WO2023159871A1 - 一种离心式微流控全血分离血浆结构 - Google Patents

一种离心式微流控全血分离血浆结构 Download PDF

Info

Publication number
WO2023159871A1
WO2023159871A1 PCT/CN2022/108945 CN2022108945W WO2023159871A1 WO 2023159871 A1 WO2023159871 A1 WO 2023159871A1 CN 2022108945 W CN2022108945 W CN 2022108945W WO 2023159871 A1 WO2023159871 A1 WO 2023159871A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
tank
whole blood
separation
recess
Prior art date
Application number
PCT/CN2022/108945
Other languages
English (en)
French (fr)
Inventor
冯澄宇
吴烨娴
冷东升
陈兢
Original Assignee
含光微纳科技(太仓)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 含光微纳科技(太仓)有限公司 filed Critical 含光微纳科技(太仓)有限公司
Publication of WO2023159871A1 publication Critical patent/WO2023159871A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/28Preparing specimens for investigation including physical details of (bio-)chemical methods covered elsewhere, e.g. G01N33/50, C12Q
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/0409Moving fluids with specific forces or mechanical means specific forces centrifugal forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1034Transferring microquantities of liquid

Definitions

  • the invention relates to the field of microfluidic chips, in particular to a centrifugal microfluidic structure for separating plasma from whole blood.
  • Blood testing is the most common detection method in biomedicine, clinical diagnosis, and health and quarantine diagnosis.
  • blood testing the separation of plasma from whole blood drawn from patients is also an essential part of the blood testing process.
  • the whole blood separation method adopted by most hospitals and laboratories is realized through separation gel coagulation blood collection tubes, that is, low-speed centrifugation is used to layer red blood cells and serum to both sides of the separation gel due to density differences; in blood collection tubes
  • separation gel coagulation blood collection tubes that is, low-speed centrifugation is used to layer red blood cells and serum to both sides of the separation gel due to density differences; in blood collection tubes
  • There are coagulation-promoting components and separating gel which can promote the coagulation process, make red blood cells and coagulation proteins aggregate, and centrifuge more easily.
  • this whole blood separation method usually has the technical problems of slow separation speed and low efficiency.
  • the main purpose of the present invention is to provide a centrifugal microfluidic whole blood plasma separation structure with few whole blood separation steps and high separation efficiency.
  • the centrifugal microfluidic whole blood plasma separation structure includes: a chip substrate and a chip cover plate, characterized in that a plurality of whole blood plasma separation modules are arranged around the center point on the chip substrate; the whole blood plasma separation module includes: Sampling tank, plasma quantitative tank, red blood cell separation hole, waste liquid tank and plasma extraction tank;
  • the sample adding tank communicates with the plasma quantitative tank through the liquid inlet channel, the plasma quantitative tank communicates with the red blood cell separation hole, the plasma quantitative tank communicates with the waste liquid tank through the overflow channel, and the plasma quantitative tank communicates with the erythrocyte separation hole. It is connected with the plasma extraction tank through a siphon flow channel.
  • the chip base has a circular shape, and a fixing device for connecting with a rotating mechanism that drives the chip base to rotate is provided at the center of the chip base.
  • a sample addition hole is opened beside the sample addition tank, and the gas injection hole communicates with the sample addition tank.
  • air holes are respectively opened beside the waste liquid tank and the plasma quantification tank, and the waste liquid tank and the plasma quantification tank are respectively communicated with the air holes through flow channels.
  • the width of the flow channel is 0.1-0.5 mm
  • the depth is 0.1-0.5 mm
  • the surface of the siphon flow channel is modified hydrophilically.
  • the volume ratio between the plasma quantitative tank and the red blood cell separation hole is 1:2.
  • the centrifugal microfluidic whole blood plasma separation structure includes: a chip substrate and a chip cover plate, and is characterized in that a plurality of whole blood plasma separation modules are arranged around the center point on the chip substrate;
