WO2023160206A1 - 充电线圈组件和无线充电装置 - Google Patents
充电线圈组件和无线充电装置 Download PDFInfo
- Publication number
- WO2023160206A1 WO2023160206A1 PCT/CN2022/141970 CN2022141970W WO2023160206A1 WO 2023160206 A1 WO2023160206 A1 WO 2023160206A1 CN 2022141970 W CN2022141970 W CN 2022141970W WO 2023160206 A1 WO2023160206 A1 WO 2023160206A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- charging
- charging coil
- coil
- current
- port
- Prior art date
Links
- 230000006698 induction Effects 0.000 claims abstract description 31
- 238000004804 winding Methods 0.000 claims description 38
- 230000008878 coupling Effects 0.000 claims description 16
- 238000010168 coupling process Methods 0.000 claims description 16
- 238000005859 coupling reaction Methods 0.000 claims description 16
- 230000000712 assembly Effects 0.000 claims description 11
- 238000000429 assembly Methods 0.000 claims description 11
- 230000005669 field effect Effects 0.000 claims description 6
- 230000009471 action Effects 0.000 claims description 5
- 239000003990 capacitor Substances 0.000 claims description 5
- 229910044991 metal oxide Inorganic materials 0.000 claims description 4
- 150000004706 metal oxides Chemical class 0.000 claims description 4
- 239000004065 semiconductor Substances 0.000 claims description 4
- 230000001568 sexual effect Effects 0.000 claims 2
- 230000001939 inductive effect Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 37
- 238000012360 testing method Methods 0.000 description 30
- 230000000694 effects Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 230000008859 change Effects 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 230000006870 function Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 229910000859 α-Fe Inorganic materials 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000005674 electromagnetic induction Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/70—Circuit arrangements or systems for wireless supply or distribution of electric power involving the reduction of electric, magnetic or electromagnetic leakage fields
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/005—Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/40—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
- H02J50/402—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B40/00—Technologies aiming at improving the efficiency of home appliances, e.g. induction cooking or efficient technologies for refrigerators, freezers or dish washers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage systems for electromobility, e.g. batteries
Definitions
- the present application relates to the technical field of wireless charging, in particular to a charging coil assembly and a wireless charging device.
- wireless charging at different positions can be realized by arranging multiple coils, thereby improving the degree of freedom of charging.
- the mobile phone can use this coil as the main coil for charging.
- interference signals may crosstalk to the power supply through the mutual inductance of the main and secondary coils, or the reference ground, affecting the stability of the power supply and affecting other devices using the power supply.
- the present application provides a charging coil assembly and a wireless charging device, which can reduce the interference signal in the secondary coil, thereby reducing the interference to the power supply.
- a charging coil assembly including: a first charging coil and a second charging coil, the first charging coil and the second charging coil are partially overlapped, the first charging coil works, the second charging coil does not work, and the second charging coil does not work.
- a charging current in a charging coil excites a first induction current in a second charging coil; meanwhile, a first disturbance current other than the first induction current caused by interference is produced in the second charging coil; the first charging coil and The second charging coil is arranged in reverse, and the reverse setting between the second charging coil and the first charging coil makes the direction of the first induced current in the second charging coil and the first interference current in the second charging coil opposite.
- the charging current in the main coil is excited in the auxiliary coil and the phase of the original interference current in the auxiliary coil is opposite (that is, the phase The difference of 180 degrees) of the induced current in the form of the differential mode realizes the active control of the induced current in the form of the differential mode.
- the total amount of the interference current in the secondary coil is reduced, and the secondary coil treats Less interference from charging equipment.
- the interference current flowing back to the power supply is correspondingly reduced, which can improve the quality of the power supply, thereby ensuring the performance and safety of other electrical equipment using the power supply.
- the charging coil assembly is applied to a wireless charging device
- the wireless charging device includes a full-bridge inverter circuit
- the full-bridge inverter circuit includes a first output node and a second output node
- the first charging coil and the second The port settings of the charging coils are the same, and the first charging coil and the second charging coil are set in reverse, including: the first port of the first charging coil is connected to the first output node, and the second port of the first charging coil is connected to the second output node connected, the first port of the second charging coil is connected to the second output node, and the second port of the second charging coil is connected to the first output node.
- first port of the first charging coil is connected to the second output node
- second port of the first charging coil is connected to the first output node
- first port of the second charging coil is connected to the first output node.
- the second ports of the two charging coils are connected to the second output node.
- the first port can be the port inside the charging coil, then the second port is the port outside the charging coil; or the first port is the port outside the charging coil, then the second port is the port inside the charging coil, which is not limited .
- the first interference current includes: the interference current generated by the second charging coil in a resonant state under the action of a metal-oxide semiconductor MOS field effect transistor connected at both ends, crosstalk through the printed circuit board At least one of the disturbance current to the second charging coil, and the disturbance current transmitted to the second charging coil by the charging current on the first charging coil through capacitive coupling with the second charging coil.
- the port settings of the first charging coil and the second charging coil are the same, and the first charging coil and the second charging coil are set in opposite directions, including: the first charging coil is reversed so that the first direction and the second The two directions are opposite.
- the first direction is the direction from the first port of the first charging coil to the second port of the first charging coil along the winding direction of the first charging coil
- the second direction is the direction from the first port of the second charging coil to the second port of the first charging coil.
- the port points to the direction of the second port of the second charging coil along the winding direction of the second charging coil; wherein, the first direction is clockwise, and the second direction is counterclockwise; or, the first direction is counterclockwise, The second direction is clockwise.
- the charging coil assembly further includes a third charging coil, the third charging coil partially overlaps with the first charging coil, the third charging coil does not work, and the charging current in the first charging coil is in the third charging coil At the same time, the third charging coil produces a second interference current other than the second induced current due to interference; the third charging coil and the first charging coil are set in reverse, and the third charging coil The reverse arrangement with the first charging coil makes the direction of the second induced current in the third charging coil and the second interference current in the third charging coil opposite.
- the charging coil assembly composed of three charging coils has a higher degree of freedom in charging. Due to the arrangement of the charging coils facing oppositely, that is, each charging coil in the charging coils has a charging coil set opposite to it. Therefore, when any charging coil is used as the main coil, through the mutual inductance of the main coil to the auxiliary coil, the charging current in the main coil excites the induced current of the auxiliary coil opposite to it in the auxiliary coil, and the induced current is the same as the original auxiliary coil.
- the phase of the interference current in the coil is opposite (that is, the phase difference is 180 degrees), so the interference current in the secondary coil can be reduced.
- the active control of the induction current in this differential mode is realized.
- the interference current flowing back to the power supply is correspondingly reduced, which can improve the quality of the power supply, thereby ensuring the performance and safety of other electrical equipment using the power supply.
- the second interference current includes: the interference current generated by the third charging coil in a resonant state under the action of the MOS field effect transistor connected at both ends, crosstalk to the third charging coil through the printed circuit board At least one of the disturbance current of the first charging coil and the disturbance current transmitted to the third charging coil through the capacitive coupling between the charging current on the first charging coil and the third charging coil.
- the wireless charging device includes a full-bridge inverter circuit
- the full-bridge inverter circuit includes a first output node and a second output node, a third charging coil and a charging coil of the first charging coil
- the port settings are the same, and the third charging coil and the first charging coil are set in reverse, including: the first port of the first charging coil is connected to the first output node, the second port of the first charging coil is connected to the second output node, and the second port of the first charging coil is connected to the second output node.
- the first ports of the three charging coils are connected to the second output node, and the second ports of the third charging coil are connected to the first output node.
- the ports of the third charging coil and the first charging coil are set to be the same, and the third charging coil and the first charging coil are set in opposite directions, including: the first charging coil is reversed so that the first direction and the first charging coil The three directions are opposite, the first direction is the direction from the first port of the first charging coil to the second port of the first charging coil along the winding direction of the first charging coil, and the third direction is the direction from the first port of the third charging coil to the second port of the first charging coil.
- the port points to the direction of the second port of the third charging coil along the winding direction of the third charging coil; wherein, the first direction is clockwise, and the third direction is counterclockwise; or, the first direction is counterclockwise, The third direction is clockwise.
- the charging coil assembly further includes a fourth charging coil, the fourth charging coil partially overlaps with the second charging coil, the fourth charging coil does not overlap with the first charging coil and the third charging coil, and the fourth charging coil overlaps with the second charging coil.
- the charging coil does not work; the first disturbance current in the second charging coil excites the third induced current in the fourth charging coil; meanwhile, the fourth charging coil produces a third induced current other than the third induced current due to interference.
- Disturbance current the fourth charging coil and the second charging coil are reversely set, and the reverse setting between the fourth charging coil and the second charging coil makes the third induced current in the fourth charging coil and the first induced current in the fourth charging coil
- the directions of the three disturbance currents are opposite.
- the third interference current includes: the interference current generated by the fourth charging coil in a resonant state under the action of the MOS field effect transistor connected at both ends, crosstalk to the fourth charging coil through the printed circuit board At least one of the disturbance current on the second charging coil and the disturbance current transmitted to the fourth charging coil through the capacitive coupling between the second charging coil and the fourth charging coil.
- the charging coil assembly composed of four charging coils has an improved degree of freedom in charging. Due to the arrangement of the charging coils facing oppositely, that is, each charging coil in the charging coils has a charging coil set opposite to it. Therefore, when any one of the charging coils is used as the main coil, through the mutual inductance of the main coil to the auxiliary coil, the charging current in the main coil excites the induced current in the auxiliary coil opposite to it in the auxiliary coil. The phase of this induced current is opposite to that of the original interference current in the secondary coil (that is, the phase difference is 180 degrees), so part of the interference current can be reduced.
- the interference current in the second charging coil can also excite the induced current in the fourth charging coil, because the fourth charging coil and the second charging coil are set in reverse, the interference current in the second charging coil is in the fourth charging coil
- the direction of the induced current excited in the fourth charging coil is opposite to that of the original interference current in the fourth charging coil, which can reduce the interference current in the fourth charging coil.
- Such an arrangement realizes the active control and reverse compensation of the induced current in differential mode.
- the interference current flowing back to the power supply is correspondingly If the power is reduced, the quality of the power supply can be improved, thereby ensuring the performance and safety of other electrical equipment using the power supply.
- the wireless charging device includes a full-bridge inverter circuit
- the full-bridge inverter circuit includes a first output node and a second output node, a fourth charging coil and a second charging coil
- the port settings are the same, and the fourth charging coil and the second charging coil are set in reverse, including: the first port of the fourth charging coil is connected to the first output node, the second port of the fourth charging coil is connected to the second output node, and the second The first port of the second charging coil is connected to the second output node, and the second port of the second charging coil is connected to the first output node.
- the wireless charging device includes a full-bridge inverter circuit, the full-bridge inverter circuit includes a first output node and a second output node, a fourth charging coil and a second charging coil
- the port settings are the same, and the fourth charging coil and the second charging coil are set in reverse, including: the fourth charging coil is reversed so that the fourth direction is opposite to the second direction, and the fourth direction is along the first port of the fourth charging coil.
- the winding direction of the fourth charging coil points to the direction of the second port of the fourth charging coil, and the second direction is from the first port of the second charging coil to the second port of the second charging coil along the winding direction of the second charging coil.
- the direction of the port wherein, the fourth direction is a clockwise direction, and the second direction is a counterclockwise direction; or, the fourth direction is a counterclockwise direction, and the second direction is a clockwise direction.
- a charging coil assembly including: applied to a wireless charging device, the wireless charging device includes a full-bridge inverter circuit, the full-bridge inverter circuit includes a first output node and a second output node, and the charging coil assembly includes : The first charging coil and the second charging coil; the first charging coil and the second charging coil partially overlap, and the port settings of the first charging coil and the second charging coil are the same; the first port of the first charging coil is connected to the full-bridge inverter The first output node of the circuit is connected, the second port of the first charging coil is connected with the second output node of the full-bridge inverter circuit, the first port of the second charging coil is connected with the second output node of the full-bridge inverter circuit, The second port of the second charging coil is connected to the first output node of the full-bridge inverter circuit.
- the ports of the charging coil can be defined, wherein the ports of the first charging coil and the second charging coil are set to be the same, and the inner end of the charging coil is used as the first port, and the outer end of the charging coil is used as the first port. One end serves as the second port.
- the way of setting the two charging coils in opposite directions can also be to keep the orientation of the charging coils unchanged, and change the connection mode between the ports of the charging coils and the output nodes of the full-bridge inverter circuit. For example, change the first port of the first charging coil from the first output node to the second output node; at the same time, change the second port of the first charging coil from the second output node to the first output node .
- the connection mode between the port of the second charging coil and the output node of the full-bridge inverter circuit remains unchanged.
- the first port of the first charging coil and the second port of the second charging coil are connected to an output node of the full-bridge inverter circuit, and the second port of the first charging coil and the first port of the second charging coil are connected to the full-bridge Another output node of the inverter circuit.
- Such an arrangement can make the two charging coils arranged in opposite directions.
- the two charging coils are set in reverse phase, and the mutual inductance of the main coil to the auxiliary coil can make the charging in the main coil
- the current in the auxiliary coil excites the induced current in the form of differential mode that is opposite to the original interference current in the auxiliary coil (that is, the phase difference is 180 degrees), and realizes the active control of the induced current in the form of differential mode.
- the interference current is compensated to reduce the total amount of interference current in the secondary coil, and the interference of the secondary coil to the charging device is reduced. Then in the CE test and the actual charging scene, the interference current flowing back to the power supply is correspondingly reduced, which can improve the quality of the power supply, thereby ensuring the performance and safety of other electrical equipment using the power supply.
- the first charging coil works, the second charging coil does not work, and the charging current in the first charging coil excites the first induced current in the second charging coil; meanwhile, the second charging coil generates The first interference current other than the first induction current caused by interference; wherein, the direction of the first induction current in the second charging coil is opposite to that of the first interference current in the second charging coil.
- the charging coil assembly further includes a third charging coil, the third charging coil partially overlaps with the first charging coil, and the third charging coil does not overlap with the second charging coil; the third charging coil and the first charging coil The ports of the coils are set the same, the first port of the third charging coil is connected to the second output node of the full-bridge inverter circuit, and the second port of the third charging coil is connected to the first output node of the full-bridge inverter circuit.
- the first port of the third charging coil is connected to the second output node of the full-bridge inverter circuit, and the second port of the third charging coil is connected to the first output node of the full-bridge inverter circuit, so that any two The directions of the overlapping charging coils are opposite, that is, any two overlapping charging coils are arranged in opposite directions.
- each charging coil in the charging coil has a charging coil opposite to it, so when any charging coil is used as the main coil, through the mutual inductance of the main coil to the auxiliary coil, the charging current in the main coil excites the induced current of the secondary coil opposite to it in the secondary coil, and the phase of this induced current is opposite to the interference current in the original secondary coil (that is, the phase difference is 180 degrees), so the interference can be counteracted Current, realizes the active control of the induced current in the form of differential mode, through the reverse compensation of the interference current, the total amount of the interference current in the secondary coil is reduced, and the interference of the secondary coil to the charging equipment is reduced, then in the CE test And in the actual charging scene, the interference current flowing back to the power supply is correspondingly reduced, which can improve the quality of the power supply, thereby ensuring the performance and safety of other electrical equipment using the power supply.
- the third charging coil does not work, and the charging current in the first charging coil excites the second induced current in the third charging coil; at the same time, the third charging coil generates a second induced current due to interference.
- a second interference current other than the two induction currents; wherein, the directions of the second induction current and the second interference current are opposite.
- a charging coil assembly including: a first charging coil and a second charging coil, the first charging coil and the second charging coil are partially overlapped, and the ports of the first charging coil and the second charging coil are set to be the same; The first charging coil is reversed so that the first direction is opposite to the second direction, and the first direction is directed from the first port of the first charging coil to the first charging coil along the winding direction of the first charging coil.
- the direction of the second port of a charging coil is from the first port of the second charging coil to the second port of the second charging coil along the winding direction of the second charging coil direction; wherein, the first direction is clockwise, and the second direction is counterclockwise; or, the first direction is counterclockwise, and the second direction is clockwise.
- the mutual inductance of the main coil to the auxiliary coil can make the charging current in the main coil excited in the auxiliary coil and in the auxiliary coil
- the differential mode induced current with the opposite phase of the original interference current realizes the active control of the induced current in the differential mode, and reversely compensates the interference current, so that the interference in the secondary coil
- the total amount of current is reduced, and the interference of the secondary coil to the charging device is reduced.
- the interference current flowing back to the power supply is correspondingly reduced, which can improve the quality of the power supply, thereby ensuring the performance and safety of other electrical equipment using the power supply.
- the first charging coil works, the second charging coil does not work, and the charging current in the first charging coil excites the first induced current in the second charging coil; meanwhile, the second charging coil generates The first interference current other than the first induction current caused by interference; wherein, the direction of the first induction current in the second charging coil is opposite to that of the first interference current in the second charging coil.
- a charging coil assembly including: a descrambling coil and a plurality of charging coils, the descrambling coil and each charging coil in the plurality of charging coils are coincident, the first charging coil works, and the plurality of charging coils In addition to the first charging coil, other charging coils do not work, and the descrambling coil does not work, wherein the first charging coil is one of a plurality of charging coils; the descrambling coil generates the first interference current caused by interference, The second interference current caused by interference is generated in other charging coils, and the first interference current in the descrambling coil generates an induced current in other charging coils; the descrambling coil and the first charging coil are set in reverse, and the reverse setting makes the other The direction of the induced current in the charging coil is opposite to that of the second disturbance current.
- a special descrambling coil can be used to offset the interference signal in the secondary coil.
- the descrambling coil By setting the descrambling coil, and setting the descrambling coil and other charging coils in reverse, so that when any charging coil is used as the main coil, the descrambling coil can generate mutual inductance to the secondary coil, and excite the primary coil in the secondary coil.
- Some interference currents are induced currents with opposite phases (that is, a phase difference of 180 degrees). The induced current can offset the interference current in the same secondary coil, and realizes the active control of the induced current in the form of differential mode.
- the interference current flowing back to the power supply is correspondingly If the power is reduced, the quality of the power supply can be improved, thereby ensuring the performance and safety of other electrical equipment using the power supply.
- the charging coil assembly is applied to a wireless charging device
- the wireless charging device includes a full-bridge inverter circuit
- the full-bridge inverter circuit includes a first output node and a second output node
- the first charging coil and the descrambling The ports of the coils are set the same, and the descrambling coil and the first charging coil are set in reverse, including: the first port of the first charging coil is connected to the first output node, the second port of the first charging coil is connected to the second output node, The first port of the descrambling coil is connected to the second output node, and the second port of the descrambling coil is connected to the first output node.
- the charging coil assembly is applied to a wireless charging device
- the wireless charging device includes a full-bridge inverter circuit
- the full-bridge inverter circuit includes a first output node and a second output node
- the first charging coil and the descrambling The ports of the coils are set the same, and the descrambling coil and the first charging coil are set in reverse, including: the descrambling coil is reversed so that the first direction is opposite to the second direction, and the first direction is along the first port of the first charging coil.
