WO2023160334A1 - 一种大直径压液式自动平衡执行器 - Google Patents

一种大直径压液式自动平衡执行器 Download PDF

Info

Publication number
WO2023160334A1
WO2023160334A1 PCT/CN2023/073846 CN2023073846W WO2023160334A1 WO 2023160334 A1 WO2023160334 A1 WO 2023160334A1 CN 2023073846 W CN2023073846 W CN 2023073846W WO 2023160334 A1 WO2023160334 A1 WO 2023160334A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid storage
gas
gas injection
storage chamber
balance
Prior art date
Application number
PCT/CN2023/073846
Other languages
English (en)
French (fr)
Inventor
潘鑫
吴海琦
高金吉
江志农
李薇
葛德宏
Original Assignee
北京化工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京化工大学 filed Critical 北京化工大学
Publication of WO2023160334A1 publication Critical patent/WO2023160334A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/32Correcting- or balancing-weights or equivalent means for balancing rotating bodies, e.g. vehicle wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/32Correcting- or balancing-weights or equivalent means for balancing rotating bodies, e.g. vehicle wheels
    • F16F15/36Correcting- or balancing-weights or equivalent means for balancing rotating bodies, e.g. vehicle wheels operating automatically, i.e. where, for a given amount of unbalance, there is movement of masses until balance is achieved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F15/00Suppression of vibrations in systems; Means or arrangements for avoiding or reducing out-of-balance forces, e.g. due to motion
    • F16F15/32Correcting- or balancing-weights or equivalent means for balancing rotating bodies, e.g. vehicle wheels
    • F16F15/36Correcting- or balancing-weights or equivalent means for balancing rotating bodies, e.g. vehicle wheels operating automatically, i.e. where, for a given amount of unbalance, there is movement of masses until balance is achieved
    • F16F15/366Correcting- or balancing-weights or equivalent means for balancing rotating bodies, e.g. vehicle wheels operating automatically, i.e. where, for a given amount of unbalance, there is movement of masses until balance is achieved using fluid or powder means, i.e. non-discrete material

