WO2023157883A1 - Laser welding device and method for correcting deviation of laser beam irradiation position - Google Patents

Laser welding device and method for correcting deviation of laser beam irradiation position Download PDF

Info

Publication number
WO2023157883A1
WO2023157883A1 PCT/JP2023/005266 JP2023005266W WO2023157883A1 WO 2023157883 A1 WO2023157883 A1 WO 2023157883A1 JP 2023005266 W JP2023005266 W JP 2023005266W WO 2023157883 A1 WO2023157883 A1 WO 2023157883A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser beam
deviation
spot
peak position
Prior art date
Application number
PCT/JP2023/005266
Other languages
French (fr)
Japanese (ja)
Inventor
静波 王
俊輔 川合
憲三 柴田
敦樹 山本
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023528236A priority Critical patent/JP7352787B1/en
Publication of WO2023157883A1 publication Critical patent/WO2023157883A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/042Automatically aligning the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/082Scanning systems, i.e. devices involving movement of the laser beam relative to the laser head
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements

Definitions

  • the present disclosure relates to a laser welding device and a method for correcting laser beam irradiation position deviation.
  • Laser welding in which workpieces are welded by irradiating a laser beam, can perform high-quality welding because the power density of the laser beam is high. For this reason, laser welding has been widely used in recent years.
  • a scanning method is used to optically scan the irradiation position of the laser beam in order to weld the workpiece at high speed.
  • a galvanomirror is used to two-dimensionally scan a laser beam (see, for example, Patent Document 1).
  • Patent Document 2 discloses a laser processing apparatus equipped with a CCD camera and a temperature sensor attached to a mount portion of a galvanomirror or the like. There is The CCD camera detects the actual position to be processed by the laser beam, and corrects the amount of deviation between the position to be processed and the set position using the temperature measured by the temperature sensor and a correction coefficient table obtained in advance.
  • the main causes include insufficient adjustment, wear, and aged deterioration of the manipulator that holds and moves the laser head. If the adjustment of the moving mechanism of the manipulator is insufficient, or if it wears out or deteriorates over time, the laser beam irradiation position may deviate from the set position.
  • the present disclosure has been made in view of the above points, and an object thereof is to provide a laser welding apparatus capable of correcting the deviation of the irradiation position of the laser beam with a simple configuration, and a method of correcting the deviation of the irradiation position of the laser beam. .
  • a laser welding apparatus controls a laser oscillator that generates a laser beam, a laser head that receives the laser beam and irradiates it toward a workpiece, and at least the operation of the laser head.
  • a controller and a stage on which the work is placed, wherein the laser head scans the laser light in a first direction and a second direction intersecting the first direction, respectively; a sensor, and an optical system for causing the reflected return light of the laser beam to enter the optical sensor, and the controller controls the laser beam to travel along a welding line while two-dimensionally scanning the laser beam.
  • the controller drives and controls the laser light scanner so as to irradiate the laser light around the reflection spot while two-dimensionally scanning the laser light, and the output of the optical sensor reaches a peak.
  • a peak position is detected, and the controller is configured to correct irradiation position deviation of the laser beam based on the center position of the reflected spot and the first peak position.
  • a laser beam irradiation position deviation correction method is a laser beam irradiation position deviation correction method using the laser welding apparatus, the method comprising the step of moving the laser head to a center position of the reflection spot; a step of operating the laser light scanner to irradiate the periphery of the center position of the reflection spot while scanning the laser light two-dimensionally; determining whether or not the first peak position matches the center position of the reflected spot; and determining if the first peak position matches the center position of the reflected spot.
  • the laser welding device of the present disclosure it is possible to correct the irradiation position deviation of the laser light with a simple configuration. Further, according to the method for correcting the displacement of the irradiation position of the laser beam according to the present disclosure, the displacement of the irradiation position of the laser beam can be easily corrected.
  • FIG. 1 is a schematic configuration diagram of a laser welding device according to Embodiment 1.
  • FIG. 1 is a schematic configuration diagram of a laser beam scanner;
  • FIG. 4 is a plan view of the stage;
  • FIG. FIG. 4 is an enlarged plan view of a correction unit;
  • FIG. 5 is a schematic cross-sectional view taken along line VV of FIG. 4;
  • 1 is a schematic configuration diagram of a laser head;
  • FIG. 4 is a flow chart showing a procedure for correcting a laser beam irradiation position deviation according to the first embodiment.
  • FIG. 10 is a schematic diagram when the output of the optical sensor is plotted on the XY plane scanned by the laser light;
  • FIG. 10 is a schematic diagram when the output of the optical sensor is plotted on the XY plane scanned by the laser light;
  • FIG. 3 is a schematic diagram showing a mechanism of error generation in correction of irradiation angle deviation of laser light, and is a schematic diagram when laser light is perpendicularly incident on a reflected spot.
  • FIG. 4 is a schematic diagram showing a mechanism of error generation in correction of irradiation angle deviation of laser light, and is a schematic diagram when laser light is obliquely incident on a reflected spot. It is a schematic diagram which shows the relationship between the incident angle deviation
  • 9 is a flow chart showing a procedure for correcting a laser beam irradiation position deviation according to the second embodiment.
  • FIG. 1 shows a schematic diagram of the configuration of a laser welding apparatus according to this embodiment
  • FIG. 2 shows a schematic configuration diagram of a laser beam scanner.
  • the direction parallel to the traveling direction of the laser beam LB traveling from the mirror 33 to the optical sensor 38 may be called the X direction.
  • a direction parallel to the optical axis of the laser beam LB emitted from the laser head 30 is sometimes called the Z direction.
  • a direction orthogonal to the X direction and the Z direction is sometimes called the Y direction. If the surface of the workpiece 200 is flat, the XY plane including the X direction and the Y direction within the plane may be substantially parallel to the surface, or may form a certain angle with the surface.
  • the laser welding device 100 includes a laser oscillator 10, an optical fiber 20, a laser head 30, a controller 50, a manipulator 60 and a stage 70.
  • the laser oscillator 10 is a laser light source that is supplied with power from a power source (not shown) and generates a laser beam LB.
  • the laser oscillator 10 may be composed of a single laser light source, or may be composed of a plurality of laser modules. In the latter case, laser beams respectively emitted from a plurality of laser modules are combined and emitted as laser beam LB.
  • the laser light source or laser module used in the laser oscillator 10 is appropriately selected according to the material of the workpiece 200, the shape of the welded portion, and the like.
  • the optical fiber 20 is optically coupled to the laser oscillator 10.
  • a laser beam LB generated by the laser oscillator 10 enters the optical fiber 20 and is transmitted through the optical fiber 20 toward the laser head 30 .
  • the laser head 30 is attached to the end of the optical fiber 20 and irradiates the workpiece 200 with the laser light LB transmitted from the optical fiber 20 .
  • the laser head 30 also has a collimation lens 32, a mirror 33, a first condenser lens 34, and a laser beam scanner 40 as optical components.
  • the laser head 30 also has a protective glass 35 , an aperture 36 , a second condenser lens 37 and an optical sensor 38 . These optical components are accommodated in the housing 31 while maintaining a predetermined arrangement relationship.
  • the collimation lens 32 receives the laser light LB emitted from the optical fiber 20 , converts it into parallel light, and makes it enter the mirror 33 . Also, the collimation lens 32 is connected to a drive section (not shown) and configured to be displaceable in the Z direction according to a control signal from the controller 50 . By displacing the collimation lens 32 in the Z direction, it is possible to change the focal position of the laser beam LB and appropriately irradiate the laser beam LB according to the shape of the workpiece 200 . In other words, the collimation lens 32 also functions as a focal position adjusting mechanism for the laser beam LB in combination with a drive section (not shown).
  • FIG. 1 shows an example in which the collimation lens 32 is composed of one lens.
  • the focal position can be adjusted by moving the collimation lens 32 in the Z direction, but the parallelism of the laser beam LB emitted from the collimation lens 32 is somewhat reduced. In order to prevent this, it is desirable to configure the collimation lens 32 by combining a plurality of lenses. It should be noted that the focus position of the laser beam LB may be changed by displacing the first condenser lens 34 by the drive section.
  • the drive is, for example, an actuator or a motor.
  • the mirror 33 further transmits the laser light LB that has passed through the collimation lens 32 to enter the laser light scanner 40 .
  • the mirror 33 reflects the reflected return light of the laser light LB that has passed through the laser light scanner 40 and is reflected by the reflection spot 72b (see FIGS. 3 to 5) of the stage 70 toward the aperture 36 (see FIG. 6).
  • the surface of the mirror 33 is provided so as to make an angle of about 45 degrees with the optical axis of the laser beam LB that has passed through the collimation lens 32 .
  • the first condenser lens 34 transmits the mirror 33 and converges the laser beam LB scanned by the laser beam scanner 40 onto the surface of the workpiece 200 .
  • the protective glass 35 is made of a material transparent to the laser beam LB.
  • the protective glass 35 prevents spatters and fumes generated during laser welding from entering the housing 31 .
  • the spatter is spattered molten material of the workpiece 200, and the fume is metal vapor generated by melting the workpiece 200. As shown in FIG.
  • the aperture 36 is arranged between the mirror 33 and the second condenser lens 37 along the X direction.
  • a second condenser lens 37 is arranged between the aperture 36 and the optical sensor 38 along the X direction.
  • the functions of the aperture 36, the second condenser lens 37, and the optical sensor 38 will be described later.
  • the optical system 39 composed of the mirror 33, the aperture 36, and the second condenser lens 37 is configured to cause the reflected return light of the laser beam LB to enter the optical sensor 38. .
  • the laser light scanner 40 is a known galvanometer scanner having a first galvanometer mirror 41 and a second galvanometer mirror 42 .
  • the first galvanomirror 41 has a first mirror 41a, a first rotating shaft 41b, and a first driving portion 41c
  • the second galvanomirror 42 has a second mirror 42a, a second rotating shaft 42b, and a second driving portion. 42c.
  • the laser beam LB that has passed through the first condenser lens 34 is reflected by the first mirror 41 a and further reflected by the second mirror 42 a to irradiate the surface of the workpiece 200 .
  • the first driving section 41c and the second driving section 42c are galvanometer motors, and the first rotating shaft 41b and the second rotating shaft 42b are output shafts of the motors.
  • the first drive unit 41c is rotationally driven by a driver that operates according to a control signal from the controller 50, so that the first mirror 41a attached to the first rotation shaft 41b is rotated by the first rotation shaft. It rotates around the axis of 41b.
  • the second driving section 42c is rotationally driven by a driver that operates in response to a control signal from the controller 50, so that the second mirror 42a attached to the second rotating shaft 42b moves along the axis of the second rotating shaft 42b. rotate around.
  • the laser beam LB is scanned in the X direction by rotating the first mirror 41a up to a predetermined angle around the axis of the first rotating shaft 41b.
  • the laser beam LB is scanned in the Y direction by rotating the second mirror 42a up to a predetermined angle around the axis of the second rotating shaft 42b. That is, the laser light scanner 40 is configured to two-dimensionally scan the laser light LB within the XY plane and irradiate the workpiece 200 with the laser light LB.
  • the controller 50 controls laser oscillation of the laser oscillator 10 .
  • laser oscillation is controlled by supplying a control signal such as an output current having a predetermined relationship with the output of the laser beam LB and an on/off time to a power source (not shown) connected to the laser oscillator 10 .
  • the controller 50 controls the output of the laser beam LB.
  • controller 50 controls the operation of the laser head 30 according to the content of the selected laser welding program. Specifically, drive control of the laser beam scanner 40 provided in the laser head 30 and the drive unit (not shown) of the collimation lens 32 is performed. Further, controller 50 controls the operation of manipulator 60 .
  • the controller 50 has an integrated circuit such as an LSI or a microcomputer as an information processing unit 51. By executing a laser welding program, which is software, on this integrated circuit, the functions of the controller 50 described above are realized. be.
  • the controller 50 has a memory device such as a RAM, a ROM, an SSD, etc. as a storage unit 52 .
  • a laser welding program is stored in the storage unit 52 and called by the controller 50 according to a command from the controller 50 .
  • the storage unit 52 may be an SD card (registered trademark) detachable from the controller 50 .
  • the storage unit 52 may be provided at a location different from the controller 50 .
  • the storage unit 52 stores the correction result of the irradiation position of the laser beam LB, etc., which will be described later.
  • the amount of displacement of the irradiation position of the laser beam LB due to temperature drift and the correction result thereof are stored in the storage unit 52 .
  • the amount of displacement of the irradiation position of the laser beam LB caused by the absorption of the laser beam LB by the first galvano mirror 41 and the second galvano mirror 42 and the correction result thereof are stored in the storage unit 52 .
  • the amount of deviation of the irradiation position of the laser beam LB due to the heat generation of the drive circuit that drives them and the correction result thereof are stored in the storage unit 52 .
  • the controller 50 for controlling the operation of the laser head 30 and the controller 50 for controlling the output of the laser beam LB may be provided separately.
  • the manipulator 60 is an articulated robot and is attached to the housing 31 of the laser head 30. Also, the manipulator 60 is connected to the controller 50 so that signals can be sent and received, and moves the laser head 30 so as to draw a predetermined locus according to the laser welding program described above. As a result, the surface of the workpiece 200 is irradiated with the laser beam LB along the welding line WL and while being two-dimensionally scanned around the welding line WL.
  • a separate controller (not shown) for controlling the operation of the manipulator 60 may be provided. However, even in that case, it is necessary to be able to communicate data with the controller 50 that controls the operation of the laser head 30 in order to configure the irradiation position of the laser beam LB.
  • the stage 70 has a body portion 71 and a correction portion 72 .
  • the configuration of the stage 70 will be detailed later.
  • the laser welding device 100 shown in FIG. 1 can perform laser welding on workpieces 200 of various shapes.
  • FIG. 3 is a plan view of the stage
  • FIG. 4 is an enlarged plan view of the corrector
  • FIG. 5 is a schematic cross-sectional view taken along line VV of FIG.
  • the stage 70 has a body portion 71 and a correction portion 72.
  • a workpiece 200 is placed on the body portion 71, and the workpiece 200 is welded by irradiation with the laser beam LB. Therefore, although not shown, the body portion 71 includes a portion having a flat surface for supporting the workpiece 200 and a portion through which the laser beam LB passes.
  • the correction section 72 is arranged at one corner of the main body section 71 .
  • the correction section 72 has a reflector 72a that reflects the laser beam LB and a reflection spot 72b provided on the surface of the reflector 72a.
  • the diameter d of the reflected spot 72b is set to be about 1/10 to 1 times (1 times) the diameter of the laser beam LB.
  • the shape of the reflection spot 72b shown in FIGS. 4 and 5 is circular when viewed from the Z direction and plate-like when viewed in cross section, but is not particularly limited to this.
  • the reflected spot 72b may be square when viewed from the Z direction.
  • the reflection spot 72b may be provided such that the surface of the reflection spot 72b and the surface of the reflector 72a are flush with each other.
  • the reflectance of the laser beam LB at the reflection spot 72b is designed to be higher than the reflectance of the laser beam LB at the reflector 72a.
  • the correction unit 72 can be configured as follows as an example.
  • the corrector 72 a printed circuit board having a copper foil of a predetermined shape on its surface can be used.
  • the reflecting plate 72a may be a plate member made of epoxy resin from which the copper foil has been removed, and the reflection spot 72b may be a spot-shaped copper foil having a predetermined diameter. It is even better if the copper foil portion is plated with gold.
  • the difference in reflectance with respect to the laser beam LB is sufficiently large between the copper foil portion and the epoxy resin, so that the role of the correcting portion 72 can be easily fulfilled.
  • the reflection spot 72b is not particularly limited to copper or gold, and any material having a reflectance of a predetermined value or higher with respect to the laser beam LB may be used.
  • it may be aluminum or silver.
  • the correcting portion 72 other than the reflected spot 72b may be made of a material having a lower reflectance than the reflected spot 72b with respect to the laser beam LB.
  • the correction unit 72 is used to determine whether or not the above-described temperature drift occurs in the laser beam scanner 40, and to measure the correction amount of the temperature drift if it occurs. be.
  • the position of the correction section 72 on the stage 70 is not particularly limited to that shown in FIG.
  • spatters and fumes may scatter in the vicinity of the weld line WL, and smut may adhere to the work 200 when the work 200 contains aluminum.
  • the welding line WL of the workpiece 200 needs to be arranged at a position separated from the correcting portion 72 by a predetermined distance or more.
  • a cover (not shown) may be attached to protect its surface.
  • the laser beam LB is irradiated onto the correction unit 72 along the dashed line shown in FIG. 4, in other words, while being sequentially scanned at predetermined intervals in each of the X direction and the Y direction.
  • the laser beam LB is incident on the reflection spot 72b, it is reflected along the original optical path without being scattered or the like.
  • laser light other than the laser light incident perpendicularly to the reflected spot 72b does not return along the original optical path as it is and is slightly deviated from the original optical path. As will be described later, if this deviation is also corrected, it is possible to further improve the correction accuracy for the irradiation position deviation of the laser beam LB.
  • FIG. 6 shows a schematic configuration diagram of the laser head.
  • illustration of the housing 31 is omitted in FIG.
  • the laser light scanner 40 is illustrated in a simplified manner.
  • the laser light LB guided from the optical fiber 20 into the housing 31 is collimated by the collimation lens 32 .
  • the collimated laser beam LB is transmitted through the mirror 33 .
  • the laser beam LB transmitted through the mirror 33 is incident on the laser beam scanner 40 .
  • the incident position P1 of the laser beam LB in the laser beam scanner 40 is on the optical axis aa' of the laser beam LB guided from the optical fiber 20 into the housing 31.
  • the laser beam LB that has passed through the laser beam scanner 40 is emitted from the position P2 on the laser beam scanner 40 .
  • the position P2 is on the optical axis c-c' in FIG.
  • the position P2 is positioned at a different location along with the optical axis c-c' (not shown). Note that whether the laser beam scanner 40 scans the laser beam LB or not scans the laser beam LB, the actual laser beam LB is reflected by the first galvano mirror 41 and the second galvano mirror 42 inside the laser beam scanner 40 . receive.
  • the optical axis aa' of the incident beam does not coincide with the optical axis cc' of the outgoing beam.
  • the laser beam LB emitted from the laser beam scanner 40 is depicted as being shifted in the X direction by a predetermined distance.
  • the laser beam LB is incident on the reflector 72a at the position P3 and is reflected toward the laser beam scanner 40, that is, in the direction opposite to the incident direction from the reflector 72a generally along the Z direction.
  • the reflected return light of the laser beam LB enters the laser beam scanner 40 at the position P4, exits the laser beam scanner 40 from the position P5, and then enters the mirror 33.
  • the light amount and diameter of the laser beam LB narrowed by the aperture 36 are adjusted.
  • the optical axis of the laser beam LB from the position P6 to the center position P7 of the optical sensor 38 is indicated by bb' in FIG.
  • the second condenser lens 37 converges the laser beam LB that has passed through the aperture 36 onto the light receiving surface (not shown) of the optical sensor 38 .
  • the optical system 39 described above causes the reflected return light of the laser light LB that has entered the housing 31 through the protective glass 35 to enter the optical sensor 38 .
  • the optical sensor 38 outputs an electrical signal corresponding to the amount of incident laser light LB. This output signal is input to the controller 50 and used to correct the irradiation position of the laser beam LB, which will be described later.
  • FIG. 7 shows a flow chart of a procedure for correcting irradiation position deviation of the laser light
  • FIG. 8 shows a schematic diagram when the output of the optical sensor is plotted on the XY plane scanned by the laser light.
  • the incident beam is always perpendicular to the reflected spot 72b on the XY plane.
  • the center position of the reflected spot 72b on the XY plane is made to coincide with the galvanometer origin of the laser light scanner 40, which is the origin O.
  • the galvanometer origin corresponds to the initial position of the laser beam LB on the XY plane of the laser head 30 when there is no temperature drift.
  • the galvano origin corresponds to the initial position of the tip of the manipulator 60 on the XY plane.
  • the origin O is stored in the storage unit 52 as coordinates on the XY plane.
  • the optical sensor 38 When there is no temperature drift, the optical sensor 38 generates an output signal only when the laser beam LB is collated at the origin O and its vicinity.
  • the term “nearby” refers to a distance of about 1/10 to 1/2 of the radius of the laser beam LB condensed from the origin O on the XY plane. Of course, this distance can also be shortened. In that case, the accuracy of correction, which will be described later, becomes higher.
  • the origin during scanning may deviate from the origin O corresponding to the galvanometer origin due to the effect of the drift when the laser beam LB is scanned. That is, when the laser beam LB is irradiated at a position distant from the origin O by a predetermined distance or more, the optical sensor 38 may generate an output signal.
  • the "origin at the time of scanning" is the position command in the X-axis direction and the position in the Y-axis direction when the workpiece 200 or the surface of the stage 70 is irradiated with the laser light scanner 40 during actual welding or correction described later. (or a fixed value corresponding to the laser beam scanner 40. For the sake of explanation, hereinafter, this value is assumed to be zero.), the actual irradiation point of the laser beam LB on the XY plane. .
  • the position command in the X-axis direction is a rotational position command (hereinafter referred to as a rotation command) for the first drive unit 41c
  • the position command in the Y-axis direction is a rotation command for the second drive unit 42c.
  • the origin during scanning coincides with the galvanometer origin if there is no temperature drift.
  • the workpiece 200 can be irradiated with the laser beam LB along a desired irradiation locus. It is possible to suppress the occurrence of welding defects. Further explanation is given below.
  • the manipulator 60 is moved to move the laser light scanner 40 of the laser head 30 to the center position of the reflection spot 72b of the corrector 72, that is, the origin O on the XY plane (step S1 in FIG. 7).
