WO2015005466A1 - Method for producing lipid having high eicosapentaenoic acid content - Google Patents

Method for producing lipid having high eicosapentaenoic acid content Download PDF

Info

Publication number
WO2015005466A1
WO2015005466A1 PCT/JP2014/068539 JP2014068539W WO2015005466A1 WO 2015005466 A1 WO2015005466 A1 WO 2015005466A1 JP 2014068539 W JP2014068539 W JP 2014068539W WO 2015005466 A1 WO2015005466 A1 WO 2015005466A1
Authority
WO
WIPO (PCT)
Prior art keywords
desaturase
protein
seq
gene
amino acid
Prior art date
Application number
PCT/JP2014/068539
Other languages
French (fr)
Japanese (ja)
Inventor
順 小川
晃規 安藤
英治 櫻谷
昌 清水
茂 平本
Original Assignee
国立大学法人京都大学
日清ファルマ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 日清ファルマ株式会社 filed Critical 国立大学法人京都大学
Publication of WO2015005466A1 publication Critical patent/WO2015005466A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6463Glycerides obtained from glyceride producing microorganisms, e.g. single cell oil
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D9/00Other edible oils or fats, e.g. shortenings, cooking oils
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/115Fatty acids or derivatives thereof; Fats or oils
    • A23L33/12Fatty acids or derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/135Bacteria or derivatives thereof, e.g. probiotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/30Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
    • A61K8/33Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
    • A61K8/36Carboxylic acids; Salts or anhydrides thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/96Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution
    • A61K8/97Cosmetics or similar toiletry preparations characterised by the composition containing materials, or derivatives thereof of undetermined constitution from algae, fungi, lichens or plants; from derivatives thereof
    • A61K8/9728Fungi, e.g. yeasts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P29/00Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P3/00Drugs for disorders of the metabolism
    • A61P3/06Antihyperlipidemics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/12Antihypertensives
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11BPRODUCING, e.g. BY PRESSING RAW MATERIALS OR BY EXTRACTION FROM WASTE MATERIALS, REFINING OR PRESERVING FATS, FATTY SUBSTANCES, e.g. LANOLIN, FATTY OILS OR WAXES; ESSENTIAL OILS; PERFUMES
    • C11B1/00Production of fats or fatty oils from raw materials
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • C12N9/0083Miscellaneous (1.14.99)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6409Fatty acids
    • C12P7/6427Polyunsaturated fatty acids [PUFA], i.e. having two or more double bonds in their backbone
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/64Fats; Fatty oils; Ester-type waxes; Higher fatty acids, i.e. having at least seven carbon atoms in an unbroken chain bound to a carboxyl group; Oxidised oils or fats
    • C12P7/6436Fatty acid esters
    • C12P7/6445Glycerides
    • C12P7/6472Glycerides containing polyunsaturated fatty acid [PUFA] residues, i.e. having two or more double bonds in their backbone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/10General cosmetic use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/80Process related aspects concerning the preparation of the cosmetic composition or the storage or application thereof
    • A61K2800/86Products or compounds obtained by genetic engineering