- the winding direction of the first charging coil points to the direction of the second port of the first charging coil
- the second direction is the direction from the first port of the descrambling coil to the second port of the descrambling coil along the winding direction of the descrambling coil ;
- the first direction is clockwise
- the second direction is counterclockwise; or, the first direction is counterclockwise, and the second direction is clockwise.
- an area of a non-overlapping area between the coverage area of the descrambling coil and the charging area covered by the multiple charging coils is smaller than a preset area difference threshold.
- the area of the non-overlapping area between the coverage area of the descrambling coil and the charging area covered by all the charging coils smaller than the preset area difference threshold, it is possible to prevent the coverage area of the descrambling coil from being covered by all other charging coils
- the mutual inductance caused by the low overlapping degree of the charging area is too weak, the induced current generated is too weak, and the offset amount to the interference current is too low, which affects the effect of interference removal. Therefore, it can be ensured that the descrambling coil has sufficient mutual inductance in each charging coil to generate a strong induced current, and the amount of offsetting the interference current is large, thereby ensuring the effect of descrambling.
- the interference of the charging coil assembly to the power supply can be reduced, and the performance and safety of other electrical equipment using the power supply can be ensured.
- the coverage area of the descrambling coil coincides with the outer contour of the charging area covered by the multiple charging coils.
- the mutual inductance between the descrambling coil and the charging coil can be guaranteed to the greatest extent, and the interference signal can be canceled to the greatest extent; and the coverage area of the descrambling coil coincides with the outer contours of multiple charging coils, so the size of the descrambling coil will not exceed
- the charging area covered by the multiple charging coils therefore does not need to occupy an area other than the charging area of the multiple charging coils, and thus does not need to increase the size of the wireless charging device excessively.
- the number of charging coils is greater than or equal to four.
- the number of charging coils is 18.
- a charging coil assembly which is applied to a wireless charging device.
- the wireless charging device includes a full-bridge inverter circuit, and the full-bridge inverter circuit includes a first output node and a second output node.
- the charging coil assembly includes: The disturbing coil and multiple charging coils; the descrambling coil and each charging coil in the multiple charging coils are coincident, and the port settings of each charging coil and the descrambling coil in the multiple charging coils are the same; the multiple charging coils The first port of each charging coil is connected to the first output node, the second port of each charging coil in the plurality of charging coils is connected to the second output node, and the first port of the descrambling coil is connected to the second output node , the second port of the descrambling coil is connected to the first output node.
- the two charging coils are set in reverse phase, and the mutual inductance of the descrambling coil to the secondary coil can be used to make the
- the interference current in the auxiliary coil excites the induced current in the form of differential mode that is opposite to the original interference current in the auxiliary coil (that is, the phase difference is 180 degrees), thereby reducing the interference current in the auxiliary coil and realizing the differential mode
- the active control of the induced current in the form of reverse compensation of the interference current reduces the total amount of the interference current in the secondary coil and reduces the interference of the secondary coil to the charging equipment. Then in the CE test and the actual charging scene, the interference current flowing back to the power supply is correspondingly reduced, which can improve the quality of the power supply, thereby ensuring the performance and safety of other electrical equipment using the power supply.
- the first charging coil works, other charging coils in the multiple charging coils except the first charging coil do not work, and the descrambling coil does not work, wherein the first charging coil is a plurality of charging coils One of them; the first interference current caused by interference is generated in the descrambling coil, and the second interference current caused by interference is generated in the second charging coil, wherein the second charging coil is one of the other charging coils; the descrambling coil
- the first disturbance current in the second charging coil generates an induced current, wherein the direction of the induced current in the second charging coil is opposite to that of the second disturbance current.
- a charging coil assembly including: a descrambling coil and a plurality of charging coils, the descrambling coil and each charging coil in the plurality of charging coils are overlapped, and each charging coil in the plurality of charging coils
- the port setting is the same as that of the descrambling coil; the descrambling coil is reversed so that the first direction is opposite to the second direction, and the first direction is the winding of the first charging coil along the first port of the first charging coil The direction points to the direction of the second port of the first charging coil, the first charging coil is one of the plurality of charging coils, and the second direction is along the first port of the descrambling coil.
- the mutual inductance of the descrambling coil to the auxiliary coil can be used to make the interference current in the descrambling coil excited in the auxiliary coil and in the auxiliary coil
- the original interference current has the opposite phase (that is, the phase difference is 180 degrees) of the induced current in the form of differential mode, thereby reducing the interference current in the secondary coil, and realizing the active control of the induced current in the form of differential mode, through reverse compensation
- the interference current reduces the total amount of interference current in the secondary coil, and the interference of the secondary coil to the device to be charged is reduced. Then in the CE test and the actual charging scene, the interference current flowing back to the power supply is correspondingly reduced, which can improve the quality of the power supply, thereby ensuring the performance and safety of other electrical equipment using the power supply.
- the first charging coil works, other charging coils in the multiple charging coils except the first charging coil do not work, and the descrambling coil does not work, wherein the first charging coil is a plurality of charging coils One of them; the first interference current caused by interference is generated in the descrambling coil, and the second interference current caused by interference is generated in the second charging coil, wherein the second charging coil is one of the other charging coils; the descrambling coil
- the first disturbance current in the second charging coil generates an induced current, wherein the direction of the induced current in the second charging coil is opposite to that of the second disturbance current.
- a wireless charging device including N charging coil assemblies according to any one of the first aspect, the second aspect, the third aspect, the fourth aspect, the fifth aspect and the sixth aspect, wherein, N is a positive integer.
- Each charging coil assembly can wirelessly charge a device to be charged.
- the wireless charging device includes multiple charging coil assemblies in the above-mentioned embodiments, it is also possible to wirelessly charge multiple devices to be charged at the same time, wherein one charging coil is selected as the main coil in each charging coil assembly, and the A device to be charged is wirelessly charged.
- one charging coil is selected as the main coil in each charging coil assembly, and the A device to be charged is wirelessly charged.
- N is a positive integer greater than 1
- the wireless charging device is a wireless charging pad.
- the wireless charging board can wirelessly charge these multiple electronic devices at the same time, reducing the transfer of secondary coils. Interference current to the device to be charged. In the actual charging process, the interference of the wireless charging device to the power supply can be reduced, and the performance and safety of other electrical equipment using the power supply can be ensured.
- Fig. 1 is a schematic structural diagram of a general wireless charging device including two charging coils provided by the embodiment of the present application;
- Fig. 2 is a schematic diagram of the relative position between the charging coil in the wireless charging stand and the charging coil in the mobile phone when the mobile phone provided by the embodiment of the present application is placed vertically or horizontally;
- Fig. 3 is a schematic diagram of overlapping with the charging coils of the mobile phone when the two charging coils in an example of the wireless charging device provided by the embodiment of the present application are in different positions;
- FIG. 4 is a schematic diagram of an example of a secondary coil equivalent to an LC resonant circuit provided by the embodiment of the present application;
- Fig. 5 is a schematic diagram of a path for the secondary coil as an interference source to transmit an interference signal to the device to be charged in an example of a general-purpose wireless charging device provided by the embodiment of the present application;
- Fig. 6 is a schematic diagram of the charging current in the primary coil and the direction of the induced current excited in the secondary coil in an example provided by the embodiment of the present application;
- Fig. 7 is a schematic diagram of a general-purpose wireless charging device provided by an embodiment of the present application, in which the secondary coil is used as an interference path to transmit interference signals;
- FIG. 8 is a schematic diagram of the flow of interference signals in a test environment for a CE test provided in an embodiment of the present application
- Fig. 9 is a schematic diagram of the orientation of two charging coils in a conventional charging device provided by the embodiment of the present application.
- Fig. 10 is a schematic diagram of the orientation of two oppositely arranged charging coils provided by the embodiment of the present application.
- Fig. 11 is a schematic diagram of the orientation of two oppositely arranged charging coils provided by the embodiment of the present application.
- Fig. 12 is a schematic diagram of the comparison of the charging current of the primary coil and the direction of the induced current excited in the secondary coil provided by the embodiment of the present application;
- FIG. 13 is a sample diagram of an interference signal in a CE test environment provided by an embodiment of the present application.
- Fig. 14 is a waveform diagram of the induced current excited in the secondary coil provided by the embodiment of the present application.
- Fig. 15 is a physical diagram of a common charging coil assembly with three charging coils provided by the embodiment of the present application.
- Fig. 16 is a schematic diagram of the direction of induced current in a charging coil assembly including three charging coils provided by an embodiment of the present application;
- Fig. 17 is a schematic diagram of the direction of induced current in another charging coil assembly including three charging coils provided by the embodiment of the present application;
- Fig. 18 is a schematic diagram of the direction of induced current in a charging coil assembly including four charging coils provided by an embodiment of the present application;
- Fig. 19 is a schematic structural diagram of a charging coil assembly including three charging coils and a descrambling coil provided by an embodiment of the present application;
- Fig. 20 is a schematic structural diagram of yet another charging coil assembly including three charging coils and one descrambling coil provided by the embodiment of the present application;
- Fig. 21 is a schematic structural diagram of a charging coil assembly including four charging coils and a descrambling coil provided by an embodiment of the present application;
- FIG. 22 is a schematic structural diagram of a charging coil assembly including 18 charging coils and a descrambling coil provided by an embodiment of the present application.
- first”, “second”, “third”, and “fourth” are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
- a feature defined as “first”, “second”, “third” and “fourth” may expressly or implicitly include one or more of such features.
- the coil assembly provided by the embodiment of the present application can be used in a wireless charging device, such as a wireless charger for a mobile phone or a wireless charging pad, and the embodiment of the present application does not impose any limitation on the specific type of the wireless charging device.
- the wireless charging device mainly adopts the principle of electromagnetic induction, and performs energy coupling through a coil to realize energy transmission.
- a plurality of charging coils at different positions are arranged in the wireless charging device to charge devices to be charged at different positions.
- the user hopes that the mobile phone can be wirelessly charged by placing the mobile phone on the wireless charger at will, without causing the charging coil used by the wireless charger to transmit due to the deviation of the position where the user places the mobile phone.
- There is an excessive deviation from the position of the charging coil used for receiving in the mobile phone which makes the charging unsuccessful or the charging efficiency is low.
- FIG. 1 is a schematic diagram of the appearance structure of the wireless charging stand.
- the wireless charging stand includes a base 101 and a back plate 102 , and an upper coil 103 and a lower coil 104 are arranged in the back plate 102 .
- the user places the mobile phone 202 vertically on the wireless charging stand as shown in figure a in Figure 2, it can be seen from the side view of the wireless charging stand shown in figure b in Figure 2 that the mobile phone 202
- the charging coil 2021 and the upper coil 103 in the wireless charging stand overlap to a relatively high degree.
- the upper coil 103 can be selected to wirelessly charge the mobile phone 202 .
- a wireless charging device when a wireless charging device includes multiple charging coils, the areas covered by the multiple charging coils overlap to a certain extent.
- the wireless charging device shown in FIG. 3 as an example, if the two charging coils do not overlap as shown in figure a in FIG. 3 , when the mobile phone 201 is placed in the area between the two charging coils The overlapping degree between the charging coil 2021 inside the mobile phone 201 as the receiving coil and any charging coil in the wireless charging device is very low, which will affect the charging efficiency or even fail to charge. Therefore, generally in a wireless charging device, two charging coils may be partially overlapped as shown in FIG. 3 b .
- the wireless charging device can select a charging coil to charge the mobile phone efficiently, and there will be no blind area for charging. That is, when the mobile phone 201 is in the position shown in Figure 3b, the wireless charging device can also select one of the charging coils to charge the mobile phone efficiently, so overlapping the charging coils can increase the degree of freedom of charging.
- the device to be charged When the device to be charged is placed on the wireless charging device, the device to be charged will send a charging request signal to the wireless charging device, so as to detect which charging coil in the wireless charging device has a high degree of overlap with the charging coil in the device to be charged. Then, the wireless charging device can use the charging coil in the wireless charging device and the charging coil in the device to be charged with a high degree of overlapping as the main coil to perform wireless charging. In some embodiments, after the wireless charging device selects the main coil, it can also perform a handshake process with the device to be charged to ensure the smooth progress of subsequent charging, and charge after passing the handshake process.
- interference signals in the secondary coil When the main coil in the wireless charging device is used to wirelessly charge the device to be charged, other charging coils in the wireless charging device serve as secondary coils, and the secondary coils will not charge the device to be charged. At this time, there will be interference signals in the secondary coil.
- useful signals that cannot be used for charging as interference signals. These interference signals may crosstalk to the power supply through the mutual inductance of the main coil and the secondary coil, or reference ground, which will affect the stability of the power supply and affect other equipment using the power supply.
- the charging circuit includes a full-bridge inverter circuit, which is used to connect the power supply and charge The coil, wherein the full bridge inverter circuit includes a first output node A and a second output node B.
- the two ports of the charging coil are respectively connected to the first output node A and the second output node B to obtain electric energy to charge the charging device.
- the wireless charging device selects the main coil for charging, if the secondary coil is connected to a metal-oxide semiconductor (MOS) field effect transistor through both ends, the body diode in the MOS will The coil is placed in a suspended state, such as shown in a diagram in Figure 5.
- the secondary coil in the suspended state can be equivalent to an LC resonant circuit including equivalent capacitance and equivalent inductance, as shown in diagram b in FIG. 5 , for example. This LC resonant circuit will generate a resonant signal, causing interference.
- interference signals will also be transmitted to the secondary coil through the capacitive coupling on the printed circuit board (PCB).
- PCB printed circuit board
- the interference signal is coupled from the PCB where the full-bridge inverter circuit is arranged to the upper coil as the secondary coil through the equivalent capacitance C1 shown in diagram a in Figure 4 .
- the interference signal is transmitted from the main coil to the secondary coil through the capacitive coupling between the charging coils.
- the equivalent capacitance between the upper coil and the lower coil can be referred to as C2 in a diagram of FIG. 4 .
- Figure b in Figure 4 is a side view of the upper coil and the lower coil, and C2 is the equivalent capacitance.
- the interference signal is transmitted to the auxiliary coil through the mutual inductance between the charging coils.
- the charging current is alternating current
- the direction will change with time, but at a fixed moment, the direction of the charging current is fixed.
- the direction of the charging current in the lower coil as the main coil is clockwise, and this charging current will generate an induced electromotive force in the upper coil as the secondary coil, thereby exciting the induced current.
- the direction is also clockwise. If there is an interference current in the upper coil originally, and the direction of this interference current is clockwise, the induced current will be superimposed on the original interference current, aggravating the interference.
- the number of turns of the charging coil is 1 for illustration. In fact, the number of turns of the charging coil can be multiple. At the same time, the same type of coil on each turn of the coil The current flows in the same direction.
- the wireless charging device including two charging coils, the upper coil and the lower coil, as an example.
- the interference signal in the form of differential mode can be seen in Fig.
- Figure a in Figure 4 along the path 1, it is coupled from the PCB to the upper coil as the secondary coil through the equivalent capacitor C1, and returns to the equivalent ground.
- the secondary coil converts the high-frequency component of the interference signal into a common-mode interference signal and transmits it to the device to be charged.
- the secondary coil can provide the differential mode interference signal brought by the main coil, as shown in Figure 7.
- the path 2 can be used as a common mode path to convert the high frequency component of the interference signal into a common mode form.
- the interference signal is transmitted to the device to be charged. It should be noted that the interference signal is transmitted from the upper coil as the secondary coil to the device to be charged through the capacitive coupling (equivalent capacitance C3) between the upper coil and the lower coil.
- the secondary coil will transmit the interference signal to the device to be charged.
- the interference signal coupled to the device to be charged will be coupled to the power supply through various coupling paths, thereby affecting other electric devices using the power supply.
- the CE test is a test item required by regulations to test whether the interference degree of the wireless charging device to the power supply during the wireless charging process meets the requirements.
- the test environment is to simulate the charging scene used by the user in daily use.
- the test environment includes a test bench and a line-impedance stabilization network (LISN).
- LISN line-impedance stabilization network
- the wireless charging device to be tested is arranged on the test platform, and the equipment to be charged is placed on the base of the wireless charging device for wireless charging.
- LISN is used as a power supply for the test environment, and is connected to the power socket through a power cable.
- the power cord of the wireless charging device is connected to a power outlet to get power.
- a detection circuit is integrated inside the LISN, which is used to detect interference signals and output the detection results to the spectrum analyzer, through which the size of the interference signal can be observed.
- the size of the interference signal here is described in the form of interference voltage, that is, if the interference voltage detected by the detector is large, it means that the wireless charging device has a large interference with the power supply; if the interference voltage detected by the detector is small, it means that the wireless charging device is The power supply has little disturbance.
- the interference signal When the interference signal is coupled from the secondary coil of the wireless charging device to the device to be charged through the capacitive coupling between the secondary coil in the wireless charging device and the device to be charged, there will be a backflow of the interference signal. As shown in FIG. 8, there is also capacitive coupling between the device to be charged and the reference ground, which can be equivalent to an equivalent capacitor C4. When the device to be charged is plugged into the earphone, there will also be a large capacitive coupling between the earphone line and the reference ground, which can be equivalent to an equivalent capacitor C5. At this time, the interference signal originally on the device to be charged will form an interference loop along the path shown by the dotted line in FIG.
- LISN can be equivalent to an incoming power supply in the actual application scenario. If the detector detects a large voltage, it indicates that the incoming power supply will carry a large interference signal . Once the household power supply is connected to other electrical equipment, this interference signal will be brought into the power supply of other electrical equipment, affecting the performance or safety of other electrical equipment.
- the adjusted charging coil by adjusting the orientation of some of the charging coils, the adjusted charging coil induces an induced current in the direction opposite to the original interference current in other charging coils, thereby canceling the interference current, thereby realizing active control of disturbance currents. Since the interference current on the secondary coil in the wireless charging device is reduced fundamentally, the interference current coupled to the device to be charged can be weakened, the interference to the power supply is reduced, and the performance and safety of other electric equipment are guaranteed.
- the orientation of the two charging coils shown in Figure 9 does not mean that they do not overlap, but to clearly show the orientation of the two coils
- the actual two charging coils may be partially overlapped, as shown in FIG. 1 .
- the first charging coil and the second charging coil are arranged in the same direction, that is, the direction of the charging coils is the same.
- the ports of the charging coil can be defined, wherein the ports of the first charging coil and the second charging coil are set to be the same, and the inner end of the charging coil is used as the first port, and the outer end of the charging coil is used as the first port. One end is called the second port.
- the second charging coil can be reversed without changing the port connection mode.
- the inverted second charging coil and the non-inverted first charging coil are two oppositely arranged charging coils.
- the direction from the first port of the second charging coil to the second port of the second charging coil is counterclockwise along the winding direction of the second charging coil;
- the first port of the first charging coil is along the winding direction of the first charging coil, and the direction pointing to the second port of the first charging coil is clockwise. That is, after the second charging coil is reversed, the first ports of the two charging coils point to the opposite direction to the second port along their respective winding directions.
