WO2023160161A1 - 基于电润湿作用的太阳能驱动高效加湿器系统及工作方法 - Google Patents

基于电润湿作用的太阳能驱动高效加湿器系统及工作方法 Download PDF

Info

Publication number
WO2023160161A1
WO2023160161A1 PCT/CN2022/140004 CN2022140004W WO2023160161A1 WO 2023160161 A1 WO2023160161 A1 WO 2023160161A1 CN 2022140004 W CN2022140004 W CN 2022140004W WO 2023160161 A1 WO2023160161 A1 WO 2023160161A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
heat exchange
droplets
flow
outlet
Prior art date
Application number
PCT/CN2022/140004
Other languages
English (en)
French (fr)
Inventor
何纬峰
高燕飞
韩东
蒲文灏
姚照辉
施其乐
Original Assignee
南京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京航空航天大学 filed Critical 南京航空航天大学
Publication of WO2023160161A1 publication Critical patent/WO2023160161A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/02Air-humidification, e.g. cooling by humidification by evaporation of water in the air
    • F24F6/08Air-humidification, e.g. cooling by humidification by evaporation of water in the air using heated wet elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells

Definitions

  • the invention relates to a solar-driven high-efficiency humidifier system and working method based on electrowetting, belonging to the fields of energy and power engineering and high-efficiency humidification.
  • the purpose of the present invention is to propose a solar-driven high-efficiency humidifier system and working method based on electrowetting.
  • this application provides a solar-driven high-efficiency humidifier system based on electrowetting, including a water pump, a flow control valve, a PV/T device (a photovoltaic photothermal system), a gas-liquid separator, a humid air tank, Water tank and blower;
  • the PV/T device includes CPC condenser lens, photovoltaic panels and cover plates at all levels, and heat exchange flow channel from top to bottom; the heat exchange flow channel is surrounded by an insulation layer; the above heat exchange flow channel is from the top It consists of a plate, a lower plate and a side plate; the lower plate is embedded with a water pipe, and the upper surface of the lower plate is provided with a droplet nozzle communicating with the water pipe; the lower surface of the upper plate is equipped with an electrode array plate; Dielectric waterproof layer; the electrode array plate is composed of positive and negative micro-electrode plates laid at intervals, and the electrode plates are laid in a dense arrangement at equal intervals; the above-mentioned electrode array plate is powered by
  • the outlet of the above-mentioned water pump is connected to the inlet of the flow control valve, and the outlet of the flow control valve is connected to the water pipe inlet of the heat exchange channel of the PV/T device; the outlet of the heat exchange channel of the PV/T device is connected to the inlet of the gas-liquid separator, and the gas-liquid separator
  • the wet air outlet is connected to the wet air tank, the water outlet at the bottom of the gas-liquid separator is connected to the water tank inlet, the water tank outlet is connected to the water pump inlet; the blower inlet is connected to the outside world, and the outlet is connected to the heat exchange channel of the PV/T device.
  • the present application also provides a working method of a solar-driven high-efficiency humidifier system based on electrowetting, including the following process: the water pump draws water from the water tank, flows through the flow control valve, and the flow control valve intermittently
  • the heat exchange channel of the PV/T device supplies water
  • the blower supplies dry air to the PV/T device at the same time.
  • the liquid water flows through the PV/T device, it is heated by the heat exchange channel and quickly evaporates.
  • the separated humid air is stored in the wet air tank, and the separated water flows into the water tank for further use;
  • the specific working process of the above-mentioned PV/T device is as follows: solar energy passes through photovoltaic panels and cover plates at all levels, and part of the energy is converted into Part of the electric energy is converted into heat and transferred to the heat exchange flow channel; while the water flow will intermittently flow through the water flow pipeline of the heat exchange flow channel.
  • the droplets are attached to the lower surface of the upper plate of the heat exchange channel, and a waterproof dielectric layer is laid on the surface for waterproof treatment. At this time, the droplets are distributed in the array electrode sheets, and under the action of the electric field, the internal flow of the droplets accelerates rapidly.
  • the intermittent water supply to the liquid droplet nozzle of the heat exchange flow channel can be realized by a computer program, and at a certain time interval, new liquid droplets are sprayed out when the previous round of sprayed liquid droplets evaporates completely.