Definitions

  • the present invention relates to a method for producing a lipid containing a high content of eicosapentaenoic acid using a lipid-producing microorganism. More specifically, the present invention relates to a method for producing a lipid containing a high amount of eicosapentaenoic acid using a mutant microorganism into which a fatty acid desaturase gene has been introduced.
  • Polyunsaturated fatty acids are fatty acids having two or more unsaturated bonds, and are ⁇ 6 fatty acids such as linoleic acid (LA, 18: 2n-6), ⁇ -linolenic acid (GLA, 18: 3n-6), and arachidonic acid.
  • LA, 18: 2n-6 linoleic acid
  • GLA, 18: 3n-6 ⁇ -linolenic acid
  • arachidonic acid ARA, 20: 4n-6
  • ⁇ -linolenic acid of ⁇ 3 fatty acids ALA, 18: 3n-3
  • EPA eicosapentaenoic acid
  • DHA docosahexaenoic acid
  • ARA and EPA are precursors such as prostaglandins, thromboxanes, and leukotrienes in higher animals, and DHA is a highly unsaturated fatty acid present in the brain in the largest amount.
  • DHA is a highly unsaturated fatty acid present in the brain in the largest amount.
  • EPA has physiological actions such as platelet aggregation inhibitory action, blood neutral fat lowering action, anti-arteriosclerosis action, blood viscosity lowering action, blood pressure lowering action, anti-inflammatory action, antitumor action, etc., pharmaceuticals, foods, cosmetics It is used in various fields such as feed.
  • active intake of ⁇ 3-fatty acids has been recommended, and this is a lipid molecular species whose demand has been remarkably expanding.
  • DHA and EPA are biosynthesized from ALA in some organisms in addition to being taken from food.
  • DHA and EPA are nutritionally essential fatty acids for humans.
  • EPA is mainly contained in fish oil such as cod, herring, mackerel, salmon, sardine and krill, marine psychrotrophic bacteria such as Shewanella livingstonensis, and algae such as Labyrinthulomycetes. Yes.
  • Methods for extracting or purifying EPA from these biological resources are known.
  • the most common practice is EPA purification from fish oil.
  • the EPA content in fish oil is low, and EPA derived from fish oil may have a fishy odor or a high content of erucic acid that causes heart disease, depending on the extraction or purification method. Have a problem.
  • a filamentous fungus is a general term for microorganisms having a filamentous mycelium, and is a fungus that exists everywhere in the air, in the soil, and in water, including molds and mushrooms, but Mortierella (Mortierella) is one of them. It is known that filamentous fungi belonging to the genus have ⁇ 3 and ⁇ 6 highly unsaturated fatty acid metabolic pathways and produce EPA (Non-patent Document 1). Studies on methods for producing highly unsaturated fatty acids using Mortierella spp. Are ongoing.
  • Patent Document 1 discloses a method for obtaining EPA by culturing Mortierella microorganisms that produce EPA.
  • Patent Document 2 discloses a method of producing ARA and EPA using a mutant strain obtained by subjecting Mortierella alpina to a mutation treatment.
  • Patent Document 3 discloses a method for producing highly unsaturated fatty acids such as EPA using a transformed strain in which a gene of ⁇ 3 fatty acid unsaturated polypeptide isolated from Mortierella alpina is introduced into yeast. Yes.
  • Mortierella spp. Microorganisms cannot produce EPA efficiently unless they are cultured under low-temperature conditions (20 ° C. or lower) at which the bacteria do not grow easily.
  • Mortierella alpina-derived ⁇ 3 desaturase acts preferentially on fatty acids having a carbon chain length of 18, EPA having a carbon chain length of 20 is hardly synthesized. Therefore, it has been difficult to efficiently produce EPA by the conventional method.
  • JP-A-63-14697 Japanese Patent Laid-Open No. 11-243981 JP 2006-055104 A
  • the present invention relates to a mutant microorganism that can efficiently produce EPA at a room temperature of 20 ° C. or higher, and a method for producing a lipid containing EPA at a high concentration using the mutant microorganism.
  • the present inventors introduced and expressed a ⁇ 15 desaturase gene derived from the genus Trichoderma sp. AM076 in a microorganism belonging to the genus Mortierella.
  • the present inventors have found that the ⁇ 15 desaturase encoded by the transgene is ⁇ 3 desaturation activity against highly unsaturated fatty acids having a carbon chain length of 18 on the lipid metabolism pathway of Mortierella microorganisms.
  • the mutant microorganism introduced with the gene can efficiently produce lipids containing EPA at a high concentration even at room temperature.
  • C. cinereus basidiomycete Coprinus cinereus
  • S. diclina ⁇ 15 desaturase derived from the Trichoderma genus or a filamentous form.
  • S. diclina ⁇ 17 desaturase derived from the fungus Saproregnia diclina
  • the present inventors are able to efficiently produce lipids containing a high concentration of EPA by suppressing the accumulation of oleic acid and arachidonic acid even when the mutant microorganism into which the gene is introduced is at room temperature.
  • EPA-containing lipids obtained from these mutant microorganisms are useful because they have a reduced amount of oleic acid and arachidonic acid and can efficiently purify EPA from EPA-containing lipids.
  • the present invention is a method for producing a mutant microorganism, introducing a foreign ⁇ 15 desaturase gene into a parental microorganism having an ⁇ 6 polyunsaturated fatty acid metabolic pathway,
  • the mutant microorganism contains eicosapentaenoic acid in an amount of 20% by mass or more in the fatty acid composition after culturing at 20 ° C. or more for 10 days.
  • the present invention also provides a method for producing a mutant microorganism, Introducing an exogenous ⁇ 12 desaturase gene and any one or more of an exogenous ⁇ 15 desaturase gene and an exogenous ⁇ 17 desaturase gene into a parental microorganism having a ⁇ 6 polyunsaturated fatty acid metabolic pathway Including
  • the mutant microorganism contains eicosapentaenoic acid in an amount of 20% by mass or more in the fatty acid composition after culturing at 20 ° C. or more for 10 days. Provide a method.
  • the present invention also relates to a mutant microorganism in which a gene encoding an exogenous ⁇ 15 desaturase is introduced into a microorganism having a ⁇ 6 highly unsaturated fatty acid metabolic pathway, wherein the fatty acid is cultured for 10 days at 20 ° C. or higher.
  • a mutant microorganism having an eicosapentaenoic acid content of 20% or more in the composition.
  • the present invention also provides a microorganism having a ⁇ 6 polyunsaturated fatty acid metabolic pathway to any one or more of a foreign ⁇ 12 desaturase gene, a foreign ⁇ 15 desaturase gene, and a foreign ⁇ 17 desaturase gene.
  • a microorganism having a ⁇ 6 polyunsaturated fatty acid metabolic pathway to any one or more of a foreign ⁇ 12 desaturase gene, a foreign ⁇ 15 desaturase gene, and a foreign ⁇ 17 desaturase gene.
  • the present invention provides a method for producing a lipid containing eicosapentaenoic acid, comprising culturing the mutant microorganism under a condition of 20 ° C. or higher.
  • the present invention provides a method for producing eicosapentaenoic acid, comprising purifying the lipid containing eicosapentaenoic acid produced by the above method.
  • the present invention provides a medicine, food or drink or feed containing eicosapentaenoic acid produced by the above method.
  • the mutant microorganism of the present invention is introduced with an exogenous gene for ⁇ 15 desaturase that works at room temperature, and can produce EPA even under room temperature conditions of 20 ° C. or higher where microorganisms can easily grow. It suppresses the accumulation of arachidonic acid in cells and enables efficient EPA production. Furthermore, the mutant microorganism of the present invention in which the exogenous ⁇ 12 desaturase and the exogenous ⁇ 15 desaturase or the exogenous ⁇ 17 desaturase are co-expressed suppresses not only arachidonic acid but also oleic acid accumulation, thereby improving efficiency. Enables good EPA production.
  • EPA is an important polyunsaturated fatty acid used in various fields such as pharmaceuticals, foods, cosmetics, and feeds, and the present invention that can be applied to production of EPA on an industrial scale is extremely useful.
  • composition and production of fatty acids produced by alpina transformants C. M. cinereaus-derived ⁇ 12 desaturase gene was introduced. Composition and production of fatty acids produced by alpina transformants. M. introduced the ⁇ 12 desaturase gene and the ⁇ 17 desaturase gene. Composition and production of fatty acids produced by alpina transformants. M. introduced a ⁇ 12 desaturase gene and a ⁇ 15 desaturase gene. Composition and production of fatty acids produced by alpina transformants.
  • the “one or more” used for amino acid sequence or nucleotide deletion, substitution, addition or insertion in an amino acid sequence or nucleotide sequence is, for example, 1 to 20, preferably May be 1 to 10, more preferably 1 to 5, more preferably 1 to 4, still more preferably 1 to 3, and still more preferably 1 to 2.
  • “addition” of amino acids or nucleotides includes addition of one or more amino acids or nucleotides to one and both ends of the sequence.
  • stringent conditions refers to nucleotide sequences having high identity, such as 70% or more, 80% or more, 90% or more, 95% or more, 98% or more, or 99% or more identity. This refers to a condition in which nucleotide sequences possessed hybridize and nucleotide sequences with lower identity do not hybridize.
  • “stringent conditions” in the present specification are the washing conditions for normal Southern hybridization, 60 ° C., 1 ⁇ SSC, 0.1% SDS, preferably 0.1 ⁇ SSC, Conditions include 0.1% SDS, more preferably 68 ° C., 0.1 ⁇ SSC, salt concentration and temperature corresponding to 0.1% SDS, and more preferably 2 to 3 times of washing conditions. .
  • the “ ⁇ 6 highly unsaturated fatty acid metabolic pathway” refers to the production of ⁇ 6 highly unsaturated fatty acids such as ⁇ -linolenic acid, dihomo- ⁇ -linolenic acid and arachidonic acid (ARA) from linoleic acid.
  • Metabolic pathway means “ ⁇ 3 highly unsaturated fatty acid metabolic pathway”, which produces ⁇ 3 highly unsaturated fatty acids such as stearidonic acid, eicosatetraenoic acid, eicosapentaenoic acid (EPA) from ⁇ -linolenic acid. It refers to the metabolic pathway (see FIG. 1).
  • “polyunsaturated fatty acid” refers to a long chain fatty acid having a carbon chain length of 18 or more and an unsaturated bond number of 2 or more.
  • the term “inherent” used for a certain microorganism is used to indicate that a certain function or trait is possessed by a naturally occurring microorganism (wild type).
  • wild type a naturally occurring microorganism
  • foreign is used to denote a function or trait introduced from the outside, rather than originally present in the microorganism.
  • a gene introduced from the outside into a certain microorganism is a foreign gene.
  • the foreign gene may be a gene derived from the same type of microorganism as the microorganism into which it has been introduced or a gene derived from a different organism.
  • the microorganism that becomes the parent strain of the mutant microorganism of the present invention may be any microorganism that has the ⁇ 6 highly unsaturated fatty acid metabolic pathway, and preferably has the ⁇ 6 highly unsaturated fatty acid metabolic pathway. It is a lipid-producing bacterium (oleaginus microorganisms) that has ⁇ 6 highly unsaturated fatty acid.
  • microorganisms having a ⁇ 6 polyunsaturated fatty acid metabolic pathway that can be used as the parent microorganism of the mutant microorganism of the present invention include filamentous forms such as Mortierella, Mucor, and Umbelopsis.
  • Mortierella alpina Mortierella chlamyspora, Mortierella elongata, Mortierella algera, Mortierella algora Mortierella Epigama (Mort) erella epigama), Mortierella acrotona, Mortierella minutissima, Mortierella lignaola, mortierella crotona , Mortierella humicola, Mortierella bainieri, Mortierella hyaline, Mortierella glovalpina (Mortierella gliala) Examples include, but are not limited to, Mortierella microorganisms such as obalpina), umbelopsis nana, and umbelopsis isabelina.
  • the parental microorganism of the mutant microorganism of the present invention is a lipid-producing bacterium having an ⁇ 6 highly unsaturated fatty acid metabolic pathway and an ⁇ 3 highly unsaturated fatty acid metabolic pathway and producing ⁇ 6 and ⁇ 3 highly unsaturated fatty acids. More specifically, in addition to the ⁇ 6 polyunsaturated fatty acid metabolic pathway and the enzymes involved in it, it is a microorganism that has ⁇ 3 desaturase and inherently has the ability to produce EPA. Examples of such microorganisms include the above-mentioned Mortierella microorganisms, for example, Mortierella alpina (sometimes referred to as “M.
  • the parent microorganism of the mutant microorganism of the present invention includes mutants of the aforementioned Mortierella genus microorganism that have the ability to produce EPA. Examples of such microorganisms include M. pneumoniae. alpina 1S-4 (Agric. Biol. Chem., 1987, 51 (3), p. 785-790). Therefore, the parental microorganism of the mutant microorganism of the present invention includes a wild strain of Mortierella microorganism having EPA production ability and mutants thereof, preferably M. a wild-type strain of alpina and a mutant strain thereof capable of producing EPA, more preferably M. alpina. alpina 1S-4 and its EPA-producing mutants.
  • the parent microorganism of the mutant microorganism of the present invention further includes a strain lacking the ⁇ 3 desaturase of the genus Mortierella having the above-mentioned EPA production ability.
  • Examples of the ⁇ 3 desaturase-deficient strain include M. alpina 1S-4 mutant alpina ST1358 (Biosci. Biotechnol. Biochem., 2010, vol. 74, p. 908-917).
  • “deficient in ⁇ 3 desaturase” refers to a state in which the normal function inherent to ⁇ 3 desaturase cannot be fully exerted. For example, ⁇ 3 desaturase is not expressed at all. In a state where the expression level has decreased to such an extent that the normal function of the ⁇ 3 desaturase cannot be exhibited, in a state where the function of the ⁇ 3 desaturase gene product has been completely lost, or due to gene mutation, etc. The state in which the function of the ⁇ 3 desaturase gene product is reduced to such an extent that the normal function inherent to the ⁇ 3 desaturase cannot be exhibited.
  • Methods for deleting ⁇ 3 desaturase include conventional methods such as ethyl methanesulfonate (EMS), methyl methanesulfonate (MMS), N-methyl-N-nitro-N-nitrosoguanidine (J. Gen. Microbiol., 1992, vol. 138, p. 997-1002), mutagen treatment such as 5-bromodeoxyuridine (BrdU), cisplatin, mitomycin C, or RNAi (Appl. Environ. Microbiol., 2005, vol. 71). , P. 5124-5128).
  • a method of inducing mutation by irradiation, ultraviolet irradiation, high heat treatment or the like can be mentioned.
  • methods for deleting ⁇ 3 desaturase are not limited to these methods as long as mutations having the above-described properties occur.
  • the mutant microorganism of the present invention is produced by introducing a gene encoding an exogenous ⁇ 15 desaturase into the parent microorganism.
  • the ⁇ 15 desaturase encoded by the introduced gene acts as a ⁇ 3 desaturase on a highly unsaturated fatty acid having a carbon chain length of 18 within the mutant microorganism of the present invention.
  • Conversion of linoleic acid to ⁇ -linolenic acid and conversion of ⁇ -linolenic acid to stearidonic acid in the biosynthetic pathway of unsaturated fatty acids can be promoted, and as a result, the amount of EPA biosynthesis in the microorganism can be increased.
  • the mutant microorganism of the present invention contains a gene encoding an exogenous ⁇ 12 desaturase, a gene encoding an exogenous ⁇ 15 desaturase, and an exogenous ⁇ 17 desaturase in the parental microorganism. It is produced by introducing any one or more of genes encoding.
  • the ⁇ 12 desaturase encoded by the introduced gene promotes the conversion of oleic acid to linoleic acid in the mutant microorganism of the present invention and suppresses the accumulation of oleic acid in the microorganism.
  • ⁇ 17 desaturase acts on diunsaturated ⁇ -linolenic acid in the biosynthetic pathway of polyunsaturated fatty acids by acting like a ⁇ 3 desaturase on polyunsaturated fatty acids having a carbon chain length of 20. It promotes the conversion to eicosatetraenoic acid and the conversion of arachidonic acid to eicosapentaenoic acid, and suppresses the accumulation of arachidonic acid in microorganisms.
  • FIG. alpina 1S-4 fatty acid biosynthetic pathway.
  • the biosynthetic amount of eicosapentaenoic acid that is an ⁇ 3 highly unsaturated fatty acid can be increased.
  • the biosynthesis amount of eicosapentaenoic acid can be further increased by suppressing the accumulation of oleic acid.
  • ⁇ 15 desaturase is a protein exhibiting ⁇ 15 desaturase activity.
  • the ⁇ 15 desaturase activity refers to an activity of desaturating a fatty acid between the 15th and 16th carbon atoms counted from the carboxyl terminus of the fatty acid molecule. If the enzyme acts on a polyunsaturated fatty acid having 18 carbon atoms, the ⁇ 3 position is desaturated when viewed from the methyl end, so that the function of the ⁇ 3 desaturase can be substituted.
  • ⁇ 15 desaturase activity can include linoleic acid to ⁇ -linolenic acid conversion activity, ⁇ -linolenic acid to stearidonic acid conversion activity.
  • the ⁇ 15 desaturase encoded by the gene introduced into the mutant microorganism of the present invention is an enzyme that preferentially exhibits ⁇ 15 desaturase activity with respect to a highly unsaturated fatty acid having a carbon chain length of 18. .
  • ⁇ 12 desaturase is a protein exhibiting ⁇ 12 desaturase activity.
  • the ⁇ 12 desaturase activity refers to the activity of desaturating fatty acids between the 12th and 13th carbon atoms counted from the carboxyl terminus of the fatty acid molecule. If the enzyme acts on a polyunsaturated fatty acid having 18 carbon atoms, the ⁇ 6 position is desaturated when viewed from the methyl end, so that the function of the ⁇ 6 desaturase can be substituted.
  • ⁇ 12 desaturase activity can include conversion activity from oleic acid to linoleic acid.
  • the ⁇ 12 desaturase encoded by the gene introduced into the mutant microorganism of the present invention is an enzyme that preferentially exhibits ⁇ 12 desaturase activity with respect to a highly unsaturated fatty acid having a carbon chain length of 18. .
  • ⁇ 17 desaturase is a protein exhibiting ⁇ 17 desaturase activity.
  • the ⁇ 17 desaturase activity refers to an activity of desaturating a fatty acid between the 17th and 18th carbon atoms counted from the carboxyl terminus of the fatty acid molecule. If the enzyme acts on a polyunsaturated fatty acid having 20 carbon atoms, the ⁇ 3 position is desaturated when viewed from the methyl end, so that the function of the ⁇ 3 desaturase can be substituted.
  • ⁇ 17 desaturase activity can include arachidonic acid to eicosapentaenoic acid conversion activity, dihomo- ⁇ -linolenic acid to eicosatetraenoic acid conversion activity.
  • the ⁇ 17 desaturase encoded by the gene introduced into the mutant microorganism of the present invention is an enzyme exhibiting ⁇ 17 desaturase activity that acts preferentially on a highly unsaturated fatty acid having a carbon chain length of 20. It is.
  • the ⁇ 15 desaturase, ⁇ 12 desaturase and ⁇ 17 desaturase (hereinafter sometimes referred to as “desaturase used in the present invention”) used in the present invention are at room temperature.
  • the enzyme activities are shown below.
  • “showing enzyme activity at room temperature” means that the optimum temperature of enzyme activity is 20 ° C. or higher, preferably 20 to 40 ° C., or 70 ° C. of activity at the optimum temperature at 20 ° C. % Or more, preferably 80% or more.
  • Examples of the ⁇ 15 desaturase encoded by the gene introduced into the mutant microorganism of the present invention include, for example, derived from the genus Trichoderma, derived from the genus Pythium, derived from Caenorhabditis elegans (Biochemistry, 2000, 39 (39), p.11948-11195), Pichia pastoris (Yeast, 2008 Jan; 25 (1), p.21-7) ⁇ 15 desaturase.
  • the amino acid sequences of these enzymes are known (for example, J. Gen. Microbiol., 1991, vol. 137, p. 1825-1830, European Patent Publication No. EP 2500420A1).
  • the ⁇ 15 desaturase used in the present invention is a ⁇ 15 desaturase derived from Trichoderma sp. AM076 consisting of the amino acid sequence represented by SEQ ID NO: 3.
  • ⁇ 15 desaturase used in the present invention include the following: (A) a protein comprising the amino acid sequence represented by SEQ ID NO: 3; (B) an amino acid sequence represented by SEQ ID NO: 3, comprising an amino acid sequence subjected to mutation selected from deletion, substitution, insertion and addition of one or more amino acids, and ⁇ 15 desaturase activity A protein having (C) consisting of an amino acid sequence having 90% or more, preferably 95% or more, more preferably 98% or more, and even more preferably 99% or more identity with the amino acid sequence represented by SEQ ID NO: 3, and ⁇ 15 desaturation A protein having enzymatic activity; (D) encoded by a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising a complementary strand sequence of the nucleotide sequence shown in nucleotide numbers 53 to 1225 of SEQ ID NO: 2 and has ⁇ 15 desaturase activity Protein; or (E) 80% or more
  • Examples of the ⁇ 12 desaturase encoded by the gene introduced into the mutant microorganism of the present invention include, for example, Coprinus cinereus-derived ⁇ 12 desaturase.
  • the amino acid sequence of this enzyme is known (for example, FEBS Lett., 2007, 581, p.315-319) and is represented by SEQ ID NO: 6.
  • ⁇ 12 desaturase used in the present invention include the following: (A ′) a protein consisting of the amino acid sequence shown in SEQ ID NO: 6; (B ′) an amino acid sequence represented by SEQ ID NO: 6, comprising an amino acid sequence subjected to mutation selected from deletion, substitution, insertion and addition of one or more amino acids, and ⁇ 12 desaturase An active protein; (C ′) consisting of an amino acid sequence having 90% or more, preferably 95% or more, more preferably 98% or more, and even more preferably 99% or more identity with the amino acid sequence represented by SEQ ID NO: 6, and ⁇ 12 unsaturated A protein having an enzyme activity; (D ′) encoded by a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising a complementary strand sequence of the nucleotide sequence shown in nucleotide numbers 52 to 1377 of SEQ ID NO: 5, and has ⁇ 12 desaturase activity A protein having
  • Examples of the ⁇ 17 desaturase encoded by the gene introduced into the mutant microorganism of the present invention include ⁇ 17 desaturase derived from the genus Saprolegnia or the genus Phytophthora.
  • the amino acid sequences of these enzymes are known (for example, Biochem. J., 2004, 378, 665-671 doi: 10.1042 / BJ20031319, EP2010648B1).
  • the ⁇ 17 desaturase used in the present invention is a ⁇ 17 desaturase derived from Saprolegnia diclina having the amino acid sequence represented by SEQ ID NO: 9.
  • ⁇ 17 desaturase used in the present invention include the following: (A ′′) a protein consisting of the amino acid sequence represented by SEQ ID NO: 9; (B ′′) an amino acid sequence represented by SEQ ID NO: 9, comprising an amino acid sequence subjected to mutation selected from deletion, substitution, insertion and addition of one or more amino acids, and ⁇ 17 desaturation A protein having enzymatic activity; (C ′′) consisting of an amino acid sequence having 90% or more, preferably 95% or more, more preferably 98% or more, and even more preferably 99% or more identity with the amino acid sequence represented by SEQ ID NO: 9, and ⁇ 17 A protein having saturating enzyme activity; (D ′′) a ⁇ 17 desaturase activity encoded by a polynucleotide that hybridizes under stringent conditions with a polynucleotide consisting of a complementary strand of the nucleotide sequence shown in nucleotide numbers 100 to 1176 of SEQ ID NO:
  • “mutations selected from deletion, substitution, insertion and addition of one or more amino acids” include the following: (B1) deletion of one or more amino acids in the amino acid sequence shown in SEQ ID NO: 3, 6 or 9; (B2) substitution of one or more amino acids with other amino acids in the amino acid sequence shown in SEQ ID NO: 3, 6 or 9; (B3) insertion of one or more amino acids in the amino acid sequence shown in SEQ ID NO: 3, 6 or 9; (B4) addition of one or more amino acids in total to one or both ends of the amino acid sequence shown in SEQ ID NO: 3, 6 or 9; or (B5) a combination of (b1) to (b4) above, wherein the number of amino acids deleted, substituted, inserted and added is one or more in total,
  • the positions of amino acid deletions, substitutions and insertions relative to the amino acid sequence are not particularly limited as long as the above-mentioned desaturase activity is retained in the mutated protein.
  • the desaturase used in the present invention is a protein represented by the above (a) to (e), (a ′) to (e ′), or (a ′′) to (e ′′).
  • amino acids such as glycine and alanine, valine and leucine and isoleucine, serine and threonine, aspartic acid and glutamic acid, asparagine and glutamine, lysine and arginine, cysteine and methionine, phenylalanine and tyrosine, etc. It can also be a protein made.
  • the position and the number of substitutions with similar amino acids are not particularly limited as long as the desired desaturase activity is retained in the substituted protein.
  • the gene encoding the desaturase used in the present invention may be a known amino acid sequence for each of the enzymes described above, (a) to (e), (a ′) to (e ′), or It can be obtained based on the amino acid sequence of the protein represented by (a ′′) to (e ′′).
  • the gene can be isolated by a conventional method from the above-described microorganism having the desaturase used in the present invention. Alternatively, it can be chemically synthesized based on the amino acid sequence of the desaturase used in the present invention described above.
  • a gene encoding an enzyme having a desired substrate specificity is further selected from the obtained genes encoding the desaturase used in the present invention by a general screening method.
  • a gene encoding a ⁇ 17 desaturase with high specificity can be selected and used in the present invention.
  • the gene encoding the ⁇ 15 desaturase introduced into the mutant microorganism of the present invention includes the above-mentioned Trichoderma sp. (AM076) genus, Pysium genus, Caenorhabditis elegans genus, Pichia a gene encoding a ⁇ 15 desaturase derived from P. pastoris, preferably Trichoderma sp. consisting of a nucleotide sequence represented by SEQ ID NO: 1. It is a gene encoding a ⁇ 15 desaturase derived from AM076.
  • Examples of the gene encoding the ⁇ 12 desaturase introduced into the mutant microorganism of the present invention include the above-described gene encoding the ⁇ 12 desaturase derived from Coprinus cinereus comprising the nucleotide sequence represented by SEQ ID NO: 4.
  • Examples of the gene encoding the ⁇ 17 desaturase introduced into the mutant microorganism of the present invention include the gene encoding the ⁇ 17 desaturase derived from the genus Saprolegnia or the genus Phytophthora. Preferably, it is a gene encoding a ⁇ 17 desaturase derived from Saprolegnia diclina consisting of the nucleotide sequence represented by SEQ ID NO: 7.
  • the gene encoding the ⁇ 15 desaturase, ⁇ 12 desaturase or ⁇ 17 desaturase listed above is optimized for codon usage in accordance with the codon usage in the microorganism species into which the gene is introduced. It is preferable that Information on codons used by various microbial species can be obtained from Codon Usage Database (www.kazusa.or.jp/codon/).
  • the nucleotide sequence of the gene can be modified with reference to to optimize the codon.
  • the ⁇ 15 desaturase gene represented by SEQ ID NO: 1 is M.p.
  • a polynucleotide having the sequence represented by nucleotide numbers 53 to 1225 of SEQ ID NO: 2 can be obtained.
  • the ⁇ 12 desaturase gene represented by SEQ ID NO: 4 was designated as M. pylori.
  • a polynucleotide having the sequence represented by nucleotide numbers 52 to 1377 of SEQ ID NO: 5 can be obtained.
  • the ⁇ 17 desaturase gene represented by SEQ ID NO: 7 was designated as M. pylori.
  • a polynucleotide having the sequence represented by nucleotide numbers 100 to 1176 of SEQ ID NO: 8 can be obtained.
  • genes encoding ⁇ 15 desaturase used in the present invention include the following: (I) a polynucleotide comprising the nucleotide sequence represented by nucleotide numbers 53 to 1225 of SEQ ID NO: 2; (Ii) a nucleotide sequence represented by nucleotide numbers 53 to 1225 of SEQ ID NO: 2, comprising a nucleotide sequence subjected to mutation selected from deletion, substitution, insertion and addition of one or more nucleotides; A polynucleotide encoding a protein having ⁇ 15 desaturase activity; (Iii) 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, still more preferably 99% or more identical to the nucleotide sequence represented by nucleotide numbers 53 to 1225 of SEQ ID NO: 2.
  • a polynucleotide encoding a protein comprising a nucleotide sequence having sex and having ⁇ 15 desaturase activity (Iv) a polynucleotide that hybridizes with the nucleotide sequence shown in nucleotide numbers 53 to 1225 of SEQ ID NO: 2 under a stringent condition and encodes a protein having ⁇ 15 desaturase activity.
  • Preferred examples of the gene encoding ⁇ 12 desaturase used in the present invention include the following: (I ′) a polynucleotide comprising the nucleotide sequence represented by nucleotide numbers 52 to 1377 of SEQ ID NO: 5; (Ii ′) consisting of a nucleotide sequence subjected to mutation selected from deletion, substitution, insertion and addition of one or more nucleotides in the nucleotide sequence represented by nucleotide numbers 52 to 1377 of SEQ ID NO: 5; And a polynucleotide encoding a protein having ⁇ 12 desaturase activity; (Iii ′) 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, more preferably 99% or more of the nucleotide sequence represented by nucleotide numbers 52 to 1377 of SEQ ID NO: 5.
  • a polynucleotide comprising a nucleotide sequence having identity and encoding a protein having ⁇ 12 desaturase activity; (Iv ′) a polynucleotide that hybridizes under stringent conditions with the nucleotide sequence represented by nucleotide numbers 52 to 1377 of SEQ ID NO: 5 and encodes a protein having ⁇ 12 desaturase activity.
  • Preferred examples of the gene encoding the ⁇ 17 desaturase used in the present invention include the following: (I ′′) a polynucleotide comprising the nucleotide sequence represented by nucleotide numbers 100 to 1176 of SEQ ID NO: 8 (ii ′′) one or more nucleotides in the nucleotide sequence represented by nucleotide numbers 100 to 1176 of SEQ ID NO: 8
  • the polynucleotides (ii) to (iv), (ii ′) to (iv ′) and (ii ′′) to (iv ′′) are composed of codons frequently used in Mortierella microorganisms. It is desirable.
  • the polynucleotides (i) to (iv), (i ′) to (iv ′) and (i ′′) to (iv ′′) are preferably Mortierella microorganisms, more preferably M.M. Introduced into alpina.
  • the gene encoding the desaturase used in the present invention can be introduced into the parent microorganism using a vector.
  • the type of vector used for the introduction is not particularly limited, and can be appropriately selected and used according to the parent microorganism, the cloning method, the purpose of gene expression, and the like.
  • a pD4 vector Appl. Environ. Microbiol., November 2000, 66 (11), p. 4655-4661
  • a pDZeo vector J. Biosci. Bioeng. , December 2005, 100 (6), p.617-622
  • pDura5 vector Appl.
  • pDX vector (Curr. Genet., 2009, 55 (3), p. 349-356), pBIG3ura5 (Appl. Environ. Microbiol., 2009, 75, p. 5529-5535), etc., are introduced. If a vector capable of expressing a gene, but are not limited to.
  • the above vector includes a promoter sequence or transcription termination signal sequence for expressing the incorporated desaturase gene, or a selection marker gene for selecting a transformant into which the desaturase gene has been introduced. It is preferable.
  • a high expression promoter can be used when the parent microorganism is a Mortierella genus microorganism.
  • Preferred high expression promoters for Mortierella microorganisms include M. Alpina-derived SSA2 promoter (SEQ ID NO: 10) and PP3 promoter (SEQ ID NO: 11), and promoters modified by adding substitutions, deletions, additions, etc. to the sequences of these promoters, but high expression of the introduced gene If it can be made, it will not be limited to these.
  • selectable marker genes include drug resistance genes such as kanamycin resistance gene, streptomycin resistance gene, carboxin resistance gene, zeocin resistance gene, hygromycin resistance gene, amino acid requirements such as leucine, histidine, methionine, arginine, tryptophan, lysine, etc.
  • drug resistance genes such as kanamycin resistance gene, streptomycin resistance gene, carboxin resistance gene, zeocin resistance gene, hygromycin resistance gene, amino acid requirements such as leucine, histidine, methionine, arginine, tryptophan, lysine, etc.
  • Examples include genes that complement mutations, genes that complement nucleobase-requiring mutations such as uracil and adenine, and the like.
  • preferred selectable marker genes include genes that complement uracil-requiring mutations. For example, M.M. A uracil auxotrophic mutant strain of alpina (Biosci Biotechnol Biochem., 2004,
  • orotidine-5'-phosphate decarboxylase gene ura3 gene
  • orotidylate pyrophosphorylase gene ura5 gene
  • ura3 gene orotidine-5'-phosphate decarboxylase gene
  • ura5 gene orotidylate pyrophosphorylase gene
  • the vector may contain any one of a gene encoding a ⁇ 15 desaturase, a gene encoding a ⁇ 12 desaturase, or a gene encoding a ⁇ 17 desaturase.
  • a plurality of genes for example, ⁇ 12 desaturase gene and ⁇ 15 desaturase gene, ⁇ 12 desaturase gene and ⁇ 17 desaturase gene, or ⁇ 12 desaturase gene and ⁇ 15 desaturation
  • An enzyme gene and a ⁇ 17 desaturase gene may be included.
  • the mutant strain of the present invention may be introduced with a vector containing any one of the desaturase genes, may be introduced with a vector containing a plurality of the desaturase enzymes, Alternatively, two or more types of vectors containing different desaturase enzymes may be introduced.
  • FIGS. The structure of an example of a transformed binary vector constructed for production of the mutant strain of the present invention is shown in FIGS.
  • a polynucleotide encoding a ⁇ 17 desaturase, ⁇ 15 desaturase or ⁇ 12 desaturase is linked downstream of the PP3 promoter or SSA2 promoter, which are constitutively high expression promoters, and
  • An sdhB terminator is incorporated as a terminator
  • a ura5 gene is incorporated as a selection marker for the transformant.
  • a known method such as an electroporation method, a particle gun (gene gun) method, a competent cell method, a protoplast method, or a calcium phosphate coprecipitation method can be used.
  • a gene introduction method when a Mortierella genus microorganism is used as a parental microorganism, the ATMT method (Appl. Environ. Microbiol., 2009, vol. 75, p. 5529-5535), or a modified method of the ATMT method.
  • the gene transfer method is not limited to these methods as long as a transformant that stably retains the target character can be obtained.
  • the gene encoding the above desaturase may be directly introduced into the genome of the parent microorganism. Together with the desaturase gene, the above promoter sequence, transcription termination signal sequence or selectable marker gene may be introduced together. Furthermore, a plurality of genes encoding different desaturases may be introduced together. A homologous recombination method is mentioned as a method of introducing a gene directly into the genome.
  • the mutant microorganism of the present invention By introducing any one or more genes encoding a saturating enzyme, the mutant microorganism of the present invention can be produced.
  • the mutant microorganism of the present invention exhibits ⁇ 3 desaturase activity for highly unsaturated fatty acids and exhibits high EPA biosynthesis ability even at room temperature by the action of the desaturase encoded by the introduced gene. Can do.
  • a lipid containing a high content of EPA is produced in the cells of the microorganism. Furthermore, since lipids containing a high amount of EPA produced by the mutant microorganism of the present invention have a reduced amount of oleic acid and arachidonic acid, high purity EPA can be efficiently obtained by purifying the produced lipid. It becomes possible to produce.
  • a further embodiment of the present invention is a method for producing a lipid containing EPA, comprising culturing the mutant microorganism of the present invention.
  • Another further embodiment of the present invention is a method for producing EPA, comprising purifying a lipid containing EPA produced by the mutant microorganism of the present invention.
  • the mutant microorganism of the present invention can be inoculated and cultured in a liquid medium or a solid medium.
  • a spore of a strain, a mycelium, or a preculture solution obtained by culturing in advance can be inoculated into the medium and cultured.
  • the carbon source of the medium include, but are not limited to, glucose, fructose, xylose, saccharose, maltose, soluble starch, corn starch, glycerol, mannitol, lipid, alkane, alkene and the like.
  • nitrogen source in addition to natural nitrogen sources such as peptone, yeast extract, malt extract, meat extract, casamino acid, corn steep liquor, soy protein, defatted soybean, cottonseed dregs and wheat bran, organic nitrogen sources such as urea, inorganic nitrogen sources such as sodium nitrate, ammonium nitrate, and ammonium sulfate are included, but not limited thereto. Furthermore, lipids such as soybean oil, coconut and corn oil may be added. In addition, as a trace nutrient source, inorganic salts such as phosphate, magnesium sulfate, iron sulfate, and copper sulfate, vitamins, and the like can be appropriately added.
  • the carbon source can be 0.1 to 40% by mass, preferably 1 to 25% by mass
  • the nitrogen source in the medium can be 0.01 to 10% by mass, preferably 0.1 to 10% by mass. . M.M.
  • a Czapek medium, a Czapek-dox medium, a glucose / yeast extract (hereinafter also referred to as “GY”) medium, an SC medium, or the like described later can be used.
  • GY glucose / yeast extract
  • SC medium or the like described later
  • known media for example, International Publication No. 98/29558
  • the pH of the medium can be 4-10, preferably 6-9.
  • the culture can be an aeration and agitation culture, a shaking culture or a stationary culture.
  • the culture of the mutant microorganism of the present invention is performed at an optimum growth temperature.
  • the mutant microorganism of the present invention has a temperature of about 5 to 60 ° C., preferably about 10 to 50 ° C., more preferably about 10 to 40 ° C., more preferably about 20 to 40 ° C., still more preferably about 20 to 30 ° C. It can be cultured.
  • M.M. alpina or a mutant thereof can be cultured at about 10 to 40 ° C, preferably about 20 to 40 ° C, more preferably about 20 to 30 ° C.
  • the culture temperature is 20 ° C. or higher, preferably about 20-40 ° C., more preferably about 20-30 ° C.
  • the culture period is 2 to 20 days, preferably 2 to 14 days.
  • known literature for example, JP-A-6-153970
  • JP-A-6-153970 JP-A-6-153970
  • lipids containing a high content of EPA are produced in the cells of the microorganism.
  • the mutant microorganism of the present invention is cultured for 10 days under a condition of 20 ° C. or higher, the EPA content in the total fatty acid composition of the lipid contained in the microorganism is 20% by mass or more.
  • the fatty acid composition in microbial cells can be measured by gas chromatography analysis.
  • the culture solution is subjected to conventional means such as centrifugation and filtration to separate microbial cells.
  • the culture solution is centrifuged or filtered to remove the liquid, and the separated cells are washed and then dried by lyophilization, air drying or the like to obtain dried cells.
  • the desired lipid can be extracted from the dried cells by a known method such as organic solvent extraction.
  • the organic solvent include hexane, ether, ethyl acetate, butyl acetate, chloroform, cyclohexane, benzene, toluene, xylene, and the like, which are highly soluble in highly unsaturated fatty acids and can be separated from water.
  • the target lipid can be extracted by distilling off the organic solvent from the extract under reduced pressure or the like.
  • lipids can be extracted from wet cells without drying the cells.
  • the obtained lipid may be further purified by appropriately using general methods such as degumming, deoxidation, deodorization, decolorization, column treatment, distillation and the like.
  • EPA In the extracted lipid, various fatty acids that are mixed substances are contained in addition to the target EPA. Therefore, EPA with higher purity can be obtained by further purifying the lipid.
  • EPA can be separated directly from lipids, but it is preferable to separate the desired ester derivative of EPA after once converting the fatty acid in the lipid into an ester derivative with a lower alcohol. Since the ester derivative can be separated by using various separation and purification operations depending on the number of carbon atoms, the number of double bonds, the difference in position, etc., an ester derivative of the target fatty acid can be easily obtained.
  • the ester derivative is preferably an ethyl ester derivative.
  • a lower alcohol containing an acid catalyst such as hydrochloric acid, sulfuric acid or BF3, or a base catalyst such as sodium methoxide or potassium hydroxide can be used.
  • the desired ester derivative of EPA can be separated from the obtained ester derivative by column chromatography, low temperature crystallization method, urea addition fractionation method or the like alone or in combination.
  • the separated ester derivative of EPA is hydrolyzed with an alkali, and then extracted with an organic solvent such as ether or ethyl acetate, whereby EPA can be purified.
  • EPA may be purified in the form of a salt.
  • the mutant microorganism of the present invention is cultured on a large scale in a tank or the like, filtered with a filter press or the like, and the cells are collected and dried.
  • the cells can be crushed with a ball mill or the like, and the lipids can be extracted with an organic solvent.
  • many methods for extracting and using components in microorganisms on an industrial scale and methods for purifying EPA from lipids are known, and these can be appropriately modified and used in the method of the present invention.
  • EPA obtained by the present invention can be used for the production of pharmaceuticals, cosmetics, foods, feeds, etc. for human or non-human animals.
  • the pharmaceutical dosage form include oral preparations such as tablets, capsules, granules, powders, syrups, dry syrups, liquids and suspensions; enteral preparations such as inhalants and suppositories; Injections; topical agents; transdermal, transmucosal, nasal agents; inhalants; patch agents and the like.
  • the form of the cosmetic include any form that cosmetics can usually take such as cream, emulsion, lotion, suspension, gel, powder, pack, sheet, patch, stick, cake and the like.
  • the above pharmaceutical products or cosmetics contain EPA, or a salt or ester thereof as an active ingredient.
  • the pharmaceutical or cosmetic is also a pharmaceutically acceptable carrier or a cosmetically acceptable carrier such as an excipient, a disintegrant, a binder, a lubricant, a surfactant, a pH adjuster, a dispersant, It may contain emulsifiers, preservatives, antioxidants, colorants, alcohol, water, water-soluble polymers, fragrances, sweeteners, corrigents, acidulants, and other active ingredients as necessary. For example, it may contain medicinal ingredients, cosmetic ingredients and the like.
  • the said pharmaceutical or cosmetics can be manufactured by mix
  • the content of EPA, or a salt or ester thereof in the pharmaceutical or cosmetic composition varies depending on the dosage form, but is usually in the range of 0.1 to 99% by mass, preferably 1 to 80% by mass.
  • the above-mentioned food and drink or feed contains EPA, or a salt or ester thereof as an active ingredient.
  • These foods and drinks or feeds are intended to have effects such as platelet aggregation inhibitory action, blood neutral fat lowering action, anti-arteriosclerosis action, blood viscosity lowering action, blood pressure lowering action, anti-inflammatory action, antitumor action, etc. It may be a health food, a functional food / beverage product, a food / beverage product for specific health use, a food / beverage product for a sick person, a livestock, a racehorse, a feed for an appreciation animal, a pet food or the like.
  • the form of the above food or drink or feed is not particularly limited, and includes all forms in which EPA, or a salt or ester thereof can be blended.
  • the form of the food or drink may be solid, semi-solid or liquid, or various types such as tablets, chewable tablets, powders, capsules, granules, drinks, gels, syrups, liquid foods for enteral nutrition A form is mentioned.
  • Specific examples of the form of food and drink include tea drinks such as green tea, oolong tea and tea, coffee drinks, soft drinks, jelly drinks, sports drinks, milk drinks, carbonated drinks, fruit juice drinks, lactic acid bacteria drinks, fermented milk drinks, Powdered beverages, cocoa beverages, alcoholic beverages, beverages such as purified water, butter, jam, sprinkles, margarine spreads, mayonnaise, shortening, custard cream, dressings, breads, cooked rice, noodles, pasta, miso soup, tofu , Milk, yogurt, soups or sauces, confectionery (for example, biscuits and cookies, chocolate, candy, cake, ice cream, chewing gum, tablets). Since the said feed can be utilized with the composition and form substantially the same as food / beverage products, the description regarding the food / beverage products in this specification can be applied similarly about feed.
  • tea drinks such as green tea, oolong tea and tea
  • coffee drinks soft drinks, jelly drinks, sports drinks, milk drinks, carbonated drinks, fruit juice drinks, lactic acid bacteria drinks, fermente
  • the above-mentioned food or drink or feed is EPA, or a salt or ester thereof, and other food or drink materials used in the production of food or drink or feed, various nutrients, various vitamins, minerals, amino acids, various oils and fats, various additives (for example, It can be produced by blending flavoring ingredients, sweeteners, acidulants such as organic acids, surfactants, pH adjusters, stabilizers, antioxidants, pigments, flavors, etc., and preparing them according to conventional methods. it can. Or the food / beverage products or feed based on this invention can be manufactured by mix
  • the content of EPA or a salt or ester thereof in the food or drink or feed varies depending on the form of the food, but is usually 0.01 to 80% by mass, preferably 0.1 to 50% by mass, more preferably 1 to It is in the range of 30% by mass.
  • ⁇ 17 desaturase gene (derived from Saprolegnia diclina) Similar to Reference Example 1, ⁇ 17 desaturase gene ( ⁇ 17m; SEQ ID NO: 7) derived from filamentous fungus Saproregnia (Saprolegnia diclina) Codons of M. SpeI and BamHI sites were constructed before and after CDS of the resulting gene sequence based on the frequency of alpina codon usage, and total synthesis was performed (Life Technologies). The nucleotide sequence after optimization of the gene and construction of the restriction enzyme cleavage site is shown in SEQ ID NO: 8. The gene was cloned into the SpMA-RQ (ampR) plasmid.
  • Reference Examples 4 to 8 Construction of Binary Vector for Gene Introduction
  • Each plasmid prepared in Reference Examples 1 to 3 was treated with SpeI and BamHI restriction enzymes, and the obtained ⁇ 17 desaturase gene and ⁇ 15 desaturase
  • the gene and a fragment of the ⁇ 12 desaturase gene were modified from a plasmid pBIG35 (a pBIG2RHPH2 provided by Kyoto Prefectural University) containing the PP3 promoter (SEQ ID NO: 11) or SSA2 promoter (SEQ ID NO: 10), which are constitutively high expression promoters. Appl. Environ. Microbiol., 2009, vol. 75, p. 5529-5535) to construct an expression cassette.
  • the expression cassette is further ligated to uracil-required marker gene (ura5) and tandem, and a binary vector for transformation, pBIG35SSA2p ⁇ 17m ( ⁇ 17 desaturase gene: Reference Example 4), pBIG35PP3pDES2m ( ⁇ 15 desaturase gene) : Reference Example 5), pBIG35PP3pCop ⁇ 12m ( ⁇ 12 desaturase gene: Reference Example 6), pBIG35PP3pCop ⁇ 12mSSA2p ⁇ 17m ( ⁇ 12 desaturase gene and ⁇ 17 desaturase gene: Reference Example 7), and pBIG35PP3pCop ⁇ 12mSSA2pDES2 gene ( ⁇ 12 desaturated enzyme) And ⁇ 15 desaturase gene: Reference Example 8) was constructed. 2 to 6 show the structures of the vectors of Reference Examples 4 to 8, respectively.
  • Agrobacterium Agrobacterium tumefaciens C58C1, provided by Kyoto Prefectural University was transformed with the binary vector for ⁇ 17 desaturase gene introduction prepared in Reference Example 4 by electroporation, and then on LB-Mg agar medium. And incubated at 28 ° C. for 48 hours. Agrobacterium containing the vector was confirmed by PCR.
  • Agrobacterium containing the vector was cultured in minimal medium (MM) for 2 days, centrifuged at 5,800 ⁇ g, and fresh IM was added to prepare a suspension.
  • the suspension was induction-cultured on a rotary shaker for 8-12 hours at 28 ° C. until the OD 660 was 0.4 to 3.7.
  • (3) 100 ⁇ L of the above Agrobacterium suspension was added to an equal amount of the above M.I.
  • a ⁇ 17 desaturase gene-introduced strain that stably grows cells that can grow on a uracil-free SC agar medium but cannot grow on a GY agar medium containing 5-fluoroorotic acid (5-FOA) It was judged. This operation was performed three times in order to select transformants that stably maintain the character.
  • Test Example 1 Fatty acid composition and production amount in transgenic strains
  • the mutant strains obtained in Production Examples 1 to 5 were each in 10 mL GY medium (2% glucose, 1% yeast extract) at 28 ° C for 1 week at 300 rpm. Aerobically cultured. From each culture solution, gene transfer was performed by suction filtration. Alpina cells were collected and dried at 120 ° C. for 3 hours. Add 1 mL of a dichloromethane solution containing an internal standard (saturated fatty acid having 23 carbon atoms that M. alpina cannot biosynthesize) at a concentration of 0.5 mg / mL to dry cells, and 2 mL of methanolic hydrochloric acid, and warm bath at 55 ° C.
  • GY medium 2% glucose, 1% yeast extract
  • GLC uses Shimadzu GC-2010, GL Sciences capillary column TC70 (0.25 mm ⁇ 60 m), column temperature 180 ° C., vaporization chamber temperature 250 ° C., detector temperature 250 ° C., carrier gas He, makeup It was performed under the conditions of upgas N 2 , H 2 flow rate 40 mL / min, Air flow rate 400 mL / min, split ratio 50, and analysis time 30 min. The amount of extracted fatty acid was quantified based on the amount of fatty acid of the internal standard from the peak area value of the GLC chart.
  • the ⁇ 17 desaturase gene-introduced strain of Production Example 1 showed reduced arachidonic acid accumulation and 47% eicosapentaenoic acid (EPA) accumulation per total fatty acid.
  • EPA eicosapentaenoic acid
  • the ⁇ 15 desaturase gene-introduced strain of Production Example 2 arachidonic acid accumulation was reduced and 48% of EPA was accumulated per total fatty acid.
  • the ⁇ 12 desaturase gene-introduced strain of Production Example 3 although oleic acid reduction and arachidonic acid accumulation improvement were observed, EPA accumulation did not improve.
  • Test Example 2 Fatty acid composition and production change over time in the desaturase gene-introduced strain ( ⁇ 17 desaturase gene-introduced strain) ⁇ 17 desaturase gene introduced M. obtained in Production Example 1 alpina mutant strains (# 1, # 2, # 4, # 6, # 9, # 19, # 21 and # 24) in 4 mL GY medium (2% glucose, 1% yeast extract), 3 at 28 ° C., The aerobic culture was performed at 120 rpm for 7, 10, 14 days, and the composition and production amount of fatty acids in the cells were analyzed over time by the same procedure as in Test Example 1. The results are shown in FIG. Wild strains (M.
  • the proportion of EPA in total fatty acids is almost maximal on the 14th day of culture, and up to 48% (0.6 mg / mL) of EPA per total fatty acid is produced in 14 days of culture, while the accumulation of arachidonic acid is 6%. % (Strain # 20). Moreover, as for the amount of fatty acid produced, on the seventh day of culture, many gene-introduced strains produced more fatty acids than the control strains. From this, it was considered that EPA was efficiently produced in the ⁇ 15 desaturase gene-introduced strain.
  • the EPA production amount was hardly improved compared to the control strain (a strain in which a vector containing only the marker gene was inserted into the uracil-requiring strain) and the host strain (uracil-requiring strain).
  • Lipid production and the proportion of arachidonic acid in the total fatty acid composition increased, while the amount of oleic acid accumulated in the control strain decreased.
  • the lipid production increased by 10% or more compared to the host strain, and the ratio of arachidonic acid in the total fatty acid composition was 15% on the 7th day of culture and 10th day of the culture compared to the control strain. Improved to 20% or more (53% of total fatty acids).
  • the amount of oleic acid was 30% in the wild strain and 12% in the control strain on the 7th day of culture, whereas it was 6% or less on the 7th day of culture in the ⁇ 12 desaturase gene-introduced strain. It decreased to 2% on the 10th and 14th days of culture.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microbiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Biotechnology (AREA)
  • Genetics & Genomics (AREA)
  • Medicinal Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biochemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Mycology (AREA)
  • Hematology (AREA)
  • Diabetes (AREA)
  • Polymers & Plastics (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Food Science & Technology (AREA)
  • Botany (AREA)
  • Cell Biology (AREA)
  • Nutrition Science (AREA)
  • Cardiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Vascular Medicine (AREA)
  • Biomedical Technology (AREA)
  • Pain & Pain Management (AREA)
  • Rheumatology (AREA)
  • Emergency Medicine (AREA)

Abstract

 A lipid-producing microorganism capable of efficiently producing EPA is provided. A mutant microorganism obtained by introducing a foreign ∆15 desaturase gene, or a foreign ∆12 desaturase gene and one or both of a foreign ∆15 desaturase gene and a foreign ∆17 desaturase gene, into a microorganism having an ω6 polyunsaturated fatty acid metabolic pathway, the eicosapentaenoic acid content in a fatty acid composition being at least 20% after culturing of the mutant microorganism for 10 days at 20°C or higher.