Definitions

  • the present application relates to the technical field of vibration intelligent control of rotating equipment, in particular to a large-diameter hydraulic hydraulic automatic balance actuator.
  • the online automatic balancing device can suppress the unbalanced vibration of the rotor in real time during the operation of the equipment, which plays an important role in ensuring the long-term safe and stable operation of the equipment and improving the intelligent level of the equipment.
  • the online automatic balancing system includes: sensors, controllers, actuators and accessories.
  • the basic principle is as follows: a balance actuator that rotates synchronously with the rotor is installed on the rotating equipment in advance; during the operation of the equipment, the sensor collects the rotation parameters of the rotating equipment in real time, and inputs the signal into the measuring controller. , the measurement and controller issues instructions to form a compensation vector by changing the mass distribution inside the actuator online, and suppress the unbalanced vibration of the rotating equipment in real time.
  • Liquid automatic balancing actuator is a common online automatic balancing device. There are multiple liquid storage chambers inside the actuator. By injecting or discharging a certain amount of liquid in one or several liquid storage chambers, the internal quality of the actuator can be achieved. redistribution to offset the original imbalance.
  • the automatic balance actuator has the advantages of simple form and structure, high balance precision and environmental friendliness.
  • the liquid automatic balance actuator mainly has the following forms:
  • Liquid injection type automatic balance actuator By controlling the opening and closing of the solenoid valve, a certain liquid is injected from the nozzle into the inside of the balance actuator to form a compensation vector opposite to the direction of the unbalance vector and equal in magnitude.
  • Liquid release type automatic balance actuator fill the liquid storage chamber with balancing liquid in advance, install the solenoid valve in the liquid chamber, and turn on the solenoid valve when balancing. Open, discharge a certain amount of liquid to eliminate the original imbalance.
  • Liquid injection and discharge type automatic balance actuator by accurately controlling the amount of injected liquid and analyzing the amount of discharged liquid, the dynamic balance of the injected and discharged liquid is realized to determine the amount of remaining liquid in the final liquid cavity to achieve dynamic balance.
  • Liquid transfer type automatic balance actuator Inject a certain balance liquid into the actuator liquid storage chamber in advance, and balance the initial unbalance by transferring the liquids in adjacent or opposite liquid storage chambers to each other.
  • the continuous injection and discharge type automatic balance actuator solves the problem that the liquid injection and discharge type automatic balance actuator loses its adjustment ability due to liquid filling or emptying, but the discharge liquid is uncontrollable and the accuracy of the actuator is affected. Moreover, the above three actuators all have the problem of being unable to maintain the original balance state after shutdown.
  • the liquid transfer type automatic balancing actuator not only gets rid of the process of filling and draining liquid, but also can maintain the balance state after shutdown.
  • the methods of transferring liquid include heating and evaporating medium transfer, adding a pump inside the actuator to transfer liquid, and adding a pneumatic device to transfer the medium.
  • Heating the evaporating medium has high requirements on temperature and medium transfer volume, and the balance speed is affected.
  • Adding movable parts inside the actuator greatly reduces the reliability of the actuator.
  • a large-diameter hydraulic-type automatic balancing actuator is designed to expand the hydraulic-hydraulic automatic balancing actuator. application range.
  • the balancing ability of the hydraulic-hydraulic automatic balancing actuator is related to the diameter of the location of the liquid storage chamber, and it also has sufficient balancing ability for large-diameter rotors.
  • the purpose of this application is to provide a large-diameter hydraulic hydraulic automatic balancing actuator, which does not need to destroy the integrity of the large-diameter rotor and equipment to be balanced during installation, and the actuator has sufficient and durable balance for the large-diameter rotor capacity and guarantee the reliability of the automatic balancing process.
  • a large-diameter hydraulic-hydraulic automatic balancing actuator including a stator and a balance plate, the stator and bearings are fixed on the base, the bearings support the rotor to be balanced, the balance plate is fixed on the outside of the rotor to be balanced and The stator rotates synchronously with the rotor to be balanced, and the stator is arranged on the outside of the balance disk.
  • the stator is fixed on the base of the equipment by bolts, the balance disk is connected to the rotor to be balanced by bolts, and there is a certain gap between the balance disk and the stator in the radial direction.
  • the function of the base is to fix the stator and the bearing of the rotor to be balanced, and the bearing plays a supporting role.
  • the balance plate includes a middle sleeve, a liquid storage pan and a shield.
  • the middle sleeve is fitted on the outer wall of the liquid storage pan with an interference fit.
  • the outer wall of the middle sleeve is axially provided with four gas circulation grooves.
  • the liquid storage tray includes four liquid storage chambers uniformly distributed along the circumferential direction. There is an equal amount of balance liquid in the liquid storage chamber initially, and an air injection pipe is arranged in the liquid storage chamber, and the air injection pipe is fixedly arranged on the liquid storage chamber.
  • the outer side wall of the chamber is inserted into the inner side wall of the liquid storage chamber, and the gas injection pipe communicates with the gas circulation groove.
  • the intermediate sleeve is shrunk onto the liquid storage tray and assembled into one body through the shrunk fit.
  • a connecting pipe is connected between the liquid storage chamber and the liquid storage chamber opposite to it, and an emptying pipe is connected in the middle of the connecting pipe, and one end of the emptying pipe is fixedly arranged on the bottom surface of the liquid storage tray.
  • the other end of the emptying pipe is connected to the atmosphere, the middle part of the emptying pipe is connected to the connecting pipe, the connecting pipe and the exhaust pipe are arranged in the shield, and the shield is fixedly arranged on the liquid storage tray .
  • the function of the communication pipe is to serve as a fluid passage for the transfer of the balance liquid
  • the function of the emptying pipe is to balance the pressure of the two liquid storage chambers connected by the communication pipe when the hydraulic balance actuator is inactive, so that It is equal to the external atmospheric pressure, so as to avoid the pressure in a liquid storage chamber being greater than the atmospheric pressure due to multiple balance gas injections, which will affect the transfer of the balance liquid, thereby affecting the balance effect.
  • the shield is connected to the liquid storage pan by bolts, and the shield protects the communication pipe and the exhaust pipe from being damaged.
  • the bottom of the stator is provided with four gas injection channels with different depths in the axial direction, and the gas injection channels correspond to the gas circulation grooves on the outer side wall of the middle sleeve;
  • the air passages are respectively communicated with the air source through solenoid valves.
  • the middle sleeve is the dynamic and static transmission part that realizes the dynamic and static transmission of compressed gas from the stationary gas injection channel on the stator to the internal liquid storage cavity of the liquid storage pan that rotates synchronously with the rotor to be balanced.
  • the gas injection pipe is arranged at the axial and circumferential center of the liquid storage chamber, and the outer surface of the outer wall of the liquid storage chamber is provided with a long circular groove, and one end of the long circular groove is connected to the bottom wall of the gas circulation groove , the other end of the oblong groove is connected with the top end of the gas injection tube.
  • the air intake process of this layout of the gas injection pipe is more uniform, and the parameters such as the transfer speed are consistent during the liquid transfer process.
  • the local resistance will increase. If the sealing requirements are low or This structure is more suitable when the demand for air intake is small.
  • the gas provided by the gas source passes through four solenoid valves, and then passes through four gas channels, corresponding to four gas injection channels with different depths on the stator, and the four gas injection channels correspond to the four gas circulation grooves on the middle sleeve respectively along the axial depth , the long circular grooves at the bottom of the four gas circulation grooves correspond to the four gas injection pipes in the four liquid storage chambers respectively, forming four independent gas circulation channels, that is, the gas passes through the long circular grooves and gas injection pipes at the bottom of the gas circulation groove of the middle sleeve into the four liquid storage chambers respectively.
  • gas labyrinth sealing grooves are provided between the gas circulation grooves.
  • the gas labyrinth sealing groove divides the gas circulation groove on the outer wall of the middle sleeve into independent air passages independent of each other, so that the gases between each gas circulation groove are independent of each other and do not affect each other.
  • each pair of air inlets has the same axial position and is symmetrical around the center of the rotation axis, and the gas flow between each pair of air inlets and the outer side wall of the middle sleeve
  • the circulation grooves are in one-to-one correspondence; the air inlets are respectively connected to air passages, and the air passages are respectively connected to the air source through electromagnetic valves.
  • the gas injection pipe is arranged at the circumferential center of the liquid storage chamber and at a position corresponding to the gas circulation groove in the axial direction, and the bottom of the gas circulation groove is provided with a through hole corresponding to the gas injection pipe.
  • This layout of the gas injection pipe adopts a structure in which the gas flow groove is directly connected to the gas injection pipe, which improves the gas injection effect and reduces the local resistance caused by the long circular groove structure. It is suitable for situations where the air intake volume is relatively large, and can greatly increase the air intake effect.
  • the gas provided by the gas source passes through four solenoid valves, and then passes through four air passages, corresponding to the four pairs of air inlets of the stator.
  • the long circular grooves in the four liquid storage chambers correspond to the four gas injection pipes respectively, forming four independent gas circulation channels, that is, the gas enters the four liquid storage chambers through the long circular grooves and gas injection pipes at the bottom of the gas circulation groove of the middle sleeve. cavity.
  • brush seals are provided on both sides of the gas circulation groove, and the brush seals include a front plate, a rear plate and brush filament bundles.
  • the brush seals are welded on the inner side of the stator, and there are four pairs in total, each pair has two pairs, corresponding to the two sides of the four gas circulation grooves installed on the middle sleeve.