  • the whole blood plasma separation module includes: a sampling tank , plasma quantitative tank, red blood cell separation hole, waste liquid tank and plasma extraction tank; make the sample loading tank communicate with the plasma quantitative tank through the liquid inlet flow channel, the plasma quantitative tank and the red blood cell separation hole communicate, and the plasma quantitative tank communicate with the plasma quantitative tank through the overflow channel
  • the waste liquid tank is connected, and the plasma quantitative tank is connected with the plasma extraction tank through a siphon flow channel.
  • the second centrifugation operation is performed, all the plasma in the plasma quantitative tank enters the plasma extraction tank, and all the red blood cells in the red blood cell separation hole remain in the hole, and the plasma in the plasma extraction tank can be used for subsequent analysis Detection test.
  • the centrifugal microfluidic whole blood separation plasma structure has few operation steps and simple structure. And since there are multiple whole blood plasma separation modules around the center point on the chip substrate, multiple plasma samples can be separated at the same time, which greatly improves the efficiency of whole blood separation and reduces the time required for blood testing.
  • FIG. 1 is a schematic structural view of a centrifugal microfluidic whole blood separation plasma structure according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a whole blood plasma separation module after the first centrifugation according to an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a plasma separation module from whole blood after the second centrifugation according to an embodiment of the present disclosure.
  • Chip substrate 2. Whole blood plasma separation module; 21. Sample tank; 22. Plasma quantification device; 23. Red blood cell separation hole; 24. Waste liquid tank; 25. Plasma extraction tank; 3. Siphon flow channel; 4 , Fixing device; 5, Sample hole.
  • a centrifugal microfluidic whole blood plasma separation structure of the invention will be further described in detail below in conjunction with the accompanying drawings and the embodiments of the present invention.
  • spatially relative terms may be used here, such as “on !, “over !, “on the surface of !, “above”, etc., to describe the The spatial positional relationship between one device or feature shown and other devices or features. It will be understood that the spatially relative terms are intended to encompass different orientations of the device in use or operation in addition to the orientation depicted in the figures. For example, if the device in the figures is turned over, devices described as “above” or “above” other devices or configurations would then be oriented “beneath” or “above” the other devices or configurations. under other devices or configurations”. Thus, the exemplary term “above” can encompass both an orientation of “above” and “beneath”. The device may be otherwise oriented (rotated 90 degrees or at other orientations) and the spatially relative descriptions used herein interpreted accordingly.
  • the centrifugal microfluidic whole blood plasma separation structure includes: a chip substrate 1, on which a plurality of whole blood plasma separation modules 2 are arranged around the central point; whole blood plasma separation modules 2 Including: sampling tank 21, plasma quantitative tank 22, red blood cell separation hole 23, waste liquid tank 24 and plasma extraction tank 25;
  • the depth of the plasma quantitative tank 22 is made to be greater than or equal to 0.5 mm, so as to avoid that when the depth of the plasma quantitative tank 22 is less than 0.5 mm, air bubbles are generated in the plasma quantitative tank 22 because the liquid layer is too shallow, resulting in quantitative results. Inaccurate.
  • there is a step with a height greater than 1 mm in the waste liquid tank 24 and the presence of the step can prevent the waste liquid from flowing back to the plasma quantification tank 22 .
