WO2023157700A1 - Method for supporting air treatment in multitubular reactor, and device - Google Patents

Method for supporting air treatment in multitubular reactor, and device Download PDF

Info

Publication number
WO2023157700A1
WO2023157700A1 PCT/JP2023/003849 JP2023003849W WO2023157700A1 WO 2023157700 A1 WO2023157700 A1 WO 2023157700A1 JP 2023003849 W JP2023003849 W JP 2023003849W WO 2023157700 A1 WO2023157700 A1 WO 2023157700A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
air treatment
reaction
reactor
catalyst
Prior art date
Application number
PCT/JP2023/003849
Other languages
French (fr)
Japanese (ja)
Inventor
成喜 奥村
智志 河村
佑太 中澤
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2023523518A priority Critical patent/JP7289419B1/en
Priority to JP2023087052A priority patent/JP2023121161A/en
Publication of WO2023157700A1 publication Critical patent/WO2023157700A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B35/00Reactions without formation or introduction of functional groups containing hetero atoms, involving a change in the type of bonding between two carbon atoms already directly linked
    • C07B35/04Dehydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/06Formation or introduction of functional groups containing oxygen of carbonyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B41/00Formation or introduction of functional groups containing oxygen
    • C07B41/08Formation or introduction of functional groups containing oxygen of carboxyl groups or salts, halides or anhydrides thereof

Definitions

  • the present invention relates to methods and apparatus for supporting air handling in multitubular reactors.
  • Patent Document 1 discloses a method of treating with a gas mixture in an oxidation reaction for producing unsaturated aldehydes, unsaturated carboxylic acids, and conjugated dienes using a multitubular reactor.
  • the purpose of treatment with a gas mixture is various, for example, removing coke-like carbon compounds accumulated inside and outside the catalyst due to a long-term reaction, regenerating the catalyst in a reduced state, and reoxidizing the catalyst. Performance improvement by processing and the like can be mentioned.
  • the gas to be used is appropriately selected depending on the purpose, but air containing no hydrocarbons and gas containing molecular oxygen are usually used as the inlet gas. As another inlet gas, water vapor may be introduced to improve the effectiveness of air treatment. Further, a treatment (hereinafter referred to as air treatment) in which part or all of each inlet gas flow rate, reaction bath temperature and reactor pressure are appropriately set is generally used.
  • the present invention provides conditions for setting and ending each treatment step during air treatment in a multi-tubular reactor containing a plurality of reaction tubes for producing unsaturated aldehydes, unsaturated carboxylic acids, or conjugated dienes by an oxidation reaction using a catalyst.
  • the task is to facilitate the identification of
  • a method for supporting air treatment of a shell-and-tube reactor comprising a plurality of reactor tubes producing unsaturated aldehydes and/or unsaturated carboxylic acids by catalytic oxidation or conjugated dienes by oxidative dehydrogenation. and computer equipment, an obtaining step of obtaining, as reaction information, information on gases flowing into and out of the reactor; and an output step of numerically processing the reaction information to output assistance information for assisting the air treatment.
  • the reaction information includes information about gas composition at the outlet of the shell-and-tube reactor;
  • the support information includes at least one of information on the integrated carbon throughput of the multi-tubular reactor or information on the carbon throughput per unit time of the multi-tubular reactor, A method of supporting air handling as described in 1) above.
  • the reaction information includes information about gas composition at the outlet of the shell-and-tube reactor;
  • the support information includes at least one of information on the accumulated oxygen absorption amount of the multi-tubular reactor and information on the oxygen absorption amount per unit time of the multi-tubular reactor.
  • the reaction information includes information about the temperature distribution in the reaction tubes of the multi-tubular reactor;
  • the support information includes information about changes in the pipe temperature distribution over time during the air treatment.
  • Air handling support method as described in . 6) Apparatus to support air treatment in multi-tube reactors containing multiple reaction tubes producing unsaturated aldehydes and/or unsaturated carboxylic acids by catalytic oxidation or conjugated dienes by oxidative dehydrogenation. and
  • the device has an acquisition unit and an output unit,
  • the acquisition unit is configured to acquire information about gas flowing into and out of the reactor as reaction information
  • the output unit is configured to output support information for supporting the air treatment by numerically processing the reaction information.
  • FIG. 4 is a schematic plan view showing a multi-tubular reactor according to an embodiment, and a diagram showing an example in which the multi-tubular reactor is spatially divided into three sections.
