WO2023160045A1 - 一种煤泥浮选捕收剂分子官能团筛选方法 - Google Patents

一种煤泥浮选捕收剂分子官能团筛选方法 Download PDF

Info

Publication number
WO2023160045A1
WO2023160045A1 PCT/CN2022/133064 CN2022133064W WO2023160045A1 WO 2023160045 A1 WO2023160045 A1 WO 2023160045A1 CN 2022133064 W CN2022133064 W CN 2022133064W WO 2023160045 A1 WO2023160045 A1 WO 2023160045A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
force
modified probe
coal sample
modified
Prior art date
Application number
PCT/CN2022/133064
Other languages
English (en)
French (fr)
Inventor
夏阳超
桂夏辉
邢耀文
朱春云
夏灵勇
车涛
许宝林
孟凡彩
肖有芬
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2023160045A1 publication Critical patent/WO2023160045A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N19/00Investigating materials by mechanical methods
    • G01N19/04Measuring adhesive force between materials, e.g. of sealing tape, of coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07CPOSTAL SORTING; SORTING INDIVIDUAL ARTICLES, OR BULK MATERIAL FIT TO BE SORTED PIECE-MEAL, e.g. BY PICKING
    • B07C5/00Sorting according to a characteristic or feature of the articles or material being sorted, e.g. by control effected by devices which detect or measure such characteristic or feature; Sorting by manually actuated devices, e.g. switches
    • B07C5/34Sorting according to other particular properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N11/00Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
    • G01N2011/006Determining flow properties indirectly by measuring other parameters of the system