- the second charging coil does not work as the auxiliary coil.
- the charging current in the first charging coil excites the induced current in the second coil, and at the same time, an interference current other than the induced current caused by interference will be generated in the second charging coil. Due to the reverse setting of the second charging coil, the direction of the induced current can also change accordingly, which is opposite to the direction of the interference current (including the interference current caused by source 1, source 2 and source 3 above), thereby offsetting part of the interference current , reducing interference.
- the first charging coil does not work as the auxiliary coil.
- the charging current in the second charging coil excites an induced current in the first coil, and at the same time, other interference currents other than the induced current caused by interference will be generated in the second charging coil. Since the second charging coil is reversed, the direction of the induced current can also be changed, which is opposite to the direction of the interference current, thereby offsetting a part of the interference current and reducing the interference.
- the technical solution of the present application may also be to reverse the first charging coil, so that the reversed first charging coil and the non-reversed second charging coil are two oppositely arranged a charging coil.
- the direction from the first port of the first charging coil to the second port of the first charging coil is counterclockwise along the winding direction of the first charging coil;
- the direction in which the first port of the second charging coil points to the second port of the second charging coil along the winding direction of the second charging coil is clockwise. That is, after the first charging coil is reversed, the first ports of the two charging coils point to the opposite direction to the second port along their respective winding directions.
- the direction of the induced current excited by the main coil in the auxiliary coil is opposite to that of other interference currents other than the initial induced current in the auxiliary coil , so as to offset part of the interference current and reduce the interference.
- the way to set the two charging coils in opposite directions can also be to keep the orientation of the charging coils unchanged, but to change the connection mode between the ports of the charging coils and the output nodes of the full-bridge inverter circuit .
- the connection mode between the port of the second charging coil and the output node of the full-bridge inverter circuit remains unchanged.
- the first port of the first charging coil and the second port of the second charging coil are connected to an output node of the full-bridge inverter circuit, and the second port of the first charging coil and the first port of the second charging coil are connected to the full-bridge Another output node of the inverter circuit.
- Such an arrangement can make the two charging coils arranged in opposite directions.
- the direction of the charging current flows from the first output node A to the second output node B
- the direction of the charging current in the first charging coil is counterclockwise Direction
- the charging current generates counterclockwise induced current in the non-working auxiliary coil (second charging coil)
- the direction of the interference current in the second charging coil as the auxiliary coil except the induced current is from the first
- the output node A points clockwise to the second output node B along the winding direction of the second charging coil.
- the directions of the induced current and the interference current are opposite, and the induced current can offset part of the interference current, thereby reducing the interference.
- the direction of the charging current in the second charging coil is clockwise, and the charging current generates a clockwise induced current in the non-working secondary coil (first charging coil) , and the direction of the disturbance current other than the induced current in the second charging coil as the secondary coil is counterclockwise from the first output node A to the second output node B along the winding direction of the first charging coil.
- the directions of the induced current and the interference current are opposite, and the induced current can offset part of the interference current, thereby reducing the interference.
- the charging current in the main coil will be An induced current in the same direction as the charging current (both clockwise or counterclockwise) is generated in the secondary coil, and the direction of this induced current is opposite to the interference current that originally existed in the secondary coil except for the induced current .
- the first charging coil is taken as the lower coil and the second charging coil is taken as the upper coil for example.
- the lower coil is charged as the main coil for charging.
- the charging current is clockwise.
- the charging current in the main coil will excite a magnetic field inward toward the paper surface in the upper coil as the secondary coil, thereby causing a clockwise induced current.
- the first charging coil 1201 and the second charging coil 1202 are arranged in opposite directions.
- the first charging coil 1201 may be turned over 180 degrees, or the second charging coil 1202 may be turned over 180 degrees.
- it can be referred to the diagram b in FIG. 12 , where the flipping of the first charging coil 1201 is shown as an example.
- the first charging coil 1201 and the second charging coil 1202 are set in opposite directions, the charging current in the original clockwise direction becomes counterclockwise, and the charging current in the main coil
- the magnetic field perpendicular to the surface of the paper will be excited in the upper coil as the secondary coil, and the direction of the induced current excited by the charging current in the upper coil will also change from clockwise to counterclockwise. This not only does not aggravate the interference, but also offsets the original interference current in the upper coil, and plays a role in suppressing the interference current.
- the total amount of interference current is reduced, thereby reducing the interference of the secondary coil to the charging equipment.
- the first charging coil may also be an upper coil
- the second charging coil may be a lower coil, and the embodiment of the present application does not limit which charging coil the first charging coil is.
- the charging circuit As shown in Figure c in Figure 12, where the first port of one charging coil and the second port of the other charging coil are connected to an output node of the full-bridge inverter circuit at the same time, the charging coil The second port of the charging coil and the first port of the other charging coil are simultaneously connected to another output node of the full-bridge inverter circuit.
- the first port of the upper coil and the second port of the lower coil are connected to the second output node B, and the second port of the upper coil and the second port of the lower coil are simultaneously connected to the first output node A as an example.
- the concept of positive and negative of the charging coil mentioned in the embodiment of the present application is a relative concept, which is not absolute.
- the direction of the current transmitted to the charging coil on the PCB is fixed. If the magnetic field generated by this current in the charging coil is facing out of the paper, the charging coil can be defined as positive; if this The magnetic field generated by the current in the charging coil is towards the inside of the paper, so the charging coil can be defined as the opposite direction.
- the definitions of positive and negative can also be reversed, without affecting the realization of the technical solution of the present application, and the same effect can still be achieved.
- the situation that the two charging coils are arranged in opposite directions can be that the upper coil is positive and the lower coil is reversed, or that the upper coil is reversed and the lower coil is positive.
- Table 1 it can be seen that the voltage of the interference signal scanned by the spectrum analyzer is greatly reduced when the two charging coils are set in the opposite direction compared to the case of the same direction. It is most obvious at the nearby 910KHz.
- the voltage of the interference signal at 910KHz is 15.13dBuV (decibel microvolts)
- the voltage of the interference signal at 910KHz is 30.79dBuV, the difference is as much as 15dBuV.
- the interference signal is also reduced to varying degrees.
- the voltage of the interference signal at 910KHz is 3.8dBuV
- the voltage of the interference signal at 910KHz is 35.24dBuV, with a difference of more than 30dBuV.
- the interference signal also drops by more than 13dBuV.
- the interference signal measured with the same sampling bandwidth is shown in figure a in Figure 13.
- the peak value of the voltage of the interference signal is closer to the peak limit value, and the interference signal
- the mean value of the voltage of the signal is close to or even exceeds the limit value of the mean value.
- Level represents the magnitude of the measured voltage
- Limit represents the limit value.
- Margin represents the margin between the measured data and the limit value. Usually we hope that the smaller the Margin, the better.
- Detector represents the type of detector, and can also represent the detection method. Among them, QP stands for quasi-peak detector, and AVERAGE CISPR stands for average detector.
- RBW means reference bandwidth. Usually, comparing numerical values needs to be compared on the basis of the same RBW to be meaningful.
- the measured voltage of the interference signal is shown in Figure 13 b (the upper coil is positive and the lower coil is reversed), the peak value of the voltage of the interference signal is farther away from the peak limit value, and the interference The mean value of the voltage of the signal becomes farther away from the mean value limit and there is no frequency point exceeding the standard. It can be seen from the b diagram in Figure 13 that the frequency point of the higher harmonic disappears, for example, there is no obvious harmonic interference at 910kHz.
- an oscilloscope can be used to detect the secondary coil, and the waveform shown in Figure 14 can be obtained.
- a common wireless charging device may also include three charging coils, such as shown in FIG. 15 , and these three charging coils are overlapped to meet the degree of freedom of charging. Based on the ideas provided in this application, the charging coil located in the middle in FIG. 15 can be reversed to realize the active control reverse compensation of the interference signal.
- FIG. 15 is a schematic diagram of a charging coil assembly composed of three charging coils provided in the embodiment of the present application.
- a third charging coil 1203 is also added.
- the third charging coil 1203 is partially overlapped with the first charging coil 1201 , and the third charging coil 1203 is not overlapped with the second charging coil 1202 .
- the charging current induces an induced current in the third charging coil 1203 .
- the third charging coil 1203 and the first charging coil 1201 are arranged oppositely, and the third charging coil 1203 and the second charging coil 1202 are arranged in the same direction.
- the reverse arrangement between the third charging coil 1203 and the first charging coil 1201 makes the direction of the induced current in the third charging coil 1203 and the interference current in the third charging coil 1203 opposite.
- the second charging coil 1202 works as the main coil, and the current direction can be shown in FIG. 17 .
- the direction of the charging current in the second charging coil 1202 is clockwise, a clockwise induced current will be generated in the first charging coil 1201, and the induced current in the first charging coil 1201 can reduce the original current in the first charging coil 1201. is the interference current in the counterclockwise direction.
- the counterclockwise interference current in the first charging coil 1201 can also excite a counterclockwise induced current in the third charging coil 1203, and the induced current in the third charging coil 1203 can reduce the original current in the third charging coil 1203. is a clockwise disturbance current.
- the interference current in the secondary coil is reduced, thereby reducing the interference.
- the interference current in the first charging coil 1201 and the second charging coil 1202 as the auxiliary coils can be reduced to achieve the effect of reducing interference.
- the directions of the three charging coils in FIG. 16 are forward, reverse and forward in sequence.
- the directions of the three charging coils can also be reverse, forward and reverse in sequence.
- Such a setting method is similar to the technical principle and realization effect of the front, back and front shown in FIG. 16 , and will not be repeated here.
- the charging coil assembly composed of three charging coils has a higher degree of freedom in charging than the charging coil assembly composed of two charging coils. Since the setting of the charging coil facing the opposite direction is adopted, that is, each charging coil in the charging coil has a charging coil opposite to it, so when any charging coil is used as the main coil, through the mutual inductance of the main coil to the auxiliary coil, The charging current in the main coil excites the induced current of the secondary coil opposite to it in the secondary coil, and the phase of this induced current is opposite to the interference current in the original secondary coil (that is, the phase difference is 180 degrees), so the interference can be counteracted Current, realizes the active control of the induced current in the form of differential mode, through the reverse compensation of the interference current, the total amount of the interference current in the secondary coil is reduced, and the interference of the secondary coil to the charging equipment is reduced, then in the CE test And in the actual charging scene, the interference current flowing back to the power supply is correspondingly reduced, which can improve the quality of
- FIG. 18 is a schematic diagram of a charging coil assembly composed of four charging coils provided in the embodiment of the present application.
- a fourth charging coil 1204 is also added.
- the fourth charging coil 1204 partially overlaps with the second charging coil 1202 , and the fourth charging coil 1204 does not overlap with the first charging coil 1201 and the third charging coil 1203 .
- the current (disturbance current or charging current) in the second charging coil 1202 excites the induced current in the fourth charging coil 1204;
- the opposite arrangement between the charging coils 1202 makes the directions of the induced current in the fourth charging coil 1204 and the interference current in the fourth charging coil 1204 opposite. That is, the directions of the four charging coils are forward, reverse, forward and reverse in sequence.
- the charging coil assembly composed of four charging coils has an improved degree of freedom in charging. Since the setting of the charging coil facing the opposite direction is adopted, that is, each charging coil in the charging coil has a charging coil opposite to it, so when any charging coil is used as the main coil, through the mutual inductance of the main coil to the auxiliary coil, the main The charging current in the coil excites the induced current of the secondary coil opposite to it in the secondary coil, and the phase of this induced current is opposite to the interference current in the original secondary coil (that is, the phase difference is 180 degrees), so the interference current can be offset , to realize the active control of the induced current in this differential mode, by reversely compensating the interference current, the total amount of the interference current in the secondary coil is reduced, and the interference of the secondary coil to the charging equipment is reduced, then in the CE test and In the actual charging scene, the interference current flowing back to the power supply is correspondingly reduced, which can improve the quality of the power supply, thereby
- a "permanent" secondary coil can also be specially set as a descrambling coil, and the mutual inductance between the secondary coils can be used to cancel the interference signal.
- a special descrambling coil can be used to cancel the interference signal in the secondary coil.
- three charging coils are taken as an example in FIG. 19 , and the three charging coils are arranged in the same direction, while the descrambling coil 1901 and the three charging coils are arranged in opposite directions.
- the descrambling coil 1901 can be set to be reversed, and the disturbance current in the descrambling coil 1901 can excite the induced current in the charging coil 1902 , the charging coil 1903 and the charging coil 1904 .
- the charging coil 1901 is used as the main coil for charging, there will also be interference currents in the descrambling coil 1902 , the charging coil 1903 and the charging coil 1904 as the auxiliary coils.
- the induced current excited by the disturbance current in the descrambling coil 1901 in the charging coil 1902 can offset the disturbance current in the charging coil 1902
- the induced current excited by the disturbance current in the descrambling coil 1901 in the charging coil 1903 can offset the disturbance current in the charging coil 1903
- the induced current induced by the disturbance current in the descrambling coil 1901 excited in the charging coil 1904 Interference currents in the charging coil 1904 can be counteracted.
- the descrambling coil 1901 can be oval as shown in figure a in Figure 19, or can be a larger circle as shown in figure b in Figure 19, or can be in the figure c of Figure 19
- the smaller circle shown in the size can also be a smaller square as shown in the d figure in Figure 19, or a larger size as shown in the e figure in Figure 19. It is a triangle as shown in figure f among Fig. 19 and the like, which are not listed here again.
- the disturbance current in the descrambling coil 1901 can excite induced currents in other charging coils, and each charging coil is excited.
- the induced current can reduce the original interference current, so as to realize the anti-interference effect of active control and reverse compensation.
- Fig. 20 is a schematic diagram of a charging coil assembly different from the arrangement of the three charging coils in Fig. 19.
- the three charging coils are arranged vertically, and the shape of the descrambling coil is a rectangle with rounded corners.
- a charging coil assembly can be formed.
- the shape of the charging coil can also be other shapes, such as ellipse, rectangle, square, and rounded corners in the long direction and square, etc., may also be combined with charging coils of different shapes, such as circular, oval, etc., which is not limited in this embodiment of the present application.
- the two ends of the descrambling coil 1901 can be respectively connected to a MOS transistor, and the body diode in the MOS transistor can control the descrambling coil to be in a floating state, and will not be charged as a main coil.
- Figures a, b, c, and d in Figure 21 all take the charging coil assembly composed of four charging coils as an example, the four charging coils are arranged in the same direction, and the descrambling coil 1901 and the four charging coils
- the shape and size of the descrambling coil 1901 are not limited, and the descrambling coil 1901 overlaps with each charging coil respectively.
- the descrambling coil 1901 does not work either.
- the direction of the induced current excited in the non-working charging coil is opposite to the direction of the interference current, so the induced current can reduce the original interference current , so as to reduce the interference signal and realize the anti-interference effect of active control and reverse compensation.
- setting the descrambling coil 1901 and the charging coil in reverse may be to turn the descrambling coil 180 degrees; it may also be to turn all the charging coils 180 degrees; One port is changed from the first output node A originally connected to the full-bridge inverter circuit to the second output node B connected to the full-bridge inverter circuit; or the first port of all charging coils is connected to the full-bridge inverter circuit from the original The first output node A of the node becomes the second output node B connected to the full-bridge inverter circuit, which is not limited in this embodiment of the present application.
- the size of the descrambling coil 1901 is not limited in this embodiment, as long as it can overlap with any one of the multiple charging coils.
- the overlapping mentioned here may be partial overlapping or full overlapping, which is not limited. In this way, it can be ensured that the descrambling coil 1901 can generate mutual inductance with other charging coils, and the interference signal in the descrambling coil 1901 generates an induced current in other secondary coils, thereby reducing the interference signals in other secondary coils.
- the charging coil assemblies composed of other numbers of charging coils are not listed one by one.
- the area of the non-overlapping area between the coverage area of the descrambling coil and the charging area covered by all the charging coils is smaller than a preset area difference threshold. That is, the coverage area of the descrambling coil has a higher degree of overlap than the charging area covered by all other charging coils, for example, the non-overlapping area between the two is less than a certain preset area difference threshold .
- the preset area threshold can be adjusted as required.
- the coverage area of the descrambling coil and the outer contours of the multiple charging coils can also completely overlap, so that the mutual inductance between the descrambling coil and the charging coil can be guaranteed to the greatest extent, and the interference signal can be canceled to the greatest extent; and the descrambling If the coverage area of the coil coincides with the outer contours of the multiple charging coils, the size of the descrambling coil will not exceed the charging area covered by the multiple charging coils, so there is no need to occupy an area outside the charging area of the multiple charging coils, that is, There is no need to increase the size of the wireless charging device.
- the descrambling coil has sufficient mutual inductance in each charging coil to generate a strong induced current, and the amount of offsetting the interference current is large, thereby ensuring the effect of descrambling.
- the influence of the charging coil assembly on the power supply can be reduced, and the performance and safety of other electrical equipment using the power supply can be ensured.
- Figure a in FIG. 22 is a schematic diagram of multiple charging coil assemblies in a charging board. These multiple charging coils are placed on the ferrite, and then connected to the charging circuit to realize wireless charging.
- Figure a in Figure 22 shows that there are 18 charging coils as an example, and these 18 charging coils are attached to ferrite to ensure the quality factor of electromagnetic conversion.
- a large descrambling coil 1901 can be used as a permanent secondary coil, as shown in b in FIG. 22 , to achieve the effect of descrambling other secondary coils.
- An embodiment of the present application also provides a wireless charging device, which includes one or more charging coil assemblies in the above-mentioned embodiments.
- Each charging coil assembly can wirelessly charge a device to be charged.
- the wireless charging device includes multiple charging coil assemblies in the above-mentioned embodiments, it is also possible to wirelessly charge multiple devices to be charged at the same time, wherein one charging coil is selected as the main coil in each charging coil assembly, and the A device to be charged is wirelessly charged.
- the wireless charging device may be a wireless charging pad.
- the wireless charging pad can wirelessly charge the multiple electronic devices at the same time.
- multiple charging coil assemblies in the wireless charging device may also share the same descrambling coil.
- the charging coils in the plurality of charging coil assemblies are all arranged in the same direction, and the descrambling coil and the charging coil are arranged in opposite directions.
- the descrambling coil can excite an induced current in the secondary coil that is not in the charging state, thereby canceling the interference signal.
- Multiple charging coil assemblies sharing the same descrambling coil can reduce the complexity of the structure of the wireless charging device and facilitate manufacturing.
- the disclosed devices and methods may be implemented in other ways.
- the device embodiments described above are only illustrative.
- the division of modules or units is only a logical function division. In actual implementation, there may be other division methods.
- multiple units or components can be combined or It may be integrated into another device, or some features may be omitted, or not implemented.
- the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, indirect coupling or communication connection of devices or units, and the replaced units may or may not be physically separated, as A unit shows a part that can be one physical unit or multiple physical units, that can be located in one place, or can be distributed in many different places. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
- each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
- the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
- an integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a readable storage medium.
