WO2023157831A1 - Bonding material composition, method for manufacturing bonding material composition, bonding film, method for manufacturing bonded body, and bonded body - Google Patents

Bonding material composition, method for manufacturing bonding material composition, bonding film, method for manufacturing bonded body, and bonded body Download PDF

Info

Publication number
WO2023157831A1
WO2023157831A1 PCT/JP2023/004946 JP2023004946W WO2023157831A1 WO 2023157831 A1 WO2023157831 A1 WO 2023157831A1 JP 2023004946 W JP2023004946 W JP 2023004946W WO 2023157831 A1 WO2023157831 A1 WO 2023157831A1
Authority
WO
WIPO (PCT)
Prior art keywords
bonding material
bonding
metal particles
material composition
layer
Prior art date
Application number
PCT/JP2023/004946
Other languages
French (fr)
Japanese (ja)
Inventor
ノルザフリザ 新田
英道 藤原
Original Assignee
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電気工業株式会社 filed Critical 古河電気工業株式会社
Publication of WO2023157831A1 publication Critical patent/WO2023157831A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/16Metallic particles coated with a non-metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/17Metallic particles coated with metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0205Non-consumable electrodes; C-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys

Definitions

  • the present invention relates to a bonding material composition, a method for manufacturing a bonding material composition, a bonding film, a method for manufacturing a bonded body, and a bonded body, and particularly to a bonding material for connecting a semiconductor element and a substrate such as a circuit board or a ceramic substrate.
  • the present invention relates to a bonding material composition, a bonding film, a method for manufacturing a bonded body using the bonding material composition and the bonding film, and a bonded body.
  • a semiconductor device generally comprises a step of forming a die mount material for bonding a semiconductor element on an element carrying portion of a lead frame or a circuit electrode portion of an insulating substrate, and a die mount material on the lead frame or on the circuit electrode.
  • a bonding material is used when bonding the element carrying portion of the lead frame or the circuit electrode portion of the insulating substrate and the semiconductor element.
  • lead solder containing 85% by mass or more of lead which has a high melting point and heat resistance, has been widely used as a bonding material for power semiconductors such as IGBTs and MOS-FETs.
  • the harmfulness of lead has been viewed as a problem, and there is an increasing demand for lead-free joining materials.
  • SiC power semiconductors are characterized by low loss and the ability to operate at high speeds and high temperatures, and are expected to be next-generation power semiconductors. Such SiC power semiconductors are theoretically capable of operating at temperatures above 200°C. Improvement is desired.
  • Au-based alloys such as Au--Sn-based alloys and Au--Ge-based alloys have been disclosed as such high-melting-point lead-free type bonding materials (for example, Patent Document 1). It is attracting attention for its good thermal conductivity and chemical stability. However, since such Au-based alloy materials contain precious metals, the material costs are high, and in order to obtain better mounting reliability, an expensive high-temperature vacuum reflow apparatus is required. Not yet.
  • TLP method Transient Liquid Phase Sintering
  • IMC intermetallic compound
  • a paste-like bonding agent containing Cu particles and Sn particles is interposed between the bonding surface of a semiconductor chip and the bonding surface of a substrate, and heated at a temperature higher than the melting point of Sn to bond Cu and Sn together. is transitionally liquid-phase sintered to make the bonding agent a composition containing Cu 6 Sn 5 and Cu 3 Sn, and further heated in the temperature range of 232° C. to 415° C. to convert the Cu 6 Sn 5 of the bonding agent into Cu 3 Sn.
  • a bonding method is disclosed in which the ratio of Cu 3 Sn in the bonding agent is changed to increase the ratio of Cu 3 Sn to obtain a single phase of Cu 3 Sn or an equilibrium structure of Cu 3 Sn phase and Cu particles.
  • Patent Document 3 discloses a bonding film containing first metal particles and second metal particles capable of forming an intermetallic compound such as a Cu—Sn-based compound, a resin, and at least one of phosphines and sulfides. It is
  • the average particle size composed of a central core made of Cu and a coating layer made of Cu 6 Sn 5 covering the central core is 0.05 to 0.05.
  • a bonding paste obtained by mixing a fine powder of 1 ⁇ m and an organic solvent is disclosed (see, for example, Patent Document 4). After interposing this bonding paste between the first and second members to be joined, a pressure of at least 0.1 MPa is applied under a nitrogen gas atmosphere or a formic acid gas atmosphere so that the first and second members to be joined are in close contact with each other.
  • the bonding layer described in Patent Document 4 since the melting point of Cu 6 Sn 5 that coats the central core made of Cu is high, the bonding layer is formed by sintering by using fine particles and applying pressure. to form Since the bonding layer is a sintered body, there are many voids. For this reason, there are problems of low conductivity and heat dissipation, and low elongation and low heat resistance. In addition, since it uses finer particles, it can be applied to thin films, but it is expected that formation of thick films will be difficult.
  • the present invention provides a bonding material composition capable of improving the shear strength, heat resistance, electrical conductivity and heat dissipation of a bonding layer, a method for manufacturing the bonding material composition, a bonding film, a method for manufacturing a bonded body, and bonding.
  • the purpose is to provide the body.
  • the bonding material composition according to the present invention includes metal particles (P) including first metal particles (P1) and second metal particles (P2), and flux,
  • the first metal particles (P1) are composed of a core (C1) made of Cu and a Cu 2 O layer covering the core (C1)
  • the second metal particles (P2) are composed of a core (C1) made of Cu. C2) and Sn covering the core (C2) or solder containing Sn.
  • the first metal particles (P1) preferably have an average particle size of 1 to 20 ⁇ m
  • the second metal particles (P2) preferably have an average particle size of 1 to 10 ⁇ m.
  • Sn covering the core (C2) or Sn in a solder containing Sn is preferably 55 to 65% by mass.
  • the diffraction intensity of the Cu (111) plane measured by X-ray diffraction of the first metal particles (P1) is H1
  • the diffraction intensity of the Cu 2 O (111) plane is H2
  • the oxidation degree H of the first metal particles (P1) represented by the following formula 1 is preferably 0.05 to 0.3.
  • H H2/(H1+H2) [Formula 1]
  • the metal particles (P) further include third metal particles (P3), and the third metal particles (P3) are Sn particles or Sn-containing solder particles. is preferred.
  • the bonding material composition covers the core (C2) with respect to the total amount of 100% by mass of the Cu of the core (C1) and the Cu of the core (C2), or Sn or a solder containing Sn and the ratio of Sn in the Sn particles or Sn-containing solder particles is preferably 55 to 65% by mass.
  • the flux has reducing properties and that the reaction product does not contain water.
  • the flux preferably contains at least one of phosphines represented by the following general formula (1) and sulfides represented by the following general formula (2).
  • each R independently represents an organic group, and each R may be the same or different.
  • the content of the flux is 0.05 to 0.5% by mass with respect to the metal particles (P).
  • the content of the metal particles (P) in the bonding material composition is 80 to 95% by mass with respect to the total amount of the bonding material composition.
  • the bonding material composition is heated at 240° C. or higher to form a bonding layer that bonds the first member and the second member, and the bonding layer includes Cu particles of Cu and Sn. It is preferable to have a network structure joined by a compound of
  • the bonding material composition preferably contains a thermosetting resin.
  • the method for producing a bonding material composition according to the present invention includes a step of mixing and stirring the first metal particles (P1) and the second metal particles (P2). It is characterized by
  • a bonded film according to the present invention is a bonded film having a bonding material layer, wherein the bonding material layer is formed using the bonding material composition according to any one of the above. It is characterized by being
  • the bonding material layer has a thickness of 10 to 100 ⁇ m.
  • a method for manufacturing a joined body provides a joining method for joining a first member and a second member with a joining layer using any of the joining material compositions described above.
  • the bonding material composition is interposed between the first member and the second member and heated at 240° C. or higher to convert the flux into the first metal particles.
  • the Cu 2 O layer of (P1) is removed, the Sn of the second metal particles (P2) or the Sn-containing solder melts, and the Cu of the core (C1) and the core (C2 ) reacts with the Cu to form the bonding layer having a network structure in which Cu particles are bonded by a compound of Cu and Sn.
  • a method for manufacturing a bonded body according to the present invention provides a bonded body in which a first member and a second member are bonded by a bonding layer using any one of the bonding films described above.
  • the bonding material layer is interposed between the first member and the second member, and heated at 240° C. or higher to convert the flux into the first metal particles (P1).
  • the Cu 2 O layer of the second metal particles (P2) is removed, the Sn of the second metal particles (P2) or the Sn-containing solder melts, and the Cu of the core (C1) and the Cu of the core (C2)
  • the bonding layer is characterized in that it reacts with Cu to form the bonding layer having a network structure in which Cu particles are bonded by a compound of Cu and Sn.
  • a joined body according to the present invention is a joined body in which a first member and a second member are joined by a joining layer using any of the joining material compositions described above.
  • the bonding layer is formed by heating the bonding material composition at 240° C. or higher.
  • a joined body according to the present invention is a joined body in which a first member and a second member are joined by a joining layer using any one of the joining films described above. and the bonding layer is formed by heating the bonding material layer at 240° C. or higher.
  • the bonding layer preferably has a network structure in which Cu particles are bonded with a compound of Cu and Sn.
  • the bonding layer preferably has a thickness of 10 to 300 ⁇ m.
  • a bonding material composition capable of improving the shear strength, heat resistance, conductivity and heat dissipation of a bonding layer, a method for manufacturing the bonding material composition, a bonding film, a method for manufacturing a bonded body, and bonding. body can be provided.
  • a bonding material composition according to an embodiment of the present invention will be described below.
  • a bonding material composition according to one embodiment of the present invention includes metal particles (P) including first metal particles (P1) and second metal particles (P2), and flux.
  • the particles (P1) are composed of a core (C1) made of Cu and a Cu 2 O layer covering the core (C1)
  • the second metal particles (P2) are composed of a core (C2) made of Cu and the core (C2).
  • C2) is coated with Sn or a solder containing Sn.
  • the bonding material composition of the present invention can be used as a bonding paste for bonding a semiconductor element and a substrate. Further, the bonding material composition of the present invention can also be used as a bonding material layer of a bonding film having a bonding material layer by being formed into a film.
  • the first metal particles (P1) are composed of a core (C1) made of Cu and a Cu 2 O layer covering the core (C1).
  • the Cu 2 O layer can be formed by heating Cu particles in an oven or the like at 170 to 300° C. for 30 minutes to 50 hours. Note that the heating temperature and the heating time can be appropriately adjusted as long as the Cu 2 O layer is formed.
  • the degree of oxidation H of the first metal particles (P1) is preferably 0.05 to 0.3, more preferably 0.05 to 0.2.
  • the degree of oxidation H is obtained when the diffraction intensity of the Cu (111) plane of the first metal particles (P1) measured by X-ray diffraction is H1, and the diffraction intensity of the Cu 2 O (111) plane is H2. , can be obtained by the following formula 1.
  • H H2/(H1+H2) [Formula 1]
  • copper (I) oxide (Cu 2 O) exists as copper oxide, and copper (II) oxide (CuO) does not exist under these conditions.
  • the degree of oxidation H can be obtained from the X-ray diffraction peak intensity ratio (H2/[H1+H2]).
  • the degree of oxidation H is less than 0.05, the reaction between the Cu in the core (C1) of the first metal particles (P1) and the Sn or Sn-containing solder in the second metal particles (P2) is partially As a result, it becomes difficult to obtain a uniform structure throughout the bonding layer.
  • the degree of oxidation H exceeds 0.3, the oxide film is too thick and the oxide film is not sufficiently removed by the flux.
  • the reaction of the Sn particles (P2) or the solder containing Sn may also be insufficient, and as a result, the shear strength, heat resistance, and heat dissipation properties of the bonding layer may decrease.
  • the oxidation degree H exceeds 0.5, the removal of the oxide film by the flux may not be done in time, and the electrical conductivity of the bonding layer may be lowered.
  • the degree of oxidation H can be adjusted by adjusting the heating temperature and heating time of the core (C1).
  • the average particle size of the first metal particles (P1) is preferably 1-20 ⁇ m, more preferably 5-8 ⁇ m. If the average particle size of the first metal particles (P1) is less than 1 ⁇ m, they tend to aggregate, the catalytic effect becomes too strong, and the dispersibility with the thermosetting resin may be reduced. There is a risk that the shear strength, heat resistance, electrical conductivity, and heat dissipation of the bonding layer may be reduced. When the average particle size of the first metal particles (P1) is more than 20 ⁇ m, it becomes difficult to uniformly react with Sn of the second metal particles (P2) when the bonding material composition is heated at 240° C. or higher.
  • the average particle diameter of the first metal particles (P1) is preferably 1 to 10 ⁇ m. If the average particle diameter of the first metal particles (P1) exceeds 10 ⁇ m, the thickness of the bonding material layer becomes too large, making it difficult to handle as a film and impairing mass productivity.
  • the average particle diameter of each particle in the present invention is determined by the median diameter (the particle diameter at which the cumulative frequency reaches 50%: D50). Specifically, a particle group extracted and separated from raw material powder or paste is determined by measurement using a laser diffraction scattering type particle size distribution analyzer.
  • the second metal particles (P2) are composed of a core (C2) made of Cu and Sn or a solder containing Sn covering the core (C2).
  • the term “coating” as used herein means that half or more of the surface area of the core (C2) is covered.
  • the second metal particles (P2) can be obtained by coating the core (C2) with Sn or solder containing Sn by electroless plating.
  • Solders containing Sn are lead-free solders, tin (Sn)-nickel (Ni)-copper (Cu) system, tin (Sn)-silver (Ag)-copper (Cu) system, tin (Sn)- Zinc (Zn) - Bismuth (Bi) system, Tin (Sn) - Copper (Cu) system, Tin (Sn) - Silver (Ag) - Indium (In) - Bismuth (Bi) system, Tin (Sn) - Zinc ( Zn)-aluminum (Al) system or the like can be used.
  • the average particle diameter of the second metal particles (P2) is preferably 1-10 ⁇ m, more preferably 1-5 ⁇ m, and even more preferably 1.5-3 ⁇ m.
  • the average particle size of the second metal particles (P2) should be less than that of the first metal particles (P1). is also preferably smaller than the average particle size of
  • the Cu particles of the first metal particles (P1) are formed inside the bonding layer formed by heating the bonding material composition at 240° C. or more.
  • the Cu 3 Sn formed by the reaction of Sn wetting and spreading on the surface of the second metal particle (P2) and the Cu 3 Sn particles formed by the reaction of Sn with the Cu particles of the core (C2) of the second metal particles (P2) Since voids are easily formed, the elongation of the bonding layer is increased, and the heat resistance is improved without lowering the shear strength even under the high operating temperature of the power semiconductor.
  • the average particle diameter of the second metal particles (P2) is 10 ⁇ m or less, when the bonding material composition is heated at 240° C. or higher, the second metal particles ( P2) enters, the reaction progresses uniformly, and a bonding layer with a uniform structure is obtained, so that the shear strength and heat dissipation of the bonding layer are improved.
  • the melting rate of Sn or Sn-containing solder covering the core (C2) is lower than that of Cu 2 O of the first metal particles (P1).
  • the surface of Sn or Sn-containing solder covering the core (C2) is likely to be oxidized, resulting in poor wettability of the solder.
  • the shear strength, heat resistance, electrical conductivity, and heat dissipation of the bonding layer may all deteriorate.
  • the second metal particles (P2) have an average particle size of more than 10 ⁇ m, when the bonding material composition is heated at 240° C. or higher, it becomes difficult to uniformly react with Cu of the first metal particles (P1).
  • the bonding material composition has a Sn ratio of 55 to 65 in Sn or Sn-containing solder covering the core (C2) with respect to the total amount of 100% by mass of Cu in the core (C1) and Cu in the core (C2). % by mass is preferred.
  • Sn ratio is less than 55% by mass
  • Sn is used in the reaction of the core (C2) with Cu, and the first metal particles (P1) are formed. Since it becomes difficult to react with Cu of the core (C1), a bonding layer having a uniform structure cannot be obtained, and the shear strength and heat dissipation of the bonding layer may be lowered.
  • the compound of Cu and Sn cannot be sufficiently formed, and the heat resistance and electrical conductivity of the bonding layer may deteriorate.
  • the proportion of Sn exceeds 65% by mass, most of the Cu in the core (C1) of the first metal particles (P1) becomes Cu 3 Sn, and the amount of Cu decreases, resulting in low heat dissipation.
  • the proportion of Sn is more than 65% by mass, the molten Sn solidifies into bulk without reacting with Cu, and the gap between the first metal particles (P1) and the second metal particles (P2) , the elongation of the bonding layer is reduced and the heat resistance may be lowered.
  • the ratio of Sn in the Sn or Sn-containing solder covering the core (C2) is 55% by mass with respect to the total amount of 100% by mass of Cu in the core (C1) and Cu in the core (C2) %
  • the metal particles (P) contain Sn particles or Sn-containing solder particles as the third metal particles (P3), so long as the proportion of the total Sn does not exceed 65% by mass. good too.
  • the bonding material composition is based on the total amount of 100% by mass of Cu of the core (C1) and Cu of the core (C2), Sn or Sn in the solder containing Sn covering the core (C2), and Sn particles
  • the ratio of Sn in the solder particles containing Sn is preferably 55 to 65% by mass.
  • Solder particles containing Sn are lead-free solders, tin (Sn)-nickel (Ni)-copper (Cu) system, tin (Sn)-silver (Ag)-copper (Cu) system, tin (Sn) - zinc (Zn) - bismuth (Bi) system, tin (Sn) - copper (Cu) system, tin (Sn) - silver (Ag) - indium (In) - bismuth (Bi) system, tin (Sn) - zinc A (Zn)-aluminum (Al) system or the like can be used.
  • the bonding material composition contains flux.
  • Flux is not particularly limited, and flux generally used for soldering or the like can be used.
  • Examples of the flux include zinc chloride, mixtures of zinc chloride and inorganic halides, mixtures of zinc chloride and inorganic acids, molten salts, phosphoric acid, phosphoric acid derivatives, organic halides, hydrazine, amine compounds, organic acids and pine resin and the like. Only one kind of the above flux may be used, or two or more kinds thereof may be used in combination.
  • Examples of the molten salt include ammonium chloride.
  • Examples of the organic acid include lactic acid, citric acid, stearic acid, glutamic acid and glutaric acid.
  • Examples of the pine resin include activated pine resin and non-activated pine resin.
  • the flux may be an organic acid having a carboxyl group, or may be rosin.
  • Examples of the organic acid having a carboxyl group include glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, octadecanedioic acid, nonadecanedioic acid, eicosanedioic acid, and the like.
  • adipic acid, suberic acid, sebacic acid and dodencanedioic acid are preferred, and examples thereof include sebacic acid.
  • the above pine resin is a rosin whose main component is abietic acid.
  • the rosins include abietic acid and acryl-modified rosins.
  • Examples of the above amine compounds include cyclohexylamine, dicyclohexylamine, benzylamine, benzhydrylamine, imidazole, benzimidazole, phenylimidazole, carboxybenzimidazole, benzotriazole, and carboxybenzotriazole.
  • flux also includes a compound that functions as a flux to remove an oxide film on a metal surface, that is, has a reducing property.
  • Such compounds include compounds containing one or more phosphorus or sulfur in their molecular structures.
  • Compounds containing one or more phosphorus or sulfur in the molecular structure include organic phosphorus compounds, organic sulfur compounds, and the like.
  • compounds that contain one or more phosphorus or sulfur in their molecular structure are less likely to absorb moisture and bleed out, so there is no need to wash the flux after reflow, unlike general fluxes such as carboxylic acids.
  • the organic phosphorus compound is preferably at least one selected from phosphines and phosphites.
  • Phosphines include, for example, triphenylphosphine, tris(4-methylphenyl)phosphine, methyldiphenylphosphine, diethylphenylphosphine, cyclohexyldiphenylphosphine, 4-(diphenylphosphino)styrene, methylenebis(diphenylphosphine), ethylenebis(diphenyl phosphine), trimethylenebis(diphenylphosphine), tetramethylenebis(diphenylphosphine) can be used.
  • phosphites for example, trimethyl phosphite, triethyl phosphite, triisopropyl phosphite, tributyl phosphite, trioctyl phosphite, tris(2-ethylhexyl) phosphite, triisodecyl phosphite, trioleyl phosphite, triphenyl phosphite, tri-p-tolyl phosphite, tris(2,4-di-tert-butylphenyl) phosphite, tristearyl phosphite, tris(nonyl phosphite) phenyl), trilauryl trithiophosphite can be used.
  • the organic sulfur compound is preferably at least one selected from sulfides, disulfides, trisulfides and sulfoxides.
  • sulfides include bis(4-methacryloylthiophenyl) sulfide, bis(4-hydroxyphenyl) sulfide, bis(4-aminophenyl) sulfide, 2-methylthiophenothiazine, diallyl sulfide, ethyl 2-hydroxyethyl sulfide, dia Mylsulfide, hexylsulfide, dihexylsulfide, n-octylsulfide, phenylsulfide, 4-(phenylthio)toluene, phenyl p-tolylsulfide, 4-tert-butyldiphenylsulfide, di-tert-butylsulfide, diphenylenesulfide, fur Fu
  • disulfides include diethyl disulfide, dipropyl disulfide, dibutyl disulfide, amyl disulfide, heptyl disulfide, cyclohexyl disulfide, bis(4-hydroxyphenyl) disulfide, bis(3-hydroxyphenyl) disulfide, diphenyl disulfide, and benzyl disulfide.
  • examples of trisulfides that can be used include dimethyltrisulfide and diisopropyltrisulfide.
  • dimethylsulfoxide dibutylsulfoxide, di-n-octylsulfoxide, methylphenylsulfoxide, diphenylsulfoxide, dibenzylsulfoxide and p-tolylsulfoxide can be used.
  • the flux preferably contains at least one of phosphines represented by the following general formula (1) and sulfides represented by the following general formula (2).
  • each R independently represents an organic group, and each R may be the same or different.
  • each R is independently selected from an alkyl group, an aryl group, an organic group having a functional group, an organic group having a heteroatom, and an organic group having an unsaturated bond. and at least one of R is preferably an aryl group.
  • the above alkyl group may be linear, branched or cyclic, and may have a substituent.
  • Alkyl groups are preferably linear or branched.
  • the alkyl group preferably has 3 or more carbon atoms, more preferably 4 to 18 carbon atoms, and even more preferably 6 to 15 carbon atoms.
  • Specific examples of such alkyl groups include propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, stearyl and isostearyl groups.
  • the aryl group may have a substituent and preferably has 6 to 10 carbon atoms.
  • Examples of such aryl groups include phenyl, tolyl, xylyl, cumenyl and 1-naphthyl groups.
  • the organic group having the functional group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and even more preferably 1 to 3 carbon atoms.
  • the functional group of the organic group includes a chloro group, a bromo group, a fluoro group, and the like.
  • specific examples of organic groups having such functional groups include chloroethyl, fluoroethyl, chloropropyl, dichloropropyl, fluoropropyl, difluoropropyl, chlorophenyl and fluorophenyl groups. mentioned.
  • the organic group having a heteroatom preferably has 3 or more carbon atoms, more preferably 4 to 18 carbon atoms, and even more preferably 6 to 15 carbon atoms. Moreover, a nitrogen atom, an oxygen atom, a sulfur atom, etc. are mentioned as a heteroatom which the said organic group has. Examples of such heteroatom-containing organic groups include dimethylamino, diethylamino, diphenylamino, methylsulfoxide, ethylsulfoxide and phenylsulfoxide groups.
  • the organic group having an unsaturated bond preferably has 3 or more carbon atoms, more preferably 4 to 18 carbon atoms, and even more preferably 6 to 15 carbon atoms.
  • Specific examples of organic groups having such unsaturated bonds include propenyl, propynyl, butenyl, butynyl, oleyl, phenyl, vinylphenyl and alkylphenyl groups. Among them, it is more preferable to have a vinylphenyl group.
  • each R is independently a vinyl group, an acrylic group, a methacrylic group, a maleic acid ester group, a maleic acid amide group, a maleic acid imide group, It preferably has at least one selected from primary amino groups, secondary amino groups, thiol groups, hydrosilyl groups, hydroboron groups, phenolic hydroxyl groups and epoxy groups. Among them, it is more preferable to have a vinyl group, an acrylic group, a methacrylic group, or a secondary amino group.
  • the phosphines preferably include p-styryldiphenylphosphine. Such a compound is preferable in that it has a highly reactive vinyl group and thus exhibits low bleed-out.
  • Sulfides include at least one of bis(hydroxyphenyl)sulfide, bis(acryloylthiophenyl)sulfide, 2-methylthiophenothiazine, bis(2-methacryloylthioethyl)sulfide and bis(methacryloylthiophenyl)sulfide. is preferred, and at least one of bis(acryloylthiophenyl)sulfide and bis(methacryloylthiophenyl)sulfide is more preferred.
  • These compounds are preferable in that they have a highly reactive phenolic hydroxyl group, acrylic group, and methacrylic group, so that bleeding out is low. Among them, compounds having an acrylic group or a methacrylic group are most preferable.
  • phosphines and sulfides can be used alone, or both can be used in combination.
  • such phosphines and sulfides can form a copolymer with a maleimide resin when the thermosetting resin described later contains a maleimide resin, and thus also act as a thermosetting resin component.
  • phosphines and sulfides are less likely to absorb moisture, have a sufficiently large molecular weight, and are polymerizable, and therefore can effectively prevent bleeding out when used as a flux component. Therefore, by using such phosphines and sulfides instead of alcohols and carboxylic acids that easily absorb moisture, the risk of bleeding out can be reduced without flux cleaning, and sufficient reliability can be achieved, especially after moisture absorption. can guarantee reflow resistance.
  • the bonding material composition preferably has a flux content of 0.05 to 0.5% by mass with respect to the metal particles (P). If the flux content is less than 0.05% by mass, the Cu 2 O layer of the first metal particles (P1) cannot be sufficiently removed, and the wettability of Sn and the relationship between Sn and the first metal particles (P1) The reactivity of Cu in the core (C1) of is lowered. On the other hand, if the flux content is more than 0.5% by mass, the flux remains and inhibits the reaction between Sn and Cu in the core (C1) of the first metal particle (P1), resulting in heat resistance and heat dissipation. , would be expected to result in lower conductivity.
  • the residual flux may absorb moisture or bleed out, which may adversely affect the device, or promote the diffusion reaction between Cu and Sn more than necessary to grow diffusion voids. There is a risk that the strength and elongation of the bonding material will be reduced, resulting in lower reliability.
  • the surface of the first metal particles (P1) is modified with flux, or the bonding material composition is A small amount of flux may be added.
  • the first metal particles (P1) are immersed in a flux solution, and the flux is applied to the first metal particles (P1) using an ultrasonic device. coordinated to the surface.
  • a flux solution In order to modify the surface of the first metal particles (P1) with a flux, the first metal particles (P1) are immersed in a flux solution, and the flux is applied to the first metal particles (P1) using an ultrasonic device. coordinated to the surface.
  • the flux content when modifying the surface of the first metal particles (P1) with flux can be adjusted by the output of the ultrasonic device and the stirring time. Further, the flux content in the case where the surface of the first metal particles (P1) is modified with flux can be specified using FT-IR (Fourier transform infrared spectroscopy) measurement.
  • FT-IR Fastier transform infrared spectroscopy
  • the bonding material composition contains a thermosetting resin when formed into a film and used as a bonding material layer of a bonding film, but preferably does not contain a thermosetting resin when used as a bonding paste.
  • a thermosetting resin in the bonding material composition, when the bonding material composition is formed into a film and used as a bonding material layer of a bonding film, film formability and handleability are improved. Also, the adhesiveness to semiconductor elements, lead frames, etc. is improved at the time of bonding. Furthermore, the bonding layer formed by heating the bonding material composition plays a role in relieving stress generated between the semiconductor element and the lead frame or the like due to thermal cycles. For this reason, when the viscosity of the flux is low, it is particularly preferable to include a thermosetting resin.
  • the thermosetting resin is, in particular, a maleic acid imide resin containing a maleic acid imide compound containing two or more units of imide groups in one molecule, from the viewpoint of heat resistance and film-forming properties when metal particles (P) are mixed. (hereinafter sometimes referred to as "maleimide resin”) or an epoxy resin having a molecular skeleton derived from a glycidyl ether of an aliphatic diol, and more preferably a maleic acid imide resin.
  • maleimide resin an epoxy resin having a molecular skeleton derived from a glycidyl ether of an aliphatic diol, and more preferably a maleic acid imide resin.
  • a thermosetting resin containing any of the resins described above has excellent stress relaxation properties, the heat resistance of the bonding layer formed by heating the bonding material composition is improved.
  • the maleic acid imide resin can be obtained, for example, by condensing maleic acid or its anhydride with a diamine or polyamine.
  • the maleic acid imide resin preferably contains a skeleton derived from an aliphatic amine having 10 or more carbon atoms from the viewpoint of stress relaxation, and in particular, has 30 or more carbon atoms and is represented by the following structural formula (3). Those having a skeleton such as Moreover, the maleic acid imide compound preferably has a number average molecular weight of 3,000 or more.
  • the maleic acid imide resin contains a skeleton derived from an acid component other than maleic acid, such as benzenetetracarboxylic acid or its anhydride, hydroxyphthalic acid bisether or its anhydride. etc., can be adjusted. Phenol novolac resins, radical generators, and the like are preferable as curing agents for maleic acid imide resins.
  • maleic acid imide resin for example, bismaleimide resins represented by the following structural formulas (4) to (6) are preferably used.
  • n is an integer of 1-10.
  • the “X” portion is the skeleton of “C 36 H 72 ” represented by the following structural formula (7).
  • "*" means a binding site with N.
  • epoxy resins having molecular skeletons derived from glycidyl ethers of aliphatic diols include ethylene glycol-modified epoxy resins, propylene glycol-modified epoxy resins, butanediol-modified epoxy resins, and the like. These epoxy resins are preferred from the viewpoint of flexibility. In addition, from the viewpoint of achieving both adhesive strength and flexibility, it is preferable to use such an epoxy resin by mixing it with a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, or a phenoxy resin, which is an epoxy resin with a large molecular weight. preferable.
  • the thermosetting resin preferably further contains a phenol novolac resin.
  • a phenol novolac resin By using a combination of the maleic acid imide resin or epoxy resin and the phenol novolac resin, the phenol novolak resin acts as a curing agent, further improving the adhesiveness of the thermosetting resin.
  • the content of the thermosetting resin in the bonding material composition according to the present embodiment is preferably 4-30% by mass, more preferably 6-20% by mass.
  • the content of the thermosetting resin is preferably 4-30% by mass, more preferably 6-20% by mass.
  • the adhesiveness to semiconductor elements, lead frames, etc. is improved at the time of bonding.
  • the bonding layer formed by heating the bonding material composition is excellent in relieving stress generated between the semiconductor element and the lead frame or the like due to thermal cycles. If the content of the thermosetting resin is more than 30% by mass, the heat dissipation may deteriorate.
  • the content of the thermosetting resin in the bonding material composition is 6 to 9 from the viewpoint of the balance between the film formability and handleability and heat dissipation. % by mass is preferred.
  • thermosetting resin may consist of only one type of resin, or may be a mixture of two or more types of resin. Moreover, you may further contain resin other than the above as needed.
  • the content of metal particles (P) in the bonding material composition is preferably 80 to 95% by mass with respect to the total amount of the bonding material composition. If the content of the metal particles (P) is less than 80% by mass, the release is lowered. When the content of the metal particles (P) is more than 95% by mass, the contents of the flux and the thermosetting resin are reduced, so the wettability of Sn and the relationship between Cu and Sn in the first metal particles (P1) Reactivity, adhesion to semiconductor elements, lead frames, etc. during bonding, and stress relaxation after bonding are reduced.
  • the bonding material composition according to the present embodiment may contain various additives within the scope of the present invention.
  • additives include dispersants, radical polymerization initiators, leveling agents, plasticizers, and the like, which can be appropriately selected as necessary.
  • the method for producing the bonding material composition is not particularly limited. It can be obtained by mixing the components constituting the bonding material composition described above, and then subjecting the composition to stirring, dispersion, or the like.
  • the surface of the first metal particles (P1) is preferably modified in advance with the flux by the method described above.
  • Devices for mixing, stirring, dispersing, etc. of these are not particularly limited, and include a three-roll mill, a planetary mixer, a planetary mixer, a rotation-revolution type stirring device, a milling machine, a twin-screw kneader, A thin layer shear disperser or the like can be used.
  • the bonding film has at least a bonding material layer for bonding a semiconductor element and a lead frame or the like, and this bonding material layer is formed using the bonding material composition described above.
  • the bonding material composition may further contain a solvent.
  • the bonding material composition is formed into a film.
  • the method for forming the bonding material composition into a film is not particularly limited, and conventional methods can be used, such as inkjet printing, screen printing, jet printing, dispenser, jet dispenser, comma coater, slit coater, A die coater, gravure coater, slit coat, letterpress printing, intaglio printing, gravure printing, stencil printing, bar coater, applicator, spray coater, electrodeposition coating, and the like can be used.
  • the bonding material layer is obtained by drying the solvent of the bonding material composition formed into a film.
  • a drying method drying by standing at room temperature, drying by heating, or drying under reduced pressure can be used.
  • the drying temperature and time are preferably adjusted according to the type and amount of the dispersion medium used. For example, drying is preferably performed at 50 to 180° C. for 1 to 120 minutes.
  • the bonding material layer may be peeled off after forming the bonding material layer in the form of a film on the molding substrate.
  • the molding substrate is not particularly limited, but for example, polyethylene terephthalate, polytetrafluoroethylene, polyimide, PEEK, aluminum, glass, alumina, silicon nitride, and stainless steel can be used. Also, a heat-resistant substrate or cloth coated or impregnated with the above material may be used as the molding substrate.
  • the bonding film may have a release film bonded to the surface of the bonding material layer to protect the surface of the bonding material layer until the bonding material layer is used.
  • the bonding material layer preferably has a thickness of 10 to 100 ⁇ m.
  • Bonded bodies include semiconductor devices and electronic components.
  • semiconductor devices include diodes, rectifiers, thyristors, MOS (Metal Oxide Semiconductor) gate drivers, power switches, power MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors), and IGBTs (Insulated Gate Bipolar Transistors). istor), Schottky diode, Examples include power modules, transmitters, amplifiers, LED modules, etc., which include fast recovery diodes and the like.
  • the bonding material composition or bonding material layer described above is interposed between the first member and the second member. That is, by bringing a portion of the first member to be bonded to the second member and a portion of the second member to be bonded to the first member into contact, the first member and the second member are bonded by the bonding material. They are laminated through a composition or a bonding material layer.
  • the first member is not particularly limited, but may be a lead frame, a pre-wired tape carrier, a rigid wiring board, a flexible wiring board, a pre-wired glass substrate, a pre-wired silicon wafer, or a wafer level CSP. (Wafer Level Chip Size Package).
  • the second member is not particularly limited, and includes active elements such as transistors, diodes, light emitting diodes and thyristors; passive elements such as capacitors, resistors, resistor arrays, coils and switches;
  • the bonding material composition according to is suitably used for semiconductor devices that operate at high temperatures, particularly power semiconductors.
  • the bonding material composition or bonding material layer is heated at 240°C or higher in an inert atmosphere such as nitrogen to form a bonding layer that bonds the first member and the second member.
  • the upper limit of the heating temperature is not particularly limited, it is, for example, 300° C. or less.
  • the heating time is preferably 60 to 120 minutes, more preferably 30 to 90 minutes, even more preferably 5 to 60 minutes.
  • hot plate hot air dryer, hot air heating furnace, nitrogen dryer, infrared dryer, infrared heating furnace, far infrared heating furnace, microwave heating device, laser heating device, electromagnetic heating device, heater heating Apparatus, steam-heated furnaces, etc.
  • heating and pressurizing treatment a hot plate press device or the like may be used, or the above-mentioned heating treatment may be performed while pressurizing.
  • the flux first begins to remove the Cu 2 O layer covering the Cu of the core (C1) of the first metal particles (P1).
  • the Sn covering the Cu of the core (C2) of the second metal particle (P2) or the solder containing Sn melts, and the surface of the Cu of the core (C2) and the first metal particle ( It wets and spreads on the Cu surface of the core (C1) of P1).
  • Sn reacts with Cu of the core (C2) to form Cu 6 Sn 5 , which is an intermediate compound of Cu—Sn.
  • Sn and Cu react on the surface of the core (C1) to form Cu 6 Sn 5 , which is an intermediate compound of Cu—Sn. Furthermore, by continuing the heating, Cu 3 Sn is formed because Cu is supplied to the Cu 6 Sn 5 , and a bonding layer is formed.
  • the bonding layer preferably has a thickness of 10 to 300 ⁇ m.
  • a joined body in which the first member and the second member are joined by the joining layer is manufactured.
  • the Cu of the core (C1) is covered with a Cu 2 O layer, and the flux removes the Cu 2 O layer during heating, while the Sn melts, so that the Cu and Sn of the core (C2) Since the reaction starts first, Cu 3 Sn is surely formed inside the second metal particles (P2), so most of the second metal particles (P2) become Cu 3 Sn particles, but some Cu may remain inside the particles.
  • the Cu of the core (C1) is covered with a Cu 2 O layer, and while the flux removes the Cu 2 O layer during heating, Sn melts, so that the melted Sn becomes the first metal particles ( When the Cu 2 O layer is removed, Sn reacts with Cu of the core (C1), so that Cu 3 Sn is uniformly formed on the surface of the core (C1).
  • the first metal particles (P1) preferably have a larger average particle size than the second metal particles (P2), and the reaction between Sn and Cu in the core (C1) Cu remains inside the core (C1) because the reaction starts later than the reaction inside.
  • the bonding layer formed by heating the bonding material composition or bonding material layer has a network structure in which Cu particles are bonded by a compound of Cu and Sn. Therefore, the obtained bonding layer has extremely high shear strength, heat resistance, electrical conductivity and heat dissipation.
  • (P1) B Cu particles (MA series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were heated in an oven at 180° C. for 3 hours to obtain metal particles in which the Cu particles were coated with a Cu 2 O layer.
  • the average particle size (D50) was 5 ⁇ m, and the degree of oxidation H was 0.3.
  • the degree of oxidation H and average particle size (D50) were measured in the same manner as in (P1)A.
  • (P1) C Cu particles (MA series, manufactured by Mitsui Kinzoku Mining Co., Ltd.) were heated in an oven at 300° C. for 40 minutes to obtain metal particles in which the Cu particles were coated with a Cu2O layer.
  • the average particle size (D50) was 5 ⁇ m and the degree of oxidation H was 0.5.
  • the degree of oxidation H and average particle size (D50) were measured in the same manner as in (P1)A.
  • (P1) D Cu particles (MA series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were used.
  • the average particle size (D50) was 5 ⁇ m, and the oxidation degree H was 0.
  • the average particle size (D50) was measured in the same manner as in (P1)A.
  • (P1) E Cu particles (MA series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were heated in an oven at 200° C. for 1 hour to obtain metal particles in which the Cu particles were coated with a Cu 2 O layer.
  • the average particle size (D50) was 10 ⁇ m, and the degree of oxidation H was 0.05.
  • the degree of oxidation H and average particle size (D50) were measured in the same manner as in (P1)A.
  • (P1) F Cu particles (1030Y series, manufactured by Mitsui Kinzoku Mining Co., Ltd.) were heated in an oven at 180° C. for 4 hours to obtain metal particles in which the Cu particles were coated with a Cu 2 O layer.
  • the average particle size (D50) was 0.5 ⁇ m, and the degree of oxidation H was 0.1.
  • the degree of oxidation H and average particle size (D50) were measured in the same manner as in (P1)A.
  • (P1) G Cu particles (MA series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were heated in an oven at 200° C. for 40 hours to obtain metal particles in which the Cu particles were coated with a Cu 2 O layer.
  • the average particle size (D50) was 50 ⁇ m and the degree of oxidation H was 0.05.
  • the degree of oxidation H and average particle size (D50) were measured in the same manner as in (P1)A.
  • (P1) H Ag particles (SP series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were used.
  • the average particle size (D50) was 5 ⁇ m, and the oxidation degree H was 0.
  • the average particle size (D50) was measured in the same manner as in (P1)A.
  • (P1) I Cu particles (MA series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were heated in an oven at 200° C. for 30 hours to obtain metal particles in which the Cu particles were coated with a Cu 2 O layer.
  • the average particle size (D50) was 25 ⁇ m and the oxidation degree H was 0.05.
  • the degree of oxidation H and average particle size (D50) were measured in the same manner as in (P1)A.
  • (P1) J Cu particles (MA series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were heated in an oven at 170° C. for 4 hours to obtain metal particles in which the Cu particles were coated with a Cu 2 O layer.
  • the average particle size (D50) was 5 ⁇ m and the degree of oxidation H was 0.31.
  • the degree of oxidation H and average particle size (D50) were measured in the same manner as in (P1)A.
  • (P1) K Cu particles (1030Y series, manufactured by Mitsui Kinzoku Mining Co., Ltd.) were heated in an oven at 170°C for 3 hours to obtain metal particles in which the Cu particles were coated with a Cu 2 O layer.
  • the average particle size (D50) was 0.5 ⁇ m, and the oxidation degree H was 0.07.
  • the degree of oxidation H and average particle size (D50) were measured in the same manner as in (P1)A.
  • P2 [Second metal particles (P2)] (P2) A: Particles in which Cu particles were coated with Sn (1050Y series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were used.
  • the average particle size (D50) was 2 ⁇ m.
  • the average particle size (D50) was measured in the same manner as in (P1)A.
  • (P2) B Particles in which Cu particles were coated with Sn (1050Y series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were used.
  • the average particle size (D50) was 5 ⁇ m.
  • the average particle size (D50) was measured in the same manner as in (P1)A.
  • (P2) C Cu particles coated with SnNiCu (developed product, manufactured by Kyokuto Boeki Co., Ltd.) were used.
  • the average particle size (D50) was 2 ⁇ m.
  • the average particle size (D50) was measured in the same manner as in (P1)A.
  • (P2) D Particles in which Cu particles were coated with SnNiCu (developed product, manufactured by Kyokuto Boeki Co., Ltd.) were used.
  • the average particle size (D50) was 5 ⁇ m.
  • the average particle size (D50) was measured in the same manner as in (P1)A.
  • (P2) E Sn-coated Cu particles (1050Y series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were used.
  • the average particle size (D50) was 0.5 ⁇ m.
  • the average particle size (D50) was measured in the same manner as in (P1)A.
  • (P2) F Sn-coated Cu particles (1050Y series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were used.
  • the average particle size (D50) was 20 ⁇ m.
  • the average particle size (D50) was measured in the same manner as in (P1)A.
  • (P2) G Cu particles coated with In (developed product, manufactured by Kyokuto Boeki Co., Ltd.) were used.
  • the average particle size (D50) was 2 ⁇ m.
  • the average particle size (D50) was measured in the same manner as in (P1)A.
  • (P2) H Sn particles (STC series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were used.
  • the average particle size (D50) was 2 ⁇ m.
  • the average particle size (D50) was measured in the same manner as in (P1)A.
  • (P2) I Sn-coated Cu particles (1050Y series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were used.
  • the average particle size (D50) was 12 ⁇ m.
  • the average particle size (D50) was measured in the same manner as in (P1)A.
  • P3 (P3) A: Sn particles (ST series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were used.
  • the average particle size (D50) was 5 ⁇ m.
  • the average particle size (D50) was measured in the same manner as in (P1)A.
  • (P3) B SnNiCu particles (STC series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were used.
  • the average particle size (D50) was 5 ⁇ m.
  • the average particle size (D50) was measured in the same manner as in (P1)A.
  • Thermosetting resin A Bismaleimide resin (BMI-3000 (trade name), DESIGNER MOLECULES INC., number average molecular weight 3000) and polymerization initiator (Nofmer BC (trade name), 2,3-dimethyl-2,3- Diphenylbutane (manufactured by NOF Corporation) was mixed at a mass ratio of 100:5 to obtain a maleimide resin.
  • Flux A organic sulfides (MPSMA (registered trademark), bis(4-methacryloylthiophenyl) sulfide, manufactured by Sumitomo Seika Co., Ltd.)
  • Flux B Phosphine-based (DPPST, p-styryldiphenylphosphine, manufactured by Hokko Sangyo Co., Ltd.)
  • Example 1 ⁇ Production of bonding material composition (bonding paste)> (Example 1)
  • (P1) A is immersed in a solution of flux A and stirred for 120 minutes at an output of 50 W and 3000 rpm using an ultrasonic device (NS-56 (trade name), manufactured by Microtech Nition Co., Ltd.).
  • the flux was coordinated to the surface of the first metal particles (P1). Flux content was determined using FT-IR (Fourier transform infrared spectroscopy) measurements.
  • (P1)A and (P2)A modified with the above fluxes and cyclopentanone (manufactured by Kanto Kagaku Co., Ltd.) as a solvent were mixed and stirred in the mixing ratios shown in Tables 1 to 3 to prepare Example 1.
  • a bonding material composition that is, a bonding paste, was obtained.
  • Examples 2-4, 10-20, Comparative Examples 1-5) In the same manner as in Example 1, bonding material compositions, that is, bonding pastes, according to Examples 2 to 4, 10 to 20, and Comparative Examples 1 to 5 were obtained with the raw materials and blending ratios shown in Tables 1 and 2. For Comparative Example 5, all raw materials were kneaded without modifying the surfaces of the first metal particles with flux.
  • (P1) A is immersed in a solution of flux B and stirred for 120 minutes at an output of 50 W and 3000 rpm using an ultrasonic device (NS-56 (trade name), manufactured by Microtech Nition Co., Ltd.). , the flux was coordinated to the surface of the first metal particles (P1).
  • a bonding material composition that is, a bonding paste, according to Example 5 was obtained with the raw materials and blending ratios shown in Tables 1 and 2.
  • Example 6 In the same manner as in Example 5, a bonding material composition, ie, a bonding paste, according to Example 6 was obtained with the raw materials and blending ratios shown in Tables 1 and 2.
  • thermosetting resin A thermosetting resin A
  • cyclopentanone manufactured by Kanto Kagaku Co., Ltd.
  • Example 8 and 9 Bonding material layers according to Examples 8 and 9 were obtained in the same manner as in Example 7, using the raw materials and mixing ratios shown in Tables 1 and 2.
  • the scratching tool of the bond tester was made to collide with the side surface of the chip of the measurement sample at 100 ⁇ m / s,
  • the stress at which the chip/lead frame bond failed was measured as the shear strength at 260°C. If the shear strength is 10.0 MPa or more, it is evaluated as “Good”, if it is less than 10.0 MPa and 3.0 or more, it is evaluated as " ⁇ ", and if it is less than 3.0 MPa, it is evaluated as "X" did.
  • TCT thermal shock test
  • the treatment process was defined as one cycle, and 500 cycles of this treatment were performed.
  • the shear strength after TCT was measured in the same manner as for the shear strength before TCT. It means that the higher the shear strength after TCT, the better the heat resistance. If the shear strength after TCT is 7.0 MPa or more, it is regarded as a good product. ” was evaluated.
  • a product with a volume resistivity of less than 1.0 ⁇ 10 ⁇ 5 ⁇ cm is regarded as a good product, and a product with a volume resistivity of 1.0 ⁇ 10 ⁇ 5 ⁇ cm or more and 5.0 ⁇ 10 ⁇ 5 ⁇ cm cm or less was evaluated as an acceptable product, and those exceeding 5.0 ⁇ 10 ⁇ 5 ⁇ cm were evaluated as a defective product with an “X”.
  • Thermal conductivity is determined by expressing volume resistivity as IACS conductivity.
  • the volume resistivity of 1.724 ⁇ 10 -6 ⁇ cm of annealed standard copper is 100IACS%, and the volume resistivity is expressed as a ratio, and the thermal conductivity of 360W when copper is 100IACS% is divided by the ratio. , the thermal conductivity was calculated based on copper. In addition, thermal conductivity means that it is excellent in heat dissipation, so that it is large.
  • those with a thermal conductivity of 70 W/m ⁇ K or more are regarded as excellent products, and those with a thermal conductivity of less than 70 W/m ⁇ K and 40 W/m ⁇ K or more are regarded as good products, and 40 W/m ⁇ Those with less than K of 17 W/m ⁇ K or more were evaluated as “acceptable”, and those with less than 17 W/m ⁇ K were evaluated as “poor”.
  • Examples 7-9 [Share strength]
  • the bonding material layers according to Examples 7 to 9 were placed on a Cu lead frame.
  • a chip was prepared by dicing an Au-plated Si wafer into 3 mm squares, and the chip was placed on the bonding material layer so that the Au plating was in contact with the bonding material layer to obtain a laminate.
  • This laminate was baked at 280° C. for 15 minutes in a nitrogen atmosphere to obtain a sample for measurement.
  • the shear strength was measured by the same method as the shear strength described above, and the shear strength was evaluated by the same method.
  • the bonding material compositions (bonding pastes) and bonding material layers according to Examples 1 to 20 were obtained by using metal particles in which Cu particles were coated with a Cu 2 O layer and metal particles in which Cu particles were coated with Sn or SnNiCu. Therefore, the diffusion is suppressed until the Cu 2 O layer is reduced, so the reaction proceeds slowly and the reaction is uniform as a whole. result.
  • the bonding material composition according to Comparative Example 2 used Ag particles having a good oxidation state as the first metal particles (P1), the Ag 3 Sn and Cu 3 Sn regions were separated by reacting with Sn. structure, resulting in poor heat resistance and heat dissipation.