  • FIG. 3 is a schematic diagram showing layers of catalyst packed in one reaction tube. Fig.
  • 2 is a graph plotting the concentration of carbon dioxide contained in the reactor outlet gas versus air treatment time, based on the data illustrated in Table 1; 2 is a graph plotting carbon throughput per unit time versus air treatment time based on the data illustrated in Table 1; 2 is a graph plotting integrated carbon throughput versus air treatment time based on the data illustrated in Table 1; 2 is a graph plotting catalyst peak temperature versus air treatment time based on the data illustrated in Table 1;
  • the method according to the present embodiment is a method for supporting air treatment of a multi-tube reactor containing multiple reaction tubes for producing unsaturated aldehydes, unsaturated carboxylic acids, or conjugated dienes by catalytic oxidation reactions.
  • the method comprises a step of acquiring analysis information of gas inflow and outflow of the multi-tubular reactor, and supporting information for assisting air treatment of the multi-tubular reactor by statistically processing the analysis information in a computer device. and an output step of outputting.
  • the computer device used in this embodiment is a computer device comprising a microprocessor such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a memory such as a flash memory, and a bus.
  • the computer device may execute at least part of the method according to the present embodiment by means of a program recorded in a memory included in the computer device or in a recording medium readable by the computer device.
  • the present embodiment also presents a program for causing a computer device to execute at least part of a method described later, and a recording medium recording the program.
  • the computer device that can be used in this embodiment is not limited to this aspect.
  • a cloud computing system in which computer resources are connected via a network may be used as the computer device used in the method of the present disclosure.
  • FIG. 1 is a schematic plan view showing a multi-tubular reactor 10 to be subjected to the method according to this embodiment.
  • the shell-and-tube reactor 10 shown in FIG. 1 is cylindrical.
  • FIG. 1 shows three compartments A, B, and C that are divided every 120° with respect to the center of the multi-tubular reactor 10 in plan view.
  • a portion of the plurality of reaction tubes 20 included in section A is shown surrounded by a dashed line.
  • a plurality of reaction tubes 20 are also provided outside the dashed line in section A and in sections B and C, but illustration of these reaction tubes 20 is omitted.
  • the multitubular reactor 10 produces at least one of the target unsaturated aldehyde, unsaturated carboxylic acid, and conjugated diene depending on the catalyst to be filled, the raw material to be supplied, and the like.
  • unsaturated aldehydes and unsaturated carboxylic acids to be produced include acrolein and acrylic acid, methacrolein and methacrylic acid, and examples of conjugated dienes include 1,3-butadiene and isoprene.
  • Each of the plurality of reaction tubes 20 included in the multitubular reactor 10 is filled with a catalyst.
  • the sections are divided in the direction of the rotation axis in the plane of the multi-tubular reactor 10, but other arbitrary division methods, such as the radial direction, the radial direction and the direction of the rotation axis, and further A method of partitioning with arbitrary polygons is also included in the present invention.
  • the air treatment support method of the present invention is a method that uses analytical information on the inflow and outflow gases of the multi-tubular reactor, the arrangement of the reaction tubes in the reactor does not necessarily have to be divided into a plurality of compartments. do not have.
  • FIG. 2 is a schematic diagram showing a catalyst layer packed in one reaction tube 20. As shown in FIG. In the example shown in FIG. 2, four layers of catalyst layers 22, 24, 26, 28 packed on the support ring 30 are shown. The activity of the plurality of layers is different from each other. For example, the activity of the fourth catalyst layer 28 is low in the order of filling on the inlet side where the raw material is supplied, and the activity increases toward the outlet side (support ring 30 side).
  • activity of the fourth catalyst layer 28 ⁇ activity of the third catalyst layer 26 ⁇ activity of the second catalyst layer 24 ⁇ activity of the first catalyst layer 22 may be At least one of the target unsaturated aldehyde, unsaturated carboxylic acid, and conjugated diene is produced by supplying raw materials to a reaction tube 20 filled with a catalyst so as to form a plurality of layers and controlling operating conditions such as temperature. manufactured.
  • thermocouples are usually inserted in this reaction tube at regular intervals in the depth direction.
  • the inserted thermocouples provide temperature information of the catalyst layer filled with catalyst and/or the inert layer filled with inert support.
  • the temperature information obtained here is the in-pipe temperature information.