Definitions

  • the invention relates to a molecular functional group directional screening design method of a coal slime flotation collector, belonging to the field of flotation agent design.
  • Flotation is an effective way to separate fine-grained coal slime and efficiently recycle resources. It is an interface separation technology that can effectively separate useful minerals from gangue minerals according to the different physical and chemical properties of the mineral surface.
  • the collector is a flotation agent that is selectively adsorbed on the mineral surface, thereby improving the hydrophobicity of the mineral surface and making it easy to adhere to the air bubbles.
  • the interaction between the collector and the mineral surface is a prerequisite for determining the flotation efficiency.
  • traditional fossil fuels represented by non-polar hydrocarbon oil and petrochemical by-products are the main sources of coal slime flotation collectors. Poor, seriously restricting the improvement of slime flotation efficiency and the high-quality development of the coal industry.
  • the surface forces mainly include van der Waals force, electrostatic force, hydration force, hydrophobic force, etc., which directly determine the interaction between the collector and the coal surface.
  • FTIR Fourier Transform Infrared Absorption Spectroscopy
  • XPS X-ray Photoelectron Spectroscopy
  • the quartz crystal microbalance characterizes the adsorption behavior of the agent by monitoring the mass change of the surface to be tested, and the atomic force microscope (AFM) can image the morphology of the polymer adsorption layer to explore the adsorption behavior of the agent on the coal surface
  • AFM atomic force microscope
  • Step 1 Soak a plurality of gold-plated probes in an ethanol solution of mercapto compounds containing different collector molecular functional groups for 24 hours, so as to chemically deposit different functional groups of flotation collector molecules on the surface of each gold-plated probe to form Modified probes with different molecular functional groups of flotation collectors are deposited on the surface, and each modified probe is marked;
  • Step 2 fixing the smooth and flat coal sample on the substrate, and then placing the substrate on the AFM stage of the atomic force microscope;
  • Step 3 Install the bottomless annular rubber ring on the bottom of the liquid pool, take a modified probe and install it on the clip in the middle of the liquid pool, place the liquid pool on the special support platform, and make the tip of the modified probe hang on the the upper surface of the coal sample;
  • Step 4 When fixing the position of the modified probe, adjust the position of the stage so that the coal sample is close to the tip of the modified probe, and then fix the position of the stage. At this time, the rubber ring is located on the bottom of the liquid pool and the coal sample. between surfaces and form a sealed space;
  • Step 5 fill the space surrounded by the rubber ring between the bottom surface of the liquid pool and the upper surface of the coal sample with inorganic salt solution; control the inorganic salt solution solution to ensure that the test conditions are consistent each time;
  • Step 6 Use the piezoelectric ceramics to control the modified probe to continuously insert the needle into the upper surface of the coal sample, and at the same time collect the elastic deformation information of the modified probe during the needle insertion process.
  • the needle insertion force information during the needle process.
  • the needle insertion force increases as the modified probe approaches the upper surface of the coal sample.
  • the needle insertion force and distance show a linear relationship, it is judged that the end of the modified probe has physically contacted the coal.
  • to withdraw the needle is to control the modified probe away from the coal sample, and at the same time collect the needle withdrawal force information corresponding to the modified probe, and generate the needle insertion force curve and the needle withdrawal force information from the needle insertion force information and the needle withdrawal force information.
  • Step 7 Repeat steps 2 to 6 to obtain the needle insertion force curve and needle withdrawal force curve of the modified probe with different flotation collector molecular functional groups deposited on each surface and the coal sample, and compare the withdrawal force curves of all modified probes.
  • the value of the needle force curve the larger the value, the greater the adhesion force between the functional group of the flotation collector molecule on the modified probe and the coal sample, and the greater the adhesion force, it means that the deposited on the modified probe The collector works better.
  • the nominal elastic coefficient of the gold-plated probe prepared from the modified probe is 0.08 N/m.
  • the gold-plated probe needs to be treated in a plasma cleaning machine for 10 minutes, and soaked in an ethanol solution for 5 minutes to remove pollutants.
  • the modified probe After the gold-plated probe forms a modified probe with different molecular functional groups of flotation collectors deposited on the surface, the modified probe must be soaked in ethanol and ultrapure water for 10 minutes, and then placed in a vacuum drying oven Dry and set aside.
  • coal sample is cut into a flat structure and the surface is polished smooth, and then cleaned to ensure no pollution.
  • the modified probe is controlled by piezoelectric ceramics to approach and move away from the surface of the coal sample to obtain force information, and each modified probe is repeatedly inserted and retracted at different positions of the coal sample to obtain the modified probe
  • For the adhesion force at different positions of the coal sample take the average of the adhesion forces collected at different positions, so as to ensure the representativeness and accuracy of the force curve test.
  • the collector molecular functional group directional screening method proposed by the present invention can directly compare the mechanical interaction between various collector molecules and the coal surface, thereby screening the best collector, breaking through the drawbacks of blindly relying on traditional empirical guidance.
  • the method for screening functional groups of collector molecules provided by the present invention can perform in-situ measurement in a liquid phase environment, and the test conditions are close to the interaction between collectors and coal mineral surfaces in a flotation environment.
  • the method for screening functional groups of collector molecules provided by the present invention can regulate the chemical conditions of the solution and provide various test conditions.
  • the method for screening functional groups of collector molecules provided by the present invention can quickly screen effective functional groups in collectors and directly guide drug design and development.
  • the method for screening the molecular functional groups of collectors provided by the present invention can quantitatively analyze the mechanical information between the agent and the coal surface, which is beneficial to clarify the regulation mechanism of collectors.
  • Fig. 1 is the schematic diagram of collector molecule directional screening test of the present invention
  • Fig. 2 is the typical force-distance curve that the undecane modified probe of embodiment 1 of the present invention enters a needle into graphite surface in a liquid phase environment;
  • Fig. 3 is the typical force-distance curve that the undecane modified probe of embodiment 1 of the present invention is withdrawn from the graphite surface in a liquid phase environment;
  • Fig. 4 is a typical force-distance curve measured when the undecanoic acid-modified probe of Example 2 of the present invention penetrates into a graphite surface in a liquid phase environment.
  • Fig. 5 is a typical force-distance curve measured when the undecanoic acid-modified probe of Example 2 of the present invention is withdrawn from a graphite surface in a liquid phase environment.