Abstract

Provided are a bonding material composition whereby shear strength, heat resistance, electrical conductivity, and heat dissipation properties of a bonding layer can be enhanced, a method for manufacturing the bonding material composition, a bonding film, a method for manufacturing a bonded body, and a bonded body. The bonding material composition pertaining to the present invention is characterized by including a flux and metal particles (P) including first metal particles (P1) and second metal particles (P2), the first metal particles (P1) being constituted from a core (C1) comprising Cu, and a Cu2O layer that covers the core (C1), and the second metal particles (P2) being constituted from a core (C2) comprising Cu, and Sn or a solder containing Sn that covers the core (C2).

Description

接合材組成物、接合材組成物の製造方法、接合フィルム、接合体の製造方法、及び接合体JOINTING MATERIAL COMPOSITION, BONDING MATERIAL COMPOSITION MANUFACTURING METHOD, BONDING FILM, JOINTED PRODUCT MANUFACTURING METHOD, AND JOINTED BODY
 本発明は、接合材組成物、接合材組成物の製造方法、接合フィルム、接合体の製造方法、及び接合体に関し、特に、半導体素子と回路基板やセラミック基板等の基板とを接続するための接合材組成物、接合フィルム、並びに、該接合材組成物、該接合フィルムを用いた接合体の製造方法、及び接合体に関する。 TECHNICAL FIELD The present invention relates to a bonding material composition, a method for manufacturing a bonding material composition, a bonding film, a method for manufacturing a bonded body, and a bonded body, and particularly to a bonding material for connecting a semiconductor element and a substrate such as a circuit board or a ceramic substrate. The present invention relates to a bonding material composition, a bonding film, a method for manufacturing a bonded body using the bonding material composition and the bonding film, and a bonded body.
 半導体装置は、一般に、リードフレームの素子担持部上または絶縁基板の回路電極部上に、半導体素子を接合するためのダイマウント材を形成する工程と、リードフレーム上もしくは回路電極上のダイマウント材表面に半導体素子を搭載し、リードフレームの素子担持部もしくは絶縁基板の回路電極部と半導体素子とを接合する工程と、半導体素子の電極部と、リードフレームの端子部もしくは絶縁基板の端子部を電気的に接合するワイヤボンディング工程と、このようにして組み立てた半導体装置を樹脂被覆するモールド工程とを経て製造される。 A semiconductor device generally comprises a step of forming a die mount material for bonding a semiconductor element on an element carrying portion of a lead frame or a circuit electrode portion of an insulating substrate, and a die mount material on the lead frame or on the circuit electrode. A step of mounting a semiconductor element on the surface and joining the element holding portion of the lead frame or the circuit electrode portion of the insulating substrate to the semiconductor element; It is manufactured through a wire bonding process for electrical bonding and a molding process for resin-coating the thus assembled semiconductor device.
 ここで、リードフレームの素子担持部もしくは絶縁基板の回路電極部と半導体素子とを接合する際には、接合材が用いられている。例えば、IGBTやMOS-FET等のパワー半導体の接合材としては、高融点で耐熱性のある鉛を85質量%以上含んだ鉛はんだが広く用いられてきた。しかし、近年、鉛の有害性が問題視されており、接合材についても鉛フリーの要求が高まってきている。 Here, a bonding material is used when bonding the element carrying portion of the lead frame or the circuit electrode portion of the insulating substrate and the semiconductor element. For example, lead solder containing 85% by mass or more of lead, which has a high melting point and heat resistance, has been widely used as a bonding material for power semiconductors such as IGBTs and MOS-FETs. However, in recent years, the harmfulness of lead has been viewed as a problem, and there is an increasing demand for lead-free joining materials.
 また、SiCパワー半導体は、Siパワー半導体と比較して、低損失であるとともに、高速および高温での動作が可能であるという特徴があり、次世代パワー半導体として期待されている。このようなSiCパワー半導体は、理論上200℃以上での動作が可能であるが、インバータ等のシステムの高出力高密度化を実用化する上では、接合材を含む周辺材料についても耐熱性の向上が望まれている。 In addition, compared to Si power semiconductors, SiC power semiconductors are characterized by low loss and the ability to operate at high speeds and high temperatures, and are expected to be next-generation power semiconductors. Such SiC power semiconductors are theoretically capable of operating at temperatures above 200°C. Improvement is desired.
 これらの背景から、近年では、鉛フリータイプで、高融点の各種接合材料が評価されている。このような高融点の鉛フリータイプの接合材料としては、Au-Sn系合金やAu-Ge系合金等のAu系合金などが開示されており(例えば、特許文献1)、これらは電気伝導および熱伝導が良好で、化学的にも安定である点で注目されている。しかし、このようなAu系合金材料は、貴金属を含むため材料コストが高くなり、また、よりよい実装信頼性を得るためには高価な高温真空リフロー装置が必要となるため、未だ実用化には至っていない。 Against this background, in recent years, various lead-free, high-melting-point joining materials have been evaluated. Au-based alloys such as Au--Sn-based alloys and Au--Ge-based alloys have been disclosed as such high-melting-point lead-free type bonding materials (for example, Patent Document 1). It is attracting attention for its good thermal conductivity and chemical stability. However, since such Au-based alloy materials contain precious metals, the material costs are high, and in order to obtain better mounting reliability, an expensive high-temperature vacuum reflow apparatus is required. Not yet.
 そこで、高温で動作する半導体素子の接合方法として、CuとSnを含む接合材料を半導体素子と基板との間に介在させ、Snの融点より高い温度で加熱し、前記接合材をCuSnやCuSnからなる組成の金属間化合物(Inter-Metallic Compound:IMC)とする遷移的液相焼結法(Transient Liquid Phase Sintering:TLP法)と呼ばれる接合方法が注目されており、この接合方法を用いた接合方法や接合フィルムが開示されている(例えば、特許文献2,3参照)。 Therefore, as a method for bonding semiconductor elements that operate at high temperatures, a bonding material containing Cu and Sn is interposed between the semiconductor element and the substrate, and heated at a temperature higher than the melting point of Sn to convert the bonding material into Cu 6 Sn 5 . A bonding method called Transient Liquid Phase Sintering (TLP method) that uses an intermetallic compound (IMC) composed of Cu and Cu Sn is attracting attention, and this bonding method A joining method and a joining film using are disclosed (see, for example, Patent Documents 2 and 3).
 特許文献2には、Cu粒子とSn粒子を含むペースト状の接合剤を、半導体チップの接合面と基板の接合面との間に介在させ、Snの融点より高い温度で加熱し、CuとSnを遷移的液相焼結させて、接合剤をCuSnとCuSnを含む組成にし、さらに232℃~415℃の温度範囲で加熱し接合剤のCuSnをCuSnに変化させて、接合剤におけるCuSnの比率を増やし、CuSnの単相、或いはCuSn相とCu粒子の平衡組織とする接合方法が開示されている。 In Patent Document 2, a paste-like bonding agent containing Cu particles and Sn particles is interposed between the bonding surface of a semiconductor chip and the bonding surface of a substrate, and heated at a temperature higher than the melting point of Sn to bond Cu and Sn together. is transitionally liquid-phase sintered to make the bonding agent a composition containing Cu 6 Sn 5 and Cu 3 Sn, and further heated in the temperature range of 232° C. to 415° C. to convert the Cu 6 Sn 5 of the bonding agent into Cu 3 Sn. A bonding method is disclosed in which the ratio of Cu 3 Sn in the bonding agent is changed to increase the ratio of Cu 3 Sn to obtain a single phase of Cu 3 Sn or an equilibrium structure of Cu 3 Sn phase and Cu particles.
 特許文献3には、Cu-Sn系などの金属間化合物を形成し得る第1の金属粒子と第2の金属粒子と、樹脂と、ホスフィン類およびスルフィド類の少なくとも一方とを含む接合フィルムが開示されている。 Patent Document 3 discloses a bonding film containing first metal particles and second metal particles capable of forming an intermetallic compound such as a Cu—Sn-based compound, a resin, and at least one of phosphines and sulfides. It is
 また、遷移的液相焼結法を利用しない接合用ペーストとして、Cuからなる中心核と前記中心核を被覆するCuSnからなる被覆層とにより構成される平均粒径が0.05~1μmの微細粉末と有機溶剤とを混合した接合用ペーストが開示されている(例えば、特許文献4参照)。この接合用ペーストを第1及び第2被接合部材間に介在させた後、窒素ガス雰囲気下又はギ酸ガス雰囲気下、第1及び第2被接合部材が互いに密着するように少なくとも0.1MPaの圧力を加えて250~400℃の温度で5~120分間加熱することにより、CuSnの金属間化合物の内部にCu粒子が略均一に拡散して、凝固開始温度の676℃でCuSn組織となり、初期接合強度及び冷熱サイクル時の接合強度が高い接合を実現することができるとされている。 In addition, as a bonding paste that does not use the transitional liquid phase sintering method, the average particle size composed of a central core made of Cu and a coating layer made of Cu 6 Sn 5 covering the central core is 0.05 to 0.05. A bonding paste obtained by mixing a fine powder of 1 μm and an organic solvent is disclosed (see, for example, Patent Document 4). After interposing this bonding paste between the first and second members to be joined, a pressure of at least 0.1 MPa is applied under a nitrogen gas atmosphere or a formic acid gas atmosphere so that the first and second members to be joined are in close contact with each other. was added and heated at a temperature of 250 to 400°C for 5 to 120 minutes, the Cu particles diffused substantially uniformly inside the intermetallic compound of Cu 6 Sn 5 , and Cu 3 Sn It is said that it is possible to achieve bonding with high initial bonding strength and high bonding strength during thermal cycles.
特開2006-032888号公報Japanese Patent Application Laid-Open No. 2006-032888 特許第6061248号公報Japanese Patent No. 6061248 国際公開第2017/138255号WO2017/138255 特許第6753349号公報Japanese Patent No. 6753349
 しかしながら、上記特許文献2に記載の接合方法では、Cu粒子表面に形成される酸化物の除去が難しいため、接合剤を加熱したときに、溶融した液相のSnがCu粒子表面に濡れにくく、接合層に未反応のCu粒子が残存するため、シェア強度や放熱性が低いという問題があった。また、溶融したSnが固化するとバルクになるため、接合層の伸びが小さいことからパワー半導体の高い動作温度によりシェア強度が低下し耐熱性が低いという問題があった。さらに、CuSnをCuSnに変化させて、CuSnの比率を増やすために、二段階で加熱しなければならず、手間がかかるという問題があった。 However, in the bonding method described in Patent Document 2, since it is difficult to remove oxides formed on the surfaces of the Cu particles, when the bonding agent is heated, Sn in the molten liquid phase is less likely to wet the surfaces of the Cu particles. Since unreacted Cu particles remain in the bonding layer, there is a problem that shear strength and heat dissipation are low. In addition, when melted Sn solidifies, it becomes bulk, so that the elongation of the bonding layer is small, so that the high operating temperature of the power semiconductor lowers the shear strength, resulting in low heat resistance. Furthermore, in order to change Cu 6 Sn 5 to Cu 3 Sn and increase the ratio of Cu 3 Sn, heating must be performed in two stages, which is a problem in that it takes time and effort.
 上記特許文献3に記載の接合方法では、ホスフィン類およびスルフィド類の少なくとも一方を含むため、Cu粒子表面に形成される酸化物は除去されるが、Sn液相は流動性があるためSn液相が局所的に偏り、やはり接合層に未反応のCu粒子が残存し、シェア強度や放熱性が不十分であった。 In the bonding method described in Patent Document 3, since at least one of phosphines and sulfides is included, the oxide formed on the Cu particle surface is removed, but the Sn liquid phase has fluidity, so the Sn liquid phase was locally biased, unreacted Cu particles still remained in the bonding layer, and the shear strength and heat dissipation were insufficient.
 上記特許文献4に記載の接合フィルムでは、Cuからなる中心核を被覆するCuSnの融点は高いため、微細化した粒子を用いて、微細化効果および加圧により焼結させて接合層を形成する。接合層が焼結体であるため、多数の空隙が存在する。このため、導電性や放熱性が低いという問題や、伸びが小さく耐熱性が低いという問題があった。また、微細化した粒子を使用するために薄い膜には適用可能だが、厚膜の形成が困難であることが予想される。 In the bonding film described in Patent Document 4, since the melting point of Cu 6 Sn 5 that coats the central core made of Cu is high, the bonding layer is formed by sintering by using fine particles and applying pressure. to form Since the bonding layer is a sintered body, there are many voids. For this reason, there are problems of low conductivity and heat dissipation, and low elongation and low heat resistance. In addition, since it uses finer particles, it can be applied to thin films, but it is expected that formation of thick films will be difficult.
 そこで、本発明は、接合層のシェア強度、耐熱性、導電性および放熱性を向上させることができる接合材組成物、接合材組成物の製造方法、接合フィルム、接合体の製造方法、及び接合体を提供することを目的とする。 Accordingly, the present invention provides a bonding material composition capable of improving the shear strength, heat resistance, electrical conductivity and heat dissipation of a bonding layer, a method for manufacturing the bonding material composition, a bonding film, a method for manufacturing a bonded body, and bonding. The purpose is to provide the body.
 以上の課題を解決するため、本発明に係る接合材組成物は、第1の金属粒子(P1)と第2の金属粒子(P2)とを含む金属粒子(P)と 、フラックスとを含み、前記第1の金属粒子(P1)はCuからなるコア(C1)と前記コア(C1)を被覆するCuO層とにより構成され 、前記第2の金属粒子(P2)はCuからなるコア(C2)と前記コア(C2)を被覆するSnまたはSnを含有するはんだとにより構成されることを特徴とする。 In order to solve the above problems, the bonding material composition according to the present invention includes metal particles (P) including first metal particles (P1) and second metal particles (P2), and flux, The first metal particles (P1) are composed of a core (C1) made of Cu and a Cu 2 O layer covering the core (C1), and the second metal particles (P2) are composed of a core (C1) made of Cu. C2) and Sn covering the core (C2) or solder containing Sn.
 上記接合材組成物は、前記第1の金属粒子(P1)は平均粒径が1~20μmであり、前記第2の金属粒子(P2)は平均粒径が1~10μmであることが好ましい。 In the bonding material composition, the first metal particles (P1) preferably have an average particle size of 1 to 20 μm, and the second metal particles (P2) preferably have an average particle size of 1 to 10 μm.
 上記接合材組成物は、前記コア(C1)の前記Cu及び前記コア(C2)の前記Cuの総量100質量%に対して、前記コア(C2)を被覆するSnまたはSnを含有するはんだにおけるSnの割合が55~65質量%であることが好ましい。 In the bonding material composition, Sn covering the core (C2) or Sn in a solder containing Sn is preferably 55 to 65% by mass.
 また、上記接合材組成物は、前記第1の金属粒子(P1)の、X線回折により測定されたCu(111)面の回析強度をH1、CuO(111)面の回析強度をH2としたとき、下記式1で表される前記第1の金属粒子(P1)の酸化度Hが、0.05~0.3であることが好ましい。
H=H2/(H1+H2)    [式1]
In the bonding material composition, the diffraction intensity of the Cu (111) plane measured by X-ray diffraction of the first metal particles (P1) is H1, and the diffraction intensity of the Cu 2 O (111) plane is is H2, the oxidation degree H of the first metal particles (P1) represented by the following formula 1 is preferably 0.05 to 0.3.
H=H2/(H1+H2) [Formula 1]
 また、上記接合材組成物は、前記金属粒子(P)が第3の金属粒子(P3)を更に含み、前記第3の金属粒子(P3)がSn粒子またはSnを含有するはんだ粒子であることが好ましい。 In the bonding material composition, the metal particles (P) further include third metal particles (P3), and the third metal particles (P3) are Sn particles or Sn-containing solder particles. is preferred.
 また、上記接合材組成物は、前記コア(C1)の前記Cu及び前記コア(C2)の前記Cuの総量100質量%に対して、前記コア(C2)を被覆するSnまたはSnを含有するはんだにおけるSn、および前記Sn粒子またはSnを含有するはんだ粒子におけるSnの割合が55~65質量%であることが好ましい。 Further, the bonding material composition covers the core (C2) with respect to the total amount of 100% by mass of the Cu of the core (C1) and the Cu of the core (C2), or Sn or a solder containing Sn and the ratio of Sn in the Sn particles or Sn-containing solder particles is preferably 55 to 65% by mass.
 また、上記接合材組成物は、前記フラックスが還元性を有し、反応生成物に水を含まないことが好ましい。 In addition, in the bonding material composition, it is preferable that the flux has reducing properties and that the reaction product does not contain water.
 また、上記接合材組成物は、前記フラックスが下記一般式(1)で示されるホスフィン類および下記一般式(2)で示されるスルフィド類の少なくとも一方を含むことが好ましい。ただし、下記一般式(1)および(2)においてRは、それぞれ独立して、有機基を示し、Rは互いに同一であっても異なっていてもよい。 In addition, in the bonding material composition, the flux preferably contains at least one of phosphines represented by the following general formula (1) and sulfides represented by the following general formula (2). However, in the following general formulas (1) and (2), each R independently represents an organic group, and each R may be the same or different.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 また、上記接合材組成物は、前記金属粒子(P)に対して、前記フラックスの含有割合が、0.05~0.5質量%であることが好ましい。 Further, in the bonding material composition, it is preferable that the content of the flux is 0.05 to 0.5% by mass with respect to the metal particles (P).
 また、上記接合材組成物は、金属粒子(P)の含有割合が、前記接合材組成物全量に対して80~95質量%であることが好ましい。 In addition, it is preferable that the content of the metal particles (P) in the bonding material composition is 80 to 95% by mass with respect to the total amount of the bonding material composition.
 また、上記接合材組成物は、240℃以上で加熱されることにより、第1の部材と第2の部材とを接合する接合層を形成し、前記接合層は、Cu粒子がCuとSnとの化合物により接合されたネットワーク構造を有することが好ましい。 Further, the bonding material composition is heated at 240° C. or higher to form a bonding layer that bonds the first member and the second member, and the bonding layer includes Cu particles of Cu and Sn. It is preferable to have a network structure joined by a compound of
 また、上記接合材組成物は、熱硬化性樹脂を含むことが好ましい。 Also, the bonding material composition preferably contains a thermosetting resin.
 また、以上の課題を解決するため、本発明に係る接合材組成物の製造方法は、前記第1の金属粒子(P1)、前記第2の金属粒子(P2)を混合、撹拌する工程を含むことを特徴とする。 In order to solve the above problems, the method for producing a bonding material composition according to the present invention includes a step of mixing and stirring the first metal particles (P1) and the second metal particles (P2). It is characterized by
 また、以上の課題を解決するため、本発明に係る接合フィルムは、接合材層を有する接合フィルムであって、前記接合材層が、上述のいずれかに記載の接合材組成物を用いて形成されたものであることを特徴とする。 Further, in order to solve the above problems, a bonded film according to the present invention is a bonded film having a bonding material layer, wherein the bonding material layer is formed using the bonding material composition according to any one of the above. It is characterized by being
 また、上記接合フィルムは、前記接合材層の厚さが10~100μmであることが好ましい。 Further, in the bonding film, it is preferable that the bonding material layer has a thickness of 10 to 100 μm.
 また、以上の課題を解決するため、本発明に係る接合体の製造方法は、上述のいずれかの接合材組成物を用いて第1の部材と第2の部材とを接合層により接合する接合体の製造方法であって、前記接合材組成物を前記第1の部材と前記第2の部材との間に介在させ、240℃以上で加熱することにより、前記フラックスが前記第1の金属粒子(P1)の前記CuO層を除去し、前記第2の金属粒子(P2)の前記Snまたは前記Snを含有するはんだが溶融して、前記コア(C1)の前記Cu及び前記コア(C2)の前記Cuと反応し、Cu粒子がCuとSnとの化合物により接合されたネットワーク構造を有する前記接合層が形成されることを特徴とする。 Further, in order to solve the above problems, a method for manufacturing a joined body according to the present invention provides a joining method for joining a first member and a second member with a joining layer using any of the joining material compositions described above. In the method for manufacturing a body, the bonding material composition is interposed between the first member and the second member and heated at 240° C. or higher to convert the flux into the first metal particles. The Cu 2 O layer of (P1) is removed, the Sn of the second metal particles (P2) or the Sn-containing solder melts, and the Cu of the core (C1) and the core (C2 ) reacts with the Cu to form the bonding layer having a network structure in which Cu particles are bonded by a compound of Cu and Sn.
 また、以上の課題を解決するため、本発明に係る接合体の製造方法は、上述のいずれかの接合フィルムを用いて第1の部材と第2の部材とを接合層により接合する接合体の製造方法であって、前記接合材層を前記第1の部材と前記第2の部材との間に介在させ、240℃以上で加熱することにより、前記フラックスが前記第1の金属粒子(P1)の前記CuO層を除去し、前記第2の金属粒子(P2)の前記Snまたは前記Snを含有するはんだが溶融して、前記コア(C1)の前記Cu及び前記コア(C2)の前記Cuと反応し、Cu粒子がCuとSnとの化合物により接合されたネットワーク構造を有する前記接合層が形成されることを特徴とする。 Further, in order to solve the above problems, a method for manufacturing a bonded body according to the present invention provides a bonded body in which a first member and a second member are bonded by a bonding layer using any one of the bonding films described above. In the manufacturing method, the bonding material layer is interposed between the first member and the second member, and heated at 240° C. or higher to convert the flux into the first metal particles (P1). The Cu 2 O layer of the second metal particles (P2) is removed, the Sn of the second metal particles (P2) or the Sn-containing solder melts, and the Cu of the core (C1) and the Cu of the core (C2) The bonding layer is characterized in that it reacts with Cu to form the bonding layer having a network structure in which Cu particles are bonded by a compound of Cu and Sn.
 また、以上の課題を解決するため、本発明に係る接合体は、上述のいずれかの接合材組成物を用いて、第1の部材と第2の部材とを接合層により接合した接合体であって、前記接合層は、前記接合材組成物を240℃以上で加熱することにより形成されたものであることを特徴とする。 Further, in order to solve the above problems, a joined body according to the present invention is a joined body in which a first member and a second member are joined by a joining layer using any of the joining material compositions described above. The bonding layer is formed by heating the bonding material composition at 240° C. or higher.
 また、以上の課題を解決するため、本発明に係る接合体は、上述のいずれかの接合フィルムを用いて、第1の部材と第2の部材とを接合層により接合した接合体であって、前記接合層は、前記接合材層を240℃以上で加熱することにより形成されたものであることを特徴とする。 Further, in order to solve the above problems, a joined body according to the present invention is a joined body in which a first member and a second member are joined by a joining layer using any one of the joining films described above. and the bonding layer is formed by heating the bonding material layer at 240° C. or higher.
 上記の接合体は、前記接合層は、Cu粒子がCuとSnとの化合物により接合されたネットワーク構造を有することが好ましい。 In the above bonded body, the bonding layer preferably has a network structure in which Cu particles are bonded with a compound of Cu and Sn.