  • the laser light scanner 40 is operated to irradiate the laser light LB around the origin O while scanning along the dashed line shown in FIG. 4 (step S2 in FIG. 7).
  • the manipulator 60 is not moved. That is, the position of the laser head 30 itself is scanned along the broken line shown in FIG. 4 with the laser beam LB while maintaining the origin O.
  • the output of the laser beam LB in step S2 is significantly reduced from that during laser welding. This is to prevent the reflecting plate 72a and the optical sensor 38 from being damaged.
  • the output of the laser beam LB in step S2 does not damage the reflecting plate 72a or the reflecting spot 72b and can be detected sufficiently by the optical sensor 38.
  • a value of the order of magnitude (about several mW) may be used.
  • a guide laser (not shown) may be used for visually recognizing the irradiation position of the laser beam LB. may be scanned.
  • step S2 the output of the optical sensor 38 is checked, and the first peak position O1 where the output peaks is checked (step S3 in FIG. 7).
  • the first peak position O1 is represented by coordinates on the XY plane. Also, the coordinates of the first peak position O1 and the output of the optical sensor 38 at the first peak position O1 are stored in the storage unit 52 .
  • the information processing section 51 of the controller 50 determines whether or not the first peak position O1 matches the origin O (step S4 in FIG. 7).
  • “match” means not only match in a strict sense, but also the distance between the first peak position O1 and the origin O on the XY plane is the beam It also includes cases where it is about 1/10 to 1/2 or less of the radius. Of course, this distance can also be shortened, but then the accuracy of the correction will be higher.
  • the position at which the surface of the stage 70 is irradiated with the laser beam LB reflected by the first galvanometer mirror 41 and the second galvanometer mirror 42 fixed at the preset initial position is the same as the above-described "during scanning.” is the origin of
  • the laser head 30 is moved to the center position of the reflection spot 72b of the corrector 72 on the XY plane. It reflects the light LB. In this case, if there is no temperature drift, the origin during scanning of the laser beam LB coincides with the above-mentioned origin O, and the output from the optical sensor 38 peaks.
  • step S4 If the determination result in step S4 is affirmative, that is, if the first peak position O1 matches the origin O, it is determined that the origin during scanning of the laser beam LB matches the origin O. In other words, it can be determined that no temperature drift has occurred in the laser light scanner 40, and the series of operations is terminated.
  • step S4 determines whether the first peak position O1 matches the origin O, as shown in FIG. It appears at a position away from the origin O.
  • the first peak position O1 is shifted to the negative side with respect to the origin O in both the X direction and the Y direction.
  • the controller 50 acquires the difference between the coordinates of the origin O and the coordinates of the first peak position O1, that is, the amount of deviation between the origin O and the first peak position O1, and stores the amount of deviation in the storage unit 52. (step S5 in FIG. 7).
  • the information processing unit 51 of the controller 50 corrects the deviation of the origin position during scanning using the equations (1) and (2) based on the coordinates of the origin O and the deviation amount obtained in step S5. 7 step S6).
  • both the X coordinate X0 of the origin and the Y coordinate Y0 of the origin may be zero in Equations (1) and (2).
  • both the deviation amount Xa and the deviation amount Ya take negative values.
  • the coordinates (Xc, Yc) of the origin at the time of scanning after correction and the deviation amounts Xa, Ya are stored in the storage unit 52 .
  • the storage unit 52 also stores correction amounts of the rotation commands of the first driving unit 41c and the second driving unit 42c corresponding to the deviation amounts Xa and Ya, respectively.
  • the coordinates of the origin during scanning are set to (Xc, Yc).
  • the laser beam LB returns along its original optical path and is not reflected unless it is incident perpendicularly to the reflected spot 72b. That is, the position P2 at which the laser beam LB is emitted from the laser beam scanner 40 is the same as the position P4 at which the reflected beam is incident on the laser beam scanner 40, except when the laser beam LB is vertically incident on the reflected spot 72b. do not match exactly. Therefore, in practice, assuming that the beam is perpendicularly incident on the reflected spot 72b, the shift amounts Xa and Ya in the X direction or the Y direction between the origin O and the first peak position O1 shown in FIG. , and the error due to this incident angle is added. By performing correction including this error, it is possible to further improve the accuracy of correction. An outline of the error generation mechanism and correction method will be described below. In the example shown below, both positions P2 and P4 correspond to positions on the surface of the second mirror 42a.
  • FIG. 9A and 9B are schematic diagrams showing the error generation mechanism in correcting the irradiation angle deviation of the laser light.
  • FIG. 9A shows a schematic diagram when the laser beam LB is vertically incident on the reflection spot 72b
  • FIG. 9B is a schematic diagram when the laser beam is obliquely incident on the reflection spot.
  • the angle ⁇ in FIG. 9B indicates the amount of deviation of the incident angle based on the case where the laser beam is incident vertically.
  • 0° ⁇ 90° In order for the reflected light from the spot 72b to enter the optical sensor 38 along the reflection route shown in FIG. 6, it is desirable that the angle is as close to 0° as possible.
  • FIG. 10 is a schematic diagram showing the relationship between the amount of incident angle deviation from vertical incidence of the laser light and the amount of positional deviation on the XY plane.
  • the incident angle shift amount ⁇ increases, the X-axis or Y-axis shift amounts Xa1 and Ya1 of the peak position increase.
  • the amount of deviation ⁇ of the incident angle is too large, the reflected light cannot enter the optical sensor 38, and sensing may not be possible. Therefore, as described above, it is better to set the deviation amount ⁇ of the incident angle to a value as close to 0 as possible.
  • incident light to the reflected spot 72b is indicated by a solid arrow, and reflected light is indicated by a dotted arrow.
  • the optical path of the reflected light is also perpendicular to the reflected spot 72b, and both are located at positions P2 and P4 on the surface of the second mirror 42a. matches.
  • the X and Y coordinates of the origin at the time of scanning after correction are determined based on the following equations (3) and (4), respectively, instead of equations (1) and (2). be done.
  • deviation amounts Xa1 and Ya1 depend on the optical system of the laser beam scanner 40 and the installation position of the correction unit 72, and can be measured in advance under the condition of no temperature drift and stored in the controller 50. can.
  • the laser welding apparatus 100 includes the laser oscillator 10 that generates the laser beam LB, the laser head 30 that receives the laser beam LB and irradiates it toward the workpiece 200, and the laser head 30. It includes at least a controller 50 that controls the operation and the output P of the laser beam LB, and a stage 70 on which the workpiece 200 is placed.
  • the laser head 30 has a laser beam scanner 40 that scans the laser beam LB in both the X direction (first direction) and the Y direction (second direction) intersecting the X direction.
  • the laser head 30 also has an optical sensor 38 .
  • the laser head 30 further has an optical system 39 that causes the reflected return light of the laser beam LB to enter the optical sensor 38 .
  • An optical system 39 is composed of a mirror 33 , an aperture 36 and a second condenser lens 37 .
  • the controller 50 drives and controls the laser beam scanner 40 so as to two-dimensionally scan the laser beam LB while advancing the laser beam LB along the welding line WL.
  • the stage 70 has a body portion 71 and a correction portion 72 .
  • the corrector 72 has a reflector 72a and a reflection spot 72b provided on the surface of the reflector 72a.
  • the controller 50 drives and controls the laser beam scanner 40 so as to irradiate the laser beam LB around the reflection spot 72b. 1 Peak position O1 is detected.
  • the controller 50 is configured to correct the irradiation position deviation of the laser beam LB based on the origin O, which is the center position of the reflected spot 72b, and the first peak position O1.
  • "around reflected spot 72b" refers to the area including reflected spot 72b itself and the surroundings of reflected spot 72b.
  • the stage 70 is provided with the correction section 72 having the reflected spot 72b
  • the laser head 30 is provided with the optical sensor 38 and the optical system 39 for causing the reflected return light of the laser beam LB to enter the optical sensor 38.
  • controller 50 is configured to correct the deviation of the origin position during scanning with the laser beam LB based on the deviation amount between the origin O, which is the central position of the reflected spot 72b, and the first peak position O1. .
  • the laser oscillator 10 and the laser head 30 are connected by an optical fiber 20 , and the laser light LB is transmitted from the laser oscillator 10 to the laser head 30 through the optical fiber 20 .
  • optical fiber 20 By providing the optical fiber 20 in this way, it is possible to perform laser welding on the workpiece 200 placed at a position away from the laser oscillator 10 . This increases the degree of freedom in arranging each part of the laser welding device 100 .
  • the laser beam scanner 40 is composed of a first galvanometer mirror 41 that scans the laser beam LB in the X direction and a second galvanometer mirror 42 that scans the laser beam LB in the Y direction.
  • the laser light scanner 40 By configuring the laser light scanner 40 in this way, it is possible to easily two-dimensionally scan the laser light LB. Further, since a known galvanometer scanner is used as the laser beam scanner 40, it is possible to suppress the increase in the cost of the laser welding device 100. FIG.
  • the laser head 30 further has a collimation lens 32, and the collimation lens 32 is configured to change the focal position of the laser beam LB along the Z direction that intersects with the X direction and the Y direction.
  • the collimation lens 32 is configured to change the focal position of the laser beam LB along the Z direction that intersects the surface of the workpiece 200 .
  • the collimation lens 32 also functions as a focal position adjusting mechanism for the laser beam LB in combination with a drive section (not shown). That is, the focal position can be changed according to an arbitrary irradiation position during welding, and the degree of freedom in setting welding conditions can be increased.
  • the focal position of the laser beam LB can be easily changed, and the laser beam LB can be appropriately irradiated according to the shape of the workpiece 200 .
  • the laser welding device 100 further includes a manipulator 60 to which the laser head 30 is attached, and the controller 50 controls the operation of the manipulator 60.
  • Manipulator 60 moves laser head 30 in a predetermined direction with respect to the surface of workpiece 200 .
  • the manipulator 60 By providing the manipulator 60 in this manner, the welding direction of the laser beam LB or the position of the welding point can be changed. In addition, laser welding can be easily performed on the work 200 having a complicated shape, for example, a three-dimensional shape.
  • the method of correcting the irradiation position deviation of the laser light comprises a first step (step S1 in FIG. 7) of moving the laser head 30 to the origin O, which is the center position of the reflected spot 72b provided on the stage 70; At least a second step (step S2 in FIG. 7) of operating the laser light scanner 40 to irradiate the surroundings of the origin O while scanning the laser light LB two-dimensionally is provided.
  • the correction method of the present embodiment includes the third step (step S3 in FIG. 7) of confirming the first peak position O1 at which the output of the optical sensor 38 peaks, and and a fourth step (step S3 in FIG. 7) of determining whether or not they match.
  • the correction method of this embodiment includes a step of terminating the correction work if the determination result of the fourth step is affirmative, that is, if the first peak position O1 matches the origin O.
  • the correction method of this embodiment if the determination result of the fourth step is negative, that is, if the first peak position O1 does not match the origin O, the deviation between the first peak position O1 and the origin O is corrected. and a step of correcting the irradiation position deviation of the laser beam LB based on the coordinates of the origin O and the deviation amount.
  • FIG. 11 shows a flowchart of a procedure for correcting deviation of irradiation position of laser light according to the present embodiment.
  • the device configuration and correction procedure for correcting the irradiation position deviation of the laser beam LB caused by temperature drift have been described.
  • the deviation of the irradiation position of the laser beam LB can also occur due to insufficient adjustment, wear, or deterioration over time of the manipulator 60 . If the manipulator 60 is insufficiently adjusted, worn or deteriorated over time, the tip position of the manipulator 60 itself may deviate from the position preset in the welding program or the like. In this case, since the position of the laser head 30 is also shifted, the workpiece 200 cannot be irradiated with the laser beam LB at a predetermined position.
  • the adjustment state of the manipulator 60 is confirmed according to the procedure shown in FIG. 11, and the irradiation position deviation of the laser beam LB is corrected based on the result. Details are described below.
  • the manipulator 60 is moved from the initial position to move the laser light scanner 40 of the laser head 30 to the origin O (step S10).
  • the laser light scanner 40 is operated to irradiate the laser light LB around the origin O while scanning along the dashed line shown in FIG. 4 (step S11). Further, the output of the optical sensor 38 is confirmed, and the first peak position O1 where the output peaks is confirmed (step S12). Subsequently, the deviation amount (first deviation amount) between the origin O and the first peak position O1 is obtained, and the first deviation amount is stored in the storage unit 52 (step S13). Note that steps S10 to S13 are the same processes as steps S1 to S3 and S5 in FIG.
  • the manipulator 60 is moved to move the laser beam scanner 40 of the laser head 30 to a predetermined position P (hereinafter simply referred to as position P, see FIG. 4) near the origin O (step S14).
  • the position P is a position stored in advance in the controller 50 during robot teaching.
  • the position P is deviated from the origin O by one segment in the X direction and the Y direction in the scanning locus of the laser beam LB indicated by the dashed line.
  • the position P based on the origin O is not particularly limited to this, and may be set to another position.
  • the distance between the position P and the origin O is also a value stored in the controller 50 in advance.
  • step S14 are the same as those of step S10, except that the destination of the laser beam scanner 40 is different.
  • the laser light scanner 40 is operated to irradiate the surroundings of the position P while scanning the laser light LB along the dashed line shown in FIG. 4 (step S15).
  • the output of the optical sensor 38 is confirmed, and the second peak position O2 at which the output peaks is confirmed (step S16).
  • the deviation amount (second deviation amount) between the position P and the second peak position O2 is obtained, and the second deviation amount is stored in the storage unit 52 (step S17).
  • steps S15 to S17 are the same processes as steps S11 to S13.
  • the information processing section 51 of the controller 50 determines the deviation amount between the first peak position O1 based on the origin O and the second peak position O2 based on the position P, in other words, the first deviation amount and the second peak position O2. Calculate the difference from the deviation amount. Further, it is determined whether or not the amount of deviation between the first peak position O1 based on the origin O and the second peak position O2 based on the position P is within an allowable range (step S18).
  • step S18 the X-direction deviation amount between the origin O and the second peak position O2 based on the position P is defined as Xb, and the Y-direction deviation amount between the origin O and the second peak position O2 based on the position P is defined as Xb. It is determined whether or not the relationship satisfying the equations (5) and (6) is satisfied, where Yb is the amount of deviation.
  • ⁇ x is the allowable upper limit of the difference in the X direction
  • ⁇ y is the upper limit of the allowable difference in the Y direction.
  • ⁇ x and ⁇ y are appropriately set according to processing tolerances allowed during laser welding, assembly tolerances of the manipulator 60, and the like.
  • step S18 If the determination result in step S18 is affirmative, it can be determined that the position of the manipulator 60 has not deviated from the set position, or that the difference is within the allowable range. Therefore, the process proceeds to step S19.
  • Steps S19 to S21 are the same processes as steps S4 to S6 in FIG. 7, so a detailed description will be omitted. That is, if the determination result of step S19 is affirmative, the correction work is finished. If the determination result in step S19 is negative, the displacement of the origin position during scanning is corrected based on the coordinates of the origin O and the displacement amount obtained in step S13 (step S20).
  • step S18 determines whether the position of the manipulator 60 is out of the allowable range and not from the set position. Therefore, the laser welding device 100 is stopped, maintenance of the manipulator 60 is performed, and the position, posture, etc. are readjusted.
  • step S19 and subsequent steps are executed to correct deviation of the origin position during scanning, and the correction work is finished.
  • the first process and the second process are respectively executed.
  • the laser head 30 is moved to the central position of the reflection spot 72b, that is, the origin O, and while two-dimensionally scanning the laser beam LB, the laser is moved around the reflection spot 72b (around the origin O).
  • Light LB is irradiated (steps S10 and S11 in FIG. 11).
  • the laser head 30 is moved to a position P near the origin O, and the laser light LB is irradiated around the reflection spot 72b (around the position P) while scanning the laser light LB two-dimensionally. (Steps S14 and S15 in FIG. 11).
  • the controller 50 sets the origin O, which is the center position of the reflected spot 72b, and the first peak position O1, at which the output of the optical sensor 38 peaks in the first process. and a second peak position O2 at which the output of the optical sensor 38 peaks in the second process, the displacement of the irradiation position of the laser beam LB is corrected.
  • the controller 50 determines the laser beam based on the amount of deviation between the origin O and the first peak position O1. It is configured to correct deviation of the origin position during scanning of the light LB.
  • the method of correcting the irradiation position deviation of the laser beam LB includes at least the first step (step S10 in FIG. 11) of moving the laser head 30 to the origin O.
  • the correction method of the present embodiment includes a second step (step S11 in FIG. 11) of operating the laser beam scanner 40 to irradiate around the origin O while scanning the laser beam LB two-dimensionally; A third step (step S12 in FIG. 11) of confirming the first peak position O1 at which the output of the optical sensor 38 reaches a peak, and a second step of obtaining a deviation amount (first deviation amount) between the first peak position O1 and the origin O. 4 steps (step S15 in FIG. 11).
  • the correction method of the present embodiment comprises a fifth step (step S14 in FIG. 11) of moving the laser head 30 to the aforementioned position P after obtaining the first deviation amount, and operating the laser beam scanner 40. , and a sixth step (step S15 in FIG. 11) of irradiating the periphery of the position P while two-dimensionally scanning the laser beam LB.
  • the seventh step (step S16 in FIG. 11) of confirming the second peak position O2 at which the output of the optical sensor 38 peaks, and the second peak position O2 and the position and an eighth step (step S17 in FIG. 11) of obtaining a deviation amount (second deviation amount) from P.
  • the correction method of this embodiment includes a ninth step (step S18 in FIG. 11) of determining whether or not the difference between the first deviation amount and the second deviation amount is within the allowable range. .
  • the determination result in the ninth step is affirmative, that is, if the difference between the first deviation amount and the second deviation amount is within the above-described allowable range, the first peak position O1 is aligned with the origin O (step S19 in FIG. 11).
  • the correction method of this embodiment includes a step of terminating the correction work if the determination result of the tenth step is affirmative, that is, if the first peak position O1 matches the origin O.
  • an eleventh step of correcting the irradiation position deviation of the laser beam LB is provided (step S20 in FIG. 11).
  • the manipulator 60 is adjusted (step S21 in FIG. 11). After that, the process returns to the first step and repeats the series of processes until the determination result of the ninth step becomes affirmative.
  • Embodiment 1 the same effects as those of the configuration and method shown in Embodiment 1 can be achieved. That is, it is possible to accurately irradiate a desired position of the workpiece 200 along the welding line WL while scanning the laser beam LB two-dimensionally. As a result, the occurrence of welding defects can be reduced, and the welding yield can be improved.
  • the present embodiment it is possible to determine separately whether the displacement of the irradiation position of the laser beam LB, in this case, the displacement of the origin position during scanning, is due to insufficient adjustment of the manipulator 60 or due to temperature drift. Further, when irradiation position deviation occurs due to each factor, the irradiation position deviation can be eliminated by performing maintenance of the manipulator 60 or the correction procedure described in the first embodiment. As a result, the workpiece 200 can be irradiated with the laser beam LB along the predetermined welding line WL while being two-dimensionally scanned, and the occurrence of defective welding can be suppressed. In addition, it is not necessary to unnecessarily increase the frequency of periodic inspection and maintenance of the manipulator 60, and the downtime of the apparatus can be reduced. Therefore, an increase in the cost of the welding process can be suppressed.
  • steps S19 to S21 shown in FIG. 11 it is determined whether or not the position P and the second peak position O2 match. may be used to correct deviation of the origin position during scanning.
  • the laser welding apparatus 100 of the present embodiment determines the amount of the laser beam LB based on either the amount of deviation between the origin O and the first peak position O1 or the amount of deviation between the position P and the second peak position O2. It is configured to correct deviation of the origin position during scanning.
  • step S19 in FIG. 11 it is determined whether or not the second peak position O2 matches the position P, If the determination result of the eleventh step is negative, that is, if the second peak position O2 does not match the position P, the irradiation of the laser beam LB is performed based on the coordinates of the position P and the second deviation amount.
  • the positional deviation may be corrected (eleventh step; step S20 in FIG. 11).
  • the laser welding apparatus of the present disclosure is useful because it can correct the displacement of the irradiation position of the laser beam, particularly the displacement of the origin position during the scanning of the laser beam, with a simple configuration.
  • laser oscillator 20 optical fiber 30 laser head 31 housing 32 collimation lens 33 mirror 34 first condenser lens 35 protective glass 36 aperture 37 second condenser lens 38 optical sensor 39 optical system 40 laser light scanner 41 first galvanomirror 41a First mirror 41b First rotating shaft 41c First driving unit 42 Second galvanomirror 42a Second mirror 42b Second rotating shaft 42c Second driving unit 50 Controller 60 Manipulator 70 Stage 71 Body unit 72 Correction unit 72a Reflecting plate 72b Reflection spot 100 laser welding device 200 work

Abstract

A laser welding device (100) comprises a laser oscillator (10), a laser head (30), a controller (50), and a stage (70). The laser head (30) has a laser beam scanner (40) for scanning a laser beam (LB) two dimensionally, an optical sensor (38), and an optical system (39) for causing a reflected return beam from the laser beam (LB) to be incident on the optical sensor (38). When the periphery of a reflection spot (72b) provided on the stage (7) is irradiated while the laser beam scanner (40) scans the laser beam (LB) two dimensionally, the controller (50) corrects the deviation of the irradiation position of the laser beam (LB) on the basis of the center position of the reflection spot (72b) and a first peak position (O1) at which the output of the optical sensor (38) peaks.