  • the utilization efficiency of the system is maximized, and the water saving efficiency is maximized at the same time.
  • the laying of electrode plates can be determined according to the actual situation and the laying interval and area size.
  • the solar-driven high-efficiency humidifier system based on electrowetting has at least the following advantages: the electrowetting technology is introduced into the PV/T system, and the PV/T The characteristics of the system itself absorb heat and generate electricity, and use the electric energy generated by the electricity to drive the droplets on the electrode plate, which greatly accelerates the internal flow path and evaporation rate of the droplets, greatly improves the energy utilization efficiency of the humidifier system, and reduces Geographical restrictions due to external heat sources; in addition, the system provided by the embodiment eliminates the dependence of conventional humidification systems on fossil energy, reduces environmental pollution, and generates a large amount of usable humid air while generating electricity, killing two birds with one stone.
  • Figure 1 is a working principle diagram of a solar-driven high-efficiency humidifier system
  • Fig. 2 is a structural schematic diagram of a PV/T device
  • Fig. 3 is a schematic diagram of the structure of the upper plate of the heat exchange channel
  • Fig. 4 is a schematic diagram of the structure of the lower plate of the heat exchange channel
  • Figure 5 is a partial enlarged view of the upper plate of the heat exchange channel
  • this embodiment relates to a solar-driven high-efficiency humidifier system based on electrowetting.
  • the outlet of water pump 1 is connected to the inlet of flow control valve 2, the outlet of flow control valve 2 is connected to the water pipe inlet of the heat exchange channel of PV/T device 3; the outlet of heat exchange channel of PV/T device 3 is connected to the inlet of gas-liquid separator 4 , the wet air outlet of the gas-liquid separator 4 is connected to the wet air tank 5, the bottom water outlet of the gas-liquid separator 4 is connected to the inlet of the water tank 6, and the water tank 6 is connected to the water pump 1; the blower inlet 7 is connected to the outside world, and the outlet is connected to the PV The /T device 3 is connected to the heat exchange channel.
  • the water pump 1 draws water from the water tank 6 and flows through the flow control valve 2, the flow control valve 2 intermittently supplies water to the heat exchange channel of the PV/T device 3, and the blower 7 supplies dry air to the PV/T device 3,
  • the liquid water flows through the PV/T device 3, it is heated and evaporated quickly by the heat exchange channel, and the gas-water mixture is entrained by the dry air to flow out, and passes through the gas-liquid separator 4, and the separated humid air is stored in the wet air tank 5, and the separated water Flow into water tank 6 and continue to utilize.
  • the PV/T device 3 includes CPC concentrator 10, photovoltaic panels and cover plates 11 at all levels, and heat exchange flow channel 8 from top to bottom; wherein heat exchange flow channel 8 is surrounded by insulation layer 9;
  • the heat exchange flow channel is composed of an upper plate, a lower plate and a side plate; wherein the lower plate is embedded with a water pipe 14, and the upper surface of the lower plate is provided with a small droplet nozzle 12 communicating with the water pipe; the lower surface of the upper plate 13 is installed
  • the specific working process of the PV/T device is as follows: solar energy passes through the PV panels and cover plates 11 at all levels, part of the energy is converted into electrical energy, and part of it is converted into heat and transferred to the heat exchange channel 8; while water flows intermittently through the heat exchange channel
  • the droplets are distributed in the array electrode sheet 17, under the action of the electric field, the internal flow of the droplets will accelerate rapidly, and the droplets will evaporate in a very short time, and the water vapor and a small amount of tiny droplets suspended in the air will Carried away by passing dry air.
  • the temperature of the heat exchange runner 8 decreases, and the power generation efficiency increases synchronously, and more electric energy will be obtained.
  • the droplets will be completely evaporated within a certain time interval, at this time the intermittent flow control valve 2 is opened to provide a new round of droplets, and the cycle repeats.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Air Humidification (AREA)