  • the brush-type sealing device divides the gas circulation grooves on the outer wall of the middle sleeve into independent air passages that are independent of each other and do not affect each other, so that the gases between each gas circulation groove are independent of each other and do not affect each other.
  • the liquid storage tray includes a first liquid storage chamber, a second liquid storage chamber, a third liquid storage chamber, and a fourth liquid storage chamber that are uniformly distributed and arranged in sequence, and the first liquid storage chamber and the third liquid storage chamber
  • a first communication pipe is connected between the liquid chambers
  • a second communication pipe is connected between the second liquid storage chamber and the fourth liquid storage chamber
  • a first emptying pipe is connected in the middle of the first communication pipe.
  • pipe, and the middle of the second communicating pipe is connected with a second emptying pipe.
  • the bottom of the stator is axially provided with a first gas injection channel, a second gas injection channel, a third gas injection channel and a fourth gas injection channel with different depths, the first gas injection channel, the second gas injection channel
  • the second gas injection channel, the third gas injection channel and the fourth gas injection channel correspond to the four gas circulation grooves on the outer wall of the middle sleeve respectively.
  • the outer wall of the stator is provided with a first air inlet, a second air inlet, a third air inlet and a fourth air inlet, each pair of the first air inlet, the second air inlet,
  • the third air inlet and the fourth air inlet have the same axial position and are symmetrical around the center of the rotation axis. There is a one-to-one correspondence with the gas circulation grooves on the outer side wall.
  • a certain amount of balance liquid is pre-stored in the four liquid storage chambers on the liquid storage tray, and there are connecting pipes connected between the liquid storage chambers and the oppositely arranged liquid storage chambers, and the middle of the connecting pipes is connected with a drain
  • the compressed gas provided by the gas source can enter the corresponding liquid storage chamber through any of the above four gas injection channels to drive the pre-stored balance in the liquid storage chamber.
  • the liquid is transferred to the opposite liquid storage chamber along the corresponding communication pipe, and in addition, gas can be injected into the adjacent chambers at the same time, and the balance liquid in the two adjacent liquid storage chambers is driven to transfer to the opposite liquid storage chamber at the same time.
  • vector synthesis can be used to calculate the amount of balance liquid that needs to be transferred, and then the amount of injected gas can be controlled by controlling the on-off time of the solenoid valve to determine the amount of balance liquid transfer, realize the redistribution of actuator mass, and complete automatic balance .
  • a large-diameter hydraulic-hydraulic automatic balancing actuator of this application maintains the dynamic balancing process of the rotor to be balanced:
  • the vibration signal and speed signal of the rotor to be balanced are obtained in real time through the vibration sensor installed on the bearing near the actuator end of the rotor to be balanced and the speed sensor outside the rotor to be balanced, and input to the controller.
  • the measuring and controller analyzes the vibration signal and the rotational speed signal.
  • the vibration of the rotor to be balanced exceeds the standard, the size and phase of the unbalanced amount of the rotor to be balanced are analyzed, and the direction and amount of the balance liquid to be transferred in the liquid storage chamber are calculated.
  • the algorithm calculates the on-off time required for the solenoid valves corresponding to two adjacent liquid storage chambers, and outputs control signals.
  • the solenoid valve receives the control signal, so that the compressed gas in the gas source passes through the above-mentioned mutually independent gas injection channels, and drives the balance liquid in the adjacent liquid storage chamber to transfer to the opposite liquid storage chamber, so that the mass of the actuator balance disc Redistribute until the vibration of the rotor to be balanced returns to a normal level, and the dynamic balancing process ends.
  • the hydraulic-hydraulic automatic balance actuator has no injection and discharge process, and has a long-lasting balance ability.
  • the amount of balance liquid to be transferred is determined, and the gas injection time is determined according to the on-off time of the solenoid valve, so that the balance process is controllable, without multi-step adjustment, and the balance accuracy and efficiency are greatly improved.
  • the hydraulic type automatic balance actuator does not need to inject or discharge liquid, and realizes the mass redistribution of the actuator by transferring liquid. After the shutdown, each liquid storage The balance fluid in the chamber remains in the state before shutdown, which not only overcomes the problem that the balance cannot be maintained, but is also environmentally friendly.
  • the hydraulic automatic balance actuator drives the balance liquid transfer in the liquid storage chamber through compressed gas.
  • the gas comes from a wide range of sources and is not complicated by the factory. Environmental constraints, no moving parts inside. The overall structure is simple and the reliability is high.
  • the hydrostatic type automatic balancing actuator is sleeved on the outside of the large-diameter rotor to be balanced, and its balancing ability is proportional to the diameter of the actuator.
  • Large-diameter rotors are more difficult to seal and transmit air pressure than small-diameter rotors such as grinding wheels.
  • the combination of the gas circulation groove and the gas injection channel between the sleeves improves the efficiency of dynamic and static transmission of compressed gas, and can increase the diameter of the gas injection pipe or the gas injection pressure so that the hydraulic-hydraulic automatic balancing actuator can meet the needs of large-diameter rotors. online automatic balance.
  • Fig. 1 shows a schematic structural view of Embodiment 1 of a large-diameter hydraulic-hydraulic automatic balancing actuator of the present application.
  • Fig. 2 shows a schematic diagram of the assembly structure of Embodiment 1 of a large-diameter hydraulic-hydraulic automatic balancing actuator of the present application.
  • Fig. 3 shows a structural diagram of an assembly example of Embodiment 1 of a large-diameter hydraulic-hydraulic automatic balancing actuator of the present application.
  • Fig. 4 shows a schematic diagram of the internal structure of the balance disk in Embodiment 1 of a large-diameter hydraulic-type automatic balancing actuator of the present application.
  • FIG. 5 shows a schematic cross-sectional structure diagram of A-A in FIG. 4 of the present application.
  • FIG. 6 shows a schematic diagram of a partially enlarged structure of part A in FIG. 5 of the present application.
  • FIG. 7 shows a schematic diagram of a partially enlarged structure of part B in FIG. 5 of the present application.
  • FIG. 8 shows a schematic structural diagram of Embodiment 2 of a large-diameter hydraulic-hydraulic automatic balancing actuator of the present application.
  • FIG. 9 shows a schematic cross-sectional structure diagram of the first liquid storage chamber of Embodiment 2 of a large-diameter hydraulic-hydraulic automatic balancing actuator of the present application.
  • spatially relative terms such as “below”, “below”, “lower”, “above”, “above”, “upper”, etc., may be used to describe the relationship between one element or feature and another.
  • the spatially relative terms are intended to encompass different orientations of the item in use or operation in addition to the orientation depicted in the figures. For example, if an item in the figures is turned over, elements described as “below” or “beneath” other elements or features would then be oriented “above” the elements or features.
  • the exemplary term “below” can encompass both an orientation of below and above. Items may be otherwise oriented (rotated 90 degrees or otherwise) and the spatially relative terms used herein should be interpreted accordingly.
  • a large-diameter hydraulic-hydraulic automatic balance actuator includes a stator 1 and a balance plate 2, the stator 1 and the bearing 7 are fixed on the base 9, and the bearing 7 supports the The rotor 6 is balanced.
  • the balance disk 2 is fixedly arranged outside the rotor 6 to be balanced and rotates synchronously with the rotor 6 to be balanced.
  • the stator 1 is arranged outside the balance disk 2 .
  • the stator 1 is fixed on the base 9 of the equipment by bolts, the balance disk 2 is connected to the rotor 6 to be balanced by bolts, and there is a certain gap between the balance disk 2 and the stator 1 in the radial direction.
  • the function of the base 9 is to fix the stator 1 and the bearing 7 of the rotor 6 to be balanced, and the bearing 7 plays a supporting role.
  • the balance plate 2 includes an intermediate sleeve 21, a liquid storage tray 22 and a shield 23.
  • the intermediate sleeve 21 is interference-fitted on the outer wall of the liquid storage tray 22, and the outer wall of the intermediate sleeve 21 is axially provided with Four gas circulation grooves 211, the liquid storage plate 22 includes four liquid storage chambers uniformly distributed along the circumference, the same amount of balance liquid is initially contained in the liquid storage chambers, and the gas injection pipe 31 is arranged in the liquid storage chambers
  • the gas injection pipe 31 is fixedly arranged on the outer wall of the liquid storage chamber and inserted into the inner wall of the liquid storage chamber, and the gas injection pipe 31 communicates with the gas circulation groove 211 .
  • the intermediate sleeve 21 is shrink-fitted on the liquid storage tray 22 after the processing is completed, and assembled into one body through shrink-fitting.
  • a connecting pipe is connected between the liquid storage chamber and the liquid storage chamber opposite to it, and an emptying pipe is connected in the middle of the connecting pipe, and one end of the emptying pipe is fixedly arranged on the bottom surface of the liquid storage tray 22.
  • the other end of the emptying tube It communicates with the atmosphere, and the middle part of the emptying pipe communicates with the connecting pipe.
  • the connecting pipe and the exhaust pipe are arranged in the shield 23 , and the shield 23 is fixedly arranged on the liquid storage tray 22 .
  • the function of the communication pipe is to serve as a fluid passage for the transfer of the balance liquid
  • the function of the emptying pipe is to balance the pressure of the two liquid storage chambers connected by the communication pipe when the hydraulic balance actuator is inactive, so that It is equal to the external atmospheric pressure, so as to avoid the pressure in a liquid storage chamber being greater than the atmospheric pressure due to multiple balance gas injections, which will affect the transfer of the balance liquid, thereby affecting the balance effect.
  • the shield 23 is connected to the liquid storage pan 22 by bolts, and the shield 23 is used to protect the connecting pipe and the exhaust pipe from being damaged.
  • the bottom of the stator 1 is provided with four gas injection channels of different depths in the axial direction, and the gas injection channels correspond to the gas circulation grooves 211 on the outer side wall of the middle sleeve 21;
  • the air passages 4 communicate with the air sources 8 through solenoid valves 5 respectively.
  • the middle sleeve 21 is the dynamic and static transmission part for realizing the gas injection of the compressed gas from the stationary gas injection channel on the stator 1 to the internal liquid storage cavity of the liquid storage disc 22 which rotates synchronously with the rotor 6 to be balanced.