Description

レーザ溶接装置及びレーザ光の照射位置ずれの補正方法LASER WELDING APPARATUS AND METHOD FOR CORRECTING LASER LIGHT RADIATION POSITION DIFFERENCE
 本開示は、レーザ溶接装置及びレーザ光の照射位置ずれの補正方法に関する。 The present disclosure relates to a laser welding device and a method for correcting laser beam irradiation position deviation.
 レーザ光を照射してワークを溶接するレーザ溶接は、レーザ光のパワー密度が高いため高品質の溶接を行うことができる。このため、近年、レーザ溶接が広く利用されている。  Laser welding, in which workpieces are welded by irradiating a laser beam, can perform high-quality welding because the power density of the laser beam is high. For this reason, laser welding has been widely used in recent years.
 また、レーザ溶接において、ワークを高速で溶接するために、レーザ光の照射位置を光学的に走査するスキャン方式が用いられる。多くの場合、ガルバノミラーを用いてレーザ光を二次元的に走査する(例えば、特許文献1参照)。 Also, in laser welding, a scanning method is used to optically scan the irradiation position of the laser beam in order to weld the workpiece at high speed. In many cases, a galvanomirror is used to two-dimensionally scan a laser beam (see, for example, Patent Document 1).
 しかし、ガルバノミラーを用いたレーザ溶接装置では、レーザ光の一部が、ガルバノミラーに吸収されてしまうため、レーザ溶接中にガルバノミラーの温度が上昇する。この影響により、レーザ光の照射位置が設定した位置からずれてしまうことがある。また、これ以外にも、ガルバノミラーを駆動する駆動回路の発熱やレーザ溶接中の溶接装置の内部雰囲気の温度上昇等により、ガルバノミラーの温度が上昇し、レーザ光の照射位置ずれが発生する場合がある。このように、種々の要因により、ガルバノミラーの温度が上昇して、温度ドリフトと呼ばれる、レーザ光の照射位置ずれが発生する。 However, in a laser welding device using a galvanomirror, part of the laser light is absorbed by the galvanomirror, so the temperature of the galvanomirror rises during laser welding. Due to this effect, the irradiation position of the laser light may deviate from the set position. In addition to this, when the temperature of the galvanometer mirror rises due to heat generation of the drive circuit that drives the galvanometer mirror, temperature rise in the internal atmosphere of the welding device during laser welding, etc., and the laser beam irradiation position shifts. There is As described above, the temperature of the galvanomirror rises due to various factors, and a displacement of the irradiation position of the laser beam, called temperature drift, occurs.
 温度ドリフトに起因したレーザ光の照射位置ずれを低減するため、例えば、特許文献2には、CCDカメラとガルバノミラーのマウント部等に取り付けられた温度センサとを備えたレーザ加工装置が開示されている。CCDカメラは、レーザ光による実際の加工位置を検出し、加工位置と設定位置との間のずれ量を、温度センサで計測した温度と、予め求められた補正係数テーブルとを用いて補正する。 In order to reduce the displacement of the irradiation position of the laser beam due to temperature drift, for example, Patent Document 2 discloses a laser processing apparatus equipped with a CCD camera and a temperature sensor attached to a mount portion of a galvanomirror or the like. there is The CCD camera detects the actual position to be processed by the laser beam, and corrects the amount of deviation between the position to be processed and the set position using the temperature measured by the temperature sensor and a correction coefficient table obtained in advance.
特開2005-95934号公報JP 2005-95934 A 特開2005-40843号公報JP-A-2005-40843
 一方、温度ドリフト以外にも、レーザ光の照射位置ずれを生じさせる要因がある。主なものとして、レーザヘッドを保持し、移動させるマニピュレータの調整不足、摩耗もしくは経年劣化が挙げられる。マニピュレータの可動機構の調整が不十分である場合、もしくは摩耗、経年劣化が発生すると、設定した位置に対してレーザ光の照射位置がずれてしまうことがある。 On the other hand, there are factors other than temperature drift that cause deviations in the irradiation position of the laser light. The main causes include insufficient adjustment, wear, and aged deterioration of the manipulator that holds and moves the laser head. If the adjustment of the moving mechanism of the manipulator is insufficient, or if it wears out or deteriorates over time, the laser beam irradiation position may deviate from the set position.
 これを解決するには、マニピュレータの定期点検とメンテナンスが必要になる。しかし、点検頻度を高めると、装置のダウンタイムが長くなるとともに労力とメンテナンスコストがかかるという問題があった。 To solve this, regular inspection and maintenance of the manipulator is required. However, if the frequency of inspection is increased, there is a problem that the downtime of the equipment becomes longer and labor and maintenance costs increase.
 本開示はかかる点に鑑みてなされたもので、その目的は、簡便な構成でレーザ光の照射位置ずれを補正可能なレーザ溶接装置及びレーザ光の照射位置ずれの補正方法を提供することにある。 The present disclosure has been made in view of the above points, and an object thereof is to provide a laser welding apparatus capable of correcting the deviation of the irradiation position of the laser beam with a simple configuration, and a method of correcting the deviation of the irradiation position of the laser beam. .
 上記目的を達成するため、本開示に係るレーザ溶接装置は、レーザ光を発生させるレーザ発振器と、前記レーザ光を受け取ってワークに向けて照射するレーザヘッドと、少なくとも前記レーザヘッドの動作を制御するコントローラと、前記ワークを載置するステージと、を少なくとも備え、前記レーザヘッドは、前記レーザ光を第1方向と前記第1方向と交差する第2方向のそれぞれに走査するレーザ光スキャナと、光センサと、前記レーザ光の反射戻り光を前記光センサに入射させる光学系と、を有し、前記コントローラは、前記レーザ光を溶接線に沿って進行させながら、前記レーザ光を二次元的に走査するように前記レーザ光スキャナを駆動制御し、前記ステージは、補正部を有し、前記補正部は、反射板と、前記反射板の表面に設けられた反射スポットと、を有し、前記コントローラは、前記レーザ光を二次元的に走査しながら、前記反射スポットの周りに前記レーザ光を照射するように前記レーザ光スキャナを駆動制御して、前記光センサの出力がピークとなる第1ピーク位置を検出し、前記コントローラは、前記反射スポットの中心位置と前記第1ピーク位置とに基づいて、前記レーザ光の照射位置ずれを補正するように構成されていることを特徴とする。 In order to achieve the above object, a laser welding apparatus according to the present disclosure controls a laser oscillator that generates a laser beam, a laser head that receives the laser beam and irradiates it toward a workpiece, and at least the operation of the laser head. a controller, and a stage on which the work is placed, wherein the laser head scans the laser light in a first direction and a second direction intersecting the first direction, respectively; a sensor, and an optical system for causing the reflected return light of the laser beam to enter the optical sensor, and the controller controls the laser beam to travel along a welding line while two-dimensionally scanning the laser beam. driving and controlling the laser beam scanner so as to scan, the stage having a correction section, the correction section having a reflector and a reflection spot provided on the surface of the reflector; The controller drives and controls the laser light scanner so as to irradiate the laser light around the reflection spot while two-dimensionally scanning the laser light, and the output of the optical sensor reaches a peak. A peak position is detected, and the controller is configured to correct irradiation position deviation of the laser beam based on the center position of the reflected spot and the first peak position.
 本開示に係るレーザ光の照射位置ずれの補正方法は、前記レーザ溶接装置を用いたレーザ光の照射位置ずれの補正方法であって、前記レーザヘッドを前記反射スポットの中心位置に移動させるステップと、前記レーザ光スキャナを動作させて、前記レーザ光を二次元的に走査させながら、前記反射スポットの中心位置の周りに照射するステップと、前記光センサの出力がピークとなる第1ピーク位置を確認するステップと、前記第1ピーク位置が、前記反射スポットの中心位置と一致しているか否かを判断するステップと、前記第1ピーク位置が、前記反射スポットの中心位置と一致していれば、補正作業を終了するステップと、前記第1ピーク位置が、前記反射スポットの中心位置と一致していなければ、前記第1ピーク位置と前記反射スポットの中心位置とのずれ量を求めるステップと、前記反射スポットの中心位置の座標と前記ずれ量とに基づいて、前記レーザ光の照射位置ずれを補正するステップと、を備えたことを特徴とする。 A laser beam irradiation position deviation correction method according to the present disclosure is a laser beam irradiation position deviation correction method using the laser welding apparatus, the method comprising the step of moving the laser head to a center position of the reflection spot; a step of operating the laser light scanner to irradiate the periphery of the center position of the reflection spot while scanning the laser light two-dimensionally; determining whether or not the first peak position matches the center position of the reflected spot; and determining if the first peak position matches the center position of the reflected spot. , the step of completing the correction operation, and if the first peak position does not match the center position of the reflection spot, the step of obtaining the amount of deviation between the first peak position and the center position of the reflection spot; a step of correcting the displacement of the irradiation position of the laser light based on the coordinates of the center position of the reflected spot and the displacement amount.
 本開示のレーザ溶接装置によれば、簡便な構成でレーザ光の照射位置ずれを補正できる。また、本開示のレーザ光の照射位置ずれの補正方法によれば、簡便にレーザ光の照射位置ずれを補正できる。 According to the laser welding device of the present disclosure, it is possible to correct the irradiation position deviation of the laser light with a simple configuration. Further, according to the method for correcting the displacement of the irradiation position of the laser beam according to the present disclosure, the displacement of the irradiation position of the laser beam can be easily corrected.
実施形態1に係るレーザ溶接装置の概略構成図である。1 is a schematic configuration diagram of a laser welding device according to Embodiment 1. FIG. レーザ光スキャナの概略構成図である。1 is a schematic configuration diagram of a laser beam scanner; FIG. ステージの平面図である。4 is a plan view of the stage; FIG. 補正部の拡大平面図である。FIG. 4 is an enlarged plan view of a correction unit; 図4のV-V線での断面模式図である。FIG. 5 is a schematic cross-sectional view taken along line VV of FIG. 4; レーザヘッドの概略構成図である。1 is a schematic configuration diagram of a laser head; FIG. 実施形態1に係るレーザ光の照射位置ずれの補正手順を示すフローチャートである。4 is a flow chart showing a procedure for correcting a laser beam irradiation position deviation according to the first embodiment. 光センサの出力をレーザ光が走査されるXY平面にプロットした場合の模式図である。FIG. 10 is a schematic diagram when the output of the optical sensor is plotted on the XY plane scanned by the laser light; レーザ光の照射角度ずれの補正における誤差発生のメカニズムを示す模式図であって、レーザ光が反射スポットに対して垂直に入射した場合の模式図である。FIG. 3 is a schematic diagram showing a mechanism of error generation in correction of irradiation angle deviation of laser light, and is a schematic diagram when laser light is perpendicularly incident on a reflected spot. レーザ光の照射角度ずれの補正における誤差発生のメカニズムを示す模式図であって、レーザ光が反射スポットに対して斜めに入射した場合の模式図である。FIG. 4 is a schematic diagram showing a mechanism of error generation in correction of irradiation angle deviation of laser light, and is a schematic diagram when laser light is obliquely incident on a reflected spot. レーザ光の垂直入射からの入射角度ずれ量とXY平面での位置ずれ量との関係を示す模式図である。It is a schematic diagram which shows the relationship between the incident angle deviation|shift amount from perpendicular|vertical incidence of a laser beam, and the positional deviation|shift amount in XY plane. 実施形態2に係るレーザ光の照射位置ずれの補正手順を示すフローチャートである。9 is a flow chart showing a procedure for correcting a laser beam irradiation position deviation according to the second embodiment.
 以下、本開示の実施形態を図面に基づいて説明する。なお、以下の好ましい実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物或いはその用途を制限することを意図するものではない。 Hereinafter, embodiments of the present disclosure will be described based on the drawings. It should be noted that the following description of preferred embodiments is merely illustrative in nature and is not intended to limit the present disclosure, its applications or uses.
 (実施形態1)
 [レーザ溶接装置の構成]
 [レーザ溶接装置及びレーザ光スキャナの構成]
 図1は、本実施形態に係るレーザ溶接装置の構成の模式図を示し、図2は、レーザ光スキャナの概略構成図を示す。
(Embodiment 1)
[Configuration of laser welding device]
[Configuration of Laser Welding Device and Laser Light Scanner]
FIG. 1 shows a schematic diagram of the configuration of a laser welding apparatus according to this embodiment, and FIG. 2 shows a schematic configuration diagram of a laser beam scanner.
 なお、以降の説明において、ミラー33から光センサ38に向かうレーザ光LBの進行方向と平行な方向をX方向と呼ぶことがある。レーザヘッド30から出射されるレーザ光LBの光軸と平行な方向をZ方向と呼ぶことがある。X方向及びZ方向とそれぞれ直交する方向をY方向と呼ぶことがある。X方向とY方向とを面内に含むXY平面は、ワーク200の表面が平坦面である場合、当該表面と略平行でもよく、当該表面と一定の角度をなしていてもよい。 In the following description, the direction parallel to the traveling direction of the laser beam LB traveling from the mirror 33 to the optical sensor 38 may be called the X direction. A direction parallel to the optical axis of the laser beam LB emitted from the laser head 30 is sometimes called the Z direction. A direction orthogonal to the X direction and the Z direction is sometimes called the Y direction. If the surface of the workpiece 200 is flat, the XY plane including the X direction and the Y direction within the plane may be substantially parallel to the surface, or may form a certain angle with the surface.
 図1に示すように、レーザ溶接装置100は、レーザ発振器10と光ファイバ20とレーザヘッド30とコントローラ50とマニピュレータ60とステージ70を備えている。 As shown in FIG. 1, the laser welding device 100 includes a laser oscillator 10, an optical fiber 20, a laser head 30, a controller 50, a manipulator 60 and a stage 70.
 レーザ発振器10は、図示しない電源から電力が供給されてレーザ光LBを発生させるレーザ光源である。なお、レーザ発振器10は、単一のレーザ光源で構成されていてもよいし、複数のレーザモジュールで構成されていてもよい。後者の場合は、複数のレーザモジュールからそれぞれ出射されたレーザ光を結合してレーザ光LBとして出射する。また、レーザ発振器10で使用されるレーザ光源あるいはレーザモジュールは、ワーク200の材質や溶接部位の形状等に応じて、適宜選択される。 The laser oscillator 10 is a laser light source that is supplied with power from a power source (not shown) and generates a laser beam LB. Note that the laser oscillator 10 may be composed of a single laser light source, or may be composed of a plurality of laser modules. In the latter case, laser beams respectively emitted from a plurality of laser modules are combined and emitted as laser beam LB. Also, the laser light source or laser module used in the laser oscillator 10 is appropriately selected according to the material of the workpiece 200, the shape of the welded portion, and the like.
 光ファイバ20は、レーザ発振器10に光学的に結合されている。レーザ発振器10で発生したレーザ光LBは、光ファイバ20に入射されて、光ファイバ20の内部をレーザヘッド30に向けて伝送される。 The optical fiber 20 is optically coupled to the laser oscillator 10. A laser beam LB generated by the laser oscillator 10 enters the optical fiber 20 and is transmitted through the optical fiber 20 toward the laser head 30 .
 レーザヘッド30は、光ファイバ20の端部に取り付けられており、光ファイバ20から伝送されたレーザ光LBをワーク200に向けて照射する。 The laser head 30 is attached to the end of the optical fiber 20 and irradiates the workpiece 200 with the laser light LB transmitted from the optical fiber 20 .
 また、レーザヘッド30は、光学部品として、コリメーションレンズ32とミラー33と第1集光レンズ34とレーザ光スキャナ40とを有している。また、レーザヘッド30は、保護ガラス35とアパーチャー36と第2集光レンズ37と光センサ38とを有している。筐体31の内部にこれらの光学部品が所定の配置関係を保って収容されている。 The laser head 30 also has a collimation lens 32, a mirror 33, a first condenser lens 34, and a laser beam scanner 40 as optical components. The laser head 30 also has a protective glass 35 , an aperture 36 , a second condenser lens 37 and an optical sensor 38 . These optical components are accommodated in the housing 31 while maintaining a predetermined arrangement relationship.
 コリメーションレンズ32は、光ファイバ20から出射されたレーザ光LBを受け取って、平行光に変換し、ミラー33に入射させる。また、コリメーションレンズ32は、図示しない駆動部に連結されており、コントローラ50からの制御信号に応じて、Z方向に変位可能に構成されている。コリメーションレンズ32をZ方向に変位させることで、レーザ光LBの焦点位置を変化させ、ワーク200の形状に応じて適切にレーザ光LBを照射させることができる。つまり、コリメーションレンズ32は、図示しない駆動部との組み合わせにより、レーザ光LBの焦点位置調整機構としても機能している。図1では、コリメーションレンズ32が1枚のレンズで構成された例を示している。コリメーションレンズ32の位置をZ方向に駆動すると焦点位置を調整できるが、コリメーションレンズ32から出射されたレーザ光LBは、その平行度が多少減少する。このことを防ぐために、コリメーションレンズ32を複数枚のレンズを組み合わせた構成とするのが望ましい。なお、第1集光レンズ34を駆動部により変位させて、レーザ光LBの焦点位置を変化させるようにしてもよい。駆動部は、例えば、アクチュエータまたはモータである。 The collimation lens 32 receives the laser light LB emitted from the optical fiber 20 , converts it into parallel light, and makes it enter the mirror 33 . Also, the collimation lens 32 is connected to a drive section (not shown) and configured to be displaceable in the Z direction according to a control signal from the controller 50 . By displacing the collimation lens 32 in the Z direction, it is possible to change the focal position of the laser beam LB and appropriately irradiate the laser beam LB according to the shape of the workpiece 200 . In other words, the collimation lens 32 also functions as a focal position adjusting mechanism for the laser beam LB in combination with a drive section (not shown). FIG. 1 shows an example in which the collimation lens 32 is composed of one lens. The focal position can be adjusted by moving the collimation lens 32 in the Z direction, but the parallelism of the laser beam LB emitted from the collimation lens 32 is somewhat reduced. In order to prevent this, it is desirable to configure the collimation lens 32 by combining a plurality of lenses. It should be noted that the focus position of the laser beam LB may be changed by displacing the first condenser lens 34 by the drive section. The drive is, for example, an actuator or a motor.
 ミラー33は、コリメーションレンズ32を透過したレーザ光LBをさらに透過して、レーザ光スキャナ40に入射させる。一方、ミラー33は、ステージ70の反射スポット72b(図3~5参照)で反射され、レーザ光スキャナ40を通過したレーザ光LBの反射戻り光をアパーチャー36に向けて反射させる(図6参照)。ミラー33の表面は、コリメーションレンズ32を透過したレーザ光LBの光軸と約45度をなすように設けられている。 The mirror 33 further transmits the laser light LB that has passed through the collimation lens 32 to enter the laser light scanner 40 . On the other hand, the mirror 33 reflects the reflected return light of the laser light LB that has passed through the laser light scanner 40 and is reflected by the reflection spot 72b (see FIGS. 3 to 5) of the stage 70 toward the aperture 36 (see FIG. 6). . The surface of the mirror 33 is provided so as to make an angle of about 45 degrees with the optical axis of the laser beam LB that has passed through the collimation lens 32 .
 第1集光レンズ34は、ミラー33を透過して、レーザ光スキャナ40で走査されたレーザ光LBをワーク200の表面に集光させる。 The first condenser lens 34 transmits the mirror 33 and converges the laser beam LB scanned by the laser beam scanner 40 onto the surface of the workpiece 200 .
 保護ガラス35は、レーザ光LBに対して透明な材質からなる。保護ガラス35は、レーザ溶接中に発生したスパッタやヒュームが、筐体31の内部に入り込むのを防止する。なお、スパッタとは、ワーク200の溶融物が飛び散ったものであり、ヒュームとは、ワーク200が溶融して発生する金属蒸気である。 The protective glass 35 is made of a material transparent to the laser beam LB. The protective glass 35 prevents spatters and fumes generated during laser welding from entering the housing 31 . The spatter is spattered molten material of the workpiece 200, and the fume is metal vapor generated by melting the workpiece 200. As shown in FIG.
 アパーチャー36は、X方向に沿って、ミラー33と第2集光レンズ37との間に配置される。第2集光レンズ37は、X方向に沿って、アパーチャー36と光センサ38との間に配置される。なお、アパーチャー36と第2集光レンズ37と光センサ38との機能については後で述べる。また、後で述べるように、ミラー33とアパーチャー36と第2集光レンズ37とで構成される光学系39は、レーザ光LBの反射戻り光を光センサ38に入射させるように構成されている。なお、図1では、光ファイバ20の端面から出射し、レーザ光スキャナ40に入射するレーザ光の光軸とレーザ光スキャナ40から出射したレーザ光LBの光軸とが一致しているように描いているが、これは模式的な図示であり、レーザ光スキャナ40を構成する第1ガルバノミラー41と第2ガルバノミラー42(いずれも図2参照)との関係で、実際には両者は一致しない。このことについては、後で図6を用いて詳細に説明する。 The aperture 36 is arranged between the mirror 33 and the second condenser lens 37 along the X direction. A second condenser lens 37 is arranged between the aperture 36 and the optical sensor 38 along the X direction. The functions of the aperture 36, the second condenser lens 37, and the optical sensor 38 will be described later. As will be described later, the optical system 39 composed of the mirror 33, the aperture 36, and the second condenser lens 37 is configured to cause the reflected return light of the laser beam LB to enter the optical sensor 38. . In FIG. 1, the optical axis of the laser beam emitted from the end face of the optical fiber 20 and entering the laser beam scanner 40 and the optical axis of the laser beam LB emitted from the laser beam scanner 40 are depicted as being aligned. However, this is a schematic illustration, and the relationship between the first galvanometer mirror 41 and the second galvanometer mirror 42 (both of which are shown in FIG. 2) that constitute the laser beam scanner 40 does not actually match. . This will be described later in detail with reference to FIG.
 図2に示すように、レーザ光スキャナ40は、第1ガルバノミラー41と第2ガルバノミラー42とを有する公知のガルバノスキャナである。第1ガルバノミラー41は、第1ミラー41aと第1回転軸41bと第1駆動部41cとを有し、第2ガルバノミラー42は、第2ミラー42aと第2回転軸42bと第2駆動部42cとを有している。第1集光レンズ34を透過したレーザ光LBは、第1ミラー41aで反射され、さらに第2ミラー42aで反射されて、ワーク200の表面に照射される。 As shown in FIG. 2, the laser light scanner 40 is a known galvanometer scanner having a first galvanometer mirror 41 and a second galvanometer mirror 42 . The first galvanomirror 41 has a first mirror 41a, a first rotating shaft 41b, and a first driving portion 41c, and the second galvanomirror 42 has a second mirror 42a, a second rotating shaft 42b, and a second driving portion. 42c. The laser beam LB that has passed through the first condenser lens 34 is reflected by the first mirror 41 a and further reflected by the second mirror 42 a to irradiate the surface of the workpiece 200 .
 例えば、第1駆動部41c及び第2駆動部42cは、ガルバノモータであり、第1回転軸41b及び第2回転軸42bは、モータの出力軸である。図示していないが、第1駆動部41cが、コントローラ50からの制御信号に応じて動作するドライバによって回転駆動することで、第1回転軸41bに取り付けられた第1ミラー41aが第1回転軸41bの軸線回りに回転する。同様に、第2駆動部42cが、コントローラ50からの制御信号に応じて動作するドライバによって回転駆動することで、第2回転軸42bに取り付けられた第2ミラー42aが第2回転軸42bの軸線回りに回転する。 For example, the first driving section 41c and the second driving section 42c are galvanometer motors, and the first rotating shaft 41b and the second rotating shaft 42b are output shafts of the motors. Although not shown, the first drive unit 41c is rotationally driven by a driver that operates according to a control signal from the controller 50, so that the first mirror 41a attached to the first rotation shaft 41b is rotated by the first rotation shaft. It rotates around the axis of 41b. Similarly, the second driving section 42c is rotationally driven by a driver that operates in response to a control signal from the controller 50, so that the second mirror 42a attached to the second rotating shaft 42b moves along the axis of the second rotating shaft 42b. rotate around.
 第1ミラー41aが第1回転軸41bの軸線回りに所定の角度まで回転動作をすることで、レーザ光LBがX方向に走査される。また、第2ミラー42aが第2回転軸42bの軸線回りに所定の角度まで回転動作をすることで、レーザ光LBがY方向に走査される。つまり、レーザ光スキャナ40は、レーザ光LBをXY平面内で二次元的に走査してワーク200に向けて照射するように構成されている。 The laser beam LB is scanned in the X direction by rotating the first mirror 41a up to a predetermined angle around the axis of the first rotating shaft 41b. In addition, the laser beam LB is scanned in the Y direction by rotating the second mirror 42a up to a predetermined angle around the axis of the second rotating shaft 42b. That is, the laser light scanner 40 is configured to two-dimensionally scan the laser light LB within the XY plane and irradiate the workpiece 200 with the laser light LB.
