WO2023158334A1 - Élément sensible à fibre optique de capteur de courant électrique et de champ magnétique - Google Patents
Élément sensible à fibre optique de capteur de courant électrique et de champ magnétique Download PDFInfo
- Publication number
- WO2023158334A1 WO2023158334A1 PCT/RU2022/000143 RU2022000143W WO2023158334A1 WO 2023158334 A1 WO2023158334 A1 WO 2023158334A1 RU 2022000143 W RU2022000143 W RU 2022000143W WO 2023158334 A1 WO2023158334 A1 WO 2023158334A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- fiber
- sensing element
- different
- fibre
- magnetic field
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R19/00—Arrangements for measuring currents or voltages or for indicating presence or sign thereof
- G01R19/145—Indicating the presence of current or voltage
- G01R19/15—Indicating the presence of current
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/02—Measuring direction or magnitude of magnetic fields or magnetic flux
- G01R33/032—Measuring direction or magnitude of magnetic fields or magnetic flux using magneto-optic devices, e.g. Faraday or Cotton-Mouton effect
Definitions
- Known fiber sensing elements of fiber-optic current sensors are a quartz optical fiber covering the current-carrying conductor with a helical structure of a linear BR (spun fiber) [4-6].
- Optical fibers of this type are obtained by drawing from a rotating preform with a strong built-in BR.
- the internal structure of the optical fiber thus formed makes it possible to maintain radiation polarization close to circular, while having a certain resistance of this property to external mechanical influences. Therefore, spun fibers are the most preferred type of fiber for use as a sensing element in FOCS.
- sensing element VODT Closest to the proposed device is the sensing element VODT [2].
- This device uses a multi-turn spun fiber coil wound around a current-carrying conductor as a sensing element.
- the sensitivity of this sensitive element is determined, among other things, by the number of fiber turns. The lowest sensitivity value is achieved with one turn, therefore the value of the measured current is limited from above by the sensitivity of the single-turn circuit of the spun fiber.
- the fibers have either different values of built-in linear birefringence, or different values of the length of the helical birefringence structure, or different values of built-in linear birefringence and lengths of the helical birefringence structure.
- the fibers have either different values of the Verdet constant of the light guide material, or different values of the Verdet constant of the sheath material, or different sizes of the light guide wire, or different refractive index ratios of the light guide wire and the sheath, or combinations of these parameters.
- Figure 2a shows a single-pass configuration of the sensing element of two connected segments of spun fiber, polarimetric scheme
- Figure 26 shows a single pass sensing element configuration of two connected lengths of spun fiber, a Sagnac ring pattern
- Figure 2c shows a two-pass configuration of the sensing element of two connected pieces of spun fiber, reflective circuit.
- the method for changing the sensitivity of FOCS is based on the dependence of the magneto-optical sensitivity of a spun fiber on the Verdet constant of the fiber materials, the mode field diameter [7], as well as on the polarization property of the spun fiber to maintain the average ellipticity of polarized radiation, determined by the value of the built-in linear BR and the pitch length of the BR helical structure [8 ].
- a sensing element based on spun fiber FOCS see Fig. 1
- the current sensor can have a polarimetric circuit (single-pass configuration of the sensing element, Fig. 1a), a Sagnac ring circuit (single-pass configuration of the sensing element, Fig. 16) or reflective circuit (two-pass configuration of the sensing element, Fig. 1c).
- the spun fiber of the sensing element 1 is located near the conductor with current 2, while in the case of a polarimetric scheme, the fiber ends 3 and 4 of the spun fiber are connected to polarizers 5 and 6 at the output of the connecting fiber line of the sensor 7 (Fig.
- two pieces of spun fiber 1 and 11 with different values of either the Verdet constant of the materials of the light-guiding cores, or the Verdet constant of the materials of the shells, or the dimensions of the light-guiding cores, or the ratio of the refractive indices of the core and the shell, or the built-in linear DLR, or the pitch lengths of the helical DLP structures, or combinations of these parameters, are connected by a welded joint 12 and are located near the conductor with current 2, covering it in opposite directions (see Fig. 2).
- the free fiber ends 3 and 13 of the spun fibers are connected to polarizers 5 and 6 at the output of the connecting fiber line of the sensor 7 (Fig.
- the current was measured using a system of solenoids with a number of turns equal to 5000, connected to a reference current source of 8 A.
- a sensitive element of a commercially produced FOCS with a nominal value of ⁇ 350 kA and a range of measured currents from 0.2 to 100% of the nominal value was placed in the solenoids. So thus, the equivalent current penetrating the fiber circuit of the instrument with the original sensing element was 40,000 A. In this case, the value of the current measured by the instrument was 40,015 A.
- the sensing element was modified in the manner described and the measurements of the same equivalent current were repeated. In this case, the measured current value was 854 A. It follows that the Faraday phase shift in the second configuration of the sensing element is 47 times less.
- the equivalent current generated by the solenoids must be increased by a factor of 47, which increases the nominal value of the measured current of the device used in the experiment from 350 kA to 16.5 MA.
