WO2023157948A1 - Oral composition - Google Patents

Oral composition Download PDF

Info

Publication number
WO2023157948A1
WO2023157948A1 PCT/JP2023/005745 JP2023005745W WO2023157948A1 WO 2023157948 A1 WO2023157948 A1 WO 2023157948A1 JP 2023005745 W JP2023005745 W JP 2023005745W WO 2023157948 A1 WO2023157948 A1 WO 2023157948A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
glycerol
composition
liver
phosphate
Prior art date
Application number
PCT/JP2023/005745
Other languages
French (fr)
Japanese (ja)
Inventor
主弥 池口
邦彦 相馬
典孝 吉川
伸之 川崎
敢 武久
岳 江原
雅史 細川
史章 別府
Original Assignee
Dic株式会社
国立大学法人北海道大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社, 国立大学法人北海道大学 filed Critical Dic株式会社
Publication of WO2023157948A1 publication Critical patent/WO2023157948A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/683Diesters of a phosphorus acid with two hydroxy compounds, e.g. phosphatidylinositols
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/66Phosphorus compounds
    • A61K31/683Diesters of a phosphorus acid with two hydroxy compounds, e.g. phosphatidylinositols
    • A61K31/685Diesters of a phosphorus acid with two hydroxy compounds, e.g. phosphatidylinositols one of the hydroxy compounds having nitrogen atoms, e.g. phosphatidylserine, lecithin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/74Bacteria
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • A61P1/16Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P21/00Drugs for disorders of the muscular or neuromuscular system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/04Anorexiants; Antiobesity agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/08Drugs for disorders of the metabolism for glucose homeostasis
    • A61P3/10Drugs for disorders of the metabolism for glucose homeostasis for hyperglycaemia, e.g. antidiabetics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to compositions that are orally ingested or administered.
  • the present invention also relates to methods for increasing muscle or strength, inhibiting muscle or strength loss, improving glucose metabolism, inhibiting fat accumulation in the liver, and improving the balance of omega-3 and omega-6 fatty acids in the body.
  • Lipids are one of the three major nutrients, and while they occupy an important position as an energy source, it is known that certain lipids have excellent physiological activity.
  • EPA eicosapentaenoic acid
  • EPA is one of the omega-3 fatty acids, which is essential for fetal development, lowers blood neutral fat (triglyceride), reduces the risk of cardiovascular disease, contributes to the prevention of Alzheimer's disease, etc. has been reported (Non-Patent Document 1).
  • EPA is also reported to have the effect of suppressing the production of inflammatory lipid mediators such as prostaglandins and leukotrienes from the omega-6 fatty acid arachidonic acid. Furthermore, it is known that EPA itself becomes an anti-inflammatory lipid mediator through metabolism and suppresses inflammation.
  • Patent Document 1 describes a cerebral atrophy inhibitor containing, as an active ingredient, a phospholipid containing a highly unsaturated fatty acid as a constituent fatty acid.
  • the subject of the present invention relates to the provision of novel functional lipid components that can be orally ingested or administered.
  • compositions having a molar ratio of ethanolamine phosphate moieties to 0.01 to 100 can provide unique physiological activities when orally ingested or administered to a subject, thus completing the present invention.
  • the present invention includes the following aspects.
  • glycerol-1-phosphate moiety CH 2 OH-CHOH-CH 2 -OPO 2 - -
  • ethanolamine phosphate moiety NH 3 + -CH 2 -CH 2 -OPO 2 - -
  • eicosapentaenoic acid moiety CH 3 CH 2 (CH ⁇ CHCH 2 ) 5 (CH 2 ) 2 CO—
  • the molar ratio of ethanolamine phosphate moieties to glycerol-1-phosphate moieties is from 0.01 to 100; Compositions taken or administered orally.
  • [2] The composition of [1], wherein the molar ratio of said eicosapentaenoic acid moieties to the sum of said glycerol-1-phosphate moieties and ethanolamine phosphate moieties is from 0.01 to 20.
  • Phospholipid represented by formula (I) (wherein R 1 and R 2 are selected from hydrogen atoms and acyl groups, at least one of R 1 and R 2 is an eicosapentaenoic acid moiety; X is selected from glycerol-1-phosphate moieties and ethanolamine phosphate moieties).
  • [5] containing an extract of Shewanella woodyi or a variant thereof, The composition according to [4].
  • [6] The composition according to [5], which contains an extract of Shewanella woodyi strain GS001 (accession number NITE BP-03460) or a mutant strain thereof.
  • [7] For at least one selected from the group consisting of increasing muscle or muscle strength, suppressing muscle or muscle strength loss, improving glucose metabolism, suppressing fat accumulation in the liver, and improving the balance of omega-3 fatty acids and omega-6 fatty acids in the body.
  • [11] For at least one selected from the group consisting of increasing muscle or muscle strength, suppressing muscle or muscle strength loss, improving glucose metabolism, suppressing fat accumulation in the liver, and improving the balance of omega-3 fatty acids and omega-6 fatty acids in the body.
  • [12] For the manufacture of orally ingested or administered formulations used for the prevention or improvement of at least one selected from the group consisting of diabetes, fatty liver, inflammation, locomotive syndrome, sarcopenia, lifestyle-related diseases and metabolic syndrome Use of the composition according to any one of [1] to [6].
  • composition according to any one of [1] to [6], which is used for maintaining or promoting expression of ELOVL2, ELOVL5, FADS1 or FADS2 gene in vivo [14] A method for maintaining or promoting ELOVL2, ELOVL5, FADS1 or FADS2 gene expression in the body, comprising an effective amount of the composition according to any one of [1] to [6]. A method comprising administering to or ingesting by a subject.
  • composition of the present invention can be ingested or administered orally. And, the composition of the present invention can be used for prevention or amelioration of diseases, symptoms or health conditions of subjects due to its unique physiological activity.
  • FIG. 1 is a graph showing fatty acid composition in SW oil.
  • 1 is a graph representing the fatty acid composition of ethanolamine-type phospholipids (PE) and glycerol-1-phosphate-type phospholipids (PG) fractions of SW oil.
  • PE ethanolamine-type phospholipids
  • PG glycerol-1-phosphate-type phospholipids
  • 1 is a flowchart of statistical analysis of Test Examples 1 to 3.
  • FIG. 4 is a graph showing changes in average food intake of mice in each group in Test Example 1.
  • FIG. 2 is a graph showing the gastrocnemius muscle weight of mice in each group after 6-week feeding in Test Example 1.
  • FIG. 2 is a graph showing fasting blood glucose levels of mice in each group on day 41 of feeding in Test Example 1.
  • FIG. 2 is a graph showing blood glucose levels of mice of each group on day 42 of breeding in Test Example 1, 2 hours after feeding.
  • FIG. 4 is a graph showing HbA1c values of mice in each group on day 42 of breeding in Test Example 1.
  • FIG. 4 is a graph showing liver weights of mice in each group after feeding for 6 weeks in Test Example 1.
  • FIG. 4 is a graph showing blood triglyceride levels of mice in each group after 6-week feeding in Test Example 1.
  • FIG. Graph showing blood total cholesterol level (T-CHO), LDL cholesterol level (LDL-CHO) and non-HDL cholesterol level (Non-HDL-CHO) in mice of each group after feeding for 6 weeks in Test Example 1.
  • T-CHO blood total cholesterol level
  • LDL-CHO LDL cholesterol level
  • Non-HDL-CHO non-HDL cholesterol level
  • FIG. 1 is a graph showing the fatty acid composition of n-3 polyunsaturated fatty acids (PUFA) in livers of mice of each group after feeding for 6 weeks in Test Example 1.
  • FIG. 4 is a graph showing the arachidonic acid (AA) content in the liver of mice of each group after four weeks of feeding in Test Example 2.
  • FIG. 4 is a graph showing the eicosapentaenoic acid (EPA) content in the liver of mice of each group after 4-week feeding in Test Example 2.
  • FIG. 4 is a graph showing the content of docosapentaenoic acid (DPA) in the liver of mice of each group after feeding for 4 weeks in Test Example 2.
  • DPA docosapentaenoic acid
  • FIG. 4 is a graph showing the content of docosahexaenoic acid (DHA) in the liver of mice of each group after 4-week feeding in Test Example 2.
  • FIG. 3 is a graph showing the expression level of ELOVL2 in the liver of mice of each group in Test Example 3.
  • FIG. 4 is a graph showing the expression level of ELOVL5 in the liver of mice of each group in Test Example 3.
  • FIG. 4 is a graph showing the expression level of FADS1 in the liver of mice of each group in Test Example 3.
  • FIG. 3 is a graph showing the expression level of FADS2 in the liver of mice of each group in Test Example 3.
  • saturated fatty acid refers to a fatty acid that does not contain a carbon-carbon double bond.
  • Unsaturated fatty acid also refers to a fatty acid containing at least one carbon-carbon double bond.
  • fatty acids are sometimes expressed in the form of "total number of carbon atoms: number of double bonds n-X", or in the form with C attached to the head.
  • nX means that the double bond first appears at the Xth carbon counted from the methyl end of the carbon chain of the fatty acid.
  • ⁇ -linolenic acid is represented as "18:3n-3" or "C18:3n-3".
  • nX represents a fatty acid in which only the total number of carbon atoms and the number of double bonds are specified.
  • acyl group corresponding to a specific fatty acid is a portion of the carboxyl group of the fatty acid excluding the OH portion, and is represented by the general formula R-CO- (R is an aliphatic hydrocarbon group). be.
  • phospholipid is a generic term for glycerophospholipids and sphingophospholipids.
  • Glycerophospholipids are glycerophospholipids in which one of the three hydroxyl groups of glycerin is phosphorylated. Of these, those in which both remaining hydroxyl groups are acylated are diacyl-type glycerophospholipids, and one of the remaining hydroxyl groups is acylated. Those only acylated are called lysophospholipids.
  • ethanolamine-type phospholipids (PE) and glycerol-1-phosphate-type phospholipids (PG) are ethanolamine phosphate and glycerol-1-phosphate, respectively, with a phosphate ester bond to the hydroxyl group at the 1-position. represents the phospholipids that In the present specification, phosphatidylethanolamine and phosphatidylglycerol represent diacyl glycerophospholipids containing ethanolamine phosphate and glycerol-1-phosphate as constituents, respectively.
  • ameliorating means ameliorating or alleviating the disease, condition or condition; preventing or slowing deterioration of the disease, condition or condition; or reversing the progression of the disease or condition. , stands for prevention or delay.
  • prevention of a disease, condition or condition means delaying or preventing the occurrence of the disease, condition or condition; reducing the risk of developing the disease, condition or condition; Represents a reduction in the rate of symptom incidence.
  • compositions Taken or Administered Orally
  • the composition of the invention is orally ingested or administered, glycerol-1-phosphate moiety (CH 2 OH-CHOH-CH 2 -OPO 2 - -), ethanolamine phosphate moiety (NH 3 + -CH 2 -CH 2 -OPO 2 - -) and eicosapentaenoic acid moiety ( containing CH 3 CH 2 (CH ⁇ CHCH 2 ) 5 (CH 2 ) 2 CO—),
  • the molar ratio of ethanolamine phosphate moieties to glycerol-1-phosphate moieties is 0.01-100.
  • compositions that can be orally ingested or administered may be referred to as an "oral composition”.
  • glycerol-1-phosphate moiety refers to a moiety of glycerol-1-phosphate excluding the hydrogen atom of the phosphate group, and has the structural formula CH 2 OH--CHOH--CH 2 --OPO 2 --. - is represented. A hydrogen ion or other cation may be associated with the phosphate group (OPO 2 ⁇ ) of the glycerol-1-phosphate moiety.
  • ethanolamine phosphate moiety refers to a portion of the phosphate group of ethanolamine phosphate from which hydrogen atoms are removed, represented by the structural formula NH 3 + —CH 2 —CH 2 —OPO 2 — . be done.
  • a hydrogen ion or other cation may be associated with the phosphate group of the ethanolamine phosphate moiety.
  • the state in which a hydrogen ion associates with the phosphate group of the glycerol-1-phosphate moiety or the ethanolamine phosphate moiety is CH 2 OH--CHOH--CH 2 --OPO 2 H-- or NH 3 + -CH 2 -CH 2 -OPO 2 H-, including a state in which hydrogen is bonded to a phosphoric acid moiety to form a hydroxyl group.
  • the other cations include alkali metal ions (sodium ion, potassium ion, etc.) and alkaline earth metal ions (magnesium ion, calcium ion, etc.).
  • the molar ratio of ethanolamine phosphate moieties to glycerol-1-phosphate moieties is From the viewpoint of exhibiting the effect remarkably, it is 0.01 or more, preferably 0.1 or more, more preferably 0.5 or more, still more preferably 1 or more, and even more preferably 1.5 or more.
  • the molar ratio of the ethanolamine phosphate moiety to the glycerol-1-phosphate moiety is 100 or less, preferably 50 or less, more preferably 20 or less, and still more preferably, from the viewpoint of significantly exhibiting the effects of the present invention. 10 or less, and even more preferably 5 or less.
  • Molar ratio of the eicosapentaenoic acid moiety to the sum of the glycerol-1-phosphate moiety and the ethanolamine phosphate moiety [(substance amount of eicosapentaenoic acid moiety)/(substance amount of glycerol-1-phosphate moiety + ethanolamine is not particularly limited, but is preferably 0.01 or more, more preferably 0.1 or more, still more preferably 0.2 or more, and further preferably More preferably, it is 0.4 or more.
  • the molar ratio of the eicosapentaenoic acid moiety to the total of the glycerol-1-phosphate moiety and the ethanolamine phosphate moiety is, for example, 20 or less, 10 or less, 5 or less, 4 or less, 3 or less, 2 or less, or 1 .5 or less.
  • the content of the eicosapentaenoic acid moiety in the oral composition of the present invention is, for example, 0.01% by mass or more, 0.1% by mass or more, 1% by mass or more, or 4% by mass, relative to the total amount of the oral composition. and may be 50% or less, 40% or less, or 30% or less by weight.
  • the content of C15:0 fatty acid relative to 100 parts by mass of eicosapentaenoic acid in the total lipid is preferably 5 parts by mass or more, more It is preferably 10 parts by mass or more, more preferably 15 parts by mass or more, and preferably 100 parts by mass or less, more preferably 70 parts by mass or less, and still more preferably 50 parts by mass or less.
  • the content of C16:1 fatty acid relative to 100 parts by mass of eicosapentaenoic acid in the total lipid is preferably 10 parts by mass or more, more It is preferably 15 parts by mass or more, preferably 300 parts by mass or less, more preferably 200 parts by mass or less.
  • the content of docosahexaenoic acid relative to 100 parts by mass of eicosapentaenoic acid in the total lipid is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and even more preferably 1 part by mass or less. be.
  • the glycerol-1-phosphate moiety, the ethanolamine phosphate moiety and the eicosapentaenoic acid moiety may constitute molecules different from each other.
  • said glycerol-1-phosphate moiety or said ethanolamine phosphate moiety may be present in the same molecule as said eicosapentaenoic acid moiety.
  • the oral composition of the present invention contains a molecule containing a glycerol-1-phosphate moiety and an eicosapentaenoic acid moiety, or a molecule containing an ethanolamine phosphate moiety and an eicosapentaenoic acid moiety, from the viewpoint of significantly exhibiting the effects of the present invention. It preferably contains at least and more preferably contains a molecule containing a glycerol-1-phosphate moiety and an eicosapentaenoic acid moiety and a molecule containing an ethanolamine phosphate moiety and an eicosapentaenoic acid moiety.
  • a phospholipid represented by the following formula (I) is preferable. Mentioned are: (wherein R 1 and R 2 are selected from hydrogen atoms and acyl groups, at least one of R 1 and R 2 is an eicosapentaenoic acid moiety; X is selected from glycerol-1-phosphate moieties and ethanolamine phosphate moieties).
  • the oral composition of the present invention preferably contains both a compound in which X is a glycerol-1-phosphate moiety and a compound in which X is an ethanolamine phosphate moiety in the formula (I).
  • X represents glycerol-1-phosphate moieties as EPA-bound glycerol-1-phosphate-type phospholipids (EPA-PG), and X represents ethanolamine phosphate moieties.
  • EPA-PG EPA-bound glycerol-1-phosphate-type phospholipids
  • EPA-PE EPA-bound ethanolamine-type phospholipids
  • the content of the EPA-bound ethanolamine-type phospholipid relative to 1 part by weight of the EPA-bound glycerol-1-phosphate-type phospholipid is 0.01 part by weight or more, preferably 0.01 part by weight. It is 1 part by mass or more, more preferably 0.5 parts by mass or more, still more preferably 1 part by mass or more, and even more preferably 1.5 parts by mass or more. Then, the content of the EPA-bound ethanolamine-type phospholipid with respect to 1 part by weight of the EPA-bound glycerol-1-phosphate-type phospholipid is 100 parts by weight or less, preferably, from the viewpoint of significantly exhibiting the effects of the present invention. It is 50 parts by mass or less, more preferably 20 parts by mass or less, still more preferably 10 parts by mass or less, and even more preferably 5 parts by mass or less.
  • the total carbon number of the acyl group of formula (I) is, for example, 3-35, preferably 9-31, more preferably 14-24.
  • the number of double bonds in the acyl group of formula (I) is, for example, 0-10, preferably 0-6, more preferably 0-5.
  • the acyl groups of R 1 and R 2 in the formula (I) are preferably acyl groups contained in phospholipids in organisms, more preferably C14:0 (myristic acid), C14:1, C15:0 ( pentadecanoic acid), C16:0 (palmitic acid), C16:1, C17:1, C18:0 (stearic acid), C18:1, C18:2, C18:3n-3 ( ⁇ -linolenic acid), C18: 3n-6 ( ⁇ -linolenic acid), C19:0, C20:0 (arachidic acid), C20: 1n-9 (cis-11-eicosenoic acid), C20:2n-6, C20:3n-3, C20: 3n-6 (dihomo- ⁇ -linolenic acid), C20: 4n-6 (arachidonic acid; AA), C20: 5n-3 (eicosapentaenoic acid; EPA), C22:0 (behenic acid), C22: 1
  • the total content of the phospholipids represented by the formula (I) is appropriately adjusted depending on the form, composition, purpose of use, usage, dosage, etc. of the oral composition.
  • the total content of phospholipids represented by formula (I) is, for example, 0.01% by mass or more, 0.1% by mass or more, 1% by mass or more, 10% by mass or more, relative to the total amount of the oral composition. , 20% by weight or more, or 50% by weight or more, and may be, for example, 100% by weight or less, 80% by weight or less, or 70% by weight or less.
  • the glycerol-1-phosphate moiety, the ethanolamine phosphate moiety and the eicosapentaenoic acid moiety of the oral composition of the present invention, and the phospholipid represented by the formula (I) may be derived from organisms. It may be synthesized, or it may be derived from a mixture of two or more of them, but from the viewpoint of safety in oral ingestion, preferably. Said organisms are, for example, selected from microorganisms (algae, bacteria, archaea, fungi, yeast, etc.), plants, marine and aquatic animals (eg, fish, crustaceans, etc.), and terrestrial animals.
  • the oral composition of the present invention preferably contains an extract of a bacterium of the genus Shewanella or a mutant strain thereof, from the viewpoint of exhibiting the effects of the present invention more remarkably.
  • Bacteria belonging to the genus Shewanella belong to the family Shewanellaceae, and are Gram-negative, non-spore-forming anaerobic bacilli that are mainly distributed in the marine environment, and include barophilic bacteria, psychrophilic bacteria, and the like that live in the deep sea and the like.
  • a "mutant strain" of a specific species refers to a strain in which a mutation has occurred in the DNA possessed by the original strain of the species.
  • the mutation is not particularly limited, and may be, for example, base substitution, deletion, insertion, duplication, translocation or inversion in genomic DNA or a plasmid originally carried by the strain. Mutations may be naturally occurring or artificially occurring.
  • Shewanella bacterium or its mutant may further contain naturally-derived or artificial DNA such as plasmids and bacterial artificial chromosomes (BAC) in addition to genomic DNA.
  • naturally-derived or artificial DNA such as plasmids and bacterial artificial chromosomes (BAC) in addition to genomic DNA.
  • BAC bacterial artificial chromosomes
  • the genome sequence of the mutant is, for example, 90% or more, 95% or more, 97% or more, 98% or more, 99% or more, 99.5% or more, 99.9% or more of the reference genome sequence of the organism. , has a sequence identity of greater than or equal to 99.99% or greater than or equal to 99.999%.
  • Shewanella bacteria examples include Shewanella woodyi, Shewanella electrodiphila, S. marintestina, S. schlegeliana, and Shewanella cylae. (S. sairae), S. pealeana, S. hanedai, S. gelidimarina, S. pneumatophore, Shewanella baltica (S. baltica), S. halifaxensis, S. kaireitica, S. glacialipiscicola, S. fidelis, Shewanella aquimarina (S. aquimarina), S. waksmanii, S. marisflavi, S. affinis, S. colwelliana, S.
  • Shewanella bacterium is preferably Shewanella woodyi, more preferably Shewanella woodyi GS001 strain.
  • Shewanella udii See, for example, Brenner et al. (The Proteobacteria, 2005, p.480-491), Zhao et al. (Int. J. Syst. Evol Microbiol., 2005, Vol. 55, p. 1511-1520), Makemson, J.C. et al. (Int. J. Syst. Bacteriol., 1997, Vol.47, Issue 4, p.1034-1039), Ivanova et al. (Int. J. Syst. Evol. Microbiol. 2003, Vol.53, p.577-582).
  • the sequence identity of the 16S rDNA sequence thereof to the 16S rDNA sequence (SEQ ID NO: 1) of the following Shewanella oudii strain GS001 is preferably 95% or more, more preferably 96% or more, and 97%. 98% or more is more preferable, and 99% or more is particularly preferable.
  • the identity of the 16S rDNA sequence is determined using Align two or more sequences in blastn (for base sequences) of BLAST (https://blast.ncbi.nlm.nih.gov/) of NCBI. It is the percentage of "Identities" obtained by inputting a sequence to compare a specific sequence to Query Sequence and performing alignment with default parameters.
  • the Shewanella udii strain GS001 (hereinafter sometimes referred to as "GS001 strain") is a strain isolated from the intestinal tract of Nigisu, a deep-sea fish.
  • the 16S rDNA sequence of strain GS001 is shown in SEQ ID NO:1.
  • the GS001 strain is characterized by being able to grow well using glucose as the sole carbon source.
  • the GS001 strain was cultured with shaking (150 rpm) at 15°C using a 100 mL flask containing 50 mL of a modified M9 liquid medium containing 10% (w/v) glucose (modified M9 + Glc liquid medium) for 48 hours.
  • OD600nm can grow to a cell density of 5 or more.
  • the GS001 strain is characterized by being able to grow well in a semi-synthetic medium containing glucose and yeast extract.
  • the GS001 strain is aerated cultured at 15 ° C.
  • the dry cell weight can grow to 35 g/L or more in 75 hours.
  • the GS001 strain is characterized by a high EPA content.
  • the GS001 strain was aerated at 15° C. (1 vvm air, 150-750 rpm) using a 3 L jar fermenter containing 2 L of modified M9+Glc liquid medium containing 0.5% (w/v) yeast extract. At times, the EPA content per dry cell weight can be maintained above 0.5 g/100 g dry cell weight.
  • the GS001 strain is characterized by being able to grow in sodium chloride concentrations as low as 0.5% (w/v).
  • the GS001 strain was cultured with shaking (150 rpm) at 15 ° C. using a 100 mL flask containing 50 mL of modified M9 + Glc medium with a sodium chloride concentration of 0.5% (w / v). can grow to a density of 3 or more.
  • the GS001 strain was granted accession number NITE P-03460 on April 15, 2021 at the Patent Microorganism Depositary Center, National Institute of Technology and Evaluation (zip code 292-0818, 2-Kazusa Kamatari, Kisarazu City, Chiba Prefecture, Japan). 5-8 Room 122).
  • the GS001 strain is identified as Shewanella woodyi, accession number NITE BP-03460, and is registered at the Patent Microorganism Depositary Center, National Institute of Technology and Evaluation (zip code 292-0818, 2-5 Kazusa Kamatari, Kisarazu City, Chiba Prefecture, Japan). 8 122) under the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure (National Deposit Date April 15, 2021; Request for Transfer to International Deposit Date April 4, 2022 Day).
  • the genus Shewanella or its mutants contain the phospholipid of formula (I) at a high intracellular content. Therefore, an extract of the genus Shewanella or a mutant strain thereof can be suitably used in the oral composition of the present invention. And, since the Shewanella udii GS001 strain has the characteristics described above, it is particularly suitable for industrial production of the phospholipid of the formula (I).
  • Shewanella and their mutant strains can be cultured using media commonly used for culturing heterotrophic bacteria. Culture conditions are not particularly limited as long as Shewanella bacteria can grow. ), and Shewanella electrodyphila can be set based on the description in Zhang J. et al. (PLoS One, 2017, Vol.12, No.11:e0188081).
  • the extract of the genus Shewanella or its mutants is not particularly limited as long as it is an extract of cell components, for example, a cell disruption obtained by disrupting cells, a cell lysate obtained by lysing cells, or any of them may be a solvent extract obtained by solvent extraction from Among them, the extract of the genus Shewanella or its mutant is preferably a solvent extract from the viewpoint of improving the absorbability of the active ingredient into the body.
  • the solvent used in the preparation of the solvent extract is not particularly limited as long as it can be used in an oral composition that can be ingested or administered, and is appropriately selected depending on the form of the oral composition (medicine, food and drink, etc.). can choose. Alcohol, for example, is preferred as the solvent.
  • the extraction of the phospholipid of the formula (I) from Shewanella bacteria or mutants thereof can be carried out by known methods.
  • cells are recovered from the culture medium of the bacterium of the genus Shewanella or its mutant strain by centrifugation, filtration, or the like, and all lipids are extracted from the cells with the above solvent.
  • the amount of extraction solvent used for cells is not particularly limited.
  • the amount of extraction solvent can be, for example, about 1 to 1000 times (preferably about 5 to 200 times) the amount of cells.
  • the extraction operation can usually be carried out under normal pressure in the range from room temperature to the boiling point of the solvent. The extraction operation may be performed only once or may be performed multiple times.
  • a fresh extraction solvent may be added again to the cell residue that has been subjected to the extraction operation once, or the extraction operation may be performed again.
  • cell debris may be removed by centrifugation, filtration, ultrafiltration, or the like.
  • the extraction solvent may be removed by heating or distillation under reduced pressure using an evaporator or the like.
  • various purification treatments may be performed to purify the phospholipids.
  • Purification treatments include, for example, salting out, dialysis, recrystallization, reprecipitation, solvent extraction, adsorption, concentration, filtration, gel filtration, ultrafiltration, various chromatography (thin layer chromatography, column chromatography, ion exchange chromatography, high-performance liquid chromatography, adsorption chromatography, etc.), but are not limited thereto.
  • the oral composition of the present invention is orally ingested or administered. ), pharmaceuticals, quasi-drugs, feeds or feeds, or preparations for their manufacture (eg, additives).
  • the oral composition of the present invention is a drug or quasi-drug
  • its forms include, for example, liquids, tablets, powders, granules, capsules, powders, lozenges, syrups and the like.
  • composition for oral use of the present invention is a food or drink
  • its form includes, for example, sweets (caramel, candy, etc.), frozen desserts (ice cream, etc.), dairy products (yogurt, etc.), various processed foods, various seasonings. foods, various beverages, functional foods, dietary supplements, and supplements.
  • composition for oral use of the present invention is in the form of a drug or quasi-drug, or a formulation for manufacturing thereof
  • other ingredients include, for example, pharmaceutically acceptable carriers (excipients, disintegrants, binders , lubricants, colorants, plasticizers, antioxidants, pH adjusters, thickeners, surfactants, stabilizers, preservatives, perfumes, fluidizers, liquid media, foaming agents, etc.) Any one or a combination of two or more selected from, but not limited to, these.
  • composition for oral use of the present invention is in the form of a food or drink, a feed or feed, or a formulation for producing them
  • other ingredients include, for example, fish meat, vegetables, grains, dairy products, fermented products, spices, and proteins. , amino acids, sugars, various seasonings, sweeteners, flavoring agents, flavors, oils and fats, vitamins, thickeners, gelling agents, antioxidants, preservatives, chelating agents, pH adjusters, colorants Any one or a combination of two or more selected from, but not limited to, these.
  • glycerol-1-phosphate moieties CH 2 OH-CHOH-CH 2 -OPO
  • EPA-bound glycerol-1-phosphate-type phospholipids EPA-bound ethanolamine-type phospholipids. 2 - -
  • ethanolamine phosphate moieties NH 3 + -CH 2 -CH 2 -OPO 2 - -
  • composition for oral use of the present invention contains an effective amount of the above-mentioned active ingredient, so that, for example, the effect of increasing muscle; action to suppress the rise of; action to suppress fat accumulation in the liver; action to increase omega-3 fatty acids (especially eicosapentaenoic acid, docosapentaenoic acid and docosahexaenoic acid) in the body (e.g., liver) and omega-6 fatty acids (especially, arachidonic acid); reducing blood triglycerides, total cholesterol, LDL cholesterol and non-HDL cholesterol; and reducing the amount of white adipose tissue.
  • active ingredient e.g., the effect of increasing muscle; action to suppress the rise of; action to suppress fat accumulation in the liver; action to increase omega-3 fatty acids (especially eicosapentaenoic acid, docosapentaenoic acid and docosahexaenoic acid) in the body (e.g., liver) and omega
  • composition for oral use of the present invention are remarkably higher than krill oil containing a large amount of phosphatidylcholine containing docosahexaenoic acid and eicosapentaenoic acid as fatty acids.
  • the oral composition of the present invention increases omega-3 fatty acids as described above, it can be used to increase omega-3 fatty acids in the body (for example, liver).
  • the omega-3 fatty acid is preferably at least one selected from docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA), more preferably DHA.
  • omega-3 fatty acids As used herein, “improving the balance between omega-3 fatty acids and omega-6 fatty acids” means increasing the ratio of omega-3 fatty acids to omega-6 fatty acids in total lipids in the body (for example, liver).
  • Omega-6 fatty acids include, for example, arachidonic acid (AA), linoleic acid, ⁇ -linolenic acid, dihomo ⁇ -linolenic acid, docosatetraenoic acid and 22:5n-6 docosapentaenoic acid (ospondonic acid).
  • omega-3 fatty acids examples include eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), 22:5n-3 docosapentaenoic acid (clupanodonic acid, DPA), ⁇ -linolenic acid, stearidonic acid and eicosatetra. enoic acid.
  • omega-6 fatty acids are metabolized to pro-inflammatory lipid mediators and omega-3 fatty acids are metabolized to anti-inflammatory lipid mediators. , leading to the prevention or amelioration of inflammation in the body. Therefore, the oral composition of the present invention also has an effect of preventing or improving inflammation.
  • the oral composition of the present invention also exerts an effect of preventing or ameliorating conditions, symptoms or diseases associated with decreased muscle or muscle strength, such as locomotive syndrome and sarcopenia, through its action of increasing muscle mass.
  • the composition for oral use of the present invention through the action of increasing muscle, the action of suppressing the rise of blood sugar level, the action of suppressing the accumulation of fat in the liver, and the action of suppressing the increase of white adipose tissue, is effective against lifestyle-related diseases or metabolic syndrome. There is also an effect of prevention or improvement of
  • the oral composition of the present invention increases muscle or muscle strength, suppresses muscle or muscle strength loss, improves glucose metabolism (for example, improves blood sugar level, more specifically, at least one selected from the group consisting of improvement of hyperglycemia, improvement of postprandial blood sugar level, improvement of average blood sugar level or HbA1c level, etc.), suppression of fat accumulation in the liver, and improvement of the balance of omega-3 fatty acids and omega-6 fatty acids in the body It can be used for one species.
  • the composition for oral use of the present invention includes at least one selected from the group consisting of diabetes, fatty liver (non-alcoholic fatty liver or alcoholic fatty liver), inflammation, locomotive syndrome, sarcopenia, lifestyle-related diseases and metabolic syndrome. can be used for the prevention or improvement of
  • composition for oral use of the present invention is further selected from the group consisting of improving blood lipid status (for example, improving blood neutral fat (triglyceride) level, cholesterol level or LDL cholesterol level, etc.) and promoting weight loss.
  • improving blood lipid status for example, improving blood neutral fat (triglyceride) level, cholesterol level or LDL cholesterol level, etc.
  • promoting weight loss can also be used for at least one
  • the oral composition of the present invention is also used for the prevention or improvement of at least one selected from the group consisting of dyslipidemia (e.g., hypertriglyceridemia, hyperLDL cholesterolemia), arteriosclerosis and obesity. can be used.
  • dyslipidemia e.g., hypertriglyceridemia, hyperLDL cholesterolemia
  • arteriosclerosis e.g., arteriosclerosis and obesity.
  • the oral composition of the present invention can be used therapeutically or non-therapeutically.
  • non-therapeutic means not including medical practice, for example, not including surgery, treatment or diagnosis of humans by a doctor or those under the direction of a doctor.
  • the oral composition of the present invention has the effect of maintaining or promoting the expression of the ELOVL2, ELOVL5, FADS1 or FADS2 gene in the liver of a subject, as shown in the Examples. Therefore, the oral composition of the present invention can be used to maintain or promote ELOVL2, ELOVL5, FADS1 or FADS2 gene expression (eg, mRNA expression) in the body (preferably in the liver).
  • ELOVL2 (Fatty Acid Elongase 2) and ELOVL5 (Fatty Acid Elongase 5) are genes encoding enzymes that catalyze chain elongation of unsaturated fatty acids.
  • FADS1 (Fatty Acid Desaturase 1)
  • FADS2 (Fatty Acid Desaturase 2) are genes encoding enzymes that introduce double bonds into fatty acids. These genes are involved in the synthesis of polyunsaturated fatty acids (PUFA) such as EPA, DHA and DPA.
  • PUFA polyunsaturated fatty acids
  • the oral composition of the present invention unlike krill oil and other oils containing polyunsaturated fatty acids of a different type than the present invention, inhibits the expression of these genes in the liver.
  • the oral composition of the present invention may be a composition indicating the above uses as efficacy or function.
  • Such indications include, for example, direct indications of the above uses or indications that substantially imply the above uses.
  • Examples of direct indications for the above uses include “maintenance of muscle/strength” and “keep muscle” as examples of indications for suppressing muscle or muscle strength loss; “Slows blood sugar level”, “Lowers blood sugar level”, “Reduces high blood sugar level to normal”, “Slows postprandial rise in blood sugar level”, “Reduces postprandial blood sugar level “Reduce blood sugar rise”, “Reduce postprandial blood sugar level”, “Reduce high fasting blood sugar level to normal”, “Lower blood sugar”, etc.; “reduce visceral fat”, “reduce visceral fat accumulation”, “reduce liver fat”, “reduce visceral fat”, “reduce belly fat”, etc., but are not limited to these.
  • indications that substantially indicate the above uses include, for example, figurative indications of the above uses, indications of subjects for which intake or administration is recommended, and indications that they act on specific diseases, symptoms, or health conditions. etc.
  • indications include “for those who are concerned about muscle weakness,” “muscle/strength support,” “muscle storage,” “blood sugar care,” “blood sugar support,” and “for those who are concerned about blood sugar levels.”
  • blood sugar countermeasures “those who are concerned about belly fat”, “refreshing around the stomach”, “anti-inflammatory”, “metabolite countermeasures”, “locomo countermeasures", “lifestyle disease countermeasures”, etc. include but are not limited to:
  • Subjects to which the oral composition of the present invention is ingested or administered are humans or non-human animals (e.g. mammals other than humans), preferably diabetes, fatty liver, inflammation, locomotive syndrome, sarcopenia or metabolic syndrome. or at risk of having those diseases, conditions or conditions.
  • the target age is not particularly limited, but it applies to adults, for example.
  • the dosage or intake of the oral composition of the present invention is appropriately determined according to the body weight, sex, age, condition, or other factors of the subject of administration or intake.
  • the dosage or intake of the oral composition of the present invention is, for example, 0 as the total amount of the phosphorylated ethanolamine moiety, the glycerol-1-phosphate moiety and the eicosapentaenoic acid moiety per day. .1-1,000 mg/kg body weight, 0.5-500 mg/kg body weight or 1-100 mg/kg body weight.
  • Oral compositions of the invention are administered or taken, for example, 1 to 5, 1 to 3, or 2 to 3 times daily.
  • SW oil Shewanella udii GS001 strain extract
  • a Shewanella udii GS001 strain extract (hereinafter sometimes referred to as SW oil) was prepared by the following procedure. (1) Cells collected from a culture of Shewanella udii strain GS001 were dried. (2) Lipids were extracted from the dried microbial cells using alcohol. (3) The extract was filtered and the filtrate was further concentrated. (4) Separation operation was performed using hexane, the hexane fraction was separated and concentrated, and the precipitate was dried to obtain SW oil.
  • SE oil Shewanella electrodyphila extract
  • ⁇ Krill oil fish oil> Krill oil contains mainly phosphatidylcholine (PC) as phospholipid and little PE and PG.
  • PC phosphatidylcholine
  • a commercial product from Aker BioMarine was used.
  • a fish oil commercially available from Maruha Nichiro Co., Ltd. was used.
  • Soybean oil, lard> Soybean oil used was Fuji Film Wako Pure Chemical Co., Ltd., and lard was used commercially available from Junsei Chemical Co., Ltd.
  • Table 1 shows the contents of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), ethanolamine-type phospholipid (PE), and glycerol-1-phosphate-type phospholipid (PG) in SW oil and krill oil. Ta.
  • the contents of EPA and DHA represent the total amount of free fatty acids and those contained as acyl groups in triglycerides, phospholipids, and the like.
  • SW oil does not contain DHA.
  • Total lipids were extracted from dried cells of Shewanella electrodyphila by the following procedure, and polar lipids were further fractionated.
  • the content of phospholipid-type EPA relative to the total amount of EPA in the lipid obtained from the dried cells was 61.3% by mass
  • the content of neutral lipid-type EPA was 32.6% by mass
  • the content of glycolipid-type EPA was The amount was 6.1% by weight.
  • PG was 32.4% by mass
  • PE was 59.7% by mass with respect to the total amount of phospholipids in the lipids obtained from the dried cells.
  • the PE and PG fractions were peeled off from the TLC plate, transferred into a glass column, and each lipid was eluted with 50 mL of methanol. Thereafter, methanol was distilled off using an evaporator to obtain PE and PG.
  • Table 2 shows the fatty acid composition analysis results in the total lipids of SE oil, fish oil, and krill oil.
  • Feed was given ad libitum from the 0th to 8th days after the start of rearing, and from the 9th day onwards, feeding was restricted according to the food intake of the SW oil group (Fig. 3). Water was given ad libitum. There was no significant difference in body weight transition of mice between groups during the study.
  • the blood glucose level was measured by incising the vein at the tip of the tail of the mouse with a scalpel under no anesthesia, and measuring the blood leaking from the incised surface with a blood glucose measuring device (Statstrip Express Glucose Ketone, manufactured by Nova Biomedical Co., Ltd.). The blood glucose was sucked into the connected blood glucose measuring chip and measured.
  • a blood glucose measuring device Statstrip Express Glucose Ketone, manufactured by Nova Biomedical Co., Ltd.
  • the blood glucose was sucked into the connected blood glucose measuring chip and measured.
  • 20 ⁇ L of the blood obtained by the above whole blood collection was aliquoted and stored at ⁇ 70° C. or below.
  • a DCA bandage manufactured by SIEMENS
  • adipose tissue weight White adipose tissue was removed from each group of mice after feeding for 6 weeks, and the weight of the perirenal/retroabdominal fat and all of the white adipose tissue was measured.
  • PUFA polyunsaturated fatty acid
  • FIG. 4 shows the results of comparing the gastrocnemius muscle weights of the mice in each group.
  • the SW oil group significantly increased the gastrocnemius muscle weight compared to the control group, whereas no significant difference was observed between the low dose krill oil group and the high dose krill oil group.
  • FIG. 5A The fasting blood sugar level on the 41st day is shown in FIG. 5A, and the blood sugar level and HbA1c after 2 hours of feeding on the 42nd day are shown in FIGS. 5B and 5C.
  • the blood sugar level was suppressed significantly lower in the SW oil group than in the control group and the two groups administered with krill oil.
  • the HbA1c value was also significantly lower in the SW oil group than in the control group and the two groups to which krill oil was administered.
  • FIG. 6 shows the results of comparing the liver weights of the mice in each group after completing feeding for 6 weeks.
  • the SW oil group did not show a significant difference from the control group, but the two groups administered krill oil showed a significant increase in liver weight compared to the control group. It is speculated that the phospholipids contained in krill oil induced fat accumulation in the liver.
  • FIGS. 7A and 7B The evaluation results of blood triglyceride and cholesterol are shown in FIGS. 7A and 7B.
  • the SW oil group had significantly lower blood triglycerides, total cholesterol, LDL cholesterol and non-HDL cholesterol levels than the control group.
  • FIG. 8 shows the results of comparing the adipose tissue weights of the mice of each group after completing feeding for 6 weeks.
  • the total amount of white adipose tissue and the weight of perirenal and posterior abdominal wall fat were significantly lower than in the control group.
  • FIG. 9 shows the n-3 PUFA composition in the liver of each group of mice after feeding for 6 weeks.
  • the SW oil group showed a significant increase in the amount of EPA (20:5n-3) accumulated in the liver compared to the control group, and a significant increase in its proportion in the fatty acid composition was also observed.
  • DHA 22:6n-3)
  • DPA docosapentaenoic acid
  • the krill oil group although the krill oil contains a relatively large amount of DHA, an increase in the amount of DHA accumulated in the liver and the proportion of DHA in the fatty acid composition was not observed. Also, no significant increase in DPA in the liver was observed.
  • the Shewanella bacterium extract has (i) an effect of increasing muscle mass or an effect of suppressing muscle loss, (ii) fasting blood sugar level, postprandial blood sugar level, and average blood sugar level reflected by HbA1c (iii) suppressing fat accumulation in the liver, (iv) suppressing increases in total cholesterol, LDL cholesterol and non-HDL cholesterol, and improving the state of blood lipids. (v) an effect of suppressing an increase in the amount of white adipose tissue; and (vi) an effect of increasing EPA, DPA and DHA in the liver.
  • a comparison of the effects of the SW oil group and the low dose krill oil group shows that these effects are due to EPA-bound ethanolamine-type phospholipids and EPA-bound glycerol-type phospholipids.
  • G1 control group
  • G2 low dose SE oil group (Shewanella-L)
  • G3 High dose SE oil group (Shewanella-H)
  • G4 low dose fish oil group (Fish-L)
  • G5 High dose fish oil group: (Fish-H)
  • G6 Low dose krill oil group (Krill-L)
  • G7 high dose krill oil group (Krill-H)
  • mice in each group were bred by freely ingesting the feed and water having the composition shown in Table 4 for 4 weeks. After the breeding period ended, the liver was removed from the mouse.
  • Shewanella genus extract has the effect of significantly increasing the ratio of omega-3 fatty acids to omega-6 fatty acids.
  • this effect is also due to EPA-bound ethanolamine-type phospholipids and EPA-bound glycerol-type phospholipids.
  • Figures 11A to 11D show the results of quantifying the amount of mRNA for each gene.
  • Shewanella extract was given to mice, the expression of ELOVL2 was significantly promoted compared to the control group, and the expression levels of ELOVL5, FADS1 and FADS2 tended to be maintained or promoted.
  • krill oil was given to mice, it was found that the expression levels of ELOVL2, ELOVL5, FADS1 and FADS2 in the liver were significantly reduced.