  • the gas injection pipe 31 is arranged at the axial and circumferential center of the liquid storage cavity, and the outer surface of the outer wall of the liquid storage cavity is provided with a long circular groove 212, and one end of the long circular groove 212 is connected to the bottom wall of the gas circulation groove 211 The other end of the oblong groove 212 is connected with the top end of the gas injection tube 31 .
  • the air intake process of this layout of the gas injection pipe 31 is more uniform, and the parameters such as the transfer speed during the liquid transfer process are consistent, but because the gas is introduced into the gas injection pipe 31 from the gas circulation groove 211 through the long circular groove 212, the local resistance will be increased. If This structure is more suitable for low sealing requirements or small air intake requirements.
  • the gas provided by the gas source 8 passes through four solenoid valves 5, and then passes through four gas channels 4, corresponding to the four gas injection channels with different depths on the stator 1, and the four gas injection channels correspond to the axial depths of the middle sleeve 21 respectively.
  • Four gas circulation grooves 211, the long circular grooves 212 at the bottom of the four gas circulation grooves 211 correspond to the four gas injection pipes 31 in the four liquid storage chambers respectively, forming four independent gas circulation channels, that is, the gas passing through the middle sleeve 21
  • the oblong groove 212 at the bottom of the circulation groove 211 and the gas injection pipe 31 respectively enter into the four liquid storage chambers.
  • Gas labyrinth sealing grooves are arranged between the gas circulation grooves 211 .
  • the gas labyrinth sealing groove divides the gas circulation groove 211 on the outer wall of the middle sleeve 21 into independent air passages independent of each other, so that the gas between each gas circulation groove 211 is independent of each other and does not affect each other.
  • the liquid storage tray 22 includes a first liquid storage chamber 221 , a second liquid storage chamber 222 , a third liquid storage chamber 223 and a fourth liquid storage chamber 224 which are evenly distributed and arranged in sequence.
  • a first communication pipe 321 is connected between the chamber 221 and the third liquid storage chamber 223, and a second communication pipe 322 is connected between the second liquid storage chamber 222 and the fourth liquid storage chamber 224.
  • the middle of the communication pipe 321 is communicated with a first emptying pipe 331
  • the middle of the second communicating pipe 322 is connected with a second emptying pipe 332 .
  • the bottom of the stator 1 is axially provided with a first gas injection channel 11 , a second gas injection channel 12 , a third gas injection channel 13 and a fourth gas injection channel 14 with different depths.
  • Gas injection channel 11, the second gas injection channel 12, the first The three gas injection channels 13 and the fourth gas injection channel 14 correspond to the four gas circulation grooves 211 on the outer wall of the middle sleeve 21 respectively.
  • a large-diameter hydraulic-hydraulic automatic balancing actuator in this embodiment is used for real-time dynamic balancing of the rotor 6 to be balanced.
  • the first liquid storage chamber 221, the second liquid storage chamber 222, the third liquid storage chamber 223 and the The fourth liquid storage chamber 224 contains an equal amount of balance liquid, and the balance plate 2 is in a balanced state. If the rotor 6 to be balanced operates normally at this time, the actuator will not operate, and the original balance state of the rotor 6 to be balanced will not be affected.
  • the vibration sensor and the speed sensor arranged on the bearing 7 and the rotor 6 to be balanced will input the vibration signal and the speed signal into the controller, and the controller will analyze and process the signal to obtain the vibration of the rotor 6 to be balanced. exceed the standard, and calculate the size and phase of the unbalanced amount (for example, if it is necessary to transfer the balance liquid to the third liquid storage chamber 223 and the fourth liquid storage chamber 224), output the control command, open the solenoid valve 5, and the compressed gas passes through the electromagnetic valve from the gas source 8.
  • the valve (the solenoid valve 5 is energized for t221 and t222 respectively), the gas channel 4, the first gas injection channel 11 and the second gas injection channel 12 on the stator 1, corresponding to the gas circulation groove 211 on the middle sleeve 21, oblong
  • the tank 212 and the gas injection pipe 31 reach the first liquid storage chamber 221 and the second liquid storage chamber 222.
  • the liquid in the liquid storage chamber is driven by compressed gas, and the balance liquid in the first liquid storage chamber 221 is transferred to the third liquid storage chamber along the communication pipe 321.
  • the balance liquid in the liquid storage chamber 223 and the second liquid storage chamber 222 is transferred to the fourth liquid storage chamber 224 along the communication pipe 322 (the transfer amount of the balance liquid is determined by the duration t 221 and t 222 of the solenoid valve). Then the mass of the balance disk is redistributed, and when the balance rotor 6 returns to the normal operation state, the monitor and controller monitors and displays normal, the solenoid valve 5 is disconnected, the transfer of the balance liquid stops, and the balance process ends.
  • a large-diameter hydraulic-hydraulic automatic balance actuator is different from Embodiment 1 in the way of air intake and sealing, specifically including four pairs of air inlets on the outer wall of the stator 1.
  • Gas ports, each pair of air inlets have the same axial position and are symmetrical around the center of the rotation axis, and each pair of air inlets corresponds to the gas circulation groove 211 on the outer wall of the middle sleeve 21; the air inlets are respectively connected to the gas circuit Channel 4, said air channel 4 communicates with an air source 8 through a solenoid valve 5 respectively.
  • the gas injection pipe 31 is arranged at the circumferential center of the liquid storage chamber and at a position corresponding to the gas circulation groove 211 in the axial direction, and the bottom of the gas circulation groove 211 is provided with a through hole corresponding to the gas injection pipe 31 .
  • the layout of the gas injection pipe 31 adopts a structure in which the gas circulation groove 211 is directly connected to the gas injection pipe 31 , which improves the gas injection effect and reduces the local resistance caused by the structure of the long circular groove 212 . It is suitable for situations where the air intake volume is relatively large, and can greatly increase the air intake effect.
  • the gas provided by the gas source 8 passes through four solenoid valves 5, and then passes through four gas passages 4, corresponding to the four pairs of air inlets of the stator 1, and the four pairs of air inlets respectively correspond to the four gas circulation grooves 211 on the middle sleeve 21,
  • the oblong grooves 212 at the bottom of the four gas circulation grooves 211 correspond to the four gas injection pipes 31 in the four liquid storage chambers respectively, forming four mutually independent gas circulation channels, that is, the gas passes through the oblong circle at the bottom of the gas circulation groove 211 of the middle sleeve 21
  • the groove 212 and the gas injection pipe 31 respectively enter into the four liquid storage chambers.
  • Both sides of the gas circulation groove 211 are provided with brush seals 15, and the brush seals include a front plate, a rear plate and brush filament bundles.
  • the brush seals 15 are welded on the inner side of the stator 1, and there are four pairs in total, each pair has two pairs, corresponding to the two sides of the four gas circulation grooves 211 installed on the middle sleeve 21.
  • the brush seal device 15 divides the gas circulation groove 211 on the outer wall of the middle sleeve 21 into independent air passages independent of each other, so that the gas between each gas circulation groove 211 is independent of each other and does not affect each other.
  • the outer wall of the stator 1 is provided with a first air inlet 11', a second air inlet 12', a third air inlet 13' and a fourth air inlet 14', and each pair of first air inlets
  • the air inlet 11', the second air inlet 12', the third air inlet 13' and the fourth air inlet 14' have the same axial position and are symmetrical around the rotation axis.
  • the second air inlet 12 ′, the third air inlet 13 ′ and the fourth air inlet 14 ′ are in one-to-one correspondence with the gas circulation grooves 211 on the outer wall of the middle sleeve 21 .
  • a large-diameter hydraulic-hydraulic automatic balancing actuator in this embodiment is used for real-time dynamic balancing of the rotor 6 to be balanced, which is basically the same as the first embodiment.
  • the first liquid storage chamber 221, the second liquid storage chamber 222, the third liquid storage chamber 223 and the fourth liquid storage chamber 224 contain equal amounts of balance liquid, and the balance plate 2 is in a balanced state. 6 If the operation is normal at this time, the actuator does not act and does not affect the original balance state of the rotor 6 to be balanced.
  • the vibration sensor and the speed sensor arranged on the bearing 7 and the rotor 6 to be balanced will input the vibration signal and the speed signal into the controller, and the controller will analyze and process the signal to obtain the vibration of the rotor 6 to be balanced. exceed the standard, and calculate the size and phase of the unbalanced amount (for example, if it is necessary to transfer the balance liquid to the third liquid storage chamber 223 and the fourth liquid storage chamber 224), output the control command, open the solenoid valve 5, and the compressed gas passes through the electromagnetic valve from the gas source 8.
  • the valve (the solenoid valve 5 is energized for t221 and t222 respectively), the air channel 4, and the first air inlet 11' and the second air inlet 12' on the stator 1, corresponding to the gas circulation groove 211 on the middle sleeve 21 , the gas injection pipe 31, reaching the first liquid storage chamber 221 and the second liquid storage chamber 222, the liquid in the liquid storage chamber is driven by compressed gas, and the balance liquid in the first liquid storage chamber 221 is transferred to the third liquid storage along the communication pipe 321 chamber 223, the balance liquid in the second liquid storage chamber 222 is transferred to the fourth liquid storage chamber 224 along the communication pipe 322 (the amount of balance liquid transferred is determined by the solenoid valve energization duration t221 and t222 ). Then the mass of the balance disk is redistributed, and when the balance rotor 6 returns to the normal operation state, the monitor and controller monitors and displays normal, the solenoid valve 5 is disconnected, the transfer of the balance liquid stops, and the balance process ends.
  • This application relates to a large-diameter hydraulic-hydraulic automatic balance actuator.
  • the middle sleeve is fitted on the outer wall of the liquid storage plate with interference.
  • the outer wall of the middle sleeve is axially provided with four gas circulation grooves, and the bottom of the stator is axially Four gas injection channels with different depths correspond to the gas circulation grooves one by one. Due to the adoption of the above technical scheme in this application, there is no process of injecting and discharging liquid during the working process of the actuator.
  • the on-off time of the solenoid valve is controlled by the measuring and controlling device, and the compressed gas is injected to drive the quantitative balance liquid to transfer between the relative liquid storage chambers.
  • the mutually orthogonal liquid storage chambers obtain a compensation vector with the same magnitude as the unbalanced quantity and the opposite direction through vector synthesis to offset the unbalanced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Abstract