- the technical solution of the embodiment of the present application is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the software product is stored in a storage medium Among them, several instructions are included to make a device (which may be a single-chip microcomputer, a chip, etc.) or a processor (processor) execute all or part of the steps of the methods in various embodiments of the present application.
- the aforementioned storage medium includes: various media that can store program codes such as U disk, mobile hard disk, read only memory (ROM), random access memory (random access memory, RAM), magnetic disk or optical disk.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
本申请涉及无线充电技术领域,提供了一种充电线圈组件和无线充电装置,包括:第一充电线圈和第二充电线圈,第一充电线圈和第二充电线圈部分重合,第一充电线圈工作,第二充电线圈不工作,第一充电线圈中的充电电流在第二充电线圈中激发出第一感应电流;同时,第二充电线圈中产生由于干扰引起的除第一感应电流之外的第一干扰电流;第一充电线圈和第二充电线圈反向设置,第二充电线圈和第一充电线圈之间的反向设置使得第二充电线圈中的第一感应电流和第二充电线圈中的第一干扰电流的方向相反。该充电线圈组件能够消减副线圈中的干扰信号,从而减轻干扰信号对电源的干扰。
Description
本申请要求于2022年02月28日提交国家知识产权局、申请号为202210191342.0、申请名称为“充电线圈组件和无线充电装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
本申请涉及无线充电技术领域,具体涉及一种充电线圈组件和无线充电装置。
随着无线充电技术的发展,人们对充电自由度的要求越来越高。以带有无线充电功能的手机为例,用户希望将手机随意放置在无线充电器上即可以进行无线充电,而不会因为用户放置手机的位置有所偏差,导致无线充电器的充电线圈和手机中的充电线圈的位置存在过大偏差,使得充电不成功或者充电效率低。
通常,在无线充电装置中,可以通过设置多个线圈来实现不同位置的无线充电,从而提高充电自由度。当用户将手机随意放置在无线充电器上的时候,总会有一个线圈与手机的重叠程度比较高,则手机可以使用这个线圈作为主线圈来进行充电。
然而,当手机使用这个主线圈进行充电时,其他的副线圈会产生干扰信号。这些干扰信号可能通过主副线圈的互感、或者参考地等干扰途径串扰至电源处,影响电源的稳定性,对使用该电源的其他设备造成影响。
发明内容
本申请提供了一种充电线圈组件和无线充电装置,能够减少副线圈中的干扰信号,从而减轻对电源的干扰。
第一方面,提供了一种充电线圈组件,包括:第一充电线圈和第二充电线圈,第一充电线圈和第二充电线圈部分重合,第一充电线圈工作,第二充电线圈不工作,第一充电线圈中的充电电流在第二充电线圈中激发出第一感应电流;同时,第二充电线圈中产生由于干扰引起的除第一感应电流之外的第一干扰电流;第一充电线圈和第二充电线圈反向设置,第二充电线圈和第一充电线圈之间的反向设置使得第二充电线圈中的第一感应电流和第二充电线圈中的第一干扰电流的方向相反。
由于采用了反向设置的两个充电线圈的设置方式,通过主线圈对副线圈的互感,主线圈中的充电电流在副线圈中激励起和副线圈中原本的干扰电流的相位相反(即相位相差180度)的差模形式的感应电流,实现了对这个差模形式的感应电流的有源控制,通过反向补偿干扰电流,使得副线圈中的干扰电流的总量减小,副线圈对待充电设备的干扰降低。那么在CE测试和实际的充电场景中,回流至电源的干扰电流也就相应地减小,就能够提高电源的质量,从而确保了其他使用该电源的用电设备的性能和安全性。
在一些可能的实现方式中,充电线圈组件应用于无线充电装置,无线充电装置包括全桥逆变电路,全桥逆变电路包括第一输出节点和第二输出节点,第一充电线圈和第二充电线圈的端口设置相同,第一充电线圈和第二充电线圈反向设置,包括:第一 充电线圈的第一端口与第一输出节点连接,第一充电线圈的第二端口与第二输出节点连接,第二充电线圈的第一端口与第二输出节点连接,第二充电线圈的第二端口与第一输出节点连接。也可以是第一充电线圈的第一端口与第二输出节点连接,第一充电线圈的第二端口与第一输出节点连接,以及第二充电线圈的第一端口与第一输出节点连接,第二充电线圈的第二端口与第二输出节点连接。
第一端口可以是充电线圈内侧的端口,则第二端口为充电线圈外侧的端口;或者第一端口为充电线圈外侧的端口,则第二端口为充电线圈内侧的端口,对此并不做限定。
在一些可能的实现方式中,第一干扰电流包括:第二充电线圈在两端连接的金属-氧化物半导体MOS场效应管的作用下处于谐振状态所产生的干扰电流,通过印制电路板串扰至第二充电线圈的干扰电流,以及第一充电线圈上的充电电流通过与第二充电线圈之间的容性耦合传递至第二充电线圈的干扰电流中的至少一种。
在一些可能的实现方式中,第一充电线圈和第二充电线圈的端口设置相同,第一充电线圈和第二充电线圈反向设置,包括:第一充电线圈翻转设置,使得第一方向和第二方向相反,第一方向为由第一充电线圈的第一端口沿第一充电线圈的绕线方向指向第一充电线圈的第二端口的方向,第二方向为由第二充电线圈的第一端口沿第二充电线圈的绕线方向指向第二充电线圈的第二端口的方向;其中,第一方向为顺时针方向,第二方向为逆时针方向;或者,第一方向为逆时针方向,第二方向为顺时针方向。
在一些可能的实现方式中,充电线圈组件还包括第三充电线圈,第三充电线圈和第一充电线圈部分重合,第三充电线圈不工作,第一充电线圈中的充电电流在第三充电线圈中激发出第二感应电流;同时,第三充电线圈中产生由于干扰引起的除第二感应电流之外的第二干扰电流;第三充电线圈和第一充电线圈反向设置,第三充电线圈和第一充电线圈之间的反向设置使得第三充电线圈中的第二感应电流和第三充电线圈中的第二干扰电流的方向相反。
三个充电线圈组成的充电线圈组件相比两个充电线圈组成的充电线圈组件,充电自由度提高。由于采用了朝向相反的充电线圈的设置,即充电线圈中每个充电线圈都有一个与之反向设置的充电线圈。因此任意一个充电线圈作为主线圈时,通过主线圈对副线圈的互感,主线圈中的充电电流在副线圈中激励起与之反向设置的副线圈的感应电流,这个感应电流和原本副线圈中的干扰电流的相位相反(即相位相差180度),因此可以消减副线圈中的干扰电流。实现了对这个差模形式的感应电流的有源控制,通过反向补偿干扰电流,使得副线圈中的干扰电流的总量减小,副线圈对待充电设备的干扰降低,那么在CE测试和实际的充电场景中,回流至电源的干扰电流也就相应地减小,就能够提高电源的质量,从而确保了其他使用该电源的用电设备的性能和安全性。
在一些可能的实现方式中,第二干扰电流包括:第三充电线圈在两端连接的MOS场效应管的作用下处于谐振状态所产生的干扰电流,通过印制电路板串扰至第三充电线圈的干扰电流,以及第一充电线圈上的充电电流通过与第三充电线圈之间的容性耦合传递至第三充电线圈的干扰电流中的至少一种。
在一些可能的实现方式中,应用于无线充电装置,无线充电装置包括全桥逆变电 路,全桥逆变电路包括第一输出节点和第二输出节点,第三充电线圈和第一充电线圈的端口设置相同,第三充电线圈和第一充电线圈反向设置,包括:第一充电线圈的第一端口与第一输出节点连接,第一充电线圈的第二端口与第二输出节点连接,第三充电线圈的第一端口与第二输出节点连接,第三充电线圈的第二端口与第一输出节点连接。
在一些可能的实现方式中,第三充电线圈和第一充电线圈的端口设置相同,第三充电线圈和第一充电线圈反向设置,包括:第一充电线圈翻转设置,使得第一方向和第三方向相反,第一方向为由第一充电线圈的第一端口沿第一充电线圈的绕线方向指向第一充电线圈的第二端口的方向,第三方向为由第三充电线圈的第一端口沿第三充电线圈的绕线方向指向第三充电线圈的第二端口的方向;其中,第一方向为顺时针方向,第三方向为逆时针方向;或者,第一方向为逆时针方向,第三方向为顺时针方向。
在一些可能的实现方式中,充电线圈组件还包括第四充电线圈,第四充电线圈和第二充电线圈部分重合,第四充电线圈与第一充电线圈和第三充电线圈均不重合,第四充电线圈不工作;第二充电线圈中的第一干扰电流在第四充电线圈中激发出第三感应电流;同时,第四充电线圈中产生由于干扰引起的除第三感应电流之外的第三干扰电流;第四充电线圈和第二充电线圈反向设置,第四充电线圈和第二充电线圈之间的反向设置使得第四充电线圈中的第三感应电流和第四充电线圈中的第三干扰电流的方向相反。
在一些可能的实现方式中,第三干扰电流包括:第四充电线圈在两端连接的MOS场效应管的作用下处于谐振状态所产生的干扰电流,通过印制电路板串扰至第四充电线圈的干扰电流,以及第二充电线圈上的干扰电流通过与第四充电线圈之间的容性耦合传递至第四充电线圈的干扰电流中的至少一种。
四个充电线圈组成的充电线圈组件相比两个和三个充电线圈组成的充电线圈组件,充电自由度提高。由于采用了朝向相反的充电线圈的设置,即充电线圈中每个充电线圈都存在与之反向设置的充电线圈。因此任意一个充电线圈作为主线圈时,通过主线圈对副线圈的互感,主线圈中的充电电流在副线圈中激励起与之反向设置的副线圈的感应电流。这个感应电流和原本副线圈中的干扰电流的相位相反(即相位相差180度),因此可以消减部分干扰电流。同时,第二充电线圈中的干扰电流在第四充电线圈中也能够激发出感应电流,由于第四充电线圈和第二充电线圈反向设置,第二充电线圈中的干扰电流在第四充电线圈中激发出的感应电流和原本第四充电线圈中的干扰电流方向相反,能够消减第四充电线圈中的干扰电流。这样的设置方式实现了对差模形式的感应电流的有源控制和反向补偿。通过反向补偿干扰电流,使得副线圈中的干扰电流的总量减小,副线圈对待充电设备的干扰降低,那么在CE测试和实际的充电场景中,回流至电源的干扰电流也就相应地减小,就能够提高电源的质量,从而确保了其他使用该电源的用电设备的性能和安全性。
在一些可能的实现方式中,应用于无线充电装置,无线充电装置包括全桥逆变电路,全桥逆变电路包括第一输出节点和第二输出节点,第四充电线圈和第二充电线圈的端口设置相同,第四充电线圈和第二充电线圈反向设置,包括:第四充电线圈的第一端口与第一输出节点连接,第四充电线圈的第二端口与第二输出节点连接,第二充 电线圈的第一端口与第二输出节点连接,第二充电线圈的第二端口与第一输出节点连接。
在一些可能的实现方式中,应用于无线充电装置,无线充电装置包括全桥逆变电路,全桥逆变电路包括第一输出节点和第二输出节点,第四充电线圈和第二充电线圈的端口设置相同,第四充电线圈和第二充电线圈反向设置,包括:第四充电线圈翻转设置,使得第四方向和第二方向相反,第四方向为由第四充电线圈的第一端口沿第四充电线圈的绕线方向指向第四充电线圈的第二端口的方向,第二方向为由第二充电线圈的第一端口沿第二充电线圈的绕线方向指向第二充电线圈的第二端口的方向;其中,第四方向为顺时针方向,第二方向为逆时针方向;或者,第四方向为逆时针方向,第二方向为顺时针方向。
第二方面,提供了一种充电线圈组件,包括:应用于无线充电装置,无线充电装置包括全桥逆变电路,全桥逆变电路包括第一输出节点和第二输出节点,充电线圈组件包括:第一充电线圈和第二充电线圈;第一充电线圈和第二充电线圈部分重合,第一充电线圈和第二充电线圈的端口设置相同;第一充电线圈的第一端口与全桥逆变电路的第一输出节点连接,第一充电线圈的第二端口与全桥逆变电路的第二输出节点连接,第二充电线圈的第一端口与全桥逆变电路的第二输出节点连接,第二充电线圈的第二端口与全桥逆变电路的第一输出节点连接。
为了清楚地描述充电线圈的朝向,可以对充电线圈的端口进行定义,其中,第一充电线圈和第二充电线圈的端口设置相同,将充电线圈内侧的一端作为第一端口,将充电线圈外侧的一端作为第二端口。
使得两个充电线圈为反向设置的方式,还可以是保持充电线圈的朝向不变,改变充电线圈的端口和全桥逆变电路的输出节点之间的连接方式。例如将第一充电线圈的第一端口由连接第一输出节点,改为连接第二输出节点;同时,将第一充电线圈的第二端口由连接第二输出节点,改为连接第一输出节点。第二充电线圈的端口和全桥逆变电路的输出节点的连接方式不做改变。即,第一充电线圈的第一端口和第二充电线圈的第二端口连接全桥逆变电路的一个输出节点,第一充电线圈的第二端口和第二充电线圈的第一端口连接全桥逆变电路的另外一个输出节点。这样的设置方式可以使得两个充电线圈为反向设置。
该实现方式中,通过改变充电线圈的端口和全桥逆变电路的输出端口之间的连接方式实现两个充电线圈反相设置,可以通过主线圈对副线圈的互感,使得主线圈中的充电电流在副线圈中激励起和副线圈中原本的干扰电流的相位相反(即相位相差180度)的差模形式的感应电流,实现了对这个差模形式的感应电流的有源控制,通过反向补偿干扰电流,使得副线圈中的干扰电流的总量减小,副线圈对待充电设备的干扰降低。那么在CE测试和实际的充电场景中,回流至电源的干扰电流也就相应地减小,就能够提高电源的质量,从而确保了其他使用该电源的用电设备的性能和安全性。
在一些可能的实现方式中,第一充电线圈工作,第二充电线圈不工作,第一充电线圈中的充电电流在第二充电线圈中激发出第一感应电流;同时,第二充电线圈中产生由于干扰引起的除第一感应电流之外的第一干扰电流;其中,第二充电线圈中的第一感应电流和第二充电线圈中的第一干扰电流的方向相反。
在一些可能的实现方式中,充电线圈组件还包括第三充电线圈,第三充电线圈和第一充电线圈部分重合,第三充电线圈和第二充电线圈不重合;第三充电线圈和第一充电线圈的端口设置相同,第三充电线圈的第一端口连接全桥逆变电路的第二输出节点,第三充电线圈的第二端口连接全桥逆变电路的第一输出节点。
该实现方式中,通过第三充电线圈的第一端口连接全桥逆变电路的第二输出节点,第三充电线圈的第二端口连接全桥逆变电路的第一输出节点,使得任意两个重合的充电线圈的朝向相反,即任意两个重合的充电线圈反向设置。由于采用了朝向相反的充电线圈的设置,即充电线圈中每个充电线圈都有一个与之反向设置的充电线圈,因此任意一个充电线圈作为主线圈时,通过主线圈对副线圈的互感,主线圈中的充电电流在副线圈中激励起与之反向设置的副线圈的感应电流,这个感应电流和原本副线圈中的干扰电流的相位相反(即相位相差180度),因此可以抵消干扰电流,实现了对这个差模形式的感应电流的有源控制,通过反向补偿干扰电流,使得副线圈中的干扰电流的总量减小,副线圈对待充电设备的干扰降低,那么在CE测试和实际的充电场景中,回流至电源的干扰电流也就相应地减小,就能够提高电源的质量,从而确保了其他使用该电源的用电设备的性能和安全性。
在一些可能的实现方式中,第三充电线圈不工作,第一充电线圈中的充电电流在第三充电线圈中激发出第二感应电流;同时,第三充电线圈中产生由于干扰引起的除第二感应电流之外的第二干扰电流;其中,第二感应电流和第二干扰电流的方向相反。
第三方面,提供了一种充电线圈组件,包括:第一充电线圈和第二充电线圈,第一充电线圈和第二充电线圈部分重合,第一充电线圈和第二充电线圈的端口设置相同;第一充电线圈翻转设置,使得所第一方向和第二方向相反,所述第一方向为由所述第一充电线圈的第一端口沿所述第一充电线圈的绕线方向指向所述第一充电线圈的第二端口的方向,所述第二方向为由所述第二充电线圈的第一端口沿所述第二充电线圈的绕线方向指向所述第二充电线圈的第二端口的方向;其中,第一方向为顺时针方向,第二方向为逆时针方向;或者,第一方向为逆时针方向,第二方向为顺时针方向。
通过将第一充电线圈翻转设置,使得第一充电线圈和第二充电线圈反向设置,可以通过主线圈对副线圈的互感,使得主线圈中的充电电流在副线圈中激励起和副线圈中原本的干扰电流的相位相反(即相位相差180度)的差模形式的感应电流,实现了对这个差模形式的感应电流的有源控制,通过反向补偿干扰电流,使得副线圈中的干扰电流的总量减小,副线圈对待充电设备的干扰降低。那么在CE测试和实际的充电场景中,回流至电源的干扰电流也就相应地减小,就能够提高电源的质量,从而确保了其他使用该电源的用电设备的性能和安全性。
在一些可能的实现方式中,第一充电线圈工作,第二充电线圈不工作,第一充电线圈中的充电电流在第二充电线圈中激发出第一感应电流;同时,第二充电线圈中产生由于干扰引起的除第一感应电流之外的第一干扰电流;其中,第二充电线圈中的第一感应电流和第二充电线圈中的第一干扰电流的方向相反。
第四方面,提供了一种充电线圈组件,包括:去扰线圈和多个充电线圈,去扰线圈和多个充电线圈中的每个充电线圈均重合,第一充电线圈工作,多个充电线圈中除第一充电线圈之外的其他充电线圈不工作,去扰线圈不工作,其中,第一充电线圈为 多个充电线圈中的一个;去扰线圈中产生由于干扰引起的第一干扰电流,其他充电线圈中产生由于干扰引起的第二干扰电流,以及去扰线圈中的第一干扰电流在其他充电线圈中产生感应电流;去扰线圈和第一充电线圈反向设置,反向设置使得其他充电线圈中的感应电流和第二干扰电流的方向相反。
当充电线圈的数量大于等于3时,通过选择充电线圈进行反向设置已经难以保证充电线圈两两之间反向设置,因此可以采用设置专门的去扰线圈来抵消副线圈中的干扰信号。
通过设置去扰线圈,并将去扰线圈与其他的充电线圈反向设置,使得任意一个充电线圈作为主线圈时,去扰线圈均能够对副线圈产生互感,并在副线圈中激励起与原有的干扰电流的相位相反(即相位相差180度)的感应电流。感应电流可以抵消同一副线圈中的干扰电流,实现了对这个差模形式的感应电流的有源控制。通过反向补偿干扰电流,使得副线圈中的干扰电流的总量减小,副线圈对待充电设备的干扰降低,那么在CE测试和实际的充电场景中,回流至电源的干扰电流也就相应地减小,就能够提高电源的质量,从而确保了其他使用该电源的用电设备的性能和安全性。