  • kind of coal slime flotation collector molecular functional group screening method of the present invention uses atomic force microscope AFM, and atomic force microscope AFM comprises laser light source 1, prism 2, laser detector 3 and scanner 4
  • Step 1 Soak a plurality of gold-plated probes 6 in ethanol solutions containing mercapto compounds containing different collector molecular functional groups for 24 hours, and prepare the modified probe 14.
  • the nominal elastic coefficient of the gold-plated probes 6 is 0.08N/m , so that different flotation collector molecular functional groups 7 are chemically deposited on the surface of each gold-plated probe 6 to form modified probes 14 with different flotation collector molecular functional groups 7 deposited on the surface, and each modified probe 14 is marked; before preparing the modified probe 14, it is necessary to place the gold-plated probe 6 in a plasma cleaning machine for 10 minutes, soak in an ethanol solution for 5 minutes to remove pollutants, and form surface deposits on the gold-plated probe 6 After the modified probes 14 with molecular functional groups 7 of different flotation collectors, the modified probes 14 must be soaked in ethanol and ultrapure water for 10 minutes in sequence, and then placed in a vacuum drying oven to dry for later use.
  • Step 2 Fix the smooth and flat coal sample 9 on the substrate 10, and then place the substrate 10 on the AFM stage 11 of the atomic force microscope; cut the coal sample 9 into a flat structure and polish the surface smooth, and then clean it Guaranteed to be pollution-free.
  • Step 3 install the bottomless ring-shaped rubber ring 8 on the bottom of the liquid pool 5, take a modified probe 14 and install it on the clip in the middle of the liquid pool 5, and place the liquid pool 5 on the special support platform to make the modified probe 14
  • the tip of the needle 14 hangs over the upper surface of the coal sample 9;
  • Step 4 After fixing the modified probe 14 position, adjust the position of the stage 11 so that the coal sample 9 is close to the tip of the modified probe 14, and then fix the position of the stage 11. At this time, the rubber ring is located in the liquid pool A sealed space is formed between the bottom surface of 5 and the upper surface of coal sample 9;
  • Step 5 fill the space surrounded by the rubber ring 8 between the bottom surface of the liquid pool 5 and the upper surface of the coal sample 9 with inorganic salt solution; every time you change and test different modified probes 14, you need to replace the bottom surface of the liquid pool 5 and the coal sample 9 the inorganic salt solution and the coal sample 9 in the space surrounded by the rubber ring 8 between the upper surfaces; the rapid replacement of the inorganic salt solution is realized by setting the liquid inlet pipe 12 and the liquid outlet pipe 13 on the rubber ring 8, and each test is controlled Consistent concentration of inorganic salt solution;
  • Step 6 Use the piezoelectric ceramics to control the modified probe 14 to continuously insert the needle into the upper surface of the coal sample 9, and at the same time collect the elastic deformation information generated by the modified probe 14 during the needle insertion process, and deduce the modified probe 14 according to the elastic deformation information.
  • the needle insertion force information of the needle 14 during the needle insertion process The needle insertion force increases as the modified probe 14 approaches the upper surface of the coal sample 9. When the needle insertion force and the distance show a linear relationship, the modified probe 14 can be judged The end of the modified probe 14 has been in physical contact with the upper surface of the coal sample 9.
  • Step 7 Repeat steps 2 to 6 to obtain the needle insertion force curve and the needle withdrawal force curve of the modified probe 14 deposited on each surface with different flotation collector molecular functional groups 7 and the coal sample 9, and compare all modified probes.
  • the value of the needle withdrawal force curve of the needle 14 the greater the value, the greater the adhesion between the functional group 7 of the flotation collector molecule on the modified probe 14 and the coal sample 9, and the greater the adhesion, the greater the adhesion. The better the effect of the collector deposited on the modified probe 14.
  • each modified probe 14 Utilize the adhesion of each modified probe 14 to sort all the different flotation collectors deposited on the gold-plated probe 6, thereby screening out the best flotation collector for the coal sample 9; by replacing the coal sample 9 types, so as to compare the flotation collectors with the best flotation recovery effect for different types of coal samples 9.
  • the modified probe 14 Before the modified probe 14 enters the needle, it is necessary to measure the deflection sensitivity of the probe cantilever of the modified probe 14 and calculate the actual elastic coefficient of the probe cantilever to complete the correction of the elastic coefficient to ensure the accuracy of the force test data; Finally, the modified probe 14 is controlled by piezoelectric ceramics to approach and move away from the surface of the coal sample 9 to obtain force information.
  • the adhesion force between the modified probe 14 and the coal sample 9 at different positions is taken as the average of the adhesion forces collected at different positions, so as to ensure the representativeness and accuracy of the force curve test.
  • coal sample 9 can be replaced by the following surfaces: graphite substrate, graphite oxide substrate, silicon substrate, silanized silicon substrate, glass substrate, silanized glass substrate, gold sheet, mica sheet; gold-plated probe 6 and collector Molecule 7 is fixed by chemical bonding;
  • the present invention is further described below in conjunction with embodiment and accompanying drawing.
  • the detection technology adopted in the embodiment is the above-mentioned technology.
  • Step 1 Soak the gold-plated probes 6 in 1 mM 1-mercapto-undecane ethanol solution for 24 hours, and obtain modified probes 14 covered with undecane molecules 7 by chemical deposition;
  • Step 2 placing the substrate 10 of the fixed graphite sheet 9 on the AFM stage 11;
  • Step 3 place the liquid pool 5 equipped with the gold-plated probe 6 above the graphite sheet 9, adjust the position of the rubber ring 8 to ensure sealing, and inject 0.5M NaCl solution;
  • Step 4 Obtain the force curve and analyze it.
  • Fig. 2, Fig. 3 are the typical force-distance curves that the undecane-modified probe 14 of embodiment 1 interacts with graphite surface 9 in liquid phase environment and measures. It can be seen from Fig. 2 and Fig. 3 that the test method of the present invention can test the interaction force between the collector molecule 7 and the graphite surface 9 in situ in the liquid phase environment.
  • Embodiment 2 interaction between undecanoic acid and graphite surface
  • Step 1 Soak the gold-plated probes 6 in 1 mM ethanol solution of 1-mercapto-undecanoic acid for 24 hours, and obtain modified probes 14 coated with undecanoic acid molecules 7 by chemical deposition;
  • Step 2 placing the substrate 10 of the fixed graphite sheet 9 on the AFM stage 11;
  • Step 3 place the liquid pool 5 equipped with the gold-plated probe 6 above the graphite sheet 9, adjust the position of the rubber ring 8 to ensure sealing, and inject 0.5M NaCl solution;
  • Step 4 Obtain the force curve and analyze it.
  • Fig. 4 and Fig. 5 are typical force-distance curves measured when the undecanoic acid-modified probe 14 of Example 2 interacts with the graphite surface 9 in a liquid phase environment. It can be seen from Fig. 4 and Fig. 5 that the test method of the present invention can test the interaction force between the collector molecule 7 and the graphite surface 9 in situ in a liquid phase environment.
  • the invention utilizes the prior art to simply modify the test method to regulate different solution chemical environments and different collector molecules, provides various test conditions and is easy to operate.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