Description

エイコサペンタエン酸を高含有する脂質の生産方法Method for producing lipids with high content of eicosapentaenoic acid
 本発明は、脂質生産微生物を用いたエイコサペンタエン酸を高含有する脂質の生産方法に関する。詳細には、脂肪酸不飽和化酵素の遺伝子を導入した変異微生物を用いて、エイコサペンタエン酸を高含有する脂質を生産する方法に関する。 The present invention relates to a method for producing a lipid containing a high content of eicosapentaenoic acid using a lipid-producing microorganism. More specifically, the present invention relates to a method for producing a lipid containing a high amount of eicosapentaenoic acid using a mutant microorganism into which a fatty acid desaturase gene has been introduced.
 高度不飽和脂肪酸は、不飽和結合を2つ以上持つ脂肪酸であり、ω6系脂肪酸のリノール酸(LA、18:2n-6)、γ-リノレン酸(GLA、18:3n-6)、アラキドン酸(ARA、20:4n-6)、ω3系脂肪酸のα-リノレン酸(ALA、18:3n-3)、エイコサペンタエン酸(EPA、20:5n-3)、ドコサヘキサエン酸(DHA、22:6n-3)等が存在する。高度不飽和脂肪酸は、生体膜の主要構成成分として膜の流動性の調節に関与するほか、生体機能性成分の前駆体としても重要である。ARAやEPAは、高等動物内においてプロスタグランジン、トロンボキサン、ロイコトリエンなどの前駆体であり、DHAは脳内に最も多量に存在する高度不飽和脂肪酸である。EPAは、血小板凝集阻害作用、血中中性脂肪低下作用、抗動脈硬化作用、血液粘度低下作用、血圧降下作用、抗炎症作用、抗腫瘍作用等の生理作用を有し、医薬品、食品、化粧品、飼料等の様々な分野に利用されている。また、近年では、生活習慣病予防の観点から、ω3系脂肪酸の積極的な摂取が推奨され、需要の拡大が著しい脂質分子種である。 Polyunsaturated fatty acids are fatty acids having two or more unsaturated bonds, and are ω6 fatty acids such as linoleic acid (LA, 18: 2n-6), γ-linolenic acid (GLA, 18: 3n-6), and arachidonic acid. (ARA, 20: 4n-6), α-linolenic acid of ω3 fatty acids (ALA, 18: 3n-3), eicosapentaenoic acid (EPA, 20: 5n-3), docosahexaenoic acid (DHA, 22: 6n- 3) etc. exist. Polyunsaturated fatty acids are not only involved in the regulation of the fluidity of the membrane as the main component of the biological membrane, but are also important as precursors of the biological functional component. ARA and EPA are precursors such as prostaglandins, thromboxanes, and leukotrienes in higher animals, and DHA is a highly unsaturated fatty acid present in the brain in the largest amount. EPA has physiological actions such as platelet aggregation inhibitory action, blood neutral fat lowering action, anti-arteriosclerosis action, blood viscosity lowering action, blood pressure lowering action, anti-inflammatory action, antitumor action, etc., pharmaceuticals, foods, cosmetics It is used in various fields such as feed. In recent years, from the viewpoint of lifestyle-related disease prevention, active intake of ω3-fatty acids has been recommended, and this is a lipid molecular species whose demand has been remarkably expanding.
 生体のDHAやEPAは、食物から摂取される以外に、一部の生物ではALAから生合成される。一方、ヒトはALAを生合成できないため、DHAやEPAはヒトにとって栄養学的に必須の脂肪酸である。EPAは主にタラ、ニシン、サバ、サケ、イワシ、オキアミ等の魚油、シュワネラ・リビングストネンシス(Shewanella livingstonensis)等の海洋性低温細菌、ラビリンチュラ綱(Labyrinthulomycetes)等の藻類に多く含まれている。これらの生物資源からEPAを抽出または精製する方法が知られている。最も一般的に行われているのは、魚油からのEPA精製である。しかしながら、魚油中のEPA含量は低い上に、魚油由来のEPAは、抽出または精製の方法によっては、魚臭が残ったり、心疾患の原因とされるエルカ酸の含量が多くなったりする等の問題を有している。 Living organisms DHA and EPA are biosynthesized from ALA in some organisms in addition to being taken from food. On the other hand, since humans cannot biosynthesize ALA, DHA and EPA are nutritionally essential fatty acids for humans. EPA is mainly contained in fish oil such as cod, herring, mackerel, salmon, sardine and krill, marine psychrotrophic bacteria such as Shewanella livingstonensis, and algae such as Labyrinthulomycetes. Yes. Methods for extracting or purifying EPA from these biological resources are known. The most common practice is EPA purification from fish oil. However, the EPA content in fish oil is low, and EPA derived from fish oil may have a fishy odor or a high content of erucic acid that causes heart disease, depending on the extraction or purification method. Have a problem.
 近年、エネルギー問題などに関連して、細胞内に脂質を蓄積する脂質生産微生物が注目されており、種々の脂質を微生物学的に生産する方法が開発されている。糸状菌は糸状の菌糸を有する微生物の総称であり、カビやキノコ等を含め、空気中、土壌中、水中のいたるところに存在する菌であるが、その中の1種であるモルティエレラ(Mortierella)属に属する糸状菌は、ω3系やω6系高度不飽和脂肪酸代謝経路を有し、EPAを生産することが知られている(非特許文献1)。モルティエレラ属微生物を利用した高度不飽和脂肪酸の生産方法の研究が進められている。例えば、特許文献1には、EPAを産生するモルティエレラ属微生物を培養してEPAを得る方法が開示されている。特許文献2には、モルティエレラ・アルピナに変異処理を施した変異株を用いてARAやEPAを生産する方法が開示されている。特許文献3には、モルティエレラ・アルピナから単離したω3脂肪酸不飽和化ポリペプチドの遺伝子を酵母に導入した形質転換株を用いて、EPAなどの高度不飽和脂肪酸を生産する方法が開示されている。しかし、モルティエレラ属微生物は、菌が増殖しにくい低温条件下(20℃以下)で培養されなければEPAを効率よく生産することができない。さらにモルティエレラ・アルピナ由来ω3不飽和化酵素は、炭素鎖長18の脂肪酸に優先的に作用するため、炭素鎖長20のEPAは合成されにくい。したがって、上記従来の方法ではEPAを効率よく生産することは難しかった。 In recent years, lipid producing microorganisms that accumulate lipids in cells have been attracting attention in relation to energy problems and the like, and methods for producing various lipids microbiologically have been developed. A filamentous fungus is a general term for microorganisms having a filamentous mycelium, and is a fungus that exists everywhere in the air, in the soil, and in water, including molds and mushrooms, but Mortierella (Mortierella) is one of them. It is known that filamentous fungi belonging to the genus have ω3 and ω6 highly unsaturated fatty acid metabolic pathways and produce EPA (Non-patent Document 1). Studies on methods for producing highly unsaturated fatty acids using Mortierella spp. Are ongoing. For example, Patent Document 1 discloses a method for obtaining EPA by culturing Mortierella microorganisms that produce EPA. Patent Document 2 discloses a method of producing ARA and EPA using a mutant strain obtained by subjecting Mortierella alpina to a mutation treatment. Patent Document 3 discloses a method for producing highly unsaturated fatty acids such as EPA using a transformed strain in which a gene of ω3 fatty acid unsaturated polypeptide isolated from Mortierella alpina is introduced into yeast. Yes. However, Mortierella spp. Microorganisms cannot produce EPA efficiently unless they are cultured under low-temperature conditions (20 ° C. or lower) at which the bacteria do not grow easily. Further, since Mortierella alpina-derived ω3 desaturase acts preferentially on fatty acids having a carbon chain length of 18, EPA having a carbon chain length of 20 is hardly synthesized. Therefore, it has been difficult to efficiently produce EPA by the conventional method.
特開昭63-14697号公報JP-A-63-14697 特開平11-243981号公報Japanese Patent Laid-Open No. 11-243981 特開2006-055104号公報JP 2006-055104 A
 本発明は、20℃以上の常温下でEPAを効率よく生産することができる変異微生物、および当該変異微生物を用いてEPAを高濃度で含有する脂質を生産する方法を提供することに関する。 The present invention relates to a mutant microorganism that can efficiently produce EPA at a room temperature of 20 ° C. or higher, and a method for producing a lipid containing EPA at a high concentration using the mutant microorganism.
 本発明者らは、糸状菌トリコデルマ属(Trichoderma sp.AM076)由来のΔ15不飽和化酵素遺伝子を、モルティエレラ(Mortierella)属微生物に導入し発現させた。その結果、本発明者らは、導入遺伝子にコードされたΔ15不飽和化酵素が、モルティエレラ属微生物の脂質代謝系路上の炭素鎖長18の高度不飽和脂肪酸に対して、ω3不飽和化活性を発揮すること、そして当該遺伝子を導入された変異微生物が、常温下においても、EPAを高濃度で含有する脂質を効率よく生産することができることを見出した。 The present inventors introduced and expressed a Δ15 desaturase gene derived from the genus Trichoderma sp. AM076 in a microorganism belonging to the genus Mortierella. As a result, the present inventors have found that the Δ15 desaturase encoded by the transgene is ω3 desaturation activity against highly unsaturated fatty acids having a carbon chain length of 18 on the lipid metabolism pathway of Mortierella microorganisms. And the mutant microorganism introduced with the gene can efficiently produce lipids containing EPA at a high concentration even at room temperature.
 さらに、本発明者らは、担子菌コプリナス・シネレウス(Coprinus cinereus、以下、「C.cinereus」ということがある)由来のΔ12不飽和化酵素と、上記トリコデルマ属由来のΔ15不飽和化酵素または糸状菌サプロレグニア・ディクリナ(Saprolegnia diclina、以下、「S.diclina」ということがある)由来のΔ17不飽和化酵素とを、共にモルティエレラ属微生物に導入し発現させた。その結果、本発明者らは、当該遺伝子を導入された変異微生物が、常温下においても、オレイン酸、アラキドン酸の蓄積を抑え、EPAを高濃度で含有する脂質を効率よく生産することができることを見出した。これらの変異微生物から得られたEPA含有脂質は、オレイン酸やアラキドン酸の蓄積量が低減されており、EPA含有脂質からEPAを効率よく精製することができるため有用である。 Furthermore, the present inventors have obtained a Δ12 desaturase derived from the basidiomycete Coprinus cinereus (hereinafter sometimes referred to as “C. cinereus”), a Δ15 desaturase derived from the Trichoderma genus or a filamentous form. Both Δ17 desaturase derived from the fungus Saproregnia diclina (hereinafter sometimes referred to as “S. diclina”) were introduced and expressed in Mortierella microorganisms. As a result, the present inventors are able to efficiently produce lipids containing a high concentration of EPA by suppressing the accumulation of oleic acid and arachidonic acid even when the mutant microorganism into which the gene is introduced is at room temperature. I found. EPA-containing lipids obtained from these mutant microorganisms are useful because they have a reduced amount of oleic acid and arachidonic acid and can efficiently purify EPA from EPA-containing lipids.
 すなわち本発明は、変異微生物の製造方法であって、
 ω6高度不飽和脂肪酸代謝経路を有する親微生物に、外来のΔ15不飽和化酵素遺伝子を導入することを含み、
 該変異微生物は、20℃以上の条件下で10日間培養後において、脂肪酸組成中にエイコサペンタエン酸を20質量%以上含有する、
方法を提供する。
That is, the present invention is a method for producing a mutant microorganism,
introducing a foreign Δ15 desaturase gene into a parental microorganism having an ω6 polyunsaturated fatty acid metabolic pathway,
The mutant microorganism contains eicosapentaenoic acid in an amount of 20% by mass or more in the fatty acid composition after culturing at 20 ° C. or more for 10 days.
Provide a method.
 また本発明は、変異微生物の製造方法であって、
 ω6高度不飽和脂肪酸代謝経路を有する親微生物に、外来のΔ12不飽和化酵素遺伝子と、外来のΔ15不飽和化酵素遺伝子および外来のΔ17不飽和化酵素遺伝子のいずれか1以上とを導入することを含み、
 該変異微生物は、20℃以上の条件下で10日間培養後において、脂肪酸組成中にエイコサペンタエン酸を20質量%以上含有する、
方法を提供する。
The present invention also provides a method for producing a mutant microorganism,
Introducing an exogenous Δ12 desaturase gene and any one or more of an exogenous Δ15 desaturase gene and an exogenous Δ17 desaturase gene into a parental microorganism having a ω6 polyunsaturated fatty acid metabolic pathway Including
The mutant microorganism contains eicosapentaenoic acid in an amount of 20% by mass or more in the fatty acid composition after culturing at 20 ° C. or more for 10 days.
Provide a method.
 また本発明は、ω6高度不飽和脂肪酸代謝経路を有する微生物に外来のΔ15不飽和化酵素をコードする遺伝子が導入された変異微生物であって、20℃以上の条件下で10日間培養後における脂肪酸組成中のエイコサペンタエン酸含量が20%以上である変異微生物を提供する。 The present invention also relates to a mutant microorganism in which a gene encoding an exogenous Δ15 desaturase is introduced into a microorganism having a ω6 highly unsaturated fatty acid metabolic pathway, wherein the fatty acid is cultured for 10 days at 20 ° C. or higher. Provided is a mutant microorganism having an eicosapentaenoic acid content of 20% or more in the composition.
 また本発明は、ω6高度不飽和脂肪酸代謝経路を有する微生物に、外来のΔ12不飽和化酵素遺伝子と、外来のΔ15不飽和化酵素遺伝子および外来のΔ17不飽和化酵素遺伝子のいずれか1以上とが導入された変異微生物であって、20℃以上の条件下で10日間培養後における脂肪酸組成中のエイコサペンタエン酸含量が20%以上である変異微生物を提供する。 The present invention also provides a microorganism having a ω6 polyunsaturated fatty acid metabolic pathway to any one or more of a foreign Δ12 desaturase gene, a foreign Δ15 desaturase gene, and a foreign Δ17 desaturase gene. Is provided, wherein the eicosapentaenoic acid content in the fatty acid composition after culturing for 10 days under the condition of 20 ° C. or higher is 20% or more.
 さらに本発明は、上記変異微生物を20℃以上の条件下で培養することを含む、エイコサペンタエン酸を含有する脂質の生産方法を提供する。 Furthermore, the present invention provides a method for producing a lipid containing eicosapentaenoic acid, comprising culturing the mutant microorganism under a condition of 20 ° C. or higher.
 さらに本発明は、上記方法により生産されたエイコサペンタエン酸を含有する脂質を精製することを含む、エイコサペンタエン酸の生産方法を提供する。 Furthermore, the present invention provides a method for producing eicosapentaenoic acid, comprising purifying the lipid containing eicosapentaenoic acid produced by the above method.
 さらに本発明は、上記方法にて生産されたエイコサペンタエン酸を含有する医薬、飲食品または飼料を提供する。 Furthermore, the present invention provides a medicine, food or drink or feed containing eicosapentaenoic acid produced by the above method.
 本発明の変異微生物は、常温で働く外来のΔ15不飽和化酵素の遺伝子が導入されており、微生物が増殖しやすい20℃以上の常温条件下においてもEPAを生産することができるばかりか、微生物細胞内でのアラキドン酸の蓄積を抑えて、効率のよいEPA生産を可能にする。さらに、外来Δ12不飽和化酵素と外来Δ15不飽和化酵素または外来Δ17不飽和化酵素とを共発現させた本発明の変異微生物は、アラキドン酸だけでなくオレイン酸の蓄積も抑えて、効率のよいEPA生産を可能にする。したがって、これら本発明の変異微生物を常温条件下で培養すれば、EPAを高含有する脂質を効率よく生産することができる。EPAは、医薬品・食品・化粧品、飼料等の様々な分野で使用される重要な高度不飽和脂肪酸であり、EPAの工業規模での生産に適用し得る本発明は、極めて有用である。 The mutant microorganism of the present invention is introduced with an exogenous gene for Δ15 desaturase that works at room temperature, and can produce EPA even under room temperature conditions of 20 ° C. or higher where microorganisms can easily grow. It suppresses the accumulation of arachidonic acid in cells and enables efficient EPA production. Furthermore, the mutant microorganism of the present invention in which the exogenous Δ12 desaturase and the exogenous Δ15 desaturase or the exogenous Δ17 desaturase are co-expressed suppresses not only arachidonic acid but also oleic acid accumulation, thereby improving efficiency. Enables good EPA production. Therefore, if these mutant microorganisms of the present invention are cultured under normal temperature conditions, lipids containing a high content of EPA can be produced efficiently. EPA is an important polyunsaturated fatty acid used in various fields such as pharmaceuticals, foods, cosmetics, and feeds, and the present invention that can be applied to production of EPA on an industrial scale is extremely useful.
M.alpina 1S-4における脂肪酸生合成経路。M.M. Fatty acid biosynthesis pathway in alpina 1S-4. 形質転換バイナリーベクターpBIG35SSA2pΔ17mの構造。Structure of transformed binary vector pBIG35SSA2pΔ17m. 形質転換バイナリーベクターpBIG35PP3pDES2mの構造。The structure of the transformed binary vector pBIG35PP3pDES2m. 形質転換バイナリーベクターpBIG35PP3pCopΔ12mの構造。Structure of the transformed binary vector pBIG35PP3pCopΔ12m. 形質転換バイナリーベクターpBIG35PP3pCopΔ12mSSA2pΔ17mの構造。The structure of the transformed binary vector pBIG35PP3pCopΔ12mSSA2pΔ17m. 形質転換バイナリーベクターpBIG35PP3pCopΔ12mSSA2pDES2mの構造。Structure of the transformed binary vector pBIG35PP3pCopΔ12mSSA2pDES2m. S.diclina由来Δ17不飽和化酵素遺伝子を導入したM.alpina形質転換体により生産された脂肪酸の組成および生産量。S. M. dicilla derived Δ17 desaturase gene was introduced. Composition and production of fatty acids produced by alpina transformants. Trichoderma sp.AM076由来Δ15不飽和化酵素遺伝子を導入したM.alpina形質転換体により生産された脂肪酸の組成および生産量。Trichoderma sp. M. introduced the AM076-derived Δ15 desaturase gene. Composition and production of fatty acids produced by alpina transformants. C.cinereus由来Δ12不飽和化酵素遺伝子を導入したM.alpina形質転換体により生産された脂肪酸の組成および生産量。C. M. cinereaus-derived Δ12 desaturase gene was introduced. Composition and production of fatty acids produced by alpina transformants. Δ12不飽和化酵素遺伝子とΔ17不飽和化酵素遺伝子を導入したM.alpina形質転換体により生産された脂肪酸の組成および生産量。M. introduced the Δ12 desaturase gene and the Δ17 desaturase gene. Composition and production of fatty acids produced by alpina transformants. Δ12不飽和化酵素遺伝子とΔ15不飽和化酵素遺伝子を導入したM.alpina形質転換体により生産された脂肪酸の組成および生産量。M. introduced a Δ12 desaturase gene and a Δ15 desaturase gene. Composition and production of fatty acids produced by alpina transformants.
 本明細書において、別途定義されない限り、アミノ酸配列またはヌクレオチド配列におけるアミノ酸またはヌクレオチドの欠失、置換、付加または挿入に関して使用される「1個または複数個」とは、例えば、1~20個、好ましくは1~10個、より好ましくは1~5個、さらに好ましくは1~4個、なお好ましくは1~3個、さらになお好ましくは1~2個であり得る。また本明細書において、アミノ酸またはヌクレオチドの「付加」には、配列の一末端および両末端への1または複数個のアミノ酸またはヌクレオチドの付加が含まれる。 In the present specification, unless otherwise defined, the “one or more” used for amino acid sequence or nucleotide deletion, substitution, addition or insertion in an amino acid sequence or nucleotide sequence is, for example, 1 to 20, preferably May be 1 to 10, more preferably 1 to 5, more preferably 1 to 4, still more preferably 1 to 3, and still more preferably 1 to 2. In the present specification, “addition” of amino acids or nucleotides includes addition of one or more amino acids or nucleotides to one and both ends of the sequence.
 本明細書において、アミノ酸配列やヌクレオチド配列の同一性は、Karlin and AltschulによるアルゴリズムBLAST(Pro.Natl.Acad.Sci.USA,1993,90,5873)、またはFASTA(Methods Enzymol.,1990,183,63)を用いて決定することができる。このアルゴリズムBLASTに基づいて、BLASTNやBLASTXとよばれるプログラムが開発されている(J.Mol.Biol.,1990,215,403)。BLASTに基づいてBLASTNによってヌクレオチド配列を解析する場合には、パラメータは例えばScore=100、wordlength=12とする。また、BLASTに基づいてBLASTXによってアミノ酸配列を解析する場合には、パラメータは例えばscore=50、wordlength=3とする。BLASTとGapped BLASTプログラムを用いる場合には、各プログラムのデフォルトパラメーターを用いる。これらの解析方法の具体的な手法は公知である(www.ncbi.nlm.nih.gov参照)。 In this specification, the identity of amino acid sequences and nucleotide sequences is determined by the algorithm BLAST (Pro. Natl. Acad. Sci. USA, 1993, 90, 5873) by Karlin and Altschul, or FASTA (Methods Enzymol., 1990, 183, 63). Based on this algorithm BLAST, programs called BLASTN and BLASTX have been developed (J. Mol. Biol., 1990, 215, 403). When a nucleotide sequence is analyzed by BLASTN based on BLAST, parameters are set to, for example, Score = 100 and wordlength = 12. When an amino acid sequence is analyzed by BLASTX based on BLAST, parameters are set to score = 50 and wordlength = 3, for example. When using BLAST and Gapped BLAST programs, the default parameters of each program are used. Specific methods of these analysis methods are known (see www.ncbi.nlm.nih.gov).
 本明細書において、「ストリンジェントな条件」とは、同一性が高いヌクレオチド配列同士、例えば70%以上、80%以上、90%以上、95%以上、98%以上または99%以上の同一性を有するヌクレオチド配列同士がハイブリダイズし、それより同一性が低いヌクレオチド配列同士がハイブリダイズしない条件をいう。具体的には、本明細書における「ストリンジェントな条件」とは、通常のサザンハイブリダイゼーションの洗浄条件である60℃、1×SSC、0.1%SDS、好ましくは、0.1×SSC、0.1%SDS、さらに好ましくは、68℃、0.1×SSC、0.1%SDSに相当する塩濃度および温度で、1回、より好ましくは2~3回洗浄する条件等が挙げられる。 As used herein, “stringent conditions” refers to nucleotide sequences having high identity, such as 70% or more, 80% or more, 90% or more, 95% or more, 98% or more, or 99% or more identity. This refers to a condition in which nucleotide sequences possessed hybridize and nucleotide sequences with lower identity do not hybridize. Specifically, “stringent conditions” in the present specification are the washing conditions for normal Southern hybridization, 60 ° C., 1 × SSC, 0.1% SDS, preferably 0.1 × SSC, Conditions include 0.1% SDS, more preferably 68 ° C., 0.1 × SSC, salt concentration and temperature corresponding to 0.1% SDS, and more preferably 2 to 3 times of washing conditions. .
 本明細書において、「ω6高度不飽和脂肪酸代謝経路」とは、リノール酸から、γ-リノレン酸、ジホモ-γ-リノレン酸、アラキドン酸(ARA)等のω6系の高度不飽和脂肪酸を生産する代謝経路をいい、「ω3高度不飽和脂肪酸代謝経路」とは、α-リノレン酸から、ステアリドン酸、エイコサテトラエン酸、エイコサペンタエン酸(EPA)等のω3系の高度不飽和脂肪酸を生産する代謝経路をいう(図1参照)。また本明細書において、「高度不飽和脂肪酸」とは、炭素鎖長が18以上で不飽和結合数が2以上の長鎖脂肪酸をいう。 In the present specification, the “ω6 highly unsaturated fatty acid metabolic pathway” refers to the production of ω6 highly unsaturated fatty acids such as γ-linolenic acid, dihomo-γ-linolenic acid and arachidonic acid (ARA) from linoleic acid. Metabolic pathway means “ω3 highly unsaturated fatty acid metabolic pathway”, which produces ω3 highly unsaturated fatty acids such as stearidonic acid, eicosatetraenoic acid, eicosapentaenoic acid (EPA) from α-linolenic acid. It refers to the metabolic pathway (see FIG. 1). In the present specification, “polyunsaturated fatty acid” refers to a long chain fatty acid having a carbon chain length of 18 or more and an unsaturated bond number of 2 or more.
 本明細書において、ある微生物に対して使用する用語「本来(inherent)」とは、ある機能や形質が天然に存在する当該微生物(野生型)が保有するものであることを表すために使用される。対照的に、用語「外来」とは、当該微生物に元から存在するのではなく、外部から導入された機能や形質を表すために使用される。例えば、ある微生物に外部から導入された遺伝子は、外来遺伝子である。外来遺伝子は、それが導入された微生物と同種の微生物由来の遺伝子であっても、異種の生物由来の遺伝子であってもよい。 In this specification, the term “inherent” used for a certain microorganism is used to indicate that a certain function or trait is possessed by a naturally occurring microorganism (wild type). The In contrast, the term “foreign” is used to denote a function or trait introduced from the outside, rather than originally present in the microorganism. For example, a gene introduced from the outside into a certain microorganism is a foreign gene. The foreign gene may be a gene derived from the same type of microorganism as the microorganism into which it has been introduced or a gene derived from a different organism.
 本発明の変異微生物の親株となる微生物(以下、「親微生物」ということがある)は、ω6高度不飽和脂肪酸代謝経路を有する微生物であればよく、好ましくは、ω6高度不飽和脂肪酸代謝経路を有し、かつω6高度不飽和脂肪酸を生産する脂質生産菌(oleaginous microorganisms)である。 The microorganism that becomes the parent strain of the mutant microorganism of the present invention (hereinafter sometimes referred to as “parental microorganism”) may be any microorganism that has the ω6 highly unsaturated fatty acid metabolic pathway, and preferably has the ω6 highly unsaturated fatty acid metabolic pathway. It is a lipid-producing bacterium (oleaginus microorganisms) that has ω6 highly unsaturated fatty acid.
 本発明の変異微生物の親微生物として使用することができるω6高度不飽和脂肪酸代謝経路を有する微生物としては、例えば、モルティエレラ(Mortierella)属、ムコール(Mucor)属、ウンベロプシス(Umbelopsis)属等の糸状菌が挙げられ、好ましくは、モルティエレラ・アルピナ(Mortierella alpina)、モルティエレラ クラミドスポラ(Mortierella chlamydospora)、モルティエレラ・エロンガタ(Mortierella elongata)、モルティエレラ・エキシグア(Mortierella exigua)、モルティエレラ・フィグロフィラ(Mortierella hygrophila)、モルティエレラ・エピガマ(Mortierella epigama)、モルティエレラ・アクロトナ(Mortierella acrotona)、モルティエレラ・ミヌティシマ(Mortierella minutissima)、モルティエレラ・リギコラ(Mortierella lignicola)、モルティエレラ・クロノシスティス(Mortierella clonocystis)、モルティエレラ・ナナ(Mortierella nana)、モルティエレラ・フミコラ(Mortierella humicola)、モルティエレラ・バイニエリ(Mortierella bainieri)、モルティエレラ・ヒアリン(Mortierella hyaline)、モルティエレラ・グロバルピナ(Mortierella globalpina)、ウンベロプシス・ナナ(Umbelopsis nana)、ウンベロプシス・イサベリナ(Umbelopsis isabellina)等のモルティエレラ属微生物が挙げられるが、これらに限定されない。 Examples of microorganisms having a ω6 polyunsaturated fatty acid metabolic pathway that can be used as the parent microorganism of the mutant microorganism of the present invention include filamentous forms such as Mortierella, Mucor, and Umbelopsis. Preferred are Mortierella alpina, Mortierella chlamyspora, Mortierella elongata, Mortierella algera, Mortierella algora Mortierella Epigama (Mort) erella epigama), Mortierella acrotona, Mortierella minutissima, Mortierella lignaola, mortierella crotona , Mortierella humicola, Mortierella bainieri, Mortierella hyaline, Mortierella glovalpina (Mortierella gliala) Examples include, but are not limited to, Mortierella microorganisms such as obalpina), umbelopsis nana, and umbelopsis isabelina.
 より好ましくは、本発明の変異微生物の親微生物は、ω6高度不飽和脂肪酸代謝経路およびω3高度不飽和脂肪酸代謝経路を有し、ω6およびω3高度不飽和脂肪酸を生産する脂質生産菌である。より具体的には、ω6高度不飽和脂肪酸代謝経路およびそれに関与する酵素群に加えて、さらにω3不飽和化酵素を有しており、本来的にEPA生産能を有する微生物である。このような微生物としては、上述したモルティエレラ属微生物、例えば、Mortierella alpina(本明細書において「M.alpina」ということがある)、Mortierella clonocystis、Mortierella nana、Mortierella humicola、Mortierella bainieri、Mortierella hyaline、Mortierella globalpinaなどが挙げられる。さらに、本発明の変異微生物の親微生物には、上述したモルティエレラ属微生物の変異株であって、EPA生産能を有するものも含まれる。このような微生物としては、M.alpina 1S-4(Agric.Biol.Chem.,1987,51(3),p.785-790)が挙げられる。したがって、本発明の変異微生物の親微生物としては、EPA生産能を有するモルティエレラ属微生物の野生株およびその変異株、好ましくはM.alpinaの野生株およびそのEPA生産能を有する変異株、より好ましくはM.alpina 1S-4およびそのEPA生産能を有する変異株が挙げられる。 More preferably, the parental microorganism of the mutant microorganism of the present invention is a lipid-producing bacterium having an ω6 highly unsaturated fatty acid metabolic pathway and an ω3 highly unsaturated fatty acid metabolic pathway and producing ω6 and ω3 highly unsaturated fatty acids. More specifically, in addition to the ω6 polyunsaturated fatty acid metabolic pathway and the enzymes involved in it, it is a microorganism that has ω3 desaturase and inherently has the ability to produce EPA. Examples of such microorganisms include the above-mentioned Mortierella microorganisms, for example, Mortierella alpina (sometimes referred to as “M. alpina” in the present specification), Mortierella clonocystis, Mortierella nana, Mortierella humicola, Mortierella berlin, and globalpina. Furthermore, the parent microorganism of the mutant microorganism of the present invention includes mutants of the aforementioned Mortierella genus microorganism that have the ability to produce EPA. Examples of such microorganisms include M. pneumoniae. alpina 1S-4 (Agric. Biol. Chem., 1987, 51 (3), p. 785-790). Therefore, the parental microorganism of the mutant microorganism of the present invention includes a wild strain of Mortierella microorganism having EPA production ability and mutants thereof, preferably M. a wild-type strain of alpina and a mutant strain thereof capable of producing EPA, more preferably M. alpina. alpina 1S-4 and its EPA-producing mutants.
 しかしながら、上記モルティエレラ属微生物の有するω3不飽和化酵素は、低温下でなければ活性が低いため、本発明による常温下でのEPA生産には必要ない。したがって、本発明の変異微生物の親微生物には、さらに、上記EPA生産能を有するモルティエレラ属微生物のω3不飽和化酵素欠損株が含まれる。当該ω3不飽和化酵素欠損株としては、M.alpina 1S-4変異株であるM.alpina ST1358が挙げられる(Biosci.Biotechnol.Biochem.,2010,vol.74,p.908-917)。本明細書において、「ω3不飽和化酵素を欠損する」とは、ω3不飽和化酵素が本来有する正常な機能が十分に発揮できない状態をいい、例えば、ω3不飽和化酵素が全く発現していない状態、ω3不飽和化酵素が本来有する正常な機能が発揮できない程度にその発現量が低下している状態、ω3不飽和化酵素遺伝子産物の機能が完全に喪失した状態、または遺伝子変異等により、ω3不飽和化酵素が本来有する正常な機能が発揮できない程度にω3不飽和化酵素遺伝子産物の機能が低下した状態等をいう。ω3不飽和化酵素を欠損させる方法としては、常法、例えば、メタンスルホン酸エチル(EMS)、メタンスルホン酸メチル(MMS)、N-メチル-N-ニトロ-N-ニトロソグアニジン(J.Gen.Microbiol.,1992,vol.138,p.997-1002)、5-ブロモデオキシウリジン(BrdU)、シスプラチン、マイトマイシンC等の変異原処理、またはRNAi(Appl.Environ.Microbiol.,2005,vol.71,p.5124-5128)等が挙げられる。あるいは、放射線照射、紫外線照射または高熱処理等により突然変異を誘発させる方法等が挙げられる。しかし、ω3不飽和化酵素を欠損させる方法は、上述の性質を有する変異が生じる限り、これらの方法に限定されない。 However, the ω3 desaturase possessed by the Mortierella spp. Is not active for EPA production at room temperature according to the present invention because the activity is low unless the temperature is low. Therefore, the parent microorganism of the mutant microorganism of the present invention further includes a strain lacking the ω3 desaturase of the genus Mortierella having the above-mentioned EPA production ability. Examples of the ω3 desaturase-deficient strain include M. alpina 1S-4 mutant alpina ST1358 (Biosci. Biotechnol. Biochem., 2010, vol. 74, p. 908-917). In the present specification, “deficient in ω3 desaturase” refers to a state in which the normal function inherent to ω3 desaturase cannot be fully exerted. For example, ω3 desaturase is not expressed at all. In a state where the expression level has decreased to such an extent that the normal function of the ω3 desaturase cannot be exhibited, in a state where the function of the ω3 desaturase gene product has been completely lost, or due to gene mutation, etc. The state in which the function of the ω3 desaturase gene product is reduced to such an extent that the normal function inherent to the ω3 desaturase cannot be exhibited. Methods for deleting ω3 desaturase include conventional methods such as ethyl methanesulfonate (EMS), methyl methanesulfonate (MMS), N-methyl-N-nitro-N-nitrosoguanidine (J. Gen. Microbiol., 1992, vol. 138, p. 997-1002), mutagen treatment such as 5-bromodeoxyuridine (BrdU), cisplatin, mitomycin C, or RNAi (Appl. Environ. Microbiol., 2005, vol. 71). , P. 5124-5128). Alternatively, a method of inducing mutation by irradiation, ultraviolet irradiation, high heat treatment or the like can be mentioned. However, methods for deleting ω3 desaturase are not limited to these methods as long as mutations having the above-described properties occur.