在一些可能的实现方式中,充电线圈组件应用于无线充电装置,无线充电装置包括全桥逆变电路,全桥逆变电路包括第一输出节点和第二输出节点,第一充电线圈和去扰线圈的端口设置相同,去扰线圈和第一充电线圈反向设置,包括:第一充电线圈的第一端口与第一输出节点连接,第一充电线圈的第二端口与第二输出节点连接,去扰线圈的第一端口与第二输出节点连接,去扰线圈的第二端口与第一输出节点连接。
在一些可能的实现方式中,充电线圈组件应用于无线充电装置,无线充电装置包括全桥逆变电路,全桥逆变电路包括第一输出节点和第二输出节点,第一充电线圈和去扰线圈的端口设置相同,去扰线圈和第一充电线圈反向设置,包括:去扰线圈翻转设置,使得第一方向和第二方向相反,第一方向为由第一充电线圈的第一端口沿第一充电线圈的绕线方向指向第一充电线圈的第二端口的方向,第二方向为由去扰线圈的第一端口沿去扰线圈的绕线方向指向去扰线圈的第二端口的方向;其中,第一方向为顺时针方向,第二方向为逆时针方向;或者,第一方向为逆时针方向,第二方向为顺时针方向。
在一些可能的实现方式中,去扰线圈的覆盖区域与多个充电线圈所覆盖的充电区域之间的非重叠区域的面积小于预设面积差阈值。
通过使得去扰线圈的覆盖区域与所有充电线圈所覆盖的充电区域之间的非重叠区域的面积小于预设面积差阈值,能够避免去扰线圈的覆盖区域和其他的所有的充电线圈所共同覆盖的充电区域重叠程度低导致的互感太弱,产生的感应电流太弱,而对干扰电流的抵消量过低,影响去干扰的效果。因此能够确保去扰线圈在各个充电线圈能够有足够的互感来产生较强的感应电流,对干扰电流的抵消量较大,进而确保去干扰的效果。在实际充电过程中,就能够减少充电线圈组件对电源的干扰,确保其他使用该电源的用电设备的性能和安全性。
在一些可能的实现方式中,去扰线圈的覆盖区域和多个充电线圈所覆盖的充电区域的外部轮廓重合。
这样能够最大程度的保证去扰线圈和充电线圈之间的互感,最大化地抵消干扰信 号;并且去扰线圈的覆盖区域和多个充电线圈的外部轮廓重合,则去扰线圈的尺寸不会超出多个充电线圈所覆盖的充电区域,因此无需占用多个充电线圈的充电区域之外的区域,也就无需徒增无线充电装置的尺寸。
在一些可能的实现方式中,充电线圈的数量大于或等于4。
在一些可能的实现方式中,多个充电线圈的数量为18。
第五方面,提供了一种充电线圈组件,应用于无线充电装置,无线充电装置包括全桥逆变电路,全桥逆变电路包括第一输出节点和第二输出节点,充电线圈组件包括:去扰线圈和多个充电线圈;去扰线圈和多个充电线圈中的每个充电线圈均重合,多个充电线圈中的每个充电线圈和去扰线圈的端口设置相同;多个充电线圈中的每个充电线圈的第一端口均与第一输出节点连接,多个充电线圈中的每个充电线圈的第二端口均与第二输出节点连接,去扰线圈的第一端口连接第二输出节点,去扰线圈的第二端口连接第一输出节点。
该实现方式中,通过改变充电线圈的端口和全桥逆变电路的输出端口之间的连接方式实现两个充电线圈反相设置,可以通过去扰线圈对副线圈的互感,使得去扰线圈中的干扰电流在副线圈中激励起和副线圈中原本的干扰电流的相位相反(即相位相差180度)的差模形式的感应电流,从而消减副线圈中的干扰电流,实现了对这个差模形式的感应电流的有源控制,通过反向补偿干扰电流,使得副线圈中的干扰电流的总量减小,副线圈对待充电设备的干扰降低。那么在CE测试和实际的充电场景中,回流至电源的干扰电流也就相应地减小,就能够提高电源的质量,从而确保了其他使用该电源的用电设备的性能和安全性。
在一些可能的实现方式中,第一充电线圈工作,多个充电线圈中除第一充电线圈之外的其他充电线圈不工作,去扰线圈不工作,其中,第一充电线圈为多个充电线圈中的一个;去扰线圈中产生由于干扰引起的第一干扰电流,第二充电线圈中产生由于干扰引起的第二干扰电流,其中,第二充电线圈为其他充电线圈中的一个;去扰线圈中的第一干扰电流在第二充电线圈中产生感应电流,其中,第二充电线圈中的感应电流和第二干扰电流的方向相反。
第六方面,提供了一种充电线圈组件,包括:去扰线圈和多个充电线圈,去扰线圈和多个充电线圈中的每个充电线圈均重合,多个充电线圈中的每个充电线圈和去扰线圈的端口设置相同;去扰线圈翻转设置,使得第一方向和第二方向相反,所述第一方向为由第一充电线圈的第一端口沿所述第一充电线圈的绕线方向指向所述第一充电线圈的第二端口的方向,所述第一充电线圈为所述多个充电线圈中的一个,所述第二方向为由所述去扰线圈的第一端口沿。
通过将去扰线圈翻转设置,使得去扰线圈和每个充电线圈反向设置,可以通过去扰线圈对副线圈的互感,使得去扰线圈中的干扰电流在副线圈中激励起和副线圈中原本的干扰电流的相位相反(即相位相差180度)的差模形式的感应电流,从而消减副线圈中的干扰电流,实现了对这个差模形式的感应电流的有源控制,通过反向补偿干扰电流,使得副线圈中的干扰电流的总量减小,副线圈对待充电设备的干扰降低。那么在CE测试和实际的充电场景中,回流至电源的干扰电流也就相应地减小,就能够提高电源的质量,从而确保了其他使用该电源的用电设备的性能和安全性。
在一些可能的实现方式中,第一充电线圈工作,多个充电线圈中除第一充电线圈之外的其他充电线圈不工作,去扰线圈不工作,其中,第一充电线圈为多个充电线圈中的一个;去扰线圈中产生由于干扰引起的第一干扰电流,第二充电线圈中产生由于干扰引起的第二干扰电流,其中,第二充电线圈为其他充电线圈中的一个;去扰线圈中的第一干扰电流在第二充电线圈中产生感应电流,其中,第二充电线圈中的感应电流和第二干扰电流的方向相反。
第七方面,提供了一种无线充电装置,包括N个如第一方面、第二方面、第三方面、第四方面、第五方面和第六方面中任一项的充电线圈组件,其中,N为正整数。
每个充电线圈组件中均可以对一个待充电设备进行无线充电。当无线充电装置中包括多个上述实施例中的充电线圈组件时,还可以对多个待充电设备进行无线充电同时进行充电,其中,每个充电线圈组件中选择一个充电线圈作为主线圈,对一个待充电设备进行无线充电。其实现原理和有益效果可以参见对上述充电线圈组件的描述。
在一些可能的实现方式中,N为大于1的正整数,无线充电装置为无线充电板。
当用户将带有无线充电功能的手机、智能手表等多个电子设备放置在无线充电板的不同区域时,无线充电板可以对这多个电子设备同时进行无线充电的同时,减少了副线圈传递给待充电设备的干扰电流。在实际充电过程中,就能够减少无线充电装置对电源的干扰,确保其他使用该电源的用电设备的性能和安全性。
图1是本申请实施例提供的一例通用的包括两个充电线圈的无线充电装置的结构示意图;
图2是本申请实施例提供的手机分别为竖直或者横放时,无线充电座中的充电线圈和手机中的充电线圈之间的相对位置示意图;
图3是本申请实施例提供的一例无线充电装置中的两个充电线圈为不同的位置时,分别和手机的充电线圈之间的重合情况示意图;
图4是本申请实施例提供的一例副线圈等效为LC谐振电路的示意图;
图5是本申请实施例提供的一例通用的无线充电装置中,副线圈作为干扰源向待充电设备传递干扰信号的路径示意图;
图6是本申请实施例提供的一例主线圈中的充电电流和在副线圈中激励起的感应电流的方向的示意图;
图7是本申请实施例提供的一例通用的无线充电装置中,副线圈作为干扰路径传递干扰信号的示意图;
图8是本申请实施例提供的一例CE测试的测试环境中的干扰信号的流向示意图;
图9是本申请实施例提供的一例传统的充电装置中两个充电线圈的朝向示意图;
图10是本申请实施例提供的一例两个反向设置的充电线圈的朝向示意图;
图11是本申请实施例提供的一例两个反向设置的充电线圈的朝向示意图;
图12是本申请实施例提供的一例同向设置和反向设置的主线圈的充电电流和在副线圈中激励起的感应电流的方向的对比示意图;
图13是本申请实施例提供的一例CE测试环境中的干扰信号的采样图;
图14是本申请实施例提供的一例副线圈中激励起的感应电流的波形图;
图15是本申请实施例提供的一例通用的具有三个充电线圈的充电线圈组件的实物图;
图16是本申请实施例提供的一例包含三个充电线圈的充电线圈组件中的感应电流方向的示意图;
图17是本申请实施例提供的另一例包含三个充电线圈的充电线圈组件中的感应电流方向的示意图;
图18是本申请实施例提供的一例包含四个充电线圈的充电线圈组件中的感应电流方向的示意图;
图19是本申请实施例提供的一例包含三个充电线圈和一个去扰线圈的充电线圈组件的结构示意图;
图20是本申请实施例提供的又一例包含三个充电线圈和一个去扰线圈的充电线圈组件的结构示意图;
图21是本申请实施例提供的一例包含四个充电线圈和一个去扰线圈的充电线圈组件的结构示意图;
图22是本申请实施例提供的一例包含18个充电线圈和一个去扰线圈的充电线圈组件的结构示意图。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”、“第三”、“第四”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”、“第四”的特征可以明示或者隐含地包括一个或者更多个该特征。
本申请实施例提供的线圈组件可以用于无线充电装置,例如手机的无线充电器或者是无线充电板,本申请实施例对无线充电装置的具体类型不作任何限制。
通常,无线充电装置主要采用电磁感应的原理,通过线圈进行能量耦合从而实现能量的传递。为了提高充电自由度,通常无线充电装置中会设置多个位置不同的充电线圈来实现对不同位置上的待充电设备进行充电。以带有无线充电功能的手机为例,用户希望将手机随意放置在无线充电器上即可以进行无线充电,而不会因为用户放置手机的位置有所偏差,导致无线充电器用来发射的充电线圈和手机中用来接收的充电线圈的位置存在过大偏差,使得充电不成功或者充电效率低。如果在无线充电装置中设置多个不同位置的充电线圈时,当用户将手机随意放置在无线充电器上时,总会有一个充电线圈与手机中的充电线圈的重叠程度比较高,手机则可以将这个充电线圈作为主线圈来进行充电。
以对手机进行无线充电的无线充电座为例,图1为无线充电座的外观结构示意图,该无线充电座包括底座101和背板102,背板102中设置上线圈103和下线圈104。当用户将手机202按照如图2中的a图所示,竖直放置在无线充电座上时,由图2中的 b图所示的无线充电座的侧视图可以看出,手机202中的充电线圈2021和无线充电座中位于上方的上线圈103重叠程度比较高,此时则可以选择上线圈103对手机202进行无线充电。当用户将手机202按照如图2中的c图所示,横向放置在无线充电座上时,由图2中的d图所示的无线充电座的侧视图可以看出,手机202中的充电线圈2021和无线充电座中位于下方的下线圈104重叠程度比较高,此时则可以选择下线圈104对手机进行无线充电。因此,使用这样的无线充电座进行充电时,无论是将手机横放还是竖放,都可以实现高效充电。
一般情况下,当一个无线充电装置中包括多个充电线圈时,这多个充电线圈所覆盖的区域之间会有一定程度的重叠。以图3所示的无线充电装置中存在两个充电线圈为例,如果这两个充电线圈如图3中的a图所示不重叠,当手机201放置在这两个充电线圈中间的区域时,手机201内部作为接收线圈的充电线圈2021和无线充电装置中任一充电线圈的重叠程度都很低,则会影响充电效率甚至充不上电。因此,通常在无线充电装置中,可以参考图3中的b图所示,将两个充电线圈重叠一部分设置。当手机201从对应无线充电装置中一个充电线圈的位置向另一个充电线圈的方向移动的过程中,总会有一个充电线圈和手机201内部的充电线圈2021具有较高的重叠程度,因此无线充电装置都能够选择到一个充电线圈对手机进行高效充电,不会存在充电的盲区。即,手机201在如图3中的b图所示的位置时,无线充电装置也能够选择其中一个充电线圈对手机进行高效充电,因此将充电线圈重叠一部分设置能够提高充电自由度。
当待充电设备放置在无线充电装置上时,待充电设备会向无线充电装置发送请求充电的信号,从而探测无线充电设备中哪一个充电线圈和待充电设备中的充电线圈的重叠程度高。然后,无线充电设备就可以采用无线充电装置中和待充电设备中的充电线圈重叠程度高的充电线圈作为主线圈进行无线充电。在一些实施例中,无线充电设备选择好主线圈后,还可以和待充电设备之间的执行握手流程,以确保后续充电的顺利进行,握手流程通过后进行充电。
当采用无线充电装置中的主线圈对待充电设备进行无线充电时,无线充电装置中其他的充电线圈则作为副线圈,副线圈不会对这个待充电设备进行充电。这时,副线圈中会存在干扰信号。这里我们把不能用作充电的有用的信号均称为干扰信号。这些干扰信号可能通过主线圈和副线圈的互感、或者参考地等干扰途径串扰至电源处,影响电源的稳定性,对使用该电源的其他设备造成影响。
首先对无线充电装置中的充电电路进行概述。以无线充电装置中存在上线圈和下线圈这两个充电线圈为例,参考图4中的a图所示,充电电路中包括全桥逆变电路,全桥逆变电路用于连接电源和充电线圈,其中,全桥逆变电路中包括第一输出节点A和第二输出节点B。充电线圈的两个端口分别连接第一输出节点A和第二输出节点B从而获取电能,来对带充电设备进行充电。
然而,主线圈工作时,即主线圈进行充电时,不工作的副线圈中会产生干扰信号。以图4中的a图所示的充电电路为例,对无线充电装置中的副线圈中所产生的干扰信号的来源进行说明:
1.当无线充电装置选择好充电的主线圈后,副线圈如果是通过两端分别连接一个 金属-氧化物半导体(metal-oxide semiconductor,MOS)场效应晶体管,该MOS中的体二极管,将副线圈置于悬浮状态,例如图5中的a图所示。处于悬浮状态的副线圈可以等效为包括等效电容和等效电感的LC谐振电路,例如图5中的b图所示。这个LC谐振电路会产生谐振信号,造成干扰。
2.其他的干扰信号还会通过印制电路板(printed circuit board,PCB)上的容性耦合传递给副线圈。以图4中的a图为例,干扰信号从全桥逆变电路所布置的PCB上,通过如图4中的a图所示的等效电容C1耦合至作为副线圈的上线圈。
3.干扰信号通过充电线圈间的容性耦合由主线圈传递给副线圈。例如,以无线充电装置中包括上线圈和下线圈这两个充电线圈为例,上线圈和下线圈之间的等效电容可以参见图4中的a图中的C2。图4中的b图为上线圈和下线圈的侧视图,C2为等效电容。
4.干扰信号通过充电线圈之间的互感传递给副线圈。虽然充电电流为交流电,方向会随时间变化,但是在一个固定的时刻,充电电流的方向是固定的。例如图6所示,当作为主线圈的下线圈中的充电电流的方向为顺时针方向,这个充电电流会在作为副线圈的上线圈中产生感应电动势,从而激励起感应电流,这个感应电流的方向也是顺时针方向。如果原本上线圈中就存在干扰电流,这个干扰电流的方向为顺时针方向,则感应电流会叠加在原本的干扰电流上,加剧干扰。为了清楚的表示充电线圈上的电流的流向,图6中以充电线圈的匝数为1进行示意,实际上的充电线圈的匝数可以为多个,在同一时刻,每匝线圈上的同一类型的电流的流向相同。
以无线充电装置中包括上线圈和下线圈这两个充电线圈为例,当采用下线圈作为主线圈进行充电时,由于全桥逆变电路布置在PCB上,差模形式的干扰信号可以参见图4中的a图所示,沿路径1从PCB上通过等效电容C1耦合至作为副线圈的上线圈,并回流至等效地。这个过程中,副线圈会将干扰信号的高频成分转换为共模形式的干扰信号,传递给待充电设备。另外,副线圈能够为主线圈带来的差模形式的干扰信号,提供如图7所示的路径2,该路径2可以作为一条共模路径,将干扰信号的高频成分转换为共模形式的干扰信号传递给待充电设备。需要说明的是,干扰信号从作为副线圈的上线圈中,通过上线圈和下线圈之间的容性耦合(等效电容C3)传递至待充电设备。
基于上述原因,副线圈会将干扰信号传递至待充电设备。在实际充电的过程中,待充电设备上耦合到的干扰信号会通过各种耦合路径耦合至电源处,从而影响使用这个电源的其他的用电设备。为了确保同一个电源下的其他的用电设备的正常使用,需要对无线充电装置进行传导骚扰(conducted emission,CE)测试。该CE测试是法规规定的需要测试的测试项,用于测试无线充电装置在无线充电过程中对电源的干扰程度是否符合要求。在CE测试过程中,测试环境是模拟用户日常使用的充电场景,这里我们以CE测试的测试环境为例,对传递给待充电设备的干扰信号的干扰路径进行说明。如图8所示,测试环境中包括测试台和人工电源网络(line-impedance stabilization network,LISN)。其中,测试台上布置待测的无线充电装置,待充电设备放置在无线充电装置的底座上进行无线充电。LISN作为对测试环境供电的电源,与电源插座之间通过电源线连接。无线充电装置的电源线连接在电源插座上取电。同时, 在LISN内部会集成一个检波电路,该检波电路用来检测干扰信号,并将检测结果输出至频谱仪,通过频谱仪来观察干扰的信号的大小。这里的干扰信号的大小以干扰电压的形式进行描述,即检波器检测到的干扰电压大,则说明无线充电装置对电源的干扰大,如果检波器检测的干扰电压小,则说明无线充电装置对电源的干扰小。
当干扰信号通过无线充电装置中的副线圈和待充电设备之间的容性耦合从无线充电装置的副线圈耦合至待充电设备时,干扰信号会有一个回流的情况。如图8所示,待充电设备和参考地之间也会有容性耦合,可以等效为等效电容C4。当待充电设备插入耳机的时候,耳机线和参考地之间也会有较大的容性耦合,可以等效为等效电容C5。这时,原本在待充电设备上的干扰信号会如图8中的虚线所示的路径形成干扰回路,在这个干扰回路上,箭头方向表示干扰信号的流向。在图8所示的测试场景中,LISN可以等效于实际的应用场景中一个入户的电源,如果检波器检测到较大的电压,则表明入户的电源上会携带较大的干扰信号。一旦入户的电源上接入其他的用电设备,会导致其他的用电设备的供电中带入这个干扰信号,影响其他的用电设备的性能或者安全性。
本申请提供的方案中,通过调整部分充电线圈的朝向,使得调整朝向后的充电线圈在其他充电线圈中感应出于与原先的干扰电流的方向相反的感应电流,由此抵消干扰电流,从而实现了对干扰电流的有源控制。由于从根源上减少了无线充电装置中副线圈上的干扰电流,能够使得耦合至待充电设备的干扰电流减弱,减小了对电源的干扰,保证了其他的用电设备的性能和安全性。
首先,以无线充电装置具有两个充电线圈为例,对本申请的技术方案和实现原理进行详细说明。
传统的两个充电线圈可以参见图9所示的两个充电线圈的朝向,图9中的两个充电线圈并未重叠并不代表二者没有重叠,而是为了清楚地显示两个线圈的朝向所进行的示意,实际上的两个充电线圈可以为部分重叠设置,例如图1所示。在图9中,第一充电线圈和第二充电线圈同向设置,即充电线圈的朝向相同。为了清楚地描述充电线圈的朝向,可以对充电线圈的端口进行定义,其中,第一充电线圈和第二充电线圈的端口设置相同,将充电线圈内侧的一端作为第一端口,将充电线圈外侧的一端叫作为第二端口。