 上記の接合体は、前記接合層の厚さが10~300μmであることが好ましい。 In the bonded body described above, the bonding layer preferably has a thickness of 10 to 300 μm.
 本発明によれば、接合層のシェア強度、耐熱性、導電性および放熱性を向上させることができる接合材組成物、接合材組成物の製造方法、接合フィルム、接合体の製造方法、及び接合体を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, there is provided a bonding material composition capable of improving the shear strength, heat resistance, conductivity and heat dissipation of a bonding layer, a method for manufacturing the bonding material composition, a bonding film, a method for manufacturing a bonded body, and bonding. body can be provided.
 以下、本発明の実施の形態に係る接合材組成物について説明する。 A bonding material composition according to an embodiment of the present invention will be described below.
 本発明の一実施形態に係る接合材組成物は、第1の金属粒子(P1)と第2の金属粒子(P2)とを含む金属粒子(P)と 、フラックスとを含み、第1の金属粒子(P1)はCuからなるコア(C1)と前記コア(C1)を被覆するCuO層とにより構成され、第2の金属粒子(P2)はCuからなるコア(C2)と前記コア(C2)を被覆するSnまたはSnを含有するはんだとにより構成される。 A bonding material composition according to one embodiment of the present invention includes metal particles (P) including first metal particles (P1) and second metal particles (P2), and flux. The particles (P1) are composed of a core (C1) made of Cu and a Cu 2 O layer covering the core (C1), and the second metal particles (P2) are composed of a core (C2) made of Cu and the core (C2). C2) is coated with Sn or a solder containing Sn.
本発明の接合材組成物は、接合ペーストとして半導体素子と基板との接合などに用いることができる。また、本発明の接合材組成物は、フィルム状に成形することにより、接合材層を有する接合フィルムの接合材層とすることもできる。 The bonding material composition of the present invention can be used as a bonding paste for bonding a semiconductor element and a substrate. Further, the bonding material composition of the present invention can also be used as a bonding material layer of a bonding film having a bonding material layer by being formed into a film.
 以下、本実施形態の接合材組成物の各構成要素について詳細に説明する。 Each component of the bonding material composition of the present embodiment will be described in detail below.
 (第1の金属粒子(P1))
 第1の金属粒子(P1)はCuからなるコア(C1)と前記コア(C1)を被覆するCuO層とにより構成される。CuO層は、Cu粒子をオーブン等で、170~300℃で30分~50時間、加熱することにより形成することができる。なお、CuO層が形成される範囲であれば、加熱温度や加熱時間は適宜調整することができる。
(First metal particles (P1))
The first metal particles (P1) are composed of a core (C1) made of Cu and a Cu 2 O layer covering the core (C1). The Cu 2 O layer can be formed by heating Cu particles in an oven or the like at 170 to 300° C. for 30 minutes to 50 hours. Note that the heating temperature and the heating time can be appropriately adjusted as long as the Cu 2 O layer is formed.
 第1の金属粒子(P1)の酸化度Hは、0.05~0.3であることが好ましく、0.05~0.2であることがより好ましい。酸化度Hは、第1の金属粒子(P1)の、X線回折により測定されたCu(111)面の回析強度をH1、CuO(111)面の回析強度をH2としたとき、下記式1で求めることができる。
H=H2/(H1+H2)    [式1]
The degree of oxidation H of the first metal particles (P1) is preferably 0.05 to 0.3, more preferably 0.05 to 0.2. The degree of oxidation H is obtained when the diffraction intensity of the Cu (111) plane of the first metal particles (P1) measured by X-ray diffraction is H1, and the diffraction intensity of the Cu 2 O (111) plane is H2. , can be obtained by the following formula 1.
H=H2/(H1+H2) [Formula 1]
 X線源としてCuKαを用いたX線回折によると、酸化銅(I)(CuO)の(111)面は2θ=36°付近にピークが現れ、一方、銅(Cu)の(111)面は2θ=43°付近にピークが現れる。なお、酸化銅として存在するのは、酸化銅(I)(CuO)のみであり、酸化銅(II)(CuO)は、本条件下では存在しない。これにより、X線回折測定において2θ=43°付近に存在するCu(111)面のピーク高さをH1、2θ=36°付近に存在するCuO(111)面のピーク高さをH2としたときに、X線回折ピーク強度比(H2/[H1+H2])から酸化度Hを求めることができる。 According to X-ray diffraction using CuKα as an X-ray source, the (111) plane of copper (I) oxide (Cu 2 O) has a peak near 2θ = 36°, while the (111) plane of copper (Cu) The plane has a peak near 2θ=43°. Note that only copper (I) oxide (Cu 2 O) exists as copper oxide, and copper (II) oxide (CuO) does not exist under these conditions. Thus, in X-ray diffraction measurement, the peak height of the Cu (111) plane present near 2θ=43° is H1, and the peak height of the Cu 2 O (111) plane present near 2θ=36° is H2. Then, the degree of oxidation H can be obtained from the X-ray diffraction peak intensity ratio (H2/[H1+H2]).
 酸化度Hが0.05未満であると、第1の金属粒子(P1)のコア(C1)のCuと第2の金属粒子(P2)のSnまたはSnを含有するはんだの反応が部分的に起きてしまい、接合層全体に均一な組織が得られにくくなる。酸化度Hが0.3を超えると、酸化被膜が厚すぎて、フラックスによる酸化被膜の除去が十分に行われず、第1の金属粒子(P1)のコア(C1)のCuと第2の金属粒子(P2)のSnまたはSnを含有するはんだの反応も不十分になるおそれがあり、その結果、接合層のシェア強度、耐熱性、放熱性が低下するおそれがある。さらに、酸化度Hが0.5を超えると、フラックスによる酸化被膜の除去が間にあわず、接合層の導電性も低下するおそれがある。 When the degree of oxidation H is less than 0.05, the reaction between the Cu in the core (C1) of the first metal particles (P1) and the Sn or Sn-containing solder in the second metal particles (P2) is partially As a result, it becomes difficult to obtain a uniform structure throughout the bonding layer. When the degree of oxidation H exceeds 0.3, the oxide film is too thick and the oxide film is not sufficiently removed by the flux. The reaction of the Sn particles (P2) or the solder containing Sn may also be insufficient, and as a result, the shear strength, heat resistance, and heat dissipation properties of the bonding layer may decrease. Furthermore, if the oxidation degree H exceeds 0.5, the removal of the oxide film by the flux may not be done in time, and the electrical conductivity of the bonding layer may be lowered.
 酸化度Hは、コア(C1)の加熱温度や加熱時間を調整することにより、調整することができる。 The degree of oxidation H can be adjusted by adjusting the heating temperature and heating time of the core (C1).
 第1の金属粒子(P1)の平均粒径は、1~20μmであることが好ましく、5~8μmであることがより好ましい。第1の金属粒子(P1)は平均粒径が1μm未満であると、凝集しやすく、触媒効果が強くなりすぎてしまい、熱硬化性樹脂との分散性も低下するおそれがあり、その結果、接合層のシェア強度、耐熱性、導電性、放熱性が低下するおそれがある。第1の金属粒子(P1)は平均粒径が20μm超であると、接合材組成物を240℃以上で加熱したときに、第2の金属粒子(P2)のSnと均一に反応しにくくなり、均一な組織の接合層が得られず、接合層のシェア強度および放熱性が低くなるおそれがある。また、接合層が厚くなりすぎてしまい、信頼性が低下するおそれがある。さらに、第1の金属粒子(P1)は平均粒径が25μmを超えると、はんだの濡れ性が悪くなり導電性が低下するおそれがある。 The average particle size of the first metal particles (P1) is preferably 1-20 μm, more preferably 5-8 μm. If the average particle size of the first metal particles (P1) is less than 1 μm, they tend to aggregate, the catalytic effect becomes too strong, and the dispersibility with the thermosetting resin may be reduced. There is a risk that the shear strength, heat resistance, electrical conductivity, and heat dissipation of the bonding layer may be reduced. When the average particle size of the first metal particles (P1) is more than 20 μm, it becomes difficult to uniformly react with Sn of the second metal particles (P2) when the bonding material composition is heated at 240° C. or higher. In this case, a joining layer having a uniform structure cannot be obtained, and the shear strength and heat dissipation of the joining layer may be lowered. In addition, the bonding layer becomes too thick, which may reduce the reliability. Furthermore, if the average particle size of the first metal particles (P1) exceeds 25 μm, the wettability of the solder may deteriorate and the electrical conductivity may decrease.
 また、接合材組成物をフィルム状に成形して接合フィルムの接合材層とする場合は、第1の金属粒子(P1)の平均粒径は、1~10μmであることが好ましい。第1の金属粒子(P1)の平均粒径が10μm超であると、接合材層の厚みが大きくなりすぎるため、フィルムとしての取り扱いが難しくなり、量産性が悪くなる。 Further, when the bonding material composition is formed into a film to form the bonding material layer of the bonding film, the average particle diameter of the first metal particles (P1) is preferably 1 to 10 μm. If the average particle diameter of the first metal particles (P1) exceeds 10 μm, the thickness of the bonding material layer becomes too large, making it difficult to handle as a film and impairing mass productivity.
 本発明における各粒子の平均粒径は、メジアン径(頻度の累積が50%になる粒径:D50)により定める。具体的には、原料粉末またはペースト中から抽出・分離した粒子群について、レーザー回折散乱式粒度分布測定装置を用いた測定により定める。 The average particle diameter of each particle in the present invention is determined by the median diameter (the particle diameter at which the cumulative frequency reaches 50%: D50). Specifically, a particle group extracted and separated from raw material powder or paste is determined by measurement using a laser diffraction scattering type particle size distribution analyzer.
 (第2の金属粒子(P2))
 第2の金属粒子(P2)はCuからなるコア(C2)とコア(C2)を被覆するSnまたはSnを含有するはんだとにより構成される。ここでいう被覆とは、コア(C2)の表面積の半分以上を覆われていればよい。第2の金属粒子(P2)は、コア(C2)に、SnまたはSnを含有するはんだを無電解めっき法で被覆することで得ることができる。Snを含有するはんだは、鉛フリーはんだであり、スズ(Sn)-ニッケル(Ni)-銅(Cu)系、スズ(Sn)-銀(Ag)-銅(Cu)系、スズ(Sn)-亜鉛(Zn)-ビスマス(Bi)系、スズ(Sn)-銅(Cu)系、スズ(Sn)-銀(Ag)-インジウム(In)-ビスマス(Bi)系、スズ(Sn)-亜鉛(Zn)-アルミニウム(Al)系などを用いることができる。
(Second metal particles (P2))
The second metal particles (P2) are composed of a core (C2) made of Cu and Sn or a solder containing Sn covering the core (C2). The term “coating” as used herein means that half or more of the surface area of the core (C2) is covered. The second metal particles (P2) can be obtained by coating the core (C2) with Sn or solder containing Sn by electroless plating. Solders containing Sn are lead-free solders, tin (Sn)-nickel (Ni)-copper (Cu) system, tin (Sn)-silver (Ag)-copper (Cu) system, tin (Sn)- Zinc (Zn) - Bismuth (Bi) system, Tin (Sn) - Copper (Cu) system, Tin (Sn) - Silver (Ag) - Indium (In) - Bismuth (Bi) system, Tin (Sn) - Zinc ( Zn)-aluminum (Al) system or the like can be used.
 第2の金属粒子(P2)の平均粒径は、1~10μmであることが好ましく、1~5μmであることがより好ましく、1.5~3μmであることがさらに好ましい。また、耐熱性の低いSnの残留を避け、第2の金属粒子(P2)を緻密に充填するためには、第2の金属粒子(P2)の平均粒径が第1の金属粒子(P1)の平均粒径より小さいことも好ましい。 The average particle diameter of the second metal particles (P2) is preferably 1-10 μm, more preferably 1-5 μm, and even more preferably 1.5-3 μm. In order to avoid residual Sn with low heat resistance and densely fill the second metal particles (P2), the average particle size of the second metal particles (P2) should be less than that of the first metal particles (P1). is also preferably smaller than the average particle size of
 第2の金属粒子(P2)の平均粒径を1μm以上とすることにより、接合材組成物を240℃以上で加熱して形成した接合層内部で、第1の金属粒子(P1)のCu粒子の表面にSnが濡れ広がり反応して形成されたCuSnと第2の金属粒子(P2)のコア(C2)のCu粒子とSnが反応して形成されたCuSn粒子との間に空隙が形成されやすくなるため、接合層の伸びが大きくなりパワー半導体の高い動作温度下にあってもシェア強度が低下せず耐熱性が向上する。 By setting the average particle diameter of the second metal particles (P2) to 1 μm or more, the Cu particles of the first metal particles (P1) are formed inside the bonding layer formed by heating the bonding material composition at 240° C. or more. Between the Cu 3 Sn formed by the reaction of Sn wetting and spreading on the surface of the second metal particle (P2) and the Cu 3 Sn particles formed by the reaction of Sn with the Cu particles of the core (C2) of the second metal particles (P2) Since voids are easily formed, the elongation of the bonding layer is increased, and the heat resistance is improved without lowering the shear strength even under the high operating temperature of the power semiconductor.
 第2の金属粒子(P2)の平均粒径を10μm以下とすることにより、接合材組成物を240℃以上で加熱したときに、第1の金属粒子(P1)間に第2の金属粒子(P2)が入り、均一に反応が進行し、均一な組織の接合層が得られるため、接合層のシェア強度および放熱性が向上する。 By setting the average particle diameter of the second metal particles (P2) to 10 μm or less, when the bonding material composition is heated at 240° C. or higher, the second metal particles ( P2) enters, the reaction progresses uniformly, and a bonding layer with a uniform structure is obtained, so that the shear strength and heat dissipation of the bonding layer are improved.
 第2の金属粒子(P2)の平均粒径が1μm未満であると、コア(C2)を被覆するSnまたはSnを含有するはんだの溶融速度が第1の金属粒子(P1)のCuOの還元速度よりも速くなってしまい、またコア(C2)を被覆するSnまたはSnを含有するはんだの表面も酸化しやすくなり、はんだの濡れ性が悪くなるおそれがある。その結果、接合層のシェア強度、耐熱性、導電性、放熱性のすべてが低下するおそれがある。第2の金属粒子(P2)は平均粒径が10μm超であると、接合材組成物を240℃以上で加熱したときに、第1の金属粒子(P1)のCuと均一に反応しにくくなり、均一な組織の接合層が得られず、接合層のシェア強度および放熱性が低くなるおそれがある。さらに、第2の金属粒子(P2)の平均粒径が12μmを超えると、はんだの濡れ性が悪くなり接合層の導電性が低下するおそれがある。 When the average particle diameter of the second metal particles (P2) is less than 1 μm, the melting rate of Sn or Sn-containing solder covering the core (C2) is lower than that of Cu 2 O of the first metal particles (P1). In addition, the surface of Sn or Sn-containing solder covering the core (C2) is likely to be oxidized, resulting in poor wettability of the solder. As a result, the shear strength, heat resistance, electrical conductivity, and heat dissipation of the bonding layer may all deteriorate. When the second metal particles (P2) have an average particle size of more than 10 μm, when the bonding material composition is heated at 240° C. or higher, it becomes difficult to uniformly react with Cu of the first metal particles (P1). In this case, a joining layer having a uniform structure cannot be obtained, and the shear strength and heat dissipation of the joining layer may be lowered. Furthermore, if the average particle size of the second metal particles (P2) exceeds 12 μm, the wettability of the solder may deteriorate and the conductivity of the bonding layer may decrease.
 接合材組成物は、コア(C1)のCu及びコア(C2)のCuの総量100質量%に対して、コア(C2)を被覆するSnまたはSnを含有するはんだにおけるSnの割合が55~65質量%であることが好ましい。Snの割合が55質量%未満であると、接合材組成物を240℃以上で加熱したときに、Snがコア(C2)のCuとの反応に使われ、第1の金属粒子(P1)のコア(C1)のCuと反応しにくくなってしまうため、均一な組織の接合層が得られず、接合層のシェア強度および放熱性が低くなるおそれがある。また、CuとSnとの化合物が十分に形成できず、接合層の耐熱性、導電性が低下するおそれがある。Snの割合が65質量%超であると、第1の金属粒子(P1)のコア(C1)のCuの多くがCuSnとなり、Cuが少なくなるため放熱性が低くなる。また、Snの割合が65質量%超であると、溶融したSnがCuと反応せずに固化してバルクになって第1の金属粒子(P1)及び第2の金属粒子(P2)の隙間を埋めてしまうため、接合層の伸びが小さくなり耐熱性が低くなるおそれがある。 The bonding material composition has a Sn ratio of 55 to 65 in Sn or Sn-containing solder covering the core (C2) with respect to the total amount of 100% by mass of Cu in the core (C1) and Cu in the core (C2). % by mass is preferred. When the proportion of Sn is less than 55% by mass, when the bonding material composition is heated at 240° C. or higher, Sn is used in the reaction of the core (C2) with Cu, and the first metal particles (P1) are formed. Since it becomes difficult to react with Cu of the core (C1), a bonding layer having a uniform structure cannot be obtained, and the shear strength and heat dissipation of the bonding layer may be lowered. In addition, the compound of Cu and Sn cannot be sufficiently formed, and the heat resistance and electrical conductivity of the bonding layer may deteriorate. When the proportion of Sn exceeds 65% by mass, most of the Cu in the core (C1) of the first metal particles (P1) becomes Cu 3 Sn, and the amount of Cu decreases, resulting in low heat dissipation. Further, when the proportion of Sn is more than 65% by mass, the molten Sn solidifies into bulk without reacting with Cu, and the gap between the first metal particles (P1) and the second metal particles (P2) , the elongation of the bonding layer is reduced and the heat resistance may be lowered.
(第3の金属粒子(P3))
 接合材組成物において、コア(C2)を被覆するSnまたはSnを含有するはんだにおけるSnの割合が、コア(C1)のCu及びコア(C2)のCuの総量100質量%に対して、55質量%より少ない場合は、Sn全体の割合が65質量%を超えない範囲で、金属粒子(P)が、第3の金属粒子(P3)としてSn粒子またはSnを含有するはんだ粒子を含有していてもよい。すなわち、接合材組成物は、コア(C1)のCu及びコア(C2)のCuの総量100質量%に対して、コア(C2)を被覆するSnまたはSnを含有するはんだにおけるSn、およびSn粒子またはSnを含有するはんだ粒子におけるSnの割合が55~65質量%であることが好ましい。Snを含有するはんだ粒子は、鉛フリーはんだであり、スズ(Sn)-ニッケル(Ni)-銅(Cu)系、スズ(Sn)-銀(Ag)-銅(Cu)系、スズ(Sn)-亜鉛(Zn)-ビスマス(Bi)系、スズ(Sn)-銅(Cu)系、スズ(Sn)-銀(Ag)-インジウム(In)-ビスマス(Bi)系、スズ(Sn)-亜鉛(Zn)-アルミニウム(Al)系などを用いることができる。
(Third metal particles (P3))
In the bonding material composition, the ratio of Sn in the Sn or Sn-containing solder covering the core (C2) is 55% by mass with respect to the total amount of 100% by mass of Cu in the core (C1) and Cu in the core (C2) %, the metal particles (P) contain Sn particles or Sn-containing solder particles as the third metal particles (P3), so long as the proportion of the total Sn does not exceed 65% by mass. good too. That is, the bonding material composition is based on the total amount of 100% by mass of Cu of the core (C1) and Cu of the core (C2), Sn or Sn in the solder containing Sn covering the core (C2), and Sn particles Alternatively, the ratio of Sn in the solder particles containing Sn is preferably 55 to 65% by mass. Solder particles containing Sn are lead-free solders, tin (Sn)-nickel (Ni)-copper (Cu) system, tin (Sn)-silver (Ag)-copper (Cu) system, tin (Sn) - zinc (Zn) - bismuth (Bi) system, tin (Sn) - copper (Cu) system, tin (Sn) - silver (Ag) - indium (In) - bismuth (Bi) system, tin (Sn) - zinc A (Zn)-aluminum (Al) system or the like can be used.
 (フラックス)
 接合材組成物は、フラックスを含む。フラックスは特に限定されず、はんだ接合等に一般的に用いられているフラックスを用いることができる。
(flux)
The bonding material composition contains flux. Flux is not particularly limited, and flux generally used for soldering or the like can be used.
 上記フラックスとしては、塩化亜鉛、塩化亜鉛と無機ハロゲン化物との混合物、塩化亜鉛と無機酸との混合物、溶融塩、リン酸、リン酸の誘導体、有機ハロゲン化物、ヒドラジン、アミン化合物、有機酸及び松脂等が挙げられる。上記フラックスは、1種のみが用いられてもよく、2種以上が併用されてもよい。 Examples of the flux include zinc chloride, mixtures of zinc chloride and inorganic halides, mixtures of zinc chloride and inorganic acids, molten salts, phosphoric acid, phosphoric acid derivatives, organic halides, hydrazine, amine compounds, organic acids and pine resin and the like. Only one kind of the above flux may be used, or two or more kinds thereof may be used in combination.
 上記溶融塩としては、塩化アンモニウム等が挙げられる。上記有機酸としては、乳酸、クエン酸、ステアリン酸、グルタミン酸及びグルタル酸等が挙げられる。上記松脂としては、活性化松脂及び非活性化松脂等が挙げられる。上記フラックスは、カルボキシル基を有する有機酸であってもよく、松脂であってもよい。 Examples of the molten salt include ammonium chloride. Examples of the organic acid include lactic acid, citric acid, stearic acid, glutamic acid and glutaric acid. Examples of the pine resin include activated pine resin and non-activated pine resin. The flux may be an organic acid having a carboxyl group, or may be rosin.
 上記カルボキシル基を有する有機酸としては、例えば、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、ウンデカン二酸、ドデカン二酸、トリデカン二酸、テトラデカン二酸、ペンタデカン二酸、オクタデカン二酸、ノナデカン二酸、エイコサン二酸等が挙げられる。中でも、アジピン酸、スベリン酸、セバシン酸、ドデンカン二酸が好ましく、セバシン酸等が挙げられる。 Examples of the organic acid having a carboxyl group include glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid, tetradecanedioic acid, pentadecanedioic acid, octadecanedioic acid, nonadecanedioic acid, eicosanedioic acid, and the like. Among them, adipic acid, suberic acid, sebacic acid and dodencanedioic acid are preferred, and examples thereof include sebacic acid.
 上記松脂はアビエチン酸を主成分とするロジン類である。上記ロジン類としては、アビエチン酸、及びアクリル変性ロジン等が挙げられる。 The above pine resin is a rosin whose main component is abietic acid. Examples of the rosins include abietic acid and acryl-modified rosins.
 上記アミン化合物としては、シクロヘキシルアミン、ジシクロヘキシルアミン、ベンジルアミン、ベンズヒドリルアミン、イミダゾール、ベンゾイミダゾール、フェニルイミダゾール、カルボキシベンゾイミダゾール、ベンゾトリアゾール、及びカルボキシベンゾトリアゾール等が挙げられる。 Examples of the above amine compounds include cyclohexylamine, dicyclohexylamine, benzylamine, benzhydrylamine, imidazole, benzimidazole, phenylimidazole, carboxybenzimidazole, benzotriazole, and carboxybenzotriazole.
 また、本願発明においてフラックスには、金属表面の酸化膜を除去するフラックスとしての機能、すなわち還元性を有する化合物も含まれる。このような化合物として、リンまたは硫黄を分子構造中に一つ以上含んでいる化合物が挙げられる。リンまたは硫黄を分子構造中に一つ以上含んでいる化合物としては、有機リン化合物、有機硫黄化合物等が挙げられる。 In the present invention, flux also includes a compound that functions as a flux to remove an oxide film on a metal surface, that is, has a reducing property. Such compounds include compounds containing one or more phosphorus or sulfur in their molecular structures. Compounds containing one or more phosphorus or sulfur in the molecular structure include organic phosphorus compounds, organic sulfur compounds, and the like.
 リンまたは硫黄を分子構造中に一つ以上含んでいる化合物は、反応生成物に水を含まない、つまり水の生成を伴わずに酸素原子と結合し、金属酸化物から酸素原子を除去することができる。一般に、水などの蒸発潜熱の大きい生成物は加熱によって激しい突沸を引き起こし構造中のボイド形成を誘発する。したがって、反応生成物に水を含まないフラックスを用いることにより、ボイドの形成を防止することができる。 Compounds containing one or more phosphorus or sulfur in their molecular structure do not contain water in the reaction product, i.e., combine with oxygen atoms without the formation of water, and remove oxygen atoms from metal oxides. can be done. In general, a product with a large latent heat of vaporization, such as water, causes violent bumping by heating and induces void formation in the structure. Therefore, formation of voids can be prevented by using a flux containing no water as a reaction product.