  • the method of inserting the thermocouple is not limited as long as it is a method known to those skilled in the art, and examples thereof include the following.
  • the direction in which the thermocouple is inserted is the depth direction of the reaction tube and/or the direction perpendicular to the depth direction of the reaction tube.
  • the method of inserting the thermocouple is a method of directly inserting the thermocouple in parallel with the reaction tube, and/or a method of inserting a case (thermowell) in which the thermocouple is inserted and inserting the thermocouple inside it (i.e., The reaction tube has a double tube structure).
  • the mode of change in the position of the thermocouple over time is a fixed type that does not move at all and/or a type that moves to an arbitrary position within the reaction tube over time.
  • reaction tubes into which thermocouples are usually inserted are not all the reaction tubes in the reactor, but some of the reaction tubes. For example, among thousands to tens of thousands of reaction tubes, usually 5 to 100, preferably 6 to 50, more preferably 7 to 40, particularly preferably 8 to 16. Insert a thermocouple. Further, the reaction tubes into which the thermocouples are inserted may be selected from only a portion of, for example, three divided sections in FIG. 1, or may be selected from all sections without bias. However, in order to grasp the temperature of the entire reactor, it is preferable that the section in which at least one reaction tube is selected occupies 40% or more of the total section, more preferably 60% or more. , More preferably, it is a mode that occupies 75% or more of the compartment.
  • the number of compartments is usually 3 or more, preferably 4 or more, more preferably 5 or more, and particularly preferably 6 or more.
  • the partitioning method is not particularly limited, and can be appropriately determined when selecting reaction tubes. In addition to the selection of the section, it is also important to grasp the temperature information evenly in the radial direction within the plane of the multi-tubular reactor 10 as shown in FIG.
  • a reaction tube into which a thermocouple is inserted is simply referred to as a reaction tube.
  • the temperature information is information obtained by measuring the catalyst peak temperature during air treatment, and is information used to grasp how close the catalyst peak temperature is to the use limit temperature of the catalyst. As will be described later, the temperature information can also be used to understand the air treatment status. For example, when the catalyst peak temperature during air treatment remains flat over time, it can be determined that coke combustion is not occurring and air treatment is complete.
  • the air treatment of the multitubular reactor 10 in the present embodiment means that the reaction tube 20 filled with a catalyst for producing at least one of unsaturated aldehydes, unsaturated carboxylic acids, and conjugated dienes is oxidized for a certain period of time.
  • a catalyst for producing at least one of unsaturated aldehydes, unsaturated carboxylic acids, and conjugated dienes is oxidized for a certain period of time.
  • air containing no hydrocarbons and a molecular oxygen-containing gas are used as the inlet gas, and some or all of the inlet gas flow rate, reaction bath temperature, and reactor pressure are appropriately set. represent.
  • the treatment is, for example, for the purpose of removing coke-like carbon compounds accumulated inside and outside the catalyst due to long-term reaction, regenerating the catalyst in a reduced state, improving performance by reoxidizing the catalyst, etc.
  • the air treatment consists of one or more treatment steps, and the treatment of changing part or all of each inlet gas flow rate, reaction bath temperature and reactor pressure constitutes one treatment step.
  • the method of the present invention is for obtaining support information for making this determination more simply, efficiently, and quickly. By completing the air treatment in a short time, unnecessary activation of the catalyst can sometimes be prevented. This also has the advantage of reducing loss due to combustion of the target product due to unnecessary activation of the catalyst until recovery of selectivity and yield from restart. Catalyst species that cause such unwanted activation include, for example, a composite metal oxide catalyst containing molybdenum and bismuth as essential elements.
  • the method of the present invention is particularly suitably applied to multitubular reactors using such catalysts.
  • the information about gas flowing in and out in the present invention refers to the gas introduced into the reactor inlet side by air treatment (inlet gas) and/or the gas discharged from the outlet side ( outlet gas).
  • the inflow and outflow gas information preferably includes information about the composition of the outlet gas, more preferably about the amount of carbon dioxide contained in the outlet gas.
  • Inflow and outflow gas information can be obtained, for example, by analyzing the inlet gas and/or the outlet gas by gas chromatography. Furthermore, by processing the information on the amount of carbon dioxide, it is also possible to derive the carbon treatment amount and the integrated carbon treatment amount.
  • carbon dioxide refers to a mixed gas of carbon dioxide and carbon monoxide in a broader sense, and is used in this sense unless otherwise specified.