 コントローラ50は、レーザ発振器10のレーザ発振を制御する。具体的には、レーザ発振器10に接続された図示しない電源に対してレーザ光LBの出力と所定の関係をなす出力電流やオンオフ時間等の制御信号を供給することにより、レーザ発振制御を行う。また、コントローラ50は、レーザ光LBの出力を制御する。 The controller 50 controls laser oscillation of the laser oscillator 10 . Specifically, laser oscillation is controlled by supplying a control signal such as an output current having a predetermined relationship with the output of the laser beam LB and an on/off time to a power source (not shown) connected to the laser oscillator 10 . Also, the controller 50 controls the output of the laser beam LB.
 また、コントローラ50は、選択されたレーザ溶接プログラムの内容に応じて、レーザヘッド30の動作を制御する。具体的には、レーザヘッド30に設けられたレーザ光スキャナ40及び、コリメーションレンズ32の図示しない駆動部の駆動制御を行う。さらに、コントローラ50は、マニピュレータ60の動作を制御する。 Also, the controller 50 controls the operation of the laser head 30 according to the content of the selected laser welding program. Specifically, drive control of the laser beam scanner 40 provided in the laser head 30 and the drive unit (not shown) of the collimation lens 32 is performed. Further, controller 50 controls the operation of manipulator 60 .
 コントローラ50は、情報処理部51として、LSIまたはマイクロコンピュータ等の集積回路を有しており、この集積回路上でソフトウェアであるレーザ溶接プログラムを実行することで、前述のコントローラ50の機能が実現される。また、コントローラ50は、記憶部52として、RAMやROMやSSD等のメモリデバイスを有している。レーザ溶接プログラムは、記憶部52に保存され、コントローラ50からの命令によってコントローラ50に呼び出される。なお、記憶部52は、コントローラ50に着脱可能なSDカード(登録商標)であってもよい。また、記憶部52は、コントローラ50とは別の場所に設けられてもよい。 The controller 50 has an integrated circuit such as an LSI or a microcomputer as an information processing unit 51. By executing a laser welding program, which is software, on this integrated circuit, the functions of the controller 50 described above are realized. be. In addition, the controller 50 has a memory device such as a RAM, a ROM, an SSD, etc. as a storage unit 52 . A laser welding program is stored in the storage unit 52 and called by the controller 50 according to a command from the controller 50 . Note that the storage unit 52 may be an SD card (registered trademark) detachable from the controller 50 . Also, the storage unit 52 may be provided at a location different from the controller 50 .
 また、記憶部52は、後で述べるレーザ光LBの照射位置の補正結果等を保存する。例えば、温度ドリフトに起因したレーザ光LBの照射位置のずれ量やその補正結果が記憶部52に保存される。具体的には、第1ガルバノミラー41と第2ガルバノミラー42でのレーザ光LBの吸収に起因するレーザ光LBの照射位置のずれ量やその補正結果が記憶部52に保存される。あるいは、これらを駆動する駆動回路の発熱に起因するレーザ光LBの照射位置のずれ量やその補正結果が記憶部52に保存される。 In addition, the storage unit 52 stores the correction result of the irradiation position of the laser beam LB, etc., which will be described later. For example, the amount of displacement of the irradiation position of the laser beam LB due to temperature drift and the correction result thereof are stored in the storage unit 52 . Specifically, the amount of displacement of the irradiation position of the laser beam LB caused by the absorption of the laser beam LB by the first galvano mirror 41 and the second galvano mirror 42 and the correction result thereof are stored in the storage unit 52 . Alternatively, the amount of deviation of the irradiation position of the laser beam LB due to the heat generation of the drive circuit that drives them and the correction result thereof are stored in the storage unit 52 .
 なお、レーザヘッド30の動作を制御するコントローラ50とレーザ光LBの出力を制御するコントローラ50とを別個に設けてもよい。 The controller 50 for controlling the operation of the laser head 30 and the controller 50 for controlling the output of the laser beam LB may be provided separately.
 マニピュレータ60は、多関節ロボットであり、レーザヘッド30の筐体31に取り付けられている。また、マニピュレータ60は、コントローラ50と信号の授受が可能に接続され、前述のレーザ溶接プログラムに応じて所定の軌跡を描くようにレーザヘッド30を移動させる。その結果、レーザ光LBが、溶接線WLに沿って、また、溶接線WLの周りを二次元的に走査されながら、ワーク200の表面に照射される。 The manipulator 60 is an articulated robot and is attached to the housing 31 of the laser head 30. Also, the manipulator 60 is connected to the controller 50 so that signals can be sent and received, and moves the laser head 30 so as to draw a predetermined locus according to the laser welding program described above. As a result, the surface of the workpiece 200 is irradiated with the laser beam LB along the welding line WL and while being two-dimensionally scanned around the welding line WL.
 なお、マニピュレータ60の動作を制御する別のコントローラ(図示せず)を設けるようにしてもよい。ただし、その場合も、レーザ光LBの照射位置の構成を行うため、レーザヘッド30の動作を制御するコントローラ50とデータ通信可能に構成される必要がある。 A separate controller (not shown) for controlling the operation of the manipulator 60 may be provided. However, even in that case, it is necessary to be able to communicate data with the controller 50 that controls the operation of the laser head 30 in order to configure the irradiation position of the laser beam LB.
 ステージ70は、本体部71と補正部72とを有している。ステージ70の構成については、後で詳述する。 The stage 70 has a body portion 71 and a correction portion 72 . The configuration of the stage 70 will be detailed later.
 図1に示すレーザ溶接装置100は、種々の形状のワーク200に対してレーザ溶接を行うことができる。 The laser welding device 100 shown in FIG. 1 can perform laser welding on workpieces 200 of various shapes.
 [ステージ及びレーザヘッドの構成]
 図3は、ステージの平面図を、図4は、補正部の拡大平面図を、図5は、図4のV-V線での断面模式図をそれぞれ示す。
[Configuration of stage and laser head]
3 is a plan view of the stage, FIG. 4 is an enlarged plan view of the corrector, and FIG. 5 is a schematic cross-sectional view taken along line VV of FIG.
 図3に示すように、ステージ70は、本体部71と補正部72とを有している。本体部71にはワーク200が載置され、レーザ光LBの照射によりワーク200が溶接される。このため、図示しないが、本体部71は、ワーク200を支持する平坦面を有する部分とレーザ光LBが通過する部分とを含んでいる。 As shown in FIG. 3, the stage 70 has a body portion 71 and a correction portion 72. A workpiece 200 is placed on the body portion 71, and the workpiece 200 is welded by irradiation with the laser beam LB. Therefore, although not shown, the body portion 71 includes a portion having a flat surface for supporting the workpiece 200 and a portion through which the laser beam LB passes.
 一方、補正部72は、本体部71の一角に配置されている。図4及び図5に示すように、補正部72は、レーザ光LBを反射する反射板72aと、反射板72aの表面に設けられた反射スポット72bとを有している。なお、反射スポット72bの直径dは、レーザ光LBの直径の1/10倍~等倍(1倍)程度になるように設定されている。なお、図4及び図5に示す反射スポット72bの形状は、Z方向から見て円形状で、断面視で板状であるが、特にこれに限定されない。例えば、反射スポット72bが、Z方向から見て四角形であってもよい。なお、反射スポット72bの表面と反射板72aの表面とが面一になるように、反射スポット72bが設けられてもよい。 On the other hand, the correction section 72 is arranged at one corner of the main body section 71 . As shown in FIGS. 4 and 5, the correction section 72 has a reflector 72a that reflects the laser beam LB and a reflection spot 72b provided on the surface of the reflector 72a. The diameter d of the reflected spot 72b is set to be about 1/10 to 1 times (1 times) the diameter of the laser beam LB. The shape of the reflection spot 72b shown in FIGS. 4 and 5 is circular when viewed from the Z direction and plate-like when viewed in cross section, but is not particularly limited to this. For example, the reflected spot 72b may be square when viewed from the Z direction. The reflection spot 72b may be provided such that the surface of the reflection spot 72b and the surface of the reflector 72a are flush with each other.
 反射スポット72bにおけるレーザ光LBの反射率は、反射板72aにおけるレーザ光LBの反射率よりも高くなるように設計されている。本開示の内容を限定するものではないが、補正部72は、一例として、以下の通りに構成することができる。例えば、補正部72として、表面に所定の形状の銅箔が設けられたプリント基板を使用することができる。その際、反射板72aは、銅箔が除去されたエポキシ樹脂の板材部分とし、反射スポット72bは、所定の直径を有するスポット形状の銅箔とすればよい。また、銅箔の部分には、金メッキを施せば、なおよい。このようにすると、銅箔の部分とエポキシ樹脂とで、レーザ光LBに対する反射率の差が十分に大きくなるので、補正部72の役割を容易に果たすことができる。また、反射スポット72bは、銅や金に特に限定されず、レーザ光LBに対して所定以上の反射率を有する材料であればよい。例えば、アルミニウムや銀であってもよい。また、反射スポット72b以外の補正部72が、レーザ光LBに対して反射スポット72bよりも反射率が低い材料であればよい。 The reflectance of the laser beam LB at the reflection spot 72b is designed to be higher than the reflectance of the laser beam LB at the reflector 72a. Although the contents of the present disclosure are not limited, the correction unit 72 can be configured as follows as an example. For example, as the corrector 72, a printed circuit board having a copper foil of a predetermined shape on its surface can be used. In this case, the reflecting plate 72a may be a plate member made of epoxy resin from which the copper foil has been removed, and the reflection spot 72b may be a spot-shaped copper foil having a predetermined diameter. It is even better if the copper foil portion is plated with gold. With this configuration, the difference in reflectance with respect to the laser beam LB is sufficiently large between the copper foil portion and the epoxy resin, so that the role of the correcting portion 72 can be easily fulfilled. Further, the reflection spot 72b is not particularly limited to copper or gold, and any material having a reflectance of a predetermined value or higher with respect to the laser beam LB may be used. For example, it may be aluminum or silver. Further, the correcting portion 72 other than the reflected spot 72b may be made of a material having a lower reflectance than the reflected spot 72b with respect to the laser beam LB.
 後で述べるように、補正部72は、レーザ光スキャナ40において、前述した温度ドリフトが発生しているか否か、また、発生している場合は、温度ドリフトの補正量を測定するために利用される。 As will be described later, the correction unit 72 is used to determine whether or not the above-described temperature drift occurs in the laser beam scanner 40, and to measure the correction amount of the temperature drift if it occurs. be.
 なお、ステージ70における補正部72の位置は、図3に示したものに特に限定されない。ただし、ワーク200のレーザ溶接時には、溶接線WLの近傍に、スパッタやヒュームが飛散したり、ワーク200がアルミニウムを含む場合には、スマットが付着したりする。これらが反射スポット72bに付着するのを防ぐため、ワーク200の溶接線WLが、補正部72から所定以上離れた位置に配置されるようにする必要がある。また、溶接工程では、補正部72は使用されないため、その表面を保護するように図示しないカバーを取り付けてもよい。 The position of the correction section 72 on the stage 70 is not particularly limited to that shown in FIG. However, when the work 200 is laser-welded, spatters and fumes may scatter in the vicinity of the weld line WL, and smut may adhere to the work 200 when the work 200 contains aluminum. In order to prevent these from adhering to the reflection spot 72b, the welding line WL of the workpiece 200 needs to be arranged at a position separated from the correcting portion 72 by a predetermined distance or more. Further, since the correction part 72 is not used in the welding process, a cover (not shown) may be attached to protect its surface.
 レーザ光LBが、図4に示す破線に沿って、言い換えると、X方向及びY方向のそれぞれに所定の間隔をあけて順次走査されながら、補正部72に照射される。レーザ光LBが反射スポット72bに入射された場合、ほとんど散乱等されること無く、もとの光路に沿って反射される。ただし、反射スポット72bに対し垂直に入射したレーザ光以外は、もとの光路をそのまま戻って反射されるわけではなく、もとの光路とわずかなずれが生じる。後述するが、このずれに対しても補正すれば、レーザ光LBの照射位置ずれに対する補正精度をさらに高めることができる。 The laser beam LB is irradiated onto the correction unit 72 along the dashed line shown in FIG. 4, in other words, while being sequentially scanned at predetermined intervals in each of the X direction and the Y direction. When the laser beam LB is incident on the reflection spot 72b, it is reflected along the original optical path without being scattered or the like. However, laser light other than the laser light incident perpendicularly to the reflected spot 72b does not return along the original optical path as it is and is slightly deviated from the original optical path. As will be described later, if this deviation is also corrected, it is possible to further improve the correction accuracy for the irradiation position deviation of the laser beam LB.
 図6は、レーザヘッドの概略構成図を示す。なお、説明の便宜上、図6において、筐体31の図示を省略している。また、レーザ光スキャナ40を簡略化して図示している。 FIG. 6 shows a schematic configuration diagram of the laser head. For convenience of explanation, illustration of the housing 31 is omitted in FIG. Also, the laser light scanner 40 is illustrated in a simplified manner.
 図6に示すように、光ファイバ20から筐体31の内部に導光されたレーザ光LBは、コリメーションレンズ32で平行化される。平行化されたレーザ光LBは、ミラー33を透過する。ミラー33を透過したレーザ光LBは、レーザ光スキャナ40に入射する。なお、この場合、レーザ光スキャナ40におけるレーザ光LBの入射位置P1は、光ファイバ20から筐体31の内部に導光されたレーザ光LBの光軸a-a’上にある。 As shown in FIG. 6, the laser light LB guided from the optical fiber 20 into the housing 31 is collimated by the collimation lens 32 . The collimated laser beam LB is transmitted through the mirror 33 . The laser beam LB transmitted through the mirror 33 is incident on the laser beam scanner 40 . In this case, the incident position P1 of the laser beam LB in the laser beam scanner 40 is on the optical axis aa' of the laser beam LB guided from the optical fiber 20 into the housing 31. FIG.
 レーザ光スキャナ40を通過したレーザ光LBは、レーザ光スキャナ40における位置P2から出射される。レーザ光スキャナ40を動作させず、第1ガルバノミラー41と第2ガルバノミラー42がそれぞれ初期位置にある場合、図6において、位置P2は光軸c-c’上にあるとしている。ただし、レーザ光LBを走査する場合は、位置P2は光軸c-c’とともに別のずれた場所に位置する(図示せず)。なお、レーザ光スキャナ40によりレーザ光LBを走査した場合と走査しない場合のいずれにおいても、実際のレーザ光LBは、レーザ光スキャナ40の内部では第1ガルバノミラー41と第2ガルバノミラー42の反射を受ける。そのため、入射ビームの光軸a-a’は出射ビームの光軸c-c’とは一致しない。このことにより、図6において、レーザ光スキャナ40から出射されたレーザ光LBが所定の距離だけX方向へシフトしているように描いている。 The laser beam LB that has passed through the laser beam scanner 40 is emitted from the position P2 on the laser beam scanner 40 . When the laser beam scanner 40 is not operated and the first galvanometer mirror 41 and the second galvanometer mirror 42 are at their initial positions, the position P2 is on the optical axis c-c' in FIG. However, in the case of scanning with the laser beam LB, the position P2 is positioned at a different location along with the optical axis c-c' (not shown). Note that whether the laser beam scanner 40 scans the laser beam LB or not scans the laser beam LB, the actual laser beam LB is reflected by the first galvano mirror 41 and the second galvano mirror 42 inside the laser beam scanner 40 . receive. Therefore, the optical axis aa' of the incident beam does not coincide with the optical axis cc' of the outgoing beam. As a result, in FIG. 6, the laser beam LB emitted from the laser beam scanner 40 is depicted as being shifted in the X direction by a predetermined distance.
 レーザ光LBは、反射板72aに位置P3で入射し、レーザ光スキャナ40に向けて、つまり、概ねZ方向に沿って反射板72aから入射方向とは反対の方向に反射される。レーザ光LBの反射戻り光は、位置P4でレーザ光スキャナ40に入射し、位置P5からレーザ光スキャナ40の外部に出射され、さらにミラー33に入射される。レーザ光LBは、位置P6でミラー33に入射した後、X方向に反射され、アパーチャー36に入射する。アパーチャー36で絞りがかけられたレーザ光LBは、光量と直径とが調整される。なお、位置P6から光センサ38の中心位置P7に向かうレーザ光LBの光軸は、図6において、b-b’で示される。 The laser beam LB is incident on the reflector 72a at the position P3 and is reflected toward the laser beam scanner 40, that is, in the direction opposite to the incident direction from the reflector 72a generally along the Z direction. The reflected return light of the laser beam LB enters the laser beam scanner 40 at the position P4, exits the laser beam scanner 40 from the position P5, and then enters the mirror 33. FIG. After entering the mirror 33 at the position P6, the laser beam LB is reflected in the X direction and enters the aperture . The light amount and diameter of the laser beam LB narrowed by the aperture 36 are adjusted. The optical axis of the laser beam LB from the position P6 to the center position P7 of the optical sensor 38 is indicated by bb' in FIG.
 第2集光レンズ37は、アパーチャー36を通過したレーザ光LBを光センサ38の受光面(図示せず)に集光させる。つまり、前述の光学系39は、保護ガラス35を透過して、筐体31の内部に進入したレーザ光LBの反射戻り光を光センサ38に入射させる。 The second condenser lens 37 converges the laser beam LB that has passed through the aperture 36 onto the light receiving surface (not shown) of the optical sensor 38 . In other words, the optical system 39 described above causes the reflected return light of the laser light LB that has entered the housing 31 through the protective glass 35 to enter the optical sensor 38 .
 光センサ38は、入射したレーザ光LBの光量に応じた電気信号を出力する。この出力信号は、コントローラ50に入力され、後で述べるレーザ光LBの照射位置の補正に用いられる。 The optical sensor 38 outputs an electrical signal corresponding to the amount of incident laser light LB. This output signal is input to the controller 50 and used to correct the irradiation position of the laser beam LB, which will be described later.
 [レーザ光の照射位置ずれの補正方法]
 図7は、レーザ光の照射位置ずれの補正手順のフローチャートを示し、図8は、光センサの出力をレーザ光が走査されるXY平面にプロットした場合の模式図を示す。図8では、説明のために、XY平面上における反射スポット72bに対する入射ビームの角度が常に垂直の場合を想定している。
[Method for Correcting Laser Beam Irradiation Position Deviation]
FIG. 7 shows a flow chart of a procedure for correcting irradiation position deviation of the laser light, and FIG. 8 shows a schematic diagram when the output of the optical sensor is plotted on the XY plane scanned by the laser light. In FIG. 8, for the sake of explanation, it is assumed that the incident beam is always perpendicular to the reflected spot 72b on the XY plane.
 図3に示す補正部72において、XY平面上で反射スポット72bの中心位置をレーザ光スキャナ40のガルバノ原点と一致するようにし、原点Oとする。ここで、ガルバノ原点は、温度ドリフトが無い場合の、レーザヘッド30のXY平面上でのレーザ光LBの初期位置に対応している。言い換えると、ガルバノ原点は、マニピュレータ60の先端のXY平面上での初期位置に対応している。原点Oは、XY平面上の座標として記憶部52に保存されている。  In the correction unit 72 shown in FIG. 3, the center position of the reflected spot 72b on the XY plane is made to coincide with the galvanometer origin of the laser light scanner 40, which is the origin O. Here, the galvanometer origin corresponds to the initial position of the laser beam LB on the XY plane of the laser head 30 when there is no temperature drift. In other words, the galvano origin corresponds to the initial position of the tip of the manipulator 60 on the XY plane. The origin O is stored in the storage unit 52 as coordinates on the XY plane.
 温度ドリフトが無い場合、レーザ光LBが原点O及びその近傍に照査された場合のみに、光センサ38で出力信号が発生する。なお、この場合の「近傍」とは、原点OからXY平面上にレーザ光LBを集光した際の半径の1/10~1/2程度に離れた距離をいう。言うまでもなく、この距離を短くすることもできる。その際には、後述する補正の精度がより高くなる。 When there is no temperature drift, the optical sensor 38 generates an output signal only when the laser beam LB is collated at the origin O and its vicinity. In this case, the term "nearby" refers to a distance of about 1/10 to 1/2 of the radius of the laser beam LB condensed from the origin O on the XY plane. Of course, this distance can also be shortened. In that case, the accuracy of correction, which will be described later, becomes higher.
 一方、温度ドリフトが発生している場合、その影響によって、レーザ光LBを走査する場合に、走査時の原点がガルバノ原点に該当する原点Oからずれてしまう場合がある。つまり、原点Oからレーザ光LBが所定以上に離れた位置に照射された場合に、光センサ38で出力信号が発生することがある。 On the other hand, if a temperature drift occurs, the origin during scanning may deviate from the origin O corresponding to the galvanometer origin due to the effect of the drift when the laser beam LB is scanned. That is, when the laser beam LB is irradiated at a position distant from the origin O by a predetermined distance or more, the optical sensor 38 may generate an output signal.
 このようなことが起こると、ワーク200に対して所望の照射軌跡でレーザ光LBを照射できなくなり、溶接不良が発生する原因となるおそれがある。 If such a thing occurs, it becomes impossible to irradiate the workpiece 200 with the laser beam LB along the desired irradiation trajectory, which may cause welding defects.
 なお、「走査時の原点」とは、実際の溶接、または後述する補正時にレーザ光スキャナ40にてワーク200またはステージ70表面に照射した場合の、X軸方向の位置指令とY軸方向の位置指令とがともにゼロ(もしくは、レーザ光スキャナ40と対応する固定値。説明上、以下では、この値をゼロとする。)の場合の、XY平面上での実際のレーザ光LBの照射点にあたる。なお、X軸方向の位置指令とは、第1駆動部41cに対する回転位置の指令(以下、回転指令という)であり、Y軸方向の位置指令とは、第2駆動部42cに対する回転指令である。この場合、X軸方向とY軸方向の位置指令はともにゼロなので、温度ドリフトが無い場合、走査時の原点はガルバノ原点と一致する。 The "origin at the time of scanning" is the position command in the X-axis direction and the position in the Y-axis direction when the workpiece 200 or the surface of the stage 70 is irradiated with the laser light scanner 40 during actual welding or correction described later. (or a fixed value corresponding to the laser beam scanner 40. For the sake of explanation, hereinafter, this value is assumed to be zero.), the actual irradiation point of the laser beam LB on the XY plane. . The position command in the X-axis direction is a rotational position command (hereinafter referred to as a rotation command) for the first drive unit 41c, and the position command in the Y-axis direction is a rotation command for the second drive unit 42c. . In this case, since the position commands in the X-axis direction and the Y-axis direction are both zero, the origin during scanning coincides with the galvanometer origin if there is no temperature drift.
 そこで、図7に示す手順で、レーザ光LBの照射位置、この場合は、走査時の原点位置のずれを補正することで、ワーク200に対して所望の照射軌跡でレーザ光LBを照射でき、溶接不良の発生を抑制できる。以下、さらに説明する。 Therefore, by correcting the irradiation position of the laser beam LB, in this case, the deviation of the origin position during scanning, the workpiece 200 can be irradiated with the laser beam LB along a desired irradiation locus. It is possible to suppress the occurrence of welding defects. Further explanation is given below.
 マニピュレータ60を移動させて、レーザヘッド30のレーザ光スキャナ40をXY平面上で、補正部72の反射スポット72bの中心位置、つまり原点Oに移動させる(図7のステップS1)。 The manipulator 60 is moved to move the laser light scanner 40 of the laser head 30 to the center position of the reflection spot 72b of the corrector 72, that is, the origin O on the XY plane (step S1 in FIG. 7).
 レーザ光スキャナ40を動作させて、レーザ光LBを図4に示す破線に沿って走査させながら、原点Oの周りに照射する(図7のステップS2)。ステップS2において、マニピュレータ60は移動させない。つまり、レーザヘッド30の位置自体は、原点Oを保ったまま、レーザ光LBを図4に示す破線に沿って走査させる。また、ステップS2におけるレーザ光LBの出力は、レーザ溶接時よりも大幅に低下させている。反射板72aや光センサ38の損傷を防止するためである。例えば、レーザ溶接時のレーザ光LBの出力が数kWである場合、ステップS2におけるレーザ光LBの出力は、反射板72aまたは反射スポット72bに損傷を与えず、かつ、光センサ38で十分感知できる程度の値(数mW程度)でよい。なお、通常、レーザ発振器10では、レーザ光LBの照射位置を視認するためにガイドレーザ(図示せず)を使用する場合があるが、前述のステップS2にてこのガイドレーザから出射されたレーザ光を走査するようにしてもよい。 The laser light scanner 40 is operated to irradiate the laser light LB around the origin O while scanning along the dashed line shown in FIG. 4 (step S2 in FIG. 7). At step S2, the manipulator 60 is not moved. That is, the position of the laser head 30 itself is scanned along the broken line shown in FIG. 4 with the laser beam LB while maintaining the origin O. FIG. Also, the output of the laser beam LB in step S2 is significantly reduced from that during laser welding. This is to prevent the reflecting plate 72a and the optical sensor 38 from being damaged. For example, when the output of the laser beam LB during laser welding is several kW, the output of the laser beam LB in step S2 does not damage the reflecting plate 72a or the reflecting spot 72b and can be detected sufficiently by the optical sensor 38. A value of the order of magnitude (about several mW) may be used. Normally, in the laser oscillator 10, a guide laser (not shown) may be used for visually recognizing the irradiation position of the laser beam LB. may be scanned.