 一実施形態において、本発明の変異微生物は、上記親微生物に、外来のΔ15不飽和化酵素をコードする遺伝子を導入することによって作製される。導入された遺伝子にコードされたΔ15不飽和化酵素は、本発明の変異微生物内で、炭素鎖長18の高度不飽和脂肪酸に対してあたかもω3不飽和化酵素のように作用することによって、高度不飽和脂肪酸の生合成経路におけるリノール酸からα-リノレン酸への変換やγ-リノレン酸からステアリドン酸への変換を促進し、その結果、微生物中のEPAの生合成量を高めることができる。 In one embodiment, the mutant microorganism of the present invention is produced by introducing a gene encoding an exogenous Δ15 desaturase into the parent microorganism. The Δ15 desaturase encoded by the introduced gene acts as a ω3 desaturase on a highly unsaturated fatty acid having a carbon chain length of 18 within the mutant microorganism of the present invention. Conversion of linoleic acid to α-linolenic acid and conversion of γ-linolenic acid to stearidonic acid in the biosynthetic pathway of unsaturated fatty acids can be promoted, and as a result, the amount of EPA biosynthesis in the microorganism can be increased.
 別の実施形態において、本発明の変異微生物は、上記親微生物に、外来のΔ12不飽和化酵素をコードする遺伝子と、外来のΔ15不飽和化酵素をコードする遺伝子および外来のΔ17不飽和化酵素をコードする遺伝子のいずれか1以上とを導入することによって作製される。導入された遺伝子にコードされたΔ12不飽和化酵素は、本発明の変異微生物内でオレイン酸からリノール酸への変換を促進し、微生物中でのオレイン酸の蓄積を抑制する。またΔ17不飽和化酵素は、炭素鎖長20の高度不飽和脂肪酸に対してあたかもω3不飽和化酵素のように作用することによって、高度不飽和脂肪酸の生合成経路におけるジホモ-γ-リノレン酸からエイコサテトラエン酸への変換や、アラキドン酸からエイコサペンタエン酸への変換を促進し、微生物中でのアラキドン酸の蓄積を抑制する。 In another embodiment, the mutant microorganism of the present invention contains a gene encoding an exogenous Δ12 desaturase, a gene encoding an exogenous Δ15 desaturase, and an exogenous Δ17 desaturase in the parental microorganism. It is produced by introducing any one or more of genes encoding. The Δ12 desaturase encoded by the introduced gene promotes the conversion of oleic acid to linoleic acid in the mutant microorganism of the present invention and suppresses the accumulation of oleic acid in the microorganism. In addition, Δ17 desaturase acts on diunsaturated γ-linolenic acid in the biosynthetic pathway of polyunsaturated fatty acids by acting like a ω3 desaturase on polyunsaturated fatty acids having a carbon chain length of 20. It promotes the conversion to eicosatetraenoic acid and the conversion of arachidonic acid to eicosapentaenoic acid, and suppresses the accumulation of arachidonic acid in microorganisms.
 図1にM.alpina 1S-4の脂肪酸の生合成経路を示す。α-リノレン酸やステアリドン酸のようなω3高度不飽和脂肪酸への変換を促進することによって、ω3高度不飽和脂肪酸であるエイコサペンタエン酸の生合成量を高めることができる。また、オレイン酸の蓄積を抑制することによって、さらにエイコサペンタエン酸の生合成量を高めることができる。 In FIG. alpina 1S-4 fatty acid biosynthetic pathway. By promoting the conversion to ω3 highly unsaturated fatty acids such as α-linolenic acid and stearidonic acid, the biosynthetic amount of eicosapentaenoic acid that is an ω3 highly unsaturated fatty acid can be increased. Moreover, the biosynthesis amount of eicosapentaenoic acid can be further increased by suppressing the accumulation of oleic acid.
 Δ15不飽和化酵素は、Δ15不飽和化酵素活性を示すタンパク質である。Δ15不飽和化酵素活性とは、脂肪酸分子のカルボキシル末端から数えて15番目と16番目の炭素原子間で脂肪酸を不飽和化する活性をいう。当該酵素が炭素数18の高度不飽和脂肪酸に作用すれば、メチル末端から見るとω3位が不飽和化されることになるので、ω3不飽和化酵素の機能を代替し得る。例えば、Δ15不飽和化酵素活性は、リノール酸からα-リノレン酸への変換活性、γ-リノレン酸からステアリドン酸への変換活性を含み得る。好ましくは、本発明の変異微生物に導入される遺伝子にコードされるΔ15不飽和化酵素は、炭素鎖長18の高度不飽和脂肪酸に対して優先的にΔ15不飽和化酵素活性を示す酵素である。 Δ15 desaturase is a protein exhibiting Δ15 desaturase activity. The Δ15 desaturase activity refers to an activity of desaturating a fatty acid between the 15th and 16th carbon atoms counted from the carboxyl terminus of the fatty acid molecule. If the enzyme acts on a polyunsaturated fatty acid having 18 carbon atoms, the ω3 position is desaturated when viewed from the methyl end, so that the function of the ω3 desaturase can be substituted. For example, Δ15 desaturase activity can include linoleic acid to α-linolenic acid conversion activity, γ-linolenic acid to stearidonic acid conversion activity. Preferably, the Δ15 desaturase encoded by the gene introduced into the mutant microorganism of the present invention is an enzyme that preferentially exhibits Δ15 desaturase activity with respect to a highly unsaturated fatty acid having a carbon chain length of 18. .
 Δ12不飽和化酵素は、Δ12不飽和化酵素活性を示すタンパク質である。Δ12不飽和化酵素活性とは、脂肪酸分子のカルボキシル末端から数えて12番目と13番目の炭素原子間で脂肪酸を不飽和化する活性をいう。当該酵素が炭素数18の高度不飽和脂肪酸に作用すれば、メチル末端から見るとω6位が不飽和化されることになるので、ω6不飽和化酵素の機能を代替し得る。例えば、Δ12不飽和化酵素活性は、オレイン酸から、リノール酸への変換活性を含み得る。好ましくは、本発明の変異微生物に導入される遺伝子にコードされるΔ12不飽和化酵素は、炭素鎖長18の高度不飽和脂肪酸に対して優先的にΔ12不飽和化酵素活性を示す酵素である。 Δ12 desaturase is a protein exhibiting Δ12 desaturase activity. The Δ12 desaturase activity refers to the activity of desaturating fatty acids between the 12th and 13th carbon atoms counted from the carboxyl terminus of the fatty acid molecule. If the enzyme acts on a polyunsaturated fatty acid having 18 carbon atoms, the ω6 position is desaturated when viewed from the methyl end, so that the function of the ω6 desaturase can be substituted. For example, Δ12 desaturase activity can include conversion activity from oleic acid to linoleic acid. Preferably, the Δ12 desaturase encoded by the gene introduced into the mutant microorganism of the present invention is an enzyme that preferentially exhibits Δ12 desaturase activity with respect to a highly unsaturated fatty acid having a carbon chain length of 18. .
 Δ17不飽和化酵素は、Δ17不飽和化酵素活性を示すタンパク質である。Δ17不飽和化酵素活性とは、脂肪酸分子のカルボキシル末端から数えて17番目と18番目の炭素原子間で脂肪酸を不飽和化する活性をいう。当該酵素が炭素数20の高度不飽和脂肪酸に作用すれば、メチル末端から見るとω3位が不飽和化されることになるので、ω3不飽和化酵素の機能を代替し得る。例えば、Δ17不飽和化酵素活性は、アラキドン酸からエイコサペンタエン酸への変換活性、ジホモ-γ-リノレン酸からエイコサテトラエン酸への変換活性を含み得る。好ましくは、本発明の変異微生物に導入される遺伝子にコードされるΔ17不飽和化酵素は、炭素鎖長20の高度不飽和脂肪酸に対して優先的に作用するΔ17不飽和化酵素活性を示す酵素である。 Δ17 desaturase is a protein exhibiting Δ17 desaturase activity. The Δ17 desaturase activity refers to an activity of desaturating a fatty acid between the 17th and 18th carbon atoms counted from the carboxyl terminus of the fatty acid molecule. If the enzyme acts on a polyunsaturated fatty acid having 20 carbon atoms, the ω3 position is desaturated when viewed from the methyl end, so that the function of the ω3 desaturase can be substituted. For example, Δ17 desaturase activity can include arachidonic acid to eicosapentaenoic acid conversion activity, dihomo-γ-linolenic acid to eicosatetraenoic acid conversion activity. Preferably, the Δ17 desaturase encoded by the gene introduced into the mutant microorganism of the present invention is an enzyme exhibiting Δ17 desaturase activity that acts preferentially on a highly unsaturated fatty acid having a carbon chain length of 20. It is.
 好ましくは、本発明で使用される上記Δ15不飽和化酵素、Δ12不飽和化酵素およびΔ17不飽和化酵素(以下、「本発明で使用される不飽和化酵素」ということがある)は、常温下でそれらの酵素活性を示す。本明細書において、「常温下で酵素活性を示す」とは、酵素活性の至適温度が20℃以上、好ましくは20~40℃であるか、または20℃において至適温度での活性の70%以上、好ましくは80%以上の活性を有することをいう。 Preferably, the Δ15 desaturase, Δ12 desaturase and Δ17 desaturase (hereinafter sometimes referred to as “desaturase used in the present invention”) used in the present invention are at room temperature. The enzyme activities are shown below. In the present specification, “showing enzyme activity at room temperature” means that the optimum temperature of enzyme activity is 20 ° C. or higher, preferably 20 to 40 ° C., or 70 ° C. of activity at the optimum temperature at 20 ° C. % Or more, preferably 80% or more.
 本発明の変異微生物に導入される遺伝子にコードされるΔ15不飽和化酵素としては、例えば、トリコデルマ(Trichoderma)属由来、ピシウム(Pythium)属由来、線虫(Caenorhabditis elegans)由来(Biochemistry,2000,39(39),p.11948-11954)、Pichia pastoris由来(Yeast,2008 Jan;25(1),p.21-7)のΔ15不飽和化酵素が挙げられる。これらの酵素のアミノ酸配列は公知である(例えば、J.Gen.Microbiol.,1991,vol.137,p.1825-1830、欧州特許公開公報EP2500420A1)。好ましくは、本発明で使用されるΔ15不飽和化酵素は、配列番号3で示されるアミノ酸配列からなるトリコデルマ・エスピー(Trichoderma sp.)AM076由来のΔ15不飽和化酵素である。 Examples of the Δ15 desaturase encoded by the gene introduced into the mutant microorganism of the present invention include, for example, derived from the genus Trichoderma, derived from the genus Pythium, derived from Caenorhabditis elegans (Biochemistry, 2000, 39 (39), p.11948-11195), Pichia pastoris (Yeast, 2008 Jan; 25 (1), p.21-7) Δ15 desaturase. The amino acid sequences of these enzymes are known (for example, J. Gen. Microbiol., 1991, vol. 137, p. 1825-1830, European Patent Publication No. EP 2500420A1). Preferably, the Δ15 desaturase used in the present invention is a Δ15 desaturase derived from Trichoderma sp. AM076 consisting of the amino acid sequence represented by SEQ ID NO: 3.
 したがって、本発明で使用されるΔ15不飽和化酵素の好ましい例としては、以下のものが挙げられる:
(a)配列番号3に示されるアミノ酸配列からなるタンパク質;
(b)配列番号3に示されるアミノ酸配列において、1個または複数個のアミノ酸の欠失、置換、挿入および付加から選択される変異を施されたアミノ酸配列からなり、かつΔ15不飽和化酵素活性を有するタンパク質;
(c)配列番号3で示されるアミノ酸配列と90%以上、好ましくは95%以上、より好ましくは98%以上、さらに好ましくは99%以上の同一性を有するアミノ酸配列からなり、かつΔ15不飽和化酵素活性を有するタンパク質;
(d)配列番号2のヌクレオチド番号53~1225に示されるヌクレオチド配列の相補鎖配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチドにコードされ、かつΔ15不飽和化酵素活性を有するタンパク質;あるいは、
(e)配列番号2のヌクレオチド番号53~1225で示されるヌクレオチド配列と80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、なお好ましくは99%以上の同一性を有するヌクレオチド配列からなるポリヌクレオチドにコードされ、かつΔ15不飽和化素活性を有するタンパク質。
Accordingly, preferred examples of Δ15 desaturase used in the present invention include the following:
(A) a protein comprising the amino acid sequence represented by SEQ ID NO: 3;
(B) an amino acid sequence represented by SEQ ID NO: 3, comprising an amino acid sequence subjected to mutation selected from deletion, substitution, insertion and addition of one or more amino acids, and Δ15 desaturase activity A protein having
(C) consisting of an amino acid sequence having 90% or more, preferably 95% or more, more preferably 98% or more, and even more preferably 99% or more identity with the amino acid sequence represented by SEQ ID NO: 3, and Δ15 desaturation A protein having enzymatic activity;
(D) encoded by a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising a complementary strand sequence of the nucleotide sequence shown in nucleotide numbers 53 to 1225 of SEQ ID NO: 2 and has Δ15 desaturase activity Protein; or
(E) 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, still more preferably 99% or more identical to the nucleotide sequence represented by nucleotide numbers 53 to 1225 of SEQ ID NO: 2. A protein encoded by a polynucleotide comprising a nucleotide sequence having sex and having Δ15 desaturin activity.
 本発明の変異微生物に導入される遺伝子にコードされるΔ12不飽和化酵素としては、例えば、Coprinus cinereus由来Δ12不飽和化酵素が挙げられる。この酵素のアミノ酸配列は公知であり(例えば、FEBS Lett.,2007,581,p.315-319)、配列番号6で示される。 Examples of the Δ12 desaturase encoded by the gene introduced into the mutant microorganism of the present invention include, for example, Coprinus cinereus-derived Δ12 desaturase. The amino acid sequence of this enzyme is known (for example, FEBS Lett., 2007, 581, p.315-319) and is represented by SEQ ID NO: 6.
 したがって、本発明で使用されるΔ12不飽和化酵素の好ましい例としては、以下のものが挙げられる:
(a')配列番号6に示されるアミノ酸配列からなるタンパク質;
(b')配列番号6に示されるアミノ酸配列において、1個または複数個のアミノ酸の欠失、置換、挿入および付加から選択される変異を施されたアミノ酸配列からなり、かつΔ12不飽和化酵素活性を有するタンパク質;
(c')配列番号6で示されるアミノ酸配列と90%以上、好ましくは95%以上、より好ましくは98%以上、さらに好ましくは99%以上の同一性を有するアミノ酸配列からなり、かつΔ12不飽和化酵素活性を有するタンパク質;
(d')配列番号5のヌクレオチド番号52~1377に示されるヌクレオチド配列の相補鎖配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチドにコードされ、かつΔ12不飽和化酵素活性を有するタンパク質;あるいは、
(e')配列番号5のヌクレオチド番号52~1377で示されるヌクレオチド配列と80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、なお好ましくは99%以上の同一性を有するヌクレオチド配列からなるポリヌクレオチドにコードされ、かつΔ12不飽和化素活性を有するタンパク質。
Accordingly, preferred examples of Δ12 desaturase used in the present invention include the following:
(A ′) a protein consisting of the amino acid sequence shown in SEQ ID NO: 6;
(B ′) an amino acid sequence represented by SEQ ID NO: 6, comprising an amino acid sequence subjected to mutation selected from deletion, substitution, insertion and addition of one or more amino acids, and Δ12 desaturase An active protein;
(C ′) consisting of an amino acid sequence having 90% or more, preferably 95% or more, more preferably 98% or more, and even more preferably 99% or more identity with the amino acid sequence represented by SEQ ID NO: 6, and Δ12 unsaturated A protein having an enzyme activity;
(D ′) encoded by a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising a complementary strand sequence of the nucleotide sequence shown in nucleotide numbers 52 to 1377 of SEQ ID NO: 5, and has Δ12 desaturase activity A protein having; or
(E ′) 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, still more preferably 99% or more of the nucleotide sequence represented by nucleotide numbers 52 to 1377 of SEQ ID NO: 5. A protein encoded by a polynucleotide having a nucleotide sequence having identity and having Δ12 desaturin activity.
 本発明の変異微生物に導入される遺伝子にコードされるΔ17不飽和化酵素としては、例えば、サプロレグニア(Saprolegnia)属由来またはフィトフトラ(Phytophthora)属由来のΔ17不飽和化酵素が挙げられる。これらの酵素のアミノ酸配列は公知である(例えば、Biochem.J.,2004,378,665-671 doi:10.1042/BJ20031319、EP2010648B1)。好ましくは、本発明で使用されるΔ17不飽和化酵素は、配列番号9で示されるアミノ酸配列からなるサプロレグニア・ディクリナ(Saprolegnia diclina)由来のΔ17不飽和化酵素である。 Examples of the Δ17 desaturase encoded by the gene introduced into the mutant microorganism of the present invention include Δ17 desaturase derived from the genus Saprolegnia or the genus Phytophthora. The amino acid sequences of these enzymes are known (for example, Biochem. J., 2004, 378, 665-671 doi: 10.1042 / BJ20031319, EP2010648B1). Preferably, the Δ17 desaturase used in the present invention is a Δ17 desaturase derived from Saprolegnia diclina having the amino acid sequence represented by SEQ ID NO: 9.
 したがって、本発明で使用されるΔ17不飽和化酵素の好ましい例としては、以下のものが挙げられる:
(a'')配列番号9に示されるアミノ酸配列からなるタンパク質;
(b'')配列番号9に示されるアミノ酸配列において、1個または複数個のアミノ酸の欠失、置換、挿入および付加から選択される変異を施されたアミノ酸配列からなり、かつΔ17不飽和化酵素活性を有するタンパク質;
(c'')配列番号9で示されるアミノ酸配列と90%以上、好ましくは95%以上、より好ましくは98%以上、さらに好ましくは99%以上の同一性を有するアミノ酸配列からなり、かつΔ17不飽和化酵素活性を有するタンパク質;
(d'')配列番号8のヌクレオチド番号100~1176に示されるヌクレオチド配列の相補鎖配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチドにコードされ、かつΔ17不飽和化酵素活性を有するタンパク質;あるいは、
(e'')配列番号8のヌクレオチド番号100~1176で示されるヌクレオチド配列と80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、なお好ましくは99%以上の同一性を有するヌクレオチド配列からなるポリヌクレオチドにコードされ、かつΔ17不飽和化素活性を有するタンパク質。
Accordingly, preferred examples of Δ17 desaturase used in the present invention include the following:
(A ″) a protein consisting of the amino acid sequence represented by SEQ ID NO: 9;
(B ″) an amino acid sequence represented by SEQ ID NO: 9, comprising an amino acid sequence subjected to mutation selected from deletion, substitution, insertion and addition of one or more amino acids, and Δ17 desaturation A protein having enzymatic activity;
(C ″) consisting of an amino acid sequence having 90% or more, preferably 95% or more, more preferably 98% or more, and even more preferably 99% or more identity with the amino acid sequence represented by SEQ ID NO: 9, and Δ17 A protein having saturating enzyme activity;
(D ″) a Δ17 desaturase activity encoded by a polynucleotide that hybridizes under stringent conditions with a polynucleotide consisting of a complementary strand of the nucleotide sequence shown in nucleotide numbers 100 to 1176 of SEQ ID NO: 8 Or a protein having
(E ″) 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, more preferably 99% or more with the nucleotide sequence represented by nucleotide numbers 100 to 1176 of SEQ ID NO: 8 A protein encoded by a polynucleotide comprising a nucleotide sequence having the same identity and having Δ17 desaturase activity.
 上述、(b)、(b')、(b'')に関し、「1個または複数個のアミノ酸の欠失、置換、挿入および付加から選択される変異」としては、以下が挙げられる:
(b1)配列番号3、6もしくは9に示されるアミノ酸配列における、1個または複数個のアミノ酸の欠失;
(b2)配列番号3、6もしくは9に示されるアミノ酸配列における、1個または複数個のアミノ酸の他のアミノ酸への置換;
(b3)配列番号3、6もしくは9に示されるアミノ酸配列における、1個または複数個のアミノ酸の挿入;
(b4)配列番号3、6もしくは9に示されるアミノ酸配列の一末端または両末端への、合計で、1個または複数個のアミノ酸の付加;または、
(b5)上記(b1)~(b4)の組み合わせであって、欠失、置換、挿入および付加されたアミノ酸の数が、合計で、1個または複数個である変異、
ここで、アミノ酸配列に対するアミノ酸の欠失、置換、挿入の位置は、変異後のタンパク質に上述の不飽和化酵素活性が保持される限り、特に限定されない。
With regard to (b), (b ′), and (b ″) above, “mutations selected from deletion, substitution, insertion and addition of one or more amino acids” include the following:
(B1) deletion of one or more amino acids in the amino acid sequence shown in SEQ ID NO: 3, 6 or 9;
(B2) substitution of one or more amino acids with other amino acids in the amino acid sequence shown in SEQ ID NO: 3, 6 or 9;
(B3) insertion of one or more amino acids in the amino acid sequence shown in SEQ ID NO: 3, 6 or 9;
(B4) addition of one or more amino acids in total to one or both ends of the amino acid sequence shown in SEQ ID NO: 3, 6 or 9; or
(B5) a combination of (b1) to (b4) above, wherein the number of amino acids deleted, substituted, inserted and added is one or more in total,
Here, the positions of amino acid deletions, substitutions and insertions relative to the amino acid sequence are not particularly limited as long as the above-mentioned desaturase activity is retained in the mutated protein.
 さらに、本発明で使用される不飽和化酵素は、上述した(a)~(e)、(a')~(e')、または(a'')~(e'')で示されるタンパク質において、性質の類似するアミノ酸(例えば、グリシンとアラニン、バリンとロイシンとイソロイシン、セリンとトレオニン、アスパラギン酸とグルタミン酸、アスパラギンとグルタミン、リシンとアルギニン、システインとメチオニン、フェニルアラニンとチロシン等)同士の置換がさらになされたタンパク質であり得る。類似するアミノ酸による置換の位置および数は、置換後のタンパク質に所望の不飽和化酵素活性が保持される限り、特に限定されない。 Furthermore, the desaturase used in the present invention is a protein represented by the above (a) to (e), (a ′) to (e ′), or (a ″) to (e ″). In amino acids, such as glycine and alanine, valine and leucine and isoleucine, serine and threonine, aspartic acid and glutamic acid, asparagine and glutamine, lysine and arginine, cysteine and methionine, phenylalanine and tyrosine, etc. It can also be a protein made. The position and the number of substitutions with similar amino acids are not particularly limited as long as the desired desaturase activity is retained in the substituted protein.
 上記本発明で使用される不飽和化酵素をコードする遺伝子は、上述した各酵素についての公知のアミノ酸配列や、上述した(a)~(e)、(a')~(e')、または(a'')~(e'')で示されるタンパク質のアミノ酸配列に基づいて取得することができる。例えば、当該遺伝子は、上述した本発明で使用される不飽和化酵素を有する微生物から常法により単離することができる。または上述した本発明で使用される不飽和化酵素のアミノ酸配列をもとに化学的に合成することができる。 The gene encoding the desaturase used in the present invention may be a known amino acid sequence for each of the enzymes described above, (a) to (e), (a ′) to (e ′), or It can be obtained based on the amino acid sequence of the protein represented by (a ″) to (e ″). For example, the gene can be isolated by a conventional method from the above-described microorganism having the desaturase used in the present invention. Alternatively, it can be chemically synthesized based on the amino acid sequence of the desaturase used in the present invention described above.
 さらに、得られた本発明で使用される不飽和化酵素をコードする遺伝子の中から、一般的なスクリーニング方法により、所望の基質特異性を有する酵素をコードする遺伝子をさらに選択し、本発明に使用することができる。例えば、炭素鎖長18の高度不飽和脂肪酸に対して基質特異性が高いΔ15不飽和化酵素もしくはΔ12不飽和化酵素をコードする遺伝子、または炭素鎖長20の高度不飽和脂肪酸に対して基質特異性が高いΔ17不飽和化酵素をコードする遺伝子を選択し、本発明に使用することができる。 Furthermore, a gene encoding an enzyme having a desired substrate specificity is further selected from the obtained genes encoding the desaturase used in the present invention by a general screening method. Can be used. For example, a gene encoding a Δ15 desaturase or Δ12 desaturase having a high substrate specificity for a highly unsaturated fatty acid having a carbon chain length of 18 or a substrate specific for a highly unsaturated fatty acid having a carbon chain length of 20 A gene encoding a Δ17 desaturase with high specificity can be selected and used in the present invention.
 本発明の変異微生物に導入されるΔ15不飽和化酵素をコードする遺伝子としては、上述したトリコデルマ種(Trichoderma sp.AM076)属由来、ピシウム(Pythium)属由来、線虫(Caenorhabditis elegans)由来、Pichia pastoris由来のΔ15不飽和化酵素をコードする遺伝子が挙げられるが、好ましくは、配列番号1で示されるヌクレオチド配列からなるTrichoderma sp.AM076由来のΔ15不飽和化酵素をコードする遺伝子である。 The gene encoding the Δ15 desaturase introduced into the mutant microorganism of the present invention includes the above-mentioned Trichoderma sp. (AM076) genus, Pysium genus, Caenorhabditis elegans genus, Pichia a gene encoding a Δ15 desaturase derived from P. pastoris, preferably Trichoderma sp. consisting of a nucleotide sequence represented by SEQ ID NO: 1. It is a gene encoding a Δ15 desaturase derived from AM076.
 本発明の変異微生物に導入されるΔ12不飽和化酵素をコードする遺伝子としては、配列番号4で示されるヌクレオチド配列からなる上述したCoprinus cinereus由来のΔ12不飽和化酵素をコードする遺伝子が挙げられる。 Examples of the gene encoding the Δ12 desaturase introduced into the mutant microorganism of the present invention include the above-described gene encoding the Δ12 desaturase derived from Coprinus cinereus comprising the nucleotide sequence represented by SEQ ID NO: 4.
 本発明の変異微生物に導入されるΔ17不飽和化酵素をコードする遺伝子としては、上述したサプロレグニア(Saprolegnia)属由来またはフィトフトラ(Phytophthora)属由来のΔ17不飽和化酵素をコードする遺伝子が挙げられるが、好ましくは、配列番号7で示されるヌクレオチド配列からなるサプロレグニア・ディクリナ(Saprolegnia diclina)由来のΔ17不飽和化酵素をコードする遺伝子である。 Examples of the gene encoding the Δ17 desaturase introduced into the mutant microorganism of the present invention include the gene encoding the Δ17 desaturase derived from the genus Saprolegnia or the genus Phytophthora. Preferably, it is a gene encoding a Δ17 desaturase derived from Saprolegnia diclina consisting of the nucleotide sequence represented by SEQ ID NO: 7.
 さらに、上記で挙げたΔ15不飽和化酵素、Δ12不飽和化酵素またはΔ17不飽和化酵素をコードする遺伝子は、当該遺伝子が導入される微生物種におけるコドン使用頻度にあわせて、コドンを至適化されていることが好ましい。各種微生物種が使用するコドンの情報は、Codon Usage Database(www.kazusa.or.jp/codon/)から入手可能である。例えば、モルティエレラ属微生物に不飽和化酵素遺伝子を導入する際には、モルティエレラ属微生物のコドン使用頻度(www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=64518)を参考に当該遺伝子のヌクレオチド配列を改変し、コドンの至適化を行うことができる。具体的には、配列番号1で示されるΔ15不飽和化酵素遺伝子をM.alpinaのコドン使用頻度にあわせて改変すると、配列番号2のヌクレオチド番号53~1225で示される配列のポリヌクレオチドを得ることができる。配列番号4で示されるΔ12不飽和化酵素遺伝子をM.alpinaのコドン使用頻度にあわせて改変すると、配列番号5のヌクレオチド番号52~1377で示される配列のポリヌクレオチドを得ることができる。配列番号7で示されるΔ17不飽和化酵素遺伝子をM.alpinaのコドン使用頻度にあわせて改変すると、配列番号8のヌクレオチド番号100~1176で示される配列のポリヌクレオチドを得ることができる。 Furthermore, the gene encoding the Δ15 desaturase, Δ12 desaturase or Δ17 desaturase listed above is optimized for codon usage in accordance with the codon usage in the microorganism species into which the gene is introduced. It is preferable that Information on codons used by various microbial species can be obtained from Codon Usage Database (www.kazusa.or.jp/codon/). For example, when introducing a desaturase gene into a Mortierella microorganism, the codon usage frequency of the Mortierella microorganism (www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=64518) The nucleotide sequence of the gene can be modified with reference to to optimize the codon. Specifically, the Δ15 desaturase gene represented by SEQ ID NO: 1 is M.p. When modified in accordance with the frequency of alpina codon usage, a polynucleotide having the sequence represented by nucleotide numbers 53 to 1225 of SEQ ID NO: 2 can be obtained. The Δ12 desaturase gene represented by SEQ ID NO: 4 was designated as M. pylori. When modified in accordance with the frequency of alpina codon usage, a polynucleotide having the sequence represented by nucleotide numbers 52 to 1377 of SEQ ID NO: 5 can be obtained. The Δ17 desaturase gene represented by SEQ ID NO: 7 was designated as M. pylori. When modified in accordance with the frequency of alpina codon usage, a polynucleotide having the sequence represented by nucleotide numbers 100 to 1176 of SEQ ID NO: 8 can be obtained.
 したがって、本発明で使用されるΔ15不飽和化酵素をコードする遺伝子の好ましい例としては、以下が挙げられる:
(i)  配列番号2のヌクレオチド番号53~1225で示されるヌクレオチド配列からなるポリヌクレオチド;
(ii) 配列番号2のヌクレオチド番号53~1225で示されるヌクレオチド配列において、1個または複数個のヌクレオチドの欠失、置換、挿入および付加から選択される変異を施されたヌクレオチド配列からなり、かつΔ15不飽和化酵素活性を有するタンパク質をコードするポリヌクレオチド;
(iii)配列番号2のヌクレオチド番号53~1225で示されるヌクレオチド配列と80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、なお好ましくは99%以上の同一性を有するヌクレオチド配列からなり、かつΔ15不飽和化酵素活性を有するタンパク質をコードするポリヌクレオチド;
(iv) 配列番号2のヌクレオチド番号53~1225に示されるヌクレオチド配列とストリンジェントな条件下でハイブリダイズし、かつΔ15不飽和化酵素活性を有するタンパク質をコードするポリヌクレオチド。
Accordingly, preferred examples of genes encoding Δ15 desaturase used in the present invention include the following:
(I) a polynucleotide comprising the nucleotide sequence represented by nucleotide numbers 53 to 1225 of SEQ ID NO: 2;
(Ii) a nucleotide sequence represented by nucleotide numbers 53 to 1225 of SEQ ID NO: 2, comprising a nucleotide sequence subjected to mutation selected from deletion, substitution, insertion and addition of one or more nucleotides; A polynucleotide encoding a protein having Δ15 desaturase activity;
(Iii) 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, still more preferably 99% or more identical to the nucleotide sequence represented by nucleotide numbers 53 to 1225 of SEQ ID NO: 2. A polynucleotide encoding a protein comprising a nucleotide sequence having sex and having Δ15 desaturase activity;
(Iv) a polynucleotide that hybridizes with the nucleotide sequence shown in nucleotide numbers 53 to 1225 of SEQ ID NO: 2 under a stringent condition and encodes a protein having Δ15 desaturase activity.
 本発明で使用されるΔ12不飽和化酵素をコードする遺伝子の好ましい例としては、以下が挙げられる:
(i')  配列番号5のヌクレオチド番号52~1377で示されるヌクレオチド配列からなるポリヌクレオチド;
(ii') 配列番号5のヌクレオチド番号52~1377で示されるヌクレオチド配列において、1個または複数個のヌクレオチドの欠失、置換、挿入および付加から選択される変異を施されたヌクレオチド配列からなり、かつΔ12不飽和化酵素活性を有するタンパク質をコードするポリヌクレオチド;
(iii')配列番号5のヌクレオチド番号52~1377で示されるヌクレオチド配列と80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、なお好ましくは99%以上の同一性を有するヌクレオチド配列からなり、かつΔ12不飽和化酵素活性を有するタンパク質をコードするポリヌクレオチド;
(iv') 配列番号5のヌクレオチド番号52~1377に示されるヌクレオチド配列とストリンジェントな条件下でハイブリダイズし、かつΔ12不飽和化酵素活性を有するタンパク質をコードするポリヌクレオチド。
Preferred examples of the gene encoding Δ12 desaturase used in the present invention include the following:
(I ′) a polynucleotide comprising the nucleotide sequence represented by nucleotide numbers 52 to 1377 of SEQ ID NO: 5;
(Ii ′) consisting of a nucleotide sequence subjected to mutation selected from deletion, substitution, insertion and addition of one or more nucleotides in the nucleotide sequence represented by nucleotide numbers 52 to 1377 of SEQ ID NO: 5; And a polynucleotide encoding a protein having Δ12 desaturase activity;
(Iii ′) 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, more preferably 99% or more of the nucleotide sequence represented by nucleotide numbers 52 to 1377 of SEQ ID NO: 5. A polynucleotide comprising a nucleotide sequence having identity and encoding a protein having Δ12 desaturase activity;
(Iv ′) a polynucleotide that hybridizes under stringent conditions with the nucleotide sequence represented by nucleotide numbers 52 to 1377 of SEQ ID NO: 5 and encodes a protein having Δ12 desaturase activity.