Abstract

一种基于电润湿作用的太阳能驱动高效加湿系统及工作方法,将光伏发电模块和电润湿高效加湿模块相结合,依据PV/T装置中太阳能能量传递原理,同时在PV/T装置中换热流道上表面定时喷射液滴,利用电润湿技术改变表面亲疏水性及加快液滴内部流动的原理,加快液滴蒸发,实现对空气的高效加湿。通过将电润湿技术与PV/T系统的耦合利用,节约水的同时获得了大量可用于实际生产的湿空气和清洁电能。

Description

基于电润湿作用的太阳能驱动高效加湿器系统及工作方法 技术领域
本发明涉及一种基于电润湿作用的太阳能驱动高效加湿器系统及工作方法,属于能源与动力工程及高效加湿领域。
背景技术
在常规的利用液态水加湿系统中,需要提供外加热源驱动系统,在需要大量热源的同时,加湿过程同样会造成热量的耗散,且无法回收。导致传统加湿系统能量利用效率降低,经济性下降,外加热源的采用还可能导致严重的环境问题。因此,在常规加湿系统的基础上,通过采用先进电润湿技术同时充分利用PV/T换热流道余热,不需要额外的能源添入,可大幅提升系统加湿效率及经济性,具有重要的应用价值。
发明内容
本发明的目的在于提出一种基于电润湿作用的太阳能驱动高效加湿器系统及工作方法。
具体而言,本申请发明目的是通过如下技术方案实现的:
首先,本申请提供了一种基于电润湿作用的太阳能驱动高效加湿器系统,包括水泵、流量控制阀、PV/T装置(一种光伏光热系统)、气液分离器、湿空气罐、水罐、鼓风机;其中PV/T装置由上到下依次包括CPC聚光镜、光伏板及各级盖板、换热流道;其中换热流道周围还围绕保温层;上述换热流道由上板、下板和侧板组成;其中下板内部嵌有水管,且下板的上表面设置有与水管相通的液滴喷嘴;其中上板的下表面安装有电极阵列板;电极阵列板表面设置介电防水层;电极阵列板由间隔铺设的正、负微型电极板组成,电极板铺设采用等间隔密集排列方式;上述电极阵列板由PV/T装置产生的电能供电;
上述水泵出口与流量控制阀进口相连,流量控制阀出口与PV/T装置的换热流道的水管进口相连;PV/T装置换热流道出口与气液分离器进口相连,气液分离器湿空气出口与湿空气罐相连,气液分离器底端水出口与水罐进口相连,水罐出口与水泵进口相连;鼓风机入口与外界相连,出口与PV/T装置换热流道相连。
其次,本申请还提供了一种基于电润湿作用的太阳能驱动高效加湿器系统的工作方法,包括以下过程:水泵将水从水罐中抽取,流经流量控制阀,流量控制 阀间歇性对PV/T装置的换热流道供水,同时鼓风机对PV/T装置供给干空气,液态水流过PV/T装置时被换热流道加热快速蒸发,气水混合物被干空气裹挟流出,经过气液分离器,分离出的湿空气储存在湿空气罐,分离出的水流入水罐继续利用;上述PV/T装置的具体工作过程如下:太阳能通过光伏板及各级盖板,部分能量转化为电能,部分转化为热量传递至换热流道;而水流会间歇性流过换热流道水流管路,由于压力原因,水流会从下板上表面的液滴喷嘴中喷射出,形成细小液滴附着在换热流道上板的下表面,表面铺设防水介电层作防水处理,此时液滴由于分布于阵列电极片中,在电场作用下,液滴内部流动迅速加快,液滴将在极短的时间内蒸发,水蒸气及悬浮在空气中的少量微小液滴被流过的干空气裹挟带走;同时换热流道温度降低,发电效率同步提高,将获得更多的电能;在一定的时间间隔内液滴将被蒸发殆尽,此时间歇性流量控制阀打开,提供新一轮液滴,循环往复;此外,系统的光伏板在白天会发电产生电能,充当系统加湿过程所需要的电源。
上述换热流道液滴喷嘴的间歇供水可通过电脑程序实现,在一定的时间间隔下,前一轮喷射液滴蒸发殆尽时新的液滴喷射而出。该系统利用效率达到最大,同时节水效率达到最大。而电极板铺设可按实际情况决定铺设间隔及面积大小。