 ステップS2の実行中または実行後に、光センサ38の出力を確認し、出力がピークとなる第1ピーク位置O1を確認する(図7のステップS3)。第1ピーク位置O1は、XY平面上の座標で表される。また、第1ピーク位置O1の座標及び第1ピーク位置O1における光センサ38の出力は、記憶部52に保存される。 During or after execution of step S2, the output of the optical sensor 38 is checked, and the first peak position O1 where the output peaks is checked (step S3 in FIG. 7). The first peak position O1 is represented by coordinates on the XY plane. Also, the coordinates of the first peak position O1 and the output of the optical sensor 38 at the first peak position O1 are stored in the storage unit 52 .
 次に、第1ピーク位置O1が原点Oと一致しているか否かを、コントローラ50の情報処理部51が判断する(図7のステップS4)。なお、本願明細書における「一致」とは、厳密な意味での一致だけでなく、第1ピーク位置O1と原点OとのXY平面上での距離が、レーザ光LBを集光した際のビーム半径の1/10~1/2程度以下である場合も含む。言うまでもなく、この距離を短くすることもできるが、その際には、補正の精度がより高くなる。 Next, the information processing section 51 of the controller 50 determines whether or not the first peak position O1 matches the origin O (step S4 in FIG. 7). In the specification of the present application, “match” means not only match in a strict sense, but also the distance between the first peak position O1 and the origin O on the XY plane is the beam It also includes cases where it is about 1/10 to 1/2 or less of the radius. Of course, this distance can also be shortened, but then the accuracy of the correction will be higher.
 なお、予め設定された初期位置に固定された状態の第1ガルバノミラー41と第2ガルバノミラー42とで反射されたレーザ光LBがステージ70の表面に照射される位置が、前述した「走査時の原点」である。例えば、レーザヘッド30を、XY平面上で補正部72の反射スポット72bの中心位置に移動させ、その状態で、それぞれ初期位置に固定された第1ガルバノミラー41と第2ガルバノミラー42とでレーザ光LBを反射する。この場合、温度ドリフトが無ければ、レーザ光LBの走査時の原点は、前述の原点Oに一致し、光センサ38からの出力がピークとなる。 Note that the position at which the surface of the stage 70 is irradiated with the laser beam LB reflected by the first galvanometer mirror 41 and the second galvanometer mirror 42 fixed at the preset initial position is the same as the above-described "during scanning." is the origin of For example, the laser head 30 is moved to the center position of the reflection spot 72b of the corrector 72 on the XY plane. It reflects the light LB. In this case, if there is no temperature drift, the origin during scanning of the laser beam LB coincides with the above-mentioned origin O, and the output from the optical sensor 38 peaks.
 ステップS4の判断結果が肯定的、つまり、第1ピーク位置O1が原点Oと一致している場合は、レーザ光LBの走査時の原点が原点Oに一致していると判断される。つまり、レーザ光スキャナ40に温度ドリフトが発生していないと判断できるため、一連の作業を終了する。 If the determination result in step S4 is affirmative, that is, if the first peak position O1 matches the origin O, it is determined that the origin during scanning of the laser beam LB matches the origin O. In other words, it can be determined that no temperature drift has occurred in the laser light scanner 40, and the series of operations is terminated.
 一方、ステップS4の判断結果が否定的、つまり、第1ピーク位置O1が原点Oと一致していない場合は、図8に示すように、XY平面上で、光センサ38の出力のピークが、原点Oから離れた位置に現れる。なお、図7に示す例では、第1ピーク位置O1は、原点Oに対して、X方向、Y方向ともにマイナス側にずれている。 On the other hand, if the determination result in step S4 is negative, that is, if the first peak position O1 does not match the origin O, as shown in FIG. It appears at a position away from the origin O. In the example shown in FIG. 7, the first peak position O1 is shifted to the negative side with respect to the origin O in both the X direction and the Y direction.
 この場合、コントローラ50は、原点Oの座標と第1ピーク位置O1の座標との差、つまり、原点Oと第1ピーク位置O1とのずれ量を取得し、当該ずれ量を記憶部52に保存する(図7のステップS5)。 In this case, the controller 50 acquires the difference between the coordinates of the origin O and the coordinates of the first peak position O1, that is, the amount of deviation between the origin O and the first peak position O1, and stores the amount of deviation in the storage unit 52. (step S5 in FIG. 7).
 コントローラ50の情報処理部51は、原点Oの座標とステップS5で取得したずれ量に基づいて、式(1)、(2)を用いて、走査時の原点位置のずれを補正する、(図7のステップS6)。 The information processing unit 51 of the controller 50 corrects the deviation of the origin position during scanning using the equations (1) and (2) based on the coordinates of the origin O and the deviation amount obtained in step S5. 7 step S6).
 図7に示す例では、補正後の走査時の原点位置は、式(1)、(2)に示す関係を満たす。 In the example shown in FIG. 7, the origin position during scanning after correction satisfies the relationships shown in formulas (1) and (2).
 Xc=X0-Xa ・・・(1)
 Yc=Y0-Ya ・・・(2)
ここで、
 X0:温度ドリフトが無い状態での走査時の原点のX座標
 Y0:温度ドリフトが無い状態での走査時の原点のY座標
 Xc:補正後の走査時の原点のX座標
 Yc:補正後の走査時の原点のY座標
 Xa:原点Oと第1ピーク位置O1とのX方向のずれ量
 Ya:原点Oと第1ピーク位置O1とのY方向のずれ量
である。前述の通り、レーザ光スキャナ40のガルバノ原点を原点Oとしているので、式(1)と式(2)では、原点のX座標X0と原点のY座標Y0はともにゼロとしてよい。なお、図8に示す例では、ずれ量Xaとずれ量Yaはともにマイナスの値を取る。
Xc=X0-Xa (1)
Yc=Y0-Ya (2)
here,
X0: X coordinate of origin during scanning without temperature drift Y0: Y coordinate of origin during scanning with no temperature drift Xc: X coordinate of origin during scanning after correction Yc: Scanning after correction Y coordinate of the origin at time Xa: Amount of deviation in the X direction between the origin O and the first peak position O1 Ya: Amount of deviation in the Y direction between the origin O and the first peak position O1. As described above, since the galvano origin of the laser beam scanner 40 is the origin O, both the X coordinate X0 of the origin and the Y coordinate Y0 of the origin may be zero in Equations (1) and (2). In the example shown in FIG. 8, both the deviation amount Xa and the deviation amount Ya take negative values.
 実際の補正にあたっては、第1駆動部41c及び第2駆動部42cの回転指令を式(1)と式(2)の結果に従い修正する。つまり、当初、設定された走査時の原点(=(X0、Y0))に対応する回転指令に対し、ずれ量Xa,Yaに対応した回転量を加算または減算して、走査時の原点に対応する回転指令を修正する。 For actual correction, the rotation commands for the first drive unit 41c and the second drive unit 42c are corrected according to the results of equations (1) and (2). That is, the amount of rotation corresponding to the amount of deviation Xa, Ya is added or subtracted to or from the rotation command corresponding to the initially set origin (=(X0, Y0)) during scanning, so that the origin corresponding to scanning is obtained. Correct the rotation command.
 補正後の走査時の原点の座標(Xc、Yc)及びずれ量Xa,Yaは、記憶部52に保存される。また、ずれ量Xa,Yaにそれぞれ対応した第1駆動部41c及び第2駆動部42cの回転指令の修正量も、記憶部52に保存される。以降のレーザ溶接において、レーザ光LBを走査する場合は、走査時の原点の座標は、(Xc、Yc)に設定される。 The coordinates (Xc, Yc) of the origin at the time of scanning after correction and the deviation amounts Xa, Ya are stored in the storage unit 52 . The storage unit 52 also stores correction amounts of the rotation commands of the first driving unit 41c and the second driving unit 42c corresponding to the deviation amounts Xa and Ya, respectively. In the subsequent laser welding, when scanning with the laser beam LB, the coordinates of the origin during scanning are set to (Xc, Yc).
 図6に示したように、レーザビームLBは、反射スポット72bに対し垂直に入射した場合以外では、もとの光路をそのまま戻って反射されない。すなわち、レーザ光スキャナ40からレーザ光LBが出射される位置P2は、レーザ光LBが反射スポット72bに対し垂直に入射される場合以外では、反射光がレーザ光スキャナ40に入射される位置P4とは、厳密には一致しない。したがって、実際には、反射スポット72bに対してビームが垂直に入射すると仮定して、図8に示した、原点Oと第1ピーク位置O1とのX方向またはY方向のずれ量Xa,Yaに、この入射角度による誤差がそれぞれ加算される。この誤差を含めて補正を行うことで、補正の精度をより高くすることが可能である。以下、誤差発生のメカニズムと補正方法の概略を説明する。なお、以下に示す例では、位置P2,P4ともに、第2ミラー42aの表面での位置に相当する。 As shown in FIG. 6, the laser beam LB returns along its original optical path and is not reflected unless it is incident perpendicularly to the reflected spot 72b. That is, the position P2 at which the laser beam LB is emitted from the laser beam scanner 40 is the same as the position P4 at which the reflected beam is incident on the laser beam scanner 40, except when the laser beam LB is vertically incident on the reflected spot 72b. do not match exactly. Therefore, in practice, assuming that the beam is perpendicularly incident on the reflected spot 72b, the shift amounts Xa and Ya in the X direction or the Y direction between the origin O and the first peak position O1 shown in FIG. , and the error due to this incident angle is added. By performing correction including this error, it is possible to further improve the accuracy of correction. An outline of the error generation mechanism and correction method will be described below. In the example shown below, both positions P2 and P4 correspond to positions on the surface of the second mirror 42a.
 図9A,9Bは、それぞれ、レーザ光の照射角度ずれの補正における誤差発生のメカニズムを示す模式図である。図9Aは、レーザ光LBが反射スポット72bに対して垂直に入射した場合の模式図を示し、図9Bは、レーザ光が反射スポットに対して斜めに入射した場合の模式図を示す。なお、図9Bにおける角度αは、レーザ光が垂直に入射した場合を基準とした入射角度のずれ量を示しており、図9Bに示す例では、0°<α<90°であるが、反射スポット72bからの反射光が、図6に図示した反射ルートに沿って光センサ38に入射されるようにするためには、できるだけ0°に近いほうが望ましい。 9A and 9B are schematic diagrams showing the error generation mechanism in correcting the irradiation angle deviation of the laser light. FIG. 9A shows a schematic diagram when the laser beam LB is vertically incident on the reflection spot 72b, and FIG. 9B is a schematic diagram when the laser beam is obliquely incident on the reflection spot. Note that the angle α in FIG. 9B indicates the amount of deviation of the incident angle based on the case where the laser beam is incident vertically. In the example shown in FIG. 9B, 0°<α<90° In order for the reflected light from the spot 72b to enter the optical sensor 38 along the reflection route shown in FIG. 6, it is desirable that the angle is as close to 0° as possible.
 図10は、レーザ光の垂直入射からの入射角度ずれ量とXY平面での位置ずれ量との関係を示す模式図である。入射角度のずれ量αが増加するとともに、ピーク位置のX軸、もしくはY軸のずれ量Xa1とYa1が増加する。図示していないが、入射角度のずれ量αが大きすぎると、反射光が光センサ38に入射できなくなってしまい、センシングができなくなってしまうおそれがある。したがって、できるだけ入射角度のずれ量αを0に近い値にしたほうがよいことは前述の通りである。 FIG. 10 is a schematic diagram showing the relationship between the amount of incident angle deviation from vertical incidence of the laser light and the amount of positional deviation on the XY plane. As the incident angle shift amount α increases, the X-axis or Y-axis shift amounts Xa1 and Ya1 of the peak position increase. Although not shown, if the amount of deviation α of the incident angle is too large, the reflected light cannot enter the optical sensor 38, and sensing may not be possible. Therefore, as described above, it is better to set the deviation amount α of the incident angle to a value as close to 0 as possible.
 図9A,9Bでは、反射スポット72bに対する入射光は、実線の矢印で、反射光は、点線の矢印でそれぞれ示される。図9Aでは、入射光が反射スポット72bに対して垂直に入射しているので、反射光の光路も反射スポット72bに対して垂直となり、両者は、第2ミラー42aの表面での位置P2とP4が一致する。 In FIGS. 9A and 9B, incident light to the reflected spot 72b is indicated by a solid arrow, and reflected light is indicated by a dotted arrow. In FIG. 9A, since the incident light is perpendicular to the reflected spot 72b, the optical path of the reflected light is also perpendicular to the reflected spot 72b, and both are located at positions P2 and P4 on the surface of the second mirror 42a. matches.
 一方、図9Bに示す例では、反射スポット72bの法線に対して、入射光の入射角度がα(0°<α<90°)となるため、反射光の光路も反射スポット72bの法線に対して、αの角度をなす。このため、図9Bに示すように、第2ミラー42aの表面に入射光が入射される位置P2と反射光が入射される位置P4が一致しなくなる。通常の光学系では、この角度αが非常に小さいので、第1集光レンズ34の焦点距離をffとすると、そのずれ量、すなわち、位置P2と位置P4と間の距離が近似的に、ff・αとなる。光学系が決定されると、このずれ量ff・αは、事前に計測することができ、コントローラ50に記憶しておくことが可能である。入射角度のずれ量αが小さくなると、このずれ量ff・αも小さくなることが言うまでもない。図10に示す例では、入射角度のずれ量αに対して、前述したずれ量Xa1,Ya1は、単調に増加している。 On the other hand, in the example shown in FIG. 9B, since the incident angle of the incident light is α (0°<α<90°) with respect to the normal to the reflected spot 72b, the optical path of the reflected light is also the normal to the reflected spot 72b. forms an angle α with respect to Therefore, as shown in FIG. 9B, the position P2 where the incident light is incident on the surface of the second mirror 42a does not match the position P4 where the reflected light is incident. In a normal optical system, this angle α is very small.・It becomes α. Once the optical system is determined, this deviation amount ff·α can be measured in advance and stored in the controller 50 . Needless to say, when the deviation amount α of the incident angle becomes small, the deviation amount ff·α also becomes small. In the example shown in FIG. 10, the aforementioned shift amounts Xa1 and Ya1 monotonously increase with respect to the incident angle shift amount α.
 このことを考慮すると、式(1)、(2)に代えて、それぞれ以下に示す式(3)、(4)に基づいて、補正後の走査時の原点のX座標、Y座標がそれぞれ求められる。 Taking this into consideration, the X and Y coordinates of the origin at the time of scanning after correction are determined based on the following equations (3) and (4), respectively, instead of equations (1) and (2). be done.
 Xc1=X0-Xa-Xa1 ・・・(3)
 Yc1=Y0-Ya-Ya1 ・・・(4)
 ここで、
 Xc1:反射スポットに対する入射角度を考慮した、補正後の走査時の原点のX座標
 Yc1:反射スポットに対する入射角度を考慮した、補正後の走査時の原点のY座標
 Xa1:反射スポットに対する入射角度を考慮した、原点Oと第1ピーク位置O1とのX方向のずれ量
 Ya1:反射スポットに対する入射角度を考慮した、原点Oと第1ピーク位置O1とのY方向のずれ量
である。
Xc1=X0-Xa-Xa1 (3)
Yc1=Y0-Ya-Ya1 (4)
here,
Xc1: X coordinate of the origin during scanning after correction, taking into account the angle of incidence with respect to the reflected spot Yc1: Y coordinate of the origin during scanning after correction, with consideration given to the angle of incidence with respect to the reflected spot Xa1: Angle of incidence with respect to the reflected spot Amount of deviation in the X direction between the origin O and the first peak position O1 in consideration Ya1: A deviation in the Y direction between the origin O and the first peak position O1 in consideration of the incident angle with respect to the reflected spot.
 なお、ずれ量Xa1とYa1は、レーザ光スキャナ40の光学系と補正部72の設置位置に依存するもので、事前に温度ドリフトの無い条件にて計測しておき、コントローラ50に記憶させることができる。 Note that the deviation amounts Xa1 and Ya1 depend on the optical system of the laser beam scanner 40 and the installation position of the correction unit 72, and can be measured in advance under the condition of no temperature drift and stored in the controller 50. can.
 [効果等]
 以上説明したように、本実施形態に係るレーザ溶接装置100は、レーザ光LBを発生させるレーザ発振器10と、レーザ光LBを受け取ってワーク200に向けて照射するレーザヘッド30と、レーザヘッド30の動作及びレーザ光LBの出力Pを制御するコントローラ50と、ワーク200を載置するステージ70と、を少なくとも備えている。
[Effects, etc.]
As described above, the laser welding apparatus 100 according to the present embodiment includes the laser oscillator 10 that generates the laser beam LB, the laser head 30 that receives the laser beam LB and irradiates it toward the workpiece 200, and the laser head 30. It includes at least a controller 50 that controls the operation and the output P of the laser beam LB, and a stage 70 on which the workpiece 200 is placed.
 レーザヘッド30は、レーザ光LBをX方向(第1方向)とX方向と交差するY方向(第2方向)のそれぞれに走査するレーザ光スキャナ40を有している。また、レーザヘッド30は、光センサ38を有している。レーザヘッド30は、さらにレーザ光LBの反射戻り光を光センサ38に入射させる光学系39を有している。光学系39は、ミラー33とアパーチャー36と第2集光レンズ37とで構成される。 The laser head 30 has a laser beam scanner 40 that scans the laser beam LB in both the X direction (first direction) and the Y direction (second direction) intersecting the X direction. The laser head 30 also has an optical sensor 38 . The laser head 30 further has an optical system 39 that causes the reflected return light of the laser beam LB to enter the optical sensor 38 . An optical system 39 is composed of a mirror 33 , an aperture 36 and a second condenser lens 37 .
 コントローラ50は、レーザ光LBを溶接線WLに沿って進行させながら、レーザ光LBを二次元的に走査するようにレーザ光スキャナ40を駆動制御する。 The controller 50 drives and controls the laser beam scanner 40 so as to two-dimensionally scan the laser beam LB while advancing the laser beam LB along the welding line WL.
 ステージ70は、本体部71と補正部72とを有している。補正部72は、反射板72aと、反射板72aの表面に設けられた反射スポット72bとを有している。 The stage 70 has a body portion 71 and a correction portion 72 . The corrector 72 has a reflector 72a and a reflection spot 72b provided on the surface of the reflector 72a.
 コントローラ50は、レーザ光LBを二次元的に走査しながら、反射スポット72bの周りにレーザ光LBを照射するようにレーザ光スキャナ40を駆動制御して、光センサ38の出力がピークとなる第1ピーク位置O1を検出する。コントローラ50は、反射スポット72bの中心位置である原点Oと第1ピーク位置O1とに基づいて、レーザ光LBの照射位置ずれを補正するように構成されている。本開示では、「反射スポット72bの周り」とは、反射スポット72b自体と、反射スポット72bの周囲とを含む領域をいう。 While two-dimensionally scanning the laser beam LB, the controller 50 drives and controls the laser beam scanner 40 so as to irradiate the laser beam LB around the reflection spot 72b. 1 Peak position O1 is detected. The controller 50 is configured to correct the irradiation position deviation of the laser beam LB based on the origin O, which is the center position of the reflected spot 72b, and the first peak position O1. In this disclosure, "around reflected spot 72b" refers to the area including reflected spot 72b itself and the surroundings of reflected spot 72b.
 本実施形態によれば、ステージ70に反射スポット72bを有する補正部72を設け、レーザヘッド30に、光センサ38とレーザ光LBの反射戻り光を光センサ38に入射させる光学系39とを設けるというきわめて簡便な構成で、レーザ光LBの照射位置ずれを補正することができる。また、光学系39、特にアパーチャー36を設けることにより、光センサ38への入射光量をコントロールでき、光センサ38の出力信号が飽和するのを抑制できる。このことにより、光センサ38の出力がピークとなる第1ピーク位置O1を精度良く検出できる。 According to this embodiment, the stage 70 is provided with the correction section 72 having the reflected spot 72b, and the laser head 30 is provided with the optical sensor 38 and the optical system 39 for causing the reflected return light of the laser beam LB to enter the optical sensor 38. With such an extremely simple configuration, it is possible to correct the displacement of the irradiation position of the laser beam LB. Further, by providing the optical system 39, especially the aperture 36, the amount of incident light to the optical sensor 38 can be controlled, and the saturation of the output signal of the optical sensor 38 can be suppressed. As a result, the first peak position O1 at which the output of the optical sensor 38 peaks can be detected with high accuracy.
 また、レーザ光LBを二次元的に走査しながら、溶接線WLに沿って、ワーク200の所望の位置に正確に照射することができる。このことにより、溶接不良の発生を低減でき、溶接歩留まりを向上できる。 Further, it is possible to accurately irradiate a desired position of the work 200 along the welding line WL while scanning the laser beam LB two-dimensionally. As a result, the occurrence of welding defects can be reduced, and the welding yield can be improved.
 また、コントローラ50は、反射スポット72bの中心位置である原点Oと第1ピーク位置O1とのずれ量に基づいて、レーザ光LBの走査時の原点位置のずれを補正するように構成されている。 Further, the controller 50 is configured to correct the deviation of the origin position during scanning with the laser beam LB based on the deviation amount between the origin O, which is the central position of the reflected spot 72b, and the first peak position O1. .
 このようにすることで、特に、温度ドリフトに起因したレーザ光LBの照射位置ずれを簡便に補正することができる。 By doing so, in particular, it is possible to easily correct the deviation of the irradiation position of the laser beam LB caused by the temperature drift.
 レーザ発振器10とレーザヘッド30とは光ファイバ20で接続されており、レーザ光LBは、光ファイバ20を通って、レーザ発振器10からレーザヘッド30に伝送される。 The laser oscillator 10 and the laser head 30 are connected by an optical fiber 20 , and the laser light LB is transmitted from the laser oscillator 10 to the laser head 30 through the optical fiber 20 .
 このように光ファイバ20を設けることで、レーザ発振器10から離れた位置に設置されたワーク200に対してレーザ溶接を行うことが可能となる。このことにより、レーザ溶接装置100の各部を配置する自由度が高められる。 By providing the optical fiber 20 in this way, it is possible to perform laser welding on the workpiece 200 placed at a position away from the laser oscillator 10 . This increases the degree of freedom in arranging each part of the laser welding device 100 .
 レーザ光スキャナ40は、レーザ光LBをX方向に走査する第1ガルバノミラー41と、レーザ光LBをY方向に走査する第2ガルバノミラー42と、で構成されている。 The laser beam scanner 40 is composed of a first galvanometer mirror 41 that scans the laser beam LB in the X direction and a second galvanometer mirror 42 that scans the laser beam LB in the Y direction.
 レーザ光スキャナ40をこのように構成することで、レーザ光LBを簡便に二次元的に走査することができる。また、公知のガルバノスキャナをレーザ光スキャナ40として用いているため、レーザ溶接装置100のコストが上昇するのを抑制できる。 By configuring the laser light scanner 40 in this way, it is possible to easily two-dimensionally scan the laser light LB. Further, since a known galvanometer scanner is used as the laser beam scanner 40, it is possible to suppress the increase in the cost of the laser welding device 100. FIG.
 レーザヘッド30は、コリメーションレンズ32をさらに有し、コリメーションレンズ32は、X方向及びY方向のそれぞれに交差するZ方向に沿って、レーザ光LBの焦点位置を変化させるように構成されている。言い換えると、コリメーションレンズ32は、ワーク200の表面と交差するZ方向に沿って、レーザ光LBの焦点位置を変化させるように構成されている。つまり、コリメーションレンズ32は、図示しない駆動部との組み合わせにより、レーザ光LBの焦点位置調整機構としても機能している。すなわち、溶接中に任意の照射位置に合わせて焦点位置を変更することができ、溶接条件設定の自由度を高めることができる。 The laser head 30 further has a collimation lens 32, and the collimation lens 32 is configured to change the focal position of the laser beam LB along the Z direction that intersects with the X direction and the Y direction. In other words, the collimation lens 32 is configured to change the focal position of the laser beam LB along the Z direction that intersects the surface of the workpiece 200 . In other words, the collimation lens 32 also functions as a focal position adjusting mechanism for the laser beam LB in combination with a drive section (not shown). That is, the focal position can be changed according to an arbitrary irradiation position during welding, and the degree of freedom in setting welding conditions can be increased.
 このようにすることで、レーザ光LBの焦点位置を簡便に変化させることができ、ワーク200の形状に応じて適切にレーザ光LBを照射させることができる。 By doing so, the focal position of the laser beam LB can be easily changed, and the laser beam LB can be appropriately irradiated according to the shape of the workpiece 200 .
 レーザ溶接装置100は、レーザヘッド30が取り付けられたマニピュレータ60をさらに備え、コントローラ50は、マニピュレータ60の動作を制御する。マニピュレータ60は、ワーク200の表面に対して、所定の方向にレーザヘッド30を移動させる。 The laser welding device 100 further includes a manipulator 60 to which the laser head 30 is attached, and the controller 50 controls the operation of the manipulator 60. Manipulator 60 moves laser head 30 in a predetermined direction with respect to the surface of workpiece 200 .
 このようにマニピュレータ60を設けることで、レーザ光LBの溶接方向、または溶接点位置を変化させることができる。また、複雑な形状、例えば、立体的な形状のワーク200に対して、レーザ溶接を容易に行うことができる。 By providing the manipulator 60 in this manner, the welding direction of the laser beam LB or the position of the welding point can be changed. In addition, laser welding can be easily performed on the work 200 having a complicated shape, for example, a three-dimensional shape.
 本実施形態に係るレーザ光の照射位置ずれの補正方法は、レーザヘッド30をステージ70に設けられた反射スポット72bの中心位置である原点Oに移動させる第1ステップ(図7のステップS1)とレーザ光スキャナ40を動作させて、レーザ光LBを二次元的に走査させながら、原点Oの周りに照射する第2ステップ(図7のステップS2)と、少なくとも備えている。 The method of correcting the irradiation position deviation of the laser light according to the present embodiment comprises a first step (step S1 in FIG. 7) of moving the laser head 30 to the origin O, which is the center position of the reflected spot 72b provided on the stage 70; At least a second step (step S2 in FIG. 7) of operating the laser light scanner 40 to irradiate the surroundings of the origin O while scanning the laser light LB two-dimensionally is provided.