 また、リンまたは硫黄を分子構造中に一つ以上含んでいる化合物は、吸湿しにくく、ブリードアウトもしにくいため、カルボン酸等の一般的なフラックスのようにリフロー後にフラックス洗浄を行う必要がない。 In addition, compounds that contain one or more phosphorus or sulfur in their molecular structure are less likely to absorb moisture and bleed out, so there is no need to wash the flux after reflow, unlike general fluxes such as carboxylic acids.
 有機リン化合物は、ホスフィン類及びホスファイト類の中から選択される少なくとも1種であることが好ましい。ホスフィン類として、例えば、トリフェニルホスフィン、トリス(4-メチルフェニル)ホスフィン、メチルジフェニルホスフィン、ジエチルフェニルホスフィン、シクロヘキシルジフェニルホスフィン、4-(ジフェニルホスフィノ)スチレン、メチレンビス(ジフェニルホスフィン)、エチレンビス(ジフェニルホスフィン)、トリメチレンビス(ジフェニルホスフィン)、テトラメチレンビス(ジフェニルホスフィン)を用いることができる。また、ホスファイト類として、例えば、亜りん酸トリメチル、亜りん酸トリエチル、亜りん酸トリイソプロピル、亜りん酸トリブチル、亜りん酸トリオクチル、亜りん酸トリス(2-エチルヘキシル)、亜りん酸トリイソデシル、亜りん酸トリオレイル、亜りん酸トリフェニル、亜りん酸トリ-p-トリル、亜りん酸トリス(2,4-ジ-tert-ブチルフェニル)、亜りん酸トリステアリル、亜りん酸トリス(ノニルフェニル)、トリチオ亜りん酸トリラウリルを用いることができる。 The organic phosphorus compound is preferably at least one selected from phosphines and phosphites. Phosphines include, for example, triphenylphosphine, tris(4-methylphenyl)phosphine, methyldiphenylphosphine, diethylphenylphosphine, cyclohexyldiphenylphosphine, 4-(diphenylphosphino)styrene, methylenebis(diphenylphosphine), ethylenebis(diphenyl phosphine), trimethylenebis(diphenylphosphine), tetramethylenebis(diphenylphosphine) can be used. Further, as phosphites, for example, trimethyl phosphite, triethyl phosphite, triisopropyl phosphite, tributyl phosphite, trioctyl phosphite, tris(2-ethylhexyl) phosphite, triisodecyl phosphite, trioleyl phosphite, triphenyl phosphite, tri-p-tolyl phosphite, tris(2,4-di-tert-butylphenyl) phosphite, tristearyl phosphite, tris(nonyl phosphite) phenyl), trilauryl trithiophosphite can be used.
 有機硫黄化合物はスルフィド類、ジスルフィド類、トリスルフィド類及びスルホキシド類の中から選択される少なくとも1種であることが好ましい。スルフィド類として、例えば、ビス(4-メタクリロイルチオフェニル)スルフィド、ビス(4-ヒドロキシフェニル)スルフィド、ビス(4-アミノフェニル)スルフィド、2-メチルチオフェノチアジン、ジアリルスルフィド、エチル2-ヒドロキシエチルスルフィド、ジアミルスルフィド、ヘキシルスルフィド、ジヘキシルスルフィド、n-オクチルスルフィド、フェニルスルフィド、4-(フェニルチオ)トルエン、フェニル p-トリルスルフィド、4-tert-ブチルジフェニルスルフィド、ジ-tert-ブチルスルフィド、ジフェニレンスルフィド、フルフリルスルフィド、ビス(2-メルカプトエチル)スルフィドを用いることができる。また、ジスルフィド類として、例えば、ジエチルジスルフィド、ジプロピルジスルフィド、ジブチルジスルフィド、アミルジスルフィド、ヘプチルジスルフィド、シクロヘキシルジスルフィド、ビス(4-ヒドロキシフェニル)ジスルフィド、ビス(3-ヒドロキシフェニル)ジスルフィド、ジフェニルジスルフィド、ベンジルジスルフィドを用いることができる。トリスルフィド類として、例えば、ジメチルトリスルフィド、ジイソプロピルトリスルフィドを用いることができる。スルホキシド類として、ジメチルスルホキシド、ジブチルスルホキシド、ジ-n-オクチルスルホキシド、メチルフェニルスルホキシド、ジフェニルスルホキシド、ジベンジルスルホキシド、p-トリルスルホキシドを用いることができる。 The organic sulfur compound is preferably at least one selected from sulfides, disulfides, trisulfides and sulfoxides. Examples of sulfides include bis(4-methacryloylthiophenyl) sulfide, bis(4-hydroxyphenyl) sulfide, bis(4-aminophenyl) sulfide, 2-methylthiophenothiazine, diallyl sulfide, ethyl 2-hydroxyethyl sulfide, dia Mylsulfide, hexylsulfide, dihexylsulfide, n-octylsulfide, phenylsulfide, 4-(phenylthio)toluene, phenyl p-tolylsulfide, 4-tert-butyldiphenylsulfide, di-tert-butylsulfide, diphenylenesulfide, fur Furyl sulfide, bis(2-mercaptoethyl) sulfide can be used. Examples of disulfides include diethyl disulfide, dipropyl disulfide, dibutyl disulfide, amyl disulfide, heptyl disulfide, cyclohexyl disulfide, bis(4-hydroxyphenyl) disulfide, bis(3-hydroxyphenyl) disulfide, diphenyl disulfide, and benzyl disulfide. can be used. Examples of trisulfides that can be used include dimethyltrisulfide and diisopropyltrisulfide. As sulfoxides, dimethylsulfoxide, dibutylsulfoxide, di-n-octylsulfoxide, methylphenylsulfoxide, diphenylsulfoxide, dibenzylsulfoxide and p-tolylsulfoxide can be used.
 特に、フラックスは、下記一般式(1)で示されるホスフィン類および下記一般式(2)で示されるスルフィド類の少なくとも一方を含むことが好ましい。ただし、下記一般式(1)および(2)においてRは、それぞれ独立して、有機基を示し、Rは互いに同一であっても異なっていてもよい。 In particular, the flux preferably contains at least one of phosphines represented by the following general formula (1) and sulfides represented by the following general formula (2). However, in the following general formulas (1) and (2), each R independently represents an organic group, and each R may be the same or different.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
 上記一般式(1)および(2)において、Rは、それぞれ独立して、アルキル基、アリール基、官能基を有する有機基、ヘテロ原子を有する有機基、および不飽和結合を有する有機基から選択されるいずれかであることが好ましく、Rの少なくとも1つは、アリール基であることが好ましい。 In the above general formulas (1) and (2), each R is independently selected from an alkyl group, an aryl group, an organic group having a functional group, an organic group having a heteroatom, and an organic group having an unsaturated bond. and at least one of R is preferably an aryl group.
 上記アルキル基は、直鎖状、分岐状及び環状のいずれであってもよく、置換基を有していてもよい。アルキル基は、直鎖状又は分岐状であることが好ましい。また、上記アルキル基は、炭素数が3以上であることが好ましく、炭素数が4~18であることがより好ましく、炭素数が6~15であることが更に好ましい。このようなアルキル基としては、具体的には、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ステアリル基およびイソステアリル基等が挙げられる。 The above alkyl group may be linear, branched or cyclic, and may have a substituent. Alkyl groups are preferably linear or branched. The alkyl group preferably has 3 or more carbon atoms, more preferably 4 to 18 carbon atoms, and even more preferably 6 to 15 carbon atoms. Specific examples of such alkyl groups include propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, stearyl and isostearyl groups.
 上記アリール基は、置換基を有していてもよく、炭素数が6~10であることが好ましい。このようなアリール基としては、例えば、フェニル基、トリル基、キシリル基、クメニル基、1-ナフチル基等が挙げられる。 The aryl group may have a substituent and preferably has 6 to 10 carbon atoms. Examples of such aryl groups include phenyl, tolyl, xylyl, cumenyl and 1-naphthyl groups.
 上記官能基を有する有機基は、炭素数が1~10であることが好ましく、炭素数が1~6であることがより好ましく、炭素数が1~3であることが更に好ましい。また、上記有機基が有する官能基としては、クロロ基、ブロモ基、フルオロ基等が挙げられる。また、このような官能基を有する有機基としては、具体的には、クロロエチル基、フルオロエチル基、クロロプロピル基、ジクロロプロピル基、フルオロプロピル基、ジフルオロプロピル基、クロロフェニル基およびフルオロフェニル基等が挙げられる。 The organic group having the functional group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms, and even more preferably 1 to 3 carbon atoms. Moreover, the functional group of the organic group includes a chloro group, a bromo group, a fluoro group, and the like. Further, specific examples of organic groups having such functional groups include chloroethyl, fluoroethyl, chloropropyl, dichloropropyl, fluoropropyl, difluoropropyl, chlorophenyl and fluorophenyl groups. mentioned.
 上記ヘテロ原子を有する有機基は、炭素数が3以上であることが好ましく、炭素数が4~18であることがより好ましく、炭素数が6~15であることが更に好ましい。また、上記有機基が有するヘテロ原子としては、窒素原子、酸素原子、硫黄原子等が挙げられる。また、このようなヘテロ原子を有する有機基としては、具体的には、ジメチルアミノ基、ジエチルアミノ基、ジフェニルアミノ基、メチルスルホキシド基、エチルスルホキシド基およびフェニルスルホキシド基等が挙げられる。 The organic group having a heteroatom preferably has 3 or more carbon atoms, more preferably 4 to 18 carbon atoms, and even more preferably 6 to 15 carbon atoms. Moreover, a nitrogen atom, an oxygen atom, a sulfur atom, etc. are mentioned as a heteroatom which the said organic group has. Examples of such heteroatom-containing organic groups include dimethylamino, diethylamino, diphenylamino, methylsulfoxide, ethylsulfoxide and phenylsulfoxide groups.
 上記不飽和結合を有する有機基は、炭素数が3以上であることが好ましく、炭素数が4~18であることがより好ましく、炭素数が6~15であることが更に好ましい。このような不飽和結合を有する有機基としては、具体的には、プロペニル基、プロピニル基、ブテニル基、ブチニル基、オレイル基、フェニル基、ビニルフェニル基およびアルキルフェニル基等が挙げられる。中でも、ビニルフェニル基を有することがより好ましい。 The organic group having an unsaturated bond preferably has 3 or more carbon atoms, more preferably 4 to 18 carbon atoms, and even more preferably 6 to 15 carbon atoms. Specific examples of organic groups having such unsaturated bonds include propenyl, propynyl, butenyl, butynyl, oleyl, phenyl, vinylphenyl and alkylphenyl groups. Among them, it is more preferable to have a vinylphenyl group.
 また、上記一般式(1)および(2)において、Rは、それぞれ独立して、その一部にビニル基、アクリル基、メタクリル基、マレイン酸エステル基、マレイン酸アミド基、マレイン酸イミド基、1級アミノ基、2級アミノ基、チオール基、ヒドロシリル基、ヒドロホウ素基、フェノール性水酸基およびエポキシ基から選択されるいずれか1種以上を有することが好ましい。中でも、ビニル基やアクリル基、メタクリル基、2級アミノ基を有することがより好ましい。具体的には、ホスフィン類は、p-スチリルジフェニルホスフィンを含むことが好ましい。このような化合物は、反応性の高いビニル基を有する事で低ブリードアウトである点で好適である。 Further, in the above general formulas (1) and (2), each R is independently a vinyl group, an acrylic group, a methacrylic group, a maleic acid ester group, a maleic acid amide group, a maleic acid imide group, It preferably has at least one selected from primary amino groups, secondary amino groups, thiol groups, hydrosilyl groups, hydroboron groups, phenolic hydroxyl groups and epoxy groups. Among them, it is more preferable to have a vinyl group, an acrylic group, a methacrylic group, or a secondary amino group. Specifically, the phosphines preferably include p-styryldiphenylphosphine. Such a compound is preferable in that it has a highly reactive vinyl group and thus exhibits low bleed-out.
 また、スルフィド類は、ビス(ヒドロキシフェニル)スルフィド、ビス(アクリロイルチオフェニル)スルフィド、2-メチルチオフェノチアジン、ビス(2-メタクリロイルチオエチル)スルフィドおよびビス(メタクリロイルチオフェニル)スルフィドの少なくとも1種を含むことが好ましく、ビス(アクリロイルチオフェニル)スルフィドおよびビス(メタクリロイルチオフェニル)スルフィドの少なくとも一方を含むことがより好ましい。これらの化合物は、反応性の高いフェノール性水酸基、アクリル基、メタクリル基を有することで低ブリードアウトである点で好適であり、中でも、アクリル基やメタクリル基を有する化合物が最も好適である。 Sulfides include at least one of bis(hydroxyphenyl)sulfide, bis(acryloylthiophenyl)sulfide, 2-methylthiophenothiazine, bis(2-methacryloylthioethyl)sulfide and bis(methacryloylthiophenyl)sulfide. is preferred, and at least one of bis(acryloylthiophenyl)sulfide and bis(methacryloylthiophenyl)sulfide is more preferred. These compounds are preferable in that they have a highly reactive phenolic hydroxyl group, acrylic group, and methacrylic group, so that bleeding out is low. Among them, compounds having an acrylic group or a methacrylic group are most preferable.
 また、ホスフィン類およびスルフィド類は、それぞれ単独で用いることもできるが、両方を組み合わせて用いてもよい。 In addition, phosphines and sulfides can be used alone, or both can be used in combination.
 また、このようなホスフィン類およびスルフィド類は、後述の熱硬化性樹脂がマレイミド樹脂を含む場合に、マレイミド樹脂と共重合体を形成し得るため、熱硬化性樹脂成分としても作用する。また、ホスフィン類およびスルフィド類は、吸湿しにくく、分子量が十分に大きく、かつ重合性であるため、フラックス成分として用いた場合にブリードアウトを有効に防止できる。したがって、吸湿しやすいアルコールやカルボン酸に替えて、このようなホスフィン類やスルフィド類を用いることにより、フラックス洗浄を経なくても、ブリードアウトのリスクを低減でき、十分な信頼性、特に吸湿後の耐リフロー性を担保できる。 In addition, such phosphines and sulfides can form a copolymer with a maleimide resin when the thermosetting resin described later contains a maleimide resin, and thus also act as a thermosetting resin component. In addition, phosphines and sulfides are less likely to absorb moisture, have a sufficiently large molecular weight, and are polymerizable, and therefore can effectively prevent bleeding out when used as a flux component. Therefore, by using such phosphines and sulfides instead of alcohols and carboxylic acids that easily absorb moisture, the risk of bleeding out can be reduced without flux cleaning, and sufficient reliability can be achieved, especially after moisture absorption. can guarantee reflow resistance.
 接合材組成物は、金属粒子(P)に対して、フラックスの含有割合が、0.05~0.5質量%であることが好ましい。フラックスの含有割合が0.05質量%未満であると、第1の金属粒子(P1)のCuO層を十分に除去できず、Snの濡れ性やSnと第1の金属粒子(P1)のコア(C1)のCuの反応性が低下する。一方、フラックスの含有割合が0.5質量%超であると、フラックスが残留し、Snと第1の金属粒子(P1)のコア(C1)のCuの反応を阻害して耐熱性や放熱性、導電性を低下させる結果が予想される。また、フラックスの種類によっては、残留フラックスが吸湿したりブリードアウトしたりすることでデバイスに悪影響を及ぼしたり、CuとSnの拡散反応を必要以上に促進させることで拡散ボイドが成長したりしてしまい、接合材の強度および伸びを低下させて信頼性が低くなるおそれがある 。 The bonding material composition preferably has a flux content of 0.05 to 0.5% by mass with respect to the metal particles (P). If the flux content is less than 0.05% by mass, the Cu 2 O layer of the first metal particles (P1) cannot be sufficiently removed, and the wettability of Sn and the relationship between Sn and the first metal particles (P1) The reactivity of Cu in the core (C1) of is lowered. On the other hand, if the flux content is more than 0.5% by mass, the flux remains and inhibits the reaction between Sn and Cu in the core (C1) of the first metal particle (P1), resulting in heat resistance and heat dissipation. , would be expected to result in lower conductivity. Depending on the type of flux, the residual flux may absorb moisture or bleed out, which may adversely affect the device, or promote the diffusion reaction between Cu and Sn more than necessary to grow diffusion voids. There is a risk that the strength and elongation of the bonding material will be reduced, resulting in lower reliability.
 金属粒子(P)に対して、フラックスの含有割合を0.05~0.5質量%とするには、第1の金属粒子(P1)の表面にフラックスを修飾するか、接合材組成物にフラックスを微量添加するとよい。 In order to make the flux content ratio 0.05 to 0.5% by mass with respect to the metal particles (P), the surface of the first metal particles (P1) is modified with flux, or the bonding material composition is A small amount of flux may be added.
 第1の金属粒子(P1)の表面にフラックスを修飾するには、第1の金属粒子(P1)をフラックス溶液に浸漬して、超音波装置を用いてフラックスを第1の金属粒子(P1)表面に配位させた。このような方法を用いると、接合材組成物にフラックスを添加するよりも過剰にフラックス添加する必要がなく、フラックス残留による反応の阻害やフラックス成分によるデバイスへの影響を最小限にすることができ、信頼性への改善が期待できる。 In order to modify the surface of the first metal particles (P1) with a flux, the first metal particles (P1) are immersed in a flux solution, and the flux is applied to the first metal particles (P1) using an ultrasonic device. coordinated to the surface. When such a method is used, there is no need to add an excessive amount of flux compared to adding flux to the bonding material composition, and inhibition of reactions due to residual flux and effects on devices due to flux components can be minimized. , an improvement in reliability can be expected.
 第1の金属粒子(P1)表面にフラックスを修飾する場合のフラックス含有量は、超音波装置の出力や攪拌時間により調整することができる。また、第1の金属粒子(P1)表面にフラックスを修飾した場合のフラックス含有量は、FT-IR(フーリエ変換型赤外分光)測定を用いて特定することができる。 The flux content when modifying the surface of the first metal particles (P1) with flux can be adjusted by the output of the ultrasonic device and the stirring time. Further, the flux content in the case where the surface of the first metal particles (P1) is modified with flux can be specified using FT-IR (Fourier transform infrared spectroscopy) measurement.
(熱硬化性樹脂)
 接合材組成物は、フィルム状に成形し接合フィルムの接合材層とする場合は、熱硬化性樹脂を含むが、接合ペーストとして使用する場合は、熱硬化性樹脂を含まないことが好ましい。接合材組成物が、熱硬化性樹脂を含むことにより、フィルム状に成形し接合フィルムの接合材層とする場合に、製膜性や取扱性が向上する。また、接合時に半導体素子やリードフレーム等との密着性が良くなる。さらに、接合材組成物を加熱して形成された接合層においては、熱サイクルによって半導体素子とリードフレーム等との間に生じる応力を緩和する役割を果たす。このため、フラックスの粘度が低い場合は、特に熱硬化性樹脂を含むことが好ましい。
(Thermosetting resin)
The bonding material composition contains a thermosetting resin when formed into a film and used as a bonding material layer of a bonding film, but preferably does not contain a thermosetting resin when used as a bonding paste. By including a thermosetting resin in the bonding material composition, when the bonding material composition is formed into a film and used as a bonding material layer of a bonding film, film formability and handleability are improved. Also, the adhesiveness to semiconductor elements, lead frames, etc. is improved at the time of bonding. Furthermore, the bonding layer formed by heating the bonding material composition plays a role in relieving stress generated between the semiconductor element and the lead frame or the like due to thermal cycles. For this reason, when the viscosity of the flux is low, it is particularly preferable to include a thermosetting resin.
 熱硬化性樹脂は、特に、耐熱性と、金属粒子(P)を混入した際の製膜性の観点から、イミド基を1分子中に2単位以上含むマレイン酸イミド化合物を含むマレイン酸イミド樹脂(以下、「マレイミド樹脂」ということがある。)または脂肪族ジオールのグリシジルエーテルに由来する分子骨格を有するエポキシ樹脂を含むことが好ましく、マレイン酸イミド樹脂を含むことがより好ましい。特に、上記いずれかの樹脂を含有する熱硬化性樹脂は応力緩和性に優れるため、接合材組成物を加熱して形成された接合層の耐熱性が向上する。 The thermosetting resin is, in particular, a maleic acid imide resin containing a maleic acid imide compound containing two or more units of imide groups in one molecule, from the viewpoint of heat resistance and film-forming properties when metal particles (P) are mixed. (hereinafter sometimes referred to as "maleimide resin") or an epoxy resin having a molecular skeleton derived from a glycidyl ether of an aliphatic diol, and more preferably a maleic acid imide resin. In particular, since a thermosetting resin containing any of the resins described above has excellent stress relaxation properties, the heat resistance of the bonding layer formed by heating the bonding material composition is improved.
 マレイン酸イミド樹脂としては、例えば、マレイン酸またはその無水物と、ジアミンまたはポリアミンとを縮合すること等により得られる。また、マレイン酸イミド樹脂は、炭素数10以上の脂肪族アミンに由来する骨格を含むものが、応力緩和性の観点から好ましく、特に、炭素数30以上であり、下記構造式(3)のような骨格を有するものがより好ましい。また、マレイン酸イミド化合物は、数平均分子量が3000以上のものであることが好ましい。 The maleic acid imide resin can be obtained, for example, by condensing maleic acid or its anhydride with a diamine or polyamine. In addition, the maleic acid imide resin preferably contains a skeleton derived from an aliphatic amine having 10 or more carbon atoms from the viewpoint of stress relaxation, and in particular, has 30 or more carbon atoms and is represented by the following structural formula (3). Those having a skeleton such as Moreover, the maleic acid imide compound preferably has a number average molecular weight of 3,000 or more.
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
 マレイン酸イミド樹脂には、マレイン酸以外の酸成分、例えば、ベンゼンテトラカルボン酸またはその無水物、ヒドロキシフタル酸ビスエーテルまたはその無水物等に由来する骨格を含むことにより、分子量やガラス転移温度Tgなどを調整してもよい。また、マレイン酸イミド樹脂の硬化剤としては、フェノールノボラック樹脂やラジカル発生剤等が好ましい。 The maleic acid imide resin contains a skeleton derived from an acid component other than maleic acid, such as benzenetetracarboxylic acid or its anhydride, hydroxyphthalic acid bisether or its anhydride. etc., can be adjusted. Phenol novolac resins, radical generators, and the like are preferable as curing agents for maleic acid imide resins.
 また、このようなマレイン酸イミド樹脂としては、例えば、下記構造式(4)~(6)に示されるビスマレイミド樹脂等が好適に用いられる。 As such a maleic acid imide resin, for example, bismaleimide resins represented by the following structural formulas (4) to (6) are preferably used.
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 但し、上記式(5)において、nは、1~10の整数である。また、上記式(4)~(6)において、「X」の部分は、下記構造式(7)で表される「C3672」の骨格である。なお、下記式(7)において、「*」はNとの結合部位を意味する。 However, in the above formula (5), n is an integer of 1-10. Further, in the above formulas (4) to (6), the “X” portion is the skeleton of “C 36 H 72 ” represented by the following structural formula (7). In addition, in the following formula (7), "*" means a binding site with N.
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 また、脂肪族ジオールのグリシジルエーテルに由来する分子骨格を有するエポキシ樹脂としては、例えばエチレングリコール変性型エポキシ樹脂、プロピレングリコール変性型エポキシ樹脂、ブタンジオール変性型エポキシ樹脂等が挙げられる。これらのエポキシ樹脂は、柔軟性の観点から好ましい。また、このようなエポキシ樹脂は、ビスフェノールA型エポキシ樹脂やビスフェノールF型エポキシ樹脂、分子量の大きなエポキシ樹脂であるフェノキシ樹脂等と混合して用いることが、接着強度と柔軟性を両立する観点からより好ましい。 Examples of epoxy resins having molecular skeletons derived from glycidyl ethers of aliphatic diols include ethylene glycol-modified epoxy resins, propylene glycol-modified epoxy resins, butanediol-modified epoxy resins, and the like. These epoxy resins are preferred from the viewpoint of flexibility. In addition, from the viewpoint of achieving both adhesive strength and flexibility, it is preferable to use such an epoxy resin by mixing it with a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, or a phenoxy resin, which is an epoxy resin with a large molecular weight. preferable.
 また、上記のようなエポキシ樹脂の硬化剤としては、酸無水物、フェノールノボラック樹脂、アミン、イミダゾール系化合物やジシアンジアミド等を選択できる。中でも、フェノールノボラック樹脂およびイミダゾール系化合物が好ましい。 In addition, acid anhydrides, phenol novolac resins, amines, imidazole compounds, dicyandiamide, and the like can be selected as curing agents for epoxy resins as described above. Among them, phenol novolak resins and imidazole compounds are preferred.
 熱硬化性樹脂は、フェノールノボラック樹脂をさらに含むことが好ましい。例えば、上記マレイン酸イミド樹脂またはエポキシ樹脂と、フェノールノボラック樹脂とを組み合わせて用いることにより、フェノールノボラック樹脂が硬化剤として作用し、熱硬化性樹脂の接着性が更に向上する。 The thermosetting resin preferably further contains a phenol novolac resin. For example, by using a combination of the maleic acid imide resin or epoxy resin and the phenol novolac resin, the phenol novolak resin acts as a curing agent, further improving the adhesiveness of the thermosetting resin.