  • the sample adding tank 21 is communicated with the plasma quantitative tank 22 through the liquid inlet channel (preferably, the width and depth of the liquid inlet channel are less than or equal to 0.5mm, and the width and depth of the liquid inlet channel are avoided to be too large, when the plasma sample enters the plasma Quantitative groove 22 and erythrocyte separation hole 23, make the flow velocity of plasma sample too fast, cause to form bubble in plasma quantitative groove 22 and erythrocyte separation groove 23.), plasma quantitative groove 22 and erythrocyte separation hole 23 communicate, plasma quantitative groove 22 Communicate with the waste liquid tank 24 through the overflow channel (preferably, make the overflow channel depth greater than or equal to 0.5mm, and the depth of the overflow channel is less than the depth of the plasma quantitative tank 22, and the depth of the overflow channel is the same as that of the blood plasma The depth difference of quantitative groove 22 should not be greater than 1mm.), plasma quantitative groove 22 is connected with plasma extraction groove 25 by siphon flow channel 3.
  • the centrifugal microfluidic whole blood plasma separation structure is externally connected with a centrifugal drive device, and the whole blood sample in the sampling tank 21 enters the plasma quantitative tank 22 and the erythrocyte separation hole 23 by rotating and centrifuging to fill them up, and the excess whole blood The sample goes to waste tank 24 .
  • the erythrocytes in the whole blood sample enter the erythrocyte separation hole 23 , and the plasma is in the plasma quantification tank 22 .
  • all the plasma in the plasma quantification tank 22 enters the plasma extraction tank 25 for subsequent plasma testing.
  • the centrifugal microfluidic whole blood separation plasma structure has few operation steps and simple structure. And since a plurality of whole blood plasma separation modules 2 are arranged around the central point on the chip substrate 1, the separation operation of multiple whole blood samples can be performed simultaneously, which greatly improves the efficiency of whole blood separation and reduces the time required for blood testing. time.
  • the chip base 1 is circular, and the center of the chip base 1 is provided with a fixing device 4 for connecting with a rotating mechanism that drives the chip base 1 to rotate.
  • the centrifugal drive equipment is externally connected to the fixing device 4 so that the chip substrate 1 can rotate around its center to complete the centrifugal operation.
  • a sample hole 5 is opened beside the sample tank 21 , and the air hole 5 communicates with the sample tank 21 .
  • air holes are respectively provided beside the waste liquid tank 24 and the plasma quantitative tank 25, so that the waste liquid tank 24 and the plasma quantitative tank 25 are respectively connected to the air holes through flow channels.
  • the diameter of the air hole should be greater than 1 mm, and the cross-sectional area of the air hole should be greater than the cross-sectional area of the siphon flow channel 3 and the overflow flow channel, so that when the centrifugal microfluidic whole blood plasma separation structure is centrifuged, the chip inside Air pressure remains steady.
  • the width of the siphon flow channel 3 is 0.1-0.5 mm, the depth is 0.1-0.5 mm, and the surface of the siphon flow channel 3 is hydrophilically modified so that the whole blood sample after the first centrifugation operation will not be prematurely Enter the plasma extraction tank 25 to avoid affecting the accuracy of blood testing.
  • the siphon flow channel 3 is filled with plasma; perform centrifugation again, so that the plasma in the plasma quantitative tank 22 enters the plasma extraction tank 25 through the siphon flow channel 3, and the process is completed. Extraction of plasma.
  • the volume ratio of the plasma quantitative tank 22 and the red blood cell separation hole 23 is 1:2.
  • the volume of the plasma quantitative tank 22 is slightly smaller than the volume of plasma in the whole blood sample in the plasma quantitative tank 22 and the red blood cell separation hole 23 .
  • the centrifugal microfluidic structure for separating plasma from whole blood can be used to separate plasma from whole blood, and can also meet the requirements of separating sediment and extracting supernatant.
  • the workflow is as follows:
  • the whole blood sample in the sampling tank 21 enters the plasma quantitative tank 22 and the red blood cell separation hole 23 through the liquid inlet channel, and after the plasma sample fills the plasma quantitative tank 22 and the red blood cell separation hole 23, the excess plasma sample is discharged through the overflow channel. into waste tank 24.
  • All the plasma in the plasma quantitative tank 22 enters the plasma extraction tank 25, and all the erythrocytes in the erythrocyte separation hole 23 stay in the hole, and the plasma in the plasma extraction tank 25 can be used for subsequent analysis and detection tests to complete the second centrifugation operation.