 また、本実施形態の補正方法は、光センサ38の出力がピークとなる第1ピーク位置O1を確認する第3ステップ(図7のステップS3)と、第1ピーク位置O1が、原点Oと一致しているか否かを判断する第4ステップ(図7のステップS3)と、を備えている。 Further, the correction method of the present embodiment includes the third step (step S3 in FIG. 7) of confirming the first peak position O1 at which the output of the optical sensor 38 peaks, and and a fourth step (step S3 in FIG. 7) of determining whether or not they match.
 本実施形態の補正方法は、第4ステップの判断結果が肯定的であれば、つまり、第1ピーク位置O1が、原点Oと一致していれば、補正作業を終了するステップを備える。 The correction method of this embodiment includes a step of terminating the correction work if the determination result of the fourth step is affirmative, that is, if the first peak position O1 matches the origin O.
 本実施形態の補正方法は、第4ステップの判断結果が否定的であれば、つまり、第1ピーク位置O1が、原点Oと一致していなければ、第1ピーク位置O1と原点Oとのずれ量を求めるステップと、原点Oの座標と当該ずれ量とに基づいて、レーザ光LBの照射位置ずれを補正するステップとを備えている。 In the correction method of this embodiment, if the determination result of the fourth step is negative, that is, if the first peak position O1 does not match the origin O, the deviation between the first peak position O1 and the origin O is corrected. and a step of correcting the irradiation position deviation of the laser beam LB based on the coordinates of the origin O and the deviation amount.
 このようにすることで、特に、温度ドリフトに起因したレーザ光LBの照射位置ずれを簡便に補正することができる。また、レーザ光LBを二次元的に走査しながら、溶接線WLに沿って、ワーク200の所望の位置に正確に照射することができる。このことにより、溶接不良の発生を低減でき、溶接歩留まりを向上できる。 By doing so, in particular, it is possible to easily correct the deviation of the irradiation position of the laser beam LB caused by the temperature drift. Further, it is possible to accurately irradiate a desired position of the workpiece 200 along the welding line WL while scanning the laser beam LB two-dimensionally. As a result, the occurrence of welding defects can be reduced, and the welding yield can be improved.
 (実施形態2)
 図11は、本実施形態に係るレーザ光の照射位置ずれの補正手順のフローチャートを示す。
(Embodiment 2)
FIG. 11 shows a flowchart of a procedure for correcting deviation of irradiation position of laser light according to the present embodiment.
 実施形態1では、温度ドリフトに起因したレーザ光LBの照射位置ずれを補正するための装置構成及び補正手順について説明した。 In the first embodiment, the device configuration and correction procedure for correcting the irradiation position deviation of the laser beam LB caused by temperature drift have been described.
 一方、前述したように、レーザ光LBの照射位置ずれは、マニピュレータ60の調整不足、摩耗または経時劣化によっても起こりうる。マニピュレータ60の調整が不十分な場合、摩耗または経時劣化が発生した場合、マニピュレータ60の先端位置自体が、溶接プログラム等に予め設定されていた位置からずれていることがありうる。この場合、レーザヘッド30の位置もずれるため、ワーク200に対して所定の位置にレーザ光LBを照射することができない。 On the other hand, as described above, the deviation of the irradiation position of the laser beam LB can also occur due to insufficient adjustment, wear, or deterioration over time of the manipulator 60 . If the manipulator 60 is insufficiently adjusted, worn or deteriorated over time, the tip position of the manipulator 60 itself may deviate from the position preset in the welding program or the like. In this case, since the position of the laser head 30 is also shifted, the workpiece 200 cannot be irradiated with the laser beam LB at a predetermined position.
 そこで、図11に示す手順でマニピュレータ60の調整状態を確認し、その結果に基づいてレーザ光LBの照射位置ずれを補正する。以下に詳細を説明する。 Therefore, the adjustment state of the manipulator 60 is confirmed according to the procedure shown in FIG. 11, and the irradiation position deviation of the laser beam LB is corrected based on the result. Details are described below.
 まず、マニピュレータ60を初期位置から移動させて、レーザヘッド30のレーザ光スキャナ40を前述の原点Oに移動させる(ステップS10)。レーザ光スキャナ40を動作させて、レーザ光LBを図4に示す破線に沿って走査させながら、原点Oの周りに照射する(ステップS11)。さらに、光センサ38の出力を確認し、出力がピークとなる第1ピーク位置O1を確認する(ステップS12)。続けて、原点Oと第1ピーク位置O1とのずれ量(第1ずれ量)を取得し、第1ずれ量を記憶部52に保存する(ステップS13)。なお、ステップS10~S13は、図7のステップS1~S3,S5と同様の処理である。 First, the manipulator 60 is moved from the initial position to move the laser light scanner 40 of the laser head 30 to the origin O (step S10). The laser light scanner 40 is operated to irradiate the laser light LB around the origin O while scanning along the dashed line shown in FIG. 4 (step S11). Further, the output of the optical sensor 38 is confirmed, and the first peak position O1 where the output peaks is confirmed (step S12). Subsequently, the deviation amount (first deviation amount) between the origin O and the first peak position O1 is obtained, and the first deviation amount is stored in the storage unit 52 (step S13). Note that steps S10 to S13 are the same processes as steps S1 to S3 and S5 in FIG.
 次に、マニピュレータ60を移動させて、レーザヘッド30のレーザ光スキャナ40を前述の原点Oの近傍の所定位置P(以下、単に位置Pという。図4参照)に移動させる(ステップS14)。位置Pは、ロボットのティーチングにおいてコントローラ50に事前に記憶させた位置である。図4に示す例では、位置Pは、破線で示すレーザ光LBの走査軌跡において、原点OからX方向及びY方向にそれぞれ1区画分ずれている。ただし、原点Oを基準とした位置Pは特にこれに限定されず、別の位置に設定されてもよい。位置Pと原点Oとの距離も、予めコントローラ50に記憶された値である。なお、位置Pと原点Oとは、ともに前述したXY平面のX軸上、もしくはY軸上に無いことが望ましい。マニピュレータ60のメンテナンスを必要とするレーザ光LBの照射位置ずれの補正は、X軸とY軸の両方に存在する可能性があるためである。ステップS14の具体的な内容は、レーザ光スキャナ40の移動先が別である以外は、ステップS10と同様の処理である。 Next, the manipulator 60 is moved to move the laser beam scanner 40 of the laser head 30 to a predetermined position P (hereinafter simply referred to as position P, see FIG. 4) near the origin O (step S14). The position P is a position stored in advance in the controller 50 during robot teaching. In the example shown in FIG. 4, the position P is deviated from the origin O by one segment in the X direction and the Y direction in the scanning locus of the laser beam LB indicated by the dashed line. However, the position P based on the origin O is not particularly limited to this, and may be set to another position. The distance between the position P and the origin O is also a value stored in the controller 50 in advance. It is desirable that both the position P and the origin O are not on the X-axis or the Y-axis of the XY plane described above. This is because there is a possibility that correction of irradiation position deviation of the laser beam LB that requires maintenance of the manipulator 60 exists in both the X-axis and the Y-axis. The specific contents of step S14 are the same as those of step S10, except that the destination of the laser beam scanner 40 is different.
 さらに、レーザ光スキャナ40を動作させて、レーザ光LBを図4に示す破線に沿って走査させながら、位置Pの周りに照射する(ステップS15)。光センサ38の出力を確認し、出力がピークとなる第2ピーク位置O2を確認する(ステップS16)。続けて、位置Pと第2ピーク位置O2とのずれ量(第2ずれ量)を取得し、第2ずれ量を記憶部52に保存する(ステップS17)。なお、ステップS15~S17は、ステップS11~S13と同様の処理である。 Further, the laser light scanner 40 is operated to irradiate the surroundings of the position P while scanning the laser light LB along the dashed line shown in FIG. 4 (step S15). The output of the optical sensor 38 is confirmed, and the second peak position O2 at which the output peaks is confirmed (step S16). Subsequently, the deviation amount (second deviation amount) between the position P and the second peak position O2 is obtained, and the second deviation amount is stored in the storage unit 52 (step S17). Note that steps S15 to S17 are the same processes as steps S11 to S13.
 次に、コントローラ50の情報処理部51は、原点Oを基準とした第1ピーク位置O1と位置Pを基準とした第2ピーク位置O2とのずれ量、言い換えると、第1ずれ量と第2ずれ量との差を算出する。さらに、原点Oを基準とした第1ピーク位置O1と位置Pを基準とした第2ピーク位置O2とのずれ量が許容範囲内か否かを判断する(ステップS18)。 Next, the information processing section 51 of the controller 50 determines the deviation amount between the first peak position O1 based on the origin O and the second peak position O2 based on the position P, in other words, the first deviation amount and the second peak position O2. Calculate the difference from the deviation amount. Further, it is determined whether or not the amount of deviation between the first peak position O1 based on the origin O and the second peak position O2 based on the position P is within an allowable range (step S18).
 つまり、ステップS18では、原点Oと位置Pを基準とした第2ピーク位置O2とのX方向のずれ量をXbとし、原点Oと位置Pを基準とした第2ピーク位置O2とのY方向のずれ量をYbとするとき、式(5)、(6)に満たす関係を満足するか否かを判断している。 That is, in step S18, the X-direction deviation amount between the origin O and the second peak position O2 based on the position P is defined as Xb, and the Y-direction deviation amount between the origin O and the second peak position O2 based on the position P is defined as Xb. It is determined whether or not the relationship satisfying the equations (5) and (6) is satisfied, where Yb is the amount of deviation.
 |Xa-Xb|≦εx ・・・(5)
 |Ya-Yb|≦εy ・・・(6)
 ここで、εxは、X方向の差の許容上限、εyは、Y方向の差の許容上限である。εxやεyは、レーザ溶接時に許容される加工公差やマニピュレータ60の組立許容公差等に応じて、適宜設定される。
|Xa−Xb|≦εx (5)
|Ya−Yb|≦εy (6)
Here, εx is the allowable upper limit of the difference in the X direction, and εy is the upper limit of the allowable difference in the Y direction. εx and εy are appropriately set according to processing tolerances allowed during laser welding, assembly tolerances of the manipulator 60, and the like.
 ステップS18の判断結果が肯定的であれば、マニピュレータ60の位置が設定位置からずれていないか、その差が許容範囲内であると判断できる。よって、ステップS19に進む。 If the determination result in step S18 is affirmative, it can be determined that the position of the manipulator 60 has not deviated from the set position, or that the difference is within the allowable range. Therefore, the process proceeds to step S19.
 ステップS19~S21は、図7のステップS4~S6と同様の処理であるため、詳細な説明を省略する。つまり、ステップS19の判断結果が肯定的であれば、補正作業を終了する。ステップS19の判断結果が否定的であれば、原点Oの座標とステップS13で取得したずれ量に基づいて、走査時の原点位置のずれを補正する(ステップS20)。 Steps S19 to S21 are the same processes as steps S4 to S6 in FIG. 7, so a detailed description will be omitted. That is, if the determination result of step S19 is affirmative, the correction work is finished. If the determination result in step S19 is negative, the displacement of the origin position during scanning is corrected based on the coordinates of the origin O and the displacement amount obtained in step S13 (step S20).
 一方、ステップS18の判断結果が否定的であれば、マニピュレータ60の位置が設定位置からず許容範囲を超えてずれていると判断できる。このため、レーザ溶接装置100を停止して、マニピュレータ60をメンテナンスし、位置や姿勢等を再調整する。 On the other hand, if the determination result in step S18 is negative, it can be determined that the position of the manipulator 60 is out of the allowable range and not from the set position. Therefore, the laser welding device 100 is stopped, maintenance of the manipulator 60 is performed, and the position, posture, etc. are readjusted.
 その後、ステップS10に戻って、ステップS18の判断結果が肯定的になるまで一連の処理を繰り返し実行する。さらに、ステップS19以降を実行し、走査時の原点位置のずれを補正して、補正作業を終了する。 After that, return to step S10 and repeat the series of processes until the determination result of step S18 becomes affirmative. Further, step S19 and subsequent steps are executed to correct deviation of the origin position during scanning, and the correction work is finished.
 以上説明したように、本実施形態に係るレーザ溶接装置100において、第1の処理と第2の処理とがそれぞれ実行される。 As described above, in the laser welding device 100 according to this embodiment, the first process and the second process are respectively executed.
 第1の処理では、レーザヘッド30を反射スポット72bの中心位置、つまり、原点Oに移動させ、レーザ光LBを二次元的に走査しながら、反射スポット72bの周り(原点Oの周り)にレーザ光LBを照射する(図11のステップS10,S11)。 In the first process, the laser head 30 is moved to the central position of the reflection spot 72b, that is, the origin O, and while two-dimensionally scanning the laser beam LB, the laser is moved around the reflection spot 72b (around the origin O). Light LB is irradiated (steps S10 and S11 in FIG. 11).
 第2の処理では、レーザヘッド30を原点Oの近傍の位置Pに移動させ、レーザ光LBを二次元的に走査しながら、反射スポット72bの周り(位置Pの周り)にレーザ光LBを照射する(図11のステップS14,S15)。 In the second process, the laser head 30 is moved to a position P near the origin O, and the laser light LB is irradiated around the reflection spot 72b (around the position P) while scanning the laser light LB two-dimensionally. (Steps S14 and S15 in FIG. 11).
 第1の処理と第2の処理とが実行された場合、コントローラ50は、反射スポット72bの中心位置である原点Oと第1の処理で光センサ38の出力がピークとなる第1ピーク位置O1と第2の処理で光センサ38の出力がピークとなる第2ピーク位置O2とに基づいて、レーザ光LBの照射位置ずれを補正するように構成されている。 When the first process and the second process are executed, the controller 50 sets the origin O, which is the center position of the reflected spot 72b, and the first peak position O1, at which the output of the optical sensor 38 peaks in the first process. and a second peak position O2 at which the output of the optical sensor 38 peaks in the second process, the displacement of the irradiation position of the laser beam LB is corrected.
 さらに言うと、第1ピーク位置O1と第2ピーク位置O2とのずれ量が所定の許容範囲内であれば、コントローラ50は、原点Oと第1ピーク位置O1とのずれ量に基づいて、レーザ光LBの走査時の原点位置のずれを補正するように構成されている。 In other words, if the amount of deviation between the first peak position O1 and the second peak position O2 is within a predetermined allowable range, the controller 50 determines the laser beam based on the amount of deviation between the origin O and the first peak position O1. It is configured to correct deviation of the origin position during scanning of the light LB.
 また、本実施形態におけるレーザ光LBの照射位置ずれの補正方法は、レーザヘッド30を原点Oへ移動させる第1ステップ(図11のステップS10)を少なくとも備えている。 Further, the method of correcting the irradiation position deviation of the laser beam LB according to the present embodiment includes at least the first step (step S10 in FIG. 11) of moving the laser head 30 to the origin O.
 さらに、本実施形態の補正方法は、レーザ光スキャナ40を動作させて、レーザ光LBを二次元的に走査させながら、原点Oの周りに照射する第2ステップ(図11のステップS11)と、光センサ38の出力がピークとなる第1ピーク位置O1を確認する第3ステップ(図11のステップS12)と、第1ピーク位置O1と原点Oとのずれ量(第1ずれ量)を求める第4ステップ(図11のステップS15)と、を備えている。 Furthermore, the correction method of the present embodiment includes a second step (step S11 in FIG. 11) of operating the laser beam scanner 40 to irradiate around the origin O while scanning the laser beam LB two-dimensionally; A third step (step S12 in FIG. 11) of confirming the first peak position O1 at which the output of the optical sensor 38 reaches a peak, and a second step of obtaining a deviation amount (first deviation amount) between the first peak position O1 and the origin O. 4 steps (step S15 in FIG. 11).
 さらに、本実施形態の補正方法は、第1ずれ量を求めた後に、レーザヘッド30を前述の位置Pに移動させる第5ステップ(図11のステップS14)と、レーザ光スキャナ40を動作させて、レーザ光LBを二次元的に走査させながら、位置Pの周りに照射する第6ステップ(図11のステップS15)と、を備えている。 Further, the correction method of the present embodiment comprises a fifth step (step S14 in FIG. 11) of moving the laser head 30 to the aforementioned position P after obtaining the first deviation amount, and operating the laser beam scanner 40. , and a sixth step (step S15 in FIG. 11) of irradiating the periphery of the position P while two-dimensionally scanning the laser beam LB.
 本実施形態の補正方法は、第6ステップの後に、光センサ38の出力がピークとなる第2ピーク位置O2を確認する第7ステップ(図11のステップS16)と、第2ピーク位置O2と位置Pとのずれ量(第2ずれ量)を求める第8ステップ(図11のステップS17)と、を備えている。 In the correction method of the present embodiment, after the sixth step, the seventh step (step S16 in FIG. 11) of confirming the second peak position O2 at which the output of the optical sensor 38 peaks, and the second peak position O2 and the position and an eighth step (step S17 in FIG. 11) of obtaining a deviation amount (second deviation amount) from P.
 さらに、本実施形態の補正方法は、第1ずれ量と第2ずれ量との差が許容範囲以内であるか否かを判断する第9ステップ(図11のステップS18)と、を備えている。 Further, the correction method of this embodiment includes a ninth step (step S18 in FIG. 11) of determining whether or not the difference between the first deviation amount and the second deviation amount is within the allowable range. .
 本実施形態の補正方法は、第9ステップの判断結果が肯定的であれば、つまり、第1ずれ量と第2ずれ量との差が前述の許容範囲内であれば、第1ピーク位置O1が、原点Oと一致しているか否かを判断する第10ステップ(図11のステップS19)をさらに備えている。 In the correction method of this embodiment, if the determination result in the ninth step is affirmative, that is, if the difference between the first deviation amount and the second deviation amount is within the above-described allowable range, the first peak position O1 is aligned with the origin O (step S19 in FIG. 11).
 本実施形態の補正方法は、第10ステップの判断結果が肯定的であれば、つまり、第1ピーク位置O1が、原点Oと一致していれば、補正作業を終了するステップを備える。 The correction method of this embodiment includes a step of terminating the correction work if the determination result of the tenth step is affirmative, that is, if the first peak position O1 matches the origin O.
 本実施形態の補正方法は、第10ステップの判断結果が否定的であれば、つまり、第1ピーク位置O1が、原点Oと一致していなければ、原点Oの座標と第1ずれ量とに基づいて、レーザ光LBの照射位置ずれを補正する第11ステップを備える(図11のステップS20)。 In the correction method of the present embodiment, if the determination result in the tenth step is negative, that is, if the first peak position O1 does not match the origin O, the coordinates of the origin O and the first deviation amount Based on this, an eleventh step of correcting the irradiation position deviation of the laser beam LB is provided (step S20 in FIG. 11).
 本実施形態の補正方法は、第9ステップの判断結果が否定的であれば、つまり、第1ピーク位置O1が、原点Oと一致していなければ、マニピュレータ60を調整(図11のステップS21)した後、第1ステップに戻って、第9ステップの判断結果が肯定的になるまで、一連の処理を繰り返し実行する。 In the correction method of this embodiment, if the determination result in the ninth step is negative, that is, if the first peak position O1 does not match the origin O, the manipulator 60 is adjusted (step S21 in FIG. 11). After that, the process returns to the first step and repeats the series of processes until the determination result of the ninth step becomes affirmative.
 本実施形態によれば、実施形態1に示す構成及び方法が奏するのと同様の効果を奏することができる。つまり、レーザ光LBを二次元的に走査しながら、溶接線WLに沿って、ワーク200の所望の位置に正確に照射することができる。このことにより、溶接不良の発生を低減でき、溶接歩留まりを向上できる。 According to this embodiment, the same effects as those of the configuration and method shown in Embodiment 1 can be achieved. That is, it is possible to accurately irradiate a desired position of the workpiece 200 along the welding line WL while scanning the laser beam LB two-dimensionally. As a result, the occurrence of welding defects can be reduced, and the welding yield can be improved.
 また、本実施形態によれば、レーザ光LBの照射位置ずれ、この場合は、走査時の原点位置のずれが、マニピュレータ60の調整不足によるものか温度ドリフトによるものかを分離して判断できる。また、それぞれの要因で照射位置ずれが起こっている場合に、マニピュレータ60のメンテナンスや実施形態1に示した補正手順を実行することで、照射位置ずれを解消できる。このことにより、ワーク200に対して、レーザ光LBを二次元的に走査しながら、所定の溶接線WLに沿って照射でき、溶接不良の発生を抑制できる。また、マニピュレータ60の定期点検やメンテナンスの頻度を不必要に高める必要がなくなり、装置のダウンタイムを低減できる。このため、溶接工程のコスト増加を抑制できる。 Further, according to the present embodiment, it is possible to determine separately whether the displacement of the irradiation position of the laser beam LB, in this case, the displacement of the origin position during scanning, is due to insufficient adjustment of the manipulator 60 or due to temperature drift. Further, when irradiation position deviation occurs due to each factor, the irradiation position deviation can be eliminated by performing maintenance of the manipulator 60 or the correction procedure described in the first embodiment. As a result, the workpiece 200 can be irradiated with the laser beam LB along the predetermined welding line WL while being two-dimensionally scanned, and the occurrence of defective welding can be suppressed. In addition, it is not necessary to unnecessarily increase the frequency of periodic inspection and maintenance of the manipulator 60, and the downtime of the apparatus can be reduced. Therefore, an increase in the cost of the welding process can be suppressed.
 なお、図11に示すステップS19~S21において、位置Pと第2ピーク位置O2とが一致しているかを判断し、一致していなければ、位置Pの座標とステップS18で取得したずれ量に基づいて、走査時の原点位置のずれを補正してもよい。 In steps S19 to S21 shown in FIG. 11, it is determined whether or not the position P and the second peak position O2 match. may be used to correct deviation of the origin position during scanning.
 つまり、本実施形態のレーザ溶接装置100は、原点Oと第1ピーク位置O1とのずれ量、または、位置Pと第2ピーク位置O2とのずれ量のいずれかに基づいて、レーザ光LBの走査時の原点位置のずれを補正するように構成されている。 That is, the laser welding apparatus 100 of the present embodiment determines the amount of the laser beam LB based on either the amount of deviation between the origin O and the first peak position O1 or the amount of deviation between the position P and the second peak position O2. It is configured to correct deviation of the origin position during scanning.
 また、本実施形態のレーザ光LBの照射位置ずれの補正方法は、第10ステップ(図11のステップS19)において、第2ピーク位置O2が、位置Pと一致しているか否かを判断し、第11ステップの判断結果が否定的であれば、つまり、第2ピーク位置O2が、位置Pと一致していなければ、位置Pの座標と第2ずれ量とに基づいて、レーザ光LBの照射位置ずれを補正(第11ステップ;図11のステップS20)してもよい。 Further, in the method for correcting the irradiation position deviation of the laser beam LB according to the present embodiment, in the tenth step (step S19 in FIG. 11), it is determined whether or not the second peak position O2 matches the position P, If the determination result of the eleventh step is negative, that is, if the second peak position O2 does not match the position P, the irradiation of the laser beam LB is performed based on the coordinates of the position P and the second deviation amount. The positional deviation may be corrected (eleventh step; step S20 in FIG. 11).
 本開示のレーザ溶接装置は、簡便な構成で、レーザ光の照射位置ずれ、特に、レーザ光の走査時の原点位置のずれを補正でき、有用である。 The laser welding apparatus of the present disclosure is useful because it can correct the displacement of the irradiation position of the laser beam, particularly the displacement of the origin position during the scanning of the laser beam, with a simple configuration.
10  レーザ発振器
20  光ファイバ
30  レーザヘッド
31  筐体
32  コリメーションレンズ
33  ミラー
34  第1集光レンズ
35  保護ガラス
36  アパーチャー
37  第2集光レンズ
38  光センサ
39  光学系
40  レーザ光スキャナ
41  第1ガルバノミラー
41a 第1ミラー
41b 第1回転軸
41c 第1駆動部
42  第2ガルバノミラー
42a 第2ミラー
42b 第2回転軸
42c 第2駆動部
50  コントローラ
60  マニピュレータ
70  ステージ
71  本体部
72  補正部
72a 反射板
72b 反射スポット
100 レーザ溶接装置
200 ワーク
10 laser oscillator 20 optical fiber 30 laser head 31 housing 32 collimation lens 33 mirror 34 first condenser lens 35 protective glass 36 aperture 37 second condenser lens 38 optical sensor 39 optical system 40 laser light scanner 41 first galvanomirror 41a First mirror 41b First rotating shaft 41c First driving unit 42 Second galvanomirror 42a Second mirror 42b Second rotating shaft 42c Second driving unit 50 Controller 60 Manipulator 70 Stage 71 Body unit 72 Correction unit 72a Reflecting plate 72b Reflection spot 100 laser welding device 200 work