 本発明で使用されるΔ17不飽和化酵素をコードする遺伝子の好ましい例としては、以下が挙げられる:
(i'')  配列番号8のヌクレオチド番号100~1176で示されるヌクレオチド配列からなるポリヌクレオチド
(ii'') 配列番号8のヌクレオチド番号100~1176で示されるヌクレオチド配列において、1個または複数個のヌクレオチドの欠失、置換、挿入および付加から選択される変異を施されたヌクレオチド配列からなり、かつΔ17不飽和化酵素活性を有するタンパク質をコードするポリヌクレオチド
(iii'')配列番号8のヌクレオチド番号100~1176で示されるヌクレオチド配列と80%以上、好ましくは90%以上、より好ましくは95%以上、さらに好ましくは98%以上、なお好ましくは99%以上の同一性を有するヌクレオチド配列からなり、かつΔ17不飽和化酵素活性を有するタンパク質をコードするポリヌクレオチド
(iv'') 配列番号8のヌクレオチド番号100~1176に示されるヌクレオチド配列とストリンジェントな条件下でハイブリダイズし、かつΔ17不飽和化酵素活性を有するタンパク質をコードするポリヌクレオチド。
Preferred examples of the gene encoding the Δ17 desaturase used in the present invention include the following:
(I ″) a polynucleotide comprising the nucleotide sequence represented by nucleotide numbers 100 to 1176 of SEQ ID NO: 8 (ii ″) one or more nucleotides in the nucleotide sequence represented by nucleotide numbers 100 to 1176 of SEQ ID NO: 8 A polynucleotide consisting of a nucleotide sequence mutated selected from nucleotide deletions, substitutions, insertions and additions and encoding a protein having Δ17 desaturase activity (iii ″) nucleotide number of SEQ ID NO: 8 100% to 1176 nucleotide sequence having 80% or more, preferably 90% or more, more preferably 95% or more, still more preferably 98% or more, still more preferably 99% or more identity, and Polyn encoding a protein having Δ17 desaturase activity Creotide (iv ″) A polynucleotide that hybridizes under stringent conditions with the nucleotide sequence shown in nucleotide numbers 100 to 1176 of SEQ ID NO: 8 and encodes a protein having Δ17 desaturase activity.
 上記(ii)~(iv)、(ii')~(iv')および(ii'')~(iv'')のポリヌクレオチドは、モルティエレラ属微生物において使用頻度の高いコドンで構成されていることが望ましい。本発明において、上記(i)~(iv)、(i')~(iv')および(i'')~(iv'')のポリヌクレオチドは、好ましくは、モルティエレラ属微生物、より好ましくはM.alpinaに導入される。 The polynucleotides (ii) to (iv), (ii ′) to (iv ′) and (ii ″) to (iv ″) are composed of codons frequently used in Mortierella microorganisms. It is desirable. In the present invention, the polynucleotides (i) to (iv), (i ′) to (iv ′) and (i ″) to (iv ″) are preferably Mortierella microorganisms, more preferably M.M. Introduced into alpina.
 上述の本発明で使用される不飽和化酵素をコードする遺伝子は、ベクターを用いて親微生物へ導入することができる。導入に使用されるベクターの種類は、特に限定されず、親微生物、クローニングの方法、遺伝子発現の目的等に応じて適宜選択して使用することができる。例えば、ベクターとしては、親微生物がモルティエレラ属微生物の場合、pD4ベクター(Appl.Environ.Microbiol.,November 2000,66(11),p.4655-4661)、pDZeoベクター(J.Biosci.Bioeng.,December 2005,100(6),p.617-622)、pDura5ベクター(Appl.Microbiol.Biotechnol.,2004,65(4),p.419-425)、pDXベクター(Curr.Genet.,2009,55(3),p.349-356)、pBIG3ura5(Appl.Environ.Microbiol.,2009,75,p.5529-5535)等が挙げられるが、親微生物内で導入した遺伝子を発現させることができるベクターであれば、これらに限定されない。 The gene encoding the desaturase used in the present invention can be introduced into the parent microorganism using a vector. The type of vector used for the introduction is not particularly limited, and can be appropriately selected and used according to the parent microorganism, the cloning method, the purpose of gene expression, and the like. For example, when the parent microorganism is a microorganism belonging to the genus Mortierella, for example, a pD4 vector (Appl. Environ. Microbiol., November 2000, 66 (11), p. 4655-4661), a pDZeo vector (J. Biosci. Bioeng. , December 2005, 100 (6), p.617-622), pDura5 vector (Appl. Microbiol. Biotechnol., 2004, 65 (4), p.419-425), pDX vector (Curr. Genet., 2009, 55 (3), p. 349-356), pBIG3ura5 (Appl. Environ. Microbiol., 2009, 75, p. 5529-5535), etc., are introduced. If a vector capable of expressing a gene, but are not limited to.
 さらに上記ベクターには、組み込んだ不飽和化酵素遺伝子を発現させるためのプロモーター配列もしくは転写終結シグナル配列、または不飽和化酵素遺伝子が導入された形質転換体を選択するための選択マーカー遺伝子が含まれていることが好ましい。プロモーターとしては、親微生物がモルティエレラ属微生物の場合、高発現プロモーターを利用することができる。モルティエレラ属微生物用の好ましい高発現プロモーターとしては、M.alpina由来のSSA2プロモーター(配列番号10)およびPP3プロモーター(配列番号11)、ならびにこれらのプロモーターの配列に置換、欠失、付加等を加えて改変したプロモーターが挙げられるが、導入した遺伝子を高発現させることができれば、これらに限定されない。選択マーカー遺伝子としては、例えば、カナマイシン耐性遺伝子、ストレプトマイシン耐性遺伝子、カルボキシン耐性遺伝子、ゼオシン耐性遺伝子、ハイグロマイシン耐性遺伝子等の薬剤耐性遺伝子、ロイシン、ヒスチジン、メチオニン、アルギニン、トリプトファン、リジン等のアミノ酸要求変異を相補する遺伝子等、ウラシル、アデニン等の核酸塩基要求性変異を相補する遺伝子等を挙げることができる。好ましい選択マーカー遺伝子の例としては、ウラシル要求性変異を相補する遺伝子が挙げられる。例えば、M.alpinaのウラシル要求性変異株(Biosci Biotechnol Biochem.,2004,68,p.277-285)が開発されている。このようなウラシル要求株に対しては、選択マーカー遺伝子としてオロチジン-5’-リン酸デカルボキシラーゼ遺伝子(ura3遺伝子)、またはオロチジル酸ピロホスホリラーゼ遺伝子(ura5遺伝子)を使用することができる。ベクターを構築するための手順や使用する試薬類、例えば制限酵素またはライゲーション酵素等の種類については、特に限定されるものではない。当業者は、通常の知識に従って、または市販品を適宜用いてベクターを構築することができる。 Further, the above vector includes a promoter sequence or transcription termination signal sequence for expressing the incorporated desaturase gene, or a selection marker gene for selecting a transformant into which the desaturase gene has been introduced. It is preferable. As the promoter, a high expression promoter can be used when the parent microorganism is a Mortierella genus microorganism. Preferred high expression promoters for Mortierella microorganisms include M. Alpina-derived SSA2 promoter (SEQ ID NO: 10) and PP3 promoter (SEQ ID NO: 11), and promoters modified by adding substitutions, deletions, additions, etc. to the sequences of these promoters, but high expression of the introduced gene If it can be made, it will not be limited to these. Examples of selectable marker genes include drug resistance genes such as kanamycin resistance gene, streptomycin resistance gene, carboxin resistance gene, zeocin resistance gene, hygromycin resistance gene, amino acid requirements such as leucine, histidine, methionine, arginine, tryptophan, lysine, etc. Examples include genes that complement mutations, genes that complement nucleobase-requiring mutations such as uracil and adenine, and the like. Examples of preferred selectable marker genes include genes that complement uracil-requiring mutations. For example, M.M. A uracil auxotrophic mutant strain of alpina (Biosci Biotechnol Biochem., 2004, 68, p.277-285) has been developed. For such uracil-requiring strains, orotidine-5'-phosphate decarboxylase gene (ura3 gene) or orotidylate pyrophosphorylase gene (ura5 gene) can be used as a selectable marker gene. There are no particular limitations on the procedure for constructing the vector and the types of reagents used, such as restriction enzymes or ligation enzymes. A person skilled in the art can construct a vector according to ordinary knowledge or using commercially available products as appropriate.
 上記ベクターには、Δ15不飽和化酵素をコードする遺伝子、Δ12不飽和化酵素をコードする遺伝子、またはΔ17不飽和化酵素をコードする遺伝子のいずれか1つが含まれていればよいが、それらの遺伝子の複数、例えばΔ12不飽和化酵素の遺伝子とΔ15不飽和化酵素の遺伝子、Δ12不飽和化酵素の遺伝子とΔ17不飽和化酵素の遺伝子、またはΔ12不飽和化酵素の遺伝子とΔ15不飽和化酵素の遺伝子とΔ17不飽和化酵素の遺伝子が含まれていてもよい。したがって、本発明の変異株には、上記不飽和化酵素遺伝子のいずれか1つを含むベクターが導入されていてもよく、複数の上記不飽和化酵素を含むベクターが導入されていてもよく、または異なる不飽和化酵素を含む2種類以上のベクターが導入されていてもよい。 The vector may contain any one of a gene encoding a Δ15 desaturase, a gene encoding a Δ12 desaturase, or a gene encoding a Δ17 desaturase. A plurality of genes, for example, Δ12 desaturase gene and Δ15 desaturase gene, Δ12 desaturase gene and Δ17 desaturase gene, or Δ12 desaturase gene and Δ15 desaturation An enzyme gene and a Δ17 desaturase gene may be included. Therefore, the mutant strain of the present invention may be introduced with a vector containing any one of the desaturase genes, may be introduced with a vector containing a plurality of the desaturase enzymes, Alternatively, two or more types of vectors containing different desaturase enzymes may be introduced.
 本発明の変異株の作製用に構築された形質転換バイナリーベクターの一例の構造を、図2~6に示す。当該ベクターにおいては、恒常的高発現プロモーターであるPP3プロモーターまたはSSA2プロモーターの下流に、Δ17不飽和化酵素、Δ15不飽和化酵素またはΔ12不飽和化酵素をコードするポリヌクレオチドが連結されており、さらにターミネーターとしてsdhBターミネーター、形質転換体の選択マーカーとしてura5遺伝子が組み込まれている。 The structure of an example of a transformed binary vector constructed for production of the mutant strain of the present invention is shown in FIGS. In the vector, a polynucleotide encoding a Δ17 desaturase, Δ15 desaturase or Δ12 desaturase is linked downstream of the PP3 promoter or SSA2 promoter, which are constitutively high expression promoters, and An sdhB terminator is incorporated as a terminator, and a ura5 gene is incorporated as a selection marker for the transformant.
 上記ベクターを本発明の微生物に導入するには、エレクトロポレーション法、パーティクルガン(遺伝子銃)法、コンピテント細胞法、プロトプラスト法、リン酸カルシウム共沈法、等の公知の方法を使用することができる。さらに、親微生物としてモルティエレラ属微生物を用いた場合の遺伝子導入法としては、後述の実施例に記載のアグロバクテリウムを介したATMT法(Appl.Environ.Microbiol.,2009,vol.75,p.5529-5535)を好適に例示することができ、あるいはATMT法の改変法等を挙げることができる。しかし、目的の形質を安定して保持する形質転換体を得ることができれば、遺伝子導入法はこれらの方法に限定されない。 In order to introduce the vector into the microorganism of the present invention, a known method such as an electroporation method, a particle gun (gene gun) method, a competent cell method, a protoplast method, or a calcium phosphate coprecipitation method can be used. . Furthermore, as a gene introduction method when a Mortierella genus microorganism is used as a parental microorganism, the ATMT method (Appl. Environ. Microbiol., 2009, vol. 75, p. 5529-5535), or a modified method of the ATMT method. However, the gene transfer method is not limited to these methods as long as a transformant that stably retains the target character can be obtained.
 あるいは、上述の不飽和化酵素をコードする遺伝子は、親微生物のゲノムに直接導入されてもよい。不飽和化酵素の遺伝子とともに、上述したプロモーター配列、転写終結シグナル配列または選択マーカー遺伝子をともに導入してもよい。さらに、異なる不飽和化酵素をコードする複数の遺伝子を一緒に導入してもよい。遺伝子をゲノムに直接導入する方法としては、相同組換え法が挙げられる。 Alternatively, the gene encoding the above desaturase may be directly introduced into the genome of the parent microorganism. Together with the desaturase gene, the above promoter sequence, transcription termination signal sequence or selectable marker gene may be introduced together. Furthermore, a plurality of genes encoding different desaturases may be introduced together. A homologous recombination method is mentioned as a method of introducing a gene directly into the genome.
 以上の手順により親微生物に、外来のΔ15不飽和化酵素をコードする遺伝子、または外来のΔ12不飽和化酵素をコードする遺伝子と、外来のΔ15不飽和化酵素をコードする遺伝子および外来のΔ17不飽和化酵素をコードする遺伝子のいずれか1以上とを導入することによって、本発明の変異微生物を作製することができる。本発明の変異微生物は、導入された遺伝子にコードされる不飽和化酵素の働きによって、常温下でも、高度不飽和脂肪酸に対するω3不飽和化酵素活性を示し、高いEPA生合成能を発揮することができる。したがって、本発明の変異微生物を培養することによって、当該微生物の細胞内にEPAを高含有する脂質が生産される。さらに、本発明の変異微生物が産生するEPAを高含有する脂質は、オレイン酸やアラキドン酸の蓄積量が低減されているため、生産された脂質を精製することにより、純度の高いEPAを効率よく生産することが可能になる。 According to the above procedure, a gene encoding a foreign Δ15 desaturase, a gene encoding a foreign Δ12 desaturase, a gene encoding a foreign Δ15 desaturase, and a foreign Δ17 By introducing any one or more genes encoding a saturating enzyme, the mutant microorganism of the present invention can be produced. The mutant microorganism of the present invention exhibits ω3 desaturase activity for highly unsaturated fatty acids and exhibits high EPA biosynthesis ability even at room temperature by the action of the desaturase encoded by the introduced gene. Can do. Therefore, by culturing the mutant microorganism of the present invention, a lipid containing a high content of EPA is produced in the cells of the microorganism. Furthermore, since lipids containing a high amount of EPA produced by the mutant microorganism of the present invention have a reduced amount of oleic acid and arachidonic acid, high purity EPA can be efficiently obtained by purifying the produced lipid. It becomes possible to produce.
 したがって、本発明のさらなる実施形態は、上記本発明の変異微生物を培養することを含む、EPAを含有する脂質の生産方法である。また本発明の別のさらなる実施形態は、上記本発明の変異微生物により生産されたEPAを含有する脂質を精製することを含む、EPAの生産方法である。 Therefore, a further embodiment of the present invention is a method for producing a lipid containing EPA, comprising culturing the mutant microorganism of the present invention. Another further embodiment of the present invention is a method for producing EPA, comprising purifying a lipid containing EPA produced by the mutant microorganism of the present invention.
 本発明のEPAを含有する脂質の生産方法において、本発明の変異微生物は、液体培地または固体培地に接種し培養することができる。例えば、当該変異微生物が菌類の場合、菌株の胞子、菌糸、または予め培養して得られた前培養液を、上記培地に接種して培養することができる。培地の炭素源としてはグルコース、フルクトース、キシロース、サッカロース、マルトース、可溶性デンプン、コーンスターチ、グリセロール、マンニトール、脂質、アルカン、アルケン等が挙げられるが、これらに限定されない。窒素源としてはペプトン、酵母エキス、麦芽エキス、肉エキス、カザミノ酸、コーンスティープリカー、大豆タンパク、脱脂ダイズ、綿実カス、小麦フスマ等の天然窒素源の他に、尿素等の有機窒素源、並びに、硝酸ナトリウム、硝酸アンモニウム、硫酸アンモニウム等の無機窒素源が挙げられるが、これらに限定されない。さらに、大豆油、ココナッツ、コーン油等の脂質を添加してもよい。また、微量栄養源として、リン酸塩、硫酸マグネシウム、硫酸鉄、硫酸銅等の無機塩、またはビタミン等も適宜添加することができる。これらの培地成分は、本発明の変異微生物の生育を害しない濃度であれば特に制限されない。例えば、炭素源は培地中0.1~40質量%、好ましくは1~25質量%、窒素源は0.01~10質量%、好ましくは0.1~10質量%の濃度とすることができる。M.alpinaまたはその変異株を培養する場合、後述のCzapek培地、Czapek-dox培地、グルコース・酵母エキス(以下、「GY」ともいう)培地、SC培地等を使用することができる。あるいは、モルティエレラ属微生物用の培地については、公知の文献(例えば国際公開番号第98/29558号)を参考にすることもできる。培地のpHは4~10、好ましくは6~9であり得る。培養は、通気撹拌培養、振盪培養または静置培養であり得る。 In the method for producing lipids containing EPA of the present invention, the mutant microorganism of the present invention can be inoculated and cultured in a liquid medium or a solid medium. For example, when the mutant microorganism is a fungus, a spore of a strain, a mycelium, or a preculture solution obtained by culturing in advance can be inoculated into the medium and cultured. Examples of the carbon source of the medium include, but are not limited to, glucose, fructose, xylose, saccharose, maltose, soluble starch, corn starch, glycerol, mannitol, lipid, alkane, alkene and the like. As a nitrogen source, in addition to natural nitrogen sources such as peptone, yeast extract, malt extract, meat extract, casamino acid, corn steep liquor, soy protein, defatted soybean, cottonseed dregs and wheat bran, organic nitrogen sources such as urea, In addition, inorganic nitrogen sources such as sodium nitrate, ammonium nitrate, and ammonium sulfate are included, but not limited thereto. Furthermore, lipids such as soybean oil, coconut and corn oil may be added. In addition, as a trace nutrient source, inorganic salts such as phosphate, magnesium sulfate, iron sulfate, and copper sulfate, vitamins, and the like can be appropriately added. These medium components are not particularly limited as long as the concentration does not impair the growth of the mutant microorganism of the present invention. For example, the carbon source can be 0.1 to 40% by mass, preferably 1 to 25% by mass, and the nitrogen source in the medium can be 0.01 to 10% by mass, preferably 0.1 to 10% by mass. . M.M. When alpina or a mutant thereof is cultured, a Czapek medium, a Czapek-dox medium, a glucose / yeast extract (hereinafter also referred to as “GY”) medium, an SC medium, or the like described later can be used. Alternatively, known media (for example, International Publication No. 98/29558) can be referred to for the culture medium for Mortierella microorganisms. The pH of the medium can be 4-10, preferably 6-9. The culture can be an aeration and agitation culture, a shaking culture or a stationary culture.
 本発明の変異微生物の培養は、至適生育温度で行われる。例えば、本発明の変異微生物は、約5~60℃、好ましくは約10~50℃、より好ましくは約10~40℃、さらに好ましくは約20~40℃、なお好ましくは約20~30℃で培養することができる。例えば、M.alpinaまたはその変異株は、約10~40℃、好ましくは約20~40℃、より好ましくは約20~30℃で培養することができる。本発明の変異微生物にEPAを効率よく生産させるためには、培養温度は20℃以上、好ましくは約20~40℃、なお好ましくは約20~30℃にするのがよい。 The culture of the mutant microorganism of the present invention is performed at an optimum growth temperature. For example, the mutant microorganism of the present invention has a temperature of about 5 to 60 ° C., preferably about 10 to 50 ° C., more preferably about 10 to 40 ° C., more preferably about 20 to 40 ° C., still more preferably about 20 to 30 ° C. It can be cultured. For example, M.M. alpina or a mutant thereof can be cultured at about 10 to 40 ° C, preferably about 20 to 40 ° C, more preferably about 20 to 30 ° C. In order for the mutant microorganism of the present invention to efficiently produce EPA, the culture temperature is 20 ° C. or higher, preferably about 20-40 ° C., more preferably about 20-30 ° C.
 培養期間は、2~20日間、好ましくは2~14日間である。モルティエレラ属微生物の培養法については、公知の文献(例えば、特開平6-153970号公報)を参考にすることもできる。 The culture period is 2 to 20 days, preferably 2 to 14 days. With respect to the culture method of Mortierella microorganisms, known literature (for example, JP-A-6-153970) can also be referred to.
 上記条件で本発明の変異微生物を培養することによって、当該微生物の細胞内にEPAを高含有する脂質が生産される。本発明の変異微生物を20℃以上の条件下で10日間培養した場合、当該微生物に含まれる脂質の全脂肪酸組成中のEPA含量は、20質量%以上である。微生物細胞中の脂肪酸組成は、ガスクロマトグラフィー分析により測定することができる。 By culturing the mutant microorganism of the present invention under the above conditions, lipids containing a high content of EPA are produced in the cells of the microorganism. When the mutant microorganism of the present invention is cultured for 10 days under a condition of 20 ° C. or higher, the EPA content in the total fatty acid composition of the lipid contained in the microorganism is 20% by mass or more. The fatty acid composition in microbial cells can be measured by gas chromatography analysis.
 培養終了後、培養液を遠心分離、ろ過等の常用の手段にかけ、微生物細胞を分離する。例えば、培養液を遠心分離またはろ過して液体分を除き、分離された細胞を洗浄後、凍結乾燥、風乾等により乾燥させ、乾燥細胞を得る。当該乾燥細胞から、有機溶媒抽出等の公知の手法により、目的とする脂質を抽出することができる。有機溶媒としてはヘキサン、エーテル、酢酸エチル、酢酸ブチル、クロロホルム、シクロヘキサン、ベンゼン、トルエン、キシレン等の、高度不飽和脂肪酸の溶解性が高く、かつ水と分離可能な溶媒が挙げられる。または、これらの有機溶媒を組み合わせて使用することもできる。抽出物から減圧等で有機溶媒を留去することにより、目的の脂質を抽出することができる。あるいは、細胞を乾燥させずに、湿細胞から脂質の抽出を行うこともできる。得られた脂質は、脱ガム、脱酸、脱臭、脱色、カラム処理、蒸留等一般的な方法を適宜用いてさらに精製されてもよい。 After completion of the culture, the culture solution is subjected to conventional means such as centrifugation and filtration to separate microbial cells. For example, the culture solution is centrifuged or filtered to remove the liquid, and the separated cells are washed and then dried by lyophilization, air drying or the like to obtain dried cells. The desired lipid can be extracted from the dried cells by a known method such as organic solvent extraction. Examples of the organic solvent include hexane, ether, ethyl acetate, butyl acetate, chloroform, cyclohexane, benzene, toluene, xylene, and the like, which are highly soluble in highly unsaturated fatty acids and can be separated from water. Or these organic solvents can also be used in combination. The target lipid can be extracted by distilling off the organic solvent from the extract under reduced pressure or the like. Alternatively, lipids can be extracted from wet cells without drying the cells. The obtained lipid may be further purified by appropriately using general methods such as degumming, deoxidation, deodorization, decolorization, column treatment, distillation and the like.
 上記抽出した脂質の中には、目的物であるEPA以外に、共雑物となる各種脂肪酸が含まれている。したがって、上記脂質をさらに精製してより純度の高いEPAを取得することができる。EPAは、脂質から直接分離することもできるが、一旦脂質中の脂肪酸を低級アルコールとのエステル誘導体に変換した後に、目的とするEPAのエステル誘導体を分離することが好ましい。エステル誘導体は、炭素数、二重結合の数、位置の違い等に応じて、各種分離精製操作を用いることによって分離することができるため、容易に目的の脂肪酸のエステル誘導体を得ることができる。しかしながら、EPAと炭素数が同一で二重結合数が一つ異なるアラキドン酸は、EPAとの分離が難しいため、EPAを含有する脂質中にアラキドン酸は少ないことが好ましい。エステル誘導体は、エチルエステル誘導体が好ましい。エステル化には、塩酸、硫酸、BF3等の酸触媒、またはナトリウムメトキシド、水酸化カリウム等の塩基触媒を含む低級アルコールを使用することができる。得られたエステル誘導体から、カラムクロマトグラフィー、低温結晶化法、尿素付加分別法等を単独または組み合わせて、目的とするEPAのエステル誘導体を分離することができる。分離したEPAのエステル誘導体を、アルカリで加水分解した後、エーテル、酢酸エチル等の有機溶媒で抽出することにより、EPAを精製することができる。EPAは塩の形態で精製されてもよい。 In the extracted lipid, various fatty acids that are mixed substances are contained in addition to the target EPA. Therefore, EPA with higher purity can be obtained by further purifying the lipid. EPA can be separated directly from lipids, but it is preferable to separate the desired ester derivative of EPA after once converting the fatty acid in the lipid into an ester derivative with a lower alcohol. Since the ester derivative can be separated by using various separation and purification operations depending on the number of carbon atoms, the number of double bonds, the difference in position, etc., an ester derivative of the target fatty acid can be easily obtained. However, since arachidonic acid having the same carbon number and one double bond number as that of EPA is difficult to separate from EPA, it is preferable that the EPA-containing lipid contains less arachidonic acid. The ester derivative is preferably an ethyl ester derivative. For the esterification, a lower alcohol containing an acid catalyst such as hydrochloric acid, sulfuric acid or BF3, or a base catalyst such as sodium methoxide or potassium hydroxide can be used. The desired ester derivative of EPA can be separated from the obtained ester derivative by column chromatography, low temperature crystallization method, urea addition fractionation method or the like alone or in combination. The separated ester derivative of EPA is hydrolyzed with an alkali, and then extracted with an organic solvent such as ether or ethyl acetate, whereby EPA can be purified. EPA may be purified in the form of a salt.
 本発明によるEPAを高含有する脂質の生産を工業的な規模で行う場合、例えば、本発明の変異微生物をタンク中等で大規模培養し、フィルタープレス等でろ過し、細胞を回収して乾燥後、ボールミル等で細胞を破砕し、有機溶媒で脂質を抽出することができる。また、工業規模で微生物中の成分を抽出して利用する方法や、脂質からEPAを精製する方法は、数多く知られており、これらを適宜改変して本発明の方法に利用することもできる。 When the production of lipids containing high EPA according to the present invention is performed on an industrial scale, for example, the mutant microorganism of the present invention is cultured on a large scale in a tank or the like, filtered with a filter press or the like, and the cells are collected and dried. The cells can be crushed with a ball mill or the like, and the lipids can be extracted with an organic solvent. In addition, many methods for extracting and using components in microorganisms on an industrial scale and methods for purifying EPA from lipids are known, and these can be appropriately modified and used in the method of the present invention.
 本発明で得られたEPAは、ヒトまたは非ヒト動物用の医薬品、化粧料、食品、飼料等の製造に使用することができる。当該医薬品の剤型としては、例えば、錠剤、カプセル剤、顆粒剤、散剤、シロップ剤、ドライシロップ剤、液剤、懸濁剤等の経口剤;吸入剤、坐剤等の経腸製剤;点滴剤;注射剤;外用剤;経皮、経粘膜、経鼻剤;吸入薬;貼布剤等が挙げられる。また当該化粧料の形態としては、クリーム、乳液、ローション、懸濁液、ジェル、パウダー、パック、シート、パッチ、スティック、ケーキ等、化粧品が通常とり得る任意の形態が挙げられる。 EPA obtained by the present invention can be used for the production of pharmaceuticals, cosmetics, foods, feeds, etc. for human or non-human animals. Examples of the pharmaceutical dosage form include oral preparations such as tablets, capsules, granules, powders, syrups, dry syrups, liquids and suspensions; enteral preparations such as inhalants and suppositories; Injections; topical agents; transdermal, transmucosal, nasal agents; inhalants; patch agents and the like. Examples of the form of the cosmetic include any form that cosmetics can usually take such as cream, emulsion, lotion, suspension, gel, powder, pack, sheet, patch, stick, cake and the like.
 上記医薬品または化粧料は、EPA、またはその塩もしくはエステルを有効成分として含有する。上記医薬品または化粧料はまた、医薬として許容される担体または化粧料として許容される担体、例えば、賦形剤、崩壊剤、結合剤、滑沢剤、界面活性剤、pH調整剤、分散剤、乳化剤、防腐剤、酸化防止剤、着色剤、アルコール、水、水溶性高分子、香料、甘味料、矯味剤、酸味料等を含有していてもよく、さらに必要に応じて他の有効成分、例えば薬効成分、化粧成分等を含有していてもよい。上記医薬または化粧料は、EPA、またはその塩もしくはエステルに、上記担体や他の有効成分を剤型に応じて配合し、常法に従って調製することにより、製造することができる。上記医薬または化粧料におけるEPA、またはその塩もしくはエステルの含有量は、その剤型により異なるが、通常は、0.1~99質量%、好ましくは1~80質量%の範囲である。 The above pharmaceutical products or cosmetics contain EPA, or a salt or ester thereof as an active ingredient. The pharmaceutical or cosmetic is also a pharmaceutically acceptable carrier or a cosmetically acceptable carrier such as an excipient, a disintegrant, a binder, a lubricant, a surfactant, a pH adjuster, a dispersant, It may contain emulsifiers, preservatives, antioxidants, colorants, alcohol, water, water-soluble polymers, fragrances, sweeteners, corrigents, acidulants, and other active ingredients as necessary. For example, it may contain medicinal ingredients, cosmetic ingredients and the like. The said pharmaceutical or cosmetics can be manufactured by mix | blending the said carrier and another active ingredient with EPA, its salt, or ester according to a dosage form, and preparing according to a conventional method. The content of EPA, or a salt or ester thereof in the pharmaceutical or cosmetic composition varies depending on the dosage form, but is usually in the range of 0.1 to 99% by mass, preferably 1 to 80% by mass.
 上記飲食品または飼料は、EPA、またはその塩もしくはエステルを有効成分として含有する。これらの飲食品または飼料は、血小板凝集阻害作用、血中中性脂肪低下作用、抗動脈硬化作用、血液粘度低下作用、血圧降下作用、抗炎症作用、抗腫瘍作用等の効果を企図して、その旨を表示した健康食品、機能性飲食品、特定保健用飲食品、病者用飲食品、家畜、競走馬、鑑賞動物等のための飼料、ペットフード等であり得る。 The above-mentioned food and drink or feed contains EPA, or a salt or ester thereof as an active ingredient. These foods and drinks or feeds are intended to have effects such as platelet aggregation inhibitory action, blood neutral fat lowering action, anti-arteriosclerosis action, blood viscosity lowering action, blood pressure lowering action, anti-inflammatory action, antitumor action, etc. It may be a health food, a functional food / beverage product, a food / beverage product for specific health use, a food / beverage product for a sick person, a livestock, a racehorse, a feed for an appreciation animal, a pet food or the like.
 上記飲食品または飼料の形態は特に制限されず、EPA、またはその塩もしくはエステルを配合できる全ての形態が含まれる。例えば、当該飲食品の形態としては、固形、半固形または液状であり得、あるいは、錠剤、チュアブル錠、粉剤、カプセル、顆粒、ドリンク、ゲル、シロップ、経管経腸栄養用流動食等の各種形態が挙げられる。具体的な飲食品の形態の例としては、緑茶、ウーロン茶や紅茶等の茶飲料、コーヒー飲料、清涼飲料、ゼリー飲料、スポーツ飲料、乳飲料、炭酸飲料、果汁飲料、乳酸菌飲料、発酵乳飲料、粉末飲料、ココア飲料、アルコール飲料、精製水等の飲料、バター、ジャム、ふりかけ、マーガリン等のスプレッド類、マヨネーズ、ショートニング、カスタードクリーム、ドレッシング類、パン類、米飯類、麺類、パスタ、味噌汁、豆腐、牛乳、ヨーグルト、スープまたはソース類、菓子(例えばビスケットやクッキー類、チョコレート、キャンディ、ケーキ、アイスクリーム、チューインガム、タブレット)等が挙げられる。上記飼料は、飲食品とほぼ同様の組成や形態で利用できることから、本明細書における飲食品に関する記載は、飼料についても同様に当てはめることが出来る。 The form of the above food or drink or feed is not particularly limited, and includes all forms in which EPA, or a salt or ester thereof can be blended. For example, the form of the food or drink may be solid, semi-solid or liquid, or various types such as tablets, chewable tablets, powders, capsules, granules, drinks, gels, syrups, liquid foods for enteral nutrition A form is mentioned. Specific examples of the form of food and drink include tea drinks such as green tea, oolong tea and tea, coffee drinks, soft drinks, jelly drinks, sports drinks, milk drinks, carbonated drinks, fruit juice drinks, lactic acid bacteria drinks, fermented milk drinks, Powdered beverages, cocoa beverages, alcoholic beverages, beverages such as purified water, butter, jam, sprinkles, margarine spreads, mayonnaise, shortening, custard cream, dressings, breads, cooked rice, noodles, pasta, miso soup, tofu , Milk, yogurt, soups or sauces, confectionery (for example, biscuits and cookies, chocolate, candy, cake, ice cream, chewing gum, tablets). Since the said feed can be utilized with the composition and form substantially the same as food / beverage products, the description regarding the food / beverage products in this specification can be applied similarly about feed.