一种大直径压液式自动平衡执行器,中间套(21)过盈套装在储液盘(22)的外侧壁上,中间套(21)的外侧壁上轴向设有四条气体流通凹槽(211),定子(1)底部沿轴向设有四条深度不等的注气通道与气体流通凹槽一一对应。储液盘(22)包括四个沿周向均布设置的储液腔,储液腔内设置注气管(31)与气体流通凹槽(211)连通连接,相对设置的储液腔之间连通连接有连通管。气体通过四个电磁阀(5),四条气路通道(4),对应四条注气通道,经过气体流通凹槽(211)底部的长圆孔及注气管(31)进入到四个储液腔中。工作过程中由测控器控制电磁阀通断时间,注入压缩气体驱动定量平衡液在相对储液腔之间相互转移。

Description

一种大直径压液式自动平衡执行器
交叉引用
本申请要求在中国专利局提交的、申请号为202210172594.9、申请日为2022年02月24日、申请名称为“一种大直径压液式自动平衡执行器”的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及旋转设备振动智能控制技术领域,尤其涉及一种大直径压液式自动平衡执行器。
背景技术
随着“工业4.0”和“中国制造2025”相关技术发展,具备状态监测、振动控制以及健康状态自维护等功能的智能装备将成为智能制造领域的重点发展方向。转子不平衡是导致因旋转设备转子振动超标而引发设备故障的主要原因,严重影响旋转设备的运转状况和生产效率,严重时会导致安全事故。而在线自动平衡装置能够在设备运行过程中实时抑制转子不平衡振动,对于保证设备的长周期安全稳定运行、提高设备的智能化水平均具有重要作用。在线自动平衡系统包含:传感器、测控器和执行器以及附属部件等。基本原理如下:预先在旋转设备上安装与转子同步旋转的平衡执行器;在设备运行过程中,传感器实时采集旋转设备的转态参数,并将信号输入测控器,当监测到不平衡振动超标时,由测控器发出指令,通过在线改变执行器内部的质量分布,形成补偿矢量,实时抑制旋转设备的不平衡振动。
液体式自动平衡执行器是一种常见的在线自动平衡装置,执行器内部存在多个储液腔,通过注入或排出某个或某几个储液腔内的一定量液体,实现执行器内部质量的重新分布,以抵消原有的不平衡。这种自动平衡执行器具有形式结构简单、平衡精度高及环境友好等优点。
目前液体式自动平衡执行器主要有以下几种形式:
(1)注液式自动平衡执行器:通过控制电磁阀的开闭使一定液体从喷嘴中注入到平衡执行器内部,形成与不平衡矢量方向相反大小相等的补偿矢量。(2)释放液体式自动平衡执行器:预先将储液腔注满平衡液体,将电磁阀安装到液腔中,平衡时将电磁阀打 开,排出一定液体,以消除原有不平衡。(3)注排液式自动平衡执行器:通过精确控制注入液体的量,并分析排出液体的量,实现注入排出液体的动态平衡来确定最终液腔内的剩余液体的量,实现动平衡。(4)液体转移式自动平衡执行器:预先在执行器储液腔内注入一定平衡液体,通过相邻或相对储液腔中的液体相互转移以平衡初始不平衡量。
对于注液式自动平衡执行器和释放液体式自动平衡执行器,随着平衡次数增加,平衡能力减小,而最终会因储液腔内无注入或排出液体的空间使得执行器失去平衡能力,无法实现连续工作的要求。连续注排液式自动平衡执行器解决了注液式和释放液体式自动平衡执行器因液体注满或排空而失去调节能力的问题,但排出液体不可控,执行器的精度受影响。且上述三种执行器都存在停机后无法保持原平衡状态的问题,液体转移式自动平衡执行器不仅摆脱了注、排液的过程,且能够在停机后保持平衡状态。目前转移液体的方式有加热蒸发介质转移、在执行器内部加入泵等进行液体转移及外加气动装置转移介质。加热蒸发介质对温度及介质转移量有很高要求且平衡速度受影响,在执行器内部增加可动部件大大降低了执行器的可靠性。
关于液体转移式自动平衡执行器,现有技术中的专利CN102840949A、CN103874868A和CN106090120A均有涉及,但是针对大型旋转设备自动平衡的应用场合,需要执行器具有足够的平衡能力以及适宜的结构形式,目前还未见相关报道。
因此,需要提供一种大直径压液式自动平衡执行器,基于压液式自动平衡执行器的结构基础,设计一种大直径压液式自动平衡执行器,拓展压液式自动平衡执行器的应用范围。压液式自动平衡执行器平衡能力与储液腔所在位置的直径有关,则对应大直径转子,也具有足够的平衡能力。
发明内容
有鉴于此,本申请的目的在于提供一种大直径压液式自动平衡执行器,安装时无需破坏待平衡大直径转子以及设备的完整性,针对大直径转子,执行器具有足够且持久的平衡能力,并保证自动平衡过程的可靠性。
为解决以上技术问题,本申请采用下述技术方案:
一种大直径压液式自动平衡执行器,包括定子和平衡盘,所述定子和轴承固定设置在基座上,所述轴承支撑待平衡转子,所述平衡盘固定设置在待平衡转子外侧且随待平衡转子同步旋转,所述定子设置在平衡盘的外侧。定子通过螺栓固定设置在设备的基座上,所述平衡盘通过螺栓连接到待平衡转子上,所述平衡盘与定子沿径向存在一定间隙。 所述基座的作用是用来固定定子和待平衡转子的轴承,所述轴承起支撑作用。
所述平衡盘包括中间套、储液盘和护罩,所述中间套过盈套装在储液盘的外侧壁上,所述中间套的外侧壁上轴向设有四条气体流通凹槽,所述储液盘包括四个沿周向均布设置的储液腔,所述储液腔内初始有等量的平衡液,所述储液腔内设有注气管,所述注气管固定设置在储液腔内的外侧壁且插入储液腔内的内侧壁,所述注气管与气体流通凹槽连通连接。所述中间套在加工完成后热套在储液盘上,通过热套装配成一体。
所述储液腔与其相对设置的储液腔之间连通连接有连通管,所述连通管的中间连通连接有排空管,所述排空管的一端固定设置在储液盘的底面,所述排空管的另一端与大气相连通,所述排空管的中部与连通管连通连接,所述连通管和排气管设置在护罩内,所述护罩固定设置在储液盘上。所述连通管的作用是作为平衡液转移的流体通道,所述排空管的作用是用于压液式平衡执行器无动作状态下,平衡连通管连接的两个储液腔的压力,使其等于外部大气压,避免因多次平衡注气导致某一储液腔内压力大于大气压,影响平衡液转移,进而影响平衡效果。所述护罩通过螺栓连接到储液盘上,护罩的作用是保护连通管和排气管不受损坏。
优选地,所述定子的底部沿轴向设有四条深度不等的注气通道,所述注气通道与中间套外侧壁的气体流通凹槽一一对应;所述注气通道外分别连接气路通道,所述气路通道分别通过电磁阀与气源连通连接。中间套是实现压缩气体从定子上静止的注气通道向随待平衡转子同步旋转的储液盘内部储液腔注气的动静传递部位。
进一步地,所述注气管设置在储液腔轴向及周向的中心位置,所述储液腔的外壁外表面设有长圆槽,所述长圆槽的一端与气体流通凹槽的底壁连接,所述长圆槽的另一端与注气管的顶端连接。注气管的这种布局的进气过程更加均匀,液体转移过程中转移速度等参数是一致的,但是由于通过长圆槽将气体从气体流通凹槽引入注气管会增加局部阻力,如果密封要求低或者进气量需求小,则这种结构比较适用。
气源提供的气体通过四个电磁阀,再经过四条气路通道,对应定子上的深度不同的四个注气通道,四条注气通道沿轴向深度分别对应中间套上的四条气体流通凹槽,四条气体流通凹槽底部的长圆槽与四个储液腔中的四条注气管分别对应,形成四条相互独立的气体流通通道,即气体经过中间套的气体流通凹槽底部的长圆槽及注气管分别进入到四个储液腔中。
进一步地,所述气体流通凹槽之间设有气体迷宫密封凹槽。气体迷宫密封凹槽使中间套外侧壁上的气体流通凹槽分割为相互独立互不影响的独立气道,使各个气体流通凹槽之间的气体相互独立互不影响。
另一种优选方式,所述定子的外侧壁上设有四对进气口,每对进气口轴向位置相同且绕旋转轴中心对称,每对进气口与中间套的外侧壁的气体流通凹槽一一对应;所述进气口外分别连接气路通道,所述气路通道分别通过电磁阀与气源连通连接。
进一步地,所述注气管设置在储液腔周向中心且轴向对应气体流通凹槽的位置,所述气体流通凹槽的底部设有与注气管相对应的通孔。注气管的这种布局采用气体流通凹槽与注气管直通的结构,提升了注气效果,减少了长圆槽结构带来的局部阻力。适用于进气量要求比较大的情况,能很大程度增加进气效果。
气源提供的气体通过四个电磁阀,再经过四条气路通道,对应定子的四对进气口,四对进气口分别对应中间套上的四条气体流通凹槽,四条气体流通凹槽底部的长圆槽与四个储液腔中的四条注气管分别对应,形成四条相互独立的气体流通通道,即气体经过中间套的气体流通凹槽底部的长圆槽及注气管分别进入到四个储液腔中。