Claims (11)

  1.  レーザ光を発生させるレーザ発振器と、
     前記レーザ光を受け取ってワークに向けて照射するレーザヘッドと、
     少なくとも前記レーザヘッドの動作を制御するコントローラと、
     前記ワークを載置するステージと、を少なくとも備え、
     前記レーザヘッドは、
      前記レーザ光を第1方向と前記第1方向と交差する第2方向のそれぞれに走査するレーザ光スキャナと、
      光センサと、
      前記レーザ光の反射戻り光を前記光センサに入射させる光学系と、を有し、
     前記コントローラは、前記レーザ光を溶接線に沿って進行させながら、前記レーザ光を二次元的に走査するように前記レーザ光スキャナを駆動制御し、
     前記ステージは、補正部を有し、
     前記補正部は、反射板と、前記反射板の表面に設けられた反射スポットと、を有し、
     前記コントローラは、前記レーザ光を二次元的に走査しながら、前記反射スポットの周りに前記レーザ光を照射するように前記レーザ光スキャナを駆動制御して、前記光センサの出力がピークとなる第1ピーク位置を検出し、
     前記コントローラは、前記反射スポットの中心位置と前記第1ピーク位置とに基づいて、前記レーザ光の照射位置ずれを補正するように構成されていることを特徴とするレーザ溶接装置。
    a laser oscillator that generates laser light;
    a laser head that receives the laser beam and irradiates it toward a workpiece;
    a controller that controls at least the operation of the laser head;
    At least a stage on which the work is placed,
    The laser head is
    a laser beam scanner that scans the laser beam in a first direction and a second direction that intersects with the first direction;
    an optical sensor;
    an optical system for causing the reflected return light of the laser light to enter the optical sensor,
    The controller drives and controls the laser beam scanner so as to two-dimensionally scan the laser beam while advancing the laser beam along the welding line,
    The stage has a correction section,
    The correction unit has a reflector and a reflection spot provided on the surface of the reflector,
    The controller drives and controls the laser light scanner so as to irradiate the laser light around the reflection spot while two-dimensionally scanning the laser light, so that the output of the optical sensor reaches a peak. Detect one peak position,
    The laser welding apparatus according to claim 1, wherein the controller is configured to correct the displacement of the irradiation position of the laser beam based on the center position of the reflected spot and the first peak position.
  2.  請求項1に記載のレーザ溶接装置において、
     前記コントローラは、前記反射スポットの中心位置と前記第1ピーク位置とのずれ量に基づいて、前記レーザ光の走査時の原点位置のずれを補正するように構成されていることを特徴とするレーザ溶接装置。
    In the laser welding device according to claim 1,
    The controller is configured to correct deviation of an origin position during scanning of the laser light based on a deviation amount between the center position of the reflected spot and the first peak position. Welding equipment.
  3.  請求項1または2に記載のレーザ溶接装置において、
     前記レーザ発振器と前記レーザヘッドとは光ファイバで接続されており、
     前記レーザ光は、前記光ファイバを通って、前記レーザ発振器から前記レーザヘッドに伝送されることを特徴とするレーザ溶接装置。
    In the laser welding device according to claim 1 or 2,
    The laser oscillator and the laser head are connected by an optical fiber,
    A laser welding apparatus, wherein the laser beam is transmitted from the laser oscillator to the laser head through the optical fiber.
  4.  請求項1ないし3のいずれか1項に記載のレーザ溶接装置において、
     前記レーザ光スキャナは、前記レーザ光を前記第1方向に走査する第1ガルバノミラーと、前記レーザ光を前記第1方向と交差する第2方向に走査する第2ガルバノミラーと、で構成されていることを特徴とするレーザ溶接装置。
    The laser welding device according to any one of claims 1 to 3,
    The laser beam scanner is composed of a first galvanometer mirror for scanning the laser beam in the first direction and a second galvanometer mirror for scanning the laser beam in a second direction intersecting the first direction. A laser welding device characterized by:
  5.  請求項1ないし4のいずれか1項に記載のレーザ溶接装置において、
     前記レーザヘッドは、焦点位置調整機構をさらに有し、
     前記焦点位置調整機構は、前記ワークの表面と交差する方向に沿って、前記レーザ光の焦点位置を変化させるように構成されていることを特徴とするレーザ溶接装置。
    In the laser welding device according to any one of claims 1 to 4,
    The laser head further has a focal position adjustment mechanism,
    The laser welding apparatus, wherein the focal position adjusting mechanism is configured to change the focal position of the laser light along a direction intersecting the surface of the work.
  6.  請求項1ないし5のいずれか1項に記載のレーザ溶接装置において、
     前記レーザヘッドが取り付けられたマニピュレータをさらに備え、
     前記コントローラは、前記マニピュレータの動作を制御し、
     前記マニピュレータは、前記ワークの表面に対して、所定の方向に前記レーザヘッドを移動させることを特徴とするレーザ溶接装置。
    In the laser welding device according to any one of claims 1 to 5,
    further comprising a manipulator to which the laser head is attached;
    the controller controls the operation of the manipulator;
    A laser welding apparatus, wherein the manipulator moves the laser head in a predetermined direction with respect to the surface of the workpiece.
  7.  請求項6に記載のレーザ溶接装置において、
     前記レーザヘッドを前記反射スポットの中心位置に移動させ、前記レーザ光を二次元的に走査しながら、前記反射スポットの周りに前記レーザ光を照射する第1の処理と、
     前記レーザヘッドを前記反射スポットの中心位置の近傍の所定の位置に移動させ、前記レーザ光を二次元的に走査しながら、前記反射スポットの周りに前記レーザ光を照射する第2の処理と、が実行された場合、
     前記コントローラは、前記反射スポットの中心位置と前記第1の処理で前記光センサの出力がピークとなる第1ピーク位置と前記第2の処理で前記光センサの出力がピークとなる第2ピーク位置とに基づいて、前記レーザ光の照射位置ずれを補正するように構成されていることを特徴とするレーザ溶接装置。
    In the laser welding device according to claim 6,
    a first process of moving the laser head to the center position of the reflection spot and irradiating the laser beam around the reflection spot while scanning the laser beam two-dimensionally;
    a second process of moving the laser head to a predetermined position near the center position of the reflection spot and irradiating the laser beam around the reflection spot while two-dimensionally scanning the laser beam; is executed,
    The controller controls the center position of the reflected spot, a first peak position at which the output of the optical sensor peaks in the first processing, and a second peak position at which the output of the optical sensor peaks in the second processing. A laser welding device characterized in that it is configured to correct the irradiation position deviation of the laser light based on.
  8.  請求項7に記載のレーザ溶接装置において、
     前記第1ピーク位置と前記第2ピーク位置とのずれ量が所定の許容範囲内であれば、
     前記コントローラは、前記反射スポットの中心位置と前記第1ピーク位置とのずれ量、または前記所定の位置と前記第2ピーク位置とのずれ量のいずれかに基づいて、前記レーザ光の走査時の原点位置のずれを補正するように構成されていることを特徴とするレーザ溶接装置。
    In the laser welding device according to claim 7,
    If the amount of deviation between the first peak position and the second peak position is within a predetermined allowable range,
    The controller controls the amount of deviation between the center position of the reflected spot and the first peak position or the amount of deviation between the predetermined position and the second peak position during scanning of the laser beam. A laser welding device, characterized in that it is configured to correct deviation of an origin position.
  9.  請求項1ないし8のいずれか1項に記載のレーザ溶接装置を用いたレーザ光の照射位置ずれの補正方法であって、
     前記レーザヘッドを前記反射スポットの中心位置に移動させるステップと、
     前記レーザ光スキャナを動作させて、前記レーザ光を二次元的に走査させながら、前記反射スポットの中心位置の周りに照射するステップと、
     前記光センサの出力がピークとなる第1ピーク位置を確認するステップと、
     前記第1ピーク位置が、前記反射スポットの中心位置と一致しているか否かを判断するステップと、
     前記第1ピーク位置が、前記反射スポットの中心位置と一致していれば、補正作業を終了するステップと、
     前記第1ピーク位置が、前記反射スポットの中心位置と一致していなければ、前記第1ピーク位置と前記反射スポットの中心位置とのずれ量を求めるステップと、
     前記反射スポットの中心位置の座標と前記ずれ量とに基づいて、前記レーザ光の照射位置ずれを補正するステップと、を備えたことを特徴とするレーザ光の照射位置ずれの補正方法。
    A method for correcting a laser beam irradiation position deviation using the laser welding apparatus according to any one of claims 1 to 8,
    moving the laser head to a center position of the reflected spot;
    operating the laser light scanner to irradiate around the center position of the reflection spot while scanning the laser light two-dimensionally;
    confirming a first peak position where the output of the optical sensor peaks;
    determining whether the first peak position matches the center position of the reflected spot;
    if the first peak position matches the center position of the reflected spot, terminating the correction operation;
    if the first peak position does not match the center position of the reflected spot, determining the amount of deviation between the first peak position and the center position of the reflected spot;
    and a step of correcting the displacement of the irradiation position of the laser beam based on the coordinates of the center position of the reflected spot and the amount of displacement.
  10.  請求項6ないし8のいずれか1項に記載のレーザ溶接装置を用いたレーザ光の照射位置ずれの補正方法であって、
     前記レーザヘッドを前記反射スポットの中心位置に移動させる第1ステップと、
     前記レーザ光スキャナを動作させて、前記レーザ光を二次元的に走査させながら、前記反射スポットの中心位置の周りに照射する第2ステップと、
     前記光センサの出力がピークとなる第1ピーク位置を確認する第3ステップと、
     前記第1ピーク位置と前記反射スポットの中心位置とのずれ量を求める第4ステップと、
     前記第1ピーク位置と前記反射スポットの中心位置とのずれ量を求めた後に、前記レーザヘッドを前記反射スポットの中心位置の近傍の所定の位置に移動させる第5ステップと、
     前記レーザ光スキャナを動作させて、前記レーザ光を二次元的に走査させながら、前記所定の位置の周りに照射する第6ステップと、
     前記第6ステップの後に、前記光センサの出力がピークとなる第2ピーク位置を確認する第7ステップと、
     前記第2ピーク位置と前記所定の位置とのずれ量を求める第8ステップと、
     前記第1ピーク位置と前記反射スポットの中心位置とのずれ量である第1ずれ量と前記第2ピーク位置と前記所定の位置とのずれ量である第2ずれ量との差が許容範囲以内であるか否かを判断する第9ステップと、
     前記第9ステップの判断結果が肯定的であれば、前記第1ピーク位置が、前記反射スポットの中心位置と一致しているか否かを判断する第10ステップと、
     前記第10ステップの判断結果が肯定的であれば、補正作業を終了するステップと、
     前記第10ステップの判断結果が否定的であれば、前記反射スポットの中心位置の座標と前記第1ずれ量とに基づいて、前記レーザ光の照射位置ずれを補正する第11ステップと、
     前記第9ステップの判断結果が否定的であれば、
     前記マニピュレータを調整した後、前記第1ステップに戻って、前記第9ステップの判断結果が肯定的になるまで、一連の処理を繰り返し実行することを特徴とするレーザ光の照射位置ずれの補正方法。
    A method for correcting a laser beam irradiation position deviation using the laser welding device according to any one of claims 6 to 8,
    a first step of moving the laser head to a central position of the reflected spot;
    a second step of operating the laser light scanner to irradiate around the center position of the reflection spot while scanning the laser light two-dimensionally;
    a third step of confirming a first peak position where the output of the optical sensor peaks;
    a fourth step of obtaining a deviation amount between the first peak position and the center position of the reflected spot;
    a fifth step of moving the laser head to a predetermined position in the vicinity of the center position of the reflection spot after determining the amount of deviation between the first peak position and the center position of the reflection spot;
    A sixth step of operating the laser light scanner to irradiate the surroundings of the predetermined position while two-dimensionally scanning the laser light;
    After the sixth step, a seventh step of confirming a second peak position where the output of the optical sensor peaks;
    an eighth step of determining the amount of deviation between the second peak position and the predetermined position;
    A difference between a first shift amount, which is a shift amount between the first peak position and the center position of the reflected spot, and a second shift amount, which is a shift amount between the second peak position and the predetermined position, is within an allowable range. a ninth step of determining whether or not
    a tenth step of judging whether the first peak position matches the center position of the reflected spot if the judgment result of the ninth step is affirmative;
    if the determination result of the tenth step is affirmative, a step of terminating the correction work;
    an eleventh step of correcting the displacement of the irradiation position of the laser beam based on the coordinates of the center position of the reflection spot and the first displacement amount if the determination result of the tenth step is negative;
    If the judgment result of the ninth step is negative,
    After adjusting the manipulator, returning to the first step and repeatedly executing a series of processes until the determination result of the ninth step becomes affirmative. .
  11.  請求項10に記載のレーザ光の照射位置ずれの補正方法において、
     前記第10ステップでは、前記第2ピーク位置が、前記所定の位置と一致しているか否かを判断し、
     前記第11ステップでは、前記所定の位置の座標と前記第2ずれ量とに基づいて、前記レーザ光の照射位置ずれを補正することを特徴とするレーザ光の照射位置ずれの補正方法。
    In the method for correcting the irradiation position deviation of the laser beam according to claim 10,
    In the tenth step, determining whether the second peak position matches the predetermined position;
    In the eleventh step, the laser light irradiation position deviation correction method, wherein the laser light irradiation position deviation is corrected based on the coordinates of the predetermined position and the second deviation amount.
PCT/JP2023/005266 2022-02-18 2023-02-15 Laser welding device and method for correcting deviation of laser beam irradiation position WO2023157883A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023528236A JP7352787B1 (en) 2022-02-18 2023-02-15 Laser welding equipment and method for correcting laser beam irradiation position deviation