同向设置的两个充电线圈会产生较大的干扰电流,导致电源被干扰。而本申请的实施例中,可以将其中一个充电线圈翻转,使得两个充电线圈反向设置来减少干扰。以将第二充电线圈翻转设置为例,在不改变端口连接方式的情况下,将第二充电线圈翻转设置。例如可以参见图10所示,翻转后的第二充电线圈和没有翻转的第一充电线圈为反向设置的两个充电线圈。将第二充电线圈翻转设置后,由第二充电线圈的第一端口沿着第二充电线圈的绕线方向,指向第二充电线圈的第二端口的方向为逆时针方向;由第一充电线圈的第一端口沿着第一充电线圈的绕线方向,指向第一充电线圈的第二端口的方向为顺时针方向。即第二充电线圈翻转设置后,两个充电线圈的第一端口沿各自的绕线方向指向第二端口的方向相反。
当第一充电线圈作为主线圈工作时,第二充电线圈作为副线圈不工作。第一充电线圈中的充电电流在第二线圈中激励起感应电流,同时,第二充电线圈中会产生由于 干扰引起的除感应电流之外的干扰电流。由于第二充电线圈翻转设置,可以使得感应电流的方向也随之发生改变,和干扰电流(包括上文中的来源1、来源2和来源3导致的干扰电流)的方向相反,从而抵消部分干扰电流,减小了干扰。
当第二充电线圈作为主线圈工作时,第一充电线圈作为副线圈不工作。第二充电线圈中的充电电流在第一线圈中激励起感应电流,同时,第二充电线圈中会产生由于干扰引起的除感应电流之外的其他的干扰电流。由于第二充电线圈翻转设置,可以使得感应电流的方向也随之发生改变,呈现和干扰电流的方向相反,从而抵消了一部分干扰电流,减小了干扰。
可选地,在上述图9的基础上,本申请的技术方案也可以是将第一充电线圈翻转设置,使得翻转后的第一充电线圈和没有翻转的第二充电线圈为反向设置的两个充电线圈。将第一充电线圈翻转设置后,由第一充电线圈的第一端口沿着第一充电线圈的绕线方向,指向第一充电线圈的第二端口的方向为逆时针方向;由第二充电线圈的第一端口沿着第二充电线圈的绕线方向指向第二充电线圈的第二端口的方向为顺时针方向。即第一充电线圈翻转设置后,两个充电线圈的第一端口沿各自的绕线方向指向第二端口的方向相反。无论是第一充电线圈作为主线圈工作时,还是第二充电线圈作为主线圈工作时,主线圈在副线圈中激励起的感应电流和副线圈中初感应电流之外的其他干扰电流的方向相反,从而抵消部分干扰电流,减小了干扰。
在一些实施例中,使得两个充电线圈为反向设置的方式,还可以是保持充电线圈的朝向不变,而是改变充电线圈的端口和全桥逆变电路的输出节点之间的连接方式。例如参见图11所示,将第一充电线圈的第一端口由连接第一输出节点A,改为连接第二输出节点B;同时,将第一充电线圈的第二端口由连接第二输出节点B,改为连接第一输出节点A。第二充电线圈的端口和全桥逆变电路的输出节点的连接方式不做改变。即,第一充电线圈的第一端口和第二充电线圈的第二端口连接全桥逆变电路的一个输出节点,第一充电线圈的第二端口和第二充电线圈的第一端口连接全桥逆变电路的另外一个输出节点。这样的设置方式可以使得两个充电线圈为反向设置。
在某个时刻时,当充电电流的方向从第一输出节点A流向第二输出节点B时,如果第一充电线圈作为主线圈工作时,第一充电线圈中的充电电流的方向则为逆时针方向,该充电电流在不工作的副线圈(第二充电线圈)中产生逆时针的感应电流,而作为副线圈的第二充电线圈中的除感应电流之外的干扰电流的方向为从第一输出节点A沿第二充电线圈的绕线方向指向第二输出节点B的顺时针方向。此时,感应电流和干扰电流的方向相反,则感应电流可以抵消部分干扰电流,从而减少干扰。如果是第二充电线圈作为主线圈工作时,第二充电线圈中的充电电流的方向则为顺时针方向,该充电电流在不工作的副线圈(第一充电线圈)中产生顺时针的感应电流,而作为副线圈的第二充电线圈中的除感应电流之外的干扰电流的方向为从第一输出节点A沿第一充电线圈的绕线方向指向第二输出节点B的逆时针方向。此时,感应电流和干扰电流的方向相反,则感应电流可以抵消部分干扰电流,从而减少干扰。
同理,如果充电电流的方向从第二输出节点B流向第一输出节点A时,无论是第一充电线圈作为主线圈工作,还是第二充电线圈作为主线圈工作,主线圈中的充电电流都会在副线圈中产生和充电电流的方向相同(同为顺时针方向或同为逆时针方向) 的感应电流,这个感应电流和原本存在于副线圈中的除感应电流之外的干扰电流的方向相反。
接下来,参考图12中的充电线圈电流方向示意图来说明感应电流和干扰电流的方向。图12中以第一充电线圈为下线圈、第二充电线圈为上线圈进行示例。在一个固定时刻,如图12中的a图中,下线圈作为充电的主线圈进行充电,这时,主线圈中存在充电电流,且充电电流为顺时针方向。同时,主线圈中的充电电流会在作为副线圈的上线圈中激励起朝向纸面向内的磁场,从而引起顺时针方向的感应电流。原本副线圈中还存在其他途径带来的共模形式的干扰信号,该干扰电流为顺时针方向。此时感应电流和干扰电流的方向相同,则会加剧干扰。本申请的技术方案中,将第一充电线圈1201和第二充电线圈1202反向设置。可以是将第一充电线圈1201翻转180度,也可以是将第二充电线圈1202翻转180度。例如可以参见图12中的b图所示,该图12的b图中以翻转第一充电线圈1201为例示出。将第一充电线圈1201翻转180度后,使得第一充电线圈1201和第二充电线圈1202反向设置,原本顺时针的方向的充电电流则变成了逆时针的方向,主线圈中的充电电流会在作为副线圈的上线圈中激励垂直纸面向外的磁场,同时充电电流在上线圈中激励起的感应电流的方向也产生了变化,从顺时针方向变为逆时针方向。这样不但没有加剧干扰,还抵消了原本上线圈中的干扰电流,起到抑制干扰电流的作用,干扰电流的总量减小,从而降低了副线圈对待充电设备的干扰。实际上,第一充电线圈还可以为上线圈,第二充电线圈为下线圈,本申请实施例对第一充电线圈具体是哪一个充电线圈并不做限定。
当使用具有图12中的b图所示的充电线圈组件的无线充电装置进行无线充电时,由于采用了朝向相反的充电线圈的设置,即两个充电线圈的反向设置(一正一反),通过主线圈对副线圈的互感,主线圈中的充电电流在副线圈中激励起和副线圈中原本的干扰电流(即除感应电流之外的干扰电流)的相位相反(即相位相差180度)的差模形式的感应电流,实现了对这个差模形式的感应电流的有源控制,通过反向补偿干扰电流,使得副线圈中的干扰电流的总量减小,副线圈对待充电设备的干扰降低,那么在CE测试和实际的充电场景中,回流至电源的干扰电流也就相应地减小,就能够提高电源的质量,从而确保了其他使用该电源的用电设备的性能和安全性。
体现在充电电路中,可以参见图12中的c图所示,其中一个充电线圈的第一端口和另一个充电线圈的第二端口同时连接全桥逆变电路的一个输出节点,这一个充电线圈的第二端口和另一个充电线圈的第一端口同时连接全桥逆变电路的另一个输出节点。图12中以上线圈的第一端口和下线圈的第二端口连接第二输出节点B,以及上线圈的第二端口和下线圈的第二端口同时连接第一输出节点A为例示出。
需要说明的是,本申请实施例中所提到的充电线圈的正和反为相对的概念,并不是绝对的。例如,一个固定时刻下,PCB上传输至充电线圈的电流方向是固定的,如果这个电流在充电线圈中产生的磁场是朝向纸面外的方向,则可以定义该充电线圈为正向;如果这个电流在充电线圈中产生的磁场是朝向纸面内的方向,则可以定义该充电线圈为反向。当然,还可以将正反的定义颠倒一下,也不影响本申请的技术方案的实现,依然能够达到相同的效果。
下面通过实测的数据,对图12中的b图所示的线圈组件在无线充电装置中对电源 的影响进行详细说明:
表1
两个充电线圈反向设置的情况可以是上线圈正、下线圈反,也可以是上线圈反、下线圈正。参见表1可以看出,两个充电线圈反向设置相比同向设置的情况,在采用频谱仪扫描到的干扰信号的电压有较大幅度的降低。以近处的910KHz处最为明显,当上线圈正、下线圈反时(反向设置),在910KHz处的干扰信号的电压为15.13dBuV(分贝微伏),而当上线圈正、下线圈正时(同向设置),在910KHz处的干扰信号的电压为30.79dBuV,相差有15dBuV之多。同时,在其他频点处,包括1.169MHz和1.687MHz处,上线圈正、下线圈反的情况下,干扰信号也有不同程度的降低。同样的,当上线圈反、下线圈正时(反向设置),在910KHz处的干扰信号的电压为3.8dBuV,而当上线圈反、下线圈反时(同向设置),在910KHz处的干扰信号的电压为35.24dBuV,相差有30dBuV以上。同时,在1.169MHz和1.687MHz处,上线圈反、下线圈正的情况下,干扰信号也有13dBuV以上地下降。综合比较下来,两个充电线圈反向设置的情况相比同向设置的情况,干扰信号有了较大幅度的降低。
在CE测试环境中,当两个充电线圈同向设置时,采用相同的采样带宽测得的干扰信号如图13中的a图所示,干扰信号的电压的峰值距离峰值限值较近,干扰信号的电压的均值距离均值限值较近甚至超标。具体可以参见表2中峰值的数据和表3中均值的数据:
表2
其中,Level代表实测的电压的大小,Limit代表限值。Margin代表实测数据和限值之间的余量,通常我们希望Margin越小越好。Detector代表检波器的类别,也可以代表检波方式,其中,QP代表准峰值检波器,AVERAGE CISPR代表平均值检波器。RBW表示参考带宽。通常,对比数值大小需要在RBW相同的基础上进行比较才有意义。
当两个充电线圈反向设置时,测得的干扰信号的电压如图13中的b图所示(上线 圈正,下线圈反),干扰信号的电压的峰值距离峰值限值变远,干扰信号的电压的均值距离均值限值变远并且没有超标的频点,从图13中的b图可以看出,高次谐波的频点消失,例如910kHz处不再出现明显的谐波干扰。具体可以参见表4中峰值的数据和表5中均值的数据:
表3
表4
表5
对比表2和表4的数据可以看出,两个充电线圈反向设置相比两个充电线圈同向设置,干扰信号的电压的均值减小了10dBuV。对比表3和表5的数据可以看出,两个充电线圈反向设置相比两个充电线圈同向设置,干扰信号的电压的峰值也有不同程度的减小,尤其是原先超标的910kHz处的干扰信号不再超标,下降了9dBuV以上,能够满足CE测试的要求。
为了直观查看反向设置的两个充电线圈中,副线圈中存在的感应电流,可以采用示波器在副线圈处探测,得到如图14所示的波形图。
同时,经过验证,采用反向设置的两个充电线圈对充电效率几乎没有影响。
常见的无线充电装置还可能会包括三个充电线圈,例如图15所示,这三个充电线圈交叠设置来满足充电自由度。基于本申请中所提供的思想,可以将图15中位于中间的充电线圈反向来实现干扰信号的有源控制反向补偿。
图15中为本申请实施例提供的三个充电线圈构成的充电线圈组件的示意图,在上述图12中的b图的基础上,还加入了第三充电线圈1203。如图16所示,第三充电线圈1203和第一充电线圈1201部分重合,并且第三充电线圈1203和第二充电线圈1202不重合。当第一充电线圈1201进行充电时,充电电流在第三充电线圈1203中激发出感应电流。第三充电线圈1203和第一充电线圈1201反向设置,则第三充电线圈1203和第二充电线圈1202同向设置。第三充电线圈1203和第一充电线圈1201之间的反向设置使得第三充电线圈1203中的感应电流和第三充电线圈1203中的干扰电流的方向相反。
在上述图16的基础上,主线圈变化时,例如第二充电线圈1202作为主线圈工作,电流方向可以参见图17所示。第二充电线圈1202中的充电电流的方向为顺时针方向时,在第一充电线圈1201中产生顺时针方向的感应电流,第一充电线圈1201中的感应电流能够消减第一充电线圈1201中原本为逆时针方向的干扰电流。同时,第一充电线圈1201中的逆时针方向地干扰电流还可以在第三充电线圈1203中激发起逆时针的感应电流,第三充电线圈1203中的感应电流能够消减第三充电线圈1203中原本为顺时针的干扰电流。这样一来,副线圈中的干扰电流都得到了消减,从而减小了干扰。同理,如果是第三充电线圈1203作为充电的主线圈,则可以消减作为副线圈的第一充电线圈1201和第二充电线圈1202中的干扰电流,达到减小干扰的效果。
上述图16中的三个充电线圈的方向依次为正、反、正,可选地,三个充电线圈的方向还可以依次为反、正、反。这样的设置方式和图16所示的正、反、正的技术原理和实现效果雷同,则不再赘述。
在图16所示的充电线圈组件中,三个充电线圈组成的充电线圈组件相比两个充电线圈组成的充电线圈组件,充电自由度提高。由于采用了朝向相反的充电线圈的设置,即充电线圈中每个充电线圈都有一个与之反向设置的充电线圈,因此任意一个充电线圈作为主线圈时,通过主线圈对副线圈的互感,主线圈中的充电电流在副线圈中激励起与之反向设置的副线圈的感应电流,这个感应电流和原本副线圈中的干扰电流的相位相反(即相位相差180度),因此可以抵消干扰电流,实现了对这个差模形式的感应电流的有源控制,通过反向补偿干扰电流,使得副线圈中的干扰电流的总量减小,副线圈对待充电设备的干扰降低,那么在CE测试和实际的充电场景中,回流至电源的干扰电流也就相应地减小,就能够提高电源的质量,从而确保了其他使用该电源的用电设备的性能和安全性。
图18中为本申请实施例提供的四个充电线圈构成的充电线圈组件的示意图,在上述图16的基础上,还加入了第四充电线圈1204。如图18所示,第四充电线圈1204和第二充电线圈1202部分重合,第四充电线圈1204与第一充电线圈1201和第三充电线圈1203均不重合。第二充电线圈1202中的电流(干扰电流或充电电流)在第四充电线圈1204中激发出感应电流;第四充电线圈1204和第二充电线圈1202反向设置, 第四充电线圈1204和第二充电线圈1202之间的反向设置使得第四充电线圈1204中的感应电流和第四充电线圈1204中的干扰电流的方向相反。即这四个充电线圈的朝向依次为正、反、正、反。
四个充电线圈组成的充电线圈组件相比两个和三个充电线圈组成的充电线圈组件,充电自由度提高。由于采用了朝向相反的充电线圈的设置,即充电线圈中每个充电线圈都存在与之反向设置的充电线圈,因此任意一个充电线圈作为主线圈时,通过主线圈对副线圈的互感,主线圈中的充电电流在副线圈中激励起与之反向设置的副线圈的感应电流,这个感应电流和原本副线圈中的干扰电流的相位相反(即相位相差180度),因此可以抵消干扰电流,实现了对这个差模形式的感应电流的有源控制,通过反向补偿干扰电流,使得副线圈中的干扰电流的总量减小,副线圈对待充电设备的干扰降低,那么在CE测试和实际的充电场景中,回流至电源的干扰电流也就相应地减小,就能够提高电源的质量,从而确保了其他使用该电源的用电设备的性能和安全性。
图18所示的实施例中,无论是哪个充电线圈作为主线圈进行充电,均会存在至少一个反向设置的副线圈与之部分重合,因此充电电流能够在这个部分重合的副线圈中激励起感应电流,从而抵消原有的干扰电流,实现有源控制反向补偿的方案,减少干扰。本实施例中的实现原理和技术效果可以参见图12中的b图、图16和图17中的相关描述,此处不再赘述。
在一些实施例中,当充电线圈的数量大于等于3时,还可以专门设置一个“永远”的副线圈作为去扰线圈,采用副线圈和副线圈之间的互感来抵消干扰信号。尤其是充电线圈的数量为四个以上时,通过选择充电线圈进行反向设置已经难以保证充电线圈两两之间反向设置,因此可以采用专门的去扰线圈来抵消副线圈中的干扰信号。
如图19所示,图19中以存在三个充电线圈为例示出,这三个充电线圈同向设置,而去扰线圈1901和三个充电线圈反向设置。例如可以将去扰线圈1901设置为反向,则去扰线圈1901中的干扰电流可以在充电线圈1902、充电线圈1903和充电线圈1904中激励起感应电流。当充电线圈1901作为主线圈充电时,作为副线圈的去扰线圈1902、充电线圈1903和充电线圈1904中也会存在干扰电流。由于去扰线圈1901分别与充电线圈1902、充电线圈1903和充电线圈1904反向设置,则去扰线圈1901中的干扰电流在充电线圈1902中激励起的感应电流能够抵消充电线圈1902中的干扰电流,同样的,去扰线圈1901中的干扰电流在充电线圈1903中激励起的感应电流能够抵消充电线圈1903中的干扰电流,去扰线圈1901中的干扰电流在充电线圈1904中激励起的感应电流能够抵消充电线圈1904中的干扰电流。
当然,在上述图19所示的三个充电线圈和一个去扰线圈1901的实例中,去扰线圈1901的形状也可以发生变化,去扰线圈1901的大小还可以进行调整,例如变大或者变小。例如,去扰线圈1901可以为如图19中的a图所示的椭圆形,也可以为如图19中的b图所示的尺寸较大的圆形,还可以为图19中的c图所示的尺寸较小的圆形,还可以为如图19中的d图所示的尺寸较小的正方形、还可以为如图19中的e图所示的尺寸较大的正方形,还可以为如图19中的f图所示的三角形等等,此处不再列举。只要是能够保证去扰线圈1901分别与每个充电线圈存在重和的部分,则去扰线圈1901中的干扰电流在其他的充电线圈中均能够激励起感应电流,每个充电线圈中被激励起 的感应电流能够消减原有的干扰电流,从而实现有源控制、反向补偿的抗干扰的效果。
图20为与图19中的三个充电线圈的排布方式不同的充电线圈组件的示意图,在图20中,三个充电线圈竖直排列,去扰线圈的形状为倒圆角的长方形,结合起来则可以构成充电线圈组件。
可选地,本申请实施例中的充电线圈大多以圆形的充电线圈示出,实际上,充电线圈的形状还可以是其他的形状,例如椭圆形、长方形、正方形、倒圆角的长方向和正方形等等,也可以是采用不同的形状的充电线圈进行组合,例如圆形、椭圆形等,对此本申请实施例并不做限定。
在一些实施例中,这里的去扰线圈1901的两端可以分别连接一个MOS管,该MOS管中的体二极管能够控制去扰线圈处于悬浮状态,不会作为主线圈进行充电。
图21中的a图、b图、c图、d图均以四个充电线圈组成的充电线圈组件为例示出,这四个充电线圈同向设置,而去扰线圈1901和四个充电线圈反向设置,去扰线圈1901的形状和大小可以不做限定,且去扰线圈1901分别与每个充电线圈存在重和的部分。当四个充电线圈中的一个充电线圈工作时,其他的充电线圈不工作。并且,去扰线圈1901也不工作。去扰线圈1901中本身会存在干扰电流,这个干扰电流能够在其他不工作的充电线圈中激励起相同方向(同为顺时针或同为逆时针)的感应电流。由于每个不工作的充电线圈中还存在除感应电流之外的干扰电流,而不工作的充电线圈中被激励起的感应电流和干扰电流的方向相反,因此感应电流能够消减原有的干扰电流,从而减小干扰信号,实现有源控制、反向补偿的抗干扰的效果。