进一步地,所述气体流通凹槽的两侧设有刷式密封装置,所述刷式密封装置包括前板、后板和刷丝束。刷式密封装置焊接在定子的内侧,共有四对,每对有两条,对应装在中间套上的四条气体流通凹槽的两侧。刷式密封装置使中间套外侧壁上的气体流通凹槽分割为相互独立互不影响的独立气道,使各个气体流通凹槽之间的气体相互独立互不影响。
具体地,所述储液盘包括均布且依次设置的第一储液腔、第二储液腔、第三储液腔和第四储液腔,所述第一储液腔和第三储液腔之间连通连接有第一连通管,所述第二储液腔和第四储液腔之间连通连接有第二连通管,所述第一连通管的中间连通连接有第一排空管,所述第二连通管的中间连通连接有第二排空管。
具体地,所述定子的底部沿轴向设有深度不等的第一注气通道、第二注气通道、第三注气通道和第四注气通道,所述第一注气通道、第二注气通道、第三注气通道和第四注气通道分别与中间套的外侧壁的四条气体流通凹槽一一对应。
具体地,所述定子的外侧壁上设有第一进气口、第二进气口、第三进气口和第四进气口,每对第一进气口、第二进气口、第三进气口和第四进气口轴向位置相同且绕旋转轴中心对称,每对第一进气口、第二进气口、第三进气口和第四进气口与中间套的外侧壁的气体流通凹槽一一对应。
所述储液盘上四个储液腔内分别预先存有一定量的平衡液,储液腔与其相对设置的储液腔之间连通连接有连通管,所述连通管的中间连通连接有排空管,气源提供的压缩气体可通过上述四条注气通道中任意一条进入对应储液腔中,驱动储液腔中预存的平衡 液沿对应连通管向相对的储液腔中进行转移,此外还可同时向相邻腔内分别注入气体,同时驱动相邻两个储液腔的平衡液向相对储液腔转移。此过程可先利用矢量合成计算需要转移平衡液的量,再通过控制电磁阀的通断时间来控制注入气体的量,以确定平衡液转移的量,实现执行器质量的重新分布,完成自动平衡。
本申请的一种大直径压液式自动平衡执行器维持待平衡转子动平衡过程:
当待平衡转子工作时,通过安装在待平衡转子靠近执行器端的轴承上的振动传感器和待平衡转子外侧的转速传感器实时获得待平衡转子的振动信号和转速信号,输入到测控器。所述测控器对此振动信号和转速信号进行分析,当待平衡转子振动超标时,分析得到待平衡转子不平衡量的大小和相位,计算储液腔内平衡液需转移的方向和量,通过相应算法计算某相邻两储液腔对应的电磁阀所需通断时间,输出控制信号。所述电磁阀接收到控制信号,使气源中的压缩气体通过上述相互独立的注气通道,驱动相邻储液腔内的平衡液向其相对的储液腔转移,使得执行器平衡盘质量重新分布,直到待平衡转子振动恢复正常水平,动平衡过程结束。
本申请的有益效果如下:
本申请由于采用了以上技术方案,执行器工作过程中无注、排液体过程,由测控器控制电磁阀通断时间,注入压缩气体驱动定量平衡液在相对储液腔之间相互转移,两对相互正交的储液腔通过矢量合成得到与不平衡量大小相等的方向相反的补偿矢量以抵消不平衡。
对比目前注液式动平衡执行器,压液式自动平衡执行器,无注、排液体过程,具有持久平衡能力。平衡过程中,需转移的平衡液的量确定,且根据电磁阀通断时间确定注入气体时间,从而使平衡过程可控,无需多步调整,平衡精度及效率大大提高。
对比目前注液式、释放液体式、注排液式动平衡执行器,压液式自动平衡执行器无需注、排液体,通过转移液体来实现执行器质量重新分布,停机后,每个储液腔中的平衡液保持停机前的状态,不仅克服了无法保持平衡状态的问题,且环境友好。
对比目前加热蒸发介质和执行器内部加入泵的液体转移式动平衡执行器,压液式自动平衡执行器通过压缩气体驱动储液腔内平衡液体转移,实际使用中气体来源广泛,不受工厂复杂环境限制,内部无可动部件。整体结构简单,可靠性高。
对比专利CN102840949A、CN103874868A和CN106090120A,压液式自动平衡执行器套转在大直径待平衡转子外侧,其平衡能力与执行器直径成正比。大直径转子环向密封和气压传递难度大于磨床砂轮等小直径转子,压液式自动平衡执行器的定子与平衡盘中 间套之间的气体流通凹槽和注气通道的结合提高了压缩气体动静传递的效率,且可以通过增加注气管直径或注气压力的方式使得压液式自动平衡执行器能够满足大直径转子的在线自动平衡。
上述说明仅为本申请技术方案的概述,为了能够更清楚地了解本申请的技术手段并可依据说明书的内容予以实施,同时为了使本申请的上述和其他目的、技术特征以及优点更加易懂,以下列举一个或多个优选实施例,并配合附图详细说明如下。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1示出本申请的一种大直径压液式自动平衡执行器实施例一的结构示意图。
图2示出本申请的一种大直径压液式自动平衡执行器实施例一的装配结构示意图。
图3示出本申请的一种大直径压液式自动平衡执行器实施例一的装配实例结构示意图。
图4示出本申请的一种大直径压液式自动平衡执行器实施例一的平衡盘内部结构示意图。
图5示出本申请的图4中A-A的剖面结构示意图。
图6示出本申请的图5中A部的局部放大结构示意图。
图7示出本申请的图5中B部的局部放大结构示意图。
图8示出本申请的一种大直径压液式自动平衡执行器实施例二的结构示意图。
图9示出本申请的一种大直径压液式自动平衡执行器实施例二的第一储液腔的剖面结构示意图。
主要附图标记说明:
1-定子,11-第一注气通道,11’-第一进气口,12-第二注气通道,12’-第二进气口,13-第三注气通道,13’-第三进气口,14-第四注气通道,14’-第四进气口,15-刷式密封装置,2-平衡盘,21-中间套,211-气体流通凹槽,212-长圆槽,22-储液盘,221-第一储液腔,222-第二储液腔,223-第三储液腔,224-第四储液腔,23-护罩,31-注气管,321-第一连通管,322-第二连通管,331-第一排空管,332-第二排空管,4-气 路通道,5-电磁阀,6-待平衡转子,7-轴承,8-气源,9-基座。
具体实施方式
下面结合附图,对本申请的具体实施方式进行详细描述,但应当理解本申请的保护范围并不受具体实施方式的限制。
除非另有其他明确表示,否则在整个说明书和权利要求书中,术语“包括”或其变换如“包含”或“包括有”等等将被理解为包括所陈述的元件或组成部分,而并未排除其他元件或其他组成部分。
在本文中,为了描述的方便,可以使用空间相对术语,诸如“下面”、“下方”、“下”、“上面”、“上方”、“上”等,来描述一个元件或特征与另一元件或特征在附图中的关系。应理解的是,空间相对术语旨在包含除了在图中所绘的方向之外物件在使用或操作中的不同方向。例如,如果在图中的物件被翻转,则被描述为在其他元件或特征“下方”或“下”的元件将取向在所述元件或特征的“上方”。因此,示范性术语“下方”可以包含下方和上方两个方向。物件也可以有其他取向(旋转90度或其他取向)且应对本文使用的空间相对术语作出相应的解释。
实施例一
如图1-图7所示,一种大直径压液式自动平衡执行器,包括定子1和平衡盘2,所述定子1和轴承7固定设置在基座9上,所述轴承7支撑待平衡转子6,所述平衡盘2固定设置在待平衡转子6外侧且随待平衡转子6同步旋转,所述定子1设置在平衡盘2的外侧。定子1通过螺栓固定设置在设备的基座9上,所述平衡盘2通过螺栓连接到待平衡转子6上,所述平衡盘2与定子1沿径向存在一定间隙。所述基座9的作用是用来固定定子1和待平衡转子6的轴承7,所述轴承7起支撑作用。
所述平衡盘2包括中间套21、储液盘22和护罩23,所述中间套21过盈套装在储液盘22的外侧壁上,所述中间套21的外侧壁上轴向设有四条气体流通凹槽211,所述储液盘22包括四个沿周向均布设置的储液腔,所述储液腔内初始有等量的平衡液,所述储液腔内设有注气管31,所述注气管31固定设置在储液腔的外侧壁且插入储液腔的内侧壁,所述注气管31与气体流通凹槽211连通连接。所述中间套21在加工完成后热套在储液盘22上,通过热套装配成一体。