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022023661 2022-02-18
JP2022-023661 2022-02-18

Publications (1)

Publication Number Publication Date
WO2023157883A1 true WO2023157883A1 (en) 2023-08-24

Family

ID=87578380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005266 WO2023157883A1 (en) 2022-02-18 2023-02-15 Laser welding device and method for correcting deviation of laser beam irradiation position

Country Status (2)

Country Link
JP (1) JP7352787B1 (en)
WO (1) WO2023157883A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277864A (en) * 1993-03-30 1994-10-04 Nikon Corp Laser beam machining device
JP2005161327A (en) * 2003-11-28 2005-06-23 Sumitomo Heavy Ind Ltd Method and apparatus for correcting optical axis of laser machine
JP2015006674A (en) * 2013-06-24 2015-01-15 新光電気工業株式会社 Laser processing apparatus, laser irradiation point correction method, drilling processing method, and wiring substrate manufacturing method
JP2018027551A (en) * 2016-08-17 2018-02-22 株式会社フォーサイトテクノ Confocal beam profiler
WO2018168728A1 (en) * 2017-03-13 2018-09-20 住友重機械工業株式会社 Laser machining device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06277864A (en) * 1993-03-30 1994-10-04 Nikon Corp Laser beam machining device
JP2005161327A (en) * 2003-11-28 2005-06-23 Sumitomo Heavy Ind Ltd Method and apparatus for correcting optical axis of laser machine
JP2015006674A (en) * 2013-06-24 2015-01-15 新光電気工業株式会社 Laser processing apparatus, laser irradiation point correction method, drilling processing method, and wiring substrate manufacturing method
JP2018027551A (en) * 2016-08-17 2018-02-22 株式会社フォーサイトテクノ Confocal beam profiler
WO2018168728A1 (en) * 2017-03-13 2018-09-20 住友重機械工業株式会社 Laser machining device

Also Published As

Publication number Publication date
JP7352787B1 (en) 2023-09-29
JPWO2023157883A1 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
JP4020099B2 (en) Laser processing method
JP5864557B2 (en) Method and apparatus for laser joining thin metal plate parts
JP4218209B2 (en) Laser processing equipment
JP6626036B2 (en) Laser processing system with measurement function
JP2008194729A (en) Manufacturing method, laser beam machining method and laser beam machining apparatus for small device
JP3761657B2 (en) Laser processing method and apparatus
US20230121254A1 (en) Laser welding device and laser welding method
JPH10216980A (en) Laser beam welding machine
TWI386269B (en) Laser processing method and laser processor
US20240116122A1 (en) A method for optimising a machining time of a laser machining process, method for carrying out a laser machining process on a workpiece, and laser machining system designed for carrying out this process
JP5577927B2 (en) Laser processing detection system
WO2023157883A1 (en) Laser welding device and method for correcting deviation of laser beam irradiation position
JP2006346741A (en) Laser welding method
JP2005254618A (en) Resin welding apparatus
KR20180115993A (en) Multi-axis Laser Manufacturing Machine
US20230013501A1 (en) Laser welding method and laser welding device
JP2023120682A (en) Laser welding device and method for correcting deviation of irradiation position of laser beam
JP6780544B2 (en) Laser welding equipment
WO2022080446A1 (en) Laser processing system and control method
JP5320682B2 (en) Laser processing apparatus and laser processing method
CN115768587A (en) Laser welding method and laser welding device
JP2023502617A (en) Laser processing system and laser processing method
KR20170029381A (en) Laser processing device
JP4127614B2 (en) Laser welding apparatus and welding method
US20210023652A1 (en) Method for centering laser beam and laser processing machine

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023528236

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756408

Country of ref document: EP

Kind code of ref document: A1