Abstract

The present invention addresses the problem of providing a novel lipid functional ingredient that can be taken or administered orally. An example of a composition containing said ingredient is a composition containing glycerol-1-phosphate moieties (CH2OH-CHOH-CH2-OPO2 --), ethanolamine phosphate moieties (NH3 +-CH2-CH2-OPO2 --), and eicosapentaenoic acid moieties CH3CH2(CH=CHCH2)5(CH2)2CO-), the molar ratio of ethanolamine phosphate moieties to glycerol-1-phosphate moieties being 0.01-100.

Description

経口用組成物oral composition
 本発明は、経口で摂取又は投与される組成物に関する。本発明はまた、筋肉又は筋力の増加、筋肉又は筋力の減少抑制、糖代謝状態の改善、肝臓の脂肪蓄積抑制及び体内のオメガ3脂肪酸とオメガ6脂肪酸のバランスの改善のための方法に関する。 The present invention relates to compositions that are orally ingested or administered. The present invention also relates to methods for increasing muscle or strength, inhibiting muscle or strength loss, improving glucose metabolism, inhibiting fat accumulation in the liver, and improving the balance of omega-3 and omega-6 fatty acids in the body.
 脂質は三大栄養素の一つであり、エネルギー源としての重要な地位を占める一方で、特定の脂質が優れた生理活性を有することが知られている。 Lipids are one of the three major nutrients, and while they occupy an important position as an energy source, it is known that certain lipids have excellent physiological activity.
 魚油等はトリグリセリド中にエイコサペンタエン酸(EPA;(5Z,8Z,11Z,14Z,17Z)-Eicosapentaenoic acid)を多く含有する。EPAは、オメガ3脂肪酸の一つであり、胎児の発育に不可欠であり、血中中性脂肪(トリグリセリド)を低下させ、心血管疾患リスクを低減すること、アルツハイマー病の予防に寄与することなどが報告されている(非特許文献1)。 Fish oil and the like contain a large amount of eicosapentaenoic acid (EPA; (5Z, 8Z, 11Z, 14Z, 17Z)-Eicosapentaenoic acid) in triglycerides. EPA is one of the omega-3 fatty acids, which is essential for fetal development, lowers blood neutral fat (triglyceride), reduces the risk of cardiovascular disease, contributes to the prevention of Alzheimer's disease, etc. has been reported (Non-Patent Document 1).
 また、EPAは、オメガ6脂肪酸であるアラキドン酸からプロスタグランジンやロイコトリエン等の炎症性脂質メディエーターが産生されるのを抑制する作用が報告されている。さらに、EPA自体が代謝により抗炎症性脂質メディエーターとなり、炎症を抑制することが知られている。 EPA is also reported to have the effect of suppressing the production of inflammatory lipid mediators such as prostaglandins and leukotrienes from the omega-6 fatty acid arachidonic acid. Furthermore, it is known that EPA itself becomes an anti-inflammatory lipid mediator through metabolism and suppresses inflammation.
 南極オキアミから抽出精製された食用油であるクリルオイルは、リン脂質の一種であるホスファチジルコリンを豊富に含む。ホスファチジルコリンは、記憶力の維持に寄与することが知られている。また、特許文献1には、高度不飽和脂肪酸を構成脂肪酸として含むリン脂質を有効成分として含有する脳萎縮抑制剤が記載されている。 Krill oil, an edible oil extracted and refined from Antarctic krill, is rich in phosphatidylcholine, a type of phospholipid. Phosphatidylcholine is known to contribute to memory maintenance. Further, Patent Document 1 describes a cerebral atrophy inhibitor containing, as an active ingredient, a phospholipid containing a highly unsaturated fatty acid as a constituent fatty acid.
 しかし、人々の健康への意識の高まりにより、依然として経口で容易に摂取又は投与が可能な新たな健康機能成分が必要とされている。 However, due to the growing awareness of health among people, there is still a need for new health functional ingredients that can be easily ingested or administered orally.
特開2013-216654号公報JP 2013-216654 A
 本発明の課題は、経口で摂取又は投与が可能な、新規の機能性脂質成分の提供に関する。 The subject of the present invention relates to the provision of novel functional lipid components that can be orally ingested or administered.
 本発明者らは、上述した課題を解決すべく鋭意研究を重ねた結果、グリセロール-1-リン酸部分(CHOH-CHOH-CH-OPO -)、エタノールアミンリン酸部分(NH -CH-CH-OPO -)及びエイコサペンタエン酸部分(CHCH(CH=CHCH(CHCO-)を含有し、グリセロール-1-リン酸部分に対するエタノールアミンリン酸部分のモル比が0.01~100である組成物が、対象に経口で摂取又は投与されることによって特有の生理活性をもたらし得ることを見出し、本発明を完成させた。 The present inventors have made intensive studies to solve the above-mentioned problems, and as a result, found that glycerol-1-phosphate moiety (CH 2 OH--CHOH--CH 2 --OPO 2 -- ), ethanolamine phosphate moiety (NH 3 + -CH 2 -CH 2 -OPO 2 - -) and eicosapentaenoic acid moieties (CH 3 CH 2 (CH=CHCH 2 ) 5 (CH 2 ) 2 CO-) and glycerol-1-phosphate moieties The inventors have found that compositions having a molar ratio of ethanolamine phosphate moieties to 0.01 to 100 can provide unique physiological activities when orally ingested or administered to a subject, thus completing the present invention.
 すなわち、本発明は、以下の態様を包含する。
 [1]
 グリセロール-1-リン酸部分(CHOH-CHOH-CH-OPO -)、エタノールアミンリン酸部分(NH -CH-CH-OPO -)、及びエイコサペンタエン酸部分(CHCH(CH=CHCH(CHCO-)を含有し、
 グリセロール-1-リン酸部分に対するエタノールアミンリン酸部分のモル比が、0.01~100であり、
 経口で摂取又は投与される、組成物。
 [2]
 前記グリセロール-1-リン酸部分及びエタノールアミンリン酸部分の合計に対する前記エイコサペンタエン酸部分のモル比が、0.01~20である、[1]に記載の組成物。
 [3]
 式(I)で表されるリン脂質
Figure JPOXMLDOC01-appb-C000002
 (式中、R及びRは水素原子及びアシル基から選択され、
 R及びRの少なくとも1つはエイコサペンタエン酸部分であり、
 Xはグリセロール-1-リン酸部分及びエタノールアミンリン酸部分から選択される)を含有する、[1]又は[2]に記載の組成物。
 [4]
 シェワネラ属(Shewanella)細菌又はその変異株の抽出物を含有する、[1]~[3]のいずれか1に記載の組成物。
 [5]
 シェワネラ・ウーディイ(Shewanella woodyi)又はその変異株の抽出物を含有する、
[4]に記載の組成物。
 [6]
 シェワネラ・ウーディイ(Shewanella woodyi)GS001株(受託番号NITE BP-03460)又はその変異株の抽出物を含有する、[5]に記載の組成物。
 [7]
 筋肉又は筋力の増加、筋肉又は筋力の減少抑制、糖代謝状態の改善、肝臓の脂肪蓄積抑制及び体内のオメガ3脂肪酸とオメガ6脂肪酸のバランスの改善からなる群より選ばれる少なくとも1種のために使用される、[1]~[6]のいずれか1に記載の組成物。
 [8]
 糖尿病、脂肪肝、炎症、ロコモティブシンドローム、サルコペニア、生活習慣病及びメタボリックシンドロームからなる群より選ばれる少なくとも1種の予防又は改善のために使用される、[1]~[6]のいずれか1に記載の組成物。
 [9]
 体内においてDHA及びDPAから選ばれる少なくとも1つを増加させるために使用される、[1]~[6]のいずれか1に記載の組成物。
That is, the present invention includes the following aspects.
[1]
glycerol-1-phosphate moiety (CH 2 OH-CHOH-CH 2 -OPO 2 - -), ethanolamine phosphate moiety (NH 3 + -CH 2 -CH 2 -OPO 2 - -), and eicosapentaenoic acid moiety (CH 3 CH 2 (CH═CHCH 2 ) 5 (CH 2 ) 2 CO—),
the molar ratio of ethanolamine phosphate moieties to glycerol-1-phosphate moieties is from 0.01 to 100;
Compositions taken or administered orally.
[2]
The composition of [1], wherein the molar ratio of said eicosapentaenoic acid moieties to the sum of said glycerol-1-phosphate moieties and ethanolamine phosphate moieties is from 0.01 to 20.
[3]
Phospholipid represented by formula (I)
Figure JPOXMLDOC01-appb-C000002
(wherein R 1 and R 2 are selected from hydrogen atoms and acyl groups,
at least one of R 1 and R 2 is an eicosapentaenoic acid moiety;
X is selected from glycerol-1-phosphate moieties and ethanolamine phosphate moieties).
[4]
The composition according to any one of [1] to [3], which contains an extract of Shewanella bacteria or a mutant strain thereof.
[5]
containing an extract of Shewanella woodyi or a variant thereof,
The composition according to [4].
[6]
The composition according to [5], which contains an extract of Shewanella woodyi strain GS001 (accession number NITE BP-03460) or a mutant strain thereof.
[7]
For at least one selected from the group consisting of increasing muscle or muscle strength, suppressing muscle or muscle strength loss, improving glucose metabolism, suppressing fat accumulation in the liver, and improving the balance of omega-3 fatty acids and omega-6 fatty acids in the body. The composition according to any one of [1] to [6], which is used.
[8]
Any one of [1] to [6], which is used for the prevention or improvement of at least one selected from the group consisting of diabetes, fatty liver, inflammation, locomotive syndrome, sarcopenia, lifestyle-related diseases and metabolic syndrome The described composition.
[9]
The composition according to any one of [1] to [6], which is used for increasing at least one selected from DHA and DPA in the body.
 [10]
 筋肉又は筋力の増加、筋肉又は筋力の減少抑制、糖代謝状態の改善、肝臓の脂肪蓄積抑制、体内のオメガ3脂肪酸とオメガ6脂肪酸のバランスの改善のための、又は、糖尿病、脂肪肝、炎症、ロコモティブシンドローム、サルコペニア又はメタボリックシンドロームの予防若しくは改善のための方法であって、[1]~[6]のいずれか1に記載の組成物の有効量を、それを必要とする対象に投与すること又は摂取させることを含む、方法。
[10]
For increasing muscle or muscle strength, suppressing muscle or muscle strength loss, improving glucose metabolism, suppressing fat accumulation in the liver, improving the balance of omega-3 fatty acids and omega-6 fatty acids in the body, or diabetes, fatty liver, inflammation , locomotive syndrome, sarcopenia, or metabolic syndrome. or ingesting.
 [11]
 筋肉又は筋力の増加、筋肉又は筋力の減少抑制、糖代謝状態の改善、肝臓の脂肪蓄積抑制及び体内のオメガ3脂肪酸とオメガ6脂肪酸のバランスの改善からなる群より選ばれる少なくとも1種のために使用される、経口で摂取又は投与される製剤の製造のための[1]~[6]のいずれか1に記載の組成物の使用。
 [12]
 糖尿病、脂肪肝、炎症、ロコモティブシンドローム、サルコペニア、生活習慣病及びメタボリックシンドロームからなる群より選ばれる少なくとも1種の予防又は改善のために使用される、経口で摂取又は投与される製剤の製造のための[1]~[6]のいずれか1に記載の組成物の使用。
[11]
For at least one selected from the group consisting of increasing muscle or muscle strength, suppressing muscle or muscle strength loss, improving glucose metabolism, suppressing fat accumulation in the liver, and improving the balance of omega-3 fatty acids and omega-6 fatty acids in the body. Use of the composition according to any one of [1] to [6] for the manufacture of an orally ingested or administered formulation.
[12]
For the manufacture of orally ingested or administered formulations used for the prevention or improvement of at least one selected from the group consisting of diabetes, fatty liver, inflammation, locomotive syndrome, sarcopenia, lifestyle-related diseases and metabolic syndrome Use of the composition according to any one of [1] to [6].
 [13]
 体内のELOVL2、ELOVL5、FADS1又はFADS2遺伝子の発現を維持又は促進するために使用される、[1]~[6]のいずれか1に記載の組成物。
 [14]
 体内のELOVL2、ELOVL5、FADS1又はFADS2遺伝子の発現の維持又は促進のための方法であって、[1]~[6]のいずれか1に記載の組成物の有効量を、それを必要とする対象に投与すること又は摂取させることを含む、方法。
 [15]
 体内のELOVL2、ELOVL5、FADS1又はFADS2遺伝子の発現を維持又は促進するために使用される、経口で摂取又は投与される製剤の製造のための[1]~[6]のいずれか1に記載の組成物の使用。
[13]
The composition according to any one of [1] to [6], which is used for maintaining or promoting expression of ELOVL2, ELOVL5, FADS1 or FADS2 gene in vivo.
[14]
A method for maintaining or promoting ELOVL2, ELOVL5, FADS1 or FADS2 gene expression in the body, comprising an effective amount of the composition according to any one of [1] to [6]. A method comprising administering to or ingesting by a subject.
[15]
The method according to any one of [1] to [6] for the manufacture of an orally ingested or administered formulation, which is used to maintain or promote the expression of ELOVL2, ELOVL5, FADS1 or FADS2 gene in the body. Use of the composition.
 本発明の組成物は、経口で摂取又は投与が可能である。そして、本発明の組成物は、その特有の生理活性により、対象の疾患、症状又は健康状態の予防又は改善のために使用することができる。 The composition of the present invention can be ingested or administered orally. And, the composition of the present invention can be used for prevention or amelioration of diseases, symptoms or health conditions of subjects due to its unique physiological activity.
SWオイル中の脂肪酸組成を表すグラフである。1 is a graph showing fatty acid composition in SW oil. SWオイルのエタノールアミン型リン脂質(PE)画分及びグリセロール-1-リン酸型リン脂質(PG)画分の脂肪酸組成を表すグラフである。1 is a graph representing the fatty acid composition of ethanolamine-type phospholipids (PE) and glycerol-1-phosphate-type phospholipids (PG) fractions of SW oil. 試験例1~3の統計解析のフロー図である。1 is a flowchart of statistical analysis of Test Examples 1 to 3. FIG. 試験例1の各群のマウスの平均摂餌量の推移を表すグラフである。4 is a graph showing changes in average food intake of mice in each group in Test Example 1. FIG. 試験例1の6週間飼育後の各群のマウスの腓腹筋重量を表すグラフである。2 is a graph showing the gastrocnemius muscle weight of mice in each group after 6-week feeding in Test Example 1. FIG. 試験例1の飼育41日目の各群のマウスの空腹時血糖値を表すグラフである。2 is a graph showing fasting blood glucose levels of mice in each group on day 41 of feeding in Test Example 1. FIG. 試験例1の飼育42日目の各群のマウスの給餌2時間後の血糖値を表すグラフである。2 is a graph showing blood glucose levels of mice of each group on day 42 of breeding in Test Example 1, 2 hours after feeding. 試験例1の飼育42日目の各群のマウスのHbA1cの値を表すグラフである。4 is a graph showing HbA1c values of mice in each group on day 42 of breeding in Test Example 1. FIG. 試験例1の6週間飼育後の各群のマウスの肝臓重量を表すグラフである。4 is a graph showing liver weights of mice in each group after feeding for 6 weeks in Test Example 1. FIG. 試験例1の6週間飼育後の各群のマウスの血中トリグリセリド値を表すグラフである。4 is a graph showing blood triglyceride levels of mice in each group after 6-week feeding in Test Example 1. FIG. 試験例1の6週間飼育後の各群のマウスの血中の総コレステロール値(T-CHO)、LDLコレステロール値(LDL-CHO)及び非HDLコレステロール値(Non-HDL-CHO)を表すグラフである。Graph showing blood total cholesterol level (T-CHO), LDL cholesterol level (LDL-CHO) and non-HDL cholesterol level (Non-HDL-CHO) in mice of each group after feeding for 6 weeks in Test Example 1. be. 試験例1の6週間飼育後の各群のマウスの腎周囲・後腹壁周囲脂肪の重量及び個体の白色脂肪組織の合計重量を表すグラフである。1 is a graph showing the weight of perirenal and posterior abdominal wall fat and the total weight of individual white adipose tissue of mice in each group after feeding for 6 weeks in Test Example 1. FIG. 試験例1の6週間飼育後の各群のマウスの肝臓のn-3多価不飽和脂肪酸(PUFA)の脂肪酸組成を表すグラフである。1 is a graph showing the fatty acid composition of n-3 polyunsaturated fatty acids (PUFA) in livers of mice of each group after feeding for 6 weeks in Test Example 1. FIG. 試験例2の4週間飼育後の各群のマウスの肝臓中のアラキドン酸(AA)含有量を表すグラフである。4 is a graph showing the arachidonic acid (AA) content in the liver of mice of each group after four weeks of feeding in Test Example 2. FIG. 試験例2の4週間飼育後の各群のマウスの肝臓中のエイコサペンタエン酸(EPA)含有量を表すグラフである。4 is a graph showing the eicosapentaenoic acid (EPA) content in the liver of mice of each group after 4-week feeding in Test Example 2. FIG. 試験例2の4週間飼育後の各群のマウスの肝臓中のドコサペンタエン酸(DPA)含有量を表すグラフである。4 is a graph showing the content of docosapentaenoic acid (DPA) in the liver of mice of each group after feeding for 4 weeks in Test Example 2. FIG. 試験例2の4週間飼育後の各群のマウスの肝臓中のドコサヘキサエン酸(DHA)含有量を表すグラフである。4 is a graph showing the content of docosahexaenoic acid (DHA) in the liver of mice of each group after 4-week feeding in Test Example 2. FIG. 試験例3の各群のマウスの肝臓中のELOVL2の発現量を表すグラフである。3 is a graph showing the expression level of ELOVL2 in the liver of mice of each group in Test Example 3. FIG. 試験例3の各群のマウスの肝臓中のELOVL5の発現量を表すグラフである。4 is a graph showing the expression level of ELOVL5 in the liver of mice of each group in Test Example 3. FIG. 試験例3の各群のマウスの肝臓中のFADS1の発現量を表すグラフである。4 is a graph showing the expression level of FADS1 in the liver of mice of each group in Test Example 3. FIG. 試験例3の各群のマウスの肝臓中のFADS2の発現量を表すグラフである。3 is a graph showing the expression level of FADS2 in the liver of mice of each group in Test Example 3. FIG.
 以下、本発明の好適な実施形態について詳細に説明する。ただし、本発明は以下の実施形態に限定されるものではない。本明細書において、個別に記載した上限値及び下限値は任意に組み合わせ可能である。 A preferred embodiment of the present invention will be described in detail below. However, the present invention is not limited to the following embodiments. In this specification, the upper limit and lower limit individually described can be arbitrarily combined.
 本明細書中、「飽和脂肪酸」は炭素-炭素二重結合を含まない脂肪酸を表す。また、「不飽和脂肪酸」は、少なくとも1つの炭素-炭素二重結合を含む脂肪酸を表す。 As used herein, "saturated fatty acid" refers to a fatty acid that does not contain a carbon-carbon double bond. "Unsaturated fatty acid" also refers to a fatty acid containing at least one carbon-carbon double bond.
 本明細書中、脂肪酸は、「総炭素数:二重結合数n-X」の形、又はその頭にCを付けた形で表す場合がある。「n-X」は、脂肪酸の炭素鎖のメチル末端から数えてX番目の炭素で初めて二重結合が現れることを意味する。例えば、α-リノレン酸は、「18:3n-3」又は「C18:3n-3」と表される。なお「n-X」の部分を記載しない場合は、総炭素数と二重結合数のみを特定した脂肪酸を表す。 In this specification, fatty acids are sometimes expressed in the form of "total number of carbon atoms: number of double bonds n-X", or in the form with C attached to the head. "nX" means that the double bond first appears at the Xth carbon counted from the methyl end of the carbon chain of the fatty acid. For example, α-linolenic acid is represented as "18:3n-3" or "C18:3n-3". When the part of "nX" is not described, it represents a fatty acid in which only the total number of carbon atoms and the number of double bonds are specified.
 本明細書中、特定の脂肪酸に対応する「アシル基」は、当該脂肪酸のカルボキシ基のOH部分を除いた部分であり、一般式R-CO-(Rは脂肪族炭化水素基)で表される。 As used herein, the "acyl group" corresponding to a specific fatty acid is a portion of the carboxyl group of the fatty acid excluding the OH portion, and is represented by the general formula R-CO- (R is an aliphatic hydrocarbon group). be.
 本明細書中、「リン脂質」は、グリセロリン脂質とスフィンゴリン脂質の総称である。グリセロリン脂質はグリセリンの3つの水酸基のうち、1つの水酸基がリン酸エステル化されたもので、そのうち、残りの水酸基の両方がアシル化されたものはジアシル型グリセロリン脂質、残りの水酸基のうち1つのみがアシル化されたものはリゾリン脂質と呼ばれる。
 本明細書中、エタノールアミン型リン脂質(PE)、グリセロール-1-リン酸型リン脂質(PG)は、それぞれエタノールアミンリン酸、グリセロール-1-リン酸が1位の水酸基にリン酸エステル結合しているリン脂質を表す。
 本明細書中、ホスファチジルエタノールアミン、ホスファチジルグリセロールは、それぞれエタノールアミンリン酸、グリセロール-1-リン酸を構成要素に含むジアシル型グリセロリン脂質を表す。
As used herein, "phospholipid" is a generic term for glycerophospholipids and sphingophospholipids. Glycerophospholipids are glycerophospholipids in which one of the three hydroxyl groups of glycerin is phosphorylated. Of these, those in which both remaining hydroxyl groups are acylated are diacyl-type glycerophospholipids, and one of the remaining hydroxyl groups is acylated. Those only acylated are called lysophospholipids.
In this specification, ethanolamine-type phospholipids (PE) and glycerol-1-phosphate-type phospholipids (PG) are ethanolamine phosphate and glycerol-1-phosphate, respectively, with a phosphate ester bond to the hydroxyl group at the 1-position. represents the phospholipids that
In the present specification, phosphatidylethanolamine and phosphatidylglycerol represent diacyl glycerophospholipids containing ethanolamine phosphate and glycerol-1-phosphate as constituents, respectively.
 本明細書中、疾患、症状又は健康状態の「改善」とは、疾患、症状若しくは健康状態の好転若しくは緩和;疾患、症状若しくは健康状態の悪化の防止若しくは遅延;又は疾患若しくは症状の進行の逆転、防止若しくは遅延を表す。 As used herein, "ameliorating" a disease, condition or condition means ameliorating or alleviating the disease, condition or condition; preventing or slowing deterioration of the disease, condition or condition; or reversing the progression of the disease or condition. , stands for prevention or delay.
 本明細書中、疾患、症状又は健康状態の「予防」とは、疾患、症状若しくは健康状態の発生の遅延若しくは防止;疾患、症状若しくは健康状態の発生のリスクの軽減;又は、疾患、症状若しくは症状の発生の率の低下を表す。 As used herein, "prevention" of a disease, condition or condition means delaying or preventing the occurrence of the disease, condition or condition; reducing the risk of developing the disease, condition or condition; Represents a reduction in the rate of symptom incidence.