  • FIG. 3 is a diagram showing a flow chart of the method according to this embodiment.
  • the method according to the present embodiment comprises a step S1 of acquiring inflow and outflow gas information of the multi-tubular reactor 10, and (1) numerically processing the inflow and outflow gas information into the multi-tubular reactor. and an output step S2 of outputting assistance information to assist the air treatment of 10.
  • visualization processing such as graphing, processing of comparing with information at a time different from the air treatment or in a different reactor, and the like can be performed.
  • the method according to this embodiment optionally further comprises a providing step S3 of providing assistance information to the user of the shell-and-tube reactor 10 .
  • the providing step S3 may be performed by a computer device, or may be performed by providing the support information output by the computer device to the user of the multi-tubular reactor 10 by telephone or FAX. Also, the support information may be provided to the user's terminal via the network. The provision of the support information via the network may be performed by a computer device that outputs the support information, or may be performed by a device separate from the computer device.
  • the computer device may acquire the inflow and outflow gas information by input from the terminal of the user of the multi-tube reactor 10 or input from the administrator of the computer device using an input device such as a keyboard.
  • Inflow and outflow gas information may be obtained by sampling the gas from the inlet side and/or the outlet side of the reactor 10 and automatically inputting analysis data by gas chromatography at regular time intervals.
  • the inflow/outflow gas information may be configured to be input from a user's terminal connected to the computer device via a network.
  • the user of the multi-tubular reactor 10 and the administrator of the computer may be the same. Specific aspects of the method according to this embodiment will be described below with reference to the drawings. However, the present invention is not limited to this specific embodiment, and is intended to include all modifications within the technical scope indicated by the claims.
  • a method in a specific embodiment includes causing a computer device to execute step S1 of acquiring inflow and outflow gas information in an air treatment process for a multi-tubular reactor 10 including tens of thousands of reaction tubes 20 .
  • the multi-tubular reactor 10 may be divided into a plurality of compartments A, B, C, etc., as shown in FIG. Obtain information about the gas on the inlet side and/or the gas on the outlet side of the vessel 10 .
  • FIG. 4 is a diagram showing a graph derived as information on the outlet carbon dioxide amount by numerically processing the inflow and outflow gas information obtained in step 1 using a computer device (detailed data is shown in Table 1). belongs to).
  • the information on the exit carbon dioxide amount is also an example of the assistance information in the present invention, and the process of outputting this itself corresponds to step S2, but it is also possible to obtain easier-to-understand assistance information by further calculation.
  • the molar concentration of each gas is calculated by multiplying a single analysis value (area value) by gas chromatography by a previously derived factor.
  • the data may be statistically processed numerical values such as the average value, median value, or mode value of two or more area values to ensure reliability, and measurement data judged to be outliers as necessary as described later It may be a numerical value calculated after rejecting If the analysis value by gas chromatography shows an abnormal value when compared with the data before and after or with the air treatment operation data used as a reference, and the above rejection criteria are clearly shown, the gas chromatography measuring instrument itself is deemed to be inadequate. can also judge. In this case, the present invention also includes a function of automatically displaying an alert notifying that there is a defect in the measuring device, and explicitly indicating it to the user of the multi-tubular reactor.
  • the amount of outlet carbon dioxide can be in units known to those skilled in the art, such as ppm shown in the example of FIG.
  • the type of gas detected by gas chromatography is not particularly limited, and in addition to the carbon dioxide gas shown in the example of FIG. and condensable liquids thereof, hydrocarbon gases and condensable liquids thereof, which are products and by-products of the catalytic reaction.
  • the water vapor used in air treatment sublimates the molybdenum in the catalyst, deactivating the catalyst or causing plugging in downstream purification systems. .
  • Criteria for rejecting data include (1) statistically known methods such as Q-test (Q-test), 4d rule, Dixon's method, Grubbs' method, and (2) the same depth in multiple reaction tubes. Whether the standard deviation of the exit carbon dioxide amount at the location is within the range of the parameters obtained by multiplying the analysis accuracy of each instrument by an appropriate factor (if not, discard the questionable data), and so on.
  • the Q test is particularly preferable because it can determine whether or not the value is an abnormal value based on statistical grounds. Confidence limits of 19%, 34%, 38%, 43%, 48%, 49%, 86%, 90%, 95% and 99.7% are employed, preferably 86%, 90%, 95%, most preferably 90%.