在一些实施例中,使得去扰线圈1901和充电线圈反向设置,可以是将去扰线圈翻转180度;也可以是将所有的充电线圈翻转180度;还可以是将去扰线圈1901的第一端口从原来连接全桥逆变电路的第一输出节点A,变为连接全桥逆变电路的第二输出节点B;或者是将所有充电线圈的第一端口从原来连接全桥逆变电路的第一输出节点A,变为连接全桥逆变电路的第二输出节点B,本申请实施例对此并不做限定。
可选地,去扰线圈1901的大小本申请实施例并不做限定,只要是能够和多个充电线圈中的任意一个充电线圈重合即可。可选地,这里说的重合可以是部分重合,也可以是全部重合,对此不做限定。这样就可以保证去扰线圈1901可以和其他的充电线圈产生互感,去扰线圈1901中的干扰信号在其他副线圈中产生感应电流,从而消减其他副线圈中的干扰信号。
当充电线圈的数量继续增加时,例如为五个、六个、八个、九个、十二个、十五个甚至更多时,均可以通过去扰线圈和其他的充电线圈的反向设置来抵消其他副线圈中的干扰信号。本申请实施例中,不再对其他数量的充电线圈组成的充电线圈组件进行一一列举。
在一些实施例中,去扰线圈的覆盖区域与所有充电线圈所覆盖的充电区域之间的非重叠区域的面积小于预设面积差阈值。即去扰线圈的覆盖区域和其他的所有的充电线圈所共同覆盖的充电区域相比,二者之间的重叠程度较高,例如二者之间非重叠的面积小于一定的预设面积差阈值。该预设面积阈值可以根据需要进行大小调整。可选地,去扰线圈的覆盖区域和多个充电线圈的外部轮廓还可以完全重合,这样能够最大程度的保证去扰线圈和充电线圈之间的互感,最大化地抵消干扰信号;并且去扰线圈 的覆盖区域和多个充电线圈的外部轮廓重合,则去扰线圈的尺寸不会超出多个充电线圈所覆盖的充电区域,因此无需占用多个充电线圈的充电区域之外的区域,也就无需徒增无线充电装置的尺寸。
通过使得去扰线圈的覆盖区域与所有充电线圈所覆盖的充电区域之间的非重叠区域的面积小于预设面积差阈值,能够避免去扰线圈的覆盖区域和其他的所有的充电线圈所共同覆盖的充电区域重叠程度低导致的互感太弱,产生的感应电流太弱,而对干扰电流的抵消量过低,影响去干扰的效果。因此能够确保去扰线圈在各个充电线圈能够有足够的互感来产生较强的感应电流,对干扰电流的抵消量较大,进而确保去干扰的效果。在实际充电过程中,就能够减少充电线圈组件对电源的影响,确保其他使用该电源的用电设备的性能和安全性。
图22中的a图为一个充电板中的多个充电线圈组件示意图。这多个充电线圈置于铁氧体上,然后连接充电电路实现无线充电。图22中的a图中以存在18个充电线圈为例示出,这18个充电线圈附着在铁氧体上以确保电磁转换的品质因数。针对这样的多个充电线圈组件,则可以采用一个大的去扰线圈1901作为永远的副线圈,可以参见图22中的b图所示,对其他的副线圈实现去干扰的效果。
本申请实施例还提供了一种无线充电装置,该无线充电装置中包括一个或多个上述实施例中的充电线圈组件。每个充电线圈组件中均可以对一个待充电设备进行无线充电。当无线充电装置中包括多个上述实施例中的充电线圈组件时,还可以对多个待充电设备进行无线充电同时进行充电,其中,每个充电线圈组件中选择一个充电线圈作为主线圈,对一个待充电设备进行无线充电。
在一些实施例中,无线充电装置可以为无线充电板。当用户将带有无线充电功能的手机、智能手表等多个电子设备放置在无线充电板的不同区域时,无线充电板可以对这多个电子设备同时进行无线充电。
可选地,该无线充电装置中的多个充电线圈组件还可以共用同一个去扰线圈。这个多个充电线圈组件中的充电线圈均同向设置,去扰线圈和充电线圈反向设置。每个充电线圈组件对一个待充电设备进行充电时,去扰线圈都可以在不处于充电状态的副线圈中激励起感应电流,从而抵消干扰信号。多个充电线圈组件共用同一个去扰线圈可以降低无线充电装置的结构的复杂度,便于生产制造。
上述无线充电装置的实现原理和技术效果可以参见前述关于充电线圈组件中的相关描述,此处不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,更换的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上内容,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。
Claims (44)
- 一种充电线圈组件,其特征在于,包括:第一充电线圈和第二充电线圈,所述第一充电线圈和所述第二充电线圈部分重合,所述第一充电线圈工作,所述第二充电线圈不工作,所述第一充电线圈中的充电电流在所述第二充电线圈中激发出第一感应电流;同时,所述第二充电线圈中产生由于干扰引起的除所述第一感应电流之外的第一干扰电流;所述第一充电线圈和所述第二充电线圈反向设置,所述第二充电线圈和所述第一充电线圈之间的反向设置使得所述第二充电线圈中的第一感应电流和所述第二充电线圈中的第一干扰电流的方向相反。
- 根据权利要求1所述的充电线圈组件,应用于无线充电装置,所述无线充电装置包括全桥逆变电路,所述全桥逆变电路包括第一输出节点和第二输出节点,其特征在于,所述第一充电线圈和所述第二充电线圈的端口设置相同,所述第一充电线圈和所述第二充电线圈反向设置,包括:所述第一充电线圈的第一端口与所述第一输出节点连接,所述第一充电线圈的第二端口与所述第二输出节点连接,所述第二充电线圈的第一端口与所述第二输出节点连接,所述第二充电线圈的第二端口与所述第一输出节点连接。
- 根据权利要求1所述的充电线圈组件,其特征在于,所述第一充电线圈和所述第二充电线圈的端口设置相同,所述第一充电线圈和所述第二充电线圈反向设置,包括:所述第一充电线圈翻转设置,使得第一方向和第二方向相反,所述第一方向为由所述第一充电线圈的第一端口沿所述第一充电线圈的绕线方向指向所述第一充电线圈的第二端口的方向,所述第二方向为由所述第二充电线圈的第一端口沿所述第二充电线圈的绕线方向指向所述第二充电线圈的第二端口的方向;其中,所述第一方向为顺时针方向,所述第二方向为逆时针方向;或者,所述第一方向为逆时针方向,所述第二方向为顺时针方向。
- 根据权利要求1至3任一项所述的充电线圈组件,其特征在于,所述第一干扰电流包括:所述第二充电线圈在两端连接的金属-氧化物半导体MOS场效应管的作用下处于谐振状态所产生的干扰电流,通过印制电路板串扰至所述第二充电线圈的干扰电流,以及所述第一充电线圈上的充电电流通过与所述第二充电线圈之间的容性耦合传递至所述第二充电线圈的干扰电流中的至少一种。
- 根据权利要求1至4任一项所述的充电线圈组件,其特征在于,所述充电线圈组件还包括第三充电线圈,所述第三充电线圈和所述第一充电线圈部分重合,所述第三充电线圈不工作,所述第一充电线圈中的充电电流在所述第三充电线圈中激发出第二感应电流;同时,所述第三充电线圈中产生由于干扰引起的除所述第二感应电流之外的第二干扰电流;所述第三充电线圈和所述第一充电线圈反向设置,所述第三充电线圈和所述第一充电线圈之间的反向设置使得所述第二感应电流和所述第二干扰电流的方向相反。
- 根据权利要求5所述的充电线圈组件,其特征在于,所述充电线圈组件还包括第四充电线圈,所述第四充电线圈和所述第二充电线圈部分重合,所述第四充电线圈 与所述第一充电线圈和所述第三充电线圈均不重合,所述第四充电线圈不工作;所述第二充电线圈中的所述第一干扰电流在所述第四充电线圈中激发出第三感应电流;同时,所述第四充电线圈中产生由于干扰引起的除所述第三感应电流之外的第三干扰电流;所述第四充电线圈和所述第二充电线圈反向设置,所述第四充电线圈和所述第二充电线圈之间的反向设置使得所述第三感应电流和所述第三干扰电流的方向相反。
- 一种充电线圈组件,应用于无线充电装置,所述无线充电装置包括全桥逆变电路,所述全桥逆变电路包括第一输出节点和第二输出节点,其特征在于,所述充电线圈组件包括:第一充电线圈和第二充电线圈;所述第一充电线圈和所述第二充电线圈部分重合,所述第一充电线圈和所述第二充电线圈的端口设置相同;所述第一充电线圈的第一端口与所述全桥逆变电路的所述第一输出节点连接,所述第一充电线圈的第二端口与所述全桥逆变电路的所述第二输出节点连接,所述第二充电线圈的第一端口与所述全桥逆变电路的所述第二输出节点连接,所述第二充电线圈的第二端口与所述全桥逆变电路的所述第一输出节点连接。
- 根据权利要求7所述的充电线圈组件,其特征在于,所述第一充电线圈工作,所述第二充电线圈不工作,所述第一充电线圈中的充电电流在所述第二充电线圈中激发出第一感应电流;同时,所述第二充电线圈中产生由于干扰引起的除所述第一感应电流之外的第一干扰电流;其中,所述第二充电线圈中的第一感应电流和所述第二充电线圈中的第一干扰电流的方向相反。
- 根据权利要求7或8所述的充电线圈组件,其特征在于,所述充电线圈组件还包括第三充电线圈,所述第三充电线圈和所述第一充电线圈部分重合,所述第三充电线圈和第二充电线圈不重合;所述第三充电线圈和所述第一充电线圈的端口设置相同,所述第三充电线圈的第一端口连接所述全桥逆变电路的所述第二输出节点,所述第三充电线圈的第二端口连接所述全桥逆变电路的所述第一输出节点。
- 根据权利要求9所述的充电线圈组件,其特征在于,所述第三充电线圈不工作,所述第一充电线圈中的充电电流在所述第三充电线圈中激发出第二感应电流;同时,所述第三充电线圈中产生由于干扰引起的除所述第二感应电流之外的第二干扰电流;其中,所述第二感应电流和所述第二干扰电流的方向相反。
- 一种充电线圈组件,其特征在于,包括:第一充电线圈和第二充电线圈,所述第一充电线圈和第二充电线圈部分重合,所述第一充电线圈和所述第二充电线圈的端口设置相同;所述第一充电线圈翻转设置,使得第一方向和第二方向相反,所述第一方向为由所述第一充电线圈的第一端口沿所述第一充电线圈的绕线方向指向所述第一充电线圈的第二端口的方向,所述第二方向为由所述第二充电线圈的第一端口沿所述第二充电线圈的绕线方向指向所述第二充电线圈的第二端口的方向;其中,所述第一方向为顺时针方向,所述第二方向为逆时针方向;或者,所述第一方向为逆时针方向,所述第二方向为顺时针方向。
- 根据权利要求11所述的充电线圈组件,其特征在于,所述第一充电线圈工作,所述第二充电线圈不工作,所述第一充电线圈中的充电电流在所述第二充电线圈中激发出第一感应电流;同时,所述第二充电线圈中产生由于干扰引起的除所述第一感应电流之外的第一干扰电流;其中,所述第二充电线圈中的第一感应电流和所述第二充电线圈中的第一干扰电流的方向相反。
- 一种充电线圈组件,其特征在于,包括:去扰线圈和多个充电线圈,所述去扰线圈和所述多个充电线圈中的每个充电线圈均重合,第一充电线圈工作,所述多个充电线圈中除所述第一充电线圈之外的其他充电线圈不工作,所述去扰线圈不工作,其中,所述第一充电线圈为所述多个充电线圈中的一个;所述去扰线圈中产生由于干扰引起的第一干扰电流,所述其他充电线圈中产生由于干扰引起的第二干扰电流,以及所述去扰线圈中的所述第一干扰电流在所述其他充电线圈中产生感应电流;所述去扰线圈和所述第一充电线圈反向设置,所述反向设置使得所述其他充电线圈中的感应电流和所述第二干扰电流的方向相反。
- 根据权利要求13所述的充电线圈组件,应用于无线充电装置,所述无线充电装置包括全桥逆变电路,所述全桥逆变电路包括第一输出节点和第二输出节点,其特征在于,所述第一充电线圈和所述去扰线圈的端口设置相同,所述去扰线圈和所述第一充电线圈反向设置,包括:所述第一充电线圈的第一端口与所述第一输出节点连接,所述第一充电线圈的第二端口与所述第二输出节点连接,所述去扰线圈的第一端口与所述第二输出节点连接,所述去扰线圈的第二端口与所述第一输出节点连接。
- 根据权利要求13所述的充电线圈组件,应用于无线充电装置,所述无线充电装置包括全桥逆变电路,所述全桥逆变电路包括第一输出节点和第二输出节点,其特征在于,所述第一充电线圈和所述去扰线圈的端口设置相同,所述去扰线圈和所述第一充电线圈反向设置,包括:所述去扰线圈翻转设置,使得第一方向和第二方向相反,所述第一方向为由所述第一充电线圈的第一端口沿所述第一充电线圈的绕线方向指向所述第一充电线圈的第二端口的方向,所述第二方向为由所述去扰线圈的第一端口沿所述去扰线圈的绕线方向指向所述去扰线圈的第二端口的方向;其中,所述第一方向为顺时针方向,所述第二方向为逆时针方向;或者,所述第一方向为逆时针方向,所述第二方向为顺时针方向。
- 根据权利要求13至15中任一项所述的充电线圈组件,其特征在于,所述去扰线圈的覆盖区域与所述多个充电线圈所覆盖的充电区域之间的非重叠区域的面积小于预设面积差阈值。
- 根据权利要求16所述的充电线圈组件,其特征在于,所述去扰线圈的覆盖区域和所述多个充电线圈所覆盖的充电区域的外部轮廓重合。
- 根据权利要求13至17中任一项所述的充电线圈组件,其特征在于,所述多个充电线圈的数量大于或等于4。
- 一种充电线圈组件,应用于无线充电装置,所述无线充电装置包括全桥逆变电路,所述全桥逆变电路包括第一输出节点和第二输出节点,其特征在于,所述充电线圈组件包括:去扰线圈和多个充电线圈;所述去扰线圈和所述多个充电线圈中的每个充电线圈均重合,所述多个充电线圈中的每个充电线圈和所述去扰线圈的端口设置相同;所述多个充电线圈中的每个充电线圈的第一端口均与所述第一输出节点连接,所述多个充电线圈中的每个充电线圈的第二端口均与所述第二输出节点连接,所述去扰线圈的第一端口连接所述第二输出节点,所述去扰线圈的第二端口连接所述第一输出节点。
- 根据权利要求19所述的充电线圈组件,其特征在于,第一充电线圈工作,所述多个充电线圈中除所述第一充电线圈之外的其他充电线圈不工作,所述去扰线圈不工作,其中,所述第一充电线圈为所述多个充电线圈中的一个;所述去扰线圈中产生由于干扰引起的第一干扰电流,第二充电线圈中产生由于干扰引起的第二干扰电流,其中,所述第二充电线圈为所述其他充电线圈中的一个;所述去扰线圈中的所述第一干扰电流在所述第二充电线圈中产生感应电流,其中,所述第二充电线圈中的感应电流和所述第二干扰电流的方向相反。
- 一种充电线圈组件,其特征在于,包括:去扰线圈和多个充电线圈,所述去扰线圈和所述多个充电线圈中的每个充电线圈均重合,所述多个充电线圈中的每个充电线圈和所述去扰线圈的端口设置相同;所述去扰线圈翻转设置,使得第一方向和第二方向相反,所述第一方向为由第一充电线圈的第一端口沿所述第一充电线圈的绕线方向指向所述第一充电线圈的第二端口的方向,所述第一充电线圈为所述多个充电线圈中的一个,所述第二方向为由所述去扰线圈的第一端口沿所述去扰线圈的绕线方向指向所述去扰线圈的第二端口的方向。
- 根据权利要求21所述的充电线圈组件,其特征在于,所述第一充电线圈工作,所述多个充电线圈中除所述第一充电线圈之外的其他充电线圈不工作,所述去扰线圈不工作,其中,所述第一充电线圈为所述多个充电线圈中的一个;所述去扰线圈中产生由于干扰引起的第一干扰电流,第二充电线圈中产生由于干扰引起的第二干扰电流,其中,所述第二充电线圈为所述其他充电线圈中的一个;所述去扰线圈中的所述第一干扰电流在所述第二充电线圈中产生感应电流,其中,所述第二充电线圈中的感应电流和所述第二干扰电流的方向相反。
- 一种无线充电装置,其特征在于,包括N个如权利要求1至22中任一项所述的充电线圈组件,其中,N为正整数。
- 根据权利要求23所述的无线充电装置,其特征在于,N为大于1的正整数,所述无线充电装置为无线充电板。
- 一种充电线圈组件,其特征在于,包括:第一充电线圈和第二充电线圈,所述第一充电线圈和所述第二充电线圈部分重合,所述第一充电线圈工作,所述第二充电线圈不工作,所述第一充电线圈中的充电电流在所述第二充电线圈中感应出第一感应电流;同时, 所述第二充电线圈中由于干扰而产生除所述第一感应电流之外的第一干扰电流;所述第一充电线圈和所述第二充电线圈反向设置,所述第二充电线圈和所述第一充电线圈之间的反向设置使得所述第二充电线圈中的第一感应电流和所述第二充电线圈中的第一干扰电流的方向相反。
- 根据权利要求25所述的充电线圈组件,应用于无线充电装置,所述无线充电装置包括全桥逆变电路,所述全桥逆变电路包括第一输出节点和第二输出节点,其特征在于,所述第一充电线圈和所述第二充电线圈的端口设置相同,所述第一充电线圈和所述第二充电线圈反向设置,包括:所述第一充电线圈的第一端口与所述第一输出节点连接,所述第一充电线圈的第二端口与所述第二输出节点连接,所述第二充电线圈的第一端口与所述第二输出节点连接,所述第二充电线圈的第二端口与所述第一输出节点连接。
- 根据权利要求25所述的充电线圈组件,其特征在于,所述第一充电线圈和所述第二充电线圈的端口设置相同,所述第一充电线圈和所述第二充电线圈反向设置,包括:所述第一充电线圈翻转设置,使得第一方向和第二方向相反,所述第一方向为由所述第一充电线圈的第一端口沿所述第一充电线圈的绕线方向指向所述第一充电线圈的第二端口的方向,所述第二方向为由所述第二充电线圈的第一端口沿所述第二充电线圈的绕线方向指向所述第二充电线圈的第二端口的方向;其中,所述第一方向为顺时针方向,所述第二方向为逆时针方向;或者,所述第一方向为逆时针方向,所述第二方向为顺时针方向。
- 根据权利要求25至27任一项所述的充电线圈组件,其特征在于,所述第一干扰电流包括:所述第二充电线圈在两端连接的金属-氧化物半导体MOS场效应管的作用下处于谐振状态所产生的干扰电流,通过印制电路板串扰至所述第二充电线圈的干扰电流,以及所述第一充电线圈上的充电电流通过与所述第二充电线圈之间的容性耦合传递至所述第二充电线圈的干扰电流中的至少一种。
- 根据权利要求25至27任一项所述的充电线圈组件,其特征在于,所述充电线圈组件还包括第三充电线圈,所述第三充电线圈和所述第一充电线圈部分重合,所述第三充电线圈不工作,所述第一充电线圈中的充电电流在所述第三充电线圈中感应出第二感应电流;同时,所述第三充电线圈中由于干扰而产生除所述第二感应电流之外的第二干扰电流;所述第三充电线圈和所述第一充电线圈反向设置,所述第三充电线圈和所述第一充电线圈之间的反向设置使得所述第二感应电流和所述第二干扰电流的方向相反。
- 根据权利要求29所述的充电线圈组件,其特征在于,所述充电线圈组件还包括第四充电线圈,所述第四充电线圈和所述第二充电线圈部分重合,所述第四充电线圈与所述第一充电线圈和所述第三充电线圈均不重合,所述第四充电线圈不工作;所述第二充电线圈中的所述第一干扰电流在所述第四充电线圈中感应出第三感应电流;同时,所述第四充电线圈中由于干扰而产生除所述第三感应电流之外的第三干扰电流;所述第四充电线圈和所述第二充电线圈反向设置,所述第四充电线圈和所述第二充电线圈之间的反向设置使得所述第三感应电流和所述第三干扰电流的方向相反。