 〔経口で摂取又は投与される組成物〕
 本発明の組成物は、経口で摂取又は投与され、
 グリセロール-1-リン酸部分(CHOH-CHOH-CH-OPO -)、エタノールアミンリン酸部分(NH -CH-CH-OPO -)及びエイコサペンタエン酸部分(CHCH(CH=CHCH(CHCO-)を含有し、
 グリセロール-1-リン酸部分に対するエタノールアミンリン酸部分のモル比が、0.01~100である。
[Compositions Taken or Administered Orally]
The composition of the invention is orally ingested or administered,
glycerol-1-phosphate moiety (CH 2 OH-CHOH-CH 2 -OPO 2 - -), ethanolamine phosphate moiety (NH 3 + -CH 2 -CH 2 -OPO 2 - -) and eicosapentaenoic acid moiety ( containing CH 3 CH 2 (CH═CHCH 2 ) 5 (CH 2 ) 2 CO—),
The molar ratio of ethanolamine phosphate moieties to glycerol-1-phosphate moieties is 0.01-100.
 本明細書中、経口で摂取又は投与可能な組成物を、「経口用組成物」と呼ぶ場合がある。 In this specification, a composition that can be orally ingested or administered may be referred to as an "oral composition".
 本明細書中、「グリセロール-1-リン酸部分」は、グリセロール-1-リン酸のリン酸基の水素原子を除いた部分であり、構造式CHOH-CHOH-CH-OPO -で表される。グリセロール-1-リン酸部分のリン酸基(OPO )には、水素イオン又はその他のカチオンが会合していてもよい。
 本明細書中、「エタノールアミンリン酸部分」は、エタノールアミンリン酸のリン酸基の水素原子を除いた部分であり、構造式NH -CH-CH-OPO -で表される。エタノールアミンリン酸部分のリン酸基には、水素イオン又はその他のカチオンが会合していてもよい。
 ここで、グリセロール-1-リン酸部分又はエタノールアミンリン酸部分のリン酸基に対して水素イオンが会合している状態は、CHOH-CHOH-CH-OPOH-、あるいはNH -CH-CH-OPOH-のように、リン酸部分に水素が結合し、水酸基となっている状態を含むものとする。
 上記その他のカチオンとしては、例えばアルカリ金属のイオン(ナトリウムイオン、カリウムイオン等)、アルカリ土類金属のイオン(マグネシウムイオン、カルシウムイオン等)が挙げられる。
As used herein, the term "glycerol-1-phosphate moiety" refers to a moiety of glycerol-1-phosphate excluding the hydrogen atom of the phosphate group, and has the structural formula CH 2 OH--CHOH--CH 2 --OPO 2 --. - is represented. A hydrogen ion or other cation may be associated with the phosphate group (OPO 2 ) of the glycerol-1-phosphate moiety.
As used herein, the term “ethanolamine phosphate moiety” refers to a portion of the phosphate group of ethanolamine phosphate from which hydrogen atoms are removed, represented by the structural formula NH 3 + —CH 2 —CH 2 —OPO 2 . be done. A hydrogen ion or other cation may be associated with the phosphate group of the ethanolamine phosphate moiety.
Here, the state in which a hydrogen ion associates with the phosphate group of the glycerol-1-phosphate moiety or the ethanolamine phosphate moiety is CH 2 OH--CHOH--CH 2 --OPO 2 H-- or NH 3 + -CH 2 -CH 2 -OPO 2 H-, including a state in which hydrogen is bonded to a phosphoric acid moiety to form a hydroxyl group.
Examples of the other cations include alkali metal ions (sodium ion, potassium ion, etc.) and alkaline earth metal ions (magnesium ion, calcium ion, etc.).
 本明細書中、「エイコサペンタエン酸部分」は、エイコサペンタエン酸のカルボキシ基のOH部分を除いたアシル基部分であり、構造式CHCH(CH=CHCH(CHCO-で表される。 As used herein, the term “eicosapentaenoic acid moiety” refers to an acyl group moiety excluding the OH moiety of the carboxy group of eicosapentaenoic acid, and has the structural formula CH 3 CH 2 (CH=CHCH 2 ) 5 (CH 2 ) 2 CO - is represented.
 本発明の経口用組成物において、グリセロール-1-リン酸部分に対するエタノールアミンリン酸部分のモル比(エタノールアミンリン酸部分の物質量/グリセロール-1-リン酸部分の物質量)は、本発明の効果を顕著に奏する観点から、0.01以上であり、好ましくは0.1以上、より好ましくは0.5以上、さらに好ましくは1以上、さらにより好ましくは1.5以上である。そして、グリセロール-1-リン酸部分に対するエタノールアミンリン酸部分のモル比は、本発明の効果を顕著に奏する観点から、100以下であり、好ましくは50以下、より好ましくは20以下、さらに好ましくは10以下、さらにより好ましくは5以下である。 In the oral composition of the present invention, the molar ratio of ethanolamine phosphate moieties to glycerol-1-phosphate moieties (substance amount of ethanolamine phosphate moieties/substance amount of glycerol-1-phosphate moieties) is From the viewpoint of exhibiting the effect remarkably, it is 0.01 or more, preferably 0.1 or more, more preferably 0.5 or more, still more preferably 1 or more, and even more preferably 1.5 or more. In addition, the molar ratio of the ethanolamine phosphate moiety to the glycerol-1-phosphate moiety is 100 or less, preferably 50 or less, more preferably 20 or less, and still more preferably, from the viewpoint of significantly exhibiting the effects of the present invention. 10 or less, and even more preferably 5 or less.
 前記グリセロール-1-リン酸部分及びエタノールアミンリン酸部分の合計に対する前記エイコサペンタエン酸部分のモル比〔(エイコサペンタエン酸部分の物質量)/(グリセロール-1-リン酸部分の物質量+エタノールアミンリン酸部分の物質量)〕は、特に限定されないが、本発明の効果を顕著に奏する観点から、好ましくは0.01以上、より好ましくは0.1以上、さらに好ましくは0.2以上、さらにより好ましくは0.4以上である。そして、前記グリセロール-1-リン酸部分及びエタノールアミンリン酸部分の合計に対する前記エイコサペンタエン酸部分のモル比は、例えば、20以下、10以下、5以下、4以下、3以下、2以下又は1.5以下であり得る。 Molar ratio of the eicosapentaenoic acid moiety to the sum of the glycerol-1-phosphate moiety and the ethanolamine phosphate moiety [(substance amount of eicosapentaenoic acid moiety)/(substance amount of glycerol-1-phosphate moiety + ethanolamine is not particularly limited, but is preferably 0.01 or more, more preferably 0.1 or more, still more preferably 0.2 or more, and further preferably More preferably, it is 0.4 or more. The molar ratio of the eicosapentaenoic acid moiety to the total of the glycerol-1-phosphate moiety and the ethanolamine phosphate moiety is, for example, 20 or less, 10 or less, 5 or less, 4 or less, 3 or less, 2 or less, or 1 .5 or less.
 本発明の経口用組成物のエイコサペンタエン酸部分の含有量は、経口用組成物の全量に対して、例えば0.01質量%以上、0.1質量%以上、1質量%以上又は4質量%以上であり、そして50質量%以下、40質量%以下又は30質量%以下であり得る。 The content of the eicosapentaenoic acid moiety in the oral composition of the present invention is, for example, 0.01% by mass or more, 0.1% by mass or more, 1% by mass or more, or 4% by mass, relative to the total amount of the oral composition. and may be 50% or less, 40% or less, or 30% or less by weight.
 本発明の経口用組成物において、総脂質中のエイコサペンタエン酸100質量部に対するC15:0の脂肪酸の含有量は、本発明の効果をより顕著に奏する観点から、好ましくは5質量部以上、より好ましくは10質量部以上、さらに好ましくは15質量部以上であり、そして好ましくは100質量部以下、より好ましくは70質量部以下、さらに好ましくは50質量部以下である。 In the oral composition of the present invention, the content of C15:0 fatty acid relative to 100 parts by mass of eicosapentaenoic acid in the total lipid is preferably 5 parts by mass or more, more It is preferably 10 parts by mass or more, more preferably 15 parts by mass or more, and preferably 100 parts by mass or less, more preferably 70 parts by mass or less, and still more preferably 50 parts by mass or less.
 本発明の経口用組成物において、総脂質中のエイコサペンタエン酸100質量部に対するC16:1の脂肪酸の含有量は、本発明の効果をより顕著に奏する観点から、好ましくは10質量部以上、より好ましくは15質量部以上であり、そして好ましくは300質量部以下、さらに好ましくは200質量部以下である。 In the composition for oral use of the present invention, the content of C16:1 fatty acid relative to 100 parts by mass of eicosapentaenoic acid in the total lipid is preferably 10 parts by mass or more, more It is preferably 15 parts by mass or more, preferably 300 parts by mass or less, more preferably 200 parts by mass or less.
 本発明の経口用組成物において、総脂質中のエイコサペンタエン酸100質量部に対するドコサヘキサエン酸の含有量は、好ましくは10質量部以下、より好ましくは5質量部以下、さらに好ましくは1質量部以下である。 In the composition for oral use of the present invention, the content of docosahexaenoic acid relative to 100 parts by mass of eicosapentaenoic acid in the total lipid is preferably 10 parts by mass or less, more preferably 5 parts by mass or less, and even more preferably 1 part by mass or less. be.
 本明細書において、本発明の経口用組成物からの総脂質の抽出が必要な場合は、分析において支障が出ない限り、実施例の<<総脂質の分画方法>>の項に記載した方法を用いるものとする。当該方法による分画が困難な場合は、食品表示基準(平成二十七年内閣府令第十号)別添に記載の脂質の抽出法に準じる。また、本明細書において、総脂質の脂肪酸の分析は、実施例の〔脂肪酸の分析方法〕の項に記載した方法により行われる。 In this specification, when extraction of total lipids from the composition for oral use of the present invention is necessary, as long as there is no problem in the analysis, it is described in the section <<method for fractionating total lipids>> in the Examples. method shall be used. If it is difficult to fractionate by this method, follow the lipid extraction method described in the appendix of the Food Labeling Standards (Cabinet Office Ordinance No. 10, 2015). In the present specification, the analysis of fatty acids in total lipids is performed by the method described in the section [Method for analyzing fatty acids] in Examples.
 本発明の経口用組成物において、前記グリセロール-1-リン酸部分、前記エタノールアミンリン酸部分及び前記エイコサペンタエン酸部分は、互いに別の分子を構成していてもよい。あるいは、前記グリセロール-1-リン酸部分又は前記エタノールアミンリン酸部分が前記エイコサペンタエン酸部分と同じ分子内に存在していてもよい。本発明の経口用組成物は、本発明の効果を顕著に奏する観点から、グリセロール-1-リン酸部分及びエイコサペンタエン酸部分を含む分子又はエタノールアミンリン酸部分及びエイコサペンタエン酸部分を含む分子を少なくとも含有することが好ましく、グリセロール-1-リン酸部分及びエイコサペンタエン酸部分を含む分子並びにエタノールアミンリン酸部分及びエイコサペンタエン酸部分を含む分子を含有することがより好ましい。 In the composition for oral use of the present invention, the glycerol-1-phosphate moiety, the ethanolamine phosphate moiety and the eicosapentaenoic acid moiety may constitute molecules different from each other. Alternatively, said glycerol-1-phosphate moiety or said ethanolamine phosphate moiety may be present in the same molecule as said eicosapentaenoic acid moiety. The oral composition of the present invention contains a molecule containing a glycerol-1-phosphate moiety and an eicosapentaenoic acid moiety, or a molecule containing an ethanolamine phosphate moiety and an eicosapentaenoic acid moiety, from the viewpoint of significantly exhibiting the effects of the present invention. It preferably contains at least and more preferably contains a molecule containing a glycerol-1-phosphate moiety and an eicosapentaenoic acid moiety and a molecule containing an ethanolamine phosphate moiety and an eicosapentaenoic acid moiety.
 上記のグリセロール-1-リン酸部分及びエイコサペンタエン酸部分を含む分子、又はエタノールアミンリン酸部分及びエイコサペンタエン酸部分を含む分子としては、好ましくは、下記式(I)で表されるリン脂質が挙げられる:
Figure JPOXMLDOC01-appb-C000003
 (式中、R及びRは水素原子及びアシル基から選択され、
 R及びRの少なくとも1つはエイコサペンタエン酸部分であり、
 Xはグリセロール-1-リン酸部分及びエタノールアミンリン酸部分から選択される)。
As the molecule containing a glycerol-1-phosphate moiety and an eicosapentaenoic acid moiety, or the molecule containing an ethanolamine phosphate moiety and an eicosapentaenoic acid moiety, a phospholipid represented by the following formula (I) is preferable. Mentioned are:
Figure JPOXMLDOC01-appb-C000003
(wherein R 1 and R 2 are selected from hydrogen atoms and acyl groups,
at least one of R 1 and R 2 is an eicosapentaenoic acid moiety;
X is selected from glycerol-1-phosphate moieties and ethanolamine phosphate moieties).
 本発明の経口用組成物は、前記式(I)において、Xがグリセロール-1-リン酸部分である化合物と、Xがエタノールアミンリン酸部分である化合物の両方を含有することが好ましい。 The oral composition of the present invention preferably contains both a compound in which X is a glycerol-1-phosphate moiety and a compound in which X is an ethanolamine phosphate moiety in the formula (I).
 本明細書において、前記式(I)においてXがグリセロール-1-リン酸部分のものをEPA結合グリセロール-1-リン酸型リン脂質(EPA-PG)、Xがエタノールアミンリン酸部分のものをEPA結合エタノールアミン型リン脂質(EPA-PE)と呼ぶ場合がある。 In the present specification, in the above formula (I), X represents glycerol-1-phosphate moieties as EPA-bound glycerol-1-phosphate-type phospholipids (EPA-PG), and X represents ethanolamine phosphate moieties. Sometimes referred to as EPA-bound ethanolamine-type phospholipids (EPA-PE).
 本発明の経口用組成物において、前記EPA結合グリセロール-1-リン酸型リン脂質1質量部に対するEPA結合エタノールアミン型リン脂質の含有量は、0.01質量部以上であり、好ましくは0.1質量部以上、より好ましくは0.5質量部以上、さらに好ましくは1質量部以上、さらにより好ましくは1.5質量部以上である。そして、前記EPA結合グリセロール-1-リン酸型リン脂質1質量部に対するEPA結合エタノールアミン型リン脂質の含有量は、本発明の効果を顕著に奏する観点から、100質量部以下であり、好ましくは50質量部以下、より好ましくは20質量部以下、さらに好ましくは10質量部以下、さらにより好ましくは5質量部以下である。 In the composition for oral use of the present invention, the content of the EPA-bound ethanolamine-type phospholipid relative to 1 part by weight of the EPA-bound glycerol-1-phosphate-type phospholipid is 0.01 part by weight or more, preferably 0.01 part by weight. It is 1 part by mass or more, more preferably 0.5 parts by mass or more, still more preferably 1 part by mass or more, and even more preferably 1.5 parts by mass or more. Then, the content of the EPA-bound ethanolamine-type phospholipid with respect to 1 part by weight of the EPA-bound glycerol-1-phosphate-type phospholipid is 100 parts by weight or less, preferably, from the viewpoint of significantly exhibiting the effects of the present invention. It is 50 parts by mass or less, more preferably 20 parts by mass or less, still more preferably 10 parts by mass or less, and even more preferably 5 parts by mass or less.
 前記式(I)の前記アシル基の総炭素数は、例えば3~35であり、好ましくは9~31、より好ましくは14~24である。 The total carbon number of the acyl group of formula (I) is, for example, 3-35, preferably 9-31, more preferably 14-24.
 前記式(I)の前記アシル基の二重結合の数は、例えば0~10であり、好ましくは0~6、より好ましくは0~5である。 The number of double bonds in the acyl group of formula (I) is, for example, 0-10, preferably 0-6, more preferably 0-5.
 前記式(I)のR及びRのアシル基は、好ましくは生物においてリン脂質に含まれるアシル基であり、より好ましくは、C14:0(ミリスチン酸)、C14:1、C15:0(ペンタデカン酸)、C16:0(パルミチン酸)、C16:1、C17:1、C18:0(ステアリン酸)、C18:1、C18:2、C18:3n-3(α-リノレン酸)、C18:3n-6(γ-リノレン酸)、C19:0、C20:0(アラキジン酸)、C20:1n-9(cis-11-エイコセン酸)、C20:2n-6、C20:3n-3、C20:3n-6(ジホモ-γ-リノレン酸)、C20:4n-6(アラキドン酸;AA)、C20:5n-3(エイコサペンタエン酸;EPA)、C22:0(ベヘン酸)、C22:1n-9(エルカ酸)、C22:4n-6、C22:6n-3(ドコサヘキサエン酸;DHA)、C23:0、C24:0(リグノセリン酸)及びC24:1n-9(ネルボン酸)に対応するアシル基から選択され、さらに好ましくは、C12:0、C13:0、C14:0、C15:0、C16:0、C16:1、C17:1、C18:0、C18:1、C19:0、C20:3n-3及びC20:5n-3に対応するアシル基から選択される。 The acyl groups of R 1 and R 2 in the formula (I) are preferably acyl groups contained in phospholipids in organisms, more preferably C14:0 (myristic acid), C14:1, C15:0 ( pentadecanoic acid), C16:0 (palmitic acid), C16:1, C17:1, C18:0 (stearic acid), C18:1, C18:2, C18:3n-3 (α-linolenic acid), C18: 3n-6 (γ-linolenic acid), C19:0, C20:0 (arachidic acid), C20: 1n-9 (cis-11-eicosenoic acid), C20:2n-6, C20:3n-3, C20: 3n-6 (dihomo-γ-linolenic acid), C20: 4n-6 (arachidonic acid; AA), C20: 5n-3 (eicosapentaenoic acid; EPA), C22:0 (behenic acid), C22: 1n-9 (erucic acid), C22:4n-6, C22:6n-3 (docosahexaenoic acid; DHA), C23:0, C24:0 (lignoceric acid) and C24:1n-9 (nervonic acid) selected, more preferably C12:0, C13:0, C14:0, C15:0, C16:0, C16:1, C17:1, C18:0, C18:1, C19:0, C20:3n -3 and acyl groups corresponding to C20:5n-3.
 本発明の経口用組成物において、前記式(I)で表されるリン脂質の総含有量は、経口用組成物の形態、組成、使用目的、用法及び用量等によって適宜調節される。式(I)で表されるリン脂質の総含有量は、経口用組成物全量に対して、例えば、0.01質量%以上、0.1質量%以上、1質量%以上、10質量%以上、20質量%以上又は50質量%以上であり、そして、例えば、100質量%以下、80質量%以下又は70質量%以下であり得る。 In the oral composition of the present invention, the total content of the phospholipids represented by the formula (I) is appropriately adjusted depending on the form, composition, purpose of use, usage, dosage, etc. of the oral composition. The total content of phospholipids represented by formula (I) is, for example, 0.01% by mass or more, 0.1% by mass or more, 1% by mass or more, 10% by mass or more, relative to the total amount of the oral composition. , 20% by weight or more, or 50% by weight or more, and may be, for example, 100% by weight or less, 80% by weight or less, or 70% by weight or less.
 本発明の経口用組成物の前記グリセロール-1-リン酸部分、前記エタノールアミンリン酸部分及び前記エイコサペンタエン酸部分、並びに前記式(I)で表されるリン脂質は、生物由来であってもよいし、合成されたものであってもよく、またそれらのうちの2種以上の混合物に由来してもよいが、経口摂取における安全性の観点から、1種又は2種以上の生物に由来することが好ましい。前記生物は、例えば、微生物(藻類、細菌、古細菌、真菌、酵母等)、植物、海洋・水生動物類(例えば、魚類、甲殻類など)、及び陸生動物類から選択される。 The glycerol-1-phosphate moiety, the ethanolamine phosphate moiety and the eicosapentaenoic acid moiety of the oral composition of the present invention, and the phospholipid represented by the formula (I) may be derived from organisms. It may be synthesized, or it may be derived from a mixture of two or more of them, but from the viewpoint of safety in oral ingestion, preferably. Said organisms are, for example, selected from microorganisms (algae, bacteria, archaea, fungi, yeast, etc.), plants, marine and aquatic animals (eg, fish, crustaceans, etc.), and terrestrial animals.
 本発明の経口用組成物は、本発明の効果をより顕著に奏する観点から、シェワネラ属(Shewanella)細菌又はその変異株の抽出物を含有することが好ましい。シェワネラ属細菌は、シェワネラ科に属し、海洋環境に主に分布するグラム陰性の非芽胞形成嫌気性桿菌であり、深海等に生息する好圧細菌、好冷細菌等が含まれる。 The oral composition of the present invention preferably contains an extract of a bacterium of the genus Shewanella or a mutant strain thereof, from the viewpoint of exhibiting the effects of the present invention more remarkably. Bacteria belonging to the genus Shewanella belong to the family Shewanellaceae, and are Gram-negative, non-spore-forming anaerobic bacilli that are mainly distributed in the marine environment, and include barophilic bacteria, psychrophilic bacteria, and the like that live in the deep sea and the like.
 本明細書中、特定の生物種の「変異株」とは、生物種の元の菌株の保有するDNAに変異が生じた菌株をいう。変異は特に限定されず、例えばゲノムDNA又は菌株が本来保有するプラスミドにおける塩基の置換、欠失、挿入、重複、転座又は逆位であり得る。また変異は、自然発生的に生じたものであってもよく、人為的に生じたものであってもよい。 As used herein, a "mutant strain" of a specific species refers to a strain in which a mutation has occurred in the DNA possessed by the original strain of the species. The mutation is not particularly limited, and may be, for example, base substitution, deletion, insertion, duplication, translocation or inversion in genomic DNA or a plasmid originally carried by the strain. Mutations may be naturally occurring or artificially occurring.
 前記シェワネラ属細菌又はその変異株は、ゲノムDNAの他に、プラスミド、細菌人工染色体(BAC)等の天然由来又は人工のDNAをさらに含んでいてもよい。 The Shewanella bacterium or its mutant may further contain naturally-derived or artificial DNA such as plasmids and bacterial artificial chromosomes (BAC) in addition to genomic DNA.
 変異株のゲノム配列は、その生物の基準のゲノム配列に対して、例えば90%以上、95%以上、97%以上、98%以上、99%以上、99.5%以上、99.9%以上、99.99%以上又は99.999%以上の配列同一性(identity)を有する。 The genome sequence of the mutant is, for example, 90% or more, 95% or more, 97% or more, 98% or more, 99% or more, 99.5% or more, 99.9% or more of the reference genome sequence of the organism. , has a sequence identity of greater than or equal to 99.99% or greater than or equal to 99.999%.