  • the data rejection operation is not limited to the molar concentration of each gas described above, but is applied to all the data and parameters of the present invention.
  • FIG. 4 for example, measurement No. At point 3 (see Table 1), the outlet CO2 concentration has dropped to around 1000 ppm, and at a reaction bath temperature of 320° C., the shell-and-tube reactor user can visually determine that the carbon is burning. be able to. Therefore, it is possible to quickly move to the next processing step, which is to increase the air flow rate.
  • the method of the present invention enables early determination of a change in processing steps simply by inputting the outlet gas analysis result. Also, measurement No. At 14, the outlet CO 2 concentration is reduced to a level equivalent to the atmospheric CO 2 concentration of 400 ppm.
  • the computer device is set so that the background of the cell is automatically displayed in a dot pattern when the CO 2 concentration at the outlet reaches the same level as that in the atmosphere, measurement No. 1 in Table 1 can be obtained.
  • a dot pattern such as 14 outlet CO2 concentration columns is displayed. This allows the shell-and-tube reactor user to determine that the air treatment in this treatment step is complete.
  • the computer automatically makes judgments as necessary, and changes the display to indicate air treatment and treatment steps.
  • a method of explicitly indicating to the user of the shell-and-tube reactor the completion of is also included in the present invention.
  • criteria for automatic determination by the above-described computer device will be described later.
  • FIG. 5 shows information on the amount of carbon treated per unit time obtained by numerically processing the information on the amount of carbon dioxide at the outlet.
  • This numerical processing is also an example of the process of obtaining support information, and is a process included in step S2 in FIG.
  • the amount of carbon treated per unit time at a certain measurement point can be obtained by the following formula (1).
  • the unit of the outlet carbon dioxide amount the outlet CO 2 concentration in the step in the formula below
  • the coefficient 1000000 in the formula below is also modified as necessary.
  • the unit of carbon treatment amount is not particularly limited, and conversion known to those skilled in the art is performed as necessary (for example, [mol/hr], etc.).
  • the outlet gas flow rate can be used instead of the inlet gas flow rate, and the calculation formula in that case is the same.
  • the computer device automatically makes a judgment as necessary, and changes the display to change the air treatment and/or treatment step A method of explicitly indicating to the user of the shell-and-tube reactor the completion of is also included in the present invention.
  • criteria for automatic determination by the above-described computer device will be described later.
  • measurement No. The outlet CO 2 concentration of measurement No. 10 is about 6300 ppm.
  • the CO 2 concentration at the outlet of No. 6 is sufficiently lower than 13000 ppm
  • the amount of carbon treated per unit time is as high as about 0.34 g/hr because the inlet air flow rate is doubled. That is, it can be said that the inclusion of carbon throughput per unit time as well as outlet CO2 concentration as aiding information makes it easier to determine the completion of air treatment and/or treatment steps.
  • FIG. 6 shows information on the integrated carbon treatment amount obtained by numerically processing the information on the carbon treatment amount per unit time.
  • This numerical processing is also an example of the process of obtaining support information, and is a process included in step S2 in FIG.
  • the integrated carbon treatment amount can be obtained by the following formula (2).
  • the unit of the integrated carbon treatment amount is not particularly limited either, and conversion known to those skilled in the art is performed as necessary (for example, [mol]).
  • the piecewise quadrature is calculated by trapezoidal interpolation, but the calculation method may be any method known to those skilled in the art, such as rectangular interpolation, as long as it does not greatly affect the determination.
  • Cumulative carbon treatment amount [g] (carbon treatment amount per unit time [g/hr] at the time of measurement + carbon treatment amount per unit time [g/hr] at the measurement point immediately before the measurement time) / 2 ⁇ Processing time from the time of measurement to the time of measurement one before the time of measurement [hr] + Cumulative amount of carbon processed at the time of measurement one before the time of measurement [g] (2)
  • measurement No. The integrated carbon treatment amount in measurement No.
  • the computer device automatically determines that the integrated carbon treatment amount is approximately the same as in 13, and the computer device automatically changes the display pattern of the background of the cell so that it is displayed in Table 1. Based on this indication, the shell-and-tube reactor user can determine that the air treatment in this treatment step is complete. In this way, by comparing and collating the result of the accumulated carbon treatment amount with the past air treatment data and/or technical knowledge, the computer device automatically judges as necessary, and changes the display to change the air treatment and treatment step.
  • a method of explicitly indicating to the user of the shell-and-tube reactor the completion of is also included in the present invention.