Abstract

一种离心式微流控全血分离血浆结构,包括:芯片基体(1),在芯片基体(1)上环绕中心点开设有多个全血分离血浆模块(2);全血分离血浆模块(2)包括:加样槽(21)、血浆定量槽(22)、红细胞分离孔(23)、废液槽(24)和血浆提取槽(25);使加样槽(21)通过进液流道与血浆定量槽(22)连通,血浆定量槽(22)和红细胞分离孔(23)连通,血浆定量槽(22)通过溢流流道与废液槽(24)连通,血浆定量槽(22)通过虹吸流道与血浆提取槽(25)连接。第一次离心,使加样槽中(21)的全血样本进入血浆定量槽(22)和红细胞分离孔(23)内并使其充满,多余的全血样本进入废液槽(24)。静置后,红细胞和血浆分离。再次离心后,血浆定量槽(22)内的血浆全部进入血浆提取槽(25),并且可同时分离多个全血样本,大大提高了全血分离的效率。

Description

一种离心式微流控全血分离血浆结构 技术领域
本发明涉及微流控芯片领域,尤其涉及一种离心式微流控全血分离血浆结构。
背景技术
血液检测在生物医学、临床诊断、卫生检疫诊断中是最常见的检测方式,在血液检测中,从患者处抽取的全血中分离出血浆,也是血液检测工序必不可少的一环。现如今大多数医院和实验室采用的全血分离方法是通过分离胶促凝采血管实现的,即使用低速离心,使血红细胞和血清因为密度差别分层到分离胶的两侧;采血管中有促凝成分和分离胶,促凝成分可以促进凝血过程,使红细胞及凝血蛋白聚集起来,更易离心下来。而这种全血分离方式通常存在分离速度慢,且效率低的技术问题。
而采用大型离心机分离血清和血细胞,容易导致样本的大量浪费;并且由于离心设备体积大,机械结构复杂,血清分离过程和检测是分开独立进行,所以容易导致引起血液样本的损失和污染,且检测步骤较为复杂。
因此采用现有技术进行全血分离存在分离步骤复杂且分离效率低的技术问题。
发明内容
有鉴于此,本发明的主要目的在于提供一种全血分离步骤少且分离效率 高的离心式微流控全血分离血浆结构。
为达到上述目的,本发明的技术方案是这样实现的:
该离心式微流控全血分离血浆结构包括:芯片基体和芯片盖板,其特征在于,所述芯片基体上环绕中心点开设有多个全血分离血浆模块;所述全血分离血浆模块包括:加样槽、血浆定量槽、红细胞分离孔、废液槽和血浆提取槽;
所述加样槽通过进液流道与血浆定量槽连通,所述血浆定量槽和红细胞分离孔连通,所述血浆定量槽通过溢流流道与所述废液槽连通,所述血浆定量槽通过虹吸流道与所述血浆提取槽连接。
在一种实施例中,所述芯片基体呈圆形,在芯片基体的中心设置有用于与驱动芯片基体旋转的旋转机构相连接的固定装置。
在一种实施例中,所述加样槽旁开设有加样孔,所述加气孔与所述加样槽连通。
在一种实施例中,所述废液槽和血浆定量槽旁分别开设有气孔,所述废液槽和血浆定量槽旁分别通过流道与所述气孔连通。
在一种实施例中,所述流道宽度为0.1-0.5mm,深度为0.1-0.5mm,所述虹吸流道表面做亲水修饰。
在一种实施例中,所述血浆定量槽和红细胞分离孔的容积比为1:2。
本发明的一种离心式微流控全血分离血浆结构,具有如下有益效果:
该离心式微流控全血分离血浆结构包括:芯片基体和芯片盖板,其特征 在于,在芯片基体上环绕中心点开设有多个全血分离血浆模块;全血分离血浆模块包括:加样槽、血浆定量槽、红细胞分离孔、废液槽和血浆提取槽;使加样槽通过进液流道与血浆定量槽连通,血浆定量槽和红细胞分离孔连通,血浆定量槽通过溢流流道与废液槽连通,血浆定量槽通过虹吸流道与血浆提取槽连接。向加样槽中注入全血样本,并开始第一次离心操作;使加样槽内的全血样本通过进液流道进入血浆定量槽和红细胞分离孔,并且将血浆定量槽和红细胞分离孔充满后,通过溢流通道使多余的样本进入废液槽。完成第一次离心操作后,全血样本中的红细胞和血浆开始分离,并且通过血浆定量槽内的容积来对全血样本中分离出来的血浆进行定量。
待虹吸流道内充满血浆后,进行第二次离心操作,血浆定量槽内的血浆全部进入血浆提取槽,红细胞分离孔内的红细胞则全部留在孔内,血浆提取槽内的血浆可用于后续分析检测试验。该离心式微流控全血分离血浆结构操作步骤少,结构简单。并且由于在芯片基体上环绕中心点开设有多个全血分离血浆模块,所以可同时进行多个血浆样本的分离操作,大大提高了全血分离的效率,降低了血液检测所需的时间。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲, 在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开一种实施例的离心式微流控全血分离血浆结构的结构示意图;
图2为本公开一种实施例的第一次离心后全血分离血浆模块的示意图;
图3为本公开一种实施例的第二次离心后全血分离血浆模块的示意图。
【主要组件符号说明】
1、芯片基体;2、全血分离血浆模块;21、加样槽;22、血浆定量装置;23、红细胞分离孔;24、废液槽;25、血浆提取槽;3、虹吸流道;4、固定装置;5、加样孔。
具体实施方式
下面结合附图及本发明的实施例对发明的一种离心式微流控全血分离血浆结构作进一步详细的说明。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本申请的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