 前記シェワネラ属細菌としては、シェワネラ・ウーディイ(Shewanella woodyi)、シェワネラ・エレクトロディフィラ(Shewanella electrodiphila)、シェワネラ・マリニンテスティナ(S. marinintestina)、シェワネラ・シュレーゲリアナ(S. schlegeliana)、シェワネラ・サイラエ(S. sairae)、シェワネラ・ペアレアナ(S. pealeana)、シェワネラ・ハネダイ(S. hanedai)、シェワネラ・ゲリディマリナ(S. gelidimarina)、シェワネラ・ニューマトフォア(S. pneumatophore)、シェワネラ・バルティカ(S. baltica)、シェワネラ・ハリファクセンシス(S. halifaxensis)、シェワネラ・カイレイティカ(S. kaireitica)、シェワネラ・グラシアリピシコーラ(S. glacialipiscicola)、シェワネラ・フィデリス(S. fidelis)、シェワネラ・アクイマリナ(S. aquimarina)、シェワネラ・ワクスマニイ(S. waksmanii)、シェワネラ・マリスフラビ(S. marisflavi)、シェワネラ・アフィニス(S. affinis)、シェワネラ・コルウェリアナ(S. colwelliana)、シェワネラ・ビオラセア(S. violacea)、シェワネラ・ベンティカ(S. benthica)、シェワネラ・セディミニス(S. sediminis)などが挙げられる。中でも、前記シェワネラ属細菌は、好ましくはシェワネラ・ウーディイ(Shewanella woodyi)であり、より好ましくはシェワネラ・ウーディイGS001株である。シェワネラ・ウーディイについての情報は、例えば、Brennerらの文献(The Proteobacteria, 2005, p.480-491)、Zhaoらの文献(Int. J. Syst. Evol Microbiol., 2005, Vol. 55, p.1511-1520)、Makemson, J.C.らの文献(Int. J. Syst. Bacteriol., 1997, Vol.47, Issue 4, p.1034-1039)、Ivanovaらの文献(Int. J. Syst. Evol. Microbiol. 2003, Vol.53, p.577-582)などに記載されている。 Examples of the Shewanella bacteria include Shewanella woodyi, Shewanella electrodiphila, S. marintestina, S. schlegeliana, and Shewanella cylae. (S. sairae), S. pealeana, S. hanedai, S. gelidimarina, S. pneumatophore, Shewanella baltica (S. baltica), S. halifaxensis, S. kaireitica, S. glacialipiscicola, S. fidelis, Shewanella aquimarina (S. aquimarina), S. waksmanii, S. marisflavi, S. affinis, S. colwelliana, S. violacea, Shewanella・S.benthica, S.sediminis, etc. Among them, the Shewanella bacterium is preferably Shewanella woodyi, more preferably Shewanella woodyi GS001 strain. For information on Shewanella udii, see, for example, Brenner et al. (The Proteobacteria, 2005, p.480-491), Zhao et al. (Int. J. Syst. Evol Microbiol., 2005, Vol. 55, p. 1511-1520), Makemson, J.C. et al. (Int. J. Syst. Bacteriol., 1997, Vol.47, Issue 4, p.1034-1039), Ivanova et al. (Int. J. Syst. Evol. Microbiol. 2003, Vol.53, p.577-582).
 あるいは、前記シェワネラ属細菌において、その16S rDNA配列の下記のシェワネラ・ウーディイGS001株の16S rDNA配列(配列番号1)に対する配列同一性は、95%以上が好ましく、96%以上がより好ましく、97%以上がさらに好ましく、98%以上がさらにより好ましく、99%以上が特に好ましい。ここで、16S rDNA配列の同一性は、NCBIのBLAST(https://blast.ncbi.nlm.nih.gov/)のblastn(塩基配列の場合)において、Align two or more sequencesを用いて、当該特定の配列をQuery Sequenceに比較する配列を入力し、デフォルトのパラメータでアラインメントを行って得られる「Identities」の百分率である。 Alternatively, in the Shewanella bacterium, the sequence identity of the 16S rDNA sequence thereof to the 16S rDNA sequence (SEQ ID NO: 1) of the following Shewanella oudii strain GS001 is preferably 95% or more, more preferably 96% or more, and 97%. 98% or more is more preferable, and 99% or more is particularly preferable. Here, the identity of the 16S rDNA sequence is determined using Align two or more sequences in blastn (for base sequences) of BLAST (https://blast.ncbi.nlm.nih.gov/) of NCBI. It is the percentage of "Identities" obtained by inputting a sequence to compare a specific sequence to Query Sequence and performing alignment with default parameters.
 シェワネラ・ウーディイGS001株(以下、「GS001株」という場合がある)は、深海魚であるニギスの腸管から単離された菌株である。GS001株の16S rDNA配列を配列番号1に示す。 The Shewanella udii strain GS001 (hereinafter sometimes referred to as "GS001 strain") is a strain isolated from the intestinal tract of Nigisu, a deep-sea fish. The 16S rDNA sequence of strain GS001 is shown in SEQ ID NO:1.
 GS001株は、グルコースを唯一の炭素源として良好に増殖することができるという特徴を有する。例えば、GS001株は、10%(w/v)グルコースを含む改変M9液体培地(改変M9+Glc液体培地)を50mL入れた100mLフラスコを用いて、15℃で振盪培養(150rpm)したとき、48時間で、OD600nmが5以上の菌密度に増殖することができる。
 GS001株は、グルコース及び酵母エキスを含む半合成培地で良好に増殖することができるという特徴を有する。例えば、GS001株は、0.5%(w/v)の酵母エキスを含む改変M9+Glc液体培地を2L入れた3Lジャーファーメンターを用いて、15℃で通気培養(1.0vvm air、150~750rpm)し、炭素源としてのグルコース溶液、窒素源としてのアンモニウム水溶液をそれぞれ適切な速度で流加したとき、75時間で、乾燥細胞重量が35g/L以上に増殖することができる。
 GS001株は、EPA含有量が高いという特徴を有する。例えば、GS001株を、0.5%(w/v)の酵母エキスを含む改変M9+Glc液体培地を2L入れた3Lジャーファーメンターを用いて、15℃で通気培養(1vvm air、150~750rpm)したとき、乾燥細胞重量当たりのEPA含有量は、0.5g/100g乾燥細胞重量以上に維持され得る。
 GS001株は、0.5%(w/v)という低い塩化ナトリウム濃度で増殖可能であるという特徴を有する。例えば、GS001株は、塩化ナトリウム濃度を0.5%(w/v)に変更した改変M9+Glc培地を50mL入れた100mLフラスコ用いて、15℃で振盪培養(150rpm)したとき、48時間で、OD600nmが3以上の菌密度に増殖することができる。
The GS001 strain is characterized by being able to grow well using glucose as the sole carbon source. For example, the GS001 strain was cultured with shaking (150 rpm) at 15°C using a 100 mL flask containing 50 mL of a modified M9 liquid medium containing 10% (w/v) glucose (modified M9 + Glc liquid medium) for 48 hours. , OD600nm can grow to a cell density of 5 or more.
The GS001 strain is characterized by being able to grow well in a semi-synthetic medium containing glucose and yeast extract. For example, the GS001 strain is aerated cultured at 15 ° C. (1.0 vvm air, 150 to 750 rpm ), and when a glucose solution as a carbon source and an ammonium aqueous solution as a nitrogen source are fed at appropriate rates, respectively, the dry cell weight can grow to 35 g/L or more in 75 hours.
The GS001 strain is characterized by a high EPA content. For example, the GS001 strain was aerated at 15° C. (1 vvm air, 150-750 rpm) using a 3 L jar fermenter containing 2 L of modified M9+Glc liquid medium containing 0.5% (w/v) yeast extract. At times, the EPA content per dry cell weight can be maintained above 0.5 g/100 g dry cell weight.
The GS001 strain is characterized by being able to grow in sodium chloride concentrations as low as 0.5% (w/v). For example, the GS001 strain was cultured with shaking (150 rpm) at 15 ° C. using a 100 mL flask containing 50 mL of modified M9 + Glc medium with a sodium chloride concentration of 0.5% (w / v). can grow to a density of 3 or more.
 GS001株は、2021年4月15日付で、受託番号NITE P-03460として、独立行政法人製品評価技術基盤機構 特許微生物寄託センター(郵便番号292-0818、日本国千葉県木更津市かずさ鎌足2-5-8 122号室)に寄託された。
 GS001株は、識別の表示Shewanella woodyi、受託番号NITE BP-03460として、独立行政法人製品評価技術基盤機構 特許微生物寄託センター(郵便番号292-0818、日本国千葉県木更津市かずさ鎌足2-5-8 122号室)に特許手続き上の微生物の寄託の国際的承認に関するブダペスト条約に基づいて国際寄託されている(国内寄託日2021年4月15日、国際寄託への移管請求日2022年4月4日)。
The GS001 strain was granted accession number NITE P-03460 on April 15, 2021 at the Patent Microorganism Depositary Center, National Institute of Technology and Evaluation (zip code 292-0818, 2-Kazusa Kamatari, Kisarazu City, Chiba Prefecture, Japan). 5-8 Room 122).
The GS001 strain is identified as Shewanella woodyi, accession number NITE BP-03460, and is registered at the Patent Microorganism Depositary Center, National Institute of Technology and Evaluation (zip code 292-0818, 2-5 Kazusa Kamatari, Kisarazu City, Chiba Prefecture, Japan). 8 122) under the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for the Purposes of Patent Procedure (National Deposit Date April 15, 2021; Request for Transfer to International Deposit Date April 4, 2022 Day).
 シェワネラ属又はその変異株は、細胞内に高い含有量で前記式(I)のリン脂質を含む。そのため、シェワネラ属又はその変異株の抽出物は、本発明の経口用組成物に好適に使用することができる。そして、シェワネラ・ウーディイGS001株は、上述した特徴を有するため、前記式(I)のリン脂質の工業生産に特に適している。 The genus Shewanella or its mutants contain the phospholipid of formula (I) at a high intracellular content. Therefore, an extract of the genus Shewanella or a mutant strain thereof can be suitably used in the oral composition of the present invention. And, since the Shewanella udii GS001 strain has the characteristics described above, it is particularly suitable for industrial production of the phospholipid of the formula (I).
 シェワネラ属細菌及びその変異株は、従属栄養細菌の培養に通常用いられる培地を用いて培養することができる。培養条件は、シェワネラ属細菌が増殖可能であれば特に限定されないが、例えば、シェワネラ・ウーディイについては上述した文献及びOmeroglu E.E.らの文献(Folia Microbiol., 2014, Vol.59, p.79-92)、シェワネラ・エレクトロディフィラについてはZhang J.らの文献(PLoS One, 2017, Vol.12, No.11:e0188081)などの記載に基づいて設定することができる。 Bacteria of the genus Shewanella and their mutant strains can be cultured using media commonly used for culturing heterotrophic bacteria. Culture conditions are not particularly limited as long as Shewanella bacteria can grow. ), and Shewanella electrodyphila can be set based on the description in Zhang J. et al. (PLoS One, 2017, Vol.12, No.11:e0188081).
 シェワネラ属又はその変異株の抽出物は、細胞成分を抽出したものであれば特に限定されず、例えば細胞を破壊して得られる細胞破壊物、細胞を溶解して得られる細胞溶解物、又はそれらから溶媒抽出された溶媒抽出物であり得る。中でも、シェワネラ属又はその変異株の抽出物としては、有効成分の体内への吸収性を向上させる観点から、溶媒抽出物が好ましい。 The extract of the genus Shewanella or its mutants is not particularly limited as long as it is an extract of cell components, for example, a cell disruption obtained by disrupting cells, a cell lysate obtained by lysing cells, or any of them may be a solvent extract obtained by solvent extraction from Among them, the extract of the genus Shewanella or its mutant is preferably a solvent extract from the viewpoint of improving the absorbability of the active ingredient into the body.
 前記溶媒抽出物の調製に使用される溶媒は、摂取又は投与可能な経口用組成物に使用可能であれば特に限定されず、経口用組成物の形態(医薬品、飲食品等の別)によって適宜選択し得る。溶媒としては、例えば、アルコールが好ましい。 The solvent used in the preparation of the solvent extract is not particularly limited as long as it can be used in an oral composition that can be ingested or administered, and is appropriately selected depending on the form of the oral composition (medicine, food and drink, etc.). can choose. Alcohol, for example, is preferred as the solvent.
 シェワネラ属細菌又はその変異株からの前記式(I)のリン脂質の抽出は、公知の方法で行うことができる。
 例えば、シェワネラ属細菌又はその変異株の培養液から遠心分離又はろ過等により細胞を回収し、上記溶媒により細胞から全脂質を抽出する。細胞に対して使用する抽出溶媒の量は、特に限定されない。抽出溶媒の量は、例えば、細胞に対して、1~1000倍量程度(好ましくは5~200倍量程度)とすることができる。抽出操作は、通常、常圧下、常温~溶媒の沸点の範囲で行うことができる。抽出操作は、1回のみ行ってもよく、複数回行ってもよい。例えば、1度抽出操作を行った細胞残渣に再度新鮮な抽出溶媒を添加しても再度抽出操作を行ってもよい。抽出操作後、必要に応じて、遠心分離、ろ過、限外ろ過等により細胞残渣を除去してもよい。また、加熱、エバポレーター等を用いた減圧蒸留により、抽出溶媒を除去してもよい。さらに、各種精製処理を行い、リン脂質を精製してもよい。精製処理としては、例えば、塩析、透析、再結晶、再沈殿、溶媒抽出、吸着、濃縮、ろ過、ゲルろ過、限外ろ過、各種クロマトグラフィ(薄層クロマトグラフィ、カラムクロマトグラフィ、イオン交換クロマトグラフィ、高速液体クロマトグラフィ、吸着クロマトグラフィなど)等が挙げられるが、これらに限定されない。
The extraction of the phospholipid of the formula (I) from Shewanella bacteria or mutants thereof can be carried out by known methods.
For example, cells are recovered from the culture medium of the bacterium of the genus Shewanella or its mutant strain by centrifugation, filtration, or the like, and all lipids are extracted from the cells with the above solvent. The amount of extraction solvent used for cells is not particularly limited. The amount of extraction solvent can be, for example, about 1 to 1000 times (preferably about 5 to 200 times) the amount of cells. The extraction operation can usually be carried out under normal pressure in the range from room temperature to the boiling point of the solvent. The extraction operation may be performed only once or may be performed multiple times. For example, a fresh extraction solvent may be added again to the cell residue that has been subjected to the extraction operation once, or the extraction operation may be performed again. After the extraction operation, if necessary, cell debris may be removed by centrifugation, filtration, ultrafiltration, or the like. Alternatively, the extraction solvent may be removed by heating or distillation under reduced pressure using an evaporator or the like. Further, various purification treatments may be performed to purify the phospholipids. Purification treatments include, for example, salting out, dialysis, recrystallization, reprecipitation, solvent extraction, adsorption, concentration, filtration, gel filtration, ultrafiltration, various chromatography (thin layer chromatography, column chromatography, ion exchange chromatography, high-performance liquid chromatography, adsorption chromatography, etc.), but are not limited thereto.
 本発明の経口用組成物は、経口で摂取又は投与されるものであり、具体的には、飲食品(飲料又は食品を表し、特定保健用食品、機能性表示食品、病者用食品を含む)、医薬品、医薬部外品、飼料若しくは餌料、又はそれらの製造用製剤(例えば、添加物等)であり得る。 The oral composition of the present invention is orally ingested or administered. ), pharmaceuticals, quasi-drugs, feeds or feeds, or preparations for their manufacture (eg, additives).
 本発明の経口用組成物が医薬品又は医薬部外品の場合、その形態としては、例えば、液剤、錠剤、粉剤、顆粒剤、カプセル剤、散剤、トローチ剤、シロップ剤等が挙げられる。 When the oral composition of the present invention is a drug or quasi-drug, its forms include, for example, liquids, tablets, powders, granules, capsules, powders, lozenges, syrups and the like.
 本発明の経口用組成物が飲食品の場合、その形態としては、例えば、菓子類(キャラメル、キャンディー等)、氷菓類(アイスクリーム等)、乳製品(ヨーグルト等)、各種加工食品、各種調味料、各種飲料、機能性食品、栄養補助食品、サプリメント類等が挙げられる。 When the composition for oral use of the present invention is a food or drink, its form includes, for example, sweets (caramel, candy, etc.), frozen desserts (ice cream, etc.), dairy products (yogurt, etc.), various processed foods, various seasonings. foods, various beverages, functional foods, dietary supplements, and supplements.
 本発明の経口用組成物は、必要に応じて、上記のグリセロール-1-リン酸部分(CHOH-CHOH-CH-OPO -)、エタノールアミンリン酸部分(NH -CH-CH-OPO -)、又はエイコサペンタエン酸部分(CHCH(CH=CHCH(CHCO-)を有する成分以外の成分(「その他成分」と呼ぶ)を含有してもよい。 The oral compositions of the present invention may optionally contain the above glycerol-1-phosphate moiety (CH 2 OH--CHOH--CH 2 --OPO 2 -- ), ethanolamine phosphate moiety (NH 3 + --CH 2 —CH 2 —OPO 2 —), or components other than those having an eicosapentaenoic acid moiety (CH 3 CH 2 (CH=CHCH 2 ) 5 (CH 2 ) 2 CO—) (referred to as “other components”) may contain.
 本発明の経口用組成物が医薬品若しくは医薬部外品、又はそれらの製造用製剤の形態の場合、その他成分としては、例えば、薬学的に許容される担体(賦形剤、崩壊剤、結合剤、滑沢剤、着色剤、可塑剤、抗酸化剤、pH調整剤、増粘剤、界面活性剤、安定化剤、保存剤、香料、流動化剤、液状媒体、発泡剤等)からなる群より選ばれるいずれか1種又は2種以上の組み合わせが挙げられるが、これらに限定されない。 When the composition for oral use of the present invention is in the form of a drug or quasi-drug, or a formulation for manufacturing thereof, other ingredients include, for example, pharmaceutically acceptable carriers (excipients, disintegrants, binders , lubricants, colorants, plasticizers, antioxidants, pH adjusters, thickeners, surfactants, stabilizers, preservatives, perfumes, fluidizers, liquid media, foaming agents, etc.) Any one or a combination of two or more selected from, but not limited to, these.
 本発明の経口用組成物が飲食品、飼料若しくは餌料、又はそれらの製造用製剤の形態の場合、その他成分としては、例えば、魚肉類、野菜類、穀類、乳製品、発酵製品、香辛料、タンパク質、アミノ酸、糖類、各種調味料、甘味剤、矯味剤、香料、油脂類、ビタミン類、増粘剤、ゲル化剤、酸化防止剤、防腐剤、キレート剤、pH調整剤、着色剤からなる群より選ばれるいずれか1種又は2種以上の組み合わせが挙げられるが、これらに限定されない。 When the composition for oral use of the present invention is in the form of a food or drink, a feed or feed, or a formulation for producing them, other ingredients include, for example, fish meat, vegetables, grains, dairy products, fermented products, spices, and proteins. , amino acids, sugars, various seasonings, sweeteners, flavoring agents, flavors, oils and fats, vitamins, thickeners, gelling agents, antioxidants, preservatives, chelating agents, pH adjusters, colorants Any one or a combination of two or more selected from, but not limited to, these.
 本発明の経口用組成物は、EPA結合グリセロール-1-リン酸型リン脂質及びEPA結合エタノールアミン型リン脂質のように、グリセロール-1-リン酸部分(CHOH-CHOH-CH-OPO -)及びエタノールアミンリン酸部分(NH -CH-CH-OPO -)、並びにエイコサペンタエン酸部分(CHCH(CH=CHCH(CHCO-)を有効成分として含有する。そして、本発明の経口用組成物は、上記有効成分を有効量含有することにより、例えば、筋肉を増加させる作用;血糖値(食後血糖値、空腹時血糖値及びHbA1cが反映する平均血糖値)の上昇を抑える作用;肝臓への脂肪蓄積を抑制する作用;体内(例えば、肝臓)のオメガ3脂肪酸(特に、エイコサペンタエン酸、ドコサペンタエン酸及びドコサヘキサエン酸)を増加させオメガ6脂肪酸(特に、アラキドン酸)を減少させる作用;血中トリグリセリド、総コレステロール、LDLコレステロール及び非HDLコレステロールを減少させる作用;並びに、白色脂肪組織の量を減少させる作用を奏する。そして、本発明の経口用組成物のこれらの作用は、ドコサヘキサエン酸及びエイコサペンタエン酸を脂肪酸として含むホスファチジルコリンを多く含有するクリルオイルと比較しても顕著に高い。 The oral compositions of the present invention contain glycerol-1-phosphate moieties (CH 2 OH-CHOH-CH 2 -OPO), such as EPA-bound glycerol-1-phosphate-type phospholipids and EPA-bound ethanolamine-type phospholipids. 2 - -) and ethanolamine phosphate moieties (NH 3 + -CH 2 -CH 2 -OPO 2 - -), and eicosapentaenoic acid moieties (CH 3 CH 2 (CH=CHCH 2 ) 5 (CH 2 ) 2 CO -) as an active ingredient. And, the composition for oral use of the present invention contains an effective amount of the above-mentioned active ingredient, so that, for example, the effect of increasing muscle; action to suppress the rise of; action to suppress fat accumulation in the liver; action to increase omega-3 fatty acids (especially eicosapentaenoic acid, docosapentaenoic acid and docosahexaenoic acid) in the body (e.g., liver) and omega-6 fatty acids (especially, arachidonic acid); reducing blood triglycerides, total cholesterol, LDL cholesterol and non-HDL cholesterol; and reducing the amount of white adipose tissue. These effects of the composition for oral use of the present invention are remarkably higher than krill oil containing a large amount of phosphatidylcholine containing docosahexaenoic acid and eicosapentaenoic acid as fatty acids.
 本発明の経口用組成物は、上述のように、オメガ3脂肪酸を増加させることから、体内(例えば、肝臓)のオメガ3脂肪酸の増加のために使用することができる。前記オメガ3脂肪酸としては、ドコサヘキサエン酸(DHA)及びドコサペンタエン酸(DPA)から選ばれる少なくとも1つが好ましく、DHAがより好ましい。 Since the oral composition of the present invention increases omega-3 fatty acids as described above, it can be used to increase omega-3 fatty acids in the body (for example, liver). The omega-3 fatty acid is preferably at least one selected from docosahexaenoic acid (DHA) and docosapentaenoic acid (DPA), more preferably DHA.
 本明細書において、「オメガ3脂肪酸とオメガ6脂肪酸のバランスの改善」とは、体内(例えば、肝臓)の総脂質中のオメガ6脂肪酸に対するオメガ3脂肪酸の割合が増加することを表す。オメガ6脂肪酸としては、例えば、アラキドン酸(AA)、リノール酸、γ-リノレン酸、ジホモγ-リノレン酸、ドコサテトラエン酸及び22:5n-6ドコサペンタエン酸(オズボンド酸)が挙げられる。また、オメガ3脂肪酸としては、例えば、エイコサペンタエン酸(EPA)、ドコサヘキサエン酸(DHA)、22:5n-3ドコサペンタエン酸(クルパノドン酸、DPA)、α-リノレン酸、ステアリドン酸及びエイコサテトラエン酸が挙げられる。 As used herein, "improving the balance between omega-3 fatty acids and omega-6 fatty acids" means increasing the ratio of omega-3 fatty acids to omega-6 fatty acids in total lipids in the body (for example, liver). Omega-6 fatty acids include, for example, arachidonic acid (AA), linoleic acid, γ-linolenic acid, dihomo γ-linolenic acid, docosatetraenoic acid and 22:5n-6 docosapentaenoic acid (ospondonic acid). Examples of omega-3 fatty acids include eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), 22:5n-3 docosapentaenoic acid (clupanodonic acid, DPA), α-linolenic acid, stearidonic acid and eicosatetra. enoic acid.
 上述のように、オメガ6脂肪酸は炎症亢進性の脂質メディエーターに代謝され、オメガ3脂肪酸は炎症抑制性の脂質メディエーターに代謝されることから、オメガ3脂肪酸とオメガ6脂肪酸のバランスを改善することは、体内の炎症の予防又は改善につながる。よって、本発明の経口用組成物は、炎症の予防又は改善の効果も奏する。 As mentioned above, omega-6 fatty acids are metabolized to pro-inflammatory lipid mediators and omega-3 fatty acids are metabolized to anti-inflammatory lipid mediators. , leading to the prevention or amelioration of inflammation in the body. Therefore, the oral composition of the present invention also has an effect of preventing or improving inflammation.
 本発明の経口用組成物は、筋肉を増加させる作用を通じて、例えば、ロコモティブシンドローム、サルコペニア等の筋肉又は筋力の減少が関連する状態、症状又は疾患の予防又は改善の効果も奏する。