一种煤泥浮选捕收剂分子官能团筛选方法,属于浮选药剂设计领域。通过沉积制备带有不同浮选药剂分子官能团的改性探针(14),之后通过原子力显微镜AFM观测改性探针(14)向被测煤样(9)上进针过程中产生的弹性变形信息,并根据弹性变形信息推导出改性探针(14)在进针过程中的进针力信息,收集改性探针(14)对应的退针力信息生成退针力曲线;比较所有改性探针(14)的退针力曲线数值,数值越大则说明改性探针(14)上的浮选捕收剂分子官能团与煤样(9)之间的粘附力越大,粘附力越大则说明该改性探针(14)上沉积的捕收剂效果越好。该筛选方法步骤简单,精度高且直观,解决了现有技术中高效捕收剂分子官能团筛选困难、捕收剂调控机制不清晰等问题。

Description

一种煤泥浮选捕收剂分子官能团筛选方法 技术领域
本发明涉及一种煤泥浮选捕收剂分子官能团定向筛选设计方法,属于浮选药剂设计领域。
背景技术
浮选是细粒煤泥分选、资源高效回收利用的有效途径,是根据矿物表面物理化学性质的不同实现有用矿物与脉石矿物有效分离的界面分选技术。捕收剂是选择性吸附在矿物表面,进而提高矿物表面疏水性使其易于粘附在气泡上的浮选药剂,捕收剂与矿物表面的相互作用是决定浮选效率的前提条件。目前,以非极性烃油、石油化工副产品等为代表的传统化石燃料是煤泥浮选捕收剂的主要来源,药剂的选择依赖于经验探索,缺乏科学依据,对煤种的适应性较差,严重制约煤泥浮选效率的提高和煤炭行业高质量发展。近年来,捕收剂在浮选过程中的调控机理已经取得系列进展,但捕收剂的分子结构信息仍不清晰,其作用机理仍需探索,高效捕收剂的设计开发缺乏科学技术的支撑。
表面力主要包括范德华力,静电力、水化力、疏水力等,直接决定捕收剂与煤炭表面间的相互作用。目前,微纳尺度下药剂在煤表面的吸附行为引起了浮选胶体化学领域学者的广泛关注,一系列用于研究煤与药剂间相互作用的试验技术逐渐涌现。傅立叶变换红外吸收光谱仪(FTIR),X射线光电子能谱(XPS)等传统表面检测技术通常是在真空或空气干燥环境下得到的非实时或非原位测定,无法实现浮选液相环境下的原位测试,石英晶体微天平(QCM-D)通过监测待测表面的质量变化表征药剂的吸附行为,原子力显微镜(AFM)对聚合物吸附层的形态进行成像可探究药剂在煤表面的吸附行为,上述方法均无法对药剂分子与煤物表面的相互作用力进行直接测量,导致药剂分子与煤表面间相互作用力缺失。
因此,亟需提出适用于捕收剂分子官能团定向筛选方法。基于原子力显微镜提出的化学力谱测试方法是筛选与煤表面性质匹配的捕收剂的重要手段,同时,可用于研究捕收剂分子在浮选过程中的调控机制,这对促进煤泥浮选领域的发展具有重要意义。
发明内容
针对现有技术的不足之处,提供一种步骤简单,精度高且直观的煤泥浮选捕收剂分子官能团筛选方法,从而解决现有技术中高效捕收剂分子官能团筛选困难、捕收剂调控机制不清晰等问题。
为实现上述技术目的,本发明的一种煤泥浮选捕收剂分子官能团筛选方法,其步骤如下:
步骤1、将多个镀金探针置于含有不同捕收剂分子官能团的巯基化合物的乙醇溶液中浸泡24小时,从而在每个镀金探针表面化学沉积不同的浮选捕收剂分子官能团,形成表面沉积 有不同浮选捕收剂分子官能团的改性探针,并对各个改性探针进行标注;
步骤2、将上表面光滑且平整的煤样固定在基底上,之后将基底放置在原子力显微镜AFM载物台上;
步骤3、将无底环形的橡胶圈安装在液体池底部,取一个改性探针安装在液体池中间的夹子上,将液体池放在专用支撑台上,使改性探针的尖端悬于煤样的上表面;
步骤4、固定改性探针位置的情况下调节载物台的位置使煤样接近改性探针的尖端位置后,固定载物台的位置,此时橡胶圈位于液体池底面与煤样上表面之间且形成密封空间;
步骤5、向液体池底面与煤样上表面之间被橡胶圈包围的空间注满无机盐溶液;控制无机盐溶液溶液,保证每次试验条件一致;
步骤6、利用压电陶瓷控制改性探针向煤样上表面持续进针,同时收集进针过程中改性探针产生的弹性变形信息,并根据弹性变形信息推导出改性探针在进针过程中的进针力信息,进针力随着改性探针向煤样上表面的接近而增加,当进针力与距离呈现线性关系后判断改性探针的端部已经物理接触煤样上表面,此时进行退针即控制改性探针远离煤样,同时收集改性探针对应的退针力信息,将进针力信息以及退针力信息生成进针力曲线和退针力曲线;