需要说明的是,本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的本申请的实施方式例如能够以除了在这里图示或描述的那些以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
为了便于描述,在这里可以使用空间相对术语,如“在……之上”、“在……上方”、“在……上表面”、“上面的”等,用来描述如在图中所示的一个器件或特征与其他器件或特征的空间位置关系。应当理解的是,空间相对术语旨在包含除了器件在图中所描述的方位之外的在使用或操作中的不同方位。例如,如果附图中的器件被倒置,则描述为“在其他器件或构造上方”或“在其他器件或构造之上”的器件之后将被定位为“在其他器件或构造下方”或“在其他器件或构造之下”。因而,示例性术语“在……上方”可以包括“在……上方”和“在……下方”两种方位。该器件也可以其他不同方式定位(旋转90度或处于其他方位),并且对这里所使用的空间相对描述作出相应解释。
如图1-图3所示,该离心式微流控全血分离血浆结构包括:芯片基体1,在芯片基体1上环绕中心点开设有多个全血分离血浆模块2;全血分离血浆 模块2包括:加样槽21、血浆定量槽22、红细胞分离孔23、废液槽24和血浆提取槽25;
在一种实施方式中,使血浆定量槽22的深度大于等于0.5mm,避免当血浆定量槽22的深度小于0.5mm时,由于液层太浅,使血浆定量槽22内产生气泡,导致定量结果不准确。在一种实施方式中,在废液槽24内有高度大于1mm的台阶,台阶的存在可防止废液回流至血浆定量槽22。
使加样槽21通过进液流道与血浆定量槽22连通(优选的,使进液流道宽度和深度小于等于0.5mm,避免进液流道的宽度和深度太大,当血浆样本进入血浆定量槽22和红细胞分离孔23时,使血浆样本的流速过快,导致在血浆定量槽22和红细胞分离槽23内形成气泡。),血浆定量槽22和红细胞分离孔23连通,血浆定量槽22通过溢流流道与废液槽24连通(优选的,使溢流流道深度大于等于0.5mm,并且溢流流道的深度小于血浆定量槽22的深度,且溢流流道的深度与血浆定量槽22的深度差值不应大于1mm。),血浆定量槽22通过虹吸流道3与血浆提取槽25连接。
该离心式微流控全血分离血浆结构外接离心驱动设备,通过旋转离心的方式使加样槽21中的全血样本进入血浆定量槽22和红细胞分离孔23内并使其充满,多余的全血样本进入废液槽24。静置一段时间后,全血样本中的红细胞进入红细胞分离孔23,血浆处于血浆定量槽22内。再次离心后,血浆定量槽22内的血浆全部进入血浆提取槽25,用于后续的血浆检测。
该离心式微流控全血分离血浆结构操作步骤少,结构简单。并且由于在 芯片基体1上环绕中心点开设有多个全血分离血浆模块2,所以可同时进行多个全血样本的分离操作,大大提高了全血分离的效率,降低了血液检测所需的时间。
为了便于驱动该芯片基体1旋转,使芯片基体1呈圆形,在芯片基体1的中心设置有用于与驱动芯片基体1旋转的旋转机构相连接的固定装置4。通过固定装置4外接离心驱动设备,使芯片基体1可绕其中心旋转,完成离心操作。
为了便于将全血样本注入加样槽21,在加样槽21旁开设有加样孔5,加气孔5与加样槽21连通。
为了便于提取多余的全血样本和血浆,在废液槽24和血浆定量槽25旁分别开设有气孔,使废液槽24和血浆定量槽25分别通过流道与气孔连通。在一种实施方式中,气孔的直径应大于1mm,并且气孔的截面积应大于虹吸流道3和溢流流道的截面积,使该离心式微流控全血分离血浆结构离心时,芯片内部气压保持稳定。
在一种实施方式中,使虹吸流道3宽度为0.1-0.5mm,深度为0.1-0.5mm,虹吸流道3表面做亲水修饰,使第一次离心操作后的全血样本不会提前进入血浆提取槽25,避免影响血液检测的精确性。待第一次离心结束后,静置一端时间,由于毛细作用,虹吸流道3内充满血浆;再次进行离心操作,使血浆定量槽22内的血浆通过虹吸流道3进入血浆提取槽25,完成对血浆的提取。
为了便于血浆的分离,使血浆定量槽22和红细胞分离孔23的容积比为1:2。为了确保血浆定量槽22内全部都是血浆,使血浆定量槽22容积略小于血浆定量槽22和红细胞分离孔23内的全血样本中的血浆容积。
该离心式微流控全血分离血浆结构可用于从全血分离血浆,也可满足分离沉淀和提取上清液的需求。在一种具体的实施方式中,本发明在使用时,工作流程如下:
S1、通过加样孔5向加样槽21内注入全血样本,操作驱动设备使芯片基体1进行第一次离心,设置转速为3000-5000rpm,离心时间为90-300秒。
加样槽21内的全血样本经过进液流道进入血浆定量槽22和红细胞分离孔23,并且血浆样本将血浆定量槽22和红细胞分离孔23填充满后,通过溢流通道使多余血浆样本进入废液槽24。
S2、使血浆定量槽22和红细胞分离孔23内的全血样本经过一段时间离心后,全血样本中的红细胞和血浆开始分离,红细胞沉淀到红细胞分离孔23内,血浆处于血浆定量槽22内。
S3、通过血浆定量槽22的容积来对全血样本中分离出来的血浆进行定量。
S4、芯片基体1经过第一次离心后,停止10-30秒,等待虹吸流道3内充满血浆。
S5、操作驱动设备使芯片基体1进行第二次离心,离心速度为 3000-5000rpm。
使血浆定量槽22内的血浆全部进入血浆提取槽25,红细胞分离孔23内的红细胞则全部留在孔内,血浆提取槽25内的血浆可用于后续分析检测试验,完成第二次离心操作。
以上所述,仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。