与现有的技术相比,本申请实施例中提供的基于电润湿作用的太阳能驱动高效加湿器系统,至少具有如下优点:将电润湿技术引入到PV/T系统中,利用PV/T系统本身的特点吸收热量和发电,利用发电产生的电能驱动电极板上的液滴,极大的加快了液滴内部流道及蒸发速率,大幅提升了加湿器系统的能量利用效率,同时减少了由于外加热源导致的地域限制;此外,实施例提供的该系统消除了常规加湿系统对化石能源的依赖,减少了对环境的污染,在发电的同时产生大量可用湿空气,一举两得。
附图说明
为了更清楚地说明本发明具体实施方式或现有技术中的技术方案,下面将对具体实施方式或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是太阳能驱动高效加湿器系统工作原理图;
图2是PV/T装置结构示意图;
图3是换热流道上板结构示意图;
图4是换热流道下板结构示意图;
图5换热流道上板局部放大图;
附图标记:1、水泵;2、流量控制阀;3、PV/T装置;4、气液分离器;5、湿空气罐;6、水罐;7、鼓风机;8、换热流道;9、保温层;10、CPC聚光镜;11、光伏板及各级盖板。12、小型液滴喷嘴;13、换热流道上板;14、水管;15、电极阵列板;16、介电防水层;17、正、负微型电极板。
具体实施方式
提供下述实施例是为了更好地进一步理解本发明,并不局限于所述最佳实施方式,不对本发明的内容和保护范围构成限制,任何人在本发明的启示下或是将本发明与其他现有技术的特征进行组合而得出的任何与本发明相同或相近似的产品,均落在本发明的保护范围之内。
如图1所示,本实施例涉及一种基于电润湿作用的太阳能驱动高效加湿器系统。水泵1出口与流量控制阀2进口相连,流量控制阀2出口与PV/T装置3的换热流道的水管进口相连;PV/T装置3换热流道出口与气液分离器4进口相连,气液分离器4湿空气出口与湿空气罐5相连,气液分离器4底端水出口与水罐6进口相连,水罐6与水泵1相连;鼓风机入口7与外界相连,出口与PV/T装置3换热流道相连。
水泵1将水从水罐6中抽取,流经流量控制阀2,流量控制阀2间歇性对PV/T装置3的换热流道供水,同时鼓风机7对PV/T装置3供给干空气,液态水流过PV/T装置3时被换热流道加热快速蒸发,气水混合物被干空气裹挟流出,经过气液分离器4,分离出的湿空气储存在湿空气罐5,分离出的水流入水罐6继续利用。
图2-图5中,PV/T装置3由上到下依次包括CPC聚光镜10、光伏板及各级盖板11、换热流道8;其中换热流道8周围还围绕保温层9;换热流道由上板、下板和侧板组成;其中下板内部嵌有水管14,且下板的上表面设置有与水管相通的小型液滴喷嘴12;其中上板13的下表面安装有电极阵列板15;电极阵列板15表面设置介电防水层16;电极阵列板15由间隔铺设的正、负微型电极板17 组成,电极板铺设采用等间隔密集排列方式;
PV/T装置的具体工作过程如下:太阳能通过PV板及各级盖板11,部分能量转化为电能,部分转化为热量传递至换热流道8;而水流会间歇性流过换热流道水流管路14,由于压力原因,水流会从下板上表面的小型液滴喷嘴12中喷射出,形成细小液滴附着在换热流道上板的下表面,表面铺设防水介电层16作防水处理,此时液滴由于分布于阵列电极片17中,在电场作用下,液滴内部流动迅速加快,液滴将在极短的时间内蒸发,水蒸气及悬浮在空气中的少量微小液滴被流过的干空气裹挟带走。同时换热流道8温度降低,发电效率同步提高,将获得更多的电能。在一定的时间间隔内液滴将被蒸发殆尽,此时间歇性流量控制阀2打开,提供新一轮液滴,循环往复。