所述储液腔与其相对设置的储液腔之间连通连接有连通管,所述连通管的中间连通连接有排空管,所述排空管的一端固定设置在储液盘22的底面,所述排空管的另一端 与大气相连通,所述排空管的中部与连通管连通连接,所述连通管和排气管设置在护罩23内,所述护罩23固定设置在储液盘22上。所述连通管的作用是作为平衡液转移的流体通道,所述排空管的作用是用于压液式平衡执行器无动作状态下,平衡连通管连接的两个储液腔的压力,使其等于外部大气压,避免因多次平衡注气导致某一储液腔内压力大于大气压,影响平衡液转移,进而影响平衡效果。所述护罩23通过螺栓连接到储液盘22上,护罩23的作用是保护连通管和排气管不受损坏。
所述定子1的底部沿轴向设有四条深度不等的注气通道,所述注气通道与中间套21外侧壁的气体流通凹槽211一一对应;所述注气通道外分别连接气路通道4,所述气路通道4分别通过电磁阀5与气源8连通连接。中间套21是实现压缩气体从定子1上静止的注气通道向随待平衡转子6同步旋转的储液盘22内部储液腔注气的动静传递部位。
所述注气管31设置在储液腔轴向及周向的中心位置,所述储液腔的外壁外表面设有长圆槽212,所述长圆槽212的一端与气体流通凹槽211的底壁连接,所述长圆槽212的另一端与注气管31的顶端连接。注气管31的这种布局的进气过程更加均匀,液体转移过程中转移速度等参数是一致的,但是由于通过长圆槽212将气体从气体流通凹槽211引入注气管31会增加局部阻力,如果密封要求低或者进气量需求小,则这种结构比较适用。
气源8提供的气体通过四个电磁阀5,再经过四条气路通道4,对应定子1上的深度不同的四个注气通道,四条注气通道沿轴向深度分别对应中间套21上的四条气体流通凹槽211,四条气体流通凹槽211底部的长圆槽212与四个储液腔中的四条注气管31分别对应,形成四条相互独立的气体流通通道,即气体经过中间套21的气体流通凹槽211底部的长圆槽212及注气管31分别进入到四个储液腔中。
所述气体流通凹槽211之间设有气体迷宫密封凹槽。气体迷宫密封凹槽使中间套21外侧壁上的气体流通凹槽211分割为相互独立互不影响的独立气道,使各个气体流通凹槽211之间的气体相互独立互不影响。
具体地,所述储液盘22包括均布且依次设置的第一储液腔221、第二储液腔222、第三储液腔223和第四储液腔224,所述第一储液腔221和第三储液腔223之间连通连接有第一连通管321,所述第二储液腔222和第四储液腔224之间连通连接有第二连通管322,所述第一连通管321的中间连通连接有第一排空管331,所述第二连通管322的中间连通连接有第二排空管332。
具体地,所述定子1的底部沿轴向设有深度不等的第一注气通道11、第二注气通道12、第三注气通道13和第四注气通道14,所述第一注气通道11、第二注气通道12、第 三注气通道13和第四注气通道14分别与中间套21的外侧壁的四条气体流通凹槽211一一对应。
本实施例的一种大直径压液式自动平衡执行器用于对待平衡转子6的实时动平衡,初始状态下,第一储液腔221、第二储液腔222、第三储液腔223和第四储液腔224内含有等量的平衡液,平衡盘2处于平衡状态,若待平衡转子6此时运转正常,则执行器不动作,也不影响待平衡转子6原有平衡状态。当设备运行过程中振动超标,则在轴承7和待平衡转子6布置的振动传感器和转速传感器将振动信号和转速信号输入到测控器中,测控器对信号进行分析处理,得到待平衡转子6振动超标,并计算不平衡量的大小和相位(例如若需向第三储液腔223和第四储液腔224转移平衡液),输出控制指令,打开电磁阀5,压缩气体由气源8经过电磁阀(电磁阀5通电时长分别为t221和t222)、气路通道4以及定子1上第一注气通道11和第二注气通道12,对应中间套21上气体流通凹槽211,长圆槽212,注气管31,到达第一储液腔221和第二储液腔222,储液腔中液体在压缩气体驱动下,第一储液腔221中平衡液沿连通管321转移到第三储液腔223,第二储液腔222中平衡液沿连通管322转移到第四储液腔224(平衡液转移的量由电磁阀通电时长t221和t222决定)。则平衡盘质量重新分布,待平衡转子6恢复正常运行状态,测控器监测显示正常,电磁阀5断开,平衡液停止转移,平衡过程结束。
实施例二
如图8-图9所示,一种大直径压液式自动平衡执行器,与实施例一不同的是进气方式和密封方式,具体包括所述定子1的外侧壁上设有四对进气口,每对进气口轴向位置相同且绕旋转轴中心对称,每对进气口与中间套21的外侧壁的气体流通凹槽211一一对应;所述进气口外分别连接气路通道4,所述气路通道4分别通过电磁阀5与气源8连通连接。
所述注气管31设置在储液腔周向中心且轴向对应气体流通凹槽211的位置,所述气体流通凹槽211的底部设有与注气管31相对应的通孔。注气管31的这种布局采用气体流通凹槽211与注气管31直通的结构,提升了注气效果,减少了长圆槽212结构带来的局部阻力。适用于进气量要求比较大的情况,能很大程度增加进气效果。
气源8提供的气体通过四个电磁阀5,再经过四条气路通道4,对应定子1的四对进气口,四对进气口分别对应中间套21上的四条气体流通凹槽211,四条气体流通凹槽211底部的长圆槽212与四个储液腔中的四条注气管31分别对应,形成四条相互独立的气体流通通道,即气体经过中间套21的气体流通凹槽211底部的长圆槽212及注气管31分别进入到四个储液腔中。
所述气体流通凹槽211的两侧设有刷式密封装置15,所述刷式密封装置包括前板、后板和刷丝束。刷式密封装置15焊接在定子1的内侧,共有四对,每对有两条,对应装在中间套21上的四条气体流通凹槽211的两侧。刷式密封装置15使中间套21外侧壁上的气体流通凹槽211分割为相互独立互不影响的独立气道,使各个气体流通凹槽211之间的气体相互独立互不影响。
具体地,所述定子1的外侧壁上设有第一进气口11’、第二进气口12’、第三进气口13’和第四进气口14’,每对第一进气口11’、第二进气口12’、第三进气口13’和第四进气口14’轴向位置相同且绕旋转轴中心对称,每对第一进气口11’、第二进气口12’、第三进气口13’和第四进气口14’与中间套21的外侧壁的气体流通凹槽211一一对应。
本实施例的一种大直径压液式自动平衡执行器用于对待平衡转子6的实时动平衡,与实施例一基本相同。初始状态下,第一储液腔221、第二储液腔222、第三储液腔223和第四储液腔224内含有等量的平衡液,平衡盘2处于平衡状态,若待平衡转子6此时运转正常,则执行器不动作,也不影响待平衡转子6原有平衡状态。当设备运行过程中振动超标,则在轴承7和待平衡转子6布置的振动传感器和转速传感器将振动信号和转速信号输入到测控器中,测控器对信号进行分析处理,得到待平衡转子6振动超标,并计算不平衡量的大小和相位(例如若需向第三储液腔223和第四储液腔224转移平衡液),输出控制指令,打开电磁阀5,压缩气体由气源8经过电磁阀(电磁阀5通电时长分别为t221和t222)、气路通道4以及定子1上第一进气口11’、第二进气口12’,对应中间套21上气体流通凹槽211,注气管31,到达第一储液腔221和第二储液腔222,储液腔中液体在压缩气体驱动下,第一储液腔221中平衡液沿连通管321转移到第三储液腔223,第二储液腔222中平衡液沿连通管322转移到第四储液腔224(平衡液转移的量由电磁阀通电时长t221和t222决定)。则平衡盘质量重新分布,待平衡转子6恢复正常运行状态,测控器监测显示正常,电磁阀5断开,平衡液停止转移,平衡过程结束。
前述对本申请的具体示例性实施方案的描述是为了说明和例证的目的。这些描述并非想将本申请限定为所公开的精确形式,并且很显然,根据上述教导,可以进行很多改变和变化。对示例性实施例进行选择和描述的目的在于解释本申请的特定原理及其实际应用,从而使得本领域的技术人员能够实现并利用本申请的各种不同的示例性实施方案以及各种不同的选择和改变。针对上述示例性实施方案所做的任何简单修改、等同变化与修饰,都应落入本申请的保护范围。
工业实用性
本申请涉及一种大直径压液式自动平衡执行器,中间套过盈套装在储液盘的外侧壁上,中间套的外侧壁上轴向设有四条气体流通凹槽,定子底部沿轴向设有四条深度不等的注气通道与气体流通凹槽一一对应。本申请由于采用了以上技术方案,执行器工作过程中无注、排液体过程,由测控器控制电磁阀通断时间,注入压缩气体驱动定量平衡液在相对储液腔之间相互转移,两对相互正交的储液腔通过矢量合成得到与不平衡量大小相等的方向相反的补偿矢量以抵消不平衡。