- 一种充电线圈组件,应用于无线充电装置,所述无线充电装置包括全桥逆变电路,所述全桥逆变电路包括第一输出节点和第二输出节点,其特征在于,所述充电线圈组件包 括:第一充电线圈和第二充电线圈;所述第一充电线圈和所述第二充电线圈部分重合,所述第一充电线圈包括第一充电线圈的第一端口与第一充电线圈的第二端口,所述第二充电线圈包括第二充电线圈的第一端口与第二充电线圈的第二端口,所述第一充电线圈和所述第二充电线圈的端口设置相同,且所述第一充电线圈与所述第二充电线圈绕线方向相同;所述第一充电线圈的第一端口与所述全桥逆变电路的所述第一输出节点连接,所述第一充电线圈的第二端口与所述全桥逆变电路的所述第二输出节点连接,所述第二充电线圈的第一端口与所述全桥逆变电路的所述第二输出节点连接,所述第二充电线圈的第二端口与所述全桥逆变电路的所述第一输出节点连接。
- 根据权利要求31所述的充电线圈组件,其特征在于,所述第一充电线圈工作,所述第二充电线圈不工作,所述第一充电线圈中的充电电流在所述第二充电线圈中感应出第一感应电流;同时,所述第二充电线圈中由于干扰而产生除所述第一感应电流之外的第一干扰电流;其中,所述第二充电线圈中的第一感应电流和所述第二充电线圈中的第一干扰电流的方向相反。
- 根据权利要求31或32所述的充电线圈组件,其特征在于,所述充电线圈组件还包括第三充电线圈,所述第三充电线圈和所述第一充电线圈部分重合,所述第三充电线圈和第二充电线圈不重合;所述第三充电线圈和所述第一充电线圈的端口设置相同,且所述第三充电线圈与所述第一充电线圈绕线方向相同,所述第三充电线圈的第一端口连接所述全桥逆变电路的所述第二输出节点,所述第三充电线圈的第二端口连接所述全桥逆变电路的所述第一输出节点。
- 根据权利要求33所述的充电线圈组件,其特征在于,所述第三充电线圈不工作,所述第一充电线圈中的充电电流在所述第三充电线圈中感应出第二感应电流;同时,所述第三充电线圈中由于干扰而产生除所述第二感应电流之外的第二干扰电流;其中,所述第二感应电流和所述第二干扰电流的方向相反。
- 一种充电线圈组件,其特征在于,包括:第一充电线圈和第二充电线圈,所述第一充电线圈和第二充电线圈部分重合,所述第一充电线圈工作,所述第二充电线圈不工作,所述第一充电线圈中的充电电流在所述第二充电线圈中感应出第一感应电流;同时,所述第二充电线圈中由于干扰而产生除所述第一感应电流之外的第一干扰电流;所述第一充电线圈和所述第二充电线圈的端口设置相同,所述第一充电线圈的第一方向与所述第二充电线圈的第二方向相反,使得所述第二充电线圈中的第一感应电流和所述第二充电线圈中的第一干扰电流的方向相反;其中,所述第一方向为由所述第一充电线圈的第一端口沿所述第一充电线圈的绕线方向指向所述第一充电线圈的第二端口的方向,所述第二方向为由所述第二充电线圈的第一端口沿所述第二充电线圈的绕线方向指向所述第二充电线圈的第二端口的方向;其中,所述第一方向为顺时针方向,所述第二方向为逆时针方向;或者,所述第一方向为逆时针方向,所述第二方向为顺时针方向。
- 一种充电线圈组件,其特征在于,包括:去扰线圈和多个充电线圈,所述去扰线圈和所述多个充电线圈中的每个充电线圈均重合,第一充电线圈工作,所述多个充电线圈 中除所述第一充电线圈之外的其他充电线圈不工作,所述去扰线圈不工作,其中,所述第一充电线圈为所述多个充电线圈中的一个;所述去扰线圈中产生由于干扰引起的第一干扰电流,所述其他充电线圈中产生由于干扰引起的第二干扰电流,以及所述去扰线圈中的所述第一干扰电流在所述其他充电线圈中产生感应电流;所述去扰线圈和所述第一充电线圈反向设置,所述其他充电线圈与所述第一充电线圈的端口设置相同,且所述其他充电线圈与所述第一充电线圈绕线方向相同,所述反向设置使得所述其他充电线圈中的感应电流和所述第二干扰电流的方向相反。
- 根据权利要求36所述的充电线圈组件,应用于无线充电装置,所述无线充电装置包括全桥逆变电路,所述全桥逆变电路包括第一输出节点和第二输出节点,其特征在于,所述第一充电线圈和所述去扰线圈的端口设置相同,所述去扰线圈和所述第一充电线圈反向设置,包括:所述第一充电线圈的第一端口与所述第一输出节点连接,所述第一充电线圈的第二端口与所述第二输出节点连接,所述去扰线圈的第一端口与所述第二输出节点连接,所述去扰线圈的第二端口与所述第一输出节点连接。
- 根据权利要求36所述的充电线圈组件,应用于无线充电装置,所述无线充电装置包括全桥逆变电路,所述全桥逆变电路包括第一输出节点和第二输出节点,其特征在于,所述第一充电线圈和所述去扰线圈的端口设置相同,所述去扰线圈和所述第一充电线圈反向设置,包括:所述去扰线圈翻转设置,使得第一方向和第二方向相反,所述第一方向为由所述第一充电线圈的第一端口沿所述第一充电线圈的绕线方向指向所述第一充电线圈的第二端口的方向,所述第二方向为由所述去扰线圈的第一端口沿所述去扰线圈的绕线方向指向所述去扰线圈的第二端口的方向;其中,所述第一方向为顺时针方向,所述第二方向为逆时针方向;或者,所述第一方向为逆时针方向,所述第二方向为顺时针方向。
- 根据权利要求36至38中任一项所述的充电线圈组件,其特征在于,所述去扰线圈的覆盖区域与所述多个充电线圈所覆盖的充电区域之间的非重叠区域的面积小于预设面积差阈值。
- 根据权利要求39所述的充电线圈组件,其特征在于,所述去扰线圈的覆盖区域和所述多个充电线圈所覆盖的充电区域的外部轮廓重合。
- 根据权利要求36至38中任一项所述的充电线圈组件,其特征在于,所述多个充电线圈的数量大于或等于4。
- 一种充电线圈组件,应用于无线充电装置,所述无线充电装置包括全桥逆变电路,所述全桥逆变电路包括第一输出节点和第二输出节点,其特征在于,所述充电线圈组件包括:去扰线圈和多个充电线圈;所述去扰线圈和所述多个充电线圈中的每个充电线圈均重合,所述多个充电线圈中的每个充电线圈和所述去扰线圈的端口设置相同,且所述多个充电线圈中的每个充电线圈与所述去扰线圈绕线方向相同;所述多个充电线圈中的每个充电线圈的第一端口均与所述第一输出节点连接,所述多 个充电线圈中的每个充电线圈的第二端口均与所述第二输出节点连接,所述去扰线圈的第一端口连接所述第二输出节点,所述去扰线圈的第二端口连接所述第一输出节点。
- 根据权利要求42所述的充电线圈组件,其特征在于,第一充电线圈工作,所述多个充电线圈中除所述第一充电线圈之外的其他充电线圈不工作,所述去扰线圈不工作,其中,所述第一充电线圈为所述多个充电线圈中的一个;所述去扰线圈中产生由于干扰引起的第一干扰电流,第二充电线圈中产生由于干扰引起的第二干扰电流,其中,所述第二充电线圈为所述其他充电线线圈中的一个;所述去扰线圈中的所述第一干扰电流在所述第二充电线圈中产生感应电流,其中,所述第二充电线圈中的感应电流和所述第二干扰电流的方向相反。
- 一种充电线圈组件,其特征在于,包括:去扰线圈和多个充电线圈,所述去扰线圈和所述多个充电线圈中的每个充电线圈均重合,第一充电线圈工作,所述多个充电线圈中除所述第一充电线圈之外的其他充电线圈不工作,所述去扰线圈不工作,其中,所述第一充电线圈为所述多个充电线圈中的一个;所述去扰线圈中产生由于干扰引起的第一干扰电流,所述其他充电线圈中产生由于干扰引起的第二干扰电流,以及所述去扰线圈中的所述第一干扰电流在所述其他充电线圈中产生感应电流;所述多个充电线圈中的每个充电线圈和所述去扰线圈的端口设置相同,且所述多个充电线圈中的每个充电线圈与所述去扰线圈绕线方向相同;所述第一充电线圈的第一方向与所述去扰线圈的第二方向相反,使得所述其他充电线圈中的感应电流和所述第二干扰电流的方向相反;所述第一方向为由第一充电线圈的第一端口沿所述第一充电线圈的绕线方向指向所述第一充电线圈的第二端口的方向,所述第一充电线圈为所述多个充电线圈中的一个,所述第二方向为由所述去扰线圈的第一端口沿所述去扰线圈的绕线方向指向所述去扰线圈的第二端口的方向。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210191342.0 | 2022-02-28 | ||
CN202210191342.0A CN114552741B (zh) | 2022-02-28 | 2022-02-28 | 充电线圈组件和无线充电装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2023160206A1 true WO2023160206A1 (zh) | 2023-08-31 |
WO2023160206A9 WO2023160206A9 (zh) | 2023-12-07 |
Family
ID=81661396
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/141970 WO2023160206A1 (zh) | 2022-02-28 | 2022-12-26 | 充电线圈组件和无线充电装置 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN116455102B (zh) |
WO (1) | WO2023160206A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116455102B (zh) * | 2022-02-28 | 2024-04-05 | 荣耀终端有限公司 | 充电线圈组件和无线充电装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015186426A (ja) * | 2014-03-26 | 2015-10-22 | 株式会社エクォス・リサーチ | 受電システム |
CN110277838A (zh) * | 2019-07-12 | 2019-09-24 | 东莞铭普光磁股份有限公司 | 一种无线充电装置 |
CN210074883U (zh) * | 2019-02-18 | 2020-02-14 | 邢益涛 | 一种无线充电框 |
CN112886722A (zh) * | 2021-03-25 | 2021-06-01 | 深圳劲芯微电子有限公司 | 一种无线充电器及其充电线圈结构 |
CN114552741A (zh) * | 2022-02-28 | 2022-05-27 | 荣耀终端有限公司 | 充电线圈组件和无线充电装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6176433B1 (en) * | 1997-05-15 | 2001-01-23 | Hitachi, Ltd. | Reader/writer having coil arrangements to restrain electromagnetic field intensity at a distance |
CN103050265B (zh) * | 2012-12-31 | 2016-04-27 | 常熟开关制造有限公司(原常熟开关厂) | 剩余电流互感器 |
US9166286B2 (en) * | 2013-03-29 | 2015-10-20 | Panasonic Intellectual Property Management Co., Ltd. | Communication device |
CN104237591B (zh) * | 2013-06-18 | 2017-05-17 | 北京映翰通网络技术股份有限公司 | 一种抗磁场干扰单块pcb闭合罗氏线圈设计方法与实现 |
CN108616168B (zh) * | 2018-03-31 | 2021-07-13 | 西安交通大学 | 含中继线圈谐振型无线充电系统电磁干扰预测电路及方法 |
CN111064285B (zh) * | 2019-12-06 | 2021-06-29 | 深圳市勃望初芯半导体科技有限公司 | 一种用于植入式设备的无线能量信号传输系统 |
US11798735B2 (en) * | 2020-01-14 | 2023-10-24 | Cyntec Co., Ltd. | Wireless charger |
-
2022
- 2022-02-28 CN CN202310371043.XA patent/CN116455102B/zh active Active
- 2022-02-28 CN CN202210191342.0A patent/CN114552741B/zh active Active
- 2022-12-26 WO PCT/CN2022/141970 patent/WO2023160206A1/zh unknown
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015186426A (ja) * | 2014-03-26 | 2015-10-22 | 株式会社エクォス・リサーチ | 受電システム |
CN210074883U (zh) * | 2019-02-18 | 2020-02-14 | 邢益涛 | 一种无线充电框 |
CN110277838A (zh) * | 2019-07-12 | 2019-09-24 | 东莞铭普光磁股份有限公司 | 一种无线充电装置 |
CN112886722A (zh) * | 2021-03-25 | 2021-06-01 | 深圳劲芯微电子有限公司 | 一种无线充电器及其充电线圈结构 |
CN114552741A (zh) * | 2022-02-28 | 2022-05-27 | 荣耀终端有限公司 | 充电线圈组件和无线充电装置 |
Also Published As
Publication number | Publication date |
---|---|
WO2023160206A9 (zh) | 2023-12-07 |
CN114552741B (zh) | 2023-04-21 |
CN116455102A (zh) | 2023-07-18 |
CN116455102B (zh) | 2024-04-05 |
CN114552741A (zh) | 2022-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9153998B2 (en) | Wireless power orthogonal polarization antenna array | |
JP5393898B2 (ja) | 差動駆動増幅器およびコイル配置構成を実装するための装置および方法 | |
CN203366972U (zh) | 非接触充电模块以及使用该非接触充电模块的接收侧非接触充电设备及发送侧非接触充电设备 | |
EP3036817B1 (en) | Systems, apparatus, and method for a dual mode wireless power receiver | |
US9899878B2 (en) | Systems and methods for induction charging with a closed magnetic loop | |
CN104167824B (zh) | 检测设备、电力供应系统以及控制检测设备的方法 | |
WO2023160206A1 (zh) | 充电线圈组件和无线充电装置 | |
CN105794122B (zh) | 提供无线电力的装置、方法和设备 | |
US10381874B2 (en) | Filter for improved driver circuit efficiency and method of operation | |
CN103534772B (zh) | 供电单元、供电系统和电子装置 | |
RU2623095C2 (ru) | Система беспроводной зарядки и ее применение для зарядки мобильных и переносных устройств | |
WO2013049065A1 (en) | Systems, methods, and apparatus for rectifier filtering for input waveform shaping | |
EP2792081A1 (en) | System and method for low loss wireless power transmission | |
US9496755B2 (en) | Systems, methods, and apparatus for rectifier filtering for input waveform shaping | |
CN105453369B (zh) | 经由可变耦合电容的无线功率传输 | |
EP3022823A1 (en) | System and method for efficient data communication and wireless power transfer coexistence | |
CN102696166A (zh) | 利用近场聚焦的无线电力传输设备 | |
CN109067008B (zh) | 一种无线能量与数据同步传输系统及其参数设计方法 | |
US20130214610A1 (en) | Push-pull driver with stage inversion and method of operation | |
US10141100B2 (en) | Common-mode noise reduction | |
CN105406609A (zh) | 一种电能接收结构及无线电能接收模块 | |
US11626757B2 (en) | Reverse wireless charging | |
CN206452387U (zh) | 一种基于电感耦合的载波通信耦合电路 | |
CN110932416A (zh) | 无线能量传输装置、系统及无线充电系统 | |
CN113396520A (zh) | 一种无线电力接收电路 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22928448 Country of ref document: EP Kind code of ref document: A1 |