Claims (2)

  1. 一种基于电润湿作用的太阳能驱动高效加湿器系统,其特征在于:
    所述系统包括水泵(1)、流量控制阀(2)、PV/T装置(3)、气液分离器(4)、湿空气罐(5)、水罐(6)、鼓风机(7);
    其中PV/T装置(3)由上到下依次包括CPC聚光镜(10)、光伏板及各级盖板(11)、换热流道(8);其中换热流道(8)周围还围绕保温层(9);
    上述换热流道由上板、下板和侧板组成;其中下板内部嵌有水管(14),且下板的上表面设置有与水管相通的液滴喷嘴(12);其中上板的下表面安装有电极阵列板(15);电极阵列板(15)表面设置介电防水层(16);电极阵列板(15)由间隔铺设的正、负微型电极板(17)组成,电极板铺设采用等间隔密集排列方式;上述电极阵列板(15)由PV/T装置(3)产生的电能供电;
    上述水泵(1)出口与流量控制阀(2)进口相连,流量控制阀(2)出口与PV/T装置(3)的换热流道的水管进口相连;PV/T装置(3)换热流道出口与气液分离器(4)进口相连,气液分离器(4)湿空气出口与湿空气罐(5)相连,气液分离器(4)底端水出口与水罐(6)进口相连,水罐(6)出口与水泵(1)进口相连;鼓风机入口(7)与外界相连,出口与PV/T装置(3)换热流道相连。
  2. 根据权利要求1所述的基于电润湿作用的太阳能驱动高效加湿器系统的工作方法,其特征在于,包括以下过程:
    水泵(1)将水从水罐(6)中抽取,流经流量控制阀(2),流量控制阀(2)间歇性对PV/T装置(3)的换热流道供水,同时鼓风机(7)对PV/T装置(3)供给干空气,液态水流过PV/T装置(3)时被换热流道加热快速蒸发,气水混合物被干空气裹挟流出,经过气液分离器(4),分离出的湿空气储存在湿空气罐(5),分离出的水流入水罐(6)继续利用;
    上述PV/T装置的具体工作过程如下:太阳能通过光伏板及各级盖板(11),部分能量转化为电能,部分转化为热量传递至换热流道(8);而水流会间歇性流过换热流道水流管路(14),由于压力原因,水流会从下板上表面的小型液滴喷嘴(12)中喷射出,形成细小液滴附着在换热流道上板的下表面,表面铺设防水介电层(16)作防水处理,此时液滴由于分布于阵列电极片(17)中,在电场作用下,液滴内部流动迅速加快,液滴将在极短的时间内蒸发,水蒸气及悬浮在空气中的少量微小液滴被流过的干空气裹挟带走;同时换热流道(8)温度降低, 发电效率同步提高,将获得更多的电能;在一定的时间间隔内液滴将被蒸发殆尽,此时间歇性流量控制阀(2)打开,提供新一轮液滴,循环往复;此外,系统的光伏板在白天发电产生电能,充当系统加湿过程所需要的电源。
PCT/CN2022/140004 2022-02-28 2022-12-19 基于电润湿作用的太阳能驱动高效加湿器系统及工作方法 WO2023160161A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210187698.7A CN114623532B (zh) 2022-02-28 2022-02-28 基于电润湿作用的太阳能驱动高效加湿器系统及工作方法
CN202210187698.7 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023160161A1 true WO2023160161A1 (zh) 2023-08-31

Family

ID=81899259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/140004 WO2023160161A1 (zh) 2022-02-28 2022-12-19 基于电润湿作用的太阳能驱动高效加湿器系统及工作方法

Country Status (2)