 上記飲食品または飼料は、EPA、またはその塩もしくはエステル、ならびに飲食品や飼料の製造に用いられる他の飲食品素材、各種栄養素、各種ビタミン、ミネラル、アミノ酸、各種油脂、種々の添加剤(たとえば呈味成分、甘味料、有機酸等の酸味料、界面活性剤、pH調整剤、安定剤、酸化防止剤、色素、フレーバー)等を配合して、常法に従って調製することにより製造することができる。あるいは、通常食されている飲食品または飼料にEPA、またはその塩もしくはエステルを配合することにより、本発明に係る飲食品または飼料を製造することができる。上記飲食品または飼料におけるEPAまたはその塩もしくはエステルの含有量は、食品の形態により異なるが、通常は、0.01~80質量%、好ましくは0.1~50質量%、より好ましくは1~30質量%の範囲である。 The above-mentioned food or drink or feed is EPA, or a salt or ester thereof, and other food or drink materials used in the production of food or drink or feed, various nutrients, various vitamins, minerals, amino acids, various oils and fats, various additives (for example, It can be produced by blending flavoring ingredients, sweeteners, acidulants such as organic acids, surfactants, pH adjusters, stabilizers, antioxidants, pigments, flavors, etc., and preparing them according to conventional methods. it can. Or the food / beverage products or feed based on this invention can be manufactured by mix | blending EPA, its salt, or ester with the food / beverage products or feed normally eaten. The content of EPA or a salt or ester thereof in the food or drink or feed varies depending on the form of the food, but is usually 0.01 to 80% by mass, preferably 0.1 to 50% by mass, more preferably 1 to It is in the range of 30% by mass.
 以下、実施例を用いて本発明をより詳細に説明するが、本発明の技術的範囲は以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the technical scope of the present invention is not limited to the following examples.
(試薬および培地)
 50μg/mLアンピシリンまたはカナマイシン含有LB寒天培地、Czapek-Dox寒天培地(3%スクロース、0.2%NaNO、0.1%KHPO、0.05%KCl、0.05%MgSO・7HO、0.001%FeSO・7HO、2%寒天、pH6.0)、GY培地(2%(w/v)グルコース、1%酵母エキス)、LB-Mg寒天培地(1%トリプトン、0.5%酵母エキス、85mM NaCl、0.5mM MgSO・7HO、0.5mM NaOH、1.5%寒天、pH7.0)、最少培地(MM)(10mM KHPO、10mM KHPO、2.5mM NaCl、2mM MgSO・7HO、0.7mM CaCl、9μM FeSO・7HO、4mM(NHSO、10mMグルコース、pH7.0)、誘導培地(IM)(MMに0.5%(w/v)グリセロール、200μMアセトシリンゴン、40mM 2-(N-モルホリノ)エタンスルホン酸(MES)を加えて、pH5.3に調製)、SC培地(5.0g Yeast Nitrogen Base w/o Amino Acids and Ammonium Sulfate(Difco)、1.7g(NHSO、20gグルコース、20g寒天、20mgアデニン、30mgチロシン、1.0mgメチオニン、2.0mgアルギニン、2.0mgヒスチジン、4.0mgリジン、4.0mgトリプトファン、5.0mgスレオニン、6.0mgイソロイシン、6.0mgロイシン、6.0mg/Lフェニルアラニン)、セフォタキシム、スペクチノマイシン、Nile blue A(Sigma)を使用した。制限酵素、ライゲーション用酵素等は、タカラバイオまたはNew England BioLabs製を使用した。
(Reagents and media)
LB agar medium containing 50 μg / mL ampicillin or kanamycin, Czapek-Dox agar medium (3% sucrose, 0.2% NaNO 3 , 0.1% KH 2 PO 4 , 0.05% KCl, 0.05% MgSO 4. 7H 2 O, 0.001% FeSO 4 · 7H 2 O, 2% agar, pH 6.0), GY medium (2% (w / v) glucose, 1% yeast extract), LB-Mg agar medium (1% Tryptone, 0.5% yeast extract, 85 mM NaCl, 0.5 mM MgSO 4 .7H 2 O, 0.5 mM NaOH, 1.5% agar, pH 7.0), minimal medium (MM) (10 mM K 2 HPO 4 , 10 mM KH 2 PO 4 , 2.5 mM NaCl, 2 mM MgSO 4 .7H 2 O, 0.7 mM CaCl 2 , 9 μM FeSO 4 .7H 2 O, 4 mM (NH 4 ) 2 SO 4 , 10 mM glucose, pH 7.0), induction medium (IM) (0.5% (w / v) glycerol in MM, 200 μM acetosyringone, 40 mM 2- (N-morpholino) ethanesulfonic acid (MES) ) And adjusted to pH 5.3), SC medium (5.0 g Yeast Nitrogen Base w / o Amino Acids and Ammonium Sulfate (Difco), 1.7 g (NH 4 ) 2 SO 4 , 20 g glucose, 20 g agar, 20 mg adenine, 30 mg tyrosine, 1.0 mg methionine, 2.0 mg arginine, 2.0 mg histidine, 4.0 mg lysine, 4.0 mg tryptophan, 5.0 mg threonine, 6.0 mg isoleucine, 6.0 mg leucine, 6.0 mg / L phenylalanine), Cef Otaxime, spectinomycin, Nile blue A (Sigma) was used. Restriction enzymes, ligation enzymes, and the like were used from Takara Bio or New England BioLabs.
(参考例1)Δ15不飽和化酵素遺伝子(DES2m;Trichoderma sp. AM076由来)のコドン至適化
 糸状菌トリコデルマ種(Trichoderma sp.AM076)由来のΔ15不飽和化酵素遺伝子(DES2m;配列番号1)のコドンを、M.alpinaのコドン使用頻度(www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=64518)を参考に至適化した。得られた遺伝子配列のCDS前後にSpeIおよびBamHIサイトを構築し、全合成を行った(Life Technologies社)。当該遺伝子の至適化および制限酵素切断部位構築後のヌクレオチド配列を配列番号2に示す。当該遺伝子は、SpMA-RQ(ampR)プラスミドにクローニングした。
(Reference Example 1) Codon optimization of Δ15 desaturase gene (DES2m; derived from Trichoderma sp. AM076) Δ15 desaturase gene (DES2m; SEQ ID NO: 1) derived from the filamentous fungus Trichoderma sp. (Trichoderma sp. AM076) Codons of M. Alpina codon usage frequency (www.kazusa.or.jp/codon/cgi-bin/showcodon.cgi?species=64518) was optimized. SpeI and BamHI sites were constructed before and after CDS of the obtained gene sequence, and total synthesis was performed (Life Technologies). The nucleotide sequence after optimization of the gene and construction of the restriction enzyme cleavage site is shown in SEQ ID NO: 2. The gene was cloned into the SpMA-RQ (ampR) plasmid.
(参考例2)Δ12不飽和化酵素遺伝子(CopΔ12m; Coprinus cinereus由来)のコドン至適化
 参考例1と同様に、コプリナス・シネレウス(Coprinus cinereus)由来のΔ12不飽和化酵素遺伝子(CopΔ12m;配列番号4)のコドンを、M.alpinaのコドン使用頻度に基づいて至適化し、得られた遺伝子配列のCDS前後にSpeIおよびBamHIサイトを構築し、全合成を行った(Life Technologies社)。当該遺伝子の至適化および制限酵素切断部位構築後のヌクレオチド配列を配列番号5に示す。当該遺伝子は、SpMA-RQ(ampR)プラスミドにクローニングした。
(Reference Example 2) Codon optimization of Δ12 desaturase gene (CopΔ12m; derived from Coprinus cinereus) Similar to Reference Example 1, Δ12 desaturase gene (CopΔ12m; SEQ ID NO: derived from Coprinus cinereus) 4) the codon of M. SpeI and BamHI sites were constructed before and after CDS of the resulting gene sequence based on the frequency of alpina codon usage, and total synthesis was performed (Life Technologies). The nucleotide sequence after optimization of the gene and construction of the restriction enzyme cleavage site is shown in SEQ ID NO: 5. The gene was cloned into the SpMA-RQ (ampR) plasmid.
(参考例3)Δ17不飽和化酵素遺伝子(Saprolegnia diclina由来)のコドン至適化
 参考例1と同様に、糸状菌サプロレグニア(Saprolegnia diclina)由来のΔ17不飽和化酵素遺伝子(Δ17m;配列番号7)のコドンを、M.alpinaのコドン使用頻度に基づいて至適化し、得られた遺伝子配列のCDS前後にSpeIおよびBamHIサイトを構築し、全合成を行った(Life Technologies社)。当該遺伝子の至適化および制限酵素切断部位構築後のヌクレオチド配列を配列番号8に示す。当該遺伝子は、SpMA-RQ(ampR)プラスミドにクローニングした。
(Reference Example 3) Codon optimization of Δ17 desaturase gene (derived from Saprolegnia diclina) Similar to Reference Example 1, Δ17 desaturase gene (Δ17m; SEQ ID NO: 7) derived from filamentous fungus Saproregnia (Saprolegnia diclina) Codons of M. SpeI and BamHI sites were constructed before and after CDS of the resulting gene sequence based on the frequency of alpina codon usage, and total synthesis was performed (Life Technologies). The nucleotide sequence after optimization of the gene and construction of the restriction enzyme cleavage site is shown in SEQ ID NO: 8. The gene was cloned into the SpMA-RQ (ampR) plasmid.
(参考例4~8)遺伝子導入用バイナリーベクターの構築
 参考例1~3で調製した各プラスミドを、SpeIおよびBamHI制限酵素で処理し、得られたΔ17不飽和化酵素遺伝子、Δ15不飽和化酵素遺伝子、およびΔ12不飽和化酵素遺伝子の断片を、恒常的高発現プロモーターであるPP3プロモーター(配列番号11)またはSSA2プロモーター(配列番号10)を含むプラスミドpBIG35(京都府立大学から提供されたpBIG2RHPH2を改変、Appl.Environ.Microbiol.,2009,vol.75,p.5529-5535に記載)に連結し、発現カセットを構築した。当該発現カセットを、さらに、ウラシル要求性のマーカー遺伝子(ura5)とタンデムに連結させ、形質転換用バイナリーベクター、pBIG35SSA2pΔ17m(Δ17不飽和化酵素遺伝子:参考例4)、pBIG35PP3pDES2m(Δ15不飽和化酵素遺伝子:参考例5)、pBIG35PP3pCopΔ12m(Δ12不飽和化酵素遺伝子:参考例6)、pBIG35PP3pCopΔ12mSSA2pΔ17m(Δ12不飽和化酵素遺伝子およびΔ17不飽和化酵素遺伝子:参考例7)、およびpBIG35PP3pCopΔ12mSSA2pDES2m(Δ12不飽和化酵素遺伝子およびΔ15不飽和化酵素遺伝子:参考例8)を構築した。図2~6に参考例4~8の各ベクターの構造をそれぞれ示す。
(Reference Examples 4 to 8) Construction of Binary Vector for Gene Introduction Each plasmid prepared in Reference Examples 1 to 3 was treated with SpeI and BamHI restriction enzymes, and the obtained Δ17 desaturase gene and Δ15 desaturase The gene and a fragment of the Δ12 desaturase gene were modified from a plasmid pBIG35 (a pBIG2RHPH2 provided by Kyoto Prefectural University) containing the PP3 promoter (SEQ ID NO: 11) or SSA2 promoter (SEQ ID NO: 10), which are constitutively high expression promoters. Appl. Environ. Microbiol., 2009, vol. 75, p. 5529-5535) to construct an expression cassette. The expression cassette is further ligated to uracil-required marker gene (ura5) and tandem, and a binary vector for transformation, pBIG35SSA2pΔ17m (Δ17 desaturase gene: Reference Example 4), pBIG35PP3pDES2m (Δ15 desaturase gene) : Reference Example 5), pBIG35PP3pCopΔ12m (Δ12 desaturase gene: Reference Example 6), pBIG35PP3pCopΔ12mSSA2pΔ17m (Δ12 desaturase gene and Δ17 desaturase gene: Reference Example 7), and pBIG35PP3pCopΔ12mSSA2pDES2 gene (Δ12 desaturated enzyme) And Δ15 desaturase gene: Reference Example 8) was constructed. 2 to 6 show the structures of the vectors of Reference Examples 4 to 8, respectively.
(製造例1)Δ17不飽和化酵素遺伝子導入株の作製
 安藤らの報告に基づき(Appl.Environ.Microbiol.,2009,vol.75,p.5529-5535)、参考例4のΔ17不飽和化酵素遺伝子導入用バイナリーベクターpBIG35SSA2pΔ17mを、アグロバクテリウムを介したATMT法でホスト株であるM.alpina 1S-4(ウラシル要求性株)に以下の手順で導入した。
(1)M.alpina 1S-4株(ウラシル要求性株)を0.05mg/mLウラシル含有Czapek-Dox寒天培地で培養して得た培養物を集菌し、Miracloth(Calbiochem)でろ過することで、M.alpinaの胞子懸濁液を新たに調製した。
(2)アグロバクテリウム(Agrobacterium tumefaciens C58C1、京都府立大学から提供)に、参考例4で作製したΔ17不飽和化酵素遺伝子導入用バイナリーベクターをエレクトロポレーションで形質転換し、LB-Mg寒天培地上で28℃、48時間培養した。PCR法で当該ベクターを含むアグロバクテリウムを確認した。当該ベクターを有するアグロバクテリウムを最小培地(MM)で2日間培養し、5,800×gで遠心分離し、新鮮なIMを加えて懸濁液を調製した。当該懸濁液を、8~12時間、28℃でOD660が0.4から3.7になるまでロータリーシェーカーで誘導培養した。
(3)上記アグロバクテリウムの菌懸濁液100μLを、等量の上記M.alpina懸濁液(10mL-1)と混合し、ニトロセルロース膜(直径70mm;hardened low-ash grade 50、Whatman)を載せた共培養培地(IMと同様の組成、ただし、10mMグルコースの代わりに5mMグルコースおよび1.5%寒天を含む)上に塗布し、23℃で2~5日間培養した。共培養後、当該膜をウラシルフリー、50g/mLセフォタキシムおよび50g/mLスペクチノマイシン、0.03%Nile blue A(Sigma)を含むSC寒天培地に移し、28℃で5日間培養した。可視可能な真菌コロニーからの菌糸を、新鮮なウラシルフリーSC培地に移した。ウラシルフリーSC寒天培地で増殖することができるが、5-フルオロオロチン酸(5-FOA)を含むGY寒天培地では増殖できない菌体を、形質を安定して保持するΔ17不飽和化酵素遺伝子導入株と判断した。形質を安定して保持する形質転換体を選抜するために当該作業を3回行った。
(Production Example 1) Preparation of Δ17 desaturase gene-introduced strain Based on the report by Ando et al. (Appl. Environ. Microbiol., 2009, vol. 75, p. 5529-5535), Δ17 desaturation of Reference Example 4 The binary vector pBIG35SSA2pΔ17m for introducing an enzyme gene was transformed into the host strain M.I. by the ATMT method via Agrobacterium. It was introduced into alpina 1S-4 (uracil auxotrophic strain) by the following procedure.
(1) M.M. A culture obtained by culturing alpina 1S-4 strain (uracil auxotrophic strain) on Czapek-Dox agar medium containing 0.05 mg / mL uracil is collected and filtered with Miracloth (Calbiochem). A spore suspension of alpina was freshly prepared.
(2) Agrobacterium (Agrobacterium tumefaciens C58C1, provided by Kyoto Prefectural University) was transformed with the binary vector for Δ17 desaturase gene introduction prepared in Reference Example 4 by electroporation, and then on LB-Mg agar medium. And incubated at 28 ° C. for 48 hours. Agrobacterium containing the vector was confirmed by PCR. Agrobacterium containing the vector was cultured in minimal medium (MM) for 2 days, centrifuged at 5,800 × g, and fresh IM was added to prepare a suspension. The suspension was induction-cultured on a rotary shaker for 8-12 hours at 28 ° C. until the OD 660 was 0.4 to 3.7.
(3) 100 μL of the above Agrobacterium suspension was added to an equal amount of the above M.I. Alpina suspension (10 8 mL −1 ) and mixed with a nitrocellulose membrane (70 mm diameter; hardened low-ash grade 50, Whatman) (same composition as IM, except for 10 mM glucose) (Containing 5 mM glucose and 1.5% agar), and cultured at 23 ° C. for 2 to 5 days. After co-culture, the membrane was transferred to an SC agar medium containing uracil-free, 50 g / mL cefotaxime and 50 g / mL spectinomycin, 0.03% Nile blue A (Sigma), and cultured at 28 ° C. for 5 days. Mycelia from visible fungal colonies were transferred to fresh uracil-free SC medium. A Δ17 desaturase gene-introduced strain that stably grows cells that can grow on a uracil-free SC agar medium but cannot grow on a GY agar medium containing 5-fluoroorotic acid (5-FOA) It was judged. This operation was performed three times in order to select transformants that stably maintain the character.
(製造例2)Δ15不飽和化酵素遺伝子導入株の作製
 参考例5のΔ15不飽和化酵素遺伝子導入用バイナリーベクターpBIG35PP3pDES2mを用いた以外は、製造例1と同様の手順で、Δ15不飽和化酵素遺伝子導入株を調製した。
(Production Example 2) Preparation of Δ15 desaturase gene-introduced strain Δ15 desaturase in the same procedure as in Production Example 1 except that the binary vector pBIG35PP3pDES2m for reference gene Δ15 in Reference Example 5 was used. A transgenic strain was prepared.
(製造例3)Δ12不飽和化酵素遺伝子導入株の作製
 参考例6のΔ12不飽和化酵素遺伝子導入用バイナリーベクターpBIG35PP3pCopΔ12mを用いた以外は、製造例1と同様の手順で、Δ12不飽和化酵素遺伝子導入株を調製した。
(Production Example 3) Preparation of Δ12 desaturase gene-introduced strain Δ12 desaturase in the same procedure as in Production Example 1 except that the binary vector pBIG35PP3pCopΔ12m for Δ12 desaturase gene introduction in Reference Example 6 was used. A transgenic strain was prepared.
(製造例4)Δ12,Δ17不飽和化酵素遺伝子導入株の作製
 参考例7のΔ12不飽和化酵素遺伝子およびΔ17不飽和化酵素遺伝子導入用バイナリーベクターpBIG35PP3pCopΔ12mSSA2pΔ17mを用いた以外は、製造例1と同様の手順で、Δ12不飽和化酵素遺伝子およびΔ17不飽和化酵素遺伝子導入株を調製した。
(Production Example 4) Preparation of Δ12, Δ17 desaturase gene-introduced strain Same as Production Example 1 except that the Δ12 desaturase gene of Reference Example 7 and the binary vector pBIG35PP3pCopΔ12mSSA2pΔ17m for introduction of Δ17 desaturase gene were used. The Δ12 desaturase gene and Δ17 desaturase gene-introduced strains were prepared by the above procedure.
(製造例5)Δ12,Δ15不飽和化酵素遺伝子導入株の作製
 参考例8のΔ12不飽和化酵素遺伝子およびΔ15不飽和化酵素遺伝子導入用バイナリーベクターpBIG35PP3pCopΔ12mSSA2pDES2mを用いた以外は、製造例1と同様の手順で、Δ12不飽和化酵素遺伝子およびΔ15不飽和化酵素遺伝子導入株を調製した。
(Production Example 5) Preparation of Δ12, Δ15 desaturase gene-introduced strain Same as Production Example 1 except that the Δ12 desaturase gene of Reference Example 8 and the binary vector pBIG35PP3pCopΔ12mSSA2pDES2m for Δ15 desaturase gene introduction were used. The Δ12 desaturase gene and Δ15 desaturase gene-introduced strains were prepared by the above procedure.
 製造例1~5で作製した変異株を以下にまとめる。 The mutant strains produced in Production Examples 1 to 5 are summarized below.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
(試験例1)遺伝子導入株における脂肪酸組成および生産量
 製造例1~5で得られた変異株を、それぞれ10mL GY培地中(2%グルコース、1%酵母エキス)、28℃で1週間、300rpmで好気的に培養した。それぞれの培養液から、吸引ろ過にて遺伝子導入M.alpina菌体を回収し、120℃で3時間乾燥した。乾燥菌体に、0.5mg/mLの濃度にて内部標準(M.alpinaが生合成できない炭素数23の飽和脂肪酸)を含むジクロロメタン溶液1mL、塩酸メタノール2mLを加え、55℃、2時間の温浴にて脂肪酸のメチルエステル化処理を行った。その後、蒸留水1mLとヘキサン4mLを加え、ヘキサン層を抽出し、減圧遠心して脂肪酸メチルエステルを回収した。それぞれのサンプルをクロロホルムに溶解し、ガス液体クロマトグラフィー(GLC)にてサンプル中の脂肪酸組成を測定した。GLCは、島津社製GC-2010を用い、GLサイエンス社製キャピラリーカラムTC70(0.25mm×60m)を用い、カラム温度180℃、気化室温度250℃、検出器温度250℃、キャリアガスHe、メイクアップガスN、H流量40mL/min、Air流量400mL/min、スプリット比50、分析時間30minの条件にて行った。抽出された脂肪酸量を、GLCのチャートのピーク面積値から、内部標準の脂肪酸量を基準として定量した。
(Test Example 1) Fatty acid composition and production amount in transgenic strains The mutant strains obtained in Production Examples 1 to 5 were each in 10 mL GY medium (2% glucose, 1% yeast extract) at 28 ° C for 1 week at 300 rpm. Aerobically cultured. From each culture solution, gene transfer was performed by suction filtration. Alpina cells were collected and dried at 120 ° C. for 3 hours. Add 1 mL of a dichloromethane solution containing an internal standard (saturated fatty acid having 23 carbon atoms that M. alpina cannot biosynthesize) at a concentration of 0.5 mg / mL to dry cells, and 2 mL of methanolic hydrochloric acid, and warm bath at 55 ° C. for 2 hours The fatty acid was methyl esterified. Thereafter, 1 mL of distilled water and 4 mL of hexane were added, and the hexane layer was extracted and centrifuged under reduced pressure to recover the fatty acid methyl ester. Each sample was dissolved in chloroform, and the fatty acid composition in the sample was measured by gas liquid chromatography (GLC). GLC uses Shimadzu GC-2010, GL Sciences capillary column TC70 (0.25 mm × 60 m), column temperature 180 ° C., vaporization chamber temperature 250 ° C., detector temperature 250 ° C., carrier gas He, makeup It was performed under the conditions of upgas N 2 , H 2 flow rate 40 mL / min, Air flow rate 400 mL / min, split ratio 50, and analysis time 30 min. The amount of extracted fatty acid was quantified based on the amount of fatty acid of the internal standard from the peak area value of the GLC chart.
 その結果、製造例1のΔ17不飽和化酵素遺伝子導入株では、アラキドン酸蓄積の低減と、総脂肪酸あたり47%のエイコサペンタエン酸(EPA)の蓄積がみられた。製造例2のΔ15不飽和化酵素遺伝子導入株でも、アラキドン酸蓄積の低減と、総脂肪酸あたり48%のEPAの蓄積がみられた。一方、製造例3のΔ12不飽和化酵素遺伝子導入株は、オレイン酸の低減、アラキドン酸の蓄積向上がみられたものの、EPAの蓄積は向上しなかった。製造例4のΔ12不飽和化酵素とΔ17不飽和化酵素の遺伝子の導入株では、アラキドン酸の低減に加え、オレイン酸の低減がみられ、かつ総脂肪酸あたり50%以上のEPAの蓄積がみられた。また、製造例5のΔ12不飽和化酵素とΔ15不飽和化酵素の遺伝子の導入株においても、オレイン酸の低減とアラキドン酸の低減、かつ総脂肪酸あたり40%以上のEPAの蓄積がみられた。 As a result, the Δ17 desaturase gene-introduced strain of Production Example 1 showed reduced arachidonic acid accumulation and 47% eicosapentaenoic acid (EPA) accumulation per total fatty acid. In the Δ15 desaturase gene-introduced strain of Production Example 2, arachidonic acid accumulation was reduced and 48% of EPA was accumulated per total fatty acid. On the other hand, in the Δ12 desaturase gene-introduced strain of Production Example 3, although oleic acid reduction and arachidonic acid accumulation improvement were observed, EPA accumulation did not improve. In the strain introduced with the gene for Δ12 desaturase and Δ17 desaturase in Production Example 4, in addition to the reduction of arachidonic acid, a decrease in oleic acid was observed, and an accumulation of EPA of 50% or more per total fatty acid was observed. It was. In addition, in the strain introduced with the gene for Δ12 desaturase and Δ15 desaturase in Production Example 5, oleic acid and arachidonic acid were reduced, and more than 40% of EPA was accumulated per total fatty acid. .
(試験例2)不飽和化酵素遺伝子導入株における脂肪酸組成および生産量の経時変化
(Δ17不飽和化酵素遺伝子導入株)
 製造例1で得られたΔ17不飽和化酵素遺伝子導入M.alpina変異株(#1、#2、#4、#6、#9、#19、#21および#24)について、4mL GY培地中(2%グルコース、1%酵母エキス)、28℃で3、7、10、14日間、120rpmで好気的に培養し、試験例1と同様の手順で菌体中の脂肪酸の組成および生成量を経時的に分析した。結果を図7に示す。野生株(M.alpina 1S-4)やコントロール株(ウラシル要求株にマーカー遺伝子のみを含むベクターを挿入した株)、ホスト株(ウラシル要求株)は、この培養条件ではEPAを全く生産しなかったが、Δ17不飽和化酵素遺伝子導入株は、いずれもEPA生産量が向上し、アラキドン酸が低減していた。総脂肪酸中のEPAの割合は培養10日目でほぼ最大に達しており、培養14日目では、最大で総脂肪酸あたり47%(0.9mg/mL)のEPAが生産され、一方アラキドン酸の蓄積は2%に低減した(株#9)。また、脂肪酸生産量は培養10日目には、多くの遺伝子導入株において、コントロール株よりも多くの脂肪酸を生産していた。このことから、Δ17不飽和化酵素遺伝子導入株では、EPAが効率よく生産されていると考えられた。
(Test Example 2) Fatty acid composition and production change over time in the desaturase gene-introduced strain (Δ17 desaturase gene-introduced strain)
Δ17 desaturase gene introduced M. obtained in Production Example 1 alpina mutant strains (# 1, # 2, # 4, # 6, # 9, # 19, # 21 and # 24) in 4 mL GY medium (2% glucose, 1% yeast extract), 3 at 28 ° C., The aerobic culture was performed at 120 rpm for 7, 10, 14 days, and the composition and production amount of fatty acids in the cells were analyzed over time by the same procedure as in Test Example 1. The results are shown in FIG. Wild strains (M. alpina 1S-4), control strains (strains in which a vector containing only a marker gene was inserted into a uracil-requiring strain), and host strains (uracil-requiring strains) did not produce EPA under these culture conditions. However, all the Δ17 desaturase gene-introduced strains had improved EPA production and reduced arachidonic acid. The percentage of EPA in total fatty acids reached a maximum at about 10 days in culture, and up to 47% (0.9 mg / mL) of EPA per total fatty acid was produced on day 14 of culture, while arachidonic acid Accumulation was reduced to 2% (strain # 9). In addition, the amount of fatty acid produced on the 10th day of culture produced more fatty acids than many control strains in many transgenic strains. From this, it was considered that EPA was efficiently produced in the Δ17 desaturase gene-introduced strain.
(Δ15不飽和化酵素遺伝子導入株)
 製造例2で得られたΔ15不飽和化酵素遺伝子導入M.alpina変異株(#2、#3、#9、#13、#14、および#20)について、4mL GY培地中(2%グルコース、1%酵母エキス)、28℃で3、7、10、14日間、120rpmで好気的に培養し、試験例1と同様の手順で菌体中の脂肪酸の組成および生成量を経時的に分析した。結果を図8に示す。Δ15不飽和化酵素遺伝子導入株は、いずれもコントロール株(ウラシル要求株にマーカー遺伝子のみを含むベクターを挿入した株)に比べてEPA生産量が向上し、アラキドン酸が低減していた。総脂肪酸中のEPAの割合は培養14日目でほぼ最大であり、培養14日間では、最大で総脂肪酸あたり48%(0.6mg/mL)のEPAが生産され、一方アラキドン酸の蓄積は6%に低減した(株#20)。また、脂肪酸生産量は培養7日目には、多くの遺伝子導入株において、コントロール株よりも多くの脂肪酸を生産していた。このことから、Δ15不飽和化酵素遺伝子導入株では、EPAが効率よく生産されていると考えられた。
(Δ15 desaturase gene introduced strain)
Δ15 desaturase gene-introduced M. coli obtained in Production Example 2 alpina mutants (# 2, # 3, # 9, # 13, # 14, and # 20) in 4 mL GY medium (2% glucose, 1% yeast extract), 3, 7, 10, 14 at 28 ° C. The cells were aerobically cultured at 120 rpm for one day, and the composition and production amount of fatty acids in the cells were analyzed over time by the same procedure as in Test Example 1. The results are shown in FIG. The Δ15 desaturase gene-introduced strains all had improved EPA production and reduced arachidonic acid compared to the control strain (a strain in which a vector containing only the marker gene was inserted into the uracil-requiring strain). The proportion of EPA in total fatty acids is almost maximal on the 14th day of culture, and up to 48% (0.6 mg / mL) of EPA per total fatty acid is produced in 14 days of culture, while the accumulation of arachidonic acid is 6%. % (Strain # 20). Moreover, as for the amount of fatty acid produced, on the seventh day of culture, many gene-introduced strains produced more fatty acids than the control strains. From this, it was considered that EPA was efficiently produced in the Δ15 desaturase gene-introduced strain.
(Δ12不飽和化酵素遺伝子導入株)
 製造例3で得られたΔ12不飽和化酵素遺伝子導入M.alpina変異株(#1、#2、#7、#22、#23、および#24)について、4mL GY培地中(2%グルコース、1%酵母エキス)、28℃で3、7、10、14日間、120rpmで好気的に培養し、試験例1と同様の手順で菌体中の脂肪酸の組成および生成量を経時的に分析した。結果を図9に示す。Δ12不飽和化酵素遺伝子導入株では、コントロール株(ウラシル要求株にマーカー遺伝子のみを含むベクターを挿入した株)やホスト株(ウラシル要求株)に比べてEPA生産量はほとんど向上しなかったが、脂質生産量や全脂肪酸組成中のアラキドン酸の割合が増加し、一方で、コントロール株では蓄積していたオレイン酸の量が低減した。例えば、株#7では、ホスト株に比べ脂質生産量が10%以上向上し、さらに全脂肪酸組成中のアラキドン酸の割合が、コントロール株に比べ培養7日目には15%、培養10日目には20%以上(総脂肪酸中53%)に向上した。一方で、オレイン酸量は、培養7日目で野生株が30%、コントロール株が12%であったのに対し、Δ12不飽和化酵素遺伝子導入株では培養7日目で6%以下、さらに培養10、14日目には2%に低減した。
(Δ12 desaturase gene-introduced strain)
Δ12 desaturase gene-introduced M. obtained in Production Example 3 alpina mutants (# 1, # 2, # 7, # 22, # 23, and # 24) in 4 mL GY medium (2% glucose, 1% yeast extract), 3, 7, 10, 14 at 28 ° C. The cells were aerobically cultured at 120 rpm for one day, and the composition and production amount of fatty acids in the cells were analyzed over time by the same procedure as in Test Example 1. The results are shown in FIG. In the Δ12 desaturase gene-introduced strain, the EPA production amount was hardly improved compared to the control strain (a strain in which a vector containing only the marker gene was inserted into the uracil-requiring strain) and the host strain (uracil-requiring strain). Lipid production and the proportion of arachidonic acid in the total fatty acid composition increased, while the amount of oleic acid accumulated in the control strain decreased. For example, in the strain # 7, the lipid production increased by 10% or more compared to the host strain, and the ratio of arachidonic acid in the total fatty acid composition was 15% on the 7th day of culture and 10th day of the culture compared to the control strain. Improved to 20% or more (53% of total fatty acids). On the other hand, the amount of oleic acid was 30% in the wild strain and 12% in the control strain on the 7th day of culture, whereas it was 6% or less on the 7th day of culture in the Δ12 desaturase gene-introduced strain. It decreased to 2% on the 10th and 14th days of culture.
(Δ17,Δ12不飽和化酵素遺伝子導入株)
 製造例4で得られたΔ12,Δ17不飽和化酵素遺伝子導入M.alpina変異株(#6、#11、#16、#17、#21、#23、#25、#27、#33、#37、#40、#45、#46、および#48)について、4mL GY培地中(2%グルコース、1%酵母エキス)、28℃で4、10、14日間、120rpmで好気的に培養し、試験例1と同様の手順で菌体中の脂肪酸の組成および生成量を経時的に分析した。結果を図10に示す。Δ12不飽和化酵素遺伝子とΔ17不飽和化酵素遺伝子を導入した株では、いずれもコントロール株(ウラシル要求株にマーカー遺伝子のみを含むベクターを挿入した株)に比べてEPA生産量が向上するとともに、アラキドン酸とオレイン酸のいずれもが低減しており、EPAが効率よく生産されていると考えられた。培養14日では、最大で総脂肪酸あたり51%(0.3mg/mL)のEPAを生産し、アラキドン酸の蓄積が2.5%、オレイン酸の蓄積が4%に低減した(株#17)。
(Δ17, Δ12 desaturase gene-introduced strain)
Δ12, Δ17 desaturase gene introduced M.M. obtained in Production Example 4 4 mL for alpina mutant strains (# 6, # 11, # 16, # 17, # 21, # 23, # 25, # 27, # 33, # 37, # 40, # 45, # 46, and # 48) Composition and production of fatty acids in the cells in the same manner as in Test Example 1 after culturing aerobically at 120 rpm for 4, 10, 14 days at 28 ° C in GY medium (2% glucose, 1% yeast extract) The amount was analyzed over time. The results are shown in FIG. In the strains into which the Δ12 desaturase gene and the Δ17 desaturase gene were introduced, both EPA production was improved compared to the control strain (a strain in which a vector containing only the marker gene was inserted into the uracil-requiring strain), Both arachidonic acid and oleic acid were reduced, and it was considered that EPA was produced efficiently. On the 14th day of cultivation, EPA was produced up to 51% (0.3 mg / mL) per total fatty acid, and arachidonic acid accumulation was reduced to 2.5% and oleic acid accumulation to 4% (strain # 17). .
(Δ15,Δ12不飽和化酵素遺伝子導入株)
 製造例5で得られたΔ12,Δ15不飽和化酵素遺伝子導入M.alpina変異株(#4、#7、#8、#11、および#16)について、4mL GY培地中(2%グルコース、1%酵母エキス)、28℃で4、10、14日間、120rpmで好気的に培養し、試験例1と同様の手順で菌体中の脂肪酸の組成および生成量を経時的に分析した。結果を図11に示す。Δ12不飽和化酵素遺伝子とΔ15不飽和化酵素遺伝子を導入した株では、いずれもコントロール株(ウラシル要求株にマーカー遺伝子のみを含むベクターを挿入した株)に比べEPA生産量が向上するとともに、アラキドン酸とオレイン酸のいずれもが低減しており、EPAが効率よく生産されていると考えられた。培養14日では、最大で総脂肪酸あたり43%(0.13mg/mL)のEPAを生産し、アラキドン酸の蓄積が12%、オレイン酸の蓄積が5%に低減した(株#7)。
(Δ15, Δ12 desaturase gene-introduced strain)
Δ12, Δ15 desaturase gene introduced M.M. obtained in Production Example 5 Alpina mutant strains (# 4, # 7, # 8, # 11, and # 16) were favored in 120 mL for 4-10, 14 days at 28 ° C. in 4 mL GY medium (2% glucose, 1% yeast extract). The culture was carried out and the composition and production amount of fatty acids in the cells were analyzed over time in the same procedure as in Test Example 1. The results are shown in FIG. In the strains into which the Δ12 desaturase gene and Δ15 desaturase gene were introduced, both the EPA production amount was improved and arachidone was improved compared to the control strain (a strain in which a vector containing only the marker gene was inserted into the uracil-requiring strain). Both acid and oleic acid were reduced, and it was considered that EPA was produced efficiently. On the 14th day of cultivation, a maximum of 43% (0.13 mg / mL) EPA was produced per total fatty acid, and the accumulation of arachidonic acid was reduced to 12% and the accumulation of oleic acid to 5% (strain # 7).