 本実施形態に係る接合材組成物における熱硬化性樹脂の含有量は、4~30質量%であることが好ましく、6~20質量%であることがより好ましい。熱硬化性樹脂の含有量を4質量%以上とすることにより、接合時に半導体素子やリードフレーム等との密着性が良くなる。また、接合材組成物を加熱して形成された接合層においては、熱サイクルによって半導体素子とリードフレーム等との間に生じる応力緩和性にも優れる。熱硬化性樹脂の含有量が30質量%超であると、放熱性が低下するおそれがある。 The content of the thermosetting resin in the bonding material composition according to the present embodiment is preferably 4-30% by mass, more preferably 6-20% by mass. By setting the content of the thermosetting resin to 4% by mass or more, the adhesiveness to semiconductor elements, lead frames, etc. is improved at the time of bonding. In addition, the bonding layer formed by heating the bonding material composition is excellent in relieving stress generated between the semiconductor element and the lead frame or the like due to thermal cycles. If the content of the thermosetting resin is more than 30% by mass, the heat dissipation may deteriorate.
 接合材組成物で接合フィルムの接合材層を形成する場合は、製膜性および取扱性と放熱性とのバランスの観点から、接合材組成物における熱硬化性樹脂の含有量は、6~9質量%であることが好ましい。 When forming the bonding material layer of the bonding film with the bonding material composition, the content of the thermosetting resin in the bonding material composition is 6 to 9 from the viewpoint of the balance between the film formability and handleability and heat dissipation. % by mass is preferred.
 なお、熱硬化性樹脂は、1種の樹脂のみからなるものであってもよいし、2種以上の樹脂を混合したものであってもよい。また、必要に応じて上記以外の樹脂をさらに含有してもよい。 The thermosetting resin may consist of only one type of resin, or may be a mixture of two or more types of resin. Moreover, you may further contain resin other than the above as needed.
 接合材組成物は、金属粒子(P)の含有割合が、接合材組成物全量に対して80~95質量%であることが好ましい。金属粒子(P)の含有割合が80質量%未満であると、放性が低下する。金属粒子(P)の含有割合が95質量%超であると、フラックスや熱硬化性樹脂の含有量が少なくなるため、Snの濡れ性や第1の金属粒子(P1)のCuとSnとの反応性、接合時における半導体素子やリードフレーム等との密着性や接合後の応力緩和性などが低下する。 The content of metal particles (P) in the bonding material composition is preferably 80 to 95% by mass with respect to the total amount of the bonding material composition. If the content of the metal particles (P) is less than 80% by mass, the release is lowered. When the content of the metal particles (P) is more than 95% by mass, the contents of the flux and the thermosetting resin are reduced, so the wettability of Sn and the relationship between Cu and Sn in the first metal particles (P1) Reactivity, adhesion to semiconductor elements, lead frames, etc. during bonding, and stress relaxation after bonding are reduced.
 本実施形態に係る接合材組成物は、上記成分の他に、本発明の目的を外れない範囲で、各種添加剤を含んでいてもよい。このような添加剤としては、必要に応じて適宜選択できるが、例えば、分散剤、ラジカル重合開始剤、レベリング剤、可塑剤等が挙げられる。 In addition to the above components, the bonding material composition according to the present embodiment may contain various additives within the scope of the present invention. Examples of such additives include dispersants, radical polymerization initiators, leveling agents, plasticizers, and the like, which can be appropriately selected as necessary.
 次に、接合材組成物の製造方法について説明する。接合材組成物の製造方法は特に限定されるものではない。上述の接合材組成物を構成する成分を混合し、さらに撹拌、分散等の処理をすることにより得ることができる。なお、フラックスは、上述の方法で予め第1の金属粒子(P1)表面に修飾しておくことが好ましい。これらの混合、撹拌、分散等のための装置としては、特に限定されるものではなく、3本ロールミル、プラネタリーミキサ、遊星式ミキサ、自転公転型撹拌装置、らいかい機、二軸混練機、薄層せん断分散機等を使用することができる。 Next, a method for manufacturing the bonding material composition will be described. The method for producing the bonding material composition is not particularly limited. It can be obtained by mixing the components constituting the bonding material composition described above, and then subjecting the composition to stirring, dispersion, or the like. The surface of the first metal particles (P1) is preferably modified in advance with the flux by the method described above. Devices for mixing, stirring, dispersing, etc. of these are not particularly limited, and include a three-roll mill, a planetary mixer, a planetary mixer, a rotation-revolution type stirring device, a milling machine, a twin-screw kneader, A thin layer shear disperser or the like can be used.
 次に、本発明による接合フィルムについて、説明する。接合フィルムは、少なくとも、半導体素子とリードフレーム等を接合するための接合材層を有しており、この接合材層は、上述の接合材組成物を用いて形成されている。製膜性の向上の観点から、接合材組成物は、さらに溶剤を含有してもよい。 Next, the bonding film according to the present invention will be explained. The bonding film has at least a bonding material layer for bonding a semiconductor element and a lead frame or the like, and this bonding material layer is formed using the bonding material composition described above. From the viewpoint of improving the film formability, the bonding material composition may further contain a solvent.
 接合材層を形成する方法としては、まず、接合材組成物をフィルム状に成形する。接合材組成物をフィルム状に成形する方法としては、特に限定されるものではなく従来の方法を用いることができ、インクジェット印刷、スクリーン印刷、ジェットプリンティング法、ディスペンサー、ジェットディスペンサ、カンマコータ、スリットコータ、ダイコータ、グラビアコータ、スリットコート、凸版印刷、凹版印刷、グラビア印刷、ステンシル印刷、バーコート、アプリケータ、スプレーコータ、電着塗装等を用いることができる。 As a method of forming the bonding material layer, first, the bonding material composition is formed into a film. The method for forming the bonding material composition into a film is not particularly limited, and conventional methods can be used, such as inkjet printing, screen printing, jet printing, dispenser, jet dispenser, comma coater, slit coater, A die coater, gravure coater, slit coat, letterpress printing, intaglio printing, gravure printing, stencil printing, bar coater, applicator, spray coater, electrodeposition coating, and the like can be used.
 接合材層は、フィルム状に成形された接合材組成物の溶剤を乾燥させることで得られる。乾燥方法としては、常温放置による乾燥、加熱乾燥又は減圧乾燥を用いることができる。加熱乾燥又は減圧乾燥には、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉、熱板プレス装置等を用いることができる。乾燥の温度及び時間は、使用した分散媒の種類及び量に合わせて適宜調整することが好ましく、例えば、50~180℃で1~120分間乾燥させることが好ましい。 The bonding material layer is obtained by drying the solvent of the bonding material composition formed into a film. As a drying method, drying by standing at room temperature, drying by heating, or drying under reduced pressure can be used. Hot plate, hot air dryer, hot air heating furnace, nitrogen dryer, infrared dryer, infrared heating furnace, far infrared heating furnace, microwave heating device, laser heating device, electromagnetic heating device for heat drying or vacuum drying , a heater heating device, a steam heating furnace, a hot plate press device, or the like can be used. The drying temperature and time are preferably adjusted according to the type and amount of the dispersion medium used. For example, drying is preferably performed at 50 to 180° C. for 1 to 120 minutes.
 接合材層は、成形基材にフィルム状に接合材層を形成した後、剥離してもよい。成形基材としては、特に限定されるものではないが、例えば、ポリエチレンテレフタレート、ポリテトラフルオロエチレン、ポリイミド、PEEK、アルミニウム、ガラス、アルミナ、窒化ケイ素、ステンレススチールを用いることができる。また、耐熱性を有する基板やクロスに上記材質をコート又は含浸したものを、成形基材として用いてもよい。 The bonding material layer may be peeled off after forming the bonding material layer in the form of a film on the molding substrate. The molding substrate is not particularly limited, but for example, polyethylene terephthalate, polytetrafluoroethylene, polyimide, PEEK, aluminum, glass, alumina, silicon nitride, and stainless steel can be used. Also, a heat-resistant substrate or cloth coated or impregnated with the above material may be used as the molding substrate.
 接合フィルムは、接合材層を使用するまでの間、接合材層の表面を保護するために接合材層の表面に貼合された離型フィルムを有していてもよい。 The bonding film may have a release film bonded to the surface of the bonding material layer to protect the surface of the bonding material layer until the bonding material layer is used.
 接合材層は、厚さが10~100μmであることが好ましい。 The bonding material layer preferably has a thickness of 10 to 100 μm.
 次に、上述の接合材組成物および接合材層の使用方法、すなわち接合体の製造方法について、説明する。 Next, a method for using the bonding material composition and the bonding material layer described above, that is, a method for manufacturing a bonded body will be described.
 接合体としては、半導体装置、電子部品等が挙げられる。半導体装置の具体例としては、ダイオード、整流器、サイリスタ、MOS(Metal  Oxide  Semiconductor)ゲートドライバ、パワースイッチ、パワーMOSFET(Metal  Oxide  Semiconductor  Field-Effect  Transistor)、IGBT(Insulated  Gate  Bipolar  Transistor)、ショットキーダイオード、ファーストリカバリダイオード等を備えるパワーモジュール、発信機、増幅器、LEDモジュールなどが挙げられる。 Bonded bodies include semiconductor devices and electronic components. Specific examples of semiconductor devices include diodes, rectifiers, thyristors, MOS (Metal Oxide Semiconductor) gate drivers, power switches, power MOSFETs (Metal Oxide Semiconductor Field-Effect Transistors), and IGBTs (Insulated Gate Bipolar Transistors). istor), Schottky diode, Examples include power modules, transmitters, amplifiers, LED modules, etc., which include fast recovery diodes and the like.
 まず、上述の接合材組成物または接合材層を前記第1の部材と前記第2の部材との間に介在させる。すなわち、第1の部材における第2の部材と接合する箇所と第2の部材における第1の部材と接合する箇所とを接触させることで、第1の部材と第2の部材とを、接合材組成物または接合材層を介して貼り合わせる。ここで、第1の部材は、特に限定されるものではないが、リードフレーム、配線済みのテープキャリア、リジッド配線板、フレキシブル配線板、配線済みのガラス基板、配線済みのシリコンウエハ、ウエハーレベルCSP(Wafer  Level  Chip  Size  Package)で採用される再配線層等の支持部材である。第2の部材は、特に限定されるものではなく、トランジスタ、ダイオード、発光ダイオード、サイリスタ等の能動素子、コンデンサ、抵抗体、抵抗アレイ、コイル、スイッチ等の受動素子などが挙げられるが、本発明による接合材組成物は、高温で動作する半導体素子、特にパワー半導体に好適に用いられる。 First, the bonding material composition or bonding material layer described above is interposed between the first member and the second member. That is, by bringing a portion of the first member to be bonded to the second member and a portion of the second member to be bonded to the first member into contact, the first member and the second member are bonded by the bonding material. They are laminated through a composition or a bonding material layer. Here, the first member is not particularly limited, but may be a lead frame, a pre-wired tape carrier, a rigid wiring board, a flexible wiring board, a pre-wired glass substrate, a pre-wired silicon wafer, or a wafer level CSP. (Wafer Level Chip Size Package). The second member is not particularly limited, and includes active elements such as transistors, diodes, light emitting diodes and thyristors; passive elements such as capacitors, resistors, resistor arrays, coils and switches; The bonding material composition according to is suitably used for semiconductor devices that operate at high temperatures, particularly power semiconductors.
 次に、接合材組成物または接合材層は、窒素などの不活性雰囲気下、240℃以上で加熱することにより、第1の部材と第2の部材とを接合する接合層を形成する。加熱温度の上限は、特に制限されないが、例えば300℃以下である。加熱時間としては、60~120分間であることが好ましく、30~90分間であることがより好ましく、5~60分間であることがさらに好ましい。 Next, the bonding material composition or bonding material layer is heated at 240°C or higher in an inert atmosphere such as nitrogen to form a bonding layer that bonds the first member and the second member. Although the upper limit of the heating temperature is not particularly limited, it is, for example, 300° C. or less. The heating time is preferably 60 to 120 minutes, more preferably 30 to 90 minutes, even more preferably 5 to 60 minutes.
 加熱処理には、ホットプレート、温風乾燥機、温風加熱炉、窒素乾燥機、赤外線乾燥機、赤外線加熱炉、遠赤外線加熱炉、マイクロ波加熱装置、レーザー加熱装置、電磁加熱装置、ヒーター加熱装置、蒸気加熱炉等を用いることができる。また、加熱加圧処理には、熱板プレス装置等を用いてもよいし、加圧しながら上述の加熱処理を行ってもよい。 For heat treatment, hot plate, hot air dryer, hot air heating furnace, nitrogen dryer, infrared dryer, infrared heating furnace, far infrared heating furnace, microwave heating device, laser heating device, electromagnetic heating device, heater heating Apparatus, steam-heated furnaces, etc. can be used. For the heating and pressurizing treatment, a hot plate press device or the like may be used, or the above-mentioned heating treatment may be performed while pressurizing.
 接合材組成物または接合材層が加熱されると、まず、フラックスが第1の金属粒子(P1)のコア(C1)のCuを被覆するCuO層を除去しはじめる。Snの融点に達したら第2の金属粒子(P2)のコア(C2)のCuを被覆するSnまたはSnを含有するはんだが溶融し、コア(C2)のCuの表面および第1の金属粒子(P1)のコア(C1)のCuの表面に濡れ広がる。 そして、Snとコア(C2)のCuが反応してCu-Snの中間化合物であるCuSnが形成される。また、コア(C1)の表面でSnとCuが反応し、Cu-Snの中間化合物であるCuSnが形成される。さらに、加熱を続けることにより、CuSnにCuが供給されているためCuSnが形成され、接合層が形成される。接合層は、厚さが10~300μmであることが好ましい。 When the bonding material composition or bonding material layer is heated, the flux first begins to remove the Cu 2 O layer covering the Cu of the core (C1) of the first metal particles (P1). When the melting point of Sn is reached, the Sn covering the Cu of the core (C2) of the second metal particle (P2) or the solder containing Sn melts, and the surface of the Cu of the core (C2) and the first metal particle ( It wets and spreads on the Cu surface of the core (C1) of P1). Then, Sn reacts with Cu of the core (C2) to form Cu 6 Sn 5 , which is an intermediate compound of Cu—Sn. In addition, Sn and Cu react on the surface of the core (C1) to form Cu 6 Sn 5 , which is an intermediate compound of Cu—Sn. Furthermore, by continuing the heating, Cu 3 Sn is formed because Cu is supplied to the Cu 6 Sn 5 , and a bonding layer is formed. The bonding layer preferably has a thickness of 10 to 300 μm.
 以上のようにして、第1の部材と第2の部材とが接合層により接合された接合体が製造される。 As described above, a joined body in which the first member and the second member are joined by the joining layer is manufactured.
 ここで、コア(C1)のCuはCuO層に被覆されており、加熱時にフラックスがCuO層を除去しながら、一方でSnが溶融するため、コア(C2)のCuとSnが先に反応しはじめるため、第2の金属粒子(P2)内部では、確実にCuSnが形成されるため、第2の金属粒子(P2)の多くはCuSn粒子となるが、一部の粒子で内部にCuが残存していてもよい。 Here, the Cu of the core (C1) is covered with a Cu 2 O layer, and the flux removes the Cu 2 O layer during heating, while the Sn melts, so that the Cu and Sn of the core (C2) Since the reaction starts first, Cu 3 Sn is surely formed inside the second metal particles (P2), so most of the second metal particles (P2) become Cu 3 Sn particles, but some Cu may remain inside the particles.
 また、コア(C1)のCuはCuO層に被覆されており、加熱時にフラックスがCuO層を除去しながら、一方でSnが溶融するため、溶融したSnが第1の金属粒子(P1)の周囲に均一に行きわたり、CuO層が除去れるとSnとコア(C1)のCuが反応するため、コア(C1)の表面で均一にCuSnが形成される。第1の金属粒子(P1)は第2の金属粒子(P2)より平均粒径が大きいことが好ましく、また、Snとコア(C1)のCuとの反応は、第2の金属粒子(P2)内部の反応より遅れてはじまるため、コア(C1)の内部にはCuが残存する。 In addition, the Cu of the core (C1) is covered with a Cu 2 O layer, and while the flux removes the Cu 2 O layer during heating, Sn melts, so that the melted Sn becomes the first metal particles ( When the Cu 2 O layer is removed, Sn reacts with Cu of the core (C1), so that Cu 3 Sn is uniformly formed on the surface of the core (C1). The first metal particles (P1) preferably have a larger average particle size than the second metal particles (P2), and the reaction between Sn and Cu in the core (C1) Cu remains inside the core (C1) because the reaction starts later than the reaction inside.
 その結果、接合材組成物または接合材層を加熱することにより形成された接合層は、Cu粒子がCuとSnとの化合物により接合されたネットワーク構造を有する。このため、得られた接合層は、極めて高いシェア強度、耐熱性、導電性および放熱性を有する。 As a result, the bonding layer formed by heating the bonding material composition or bonding material layer has a network structure in which Cu particles are bonded by a compound of Cu and Sn. Therefore, the obtained bonding layer has extremely high shear strength, heat resistance, electrical conductivity and heat dissipation.
 次に、本発明の実施例について説明するが、本発明はこれら実施例に限定されるものではない。 Next, examples of the present invention will be described, but the present invention is not limited to these examples.
<原料>
[第1の金属粒子(P1)]
(P1)A:Cu粒子(MAシリーズ、三井金属鉱業株式会社製)をオーブンで、200℃で1時間加熱し、Cu粒子がCuO層で被覆された金属粒子を得た。平均粒径(D50)は5μm、酸化度Hは0.05であった。酸化度Hは、X線回折装置(X´PertPRO(商品名)、マルバーン・パナリティカル株式会社製)で、Cu(111)面の回析強度H1、およびCuO(111)面の回析強度H2を測定し、H=H2/(H1+H2)より求めた。金属粒子の平均粒径(D50)は、レーザー回折計(SALD-3100(商品名)、株式会社島津製作所製)で測定した。
<raw materials>
[First metal particles (P1)]
(P1) A: Cu particles (MA series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were heated in an oven at 200° C. for 1 hour to obtain metal particles in which the Cu particles were coated with a Cu 2 O layer. The average particle size (D50) was 5 µm and the oxidation degree H was 0.05. The oxidation degree H is an X-ray diffractometer (X'PertPRO (trade name), manufactured by Malvern Panalytical Co., Ltd.), and the diffraction intensity H1 of the Cu (111) plane and the diffraction intensity of the Cu 2 O (111) plane The intensity H2 was measured and obtained from H=H2/(H1+H2). The average particle size (D50) of the metal particles was measured with a laser diffractometer (SALD-3100 (trade name), manufactured by Shimadzu Corporation).
(P1)B:Cu粒子(MAシリーズ、三井金属鉱業株式会社製)をオーブンで、180℃で3時間加熱し、Cu粒子がCuO層で被覆された金属粒子を得た。平均粒径(D50)は5μm、酸化度Hは0.3であった。酸化度Hおよび平均粒径(D50)は、(P1)Aと同様に測定した。 (P1) B: Cu particles (MA series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were heated in an oven at 180° C. for 3 hours to obtain metal particles in which the Cu particles were coated with a Cu 2 O layer. The average particle size (D50) was 5 µm, and the degree of oxidation H was 0.3. The degree of oxidation H and average particle size (D50) were measured in the same manner as in (P1)A.
(P1)C:Cu粒子(MAシリーズ、三井金属鉱業株式会社製)をオーブンで、300℃で40分加熱し、Cu粒子がCu2O層で被覆された金属粒子を得た。平均粒径(D50)は5μm、酸化度Hは0.5であった。酸化度Hおよび平均粒径(D50)は、(P1)Aと同様に測定した。 (P1) C: Cu particles (MA series, manufactured by Mitsui Kinzoku Mining Co., Ltd.) were heated in an oven at 300° C. for 40 minutes to obtain metal particles in which the Cu particles were coated with a Cu2O layer. The average particle size (D50) was 5 μm and the degree of oxidation H was 0.5. The degree of oxidation H and average particle size (D50) were measured in the same manner as in (P1)A.
(P1)D:Cu粒子(MAシリーズ、三井金属鉱業株式会社製)を用いた。平均粒径(D50)は5μm、酸化度Hは0であった。平均粒径(D50)は、(P1)Aと同様に測定した。 (P1) D: Cu particles (MA series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were used. The average particle size (D50) was 5 μm, and the oxidation degree H was 0. The average particle size (D50) was measured in the same manner as in (P1)A.
(P1)E:Cu粒子(MAシリーズ、三井金属鉱業株式会社製)をオーブンで、200℃で1時間加熱し、Cu粒子がCuO層で被覆された金属粒子を得た。平均粒径(D50)は10μm、酸化度Hは0.05であった。酸化度Hおよび平均粒径(D50)は、(P1)Aと同様に測定した。 (P1) E: Cu particles (MA series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were heated in an oven at 200° C. for 1 hour to obtain metal particles in which the Cu particles were coated with a Cu 2 O layer. The average particle size (D50) was 10 μm, and the degree of oxidation H was 0.05. The degree of oxidation H and average particle size (D50) were measured in the same manner as in (P1)A.
(P1)F:Cu粒子(1030Yシリーズ、三井金属鉱業株式会社製)をオーブンで、180℃で4時間加熱し、Cu粒子がCuO層で被覆された金属粒子を得た。平均粒径(D50)は0.5μm、酸化度Hは0.1であった。酸化度Hおよび平均粒径(D50)は、(P1)Aと同様に測定した。 (P1) F: Cu particles (1030Y series, manufactured by Mitsui Kinzoku Mining Co., Ltd.) were heated in an oven at 180° C. for 4 hours to obtain metal particles in which the Cu particles were coated with a Cu 2 O layer. The average particle size (D50) was 0.5 μm, and the degree of oxidation H was 0.1. The degree of oxidation H and average particle size (D50) were measured in the same manner as in (P1)A.
(P1)G:Cu粒子(MAシリーズ、三井金属鉱業株式会社製)をオーブンで、200℃で40時間加熱し、Cu粒子がCuO層で被覆された金属粒子を得た。平均粒径(D50)は50μm、酸化度Hは0.05であった。酸化度Hおよび平均粒径(D50)は、(P1)Aと同様に測定した。 (P1) G: Cu particles (MA series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were heated in an oven at 200° C. for 40 hours to obtain metal particles in which the Cu particles were coated with a Cu 2 O layer. The average particle size (D50) was 50 µm and the degree of oxidation H was 0.05. The degree of oxidation H and average particle size (D50) were measured in the same manner as in (P1)A.
(P1)H:Ag粒子(SPシリーズ、三井金属鉱業株式会社製)を用いた。平均粒径(D50)は5μm、酸化度Hは0であった。平均粒径(D50)は、(P1)Aと同様に測定した。 (P1) H: Ag particles (SP series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were used. The average particle size (D50) was 5 μm, and the oxidation degree H was 0. The average particle size (D50) was measured in the same manner as in (P1)A.
(P1)I:Cu粒子(MAシリーズ、三井金属鉱業株式会社製)をオーブンで、200℃で30時間加熱し、Cu粒子がCuO層で被覆された金属粒子を得た。平均粒径(D50)は25μm、酸化度Hは0.05であった。酸化度Hおよび平均粒径(D50)は、(P1)Aと同様に測定した。 (P1) I: Cu particles (MA series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were heated in an oven at 200° C. for 30 hours to obtain metal particles in which the Cu particles were coated with a Cu 2 O layer. The average particle size (D50) was 25 μm and the oxidation degree H was 0.05. The degree of oxidation H and average particle size (D50) were measured in the same manner as in (P1)A.
(P1)J:Cu粒子(MAシリーズ、三井金属鉱業株式会社製)をオーブンで、170℃で4時間加熱し、Cu粒子がCuO層で被覆された金属粒子を得た。平均粒径(D50)は5μm、酸化度Hは0.31であった。酸化度Hおよび平均粒径(D50)は、(P1)Aと同様に測定した。 (P1) J: Cu particles (MA series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were heated in an oven at 170° C. for 4 hours to obtain metal particles in which the Cu particles were coated with a Cu 2 O layer. The average particle size (D50) was 5 µm and the degree of oxidation H was 0.31. The degree of oxidation H and average particle size (D50) were measured in the same manner as in (P1)A.