步骤7、重复步骤2到步骤6,获取每个表面沉积不同浮选捕收剂分子官能团的改性探针与煤样的进针力曲线和退针力曲线,比较所有改性探针的退针力曲线数值,数值越大则说明改性探针上的浮选捕收剂分子官能团与煤样之间的粘附力越大,粘附力越大则说明该改性探针上沉积的捕收剂效果越好。
进一步,利用各个改性探针的粘附力对所有沉积在镀金探针上的不同浮选捕收剂进行排序,从而筛选出针对煤样最好的浮选捕收剂;通过更换煤样的种类,从而比较出不同种类的煤样浮选补收效果最好的浮选捕收剂。
进一步,每次更换测试不同的改性探针均需要更换液体池底面与煤样上表面之间被橡胶圈包围的空间内的无机盐溶液以及煤样;通过在橡胶圈上设置进液管和出液管实现无机盐溶液的快速更换,控制每次试验无机盐溶液浓度一致;
进一步,所述制备改性探针的镀金探针的名义弹性系数为0.08N/m。
进一步,在制备改性探针前需要将镀金探针置于等离子体清洗机中处理10分钟,置于乙醇溶液中浸泡5分钟以去除污染物。
进一步,在镀金探针形成表面沉积有不同浮选捕收剂分子官能团的改性探针后,将改性探针须依次在乙醇和超纯水中浸泡10分钟,之后放入真空干燥箱中干燥后备用。
进一步,煤样切割为扁平结构并将表面打磨光滑,之后进行清洗保证无污染。
进一步,在改性探针进针前,需要对改性探针的探针悬臂偏转灵敏度进行测量并计算探针悬臂实际弹性系数,完成弹性系数校正,确保力测试数据的准确性;在完成校正后,通过压电陶瓷控制改性探针进针接近和远离煤样表面获取力信息,每个改性探针分别在煤样的不同位置重复进针和退针,从而获取该改性探针与煤样不同位置的粘附力,取不同位置采集的粘附力的平均数,从而保证力曲线测试的代表性及准确性。
进一步,对退针曲线力测试结果进行正态分布拟合,确定改性探针与煤样之间的粘附力大小;使用EDLVO理论对进针力曲线进行拟合,确定相互作用力中范德华力、静电力和疏水力的分量。
有益效果:
1、本发明提出的捕收剂分子官能团定向筛选方法可以直接比较多种捕收剂分子与煤表面的力学作用大小,从而筛选最佳捕收剂,突破了盲目依赖传统经验性指导的弊端。
2、与传统技术相比,本发明提供的捕收剂分子官能团筛选方法可以在液相环境中进行原位测定,测试条件接近浮选环境中捕收剂与煤矿物表面的相互作用。
3、本发明提供的捕收剂分子官能团筛选方法可以调控溶液化学条件,提供多样的测试条件。
4、本发明提供的捕收剂分子官能团筛选方法可以快速筛选出捕收剂中的有效官能团,直接指导药剂设计与开发。
5、本发明提供的捕收剂分子官能团筛选方法可以定量地对药剂与煤表面间的力学信息进行分析,有利于明晰捕收剂调控机制。
附图说明
图1为本发明的捕收剂分子定向筛选测试的原理图;
图2为本发明实施例1的十一烷改性探针在液相环境中与石墨表面进针测得的典型力-距离曲线;
图3为本发明实施例1的十一烷改性探针在液相环境中与石墨表面退针测得的典型力-距离曲线;
图4为本发明实施例2的十一酸改性探针在液相环境中与石墨表面进针测得的典型力-距离曲线。
图5为本发明实施例2的十一酸改性探针在液相环境中与石墨表面退针测得的典型力-距离曲线。
图中:1-激光光源;2-棱镜;3-激光检测器;4-扫描器;5-液体池;6-镀金探针;7-捕收 剂分子官能团;8-无底环形橡胶圈;9-矿物样品;10-基底;11-载物台;12-进液管;13-出液管;14-改性探针。
具体实施方式:
为了进一步了解本发明,下面结合附图来具体描述本发明的优选实施例,其中,附图构成本申请一部分,并于本发明一起用于阐述本发明的特征和优点,并非用于限制本发明的范围。
如图1所示,本发明的种煤泥浮选捕收剂分子官能团筛选方法,使用原子力显微镜AFM,原子力显微镜AFM包括激光光源1、棱镜2、激光检测器3和扫描器4
其步骤如下:
步骤1、将多个镀金探针6置于含有不同捕收剂分子官能团的巯基化合物的乙醇溶液中浸泡24小时,制备改性探针14的镀金探针6的名义弹性系数为0.08N/m,从而在每个镀金探针6表面化学沉积不同的浮选捕收剂分子官能团7,形成表面沉积有不同浮选捕收剂分子官能团7的改性探针14,并对各个改性探针14进行标注;在制备改性探针14前需要将镀金探针6置于等离子体清洗机中处理10分钟,置于乙醇溶液中浸泡5分钟以去除污染物,在镀金探针6形成表面沉积有不同浮选捕收剂分子官能团7的改性探针14后,将改性探针14须依次在乙醇和超纯水中浸泡10分钟,之后放入真空干燥箱中干燥后备用。