Claims (22)

  1.  変異微生物の製造方法であって、
     ω6高度不飽和脂肪酸代謝経路を有する親微生物に、外来のΔ15不飽和化酵素遺伝子を導入することを含み、
     該変異微生物は、20℃以上の条件下で10日間培養後において、脂肪酸組成中にエイコサペンタエン酸を20質量%以上含有する、
    方法。
    A method for producing a mutant microorganism, comprising:
    introducing a foreign Δ15 desaturase gene into a parental microorganism having an ω6 polyunsaturated fatty acid metabolic pathway,
    The mutant microorganism contains eicosapentaenoic acid in an amount of 20% by mass or more in the fatty acid composition after culturing at 20 ° C. or more for 10 days.
    Method.
  2.  変異微生物の製造方法であって、
     ω6高度不飽和脂肪酸代謝経路を有する親微生物に、外来のΔ12不飽和化酵素遺伝子と、外来のΔ15不飽和化酵素遺伝子および外来のΔ17不飽和化酵素遺伝子のいずれか1以上とを導入することを含み、
     該変異微生物は、20℃以上の条件下で10日間培養後において、脂肪酸組成中にエイコサペンタエン酸を20質量%以上含有する、
    方法。
    A method for producing a mutant microorganism, comprising:
    Introducing an exogenous Δ12 desaturase gene and any one or more of an exogenous Δ15 desaturase gene and an exogenous Δ17 desaturase gene into a parental microorganism having a ω6 polyunsaturated fatty acid metabolic pathway Including
    The mutant microorganism contains eicosapentaenoic acid in an amount of 20% by mass or more in the fatty acid composition after culturing at 20 ° C. or more for 10 days.
    Method.
  3.  親微生物がモルティエレラ(Mortierella)属微生物である、請求項1または2記載の方法。 The method according to claim 1 or 2, wherein the parent microorganism is a microorganism belonging to the genus Mortierella.
  4.  親微生物がモルティエレラ・アルピナ(Mortierella alpina)である、請求項1~3のいずれか1項記載の方法。 The method according to any one of claims 1 to 3, wherein the parental microorganism is Mortierella alpina.
  5.  Δ15不飽和化酵素遺伝子が、トリコデルマ・エスピー(Trichoderma sp.)AM076に由来する、請求項1~4のいずれか1項記載の方法。 The method according to any one of claims 1 to 4, wherein the Δ15 desaturase gene is derived from Trichoderma sp. AM076.
  6.  Δ15不飽和化酵素遺伝子が以下のタンパク質をコードする遺伝子である、請求項1~4のいずれか1項記載の方法:
    (a)配列番号3に示されるアミノ酸配列からなるタンパク質;
    (b)配列番号3に示されるアミノ酸配列において、1個または複数個のアミノ酸の欠失、置換、挿入および付加から選択される変異を施されたアミノ酸配列からなり、かつΔ15不飽和化酵素活性を有するタンパク質;
    (c)配列番号3で示されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなり、かつΔ15不飽和化酵素活性を有するタンパク質;
    (d)配列番号2のヌクレオチド番号53~1225に示されるヌクレオチド配列の相補鎖配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチドにコードされ、かつΔ15不飽和化酵素活性を有するタンパク質;あるいは、
    (e)配列番号2のヌクレオチド番号53~1225で示されるヌクレオチド配列と80%以上の同一性を有するヌクレオチド配列からなるポリヌクレオチドにコードされ、かつΔ15不飽和化素活性を有するタンパク質。
    The method according to any one of claims 1 to 4, wherein the Δ15 desaturase gene is a gene encoding the following protein:
    (A) a protein comprising the amino acid sequence represented by SEQ ID NO: 3;
    (B) an amino acid sequence represented by SEQ ID NO: 3, comprising an amino acid sequence subjected to mutation selected from deletion, substitution, insertion and addition of one or more amino acids, and Δ15 desaturase activity A protein having
    (C) a protein comprising an amino acid sequence having 90% or more identity with the amino acid sequence represented by SEQ ID NO: 3 and having Δ15 desaturase activity;
    (D) encoded by a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising a complementary strand sequence of the nucleotide sequence shown in nucleotide numbers 53 to 1225 of SEQ ID NO: 2 and has Δ15 desaturase activity Protein; or
    (E) a protein encoded by a polynucleotide comprising a nucleotide sequence having 80% or more identity with the nucleotide sequence represented by nucleotide numbers 53 to 1225 of SEQ ID NO: 2 and having Δ15 desaturase activity.
  7.  Δ12不飽和化酵素遺伝子が、コプリナス・シネレウス(Coprinus cinereus)に由来する、請求項2~6のいずれか1項記載の方法。 The method according to any one of claims 2 to 6, wherein the Δ12 desaturase gene is derived from Coprinus cinereus.
  8.  Δ12不飽和化酵素遺伝子が以下のタンパク質をコードする遺伝子である、請求項2~6のいずれか1項記載の方法:
    (a')配列番号6に示されるアミノ酸配列からなるタンパク質;
    (b')配列番号6に示されるアミノ酸配列において、1個または複数個のアミノ酸の欠失、置換、挿入および付加から選択される変異を施されたアミノ酸配列からなり、かつΔ12不飽和化酵素活性を有するタンパク質;
    (c')配列番号6で示されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなり、かつΔ12不飽和化酵素活性を有するタンパク質;
    (d')配列番号5のヌクレオチド番号52~1377に示されるヌクレオチド配列の相補鎖配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチドにコードされ、かつΔ12不飽和化酵素活性を有するタンパク質;あるいは、
    (e')配列番号5のヌクレオチド番号52~1377で示されるヌクレオチド配列と80%以上の同一性を有するヌクレオチド配列からなるポリヌクレオチドにコードされ、かつΔ12不飽和化素活性を有するタンパク質。
    The method according to any one of claims 2 to 6, wherein the Δ12 desaturase gene is a gene encoding the following protein:
    (A ′) a protein consisting of the amino acid sequence shown in SEQ ID NO: 6;
    (B ′) an amino acid sequence represented by SEQ ID NO: 6, comprising an amino acid sequence subjected to mutation selected from deletion, substitution, insertion and addition of one or more amino acids, and Δ12 desaturase An active protein;
    (C ′) a protein comprising an amino acid sequence having 90% or more identity with the amino acid sequence represented by SEQ ID NO: 6 and having Δ12 desaturase activity;
    (D ′) encoded by a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising a complementary strand sequence of the nucleotide sequence shown in nucleotide numbers 52 to 1377 of SEQ ID NO: 5, and has Δ12 desaturase activity A protein having; or
    (E ′) a protein encoded by a polynucleotide comprising a nucleotide sequence having 80% or more identity with the nucleotide sequence represented by nucleotide numbers 52 to 1377 of SEQ ID NO: 5 and having Δ12 desaturase activity.
  9.  Δ17不飽和化酵素遺伝子が、サプロレグニア・ディクリナ(Saprolegnia diclina)に由来する、請求項2~8のいずれか1項記載の方法。 The method according to any one of claims 2 to 8, wherein the Δ17 desaturase gene is derived from Saprolegnia diclina.
  10.  Δ17不飽和化酵素遺伝子が下のタンパク質をコードする遺伝子である、請求項2~8のいずれか1項記載の方法:
    (a'')配列番号9に示されるアミノ酸配列からなるタンパク質;
    (b'')配列番号9に示されるアミノ酸配列において、1個または複数個のアミノ酸の欠失、置換、挿入および付加から選択される変異を施されたアミノ酸配列からなり、かつΔ17不飽和化酵素活性を有するタンパク質;
    (c'')配列番号9で示されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなり、かつΔ17不飽和化酵素活性を有するタンパク質;
    (d'')配列番号8のヌクレオチド番号100~1176に示されるヌクレオチド配列の相補鎖配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチドにコードされ、かつΔ17不飽和化酵素活性を有するタンパク質;あるいは、
    (e'')配列番号8のヌクレオチド番号100~1176で示されるヌクレオチド配列と80%以上の同一性を有するヌクレオチド配列からなるポリヌクレオチドにコードされ、かつΔ17不飽和化素活性を有するタンパク質。
    The method according to any one of claims 2 to 8, wherein the Δ17 desaturase gene is a gene encoding the lower protein:
    (A ″) a protein consisting of the amino acid sequence represented by SEQ ID NO: 9;
    (B ″) an amino acid sequence represented by SEQ ID NO: 9, comprising an amino acid sequence subjected to mutation selected from deletion, substitution, insertion and addition of one or more amino acids, and Δ17 desaturation A protein having enzymatic activity;
    (C ″) a protein comprising an amino acid sequence having 90% or more identity with the amino acid sequence represented by SEQ ID NO: 9 and having Δ17 desaturase activity;
    (D ″) a Δ17 desaturase activity encoded by a polynucleotide that hybridizes under stringent conditions with a polynucleotide consisting of a complementary strand of the nucleotide sequence shown in nucleotide numbers 100 to 1176 of SEQ ID NO: 8 Or a protein having
    (E ″) a protein encoded by a polynucleotide comprising a nucleotide sequence having at least 80% identity to the nucleotide sequence represented by nucleotide numbers 100 to 1176 of SEQ ID NO: 8 and having Δ17 desaturase activity.
  11.  ω6高度不飽和脂肪酸代謝経路を有する親微生物に外来のΔ15不飽和化酵素遺伝子が導入された変異微生物であって、20℃以上の条件下で10日間培養後における脂肪酸組成中のエイコサペンタエン酸含量が20質量%以上である、変異微生物。 Eicosapentaenoic acid content in fatty acid composition after culturing for 10 days at 20 ° C or higher under the condition that a foreign Δ15 desaturase gene is introduced into a parental microorganism having ω6 polyunsaturated fatty acid metabolic pathway A mutant microorganism having a mass of 20% by mass or more.
  12.  ω6高度不飽和脂肪酸代謝経路を有する親微生物に、外来のΔ12不飽和化酵素遺伝子と、外来のΔ15不飽和化酵素遺伝子および外来のΔ17不飽和化酵素遺伝子のいずれか1以上とが導入された変異微生物であって、20℃以上の条件下で10日間培養後における脂肪酸組成中のエイコサペンタエン酸含量が20質量%以上である、変異微生物。 An exogenous Δ12 desaturase gene and one or more of an exogenous Δ15 desaturase gene and an exogenous Δ17 desaturase gene were introduced into the parental microorganism having the ω6 polyunsaturated fatty acid metabolic pathway. A mutant microorganism, wherein the eicosapentaenoic acid content in the fatty acid composition after culturing for 10 days at 20 ° C. or higher is 20% by mass or more.
  13.  親微生物がモルティエレラ(Mortierella)属微生物である、請求項11または12記載の変異微生物。 The mutant microorganism according to claim 11 or 12, wherein the parent microorganism is a microorganism belonging to the genus Mortierella.
  14.  親微生物がモルティエレラ・アルピナ(Mortierella alpina)である、請求項11~13のいずれか1項記載の変異微生物。 The mutant microorganism according to any one of claims 11 to 13, wherein the parent microorganism is Mortierella alpina.
  15.  Δ15不飽和化酵素遺伝子が、トリコデルマ・エスピー(Trichoderma sp.)AM076に由来する、請求項11~14のいずれか1項記載の変異微生物。 The mutant microorganism according to any one of claims 11 to 14, wherein the Δ15 desaturase gene is derived from Trichoderma sp. AM076.
  16.  Δ15不飽和化酵素遺伝子が以下のタンパク質をコードする遺伝子である、請求項11~14のいずれか1項記載の変異微生物:
    (a)配列番号3に示されるアミノ酸配列からなるタンパク質;
    (b)配列番号3に示されるアミノ酸配列において、1個または複数個のアミノ酸の欠失、置換、挿入および付加から選択される変異を施されたアミノ酸配列からなり、かつΔ15不飽和化酵素活性を有するタンパク質;
    (c)配列番号3で示されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなり、かつΔ15不飽和化酵素活性を有するタンパク質;
    (d)配列番号2のヌクレオチド番号53~1225に示されるヌクレオチド配列の相補鎖配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチドにコードされ、かつΔ15不飽和化酵素活性を有するタンパク質;あるいは、
    (e)配列番号2のヌクレオチド番号53~1225で示されるヌクレオチド配列と80%以上の同一性を有するヌクレオチド配列からなるポリヌクレオチドにコードされ、かつΔ15不飽和化素活性を有するタンパク質。
    The mutant microorganism according to any one of claims 11 to 14, wherein the Δ15 desaturase gene is a gene encoding the following protein:
    (A) a protein comprising the amino acid sequence represented by SEQ ID NO: 3;
    (B) an amino acid sequence represented by SEQ ID NO: 3, comprising an amino acid sequence subjected to mutation selected from deletion, substitution, insertion and addition of one or more amino acids, and Δ15 desaturase activity A protein having
    (C) a protein comprising an amino acid sequence having 90% or more identity with the amino acid sequence represented by SEQ ID NO: 3 and having Δ15 desaturase activity;
    (D) encoded by a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising a complementary strand sequence of the nucleotide sequence shown in nucleotide numbers 53 to 1225 of SEQ ID NO: 2 and has Δ15 desaturase activity Protein; or
    (E) a protein encoded by a polynucleotide comprising a nucleotide sequence having 80% or more identity with the nucleotide sequence represented by nucleotide numbers 53 to 1225 of SEQ ID NO: 2 and having Δ15 desaturase activity.
  17.  Δ12不飽和化酵素遺伝子が、コプリナス・シネレウス(Coprinus cinereus)に由来する、請求項12~16のいずれか1項記載の変異微生物。 The mutant microorganism according to any one of claims 12 to 16, wherein the Δ12 desaturase gene is derived from Coprinus cinereus.
  18.  Δ12不飽和化酵素遺伝子が以下のタンパク質をコードする遺伝子である、請求項12~16のいずれか1項記載の変異微生物:
    (a')配列番号6に示されるアミノ酸配列からなるタンパク質;
    (b')配列番号6に示されるアミノ酸配列において、1個または複数個のアミノ酸の欠失、置換、挿入および付加から選択される変異を施されたアミノ酸配列からなり、かつΔ12不飽和化酵素活性を有するタンパク質;
    (c')配列番号6で示されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなり、かつΔ12不飽和化酵素活性を有するタンパク質;
    (d')配列番号5のヌクレオチド番号52~1377に示されるヌクレオチド配列の相補鎖配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチドにコードされ、かつΔ12不飽和化酵素活性を有するタンパク質;あるいは、
    (e')配列番号5のヌクレオチド番号52~1377で示されるヌクレオチド配列と80%以上の同一性を有するヌクレオチド配列からなるポリヌクレオチドにコードされ、かつΔ12不飽和化素活性を有するタンパク質。
    The mutant microorganism according to any one of claims 12 to 16, wherein the Δ12 desaturase gene is a gene encoding the following protein:
    (A ′) a protein consisting of the amino acid sequence shown in SEQ ID NO: 6;
    (B ′) an amino acid sequence represented by SEQ ID NO: 6, comprising an amino acid sequence subjected to mutation selected from deletion, substitution, insertion and addition of one or more amino acids, and Δ12 desaturase An active protein;
    (C ′) a protein comprising an amino acid sequence having 90% or more identity with the amino acid sequence represented by SEQ ID NO: 6 and having Δ12 desaturase activity;
    (D ′) encoded by a polynucleotide that hybridizes under stringent conditions with a polynucleotide comprising a complementary strand sequence of the nucleotide sequence shown in nucleotide numbers 52 to 1377 of SEQ ID NO: 5, and has Δ12 desaturase activity A protein having; or
    (E ′) a protein encoded by a polynucleotide comprising a nucleotide sequence having 80% or more identity with the nucleotide sequence represented by nucleotide numbers 52 to 1377 of SEQ ID NO: 5 and having Δ12 desaturase activity.
  19.  Δ17不飽和化酵素遺伝子が、サプロレグニア・ディクリナ(Saprolegnia diclina)に由来する、請求項12~18のいずれか1項記載の変異微生物。 The mutant microorganism according to any one of claims 12 to 18, wherein the Δ17 desaturase gene is derived from Saprolegnia diclina.
  20.  Δ17不飽和化酵素遺伝子が下のタンパク質をコードする遺伝子である、請求項12~18のいずれか1項記載の変異微生物:
    (a'')配列番号9に示されるアミノ酸配列からなるタンパク質;
    (b'')配列番号9に示されるアミノ酸配列において、1個または複数個のアミノ酸の欠失、置換、挿入および付加から選択される変異を施されたアミノ酸配列からなり、かつΔ17不飽和化酵素活性を有するタンパク質;
    (c'')配列番号9で示されるアミノ酸配列と90%以上の同一性を有するアミノ酸配列からなり、かつΔ17不飽和化酵素活性を有するタンパク質;
    (d'')配列番号8のヌクレオチド番号100~1176に示されるヌクレオチド配列の相補鎖配列からなるポリヌクレオチドとストリンジェントな条件下でハイブリダイズするポリヌクレオチドにコードされ、かつΔ17不飽和化酵素活性を有するタンパク質;あるいは、
    (e'')配列番号8のヌクレオチド番号100~1176で示されるヌクレオチド配列と80%以上の同一性を有するヌクレオチド配列からなるポリヌクレオチドにコードされ、かつΔ17不飽和化素活性を有するタンパク質。
    The mutant microorganism according to any one of claims 12 to 18, wherein the Δ17 desaturase gene is a gene encoding the protein below:
    (A ″) a protein consisting of the amino acid sequence represented by SEQ ID NO: 9;
    (B ″) an amino acid sequence represented by SEQ ID NO: 9, comprising an amino acid sequence subjected to mutation selected from deletion, substitution, insertion and addition of one or more amino acids, and Δ17 desaturation A protein having enzymatic activity;
    (C ″) a protein comprising an amino acid sequence having 90% or more identity with the amino acid sequence represented by SEQ ID NO: 9 and having Δ17 desaturase activity;
    (D ″) a Δ17 desaturase activity encoded by a polynucleotide that hybridizes under stringent conditions with a polynucleotide consisting of a complementary strand of the nucleotide sequence shown in nucleotide numbers 100 to 1176 of SEQ ID NO: 8 Or a protein having
    (E ″) a protein encoded by a polynucleotide comprising a nucleotide sequence having at least 80% identity to the nucleotide sequence represented by nucleotide numbers 100 to 1176 of SEQ ID NO: 8 and having Δ17 desaturase activity.
  21.  請求項1~10のいずれか1項記載の方法で製造された変異微生物、または請求項11~20のいずれか1項記載の変異微生物を20℃以上の条件下で培養することを含む、エイコサペンタエン酸を含有する脂質の生産方法。 A mutant microorganism produced by the method according to any one of claims 1 to 10, or the mutant microorganism according to any one of claims 11 to 20 is cultured under conditions of 20 ° C or higher. A method for producing a lipid containing icosapentaenoic acid.
  22.  請求項21記載の方法により生産されたエイコサペンタエン酸を含有する脂質を精製することを含む、エイコサペンタエン酸の生産方法。 A method for producing eicosapentaenoic acid, comprising purifying a lipid containing eicosapentaenoic acid produced by the method according to claim 21.
PCT/JP2014/068539 2013-07-12 2014-07-11 Method for producing lipid having high eicosapentaenoic acid content WO2015005466A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-146573 2013-07-12
JP2013146573A JP2016165226A (en) 2013-07-12 2013-07-12 Production method of lipid with high content of eicosapentaenoic acid