(P1)K:Cu粒子(1030Yシリーズ、三井金属鉱業株式会社製)をオーブンで、170℃で3時間加熱し、Cu粒子がCuO層で被覆された金属粒子を得た。平均粒径(D50)は0.5μm、酸化度Hは0.07であった。酸化度Hおよび平均粒径(D50)は、(P1)Aと同様に測定した。 (P1) K: Cu particles (1030Y series, manufactured by Mitsui Kinzoku Mining Co., Ltd.) were heated in an oven at 170°C for 3 hours to obtain metal particles in which the Cu particles were coated with a Cu 2 O layer. The average particle size (D50) was 0.5 μm, and the oxidation degree H was 0.07. The degree of oxidation H and average particle size (D50) were measured in the same manner as in (P1)A.
[第2の金属粒子(P2)]
(P2)A:Cu粒子がSnで被覆された粒子(1050Yシリーズ、三井金属鉱業株式会社製)を用いた。平均粒径(D50)は2μmであった。平均粒径(D50)は、(P1)Aと同様に測定した。
[Second metal particles (P2)]
(P2) A: Particles in which Cu particles were coated with Sn (1050Y series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were used. The average particle size (D50) was 2 μm. The average particle size (D50) was measured in the same manner as in (P1)A.
(P2)B:Cu粒子がSnで被覆された粒子(1050Yシリーズ、三井金属鉱業株式会社製)を用いた。平均粒径(D50)は5μmであった。平均粒径(D50)は、(P1)Aと同様に測定した。 (P2) B: Particles in which Cu particles were coated with Sn (1050Y series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were used. The average particle size (D50) was 5 μm. The average particle size (D50) was measured in the same manner as in (P1)A.
(P2)C:Cu粒子がSnNiCuで被覆された粒子(開発品、極東貿易株式会社製)を用いた。平均粒径(D50)は2μmであった。平均粒径(D50)は、(P1)Aと同様に測定した。 (P2) C: Cu particles coated with SnNiCu (developed product, manufactured by Kyokuto Boeki Co., Ltd.) were used. The average particle size (D50) was 2 μm. The average particle size (D50) was measured in the same manner as in (P1)A.
(P2)D:Cu粒子がSnNiCuで被覆された粒子(開発品、極東貿易株式会社製)を用いた。平均粒径(D50)は5μmであった。平均粒径(D50)は、(P1)Aと同様に測定した。 (P2) D: Particles in which Cu particles were coated with SnNiCu (developed product, manufactured by Kyokuto Boeki Co., Ltd.) were used. The average particle size (D50) was 5 μm. The average particle size (D50) was measured in the same manner as in (P1)A.
(P2)E:Cu粒子がSnで被覆された粒子(1050Yシリーズ、三井金属鉱業株式会社製)を用いた。平均粒径(D50)は0.5μmであった。平均粒径(D50)は、(P1)Aと同様に測定した。 (P2) E: Sn-coated Cu particles (1050Y series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were used. The average particle size (D50) was 0.5 μm. The average particle size (D50) was measured in the same manner as in (P1)A.
(P2)F:Cu粒子がSnで被覆された粒子(1050Yシリーズ、三井金属鉱業株式会社製)を用いた。平均粒径(D50)は20μmであった。平均粒径(D50)は、(P1)Aと同様に測定した。 (P2) F: Sn-coated Cu particles (1050Y series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were used. The average particle size (D50) was 20 μm. The average particle size (D50) was measured in the same manner as in (P1)A.
(P2)G:Cu粒子がInで被覆された粒子(開発品、極東貿易株式会社製)を用いた。平均粒径(D50)は2μmであった。平均粒径(D50)は、(P1)Aと同様に測定した。 (P2) G: Cu particles coated with In (developed product, manufactured by Kyokuto Boeki Co., Ltd.) were used. The average particle size (D50) was 2 μm. The average particle size (D50) was measured in the same manner as in (P1)A.
(P2)H:Sn粒子(STCシリーズ、三井金属鉱業株式会社製)を用いた。平均粒径(D50)は2μmであった。平均粒径(D50)は、(P1)Aと同様に測定した。 (P2) H: Sn particles (STC series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were used. The average particle size (D50) was 2 μm. The average particle size (D50) was measured in the same manner as in (P1)A.
(P2)I:Cu粒子がSnで被覆された粒子(1050Yシリーズ、三井金属鉱業株式会社製)を用いた。平均粒径(D50)は12μmであった。平均粒径(D50)は、(P1)Aと同様に測定した。 (P2) I: Sn-coated Cu particles (1050Y series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were used. The average particle size (D50) was 12 μm. The average particle size (D50) was measured in the same manner as in (P1)A.
[第3の金属粒子(P3)]
(P3)A:Sn粒子(STシリーズ、三井金属鉱業株式会社製)を用いた。平均粒径(D50)は5μmであった。平均粒径(D50)は、(P1)Aと同様に測定した。
[Third metal particles (P3)]
(P3) A: Sn particles (ST series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were used. The average particle size (D50) was 5 μm. The average particle size (D50) was measured in the same manner as in (P1)A.
(P3)B:SnNiCu粒子(STCシリーズ、三井金属鉱業株式会社製)を用いた。平均粒径(D50)は5μmであった。平均粒径(D50)は、(P1)Aと同様に測定した。 (P3) B: SnNiCu particles (STC series, manufactured by Mitsui Mining & Smelting Co., Ltd.) were used. The average particle size (D50) was 5 μm. The average particle size (D50) was measured in the same manner as in (P1)A.
[熱硬化性樹脂]
熱硬化性樹脂A:ビスマレイミド樹脂(BMI-3000(商品名)、DESIGNER MOLECULES INC製、数平均分子量3000)および重合開始剤(ノフマーBC(商品名)、2,3-ジメチル-2,3-ジフェニルブタン、日本油脂株式会社製)を、質量比100:5で混合し、マレイミド樹脂を得た。
[Thermosetting resin]
Thermosetting resin A: Bismaleimide resin (BMI-3000 (trade name), DESIGNER MOLECULES INC., number average molecular weight 3000) and polymerization initiator (Nofmer BC (trade name), 2,3-dimethyl-2,3- Diphenylbutane (manufactured by NOF Corporation) was mixed at a mass ratio of 100:5 to obtain a maleimide resin.
[フラックス]
フラックスA:有機スルフィド類(MPSMA(登録商標)、ビス(4-メタクリロイルチオフェニル)スルフィド、住友精化株式会社製)
フラックスB:ホスフィン系(DPPST、p-スチリルジフェニルホスフィン、北興産業株式会社製)
[flux]
Flux A: organic sulfides (MPSMA (registered trademark), bis(4-methacryloylthiophenyl) sulfide, manufactured by Sumitomo Seika Co., Ltd.)
Flux B: Phosphine-based (DPPST, p-styryldiphenylphosphine, manufactured by Hokko Sangyo Co., Ltd.)
<接合材組成物(接合ペースト)の作製>
(実施例1)
 まず、(P1)AをフラックスAの溶液に浸漬して、超音波装置(NS-56(商品名)、マイクロテック・ニチオン株式会社製)を用いて、出力50W、3000rpmで120分攪拌して、フラックスを第1の金属粒子(P1)表面に配位させた。フラックス含有量は、FT-IR(フーリエ変換型赤外分光)測定を用いて特定した。次に、上記フラックスで修飾された(P1)A、(P2)A、および溶剤としてシクロペンタノン(関東化学株式会社製)を表1~3に示す配合割合で混合、撹拌して実施例1に係る接合材組成物すなわち接合ペーストを得た。
<Production of bonding material composition (bonding paste)>
(Example 1)
First, (P1) A is immersed in a solution of flux A and stirred for 120 minutes at an output of 50 W and 3000 rpm using an ultrasonic device (NS-56 (trade name), manufactured by Microtech Nition Co., Ltd.). , the flux was coordinated to the surface of the first metal particles (P1). Flux content was determined using FT-IR (Fourier transform infrared spectroscopy) measurements. Next, (P1)A and (P2)A modified with the above fluxes and cyclopentanone (manufactured by Kanto Kagaku Co., Ltd.) as a solvent were mixed and stirred in the mixing ratios shown in Tables 1 to 3 to prepare Example 1. A bonding material composition, that is, a bonding paste, was obtained.
(実施例2~4、10~20、比較例1~5)
 実施例1と同様にして、表1,2に示す原料、配合割合で、実施例2~4、10~20、比較例1~5に係る接合材組成物すなわち接合ペーストを得た。比較例5については、第1の金属粒子表面をフラックスで修飾せず、すべての原料を混錬した。
(Examples 2-4, 10-20, Comparative Examples 1-5)
In the same manner as in Example 1, bonding material compositions, that is, bonding pastes, according to Examples 2 to 4, 10 to 20, and Comparative Examples 1 to 5 were obtained with the raw materials and blending ratios shown in Tables 1 and 2. For Comparative Example 5, all raw materials were kneaded without modifying the surfaces of the first metal particles with flux.
(実施例5)
 まず、(P1)AをフラックスBの溶液に浸漬して、超音波装置(NS-56(商品名)、マイクロテック・ニチオン株式会社製)を用いて、出力50W、3000rpmで120分攪拌して、フラックスを第1の金属粒子(P1)表面に配位させた。その後は実施例1と同様にして、表1,2に示す原料、配合割合で、実施例5に係る接合材組成物すなわち接合ペーストを得た。
(Example 5)
First, (P1) A is immersed in a solution of flux B and stirred for 120 minutes at an output of 50 W and 3000 rpm using an ultrasonic device (NS-56 (trade name), manufactured by Microtech Nition Co., Ltd.). , the flux was coordinated to the surface of the first metal particles (P1). After that, in the same manner as in Example 1, a bonding material composition, that is, a bonding paste, according to Example 5 was obtained with the raw materials and blending ratios shown in Tables 1 and 2.
(実施例6)
 実施例5と同様にして、表1,2に示す原料、配合割合で、実施例6に係る接合材組成物すなわち接合ペーストを得た。
(Example 6)
In the same manner as in Example 5, a bonding material composition, ie, a bonding paste, according to Example 6 was obtained with the raw materials and blending ratios shown in Tables 1 and 2.
<接合材層の作製>
(実施例7)
 まず、(P1)AをフラックスAの溶液に浸漬して、超音波装置(NS-56(商品名)、マイクロテック・ニチオン株式会社製)を用いて、出力50W、3000rpmで120分攪拌して、フラックスを第1の金属粒子(P1)表面に配位させた。フラックス含有量は、FT-IR(フーリエ変換型赤外分光)測定を用いて特定した。次に、上記フラックスで修飾された(P1)A、(P2)A、熱硬化性樹脂A、および溶剤としてシクロペンタノン(関東化学株式会社製)を表1,2に示す配合割合で混合、撹拌したものをテフロン(登録商標)シート上に乾燥後の膜厚が100μmとなるように塗工し、100℃で5分乾燥させ、テフロン(登録商標)シートから剥離して、実施例7に係る接合材層を得た。
<Preparation of bonding material layer>
(Example 7)
First, (P1) A is immersed in a solution of flux A and stirred for 120 minutes at an output of 50 W and 3000 rpm using an ultrasonic device (NS-56 (trade name), manufactured by Microtech Nition Co., Ltd.). , the flux was coordinated to the surface of the first metal particles (P1). Flux content was determined using FT-IR (Fourier transform infrared spectroscopy) measurements. Next, (P1) A and (P2) A modified with the above flux, thermosetting resin A, and cyclopentanone (manufactured by Kanto Kagaku Co., Ltd.) as a solvent were mixed in the mixing ratios shown in Tables 1 and 2, The stirred product was coated on a Teflon (registered trademark) sheet so that the film thickness after drying was 100 μm, dried at 100 ° C. for 5 minutes, peeled off from the Teflon (registered trademark) sheet, and applied to Example 7. Such a bonding material layer was obtained.
(実施例8、9)
 実施例7と同様にして、表1,2に示す原料、配合割合で、実施例8、9に係る接合材層を得た。
(Examples 8 and 9)
Bonding material layers according to Examples 8 and 9 were obtained in the same manner as in Example 7, using the raw materials and mixing ratios shown in Tables 1 and 2.
<評価>
 上述のようにして得られた実施例および比較例に係る接合材組成物(接合ペースト)および接合材層について、下記に示す特性評価を行った。その結果を表3に示す。
<Evaluation>
The properties of the bonding material compositions (bonding pastes) and bonding material layers according to Examples and Comparative Examples obtained as described above were evaluated as follows. Table 3 shows the results.
(実施例1~6、10~20、比較例1~5)
[シェア強度]
 Cu製リードフレーム上に、上記実施例および比較例に係る接合材組成物(接合ペースト)を50mg塗布した。AuメッキがされたSiウェハを3mm角にダイシングしたチップを用意し、塗布した接合材組成物(接合ペースト)上に、Auメッキが接合材組成物(接合ペースト)と接するように該チップを載せ、ピンセットで軽く押さえて接合材組成物(接合ペースト)に密着させて積層体を得た。この積層体を窒素雰囲気下で、280℃、15分で焼成して、測定用サンプルを得た。
(Examples 1 to 6, 10 to 20, Comparative Examples 1 to 5)
[Share strength]
50 mg of the bonding material composition (bonding paste) according to the above examples and comparative examples was applied onto a Cu lead frame. A chip is prepared by dicing an Au-plated Si wafer into 3 mm squares, and the chip is placed on the applied bonding material composition (bonding paste) so that the Au plating is in contact with the bonding material composition (bonding paste). , and pressed lightly with tweezers to adhere to the bonding material composition (bonding paste) to obtain a laminate. This laminate was baked at 280° C. for 15 minutes in a nitrogen atmosphere to obtain a sample for measurement.
 得られた測定サンプルについて、ダイシェアー測定機(ノードソン・アドバンスト・テクノロジー株式会社製 万能型ボンドテスタ シリーズ4000)を用い、ボンドテスタの引っ掻きツールを上記測定サンプルのチップの側面に100μm/sで衝突させて、チップ/リードフレーム接合が破壊した際の応力を260℃におけるシェア強度として測定した。シェア強度が、10.0MPa以上のものを良品として「○」、10.0MPa未満3.0以上のものを許容品として「△」、3.0MPa未満のものを不良品として「×」で評価した。 For the obtained measurement sample, using a die shear measuring machine (manufactured by Nordson Advanced Technologies Co., Ltd. universal bond tester series 4000), the scratching tool of the bond tester was made to collide with the side surface of the chip of the measurement sample at 100 μm / s, The stress at which the chip/lead frame bond failed was measured as the shear strength at 260°C. If the shear strength is 10.0 MPa or more, it is evaluated as "Good", if it is less than 10.0 MPa and 3.0 or more, it is evaluated as "△", and if it is less than 3.0 MPa, it is evaluated as "X" did.
[耐熱性]
 次に、上記測定用サンプルと同様にして得られた測定用サンプルについて、冷熱衝撃試験(TCT)として、-65℃の温度条件で10分間保持した後、175℃の温度条件で10分間保持する処理工程を1サイクルとし、この処理を500サイクル行った。この処理後の測定用サンプルについて、上記TCT前のシェア強度と同様の方法でTCT後のシェア強度を測定した。TCT後のシェア強度が高いほど耐熱性に優れていることを意味している。TCT後のシェア強度が、7.0MPa以上のものを良品として「○」、7.0MPa未満2.0MPa以上のものを許容品として「△」、2.0MPa未満のものを不良品として「×」で評価した。
[Heat-resistant]
Next, a measurement sample obtained in the same manner as the above measurement sample is subjected to a thermal shock test (TCT), held at a temperature of -65 ° C. for 10 minutes, and then held at a temperature of 175 ° C. for 10 minutes. The treatment process was defined as one cycle, and 500 cycles of this treatment were performed. For the measurement sample after this treatment, the shear strength after TCT was measured in the same manner as for the shear strength before TCT. It means that the higher the shear strength after TCT, the better the heat resistance. If the shear strength after TCT is 7.0 MPa or more, it is regarded as a good product. ” was evaluated.
[導電性]
 実施例および比較例に係る接合材組成物を100mg、ガラス基板上に塗布し、280℃、15分で焼成して、測定用サンプルを得た。この測定用サンプルについて、JIS-K7194―1994に準拠して、四探針法により抵抗値を測定し、体積抵抗率を算出した。抵抗値の測定には、株式会社三菱化学アナリテック製ロレスターGXを用いた。なお、体積抵抗率は、その逆数が導電率であり、体積抵抗率は小さいほど導電性に優れていることを意味している。
 本実施例では、体積抵抗率が、1.0×10-5Ω・cm未満のものを良品として「○」、1.0×10-5Ω・cm以上5.0×10-5Ω・cm以下のものを許容品として「△」、5.0×10-5Ω・cmを超えるものを不良品として「×」で評価した。
[放熱性]
 熱伝導率は、体積抵抗率をIACS導電率で示すことで求められる。焼鈍標準銅の体積抵抗率1.724×10-6Ω・cmを100IACS%として、体積抵抗率を比率で示し、銅が100IACS%の際の熱伝導率360Wに対してその比率で割ることで、銅を基準にして熱伝導率を算出した。なお、熱伝導率は、大きいほど放熱性に優れていることを意味している。
 本実施例では、熱伝導率が、70W/m・K以上のものを優良品として「◎」、70W/m・K未満40W/m・K以上のものを良品として「○」、40W/m・K未満17W/m・K以上のものを許容品として「△」、17W/m・K未満のものを不良品として「×」で評価した。
[Conductivity]
100 mg of the bonding material composition according to the examples and comparative examples was applied onto a glass substrate and baked at 280° C. for 15 minutes to obtain a measurement sample. For this measurement sample, the resistance value was measured by the four-probe method in accordance with JIS-K7194-1994, and the volume resistivity was calculated. Loresta GX manufactured by Mitsubishi Chemical Analytech Co., Ltd. was used to measure the resistance value. The reciprocal of the volume resistivity is conductivity, and the smaller the volume resistivity, the better the conductivity.
In this example, a product with a volume resistivity of less than 1.0×10 −5 Ω·cm is regarded as a good product, and a product with a volume resistivity of 1.0×10 −5 Ω·cm or more and 5.0×10 −5 Ω·cm cm or less was evaluated as an acceptable product, and those exceeding 5.0×10 −5 Ω·cm were evaluated as a defective product with an “X”.
[Heat dissipation]
Thermal conductivity is determined by expressing volume resistivity as IACS conductivity. The volume resistivity of 1.724 × 10 -6 Ω cm of annealed standard copper is 100IACS%, and the volume resistivity is expressed as a ratio, and the thermal conductivity of 360W when copper is 100IACS% is divided by the ratio. , the thermal conductivity was calculated based on copper. In addition, thermal conductivity means that it is excellent in heat dissipation, so that it is large.
In this example, those with a thermal conductivity of 70 W/m·K or more are regarded as excellent products, and those with a thermal conductivity of less than 70 W/m·K and 40 W/m·K or more are regarded as good products, and 40 W/m・Those with less than K of 17 W/m·K or more were evaluated as “acceptable”, and those with less than 17 W/m·K were evaluated as “poor”.
(実施例7~9)
[シェア強度]
 Cu製リードフレーム上に、上記実施例7~9に係る接合材層を載置した。AuメッキがされたSiウェハを3mm角にダイシングしたチップを用意し、接合材層上に、Auメッキが接合材層と接するように該チップを載せて積層体を得た。この積層体を窒素雰囲気下で、280℃、15分で焼成して、測定用サンプルを得た。
(Examples 7-9)
[Share strength]
The bonding material layers according to Examples 7 to 9 were placed on a Cu lead frame. A chip was prepared by dicing an Au-plated Si wafer into 3 mm squares, and the chip was placed on the bonding material layer so that the Au plating was in contact with the bonding material layer to obtain a laminate. This laminate was baked at 280° C. for 15 minutes in a nitrogen atmosphere to obtain a sample for measurement.
 得られた測定サンプルについて、上述のシェア強度と同様の方法でシェア強度を測定し、同様の方法でシェア強度の評価を行った。 For the obtained measurement samples, the shear strength was measured by the same method as the shear strength described above, and the shear strength was evaluated by the same method.
[耐熱性]
 次に、上記測定用サンプルと同様にして得られた測定用サンプルについて、上述のTCT後のシェア強度と同様の方法でTCT後のシェア強度を測定し、同様の方法で耐熱性の評価を行った。
[Heat-resistant]
Next, for the measurement sample obtained in the same manner as the above measurement sample, the shear strength after TCT was measured by the same method as the above-described shear strength after TCT, and the heat resistance was evaluated by the same method. Ta.
[導電性]
 実施例7~9に係る接合材層を280℃、15分で焼成して、測定用サンプルを得た。この測定用サンプルについて、上述と同様の方法で体積抵抗率を算出し、同様の方法で導電性の評価を行った。
[Conductivity]
The bonding material layers according to Examples 7 to 9 were baked at 280° C. for 15 minutes to obtain measurement samples. Regarding this measurement sample, the volume resistivity was calculated by the same method as described above, and the electrical conductivity was evaluated by the same method.
[放熱性]
 この測定用サンプルについて、上述と同様の方法で熱伝導率を算出し、同様の方法で放熱性の評価を行った。
[Heat dissipation]
For this measurement sample, the thermal conductivity was calculated by the same method as described above, and the heat dissipation property was evaluated by the same method.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 実施例1~20に係る接合材組成物(接合ペースト)および接合材層は、Cu粒子がCuO層で被覆された金属粒子とCu粒子がSnまたはSnNiCuで被覆された金属粒子を用いているために、CuO層が還元するまで拡散が抑制されるので反応が緩やかに進み、全体的に均一な反応ができたため、シェア強度、耐熱性、導電性、放熱性の全てにおいて良好な結果となった。 The bonding material compositions (bonding pastes) and bonding material layers according to Examples 1 to 20 were obtained by using metal particles in which Cu particles were coated with a Cu 2 O layer and metal particles in which Cu particles were coated with Sn or SnNiCu. Therefore, the diffusion is suppressed until the Cu 2 O layer is reduced, so the reaction proceeds slowly and the reaction is uniform as a whole. result.
 比較例1に係る接合材組成物は、第1の金属粒子(P1)としてCuO層で被覆されていないCu粒子を使用したので、溶融したSnと反応性が良好でCu粒子表面との拡散反応が均一に形成されず、反応が十分に進んだ領域にCuSnが多く形成される一方、反応が不十分または未反応の部分があり、Cu粒子をコアとしたネットワーク構造が得られず、耐熱性、導電性、放熱性において劣る結果となった。 In the bonding material composition according to Comparative Example 1, Cu particles not covered with a Cu 2 O layer were used as the first metal particles (P1). The diffusion reaction is not formed uniformly, and while a large amount of Cu 3 Sn is formed in the region where the reaction has sufficiently progressed, there are portions where the reaction is insufficient or unreacted, and a network structure with Cu particles as the core is obtained. However, the heat resistance, electrical conductivity, and heat dissipation were inferior.
 比較例2に係る接合材組成物は、第1の金属粒子(P1)として酸化状態が良好なAg粒子を使用したため、Snと反応することにより、AgSnとCuSnの領域が分かれた構造となり、耐熱性、放熱性において劣る結果となった。 Since the bonding material composition according to Comparative Example 2 used Ag particles having a good oxidation state as the first metal particles (P1), the Ag 3 Sn and Cu 3 Sn regions were separated by reacting with Sn. structure, resulting in poor heat resistance and heat dissipation.
 比較例3に係る接合材組成物は、第2の金属粒子(P2)としてインジウムめっきCu粒子を使用したため、インジウムは低温で溶融するもののCuとの拡散反応性が悪く、その結果、部分的にCuIn化合物が出来たのみで、耐熱性、導電性、放熱性において劣る結果となった。 In the bonding material composition according to Comparative Example 3, since indium-plated Cu particles were used as the second metal particles (P2), indium melts at a low temperature but has poor diffusion reactivity with Cu. Only the CuIn compound was produced, resulting in poor heat resistance, electrical conductivity, and heat dissipation.
 比較例4に係る接合材組成物は、第2の金属粒子(P2)として純粋なSn粒子を使用したため、Snの溶融開始とCuOの還元とのバランスが取れておらず、溶融したSnはSiチップ裏面のAuと反応してしまい、Cu粒子との反応が不十分となって耐熱性において劣る結果となった。 In the bonding material composition according to Comparative Example 4, pure Sn particles were used as the second metal particles ( P2 ). reacted with Au on the back surface of the Si chip, resulting in poor heat resistance due to insufficient reaction with Cu particles.
 比較例5に係る接合材組成物は、フラックスを使用しなかったので、CuOの還元が進まず、SnはCuコアと反応できずに、CuSnの構造が形成されず、シェア強度、耐熱性、導電性、放熱性の全てにおいて劣る結果となった。  Since the bonding material composition according to Comparative Example 5 did not use flux, the reduction of Cu 2 O did not progress, Sn could not react with the Cu core, and a structure of Cu 3 Sn was not formed. , the results were inferior in all of heat resistance, electrical conductivity, and heat dissipation.

Claims (21)

  1.  第1の金属粒子(P1)と第2の金属粒子(P2)とを含む金属粒子(P)と、フラックスとを含み、
     前記第1の金属粒子(P1)はCuからなるコア(C1)と前記コア(C1)を被覆するCuO層とにより構成され 、
     前記第2の金属粒子(P2)はCuからなるコア(C2)と前記コア(C2)を被覆するSnまたはSnを含有するはんだとにより構成されることを特徴とする接合材組成物。
    Including metal particles (P) including first metal particles (P1) and second metal particles (P2) and flux,
    The first metal particles (P1) are composed of a core (C1) made of Cu and a Cu 2 O layer covering the core (C1),
    A bonding material composition, wherein the second metal particles (P2) are composed of a core (C2) made of Cu and Sn or a solder containing Sn coating the core (C2).
  2.  前記第1の金属粒子(P1)は平均粒径が1~20μmであり、
     前記第2の金属粒子(P2)は平均粒径が1~10μmであることを特徴とする請求項1に記載の接合材組成物。
    The first metal particles (P1) have an average particle size of 1 to 20 μm,
    The bonding material composition according to claim 1, wherein the second metal particles (P2) have an average particle size of 1 to 10 µm.
  3.  前記コア(C1)の前記Cu及び前記コア(C2)の前記Cuの総量100質量%に対して、前記コア(C2)を被覆するSnまたはSnを含有するはんだにおけるSnの割合が55~65質量%であることを特徴とする請求項1または請求項2に記載の接合材組成物。 The ratio of Sn in the Sn or Sn-containing solder covering the core (C2) is 55 to 65 mass% with respect to the total amount of 100% by mass of the Cu of the core (C1) and the Cu of the core (C2). %.
  4.  前記第1の金属粒子(P1)の、X線回折により測定されたCu(111)面の回析強度をH1、CuO(111)面の回析強度をH2としたとき、下記式1で表される前記第1の金属粒子(P1)の酸化度Hが、0.05~0.3であることを特徴とする請求項1から請求項3のいずれか一項に記載の接合材組成物。
    H=H2/(H1+H2)    [式1]
    When the diffraction intensity of the Cu (111) plane of the first metal particles (P1) measured by X-ray diffraction is H1, and the diffraction intensity of the Cu 2 O (111) plane is H2, the following formula 1 The bonding material according to any one of claims 1 to 3, wherein the oxidation degree H of the first metal particles (P1) represented by is 0.05 to 0.3. Composition.
    H=H2/(H1+H2) [Formula 1]
  5.  前記金属粒子(P)が第3の金属粒子(P3)を更に含み、
     前記第3の金属粒子(P3)がSn粒子またはSnを含有するはんだ粒子であることを特徴とする請求項1から請求項4のいずれか一項に記載の接合材組成物。
    The metal particles (P) further include third metal particles (P3),
    The bonding material composition according to any one of claims 1 to 4, wherein the third metal particles (P3) are Sn particles or Sn-containing solder particles.
  6.  前記コア(C1)の前記Cu及び前記コア(C2)の前記Cuの総量100質量%に対して、前記コア(C2)を被覆するSnまたはSnを含有するはんだにおけるSn、および前記Sn粒子またはSnを含有するはんだ粒子におけるSnの割合が55~65質量%であることを特徴とする請求項5に記載の接合材組成物。 Sn in a solder containing Sn or Sn covering the core (C2), and the Sn particles or Sn The bonding material composition according to claim 5, wherein the proportion of Sn in the solder particles containing is 55 to 65% by mass.
  7.  前記フラックスが還元性を有し、反応生成物に水を含まないことを特徴とする請求項1から請求項6のいずれか一項に記載の接合材組成物。 The bonding material composition according to any one of claims 1 to 6, characterized in that the flux has reducing properties and does not contain water in the reaction product.
  8.  前記フラックスが、下記一般式(1)で示されるホスフィン類および下記一般式(2)で示されるスルフィド類の少なくとも一方を含むことを特徴とする請求項1から請求項7のいずれか一項に記載の接合材組成物。
    ただし、下記一般式(1)および(2)においてRは、それぞれ独立して、有機基を示し、Rは互いに同一であっても異なっていてもよい。
    Figure JPOXMLDOC01-appb-C000001
    8. The flux according to any one of claims 1 to 7, wherein the flux contains at least one of phosphines represented by the following general formula (1) and sulfides represented by the following general formula (2). The bonding material composition described.
    However, in the following general formulas (1) and (2), each R independently represents an organic group, and each R may be the same or different.
    Figure JPOXMLDOC01-appb-C000001
  9.  前記金属粒子(P)に対して、前記フラックスの含有割合が、0.05~0.5質量%であることを特徴とする請求項1から請求項8のいずれか一項に記載の接合材組成物。 The bonding material according to any one of claims 1 to 8, wherein the content of the flux is 0.05 to 0.5% by mass with respect to the metal particles (P). Composition.
  10.  金属粒子(P)の含有割合が、前記接合材組成物全量に対して80~95質量%であることを特徴とする請求項1から請求項9のいずれか一項に記載の接合材組成物。 The bonding material composition according to any one of claims 1 to 9, wherein the content of the metal particles (P) is 80 to 95% by mass with respect to the total amount of the bonding material composition. .
  11.  240℃以上で加熱されることにより、第1の部材と第2の部材とを接合する接合層を形成し、
     前記接合層は、Cu粒子がCuとSnとの化合物により接合されたネットワーク構造を有することを特徴とする請求項1から請求項10のいずれか一項に記載の接合材組成物。
    forming a bonding layer that bonds the first member and the second member by heating at 240° C. or higher;
    The bonding material composition according to any one of claims 1 to 10, wherein the bonding layer has a network structure in which Cu particles are bonded by a compound of Cu and Sn.
  12.  熱硬化性樹脂を含むことを特徴とする請求項1から請求項11のいずれか一項に記載の接合材組成物。 The bonding material composition according to any one of claims 1 to 11, characterized by containing a thermosetting resin.
  13.  請求項1から請求項12のいずれか一項に記載の接合材組成物の製造方法であって、前記第1の金属粒子(P1)、前記第2の金属粒子(P2)を混合、撹拌する工程を含むことを特徴とする接合材組成物の製造方法。 13. The method for producing the bonding material composition according to any one of claims 1 to 12, wherein the first metal particles (P1) and the second metal particles (P2) are mixed and stirred. A method for producing a bonding material composition, comprising:
  14.  接合材層を有する接合フィルムであって、
     前記接合材層が、請求項1~請求項12のいずれか一項に記載の接合材組成物を用いて形成されたものであることを特徴とする接合フィルム。
    A bonding film having a bonding material layer,
    A bonding film, wherein the bonding material layer is formed using the bonding material composition according to any one of claims 1 to 12.
  15.  前記接合材層は、厚さが10~100μmであることを特徴とする請求項14に記載の接合フィルム。 The bonding film according to claim 14, wherein the bonding material layer has a thickness of 10 to 100 µm.
  16.  請求項1から請求項12のいずれか一項に記載の接合材組成物を用いて第1の部材と第2の部材とを接合層により接合する接合体の製造方法であって、
     前記接合材組成物を前記第1の部材と前記第2の部材との間に介在させ、240℃以上で加熱することにより、前記フラックスが前記第1の金属粒子(P1)の前記CuO層を除去し、前記第2の金属粒子(P2)の前記Snまたは前記Snを含有するはんだが溶融して、前記コア(C1)の前記Cu及び前記コア(C2)の前記Cuと反応し、Cu粒子がCuとSnとの化合物により接合されたネットワーク構造を有する前記接合層が形成されることを特徴とする接合体の製造方法。
    A method for manufacturing a joined body in which a first member and a second member are joined by a joining layer using the joining material composition according to any one of claims 1 to 12,
    By interposing the bonding material composition between the first member and the second member and heating at 240° C. or higher, the flux converts the Cu 2 O of the first metal particles (P1) into removing the layer, the Sn or the Sn-containing solder of the second metal particles (P2) melts and reacts with the Cu of the core (C1) and the Cu of the core (C2); A method for manufacturing a bonded body, wherein the bonding layer having a network structure in which Cu particles are bonded by a compound of Cu and Sn is formed.
  17.  請求項14または請求項15に記載の接合フィルムを用いて第1の部材と第2の部材とを接合層により接合する接合体の製造方法であって、
     前記接合材層を前記第1の部材と前記第2の部材との間に介在させ、240℃以上で加熱することにより、前記フラックスが前記第1の金属粒子(P1)の前記CuO層を除去し、前記第2の金属粒子(P2)の前記Snまたは前記Snを含有するはんだが溶融して、前記コア(C1)の前記Cu及び前記コア(C2)の前記Cuと反応し、Cu粒子がCuとSnとの化合物により接合されたネットワーク構造を有する前記接合層が形成されることを特徴とする接合体の製造方法。
    16. A method for producing a joined body in which a first member and a second member are joined by a joining layer using the joining film according to claim 14 or 15, the method comprising:
    By interposing the bonding material layer between the first member and the second member and heating at 240° C. or higher, the flux forms the Cu 2 O layer of the first metal particles (P1). is removed, the Sn or the Sn-containing solder of the second metal particles (P2) melts, reacts with the Cu of the core (C1) and the Cu of the core (C2), and Cu A method for producing a joined body, wherein the joining layer having a network structure in which particles are joined by a compound of Cu and Sn is formed.
  18.  請求項1から請求項12のいずれか一項に記載の接合材組成物を用いて、第1の部材と第2の部材とを接合層により接合した接合体であって、
     前記接合層は、前記接合材組成物を240℃以上で加熱することにより形成されたものであることを特徴とする接合体。
    A bonded body obtained by bonding a first member and a second member with a bonding layer using the bonding material composition according to any one of claims 1 to 12,
    A bonded body, wherein the bonding layer is formed by heating the bonding material composition at 240° C. or higher.
  19.  請求項14または請求項15に記載の接合フィルムを用いて、第1の部材と第2の部材とを接合層により接合した接合体であって、
     前記接合層は、前記接合材層を240℃以上で加熱することにより形成されたものであることを特徴とする接合体。
    A bonded body obtained by bonding a first member and a second member with a bonding layer using the bonded film according to claim 14 or 15,
    A bonded body, wherein the bonding layer is formed by heating the bonding material layer at 240° C. or higher.
  20.  前記接合層は、Cu粒子がCuとSnとの化合物により接合されたネットワーク構造を有することを特徴とする請求項18または請求項19に記載の接合体。 The joined body according to claim 18 or 19, wherein the joining layer has a network structure in which Cu particles are joined by a compound of Cu and Sn.
  21.  前記接合層は、厚さが10~300μmであることを特徴とする請求項18から請求項20のいずれか一項に記載の接合体。  The joined body according to any one of claims 18 to 20, wherein the joining layer has a thickness of 10 to 300 µm. 
PCT/JP2023/004946 2022-02-21 2023-02-14 Bonding material composition, method for manufacturing bonding material composition, bonding film, method for manufacturing bonded body, and bonded body WO2023157831A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022024543A JP2023121288A (en) 2022-02-21 2022-02-21 Joining material composition, method for producing joining material composition, joining film, method for manufacturing joined body, and joined body
JP2022-024543 2022-02-21