Claims (10)

  1. 一种大直径压液式自动平衡执行器,其特征在于,包括定子(1)和平衡盘(2),所述定子(1)和轴承(7)固定设置在基座(9)上,所述轴承(7)支撑待平衡转子(6),所述平衡盘(2)固定设置在待平衡转子(6)外侧且随待平衡转子(6)同步旋转,所述定子(1)设置在平衡盘(2)的外侧;
    所述平衡盘(2)包括中间套(21)、储液盘(22)和护罩(23),所述中间套(21)过盈套装在储液盘(22)的外侧壁上,所述中间套(21)的外侧壁上轴向设有四条气体流通凹槽(211),所述储液盘(22)包括四个沿周向均布设置的储液腔,所述储液腔内初始有等量的平衡液,所述储液腔内设有注气管(31),所述注气管(31)固定设置在储液腔的外侧壁且插入储液腔的内侧壁,所述注气管(31)与气体流通凹槽(211)连通连接;
    所述储液腔与其相对设置的储液腔之间连通连接有连通管,所述连通管的中间连通连接有排空管,所述排空管的一端固定设置在储液盘(22)的底面,所述排空管的另一端与大气相连通,所述排空管的中部与连通管连通连接,所述连通管和排气管设置在护罩(23)内,所述护罩(23)固定设置在储液盘(22)上。
  2. 根据权利要求1所述的一种大直径压液式自动平衡执行器,其特征在于,所述定子(1)的底部沿轴向设有四条深度不等的注气通道,所述注气通道与中间套(21)外侧壁的气体流通凹槽(211)一一对应;
    所述注气通道外分别连接气路通道(4),所述气路通道(4)分别通过电磁阀(5)与气源(8)连通连接。
  3. 根据权利要求2所述的一种大直径压液式自动平衡执行器,其特征在于,所述注气管(31)设置在储液腔轴向及周向的中心位置,所述储液腔的外壁外表面设有长圆槽(212),所述长圆槽(212)的一端与气体流通凹槽(211)的底壁连接,所述长圆槽(212)的另一端与注气管(31)的顶端连接。
  4. 根据权利要求3所述的一种大直径压液式自动平衡执行器,其特征在于,所述气体流通凹槽(211)之间设有气体迷宫密封凹槽。
  5. 根据权利要求1所述的一种大直径压液式自动平衡执行器,其特征在于,所述定子(1)的外侧壁上设有四对进气口,每对进气口轴向位置相同且绕旋转轴中心对称,每对进气口与中间套(21)的外侧壁的气体流通凹槽(211)一一对应;
    所述进气口外分别连接气路通道(4),所述气路通道(4)分别通过电磁阀(5)与气 源(8)连通连接。
  6. 根据权利要求5所述的一种大直径压液式自动平衡执行器,其特征在于,所述注气管(31)设置在储液腔周向中心且轴向对应气体流通凹槽(211)的位置,所述气体流通凹槽(211)的底部设有与注气管(31)相对应的通孔。
  7. 根据权利要求6所述的一种大直径压液式自动平衡执行器,其特征在于,所述气体流通凹槽(211)的两侧设有刷式密封装置(15),所述刷式密封装置包括前板、后板和刷丝束。
  8. 根据权利要求1所述的一种大直径压液式自动平衡执行器,其特征在于,所述储液盘(22)包括均布且依次设置的第一储液腔(221)、第二储液腔(222)、第三储液腔(223)和第四储液腔(224),所述第一储液腔(221)和第三储液腔(223)之间连通连接有第一连通管(321),所述第二储液腔(222)和第四储液腔(224)之间连通连接有第二连通管(322),所述第一连通管(321)的中间连通连接有第一排空管(331),所述第二连通管(322)的中间连通连接有第二排空管(332)。
  9. 根据权利要求2所述的一种大直径压液式自动平衡执行器,其特征在于,所述定子(1)的底部沿轴向设有深度不等的第一注气通道(11)、第二注气通道(12)、第三注气通道(13)和第四注气通道(14),所述第一注气通道(11)、第二注气通道(12)、第三注气通道(13)和第四注气通道(14)分别与中间套(21)的外侧壁的四条气体流通凹槽(211)一一对应。
  10. 根据权利要求5所述的一种大直径压液式自动平衡执行器,其特征在于,所述定子(1)的外侧壁上设有第一进气口(11’)、第二进气口(12’)、第三进气口(13’)和第四进气口(14’),每对第一进气口(11’)、第二进气口(12’)、第三进气口(13’)和第四进气口(14’)轴向位置相同且绕旋转轴中心对称,每对第一进气口(11’)、第二进气口(12’)、第三进气口(13’)和第四进气口(14’)与中间套(21)的外侧壁的气体流通凹槽(211)一一对应。
PCT/CN2023/073846 2022-02-24 2023-01-30 一种大直径压液式自动平衡执行器 WO2023160334A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210172594.9A CN114576310B (zh) 2022-02-24 2022-02-24 一种大直径压液式自动平衡执行器
CN202210172594.9 2022-02-24

Publications (1)

Publication Number Publication Date
WO2023160334A1 true WO2023160334A1 (zh) 2023-08-31

Family

ID=81774539

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073846 WO2023160334A1 (zh) 2022-02-24 2023-01-30 一种大直径压液式自动平衡执行器

Country Status (2)

Country Link
CN (2) CN115355282A (zh)
WO (1) WO2023160334A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115355282A (zh) * 2022-02-24 2022-11-18 北京化工大学 一种压液式大直径自动平衡执行器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046771A (ja) * 2005-07-14 2007-02-22 Sony Corp 自動平衡装置、回転装置及びディスク駆動装置
CN101643993A (zh) * 2008-08-06 2010-02-10 Lg电子株式会社 球式平衡器和具有该球式平衡器的洗衣装置
CN103148164A (zh) * 2013-03-05 2013-06-12 北京化工大学 液体式在线自动平衡装置的靶向控制方法及控制系统
CN103874868A (zh) * 2011-12-30 2014-06-18 北京博华信智科技发展有限公司 气压液体式转子在线自动平衡器
CN107869552A (zh) * 2016-09-27 2018-04-03 财团法人精密机械研究发展中心 流体静压缸及建立流体静压的方法
CN112128314A (zh) * 2020-10-19 2020-12-25 长春工业大学 一种注液式转子动平衡头结构
CN114576310A (zh) * 2022-02-24 2022-06-03 北京化工大学 一种大直径压液式自动平衡执行器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013013650A1 (de) * 2013-08-16 2015-02-19 Brose Fahrzeugteile GmbH & Co. Kommanditgesellschaft, Würzburg Drehbar gelagerter Rotationskörper
CN107363720B (zh) * 2017-06-28 2019-02-26 西安交通大学 适用于大外径外螺纹磨床主轴的喷液式在线动平衡终端

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046771A (ja) * 2005-07-14 2007-02-22 Sony Corp 自動平衡装置、回転装置及びディスク駆動装置
CN101643993A (zh) * 2008-08-06 2010-02-10 Lg电子株式会社 球式平衡器和具有该球式平衡器的洗衣装置
CN103874868A (zh) * 2011-12-30 2014-06-18 北京博华信智科技发展有限公司 气压液体式转子在线自动平衡器
CN103148164A (zh) * 2013-03-05 2013-06-12 北京化工大学 液体式在线自动平衡装置的靶向控制方法及控制系统
CN107869552A (zh) * 2016-09-27 2018-04-03 财团法人精密机械研究发展中心 流体静压缸及建立流体静压的方法
CN112128314A (zh) * 2020-10-19 2020-12-25 长春工业大学 一种注液式转子动平衡头结构
CN114576310A (zh) * 2022-02-24 2022-06-03 北京化工大学 一种大直径压液式自动平衡执行器
CN115355282A (zh) * 2022-02-24 2022-11-18 北京化工大学 一种压液式大直径自动平衡执行器

Also Published As

Publication number Publication date
CN114576310B (zh) 2022-10-04
CN115355282A (zh) 2022-11-18
CN114576310A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2023160334A1 (zh) 一种大直径压液式自动平衡执行器
US9212723B2 (en) Pneumatic liquid on-line automatic balancer of rotor
CN105628364B (zh) 一种可控柔性密封性能检测试验装置
CN105545856B (zh) 一种数控旋芯式比例伺服阀
CN105042085A (zh) 一种高低温箱低速穿箱轴气体密封装置
CN208270371U (zh) 一种流体粘度测量装置
CN104633201B (zh) 低噪音高压差调节阀
CN113670602B (zh) 一种旋转动密封损失测试装置及方法
JPWO2005042979A1 (ja) 回転式ドライ真空ポンプ
CN207377893U (zh) 一种静压支承式伺服摆动液压缸及应用其的机械设备
CN117824920A (zh) 一种自动在线动平衡装置
CN203705122U (zh) 全工况机械密封检测试验装置
CN210387604U (zh) 一种气体静压主轴气膜无级变阻尼装置
CN210106196U (zh) 可调负载型环形密封振动行为测量装置
CN209783915U (zh) 径向柱塞马达油缸偏心轴摩擦副摩擦力测量装置
CN214502815U (zh) 一种动态密封环试验油路
CN106090120B (zh) 用于轴内安装的气压液体转移式主动平衡系统
CN201680021U (zh) 卸荷型自力式流量控制阀
US3383911A (en) Torque-measuring device
CN105134475B (zh) 一种可调平衡的双侧驱动轴向柱塞马达
CN203585476U (zh) 低噪音高压差调节阀
CN108194385B (zh) 两相流流体机械过流部件磨损性能测试装置及测试方法
CN112555461A (zh) 一种新型多功能四通换向阀
CN116104944A (zh) 一种多平衡直径智能机械密封装置
CN116292386A (zh) 一种机械密封平衡直径的智能变更方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23758959

Country of ref document: EP

Kind code of ref document: A1