Publications (1)

Publication Number Publication Date
WO2015005466A1 true WO2015005466A1 (en) 2015-01-15

Family

ID=52280143

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/068539 WO2015005466A1 (en) 2013-07-12 2014-07-11 Method for producing lipid having high eicosapentaenoic acid content

Country Status (2)

Country Link
JP (1) JP2016165226A (en)
WO (1) WO2015005466A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018130204A1 (en) * 2017-01-13 2018-07-19 江南大学 Preparation of mortierella alpina ccfum698 thalli and application thereof to feed additives
WO2023157948A1 (en) * 2022-02-21 2023-08-24 Dic株式会社 Oral composition

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515951A (en) * 2003-11-12 2007-06-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Δ15 desaturase suitable for altering polyunsaturated fatty acid levels in oily plants and yeast
JP2010508019A (en) * 2006-10-30 2010-03-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Δ17 desaturase and its use in the production of polyunsaturated fatty acids
US20100068761A1 (en) * 2006-08-24 2010-03-18 Bauer Joerg Isolation and characterization of a novel pythium omega 3 desaturase with specificity to all omega 6 fatty acids longer than 18 carbon chains
US20100199365A1 (en) * 2007-07-31 2010-08-05 Basf Plant Science Gmbh Desaturases and methods for producing polyunsaturated fatty acids in transgenic organisms
JP2012500640A (en) * 2008-08-26 2012-01-12 ビーエーエスエフ プラント サイエンス ゲーエムベーハー Nucleic acids encoding desaturases and modified vegetable oils

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007515951A (en) * 2003-11-12 2007-06-21 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Δ15 desaturase suitable for altering polyunsaturated fatty acid levels in oily plants and yeast
US20100068761A1 (en) * 2006-08-24 2010-03-18 Bauer Joerg Isolation and characterization of a novel pythium omega 3 desaturase with specificity to all omega 6 fatty acids longer than 18 carbon chains
JP2010508019A (en) * 2006-10-30 2010-03-18 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Δ17 desaturase and its use in the production of polyunsaturated fatty acids
US20100199365A1 (en) * 2007-07-31 2010-08-05 Basf Plant Science Gmbh Desaturases and methods for producing polyunsaturated fatty acids in transgenic organisms
JP2012500640A (en) * 2008-08-26 2012-01-12 ビーエーエスエフ プラント サイエンス ゲーエムベーハー Nucleic acids encoding desaturases and modified vegetable oils

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FEBS LETTERS, vol. 581, 2007, pages 315 - 319 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018130204A1 (en) * 2017-01-13 2018-07-19 江南大学 Preparation of mortierella alpina ccfum698 thalli and application thereof to feed additives
US11266167B2 (en) 2017-01-13 2022-03-08 Jiangnan University Preparation of Mortierella alpina CCFM698 thalli and application thereof in feed additive
WO2023157948A1 (en) * 2022-02-21 2023-08-24 Dic株式会社 Oral composition

Also Published As

Publication number Publication date
JP2016165226A (en) 2016-09-15

Similar Documents

Publication Publication Date Title
US10975397B2 (en) Method for producing oxo fatty acid and rare fatty acid
JP6340523B2 (en) Metabolism improving agent containing rare fatty acids
WO2009046231A1 (en) Optimized strains of yarrowia lipolytica for high eicosapentaenoic acid production
CA2568689A1 (en) Metabolically engineered cells for the production of polyunsaturated fatty acids
JP5346290B2 (en) Fatty acid composition having a novel fatty acid composition
US11046980B2 (en) Method for producing rare fatty acid using novel enzyme, and novel rare fatty acid
WO2015029966A1 (en) ω3 UNSATURATED FATTY ACID ENZYME AND METHOD FOR PRODUCING EICOSAPENTAENOIC ACID
JP5451387B2 (en) Glycerol-3-phosphate acyltransferase (GPAT) homolog and use thereof
WO2015005466A1 (en) Method for producing lipid having high eicosapentaenoic acid content
WO2016031947A1 (en) Method of producing lipids with high eicosapentaenoic acid content
JP2014045740A (en) Production of highly-unsaturated fatty acid in lipid-producing microorganism by introducing foreign desaturation enzyme gene
JP6026709B1 (en) Process for producing novel ω3 unsaturated fatty acid enzyme and eicosapentaenoic acid
JP5180960B2 (en) Phosphatidate phosphatase homolog and its use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14822650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14822650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP