01-11 上海交通大学 变工况亚临界火电机组的锅炉‑汽机控制模型构建方法
CN106246251A (zh) * 2016-10-21 2016-12-21 上海电气电站设备有限公司 联合循环热电联供系统及其高排抽汽控制方法
CN106703904A (zh) * 2016-11-18 2017-05-24 华能国际电力开发公司铜川照金电厂 一种基于数据挖掘技术的汽轮机配汽曲线优化方法
CN208040466U (zh) * 2017-11-17 2018-11-02 中国大唐集团科学技术研究院有限公司火力发电技术研究所 末级安全流量监测与控制系统
CN113361107A (zh) * 2021-06-08 2021-09-07 中国大唐集团科学技术研究院有限公司中南电力试验研究院 一种汽轮机甩负荷后转速飞升的静态仿真预测方法
CN114233423A (zh) * 2022-02-24 2022-03-25 山东核电有限公司 核电厂供热装置控制系统及方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117145589A (zh) * 2023-10-31 2023-12-01 华能济南黄台发电有限公司 一种汽轮机低压缸零出力旁路冷却蒸汽调节装置
CN117145589B (zh) * 2023-10-31 2024-01-19 华能济南黄台发电有限公司 一种汽轮机低压缸零出力旁路冷却蒸汽调节装置
CN117829558A (zh) * 2024-03-06 2024-04-05 天津迪比爱新能源科技有限公司 热电联产机组在调峰运行下的调整方法
CN117829558B (zh) * 2024-03-06 2024-05-10 天津迪比爱新能源科技有限公司 热电联产机组在调峰运行下的调整方法

Also Published As

Publication number Publication date
CN114233423A (zh) 2022-03-25
CN114233423B (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2023160444A1 (zh) 核电厂供热装置控制系统及方法
CN103791485A (zh) 一种火电机组给水系统优化控制方法
WO1983001651A1 (en) Hrsg damper control
CN109057897A (zh) 用于火电机组fcb时的汽源切换方法
CN111255530B (zh) 一种带有低压缸蝶阀辅助的火电机组负荷调节系统及方法
CN113669717B (zh) 一种给水自动控制的方法、装置、及存储介质
CN111255529A (zh) 供热切缸机组运行时快速响应自动发电控制系统及方法
CN110130436B (zh) 智能水能循环节电系统
CN111058902A (zh) 一种基于工业汽机异步发电的节能系统和节能控制方法
CN113638776A (zh) 一种抽汽背压式汽轮机热力系统及其控制方法
CN208633887U (zh) 用于火电机组的汽源系统
CN211851929U (zh) 供热切缸机组运行时快速响应自动发电控制系统
CN106246251B (zh) 联合循环热电联供系统及其高排抽汽控制方法
CN116292063A (zh) 管道式异步水力发电控制系统及其控制策略
WO2022180945A1 (ja) 原子力発電プラントの出力制御装置及び出力制御方法
CN113605997B (zh) 一种汽机旁路系统单回路双调节对象控制方法
CN113606001B (zh) 一种600mw超临界机组旁路系统及其旁路温度控制方法
CN209228416U (zh) 汽动给水泵的气源快速切换装置
CN114542222B (zh) 核能抽汽供热的控制系统及方法
CN109458231B (zh) 一种蒸汽轮机的启动装置和启动方法
CN114575948B (zh) 核电厂抽汽供热机组堆机协调控制系统及方法
CN115324674B (zh) 一种火电机组变频凝结水泵参与电网频率调节的系统
CN210637123U (zh) 一种塔式光热电站旁路阀减压系统
JP3112579B2 (ja) 圧力制御装置
CN117052495A (zh) 一种核能供热机组堆机功率匹配方法及系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759069

Country of ref document: EP

Kind code of ref document: A1