 本発明の経口用組成物は、筋肉を増加させる作用、血糖値の上昇を抑える作用、肝臓への脂肪蓄積を抑制する作用及び白色脂肪組織の増加抑制作用を通じて、例えば、生活習慣病又はメタボリックシンドロームの予防又は改善の効果も奏する。
The oral composition of the present invention also exerts an effect of preventing or ameliorating conditions, symptoms or diseases associated with decreased muscle or muscle strength, such as locomotive syndrome and sarcopenia, through its action of increasing muscle mass.
The composition for oral use of the present invention, through the action of increasing muscle, the action of suppressing the rise of blood sugar level, the action of suppressing the accumulation of fat in the liver, and the action of suppressing the increase of white adipose tissue, is effective against lifestyle-related diseases or metabolic syndrome. There is also an effect of prevention or improvement of
 以上のように、本発明の経口用組成物は、例えば、筋肉若しくは筋力の増加、筋肉若しくは筋力の減少抑制、糖代謝状態の改善(例えば、血糖値の改善、より具体的には、空腹時高血糖の改善、食後血糖値の改善、平均血糖値又はHbA1c値の改善等)、肝臓への脂肪蓄積抑制、及び体内のオメガ3脂肪酸とオメガ6脂肪酸のバランスの改善からなる群より選ばれる少なくとも1種のために使用することができる。
 また、本発明の経口用組成物は、糖尿病、脂肪肝(非アルコール性脂肪肝又はアルコール性脂肪肝)、炎症、ロコモティブシンドローム、サルコペニア、生活習慣病及びメタボリックシンドロームからなる群より選ばれる少なくとも1種の予防又は改善のために使用することができる。
As described above, the oral composition of the present invention, for example, increases muscle or muscle strength, suppresses muscle or muscle strength loss, improves glucose metabolism (for example, improves blood sugar level, more specifically, at least one selected from the group consisting of improvement of hyperglycemia, improvement of postprandial blood sugar level, improvement of average blood sugar level or HbA1c level, etc.), suppression of fat accumulation in the liver, and improvement of the balance of omega-3 fatty acids and omega-6 fatty acids in the body It can be used for one species.
In addition, the composition for oral use of the present invention includes at least one selected from the group consisting of diabetes, fatty liver (non-alcoholic fatty liver or alcoholic fatty liver), inflammation, locomotive syndrome, sarcopenia, lifestyle-related diseases and metabolic syndrome. can be used for the prevention or improvement of
 本発明の経口用組成物は、さらに、血中脂質状態の改善(例えば、血中中性脂肪(トリグリセリド)値、コレステロール値若しくはLDLコレステロール値の改善等)及び体重の減少促進からなる群より選ばれる少なくとも1種のためにも使用することができる。
 本発明の経口用組成物は、さらに、脂質異常症(例えば、高トリグリセリド血症、高LDLコレステロール血症)、動脈硬化及び肥満からなる群より選ばれる少なくとも1種の予防又は改善のためにも使用することができる。
The composition for oral use of the present invention is further selected from the group consisting of improving blood lipid status (for example, improving blood neutral fat (triglyceride) level, cholesterol level or LDL cholesterol level, etc.) and promoting weight loss. can also be used for at least one
The oral composition of the present invention is also used for the prevention or improvement of at least one selected from the group consisting of dyslipidemia (e.g., hypertriglyceridemia, hyperLDL cholesterolemia), arteriosclerosis and obesity. can be used.
 本発明の経口用組成物は、治療的又は非治療的に使用することができる。本明細書において、「非治療的」とは、医療行為を含まないことを表し、例えば医師又は医師の指示を受けたものによるヒトの手術、治療又は診断を含まないことを表す。 The oral composition of the present invention can be used therapeutically or non-therapeutically. As used herein, the term "non-therapeutic" means not including medical practice, for example, not including surgery, treatment or diagnosis of humans by a doctor or those under the direction of a doctor.
 本発明の経口用組成物は、実施例に示すように、対象の肝臓中のELOVL2、ELOVL5、FADS1又はFADS2遺伝子の発現を維持し、又は促進させる作用を有する。したがって、本発明の経口用組成物は、体内(好ましくは肝臓中)において、ELOVL2、ELOVL5、FADS1又はFADS2遺伝子の発現(例えば、mRNAの発現)を維持又は促進するために使用することができる。 The oral composition of the present invention has the effect of maintaining or promoting the expression of the ELOVL2, ELOVL5, FADS1 or FADS2 gene in the liver of a subject, as shown in the Examples. Therefore, the oral composition of the present invention can be used to maintain or promote ELOVL2, ELOVL5, FADS1 or FADS2 gene expression (eg, mRNA expression) in the body (preferably in the liver).
 ELOVL2(Fatty Acid Elongase 2)及びELOVL5(Fatty Acid Elongase 5)は不飽和脂肪酸の鎖長伸長を触媒する酵素をコードする遺伝子である。また、FADS1(Fatty Acid Desaturase 1)及びFADS2(Fatty Acid Desaturase 2)は、脂肪酸に二重結合を導入する酵素をコードする遺伝子である。これらの遺伝子は、EPA、DHA、DPAのような多価不飽和脂肪酸(PUFA)の合成に関わる。実施例に示されるように、本発明の経口用組成物は、クリルオイル等の本発明とは別のタイプの多価不飽和脂肪酸を含有する油脂類と異なり、肝臓中のこれらの遺伝子の発現を低下させない。特定のメカニズムに限定されるべきではないが、肝臓中のこれらの遺伝子の発現の違いが一因となって、本発明の経口用組成物がクリルオイル等に比べて肝臓中のオメガ脂肪酸を増加させ、オメガ3脂肪酸とオメガ6脂肪酸のバランスの改善作用をもたらすものと推察される。 ELOVL2 (Fatty Acid Elongase 2) and ELOVL5 (Fatty Acid Elongase 5) are genes encoding enzymes that catalyze chain elongation of unsaturated fatty acids. FADS1 (Fatty Acid Desaturase 1) and FADS2 (Fatty Acid Desaturase 2) are genes encoding enzymes that introduce double bonds into fatty acids. These genes are involved in the synthesis of polyunsaturated fatty acids (PUFA) such as EPA, DHA and DPA. As shown in the examples, the oral composition of the present invention, unlike krill oil and other oils containing polyunsaturated fatty acids of a different type than the present invention, inhibits the expression of these genes in the liver. does not reduce Although not to be limited to a particular mechanism, differences in the expression of these genes in the liver may be one reason why the oral composition of the present invention increases omega fatty acids in the liver compared to krill oil and the like. It is speculated that it brings about the effect of improving the balance of omega-3 fatty acids and omega-6 fatty acids.
 本発明の経口用組成物は、上記用途を効能又は機能として表示した組成物であり得る。そのような表示としては、例えば、上記用途の直接的な表示又は上記用途を実質的に意味する表示が挙げられる。 The oral composition of the present invention may be a composition indicating the above uses as efficacy or function. Such indications include, for example, direct indications of the above uses or indications that substantially imply the above uses.
 上記用途の直接的な表示としては、例えば、筋肉若しくは筋力の減少抑制の表示例として「筋肉・筋力の維持」、「筋肉キープ」など;糖代謝状態の改善の表示例として「血糖値の上昇をおだやかにする」、「血糖値を抑える」、「血糖値を下げる」、「高めの血糖値を正常に近づける」、「食後の血糖値の上昇をおだやかにする」、「食後の血糖値の上昇を抑える」、「食後の血糖値を下げる」、「高めの空腹時血糖値を正常に近づける」、「血糖ダウン」など;肝臓への脂肪蓄積抑制の表示例として、「肝臓の脂肪の蓄積を抑える」、「内臓脂肪の蓄積を抑える」、「肝臓の脂肪を落とす」、「内臓脂肪を減らす」、「おなかの脂肪を減らす」などが挙げられるが、これらに限定されない。 Examples of direct indications for the above uses include “maintenance of muscle/strength” and “keep muscle” as examples of indications for suppressing muscle or muscle strength loss; "Slows blood sugar level", "Lowers blood sugar level", "Reduces high blood sugar level to normal", "Slows postprandial rise in blood sugar level", "Reduces postprandial blood sugar level "Reduce blood sugar rise", "Reduce postprandial blood sugar level", "Reduce high fasting blood sugar level to normal", "Lower blood sugar", etc.; "reduce visceral fat", "reduce visceral fat accumulation", "reduce liver fat", "reduce visceral fat", "reduce belly fat", etc., but are not limited to these.
 上記用途を実質的に表示する表示としては、例えば、上記用途の比喩的な表示、摂取又は投与が推奨される対象の表示、特定の疾患、症状又は健康状態に対して作用することを示す表示などが挙げられる。そのような表示の例として、「筋力の衰えが気になる方に」、「筋肉・筋力サポート」、「貯筋」、「血糖ケア」、「血糖サポート」、「血糖値が気になる方に」、「血糖値対策」、「おなかの脂肪が気になる方に」、「おなか周りすっきり」、「抗炎症」、「メタボ対策」、「ロコモ対策」、「生活習慣病対策」などが挙げられるが、これらに限定されない。 Examples of indications that substantially indicate the above uses include, for example, figurative indications of the above uses, indications of subjects for which intake or administration is recommended, and indications that they act on specific diseases, symptoms, or health conditions. etc. Examples of such indications include "for those who are concerned about muscle weakness," "muscle/strength support," "muscle storage," "blood sugar care," "blood sugar support," and "for those who are concerned about blood sugar levels." ", "blood sugar countermeasures", "those who are concerned about belly fat", "refreshing around the stomach", "anti-inflammatory", "metabolite countermeasures", "locomo countermeasures", "lifestyle disease countermeasures", etc. include but are not limited to:
 本発明の経口用組成物が摂取又は投与される対象は、ヒト又は非ヒト動物(例えば、ヒト以外の哺乳類)であり、好ましくは、糖尿病、脂肪肝、炎症、ロコモティブシンドローム、サルコペニア若しくはメタボリックシンドローム等の疾患、症状若しくは健康状態を有する者;又はそれらの疾患、症状若しくは健康状態を有するリスクを有する者が挙げられる。 Subjects to which the oral composition of the present invention is ingested or administered are humans or non-human animals (e.g. mammals other than humans), preferably diabetes, fatty liver, inflammation, locomotive syndrome, sarcopenia or metabolic syndrome. or at risk of having those diseases, conditions or conditions.
 対象の年齢は、特に限定されないが、例えば成人に適用される。 The target age is not particularly limited, but it applies to adults, for example.
 本発明の経口用組成物の投与量又は摂取量は、投与又は摂取対象者の体重、性別、年齢、状態又はその他の要因に応じて適宜決定される。
 本発明の経口用組成物の投与量又は摂取量は、例えば、1日あたり、前記リン酸化エタノールアミン部分、前記グリセロール-1-リン酸部分及び前記エイコサペンタエン酸部分の合計量として、例えば、0.1~1,000mg/kg体重、0.5~500mg/kg体重又は1~100mg/kg体重とすることができる。
 本発明の経口用組成物は、例えば、1日に1~5回、1~3回又は2~3回投与又は摂取される。
The dosage or intake of the oral composition of the present invention is appropriately determined according to the body weight, sex, age, condition, or other factors of the subject of administration or intake.
The dosage or intake of the oral composition of the present invention is, for example, 0 as the total amount of the phosphorylated ethanolamine moiety, the glycerol-1-phosphate moiety and the eicosapentaenoic acid moiety per day. .1-1,000 mg/kg body weight, 0.5-500 mg/kg body weight or 1-100 mg/kg body weight.
Oral compositions of the invention are administered or taken, for example, 1 to 5, 1 to 3, or 2 to 3 times daily.
 以下に実施例を用いて、本発明をさらに詳細に説明するが、本発明は、これらの範囲に限定されるものではない。下記試験例の各表の成分の量の単位は、特に断りがない限り、質量%である。N.D.は測定において成分が検出されなかったことを表す。 The present invention will be described in more detail below using examples, but the present invention is not limited to these scopes. Unless otherwise specified, the unit of the amount of components in each table of the test examples below is % by mass. N. D. indicates that the component was not detected in the measurement.
 〔脂肪酸の分析方法〕
 下記試験例において、脂質サンプル中の脂肪酸組成は、いずれもサンプルの脂質を脂肪酸メチル化キット(ナカライテスク(株))を用いてメチルエステル化処理した後、以下の条件のガスクロマトグラフィーにより決定した。
 <分析条件>
  装置:GC-2014 Gas Chromatograph((株)島津製作所)
  カラム:Fused Sillica Capillary Column Omegawax320 (30 m×0.32 mm i.d.)
      (Supelco, Inc.)
  キャリアガス:ヘリウム
  ヘリウム流量:1mL/min
  カラム温度:200℃
  インジェクション温度:250℃
  検出器温度:260℃
  検出器:C-R8A Chromatopac Integrator((株)島津製作所)
 <脂肪酸組成の算出>
 得られたクロマトグラムの各脂肪酸ピークを各脂肪酸の標準物質の保持時間に基づいて帰属し、それぞれの脂肪酸の組成(単位は質量%)をピーク総面積に対する百分率として算出した。
[Analysis method of fatty acid]
In the test examples below, the fatty acid composition in the lipid samples was determined by gas chromatography under the following conditions after the sample lipids were methyl-esterified using a fatty acid methylation kit (Nacalai Tesque, Inc.). .
<Analysis conditions>
Apparatus: GC-2014 Gas Chromatograph (Shimadzu Corporation)
Column: Fused Silica Capillary Column Omegawax320 (30 m×0.32 mm id)
(Supelco, Inc.)
Carrier gas: helium Helium flow rate: 1 mL/min
Column temperature: 200°C
Injection temperature: 250°C
Detector temperature: 260°C
Detector: C-R8A Chromatopac Integrator (Shimadzu Corporation)
<Calculation of fatty acid composition>
Each fatty acid peak in the obtained chromatogram was attributed based on the retention time of each fatty acid standard substance, and the composition of each fatty acid (unit: % by mass) was calculated as a percentage of the total peak area.
 〔試料調製に使用したサンプル〕
 <シェワネラ・ウーディイGS001株抽出物(SWオイル)>
 シェワネラ・ウーディイGS001株抽出物(以下、SWオイルと呼ぶ場合がある)は、以下の手順で調製した。
 (1)シェワネラ・ウーディイGS001株の培養物から集められた菌体を乾燥させた。
 (2)菌体乾燥物からアルコールを用いて脂質を抽出した。
 (3)抽出液を濾過し、濾液をさらに濃縮した。
 (4)ヘキサンを用いて分液操作を行って、ヘキサン画分を分離、濃縮し、沈殿を乾燥させたものをSWオイルとした。
[Sample used for sample preparation]
<Shewanella udii GS001 strain extract (SW oil)>
A Shewanella udii GS001 strain extract (hereinafter sometimes referred to as SW oil) was prepared by the following procedure.
(1) Cells collected from a culture of Shewanella udii strain GS001 were dried.
(2) Lipids were extracted from the dried microbial cells using alcohol.
(3) The extract was filtered and the filtrate was further concentrated.
(4) Separation operation was performed using hexane, the hexane fraction was separated and concentrated, and the precipitate was dried to obtain SW oil.
 <シェワネラ・エレクトロディフィラ抽出物(SEオイル)>
 シェワネラ・エレクトロディフィラ抽出物(以下、SEオイルと呼ぶ場合がある)は、シェワネラ・エレクトロディフィラの培養物を原料として、SWオイルと同様の方法により調製した。
<Shewanella Electrodyphylla Extract (SE Oil)>
A Shewanella electrodyphila extract (hereinafter sometimes referred to as SE oil) was prepared from a culture of Shewanella electrodyphila by the same method as for SW oil.
 <クリルオイル、魚油>
 クリルオイルは、リン脂質として主にホスファチジルコリン(PC)を含有し、PE及びPGはほとんど含有しない。本試験例ではAker BioMarine社の市販品を用いた。魚油はマルハニチロ(株)の市販品を用いた。
 <大豆油、ラード>
 大豆油は富士フイルム和光純薬(株)、ラードは純正化学(株)の市販品を用いた。
<Krill oil, fish oil>
Krill oil contains mainly phosphatidylcholine (PC) as phospholipid and little PE and PG. In this test example, a commercial product from Aker BioMarine was used. A fish oil commercially available from Maruha Nichiro Co., Ltd. was used.
<Soybean oil, lard>
Soybean oil used was Fuji Film Wako Pure Chemical Co., Ltd., and lard was used commercially available from Junsei Chemical Co., Ltd.
 <サンプルの分析結果>
 SWオイル及びクリルオイル中のエイコサペンタエン酸(EPA)、ドコサヘキサエン酸(DHA)、エタノールアミン型リン脂質(PE)、グリセロール-1-リン酸型リン脂質(PG)の含有量を、表1に示した。EPAとDHAの含有量は、フリーの脂肪酸と、トリグリセリド及びリン脂質等にアシル基として含まれるものとの合計量を表す。表1に示されるように、SWオイルはDHAを含有しない。
<Sample analysis results>
Table 1 shows the contents of eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA), ethanolamine-type phospholipid (PE), and glycerol-1-phosphate-type phospholipid (PG) in SW oil and krill oil. Ta. The contents of EPA and DHA represent the total amount of free fatty acids and those contained as acyl groups in triglycerides, phospholipids, and the like. As shown in Table 1, SW oil does not contain DHA.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 また、SWオイル及びSWオイルの極性脂質画分の脂肪酸組成分析の結果を図1A及び図1Bに示した。SWオイルの脂肪酸全量に占めるEPAの割合は、5.42質量%であった。 In addition, the results of fatty acid composition analysis of SW oil and the polar lipid fraction of SW oil are shown in Figures 1A and 1B. The ratio of EPA to the total amount of fatty acids in the SW oil was 5.42% by mass.
 なお、シェワネラ・エレクトロディフィラの乾燥菌体から、下記の手順で総脂質を抽出し、さらに極性脂質の分画を行った。その結果、乾燥菌体から得られた脂質におけるEPA全量に対するリン脂質型EPAの含有量は61.3質量%、中性脂質型EPAの含有量は32.6質量%、糖脂質型EPAの含有量は6.1質量%であった。また、乾燥菌体から得られた脂質におけるリン脂質全量に対して、PGは32.4質量%、PEは59.7質量%であった。
 <<総脂質の分画方法>>
 下記試験例において、試料からの総脂質の抽出は、下記の手順により行った。
 (1)試料に対して10倍量のアルコールを添加し、一晩暗所で脂質の抽出を行った後、吸引ろ過により、固液分離し、濾液を回収した。
 (2)固液分離で得られた残渣に同量のアルコールを加えて濾過し、濾液を回収した。
 (3)(1)及び(2)の濾液を合わせ、濾液からロータリーエバポレーターで溶剤を留去した。
 (4)脂質20g程度を500mLメディウム瓶に秤量し、ヘキサンを800mL加えた。超音波槽にメディウム瓶を入れ、ヘキサンに脂質を分散させた。
 (5)分液漏斗にあらかじめ1Lのアルコールを添加、混合しておき、ヘキサンに溶解した脂質を添加し、混合後一晩静置して2層分離させた後、上層(ヘキサン画分)を回収した。
 (6)回収された上層から溶媒をロータリーエバポレーターで留去し、得られた脂溶性成分を総脂質とした。
 <<極性脂質の分画方法>>
 (7)
 得られた総脂質50mgを調製用シリカゲルTLCプレート(PLC Silica gel 60 F254、1mm厚;Merck KGaA社製)に帯状に負荷し、クロロホルム:メタノール:水(65:25:4,v/v/v)を展開溶媒として展開した。ドラフト内で乾燥後、PE及びPG画分をTLCプレートから剥離回収し、ガラスカラム内に移した後、メタノール50mLを用いて各脂質を溶出した。その後、エバポレーターでメタノールを留去し、PE及びPGを得た。
Total lipids were extracted from dried cells of Shewanella electrodyphila by the following procedure, and polar lipids were further fractionated. As a result, the content of phospholipid-type EPA relative to the total amount of EPA in the lipid obtained from the dried cells was 61.3% by mass, the content of neutral lipid-type EPA was 32.6% by mass, and the content of glycolipid-type EPA was The amount was 6.1% by weight. In addition, PG was 32.4% by mass and PE was 59.7% by mass with respect to the total amount of phospholipids in the lipids obtained from the dried cells.
<<Method for fractionating total lipids>>
In the following test examples, extraction of total lipids from samples was performed by the following procedure.
(1) After adding 10 times the amount of alcohol to the sample and extracting the lipid overnight in a dark place, solid-liquid separation was performed by suction filtration, and the filtrate was recovered.
(2) The same amount of alcohol was added to the residue obtained by solid-liquid separation, and the mixture was filtered to collect the filtrate.
(3) The filtrates of (1) and (2) were combined, and the solvent was distilled off from the filtrates using a rotary evaporator.
(4) About 20 g of lipid was weighed into a 500 mL medium bottle, and 800 mL of hexane was added. A medium bottle was placed in an ultrasonic bath, and the lipid was dispersed in hexane.
(5) Add 1 L of alcohol in advance to a separating funnel, mix, add lipid dissolved in hexane, mix and leave overnight to separate into two layers, then remove the upper layer (hexane fraction). Recovered.
(6) The solvent was distilled off from the recovered upper layer using a rotary evaporator, and the obtained lipid-soluble components were used as total lipids.
<<Method for fractionating polar lipids>>
(7)
50 mg of the total lipid obtained was stripped onto a preparative silica gel TLC plate (PLC Silica gel 60 F 254 , 1 mm thick; Merck KGaA) and treated with chloroform:methanol:water (65:25:4, v/v/ v) was developed as a developing solvent. After drying in a fume hood, the PE and PG fractions were peeled off from the TLC plate, transferred into a glass column, and each lipid was eluted with 50 mL of methanol. Thereafter, methanol was distilled off using an evaporator to obtain PE and PG.
 SEオイル、魚油及びクリルオイルの総脂質中の脂肪酸組成分析結果を表2に示した。 Table 2 shows the fatty acid composition analysis results in the total lipids of SE oil, fish oil, and krill oil.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 〔統計解析〕
 下記の試験例1~3において、統計解析の結果は平均値±標準誤差(SE)で示した。統計解析は、図2に示すフローに従って行った。
〔Statistical analysis〕
In Test Examples 1 to 3 below, the results of statistical analysis are shown as mean±standard error (SE). Statistical analysis was performed according to the flow shown in FIG.
 〔試験例1.シェワネラ属細菌抽出物の生理活性評価試験〕
 <動物試験方法>
 (1)糖尿病モデルマウスであるKK-Aマウス(4週齢、オス;日本クレア(株)より購入)をMF飼料(オリエンタル酵母(株)製)を給餌して1週間予備飼育し、供試動物とした。試験群として対照群(Control;G1)、SWオイル群(Shewanella;G2)及び低用量クリルオイル群(Krill-L;G3)、高用量クリルオイル群(Krill-H;G4)の4群(各群n=7)を設け、各群表3の組成の飼料と水を6週間投与した。飼料は、飼育開始から0~8日目は自由摂取させ、9日目以降はSWオイル群の摂餌量に合わせた制限給餌を行った(図3)。水は自由摂取とした。試験中、群間においてマウスの体重の推移に有意な差は見られなかった。
[Test Example 1. Physiological Activity Evaluation Test of Shewanella Bacteria Extract]
<Animal test method>
(1) Diabetes model mice KK-A y mice (4 weeks old, male; purchased from Clea Japan, Inc.) were fed with MF feed (manufactured by Oriental Yeast Co., Ltd.) for 1 week, and then supplied. used as a test animal. Control group as test groups (Control; G1), SW oil group (Shewanella; G2) and low dose krill oil group (Krill-L; G3), high dose krill oil group (Krill-H; G4) four groups (each Groups (n=7) were established, and feed and water having the composition shown in Table 3 were administered to each group for 6 weeks. Feed was given ad libitum from the 0th to 8th days after the start of rearing, and from the 9th day onwards, feeding was restricted according to the food intake of the SW oil group (Fig. 3). Water was given ad libitum. There was no significant difference in body weight transition of mice between groups during the study.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 (2)飼育期間終了後にマウスからイソフルラン吸入麻酔下で後大静脈よりヘパリン処理した注射針(テルモ(株))及び注射筒(テルモ(株))を用いて全採血及び臓器・組織摘出を行い、下記の各評価に供した。
 (i)腓腹筋重量の評価:6週間飼育完了後の各群のマウスの腓腹筋を摘出し、重量を測定した。
 (ii)血糖値及びHbA1cの評価:41日目の空腹時のマウス血糖値を測定した。また、6週間飼育終了日(42日目)の給餌2時間後(非絶食下)の血糖値とHbA1cを測定した。血糖値は、マウスの尾の先端の静脈を無麻酔下でメスを用いて切開し、切開面より漏出する血液を血糖測定装置(スタットストリップ エクスプレス グルコース ケトン、ノバ・バイオメディカル(株)製)に接続した血糖測定チップに吸引させて測定した。また、HbA1c測定用の血液は、上記全採血によって得られた血液から、20μL分取して-70℃以下で保存したものを使用した。HbA1cの測定にはDCAバンテージ(SIEMENS社製)を用いた。
 (iii)肝臓重量の評価:6週間飼育完了後の各群のマウスの肝臓を摘出し、重量を測定した。
 (iv)血中トリグリセリド、血中コレステロールの評価:上記全採血によって得られた血液を、テーブルトップ冷却遠心機2800(久保田商事(株))を用いて3000rpmで15分間遠心分離し、ヘパリン血漿を得た。ヘパリン血漿は予め200μL分取した後、日立自動分析装置3100((株)日立ハイテク)を用いてトリグリセリド(TG)、総コレステロール(T-CHO)、LDLコレステロール(LDL-CHO)及びHDLコレステロール(HDL-CHO)を測定した。非HDLコレステロール(Non-HDL-CHO)は、総コレステロールからHDLコレステロールの量を差し引いて求めた。なお、予め分取したヘパリン血漿は、測定までの間は-70℃以下で保存した。
 (v)脂肪組織重量の評価:6週間飼育完了後の各群のマウスの白色脂肪組織を摘出し、腎周囲・後腹壁周囲脂肪、及び白色脂肪組織全部の重量を測定した。
 (vi)肝臓の脂肪酸組成の評価:6週間飼育完了後の各群のマウスの肝臓の総脂質中のn-3多価不飽和脂肪酸(PUFA)組成を測定した。肝臓の総脂質はFolch法により抽出した。得られた総脂質をメチルエステル化した後で、上記の条件でガスクロマトグラフィーにより脂肪酸組成の分析を行った。
(2) After the breeding period, whole blood was collected from the mouse under isoflurane inhalation anesthesia and organs/tissues were removed from the posterior vena cava using a heparinized injection needle (Terumo Corporation) and a syringe (Terumo Corporation). , was used for each of the following evaluations.
(i) Evaluation of gastrocnemius muscle weight: After 6 weeks of feeding, the gastrocnemius muscle of each group was removed and weighed.
(ii) Evaluation of blood glucose level and HbA1c: fasting mouse blood glucose level on day 41 was measured. In addition, the blood sugar level and HbA1c were measured 2 hours after feeding (under non-fasting) on the day of termination of the 6-week feeding (day 42). The blood glucose level was measured by incising the vein at the tip of the tail of the mouse with a scalpel under no anesthesia, and measuring the blood leaking from the incised surface with a blood glucose measuring device (Statstrip Express Glucose Ketone, manufactured by Nova Biomedical Co., Ltd.). The blood glucose was sucked into the connected blood glucose measuring chip and measured. For the HbA1c measurement, 20 μL of the blood obtained by the above whole blood collection was aliquoted and stored at −70° C. or below. A DCA bandage (manufactured by SIEMENS) was used to measure HbA1c.
(iii) Evaluation of liver weight: After 6 weeks of feeding, the liver of each group of mice was excised and weighed.
(iv) Evaluation of blood triglycerides and blood cholesterol: The blood obtained by the above whole blood collection was centrifuged at 3000 rpm for 15 minutes using a table top refrigerated centrifuge 2800 (Kubota Shoji Co., Ltd.), and heparin plasma was removed. Obtained. 200 μL of heparin plasma was collected in advance, and triglyceride (TG), total cholesterol (T-CHO), LDL cholesterol (LDL-CHO) and HDL cholesterol (HDL —CHO) was measured. Non-HDL cholesterol (Non-HDL-CHO) was determined by subtracting the amount of HDL cholesterol from total cholesterol. The heparinized plasma collected in advance was stored at −70° C. or below until the measurement.
(v) Evaluation of adipose tissue weight: White adipose tissue was removed from each group of mice after feeding for 6 weeks, and the weight of the perirenal/retroabdominal fat and all of the white adipose tissue was measured.
(vi) Evaluation of fatty acid composition in liver: n-3 polyunsaturated fatty acid (PUFA) composition in total lipid in the liver of each group of mice after feeding for 6 weeks was measured. Total liver lipids were extracted by the Folch method. After the obtained total lipid was methyl-esterified, the fatty acid composition was analyzed by gas chromatography under the above conditions.
 <結果>
 (1)腓腹筋重量の評価
 各群のマウスの腓腹筋の重量の比較結果を図4に示した。SWオイル群は、対照群に比べて有意に腓腹筋重量が増加していたのに対し、低用量クリルオイル群及び高用量クリルオイル群では有意差は見られなかった。
<Results>
(1) Evaluation of gastrocnemius muscle weight FIG. 4 shows the results of comparing the gastrocnemius muscle weights of the mice in each group. The SW oil group significantly increased the gastrocnemius muscle weight compared to the control group, whereas no significant difference was observed between the low dose krill oil group and the high dose krill oil group.
 (2)血糖値及びHbA1cの評価
 41日目の空腹時の血糖値を図5Aに、42日目の給餌2時間後の血糖値とHbA1cを図5B、図5Cに示した。空腹時血糖値及び給餌2時間後の血糖値では、SWオイル群は対照群及びクリルオイルを投与した2群に比べて血糖値が有意に低く抑えられていた。またHbA1c値についても、SWオイル群は、対照群及びクリルオイルを投与した2群に比べて有意に低値であった。
(2) Evaluation of blood sugar level and HbA1c The fasting blood sugar level on the 41st day is shown in FIG. 5A, and the blood sugar level and HbA1c after 2 hours of feeding on the 42nd day are shown in FIGS. 5B and 5C. As for the fasting blood sugar level and the blood sugar level 2 hours after feeding, the blood sugar level was suppressed significantly lower in the SW oil group than in the control group and the two groups administered with krill oil. The HbA1c value was also significantly lower in the SW oil group than in the control group and the two groups to which krill oil was administered.
 (3)肝臓重量の評価
 6週間飼育完了後の各群のマウスの肝臓重量の比較結果を図6に示した。SWオイル群は対照群と有意差を示さなかったが、クリルオイルを投与した2群では対照群に比べて肝臓重量が有意に増加した。クリルオイルを投与した場合は、含まれるリン脂質が肝臓への脂肪の蓄積を誘発したものと推察される。
(3) Evaluation of Liver Weight FIG. 6 shows the results of comparing the liver weights of the mice in each group after completing feeding for 6 weeks. The SW oil group did not show a significant difference from the control group, but the two groups administered krill oil showed a significant increase in liver weight compared to the control group. It is speculated that the phospholipids contained in krill oil induced fat accumulation in the liver.
 (4)血中トリグリセリド、血中コレステロールの評価
 血中トリグリセリド及びコレステロールの評価結果を図7A、図7Bに示した。SWオイル群は、対照群に比べて血中トリグリセリド、総コレステロール、LDLコレステロール及び非HDLコレステロールの値が有意に低値となった。一方、クリルオイルを投与した2群は、これらの値において、対照群との間で有意な差は見られなかった。
(4) Evaluation of Blood Triglyceride and Blood Cholesterol The evaluation results of blood triglyceride and cholesterol are shown in FIGS. 7A and 7B. The SW oil group had significantly lower blood triglycerides, total cholesterol, LDL cholesterol and non-HDL cholesterol levels than the control group. On the other hand, there was no significant difference in these values between the two groups administered with krill oil and the control group.
 (5)脂肪組織重量の評価
 6週間飼育完了後の各群のマウスの脂肪組織重量の比較結果を図8に示した。SWオイル群は、対照群に比べて白色脂肪組織の合計量及び腎周囲・後腹壁周囲脂肪の重量が有意に低値となった。一方、クリルオイルを投与した2群は、これらの値において、対照群との間で有意な差は見られなかった。
(5) Evaluation of Adipose Tissue Weight FIG. 8 shows the results of comparing the adipose tissue weights of the mice of each group after completing feeding for 6 weeks. In the SW oil group, the total amount of white adipose tissue and the weight of perirenal and posterior abdominal wall fat were significantly lower than in the control group. On the other hand, there was no significant difference in these values between the two groups administered with krill oil and the control group.
 (6)肝臓の脂肪酸組成の評価
 6週間飼育完了後の各群のマウスの肝臓のn-3 PUFA組成を図9に示した。SWオイル群は対照群に比べて肝臓のEPA(20:5n-3)蓄積量が有意に増加し、脂肪酸組成に占める割合でも有意な増加が見られた。さらに驚くべきことに、SWオイルにはほとんど含有しないDHA(22:6n-3)やドコサペンタエン酸(DPA)(22:5n-3)も、それらの肝臓中の蓄積量と脂肪酸組成に占める割合が有意に増加した。一方、クリルオイル群は、クリルオイルがDHAを比較的多く含むにもかかわらず、肝臓中のDHAの蓄積量及び脂肪酸組成に占める割合の増加は見られなかった。また、肝臓中のDPAも有意な増加は認められなかった。
(6) Evaluation of Fatty Acid Composition in Liver FIG. 9 shows the n-3 PUFA composition in the liver of each group of mice after feeding for 6 weeks. The SW oil group showed a significant increase in the amount of EPA (20:5n-3) accumulated in the liver compared to the control group, and a significant increase in its proportion in the fatty acid composition was also observed. Furthermore, surprisingly, DHA (22:6n-3) and docosapentaenoic acid (DPA) (22:5n-3), which are hardly contained in SW oil, also account for their accumulated amount and fatty acid composition in the liver. percentage increased significantly. On the other hand, in the krill oil group, although the krill oil contains a relatively large amount of DHA, an increase in the amount of DHA accumulated in the liver and the proportion of DHA in the fatty acid composition was not observed. Also, no significant increase in DPA in the liver was observed.
 (7)まとめ
 以上から、シェワネラ属細菌抽出物は、(i)筋肉を増加させる効果又は筋肉の減少を抑制する効果、(ii)空腹時血糖値、食後血糖値及びHbA1cが反映する平均血糖値の上昇を抑制し、糖代謝状態を改善する効果、(iii)肝臓への脂肪蓄積抑制効果、(iv)総コレステロール、LDLコレステロール及び非HDLコレステロールの上昇を抑え、血中脂質の状態を改善する効果、及び(v)白色脂肪組織量の増加を抑制する効果を有すること、(vi)肝臓中のEPA、DPA及びDHAを増加させる効果を有することが明らかとなった。SWオイル群と低用量クリルオイル群の効果の比較によれば、これらの効果は、EPA結合エタノールアミン型リン脂質及びEPA結合グリセロール型リン脂質に起因することが理解される。
(7) Summary From the above, the Shewanella bacterium extract has (i) an effect of increasing muscle mass or an effect of suppressing muscle loss, (ii) fasting blood sugar level, postprandial blood sugar level, and average blood sugar level reflected by HbA1c (iii) suppressing fat accumulation in the liver, (iv) suppressing increases in total cholesterol, LDL cholesterol and non-HDL cholesterol, and improving the state of blood lipids. (v) an effect of suppressing an increase in the amount of white adipose tissue; and (vi) an effect of increasing EPA, DPA and DHA in the liver. A comparison of the effects of the SW oil group and the low dose krill oil group shows that these effects are due to EPA-bound ethanolamine-type phospholipids and EPA-bound glycerol-type phospholipids.
 〔試験例2.シェワネラ属細菌抽出物の生理活性評価試験〕
 <動物試験方法>
 C57BL/6Jマウス(9週齢、オス;日本チャールズ・リバー(株)より購入)をMF飼料(オリエンタル酵母(株))を給餌して1週間予備飼育し、供試動物とした。試験群として以下の7群(各n=7)を設けた。
  G1:対照群
  G2:低用量SEオイル群(Shewanella-L)
  G3:高用量SEオイル群(Shewanella-H)
  G4:低用量魚油群(Fish-L)
  G5:高用量魚油群:(Fish-H)
  G6:低用量クリルオイル群(Krill-L)
  G7:高用量クリルオイル群(Krill-H)
[Test Example 2. Physiological Activity Evaluation Test of Shewanella Bacteria Extract]
<Animal test method>
C57BL/6J mice (9 weeks old, male; purchased from Japan Charles River Co., Ltd.) were preliminarily fed with MF feed (Oriental Yeast Co., Ltd.) for 1 week and used as test animals. The following 7 groups (each n=7) were provided as test groups.
G1: control group G2: low dose SE oil group (Shewanella-L)
G3: High dose SE oil group (Shewanella-H)
G4: low dose fish oil group (Fish-L)
G5: High dose fish oil group: (Fish-H)
G6: Low dose krill oil group (Krill-L)
G7: high dose krill oil group (Krill-H)
 (2)各群のマウスを、表4の組成の飼料と水を4週間自由摂取させて飼育した。飼育期間終了後にマウスから肝臓を摘出した。 (2) Mice in each group were bred by freely ingesting the feed and water having the composition shown in Table 4 for 4 weeks. After the breeding period ended, the liver was removed from the mouse.
Figure JPOXMLDOC01-appb-T000007
 (3)肝臓の総脂質をFolch法により抽出した。得られた総脂質をメチルエステル化した後で、上記の条件でガスクロマトグラフィーにより脂肪酸組成の分析を行った。
Figure JPOXMLDOC01-appb-T000007
(3) Total liver lipids were extracted by the Folch method. After the obtained total lipid was methyl-esterified, the fatty acid composition was analyzed by gas chromatography under the above conditions.
 <結果>
 肝臓のオメガ6脂肪酸であるアラキドン酸と、オメガ3脂肪酸であるEPA、ドコサペンタエン酸(DPA)及びDHAの結果を図10A~Dに示した。魚油群及びクリルオイル群と同様に、SEオイルを投与した2群はアラキドン酸量が対照群に比べて減少していた。また、SEオイルを投与した2群では、EPA及びDPAが、魚油群及びクリルオイル群に比べて顕著に増加していた。
<Results>
The results for the liver omega-6 fatty acid arachidonic acid and the omega-3 fatty acids EPA, docosapentaenoic acid (DPA) and DHA are shown in Figures 10A-D. Similar to the fish oil group and the krill oil group, the two groups administered with SE oil showed a decrease in the amount of arachidonic acid compared to the control group. Also, in the two groups to which SE oil was administered, EPA and DPA significantly increased compared to the fish oil group and the krill oil group.
 以上から、シェワネラ属細菌抽出物は、オメガ6脂肪酸に対するオメガ3脂肪酸の割合を顕著に増加させる効果を有することが明らかとなった。魚油及びクリルオイルを投与した場合との比較によれば、当該効果もまた、EPA結合エタノールアミン型リン脂質及びEPA結合グリセロール型リン脂質に起因することが理解される。 From the above, it was clarified that the Shewanella genus extract has the effect of significantly increasing the ratio of omega-3 fatty acids to omega-6 fatty acids. In comparison with the administration of fish oil and krill oil, it is understood that this effect is also due to EPA-bound ethanolamine-type phospholipids and EPA-bound glycerol-type phospholipids.
 〔試験例3.シェワネラ属細菌抽出物の遺伝子発現に対する効果の検証〕
 試験例1で6週間の飼育期間を経て採取されたマウスの肝臓サンプルからトータルmRNAを抽出し、逆転写酵素を用いてcDNAを調製した。ELOVL2、ELOVL5、FADS1及びFADS2の各遺伝子に由来するmRNA量を、GAPDHをリファレンス遺伝子として、qPCR法で定量した。各遺伝子に対するプライマーは、TaqMan Gene Expression Assay(Applied Biosystems Japan社製)の以下に示す品番の製品を使用し、本キットのプロトコールの条件に準じてqPCRを行った。
 <使用プライマー>
 FADS1: Mm00507605_m1
 FADS2: Mm00517221_m1
 ELOVL2: Mm00517086_m1
 ELOVL5: Mm00506717_m1
 GAPDH: Mm99999915_g1
[Test Example 3. Verification of Effect of Shewanella Bacterial Extract on Gene Expression]
Total mRNA was extracted from liver samples of mice collected after 6 weeks of breeding in Test Example 1, and cDNA was prepared using reverse transcriptase. The amount of mRNA derived from each gene of ELOVL2, ELOVL5, FADS1 and FADS2 was quantified by qPCR method using GAPDH as a reference gene. As primers for each gene, TaqMan Gene Expression Assay products (manufactured by Applied Biosystems Japan) with the product numbers shown below were used, and qPCR was performed according to the protocol conditions of this kit.
<Primer used>
FADS1: Mm00507605_m1
FADS2: Mm00517221_m1
ELOVL2: Mm00517086_m1
ELOVL5: Mm00506717_m1
GAPDH: Mm99999915_g1
 各遺伝子のmRNA量の定量結果を図11A~Dに示した。シェワネラ属細菌抽出物をマウスに摂取させた場合、対照群に比べて有意にELOVL2の発現が促進され、またELOVL5、FADS1及びFADS2の発現量は維持又は促進される傾向が見られた。一方、クリルオイルをマウスに摂取させた場合は、肝臓におけるELOVL2、ELOVL5、FADS1及びFADS2の発現量が有意に減少することが明らかとなった。  Figures 11A to 11D show the results of quantifying the amount of mRNA for each gene. When the Shewanella extract was given to mice, the expression of ELOVL2 was significantly promoted compared to the control group, and the expression levels of ELOVL5, FADS1 and FADS2 tended to be maintained or promoted. On the other hand, when krill oil was given to mice, it was found that the expression levels of ELOVL2, ELOVL5, FADS1 and FADS2 in the liver were significantly reduced.
 [配列表]
 配列番号1:シェワネラ・ウーディイGS001株16S rDNA
caggagagta gcttgctact ttcgctgtcg agcggcggac gggtgagtaa tgcctagata
tctgcctagt cgtgggggat aacagttgga aacgactgct aataccgcat acgccctacg
ggggaaagga ggggaccttc gggcctttcg cgattagatg agtctaggtg ggattagcta
gtaggtgagg taatggctca cctaggcgac gatccctagc tgttctgaga ggatgatcag
ccacactggg actgagacac ggcccagact cctacgggag gcagcagtgg ggaatattgc
acaatgggcg aaagcctgat gcagccatgc cgcgtgtgtg aagaaggcct tcgggttgta
aagcactttc agcgaggagg aaaggttaag ggttaataac cgttagctgt gacgttactc
gcagaagaag caccggctaa cttcgtgcca gcagccgcgg taatacgagg ggtgcaagcg
ttaatcggaa ttactgggcg taaagcgtac gcaggcggtt tgttaagcca gatgtgaaag
ccccgggctc aacctgggaa ttgcatttgg aactggcaaa ctagagtctt gtagaggggg
gtagaatttc aggtgtagcg gtgaaatgcg tagagatctg aaggaatacc ggtggcgaag
gcggccccct ggacaaagac tgacgctcag gtacgaaagc gtggggagca aacaggatta
at
[Sequence list]
SEQ ID NO: 1: Shewanella udii strain GS001 16S rDNA
caggagagta gcttgctact ttcgctgtcg agcggcggac gggtgagtaa tgcctagata
tctgcctagt cgtgggggat aacagttgga aacgactgct aataccgcat acgccctacg
ggggaaagga ggggaccttc gggcctttcg cgattagatg agtctaggtg ggattagcta
gtaggtgagg taatggctca cctaggcgac gatccctagc tgttctgaga ggatgatcag
ccacactggg actgagacac ggcccagact cctacgggag gcagcagtgg ggaatattgc
acaatgggcg aaagcctgat gcagccatgc cgcgtgtgtg aagaaggcct tcgggttgta
aagcactttc agcgaggagg aaaggttaag ggttaataac cgttagctgt gacgttactc
gcagaagaag caccggctaa cttcgtgcca gcagccgcgg taatacgagg ggtgcaagcg
ttaatcggaa ttactgggcg taaagcgtac gcaggcggtt tgttaagcca gatgtgaaag
ccccgggctc aacctgggaa ttgcatttgg aactggcaaa ctagagtctt gtagaggggg
gtagaatttc aggtgtagcg gtgaaatgcg tagagatctg aaggaatacc ggtggcgaag
gcggccccct ggacaaagac tgacgctcag gtacgaaagc gtggggagca aacaggatta
at
 [受託番号]
 (1)識別の表示:Shewanella woodyi
 (2)受託番号:NITE BP-03460
 (3)受託日(国際寄託への移管請求日):2022年4月4日(国内寄託日2021年4月15日)
 (4)寄託機関:独立行政法人製品評価技術基盤機構 特許微生物寄託センター(郵便番号292-0818、日本国千葉県木更津市かずさ鎌足2-5-8 122号室)
[Acceptance number]
(1) Identification indication: Shewanella woodyi
(2) Accession number: NITE BP-03460
(3) Date of acceptance (date of request for transfer to international deposit): April 4, 2022 (domestic deposit date: April 15, 2021)
(4) Depositary institution: National Institute of Technology and Evaluation, Patent Microorganism Depositary Center (zip code 292-0818, Room 122, 2-5-8 Kazusa Kamatari, Kisarazu City, Chiba Prefecture, Japan)