步骤2、将上表面光滑且平整的煤样9固定在基底10上,之后将基底10放置在原子力显微镜AFM载物台11上;煤样9切割为扁平结构并将表面打磨光滑,之后进行清洗保证无污染。
步骤3、将无底环形的橡胶圈8安装在液体池5底部,取一个改性探针14安装在液体池5中间的夹子上,将液体池5放在专用支撑台上,使改性探针14的尖端悬于煤样9的上表面;
步骤4、固定改性探针14位置的情况下调节载物台11的位置使煤样9接近改性探针14的尖端位置后,固定载物台11的位置,此时橡胶圈位于液体池5底面与煤样9上表面之间且形成密封空间;
步骤5、向液体池5底面与煤样9上表面之间被橡胶圈8包围的空间注满无机盐溶液;每次更换测试不同的改性探针14均需要更换液体池5底面与煤样9上表面之间被橡胶圈8包围的空间内的无机盐溶液以及煤样9;通过在橡胶圈8上设置进液管12和出液管13实现无机盐溶液的快速更换,控制每次试验无机盐溶液浓度一致;
步骤6、利用压电陶瓷控制改性探针14向煤样9上表面持续进针,同时收集进针过程中改性探针14产生的弹性变形信息,并根据弹性变形信息推导出改性探针14在进针过程中的 进针力信息,进针力随着改性探针14向煤样9上表面的接近而增加,当进针力与距离呈现线性关系后判断改性探针14的端部已经物理接触煤样9上表面,此时进行退针即控制改性探针14远离煤样9,同时收集改性探针14对应的退针力信息,将进针力信息以及退针力信息生成进针力曲线和退针力曲线;
步骤7、重复步骤2到步骤6,获取每个表面沉积不同浮选捕收剂分子官能团7的改性探针14与煤样9的进针力曲线和退针力曲线,比较所有改性探针14的退针力曲线数值,数值越大则说明改性探针14上的浮选捕收剂分子官能团7与煤样9之间的粘附力越大,粘附力越大则说明该改性探针14上沉积的捕收剂效果越好。利用各个改性探针14的粘附力对所有沉积在镀金探针6上的不同浮选捕收剂进行排序,从而筛选出针对煤样9最好的浮选捕收剂;通过更换煤样9的种类,从而比较出不同种类的煤样9浮选补收效果最好的浮选捕收剂。
在改性探针14进针前,需要对改性探针14的探针悬臂偏转灵敏度进行测量并计算探针悬臂实际弹性系数,完成弹性系数校正,确保力测试数据的准确性;在完成校正后,通过压电陶瓷控制改性探针14进针接近和远离煤样9表面获取力信息,每个改性探针14分别在煤样9的不同位置重复进针和退针,从而获取该改性探针14与煤样9不同位置的粘附力,取不同位置采集的粘附力的平均数,从而保证力曲线测试的代表性及准确性。
对退针曲线力测试结果进行正态分布拟合,确定改性探针14与煤样9之间的粘附力大小;使用EDLVO理论对进针力曲线进行拟合,确定相互作用力中范德华力、静电力和疏水力的分量。
其中煤样9可采用以下表面进行代替:石墨基底、氧化石墨基底、硅基底、硅烷化硅基底、玻璃片基底、硅烷化玻璃片基底、金片、云母片;镀金探针6与捕收剂分子7的固定方式为化学成键作用;
以下结合实施例及附图进一步说明本发明。实施例中所采用的检测技术为上述技术。
实施例1、十一烷与石墨表面间相互作用
步骤1、将镀金探针6分别在1mM的1-巯基-十一烷的乙醇溶液中浸泡24小时,通过化学沉积获得覆有十一烷分子7的改性探针14;
步骤2、将固定石墨片9的基底10放置在AFM载物台11上;
步骤3、将装有镀金探针6的液体池5置于石墨片9上方,调整橡胶圈8的位置以保证封闭性,通入0.5M NaCl溶液;
步骤4、获取力曲线并进行分析。
图2、图3为实施例1的十一烷改性探针14在液相环境中与石墨表面9相互作用测得的 典型力-距离曲线。从图2、图3可以看出,本发明的测试方法可以在液相环境中原位测试捕收剂分子7与石墨表面9间相互作用力。
实施例2、十一酸与石墨表面间相互作用
步骤1、将镀金探针6分别在1mM的1-巯基-十一酸的乙醇溶液中浸泡24小时,通过化学沉积获得覆有十一酸分子7的改性探针14;
步骤2、将固定石墨片9的基底10放置在AFM载物台11上;
步骤3、将装有镀金探针6的液体池5置于石墨片9上方,调整橡胶圈8的位置以保证封闭性,通入0.5M NaCl溶液;
步骤4、获取力曲线并进行分析。
图4、图5为实施例2的十一酸改性探针14在液相环境中与石墨表面9相互作用测得的典型力-距离曲线。从图4、图5可以看出,本发明的测试方法可以在液相环境中原位测试捕收剂分子7与石墨表面9间相互作用力。
本发明利用现有技术对测试方法进行简单改造就可以调控不同的溶液化学环境及不同的捕收剂分子,提供多样的测试条件且操作方便。