Country Link
CN (1) CN114623532B (zh)
WO (1) WO2023160161A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114623532B (zh) * 2022-02-28 2022-12-23 南京航空航天大学 基于电润湿作用的太阳能驱动高效加湿器系统及工作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19646263A1 (de) * 1996-11-10 1998-05-14 Anton Limmer Luftbefeuchter
US20140090562A1 (en) * 2012-03-13 2014-04-03 Samsung Electronics Co., Ltd. Humidifier
CN104331092A (zh) * 2014-11-05 2015-02-04 北京航空航天大学 一种基于电润湿效应的液体太阳能追踪聚光器
CN105135568A (zh) * 2015-09-10 2015-12-09 西安工程大学 基于光伏驱动的加湿/蒸发冷却型风机盘管机组
CN207936383U (zh) * 2018-02-09 2018-10-02 华北电力大学 一种具有光伏发电功能的空气净化加湿器
CN113944017A (zh) * 2021-11-23 2022-01-18 石河子大学 一种皮棉加湿器
CN114623532A (zh) * 2022-02-28 2022-06-14 南京航空航天大学 基于电润湿作用的太阳能驱动高效加湿器系统及工作方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DD212921A1 (de) * 1982-12-31 1984-08-29 Polygraph Leipzig Vorrichtung zum befeuchten von druckformen in druckmaschinen
CN102730779A (zh) * 2012-07-24 2012-10-17 天津城市建设学院 一种太阳能零液体排放海水淡化装置和方法
CN105174339B (zh) * 2015-09-22 2017-07-14 北京理工大学 顺向聚光多效回热阵列式加湿除湿太阳能海水淡化装置
CN106760037B (zh) * 2016-12-30 2018-12-07 华中科技大学 一种半被动式的保温调湿外墙系统
CN113578707A (zh) * 2021-07-29 2021-11-02 大连理工大学 一种利用交流电润湿原理制作除雾装置的方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19646263A1 (de) * 1996-11-10 1998-05-14 Anton Limmer Luftbefeuchter
US20140090562A1 (en) * 2012-03-13 2014-04-03 Samsung Electronics Co., Ltd. Humidifier
CN104169656A (zh) * 2012-03-13 2014-11-26 三星电子株式会社 加湿器
CN104331092A (zh) * 2014-11-05 2015-02-04 北京航空航天大学 一种基于电润湿效应的液体太阳能追踪聚光器
CN105135568A (zh) * 2015-09-10 2015-12-09 西安工程大学 基于光伏驱动的加湿/蒸发冷却型风机盘管机组
CN207936383U (zh) * 2018-02-09 2018-10-02 华北电力大学 一种具有光伏发电功能的空气净化加湿器
CN113944017A (zh) * 2021-11-23 2022-01-18 石河子大学 一种皮棉加湿器
CN114623532A (zh) * 2022-02-28 2022-06-14 南京航空航天大学 基于电润湿作用的太阳能驱动高效加湿器系统及工作方法

Also Published As

Publication number Publication date
CN114623532A (zh) 2022-06-14
CN114623532B (zh) 2022-12-23

Similar Documents

Publication Publication Date Title
CN102010020B (zh) 太阳能海水淡化集热系统
CN201634462U (zh) 一种海水淡化装置
CN106673097B (zh) 一种太阳能耦合热泵海水淡化装置
CN106698565A (zh) 太阳能-热泵海水淡化装置
WO2023160161A1 (zh) 基于电润湿作用的太阳能驱动高效加湿器系统及工作方法
CN105621514A (zh) 空气为媒介的含盐废水浓缩处理装置
CN105317486B (zh) 回收湿空气潜热的水电联产系统及其方法
CN204593692U (zh) 蒸发冷却-冷媒直膨复合型节能空调系统
CN108793299A (zh) 一种轻小型太阳能海水淡化装置及方法
CN109626472A (zh) 空气加热型热泵加湿脱湿海水淡化系统及其工作方法
CN202116341U (zh) 一种小型太阳能海水淡化装置
CN102416309B (zh) 除湿液超声波再生装置
CN100595491C (zh) 基于超声波雾化技术的复合溶液除湿系统
CN101985368A (zh) 发电汽轮机组凝汽器式海水淡化装置
CN212832916U (zh) 一种高盐废水净化装置
CN203781962U (zh) 一种家用型太阳能海水淡化系统
CN112624238A (zh) 一种内外凝结式太阳能蒸馏海水淡化系统
CN204981215U (zh) 太阳能薄膜废水蒸发浓缩装置
CN201882942U (zh) 发电汽轮机组凝汽器式海水淡化装置
CN114249373B (zh) 一种基于管式疏水陶瓷膜的太阳能淡化水装置及方法
CN208394816U (zh) 一种闪蒸板式降膜蒸发器
CN107485871B (zh) 一种燃煤电厂脱硫废水零排放系统及其处理方法
CN106765704A (zh) 双热质耦合太阳能热空气型蒸发系统及其方法
CN203568872U (zh) 水溶液相变分离系统
CN110274338A (zh) 一种新风管道加湿方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928414

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18575818

Country of ref document: US