Claims (6)

  1. 一种离心式微流控全血分离血浆结构包括:芯片基体(1),其特征在于,所述芯片基体(1)上环绕中心点开设有多个全血分离血浆模块(2);所述全血分离血浆模块(2)包括:加样槽(21)、血浆定量槽(22)、红细胞分离孔(23)、废液槽(24)和血浆提取槽(25);
    所述加样槽(21)通过进液流道与血浆定量槽(22)连通,所述血浆定量槽(22)和红细胞分离孔(23)连通,所述血浆定量槽(22)通过溢流流道与所述废液槽(24)连通,所述血浆定量槽(22)通过虹吸流道(3)与所述血浆提取槽(25)连接。
  2. 根据权利要求1所述的一种离心式微流控全血分离血浆结构,其特征在于,所述芯片基体(1)呈圆形,在芯片基体(1)的中心设置有用于与驱动芯片基体(1)旋转的旋转机构相连接的固定装置(4)。
  3. 根据权利要求1所述的一种离心式微流控全血分离血浆结构,其特征在于,所述加样槽(21)旁开设有加样孔(5),所述加气孔(5)与所述加样槽(21)连通。
  4. 根据权利要求1所述的一种离心式微流控全血分离血浆结构,其特征在于,所述废液槽(24)和血浆定量槽(25)旁分别开设有气孔,所述废液槽(24)和血浆定量槽(25)分别通过流道与所述气孔连通。
  5. 根据权利要求1所述的一种离心式微流控全血分离血浆结构,其特征 在于,所述虹吸流道(3)宽度为0.1-0.5mm,深度为0.1-0.5mm,所述虹吸流道(3)表面做亲水修饰。
  6. 根据权利要求1所述的一种离心式微流控全血分离血浆结构,其特征在于,所述血浆定量槽(22)和红细胞分离孔(23)的容积比为1∶2。
PCT/CN2022/108945 2022-02-24 2022-07-29 一种离心式微流控全血分离血浆结构 WO2023159871A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210177033.8A CN114509323A (zh) 2022-02-24 2022-02-24 一种离心式微流控全血分离血浆结构
CN202210177033.8 2022-02-24

Publications (1)

Publication Number Publication Date
WO2023159871A1 true WO2023159871A1 (zh) 2023-08-31

Family

ID=81553402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108945 WO2023159871A1 (zh) 2022-02-24 2022-07-29 一种离心式微流控全血分离血浆结构

Country Status (2)