Claims (10)

  1.  グリセロール-1-リン酸部分(CHOH-CHOH-CH-OPO -)、エタノールアミンリン酸部分(NH -CH-CH-OPO -)、及びエイコサペンタエン酸部分(CHCH(CH=CHCH(CHCO-)を含有し、
     グリセロール-1-リン酸部分に対するエタノールアミンリン酸部分のモル比が、0.01~100であり、
     経口で摂取又は投与される、組成物。
    glycerol-1-phosphate moiety (CH 2 OH-CHOH-CH 2 -OPO 2 - -), ethanolamine phosphate moiety (NH 3 + -CH 2 -CH 2 -OPO 2 - -), and eicosapentaenoic acid moiety (CH 3 CH 2 (CH═CHCH 2 ) 5 (CH 2 ) 2 CO—),
    the molar ratio of ethanolamine phosphate moieties to glycerol-1-phosphate moieties is from 0.01 to 100;
    Compositions taken or administered orally.
  2.  前記グリセロール-1-リン酸部分及びエタノールアミンリン酸部分の合計に対する前記エイコサペンタエン酸部分のモル比が、0.01~20である、請求項1に記載の組成物。 The composition according to claim 1, wherein the molar ratio of said eicosapentaenoic acid moieties to the sum of said glycerol-1-phosphate moieties and ethanolamine phosphate moieties is 0.01-20.
  3.  式(I)で表されるリン脂質
    Figure JPOXMLDOC01-appb-C000001
     (式中、R及びRは水素原子及びアシル基から選択され、
     R及びRの少なくとも1つはエイコサペンタエン酸部分であり、
     Xはグリセロール-1-リン酸部分及びエタノールアミンリン酸部分から選択される)を含有する、請求項1又は2に記載の組成物。
    Phospholipid represented by formula (I)
    Figure JPOXMLDOC01-appb-C000001
    (wherein R 1 and R 2 are selected from hydrogen atoms and acyl groups,
    at least one of R 1 and R 2 is an eicosapentaenoic acid moiety;
    3. The composition of claim 1 or 2, wherein X is selected from glycerol-1-phosphate moieties and ethanolamine phosphate moieties.
  4.  シェワネラ属(Shewanella)細菌又はその変異株の抽出物を含有する、請求項1~3のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 3, which contains an extract of Shewanella bacteria or a mutant strain thereof.
  5.  シェワネラ・ウーディイ(Shewanella woodyi)又はその変異株の抽出物を含有する、請求項4に記載の組成物。 The composition according to claim 4, which contains an extract of Shewanella woodyi or a mutant strain thereof.
  6.  シェワネラ・ウーディイ(Shewanella woodyi)GS001株(受託番号NITE BP-03460)又はその変異株の抽出物を含有する、請求項5に記載の組成物。 The composition according to claim 5, which contains an extract of Shewanella woodyi strain GS001 (accession number NITE BP-03460) or a mutant strain thereof.
  7.  筋肉又は筋力の増加、筋肉又は筋力の減少抑制、糖代謝状態の改善、肝臓の脂肪蓄積抑制及び体内のオメガ3脂肪酸とオメガ6脂肪酸のバランスの改善からなる群より選ばれる少なくとも1種のために使用される、請求項1~6のいずれか一項に記載の組成物。 For at least one selected from the group consisting of increasing muscle or muscle strength, suppressing muscle or muscle strength loss, improving glucose metabolism, suppressing fat accumulation in the liver, and improving the balance of omega-3 fatty acids and omega-6 fatty acids in the body. A composition according to any one of claims 1 to 6 for use.
  8.  糖尿病、脂肪肝、炎症、ロコモティブシンドローム、サルコペニア、生活習慣病及びメタボリックシンドロームからなる群より選ばれる少なくとも1種の予防又は改善のために使用される、請求項1~6のいずれか一項に記載の組成物。 Diabetes, fatty liver, inflammation, locomotive syndrome, sarcopenia, lifestyle-related diseases and metabolic syndrome according to any one of claims 1 to 6, which is used for prevention or improvement of at least one selected from the group consisting of composition.
  9.  体内においてDHA及びDPAから選ばれる少なくとも1つを増加させるために使用される、請求項1~6のいずれか一項に記載の組成物。 The composition according to any one of claims 1 to 6, which is used to increase at least one selected from DHA and DPA in the body.
  10.  体内のELOVL2、ELOVL5、FADS1又はFADS2遺伝子の発現を維持又は促進するために使用される、請求項1~6のいずれか一項に記載の組成物。
     