Claims (9)

  1. 一种煤泥浮选捕收剂分子官能团筛选方法,其特征在于步骤如下:
    步骤1、将多个镀金探针(6)置于含有不同捕收剂分子官能团的巯基化合物的乙醇溶液中浸泡24小时,从而在每个镀金探针(6)表面化学沉积不同的浮选捕收剂分子官能团,形成表面沉积有不同浮选捕收剂分子官能团的改性探针(14),并对各个改性探针(14)进行标注;
    步骤2、将上表面光滑且平整的煤样(9)固定在基底(10)上,之后将基底(10)放置在原子力显微镜AFM载物台(11)上;
    步骤3、将无底环形的橡胶圈(8)安装在液体池(5)底部,取一个改性探针(14)安装在液体池(5)中间的夹子上,将液体池(5)放在专用支撑台上,使改性探针(14)的尖端悬于煤样(9)的上表面;
    步骤4、固定改性探针(14)位置的情况下调节载物台(11)的位置使煤样(9)接近改性探针(14)的尖端位置后,固定载物台(11)的位置,此时橡胶圈位于液体池(5)底面与煤样(9)上表面之间且形成密封空间;
    步骤5、向液体池(5)底面与煤样(9)上表面之间被橡胶圈(8)包围的空间注满无机盐溶液;控制无机盐溶液溶液,保证每次试验条件一致;
    步骤6、利用压电陶瓷控制改性探针(14)向煤样(9)上表面持续进针,同时收集进针过程中改性探针(14)产生的弹性变形信息,并根据弹性变形信息推导出改性探针(14)在进针过程中的进针力信息,进针力随着改性探针(14)向煤样(9)上表面的接近而增加,当进针力与距离呈现线性关系后判断改性探针(14)的端部已经物理接触煤样(9)上表面,此时进行退针即控制改性探针(14)远离煤样(9),同时收集改性探针(14)对应的退针力信息,将进针力信息以及退针力信息生成进针力曲线和退针力曲线;
    步骤7、重复步骤2到步骤6,获取每个表面沉积不同浮选捕收剂分子官能团的改性探针(14)与煤样(9)的进针力曲线和退针力曲线,比较所有改性探针(14)的退针力曲线数值,数值越大则说明改性探针(14)上的浮选捕收剂分子官能团与煤样(9)之间的粘附力越大,粘附力越大则说明该改性探针(14)上沉积的捕收剂效果越好。
  2. 根据权利要求1所述煤泥浮选捕收剂分子官能团筛选方法,其特征在于:利用各个改性探针(14)的粘附力对所有沉积在镀金探针(6)上的不同浮选捕收剂进行排序,从而筛选出针对煤样(9)最好的浮选捕收剂;通过更换煤样(9)的种类,从而比较出不同种类的煤样(9)浮选补收效果最好的浮选捕收剂。
  3. 根据权利要求1所述煤泥浮选捕收剂分子官能团筛选方法,其特征在于:每次更换测试不同的改性探针(14)均需要更换液体池(5)底面与煤样(9)上表面之间被橡胶圈(8)包围的空间内的无机盐溶液以及煤样(9);通过在橡胶圈(8)上设置进液管(12)和出液管(13)实现无机盐溶液的快速更换,控制每次试验无机盐溶液浓度一致;
  4. 根据权利要求1所述煤泥浮选捕收剂分子官能团定向筛选设计方法,其特征在于:所述制备改性探针(14)的镀金探针(6)的名义弹性系数为0.08N/m。
  5. 根据权利要求1所述煤泥浮选捕收剂分子官能团筛选方法,其特征在于:在制备改性探针(14)前需要将镀金探针(6)置于等离子体清洗机中处理10分钟,置于乙醇溶液中浸泡5分钟以去除污染物。
  6. 根据权利要求1所述煤泥浮选捕收剂分子官能团筛选方法,其特征在于:在镀金探针(6)形成表面沉积有不同浮选捕收剂分子官能团的改性探针(14)后,将改性探针(14)须依次在乙醇和超纯水中浸泡10分钟,之后放入真空干燥箱中干燥后备用。
  7. 根据权利要求1所述煤泥浮选捕收剂分子官能团筛选方法,其特征在于:煤样(9)切割为扁平结构并将表面打磨光滑,之后进行清洗保证无污染。
  8. 根据权利要求1所述煤泥浮选捕收剂分子官能团筛选方法,其特征在于:在改性探针(14)进针前,需要对改性探针(14)的探针悬臂偏转灵敏度进行测量并计算探针悬臂实际弹性系数,完成弹性系数校正,确保力测试数据的准确性;在完成校正后,通过压电陶瓷控制改性探针(14)进针接近和远离煤样(9)表面获取力信息,每个改性探针(14)分别在煤样(9)的不同位置重复进针和退针,从而获取该改性探针(14)与煤样(9)不同位置的粘附力,取不同位置采集的粘附力的平均数,从而保证力曲线测试的代表性及准确性。
  9. 根据权利要求7所述煤泥浮选捕收剂分子官能团筛选方法,其特征在于:对退针曲线力测试结果进行正态分布拟合,确定改性探针(14)与煤样(9)之间的粘附力大小;使用EDLVO理论对进针力曲线进行拟合,确定相互作用力中范德华力、静电力和疏水力的分量。
PCT/CN2022/133064 2022-02-22 2022-11-21 一种煤泥浮选捕收剂分子官能团筛选方法 WO2023160045A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210159749.5A CN114577716A (zh) 2022-02-22 2022-02-22 一种煤泥浮选捕收剂分子官能团筛选方法
CN202210159749.5 2022-02-22

Publications (1)