- the solution makes it possible to manufacture a sensitive element of an electric current and magnetic field sensor with reduced sensitivity, which is necessary to create sensors designed to measure currents up to several tens of megaamperes or more.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
L'invention se rapporte au domaine des fibres optiques, et concerne notamment des capteurs à fibre optique de courant et de champ magnétique. L'invention concerne un élément sensible de capteur à fibre optique de courant ou de champ magnétique, comprenant une fibre optique avec une structure spirale de biréfringence linéaire intégrée (BR), et se composant de deux parties; les première et seconde parties se composent de fibres ayant une structure spirale de biréfringence linéaire intégrée avec différentes valeurs soit de la constante de Verdet des matériaux des âmes conductrices de lumière, soit d'une constante de Verdet des matériaux de la gaine, soit des dimensions des brins, soit des relations des indices de réfraction du brin et de la gaine, soit de la BR linéaire intégrée, soit de la longueur du pas de la structure spirale de BR, soit d'une combinaison de ces paramètres; une partie fibre est disposée le long de l'autre partie, et les parties sont optiquement connectées entre elles d'un côté. Ainsi, les décalages de phase de Faraday induits par le champ magnétique du courant dans les parties fibre de l'élément sensible ont une valeur différente et sont soustraits. Afin d'obtenir un effet optimal, les fibres des deux parties de l'élément sensible doivent être agencées en circuit fermé.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2022103724A RU2792207C1 (ru) | 2022-02-15 | Волоконно-оптический чувствительный элемент датчика электрического тока и магнитного поля | |
RU2022103724 | 2022-02-15 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023158334A1 true WO2023158334A1 (fr) | 2023-08-24 |
Family
ID=87578719
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/RU2022/000143 WO2023158334A1 (fr) | 2022-02-15 | 2022-04-28 | Élément sensible à fibre optique de capteur de courant électrique et de champ magnétique |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023158334A1 (fr) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009103126A1 (fr) * | 2008-02-22 | 2009-08-27 | Smart Digital Optics Pty Limited | Enroulement de détection et unité de détection pour capteur de courant à fibre optique de sagnac |
WO2015033001A1 (fr) * | 2013-09-04 | 2015-03-12 | Arteche Centro De Tecnología, A.I.E. | Système optique pour l'identification de défauts dans des lignes mixtes de transport électrique |
WO2016026861A1 (fr) * | 2014-08-19 | 2016-02-25 | Abb Technology Ag | Capteur optique doté de fibre de détection biréfringente filée |
-
2022
- 2022-04-28 WO PCT/RU2022/000143 patent/WO2023158334A1/fr unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009103126A1 (fr) * | 2008-02-22 | 2009-08-27 | Smart Digital Optics Pty Limited | Enroulement de détection et unité de détection pour capteur de courant à fibre optique de sagnac |
WO2015033001A1 (fr) * | 2013-09-04 | 2015-03-12 | Arteche Centro De Tecnología, A.I.E. | Système optique pour l'identification de défauts dans des lignes mixtes de transport électrique |
WO2016026861A1 (fr) * | 2014-08-19 | 2016-02-25 | Abb Technology Ag | Capteur optique doté de fibre de détection biréfringente filée |
Non-Patent Citations (1)
Title |
---|
FROSIO GUIDO ET AL.: "Reciprocal reflection interferometer for a fiber-optic Faraday current sensor", APPLIED OPTICS, vol. 33, no. 25, 1 September 1994 (1994-09-01), XP000473296, DOI: 10.1364/AO.33.006111 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2437106C2 (ru) | Волоконно-оптический датчик тока | |
US6707558B2 (en) | Decreasing the effects of linear birefringence in a fiber-optic sensor by use of Berry's topological phase | |
KR100248128B1 (ko) | 광변류기 | |
US10481182B2 (en) | Optical sensor with spun birefringent sensing fiber | |
RU2547753C2 (ru) | Волоконно-оптический датчик тока или магнитного поля с температурной компенсацией, нечувствительный к изменению параметров датчика | |
US6734657B2 (en) | Temperature-compensated fiber optic current sensor | |
WO1998058268A1 (fr) | Capteur interferometrique a fibre optique | |
US5475298A (en) | Method and apparatus for measurements dependent on the faraday effect using polarized counter-propagating light | |
JP2012021982A (ja) | 温度感度を低減したファイバー電流センサー | |
US5463313A (en) | Reduced magnetic field line integral current sensor | |
US5598489A (en) | Depolarized fiber optic rotation sensor with low faraday effect drift | |
RU2451941C1 (ru) | Волоконно-оптический измерительный преобразователь тока | |
RU2792207C1 (ru) | Волоконно-оптический чувствительный элемент датчика электрического тока и магнитного поля | |
WO2023158334A1 (fr) | Élément sensible à fibre optique de capteur de courant électrique et de champ magnétique | |
US5677622A (en) | Current sensor using a Sagnac interferometer and spun, single mode birefringent optical fiber to detect current via the Faraday effect | |
EP0619021B1 (fr) | Detecteur de courant | |
RU96986U1 (ru) | Волоконно-оптический датчик тока | |
Przhiyalkovskiy et al. | Fiber-Optic Sensor for MA Current Measuring | |
RU2785967C1 (ru) | Волоконно-оптический датчик тока | |
JP4028035B2 (ja) | 光ファイバー応用計測器 | |
Lovchiĭ | Numerical modelling and investigation of a polarimetric current transducer with a spun-type lightguide | |
WO2000031551A1 (fr) | Detecteur de tension mesurant le courant de deplacement | |
KR20010012508A (ko) | 제너레이터 및 제너레이터 전압의 측정 방법 | |
Müller et al. | Fiber-optic current sensor with passive phase biasing employing highly-birefringent spun fiber | |
GB2119536A (en) | Fibre optic Faraday rotation device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22927495 Country of ref document: EP Kind code of ref document: A1 |