Country Link
CN (1) CN114509323A (zh)
WO (1) WO2023159871A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114509323A (zh) * 2022-02-24 2022-05-17 含光微纳科技(太仓)有限公司 一种离心式微流控全血分离血浆结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150733A (ja) * 2007-12-20 2009-07-09 Panasonic Corp 生体分析用デバイスおよびそれを用いた血液分離方法
CN204544220U (zh) * 2015-03-30 2015-08-12 博奥生物集团有限公司 一种旋转离心全血分离芯片
JP2018163169A (ja) * 2018-06-26 2018-10-18 シスメックス株式会社 測定用カートリッジおよび送液方法
CN110841335A (zh) * 2019-12-19 2020-02-28 石家庄禾柏生物技术股份有限公司 一种全血分离结构
CN112756018A (zh) * 2019-10-21 2021-05-07 广州万孚生物技术股份有限公司 微流控芯片及体外检测系统
CN113237799A (zh) * 2021-06-03 2021-08-10 浙江盛域医疗技术有限公司 一种血液检测微流控芯片
CN215506821U (zh) * 2021-04-27 2022-01-14 广州万孚生物技术股份有限公司 全血分离微流控芯片
CN114509323A (zh) * 2022-02-24 2022-05-17 含光微纳科技(太仓)有限公司 一种离心式微流控全血分离血浆结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009150733A (ja) * 2007-12-20 2009-07-09 Panasonic Corp 生体分析用デバイスおよびそれを用いた血液分離方法
CN204544220U (zh) * 2015-03-30 2015-08-12 博奥生物集团有限公司 一种旋转离心全血分离芯片
JP2018163169A (ja) * 2018-06-26 2018-10-18 シスメックス株式会社 測定用カートリッジおよび送液方法
CN112756018A (zh) * 2019-10-21 2021-05-07 广州万孚生物技术股份有限公司 微流控芯片及体外检测系统
CN110841335A (zh) * 2019-12-19 2020-02-28 石家庄禾柏生物技术股份有限公司 一种全血分离结构
CN215506821U (zh) * 2021-04-27 2022-01-14 广州万孚生物技术股份有限公司 全血分离微流控芯片
CN113237799A (zh) * 2021-06-03 2021-08-10 浙江盛域医疗技术有限公司 一种血液检测微流控芯片
CN114509323A (zh) * 2022-02-24 2022-05-17 含光微纳科技(太仓)有限公司 一种离心式微流控全血分离血浆结构

Also Published As

Publication number Publication date
CN114509323A (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
CN108686721B (zh) 用于全血样品分离检测的微流控芯片及其检测方法
WO2022253145A1 (zh) 一种血液检测微流控芯片
CN106053859B (zh) 一种离心式糖化血红蛋白检测微流控芯片
WO2022253146A1 (zh) 一种血小板检测微流控芯片
TW201608242A (zh) 微流體檢驗裝置及其運作方法
US20060084174A1 (en) Blood analyzer and method of separating plasma
EP3485973A1 (en) Microfluidic reagent card and detection method and application thereof
CN102162815B (zh) 血浆分离芯片及其制备方法
CN108896364A (zh) 用于饲料、牲畜粪尿、组织样品前处理的离心超滤装置
WO2012164552A1 (en) Microfluidic disc for use in with bead-based immunoassays
TW201425573A (zh) 多通道微流體光盤檢測系統及其應用
WO2023159871A1 (zh) 一种离心式微流控全血分离血浆结构
EP2239584B1 (en) Separating chip, and separating method
CN111855994B (zh) 可一次全血加样多项联检的poct免疫检测芯片
CN205280728U (zh) 血清标志物检测系统
WO2017118128A1 (zh) 多种血清标志物综合检测设备
WO2021077591A1 (zh) 微流控芯片及体外检测系统
JP5125680B2 (ja) 分離チップおよび分離方法
JP2009121912A (ja) マイクロチップ
WO2023071365A1 (zh) 一种生化项目检测装置
CN215493304U (zh) 一种全血处理及检测微流控芯片
CN109781478B (zh) 一种用于高通量层析检测的集成化自动前处理装置
JP2009156766A (ja) マイクロチップ
CN219799456U (zh) 一种用于生化诊断的离心式微流控芯片
CN216936080U (zh) 均相测试微流控芯片及检测系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22928140

Country of ref document: EP

Kind code of ref document: A1