Publication Number Publication Date
WO2023160045A1 true WO2023160045A1 (zh) 2023-08-31

Family

ID=81773013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/133064 WO2023160045A1 (zh) 2022-02-22 2022-11-21 一种煤泥浮选捕收剂分子官能团筛选方法

Country Status (2)

Country Link
CN (1) CN114577716A (zh)
WO (1) WO2023160045A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114577716A (zh) * 2022-02-22 2022-06-03 中国矿业大学 一种煤泥浮选捕收剂分子官能团筛选方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7131081A (en) * 1981-06-03 1982-12-09 Dow Chemical Company, The Froth flotation of oxidised coal
AU2860297A (en) * 1996-07-12 1998-01-22 Ingwe Coal Corporation Limited Method of mineral beneficiation
CN102218376A (zh) * 2011-01-27 2011-10-19 湖南有色金属研究院 一种高碳钼镍矿高效浮选分离钼镍回收钼镍得到钼精矿和镍钼混合精矿的方法
CN103143448A (zh) * 2013-04-03 2013-06-12 张京三 一种从煤矸石中浮选提取精煤、硫铁和高岭土的方法
CN110736858A (zh) * 2019-10-23 2020-01-31 中南大学 一种氧化矿物捕收剂afm测定探针及其制备和应用方法
CN113426583A (zh) * 2021-07-01 2021-09-24 中国矿业大学 一种低品质煤浮选捕收剂定向开发方法
CN114577716A (zh) * 2022-02-22 2022-06-03 中国矿业大学 一种煤泥浮选捕收剂分子官能团筛选方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU7131081A (en) * 1981-06-03 1982-12-09 Dow Chemical Company, The Froth flotation of oxidised coal
AU2860297A (en) * 1996-07-12 1998-01-22 Ingwe Coal Corporation Limited Method of mineral beneficiation
CN102218376A (zh) * 2011-01-27 2011-10-19 湖南有色金属研究院 一种高碳钼镍矿高效浮选分离钼镍回收钼镍得到钼精矿和镍钼混合精矿的方法
CN103143448A (zh) * 2013-04-03 2013-06-12 张京三 一种从煤矸石中浮选提取精煤、硫铁和高岭土的方法
CN110736858A (zh) * 2019-10-23 2020-01-31 中南大学 一种氧化矿物捕收剂afm测定探针及其制备和应用方法
CN113426583A (zh) * 2021-07-01 2021-09-24 中国矿业大学 一种低品质煤浮选捕收剂定向开发方法
CN114577716A (zh) * 2022-02-22 2022-06-03 中国矿业大学 一种煤泥浮选捕收剂分子官能团筛选方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Doctoral Dissertation", 1 June 2019, GUIZHOU UNIVERSITY, CN, article YE, JUNJIAN: "Study on Interface Control of Fine-grained Apatite Flotation", pages: 1 - 142, XP009548655 *

Also Published As

Publication number Publication date
CN114577716A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
WO2023160045A1 (zh) 一种煤泥浮选捕收剂分子官能团筛选方法
Deng et al. Direct measurement of the contact angle of water droplet on quartz in a reservoir rock with atomic force microscopy
CN1187596C (zh) 扫描探针显微镜,及其探针和制造方法,及使用其的分子加工法
Lützenkirchen et al. An attempt to explain bimodal behaviour of the sapphire c-plane electrolyte interface
CN108380187B (zh) 一种功能性聚电解质/氧化石墨烯多层膜及其制备方法和应用
CN101037185B (zh) 一种石英玻璃上制作纳米级沟道的方法
US20010051337A1 (en) Method and apparatus for solid state molecular analysis
AU3584797A (en) Detection of ligand interaction with polymeric material
Sauer et al. Dynamic contact angle measurements on glass fibers: influence of fiber diameter on hysteresis and contact line pinning
GB2162938A (en) Measuring the turbidity of liquid media
Thomas et al. Optical fibers in analytical electrochemistry: Recent developments in probe design and applications
CN109179313B (zh) 一种基于afm的微纳流控芯片制备方法
US20010044106A1 (en) Method and apparatus for solid state molecular analysis
CN110702644A (zh) 一种自动化高通量spr检测仪
JP2008232877A (ja) 生体分子の固定用材料、生体分子が固定化された固相体及びその製造方法
TWI454693B (zh) 整合型生物感測晶片系統
CN210834519U (zh) 一种热喷涂涂层高通量检测装置
CN113917096A (zh) 水质检测系统和方法
CN1243241C (zh) 纳米贮氢材料贮氢量的测量方法
RU2407021C2 (ru) Сканирующий зондовый микроскоп, совмещенный с устройством измерения массы и диссипативных свойств
Maurice et al. Using atomic force microscopy to study soil mineral reactions
US20030073250A1 (en) Method and apparatus for solid state molecular analysis
CN2816805Y (zh) 一种生化传感器
CN1820197A (zh) 用于在纸和纸浆生产中探测和记录粘性的沉积物或成分的方法和系统
CN113671004B (zh) 一种石墨烯管/Au纳米颗粒微流体通道及其制备方法和声表面波生物传感器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928305

Country of ref document: EP

Kind code of ref document: A1