Publications (1)

Publication Number Publication Date
WO2023157831A1 true WO2023157831A1 (en) 2023-08-24

Family

ID=87578282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/004946 WO2023157831A1 (en) 2022-02-21 2023-02-14 Bonding material composition, method for manufacturing bonding material composition, bonding film, method for manufacturing bonded body, and bonded body

Country Status (3)

Country Link
JP (1) JP2023121288A (en)
TW (1) TW202348333A (en)
WO (1) WO2023157831A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075459A1 (en) * 2005-01-11 2006-07-20 Murata Manufacturing Co., Ltd Solder paste and electronic device
JP2011062736A (en) * 2009-09-18 2011-03-31 Sanyo Special Steel Co Ltd Lead-free high-temperature solder material
JP2013212524A (en) * 2012-04-02 2013-10-17 Koki:Kk Solder material and method for manufacturing the same
JP2014156626A (en) * 2013-02-15 2014-08-28 Furukawa Electric Co Ltd:The Copper fine particle dispersion solution, manufacturing method of sintered conductor, and manufacturing method of conductor connection member
WO2017007011A1 (en) * 2015-07-09 2017-01-12 古河電気工業株式会社 Metal fine particle-containing composition
WO2017138255A1 (en) * 2016-02-10 2017-08-17 古河電気工業株式会社 Electrically conductive adhesive film, and dicing/die-bonding film using same
WO2018025798A1 (en) * 2016-08-03 2018-02-08 古河電気工業株式会社 Composition containing metal particles
JP2019059967A (en) * 2017-09-25 2019-04-18 古河電気工業株式会社 Metallic fine particle-containing composition
JP2020040075A (en) * 2018-09-06 2020-03-19 三菱マテリアル株式会社 Bonding powder and bonding paste, and method for bonding member to be bonded by using the paste

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006075459A1 (en) * 2005-01-11 2006-07-20 Murata Manufacturing Co., Ltd Solder paste and electronic device
JP2011062736A (en) * 2009-09-18 2011-03-31 Sanyo Special Steel Co Ltd Lead-free high-temperature solder material
JP2013212524A (en) * 2012-04-02 2013-10-17 Koki:Kk Solder material and method for manufacturing the same
JP2014156626A (en) * 2013-02-15 2014-08-28 Furukawa Electric Co Ltd:The Copper fine particle dispersion solution, manufacturing method of sintered conductor, and manufacturing method of conductor connection member
WO2017007011A1 (en) * 2015-07-09 2017-01-12 古河電気工業株式会社 Metal fine particle-containing composition
WO2017138255A1 (en) * 2016-02-10 2017-08-17 古河電気工業株式会社 Electrically conductive adhesive film, and dicing/die-bonding film using same
WO2018025798A1 (en) * 2016-08-03 2018-02-08 古河電気工業株式会社 Composition containing metal particles
JP2019059967A (en) * 2017-09-25 2019-04-18 古河電気工業株式会社 Metallic fine particle-containing composition
JP2020040075A (en) * 2018-09-06 2020-03-19 三菱マテリアル株式会社 Bonding powder and bonding paste, and method for bonding member to be bonded by using the paste

Also Published As

Publication number Publication date
JP2023121288A (en) 2023-08-31
TW202348333A (en) 2023-12-16

Similar Documents

Publication Publication Date Title
US8697237B2 (en) Thermosetting resin composition, method of manufacturing the same and circuit board
JP5900602B2 (en) Semiconductor adhesive, flux agent, semiconductor device manufacturing method, and semiconductor device
EP3415579B1 (en) Electrically conductive adhesive film, and dicing/die-bonding film using same
JP5958529B2 (en) Semiconductor device and manufacturing method thereof
JP5915727B2 (en) Semiconductor device and manufacturing method thereof
CN103289621A (en) Thermosetting resin composition
JP2006199937A (en) Conductive adhesive and conductive part and electronic part module using the same
TW200839968A (en) Conductive ball-or pin-mounted semiconductor packaging substrate, method for manufacturing the same and conductive bonding material
KR20150036676A (en) Conductive adhesive
JP2013256584A (en) Thermosetting resin composition, flux composition, and semiconductor apparatus using the same
KR102604506B1 (en) Metallic adhesive composition with good usable time and thermal conductivity, method for making same and use thereof
JP5867584B2 (en) Adhesive for semiconductor and method for manufacturing semiconductor device
JP3975728B2 (en) Conductive adhesive and circuit board such as semiconductor using the same
WO2023157831A1 (en) Bonding material composition, method for manufacturing bonding material composition, bonding film, method for manufacturing bonded body, and bonded body
CN104531024A (en) Epoxy resin adhesive, flexible copper-clad plate prepared from epoxy resin adhesive and preparation method of flexible copper-clad plate
JPH0529667B2 (en)
TW201839780A (en) Conductive particles, conductive material, and connection structure
US20210121992A1 (en) Solder paste and joining structure
JP7370985B2 (en) Metal particle-containing composition and conductive adhesive film
JP2017145290A (en) Adhesive composition, adhesive sheet formed from the same, cured product thereof, and semiconductor device
WO2023013732A1 (en) Resin composition for fluxes, solder paste and package structure
JP6774727B2 (en) Method for manufacturing joint reinforcing composition and joint reinforcing portion
CN114250043B (en) Self-welding conductive connecting material, bonding die block comprising self-welding conductive connecting material and manufacturing method of bonding die block
JP5887541B2 (en) Thermosetting resin composition
JP5492002B2 (en) Thermosetting resin composition and method for producing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756356

Country of ref document: EP

Kind code of ref document: A1