    The composition according to any one of claims 1 to 6, which is used for maintaining or promoting the expression of ELOVL2, ELOVL5, FADS1 or FADS2 genes in the body.
PCT/JP2023/005745 2022-02-21 2023-02-17 Oral composition WO2023157948A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022-024478 2022-02-21
JP2022024478 2022-02-21
JP2022101606 2022-06-24
JP2022-101606 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023157948A1 true WO2023157948A1 (en) 2023-08-24

Family

ID=87578678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005745 WO2023157948A1 (en) 2022-02-21 2023-02-17 Oral composition

Country Status (1)

Country Link
WO (1) WO2023157948A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000245442A (en) * 1999-02-24 2000-09-12 Sagami Chem Res Center Microorganism capable of producing eicosapentaenoic acid and production of eicosapentaenoic acid
WO2015005466A1 (en) * 2013-07-12 2015-01-15 国立大学法人京都大学 Method for producing lipid having high eicosapentaenoic acid content
WO2019208392A1 (en) * 2018-04-27 2019-10-31 株式会社レオロジー機能食品研究所 Novel plasmalogen derivative
WO2022255477A1 (en) * 2021-06-04 2022-12-08 Dic株式会社 Shewanella bacteria and use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000245442A (en) * 1999-02-24 2000-09-12 Sagami Chem Res Center Microorganism capable of producing eicosapentaenoic acid and production of eicosapentaenoic acid
WO2015005466A1 (en) * 2013-07-12 2015-01-15 国立大学法人京都大学 Method for producing lipid having high eicosapentaenoic acid content
WO2019208392A1 (en) * 2018-04-27 2019-10-31 株式会社レオロジー機能食品研究所 Novel plasmalogen derivative
WO2022255477A1 (en) * 2021-06-04 2022-12-08 Dic株式会社 Shewanella bacteria and use thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
KAWAMOTO JUN, KURIHARA TATSUO, YAMAMOTO KENTARO, NAGAYASU MAKIKO, TANI YASUSHI, MIHARA HISAAKI, HOSOKAWA MASASHI, BABA TAKESHI, SA: "Eicosapentaenoic Acid Plays a Beneficial Role in Membrane Organization and Cell Division of a Cold-Adapted Bacterium, Shewanella livingstonensis Ac10", JOURNAL OF BACTERIOLOGY, AMERICAN SOCIETY FOR MICROBIOLOGY, US, vol. 191, no. 2, 15 January 2009 (2009-01-15), US , pages 632 - 640, XP093086855, ISSN: 0021-9193, DOI: 10.1128/JB.00881-08 *
SATO SHO, KAWAMOTO JUN, SATO SATOSHI B., WATANABE BUNTA, HIRATAKE JUN, ESAKI NOBUYOSHI, KURIHARA TATSUO: "Occurrence of a Bacterial Membrane Microdomain at the Cell Division Site Enriched in Phospholipids with Polyunsaturated Hydrocarbon Chains", JOURNAL OF BIOLOGICAL CHEMISTRY, AMERICAN SOCIETY FOR BIOCHEMISTRY AND MOLECULAR BIOLOGY, US, vol. 287, no. 29, 1 July 2012 (2012-07-01), US , pages 24113 - 24121, XP093086857, ISSN: 0021-9258, DOI: 10.1074/jbc.M111.318311 *
SI ZHU, MENGWEI YE, JILIN XU, CHUNYANG GUO, HUAKUN ZHENG, JIABAO HU, JUANJUAN CHEN, YAJUN WANG, SHANLIANG XU, XIAOJUN YAN: "Lipid Profile in Different Parts of Edible Jellyfish Rhopilema esculentum", JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, AMERICAN CHEMICAL SOCIETY, US, vol. 63, no. 37, 23 September 2015 (2015-09-23), US , pages 8283 - 8291, XP055607349, ISSN: 0021-8561, DOI: 10.1021/acs.jafc.5b03145 *

Similar Documents

Publication Publication Date Title
US20210163878A1 (en) Modulation of tissue fatty acid composition of a host by human gut bacteria
EP1642983B1 (en) Arachidonic acid and methods for the production and use thereof
DK2408922T3 (en) Thraustochytrids, FATTY ACID COMPOSITIONS AND METHODS OF MAKING AND USE THEREOF
JP4565750B2 (en) Method for producing conjugated linoleic acid ester
JP6479768B2 (en) New Lactobacillus paracasei strain
JP5934483B2 (en) Phospholipid-binding DHA increasing agent
JP5997887B2 (en) Oral administration
JP5203393B2 (en) Alcoholic liver injury inhibitor
JP2001275614A (en) Mammalian milk-derived phospholipid-containing oral composition
WO2015182155A1 (en) Novel lactic acid bacterium and composition including said lactic acid bacterium
WO2023157948A1 (en) Oral composition
JP2009269865A (en) Oral administration agent
JP6894242B2 (en) Non-alcoholic liver disease inhibitor
JP6824506B2 (en) Lipid composition
JP2009269864A (en) Agent for increasing phospholipid-bound arachidonic acid
JP2018177711A (en) Hdl functional improvement agent and hdl functional improvement food composition
JP2019172614A (en) Gene expression control agent, and muscular atrophy inhibitor, preventive or improver
WO2023002939A1 (en) Composition for preventing or ameliorating inflammatory bowel disease and composition for regulating intestinal bacterial flora
JP5479696B2 (en) In vivo plasmalogen increasing agent
JP6755530B2 (en) Pharmaceutical composition for the prevention or treatment of dermatitis
JP6547122B2 (en) Composition for suppressing the rise of triglyceride in blood
JP2020152706A (en) Intestinal bacterial flora-improving agents comprising long chain monounsaturated fatty acid (lc-mufa) as effective ingredient
WO2008153220A1 (en) Prophylactic or therapeutic agent for vascular disease
JPH11343236A (en) Medicinal composition containing polybasic unsaturated fatty acid and health food
IES20080790A2 (en) Modulation of tissue fatty acid composition of a host by human gut bacteria

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756472

Country of ref document: EP

Kind code of ref document: A1