  • criteria for automatic determination by the above-described computer device will be described later.
  • the present invention also includes optimizing the frequency of air treatment and the reaction conditions of other plants with similar operating conditions based on the data of the cumulative amount of carbon processed in a certain plant.
  • FIG. 7 is a diagram showing information on the catalyst peak temperature.
  • This catalyst peak temperature calculation process is also a subsequent step of obtaining support information, and is a process included in step S2 in FIG.
  • the catalyst peak temperature reached 378° C., so an alert with a different cell background display pattern is set to be displayed in Table 1. If the temperature rises above this level, the deterioration of the catalyst is considered to progress, but in this example, the catalyst peak temperature decreases after that.
  • the computer device automatically makes judgments as necessary, changes the display, and performs air treatment and treatment steps.
  • a method of explicitly indicating completion as supporting information for a shell-and-tube reactor is also intended to be included in the present invention.
  • criteria for automatic determination by the above-described computer device will be described later.
  • the example of FIG. 7 plots the catalyst peak temperature itself, but the difference between the catalyst peak temperature and the reaction bath temperature is calculated as the catalyst heat generation temperature, the heat generation situation is grasped, and an alert is automatically issued. The method of doing is also included in the present invention.
  • measurement No. If the catalyst peak temperature becomes higher after 12, air treatment should be discontinued. For example, when the catalyst peak temperature reaches the use limit temperature of the catalyst -20 ° C., the flow of air and / or oxygen-containing gas is stopped, and if necessary, an inert gas such as nitrogen gas or steam is flowed. to interrupt air treatment.
  • the use limit temperature of the catalyst varies depending on the type of catalyst and is set separately, but is, for example, 350°C to 550°C.
  • In-tube temperature information (temperature information obtained by a temperature sensor (thermocouple) installed in each reaction tube) is obtained from multiple reaction tubes in the reactor, and the user of the reactor inputs it into a computer device using an input device.
  • a computer device acquires pipe temperature information automatically and at regular time intervals.
  • the obtained in-pipe temperature information is first summarized in a tabular format. At this time, the temperature information in the tubes at the same depth position is compared in multiple reaction tubes, statistical processing such as averaging is performed, and it is determined whether or not there is data to be rejected, and may be rejected if necessary. .
  • Rejection criteria include (1) statistically known methods such as Q-test, 4d rule, Dixon's method, Grubbs' method, and (2) tube temperature at the same depth position in multiple reaction tubes. Judging whether the standard deviation is within the range of parameters obtained by multiplying the analytical accuracy of thermocouples and various instruments by an appropriate coefficient (if not, discard questionable data). Objects to be rejected may be reaction tubes containing specific thermocouples, specific compartments, specific measurement points of specific thermocouples, and combinations thereof. After discarding the data as necessary, the pipe temperature information is statistically processed. This statistical processing includes a method of using the average value, minimum value, maximum value, median value, and mode of data at the same depth position in a plurality of reaction tubes.
  • the pipe internal temperature information thus statistically processed is visualized (plotted on a graph).
  • a scatter diagram in which the horizontal axis is the distance from the inlet of the reaction tube and the vertical axis is the statistically processed in-tube temperature information at each depth position is most preferable, but any visualization known to those skilled in the art may be used.
  • the visualization information obtained by this processing is also called the temperature distribution of the catalyst layer in the present invention.
  • the data with the highest temperature in the temperature distribution is called catalyst peak temperature in the present invention.
  • the data obtained at a certain measurement time is within the range of (the average value of the data used as the judgment criterion or the data itself) ⁇ (the standard deviation of the data or the measurement accuracy) ⁇ the coefficient X
  • the determination is automatically performed by a computer device and the result of the determination is automatically included in supporting information such as graphs and tables to be explicitly shown to the user.
  • the appropriate range of the coefficient X is 0.1 or more and 1000 or less.
  • the upper limits of the coefficient X are 750, 500, 250, 150, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 8, 6, 5, 4, 3, and 2.0 in order of preference. and the lower limits are 0.2, 0.5, 0.8 and 1.0 in order of preference. That is, the most preferable range of X is 1.0 or more and 2.0 or less.
  • the criteria for deciding when to terminate the air treatment and treatment steps may be calculated backward from the start date of plant operation, or the treatment may be terminated midway due to other circumstances. Judgment criteria are known. After the judgment is made manually or automatically by a computer device according to the judgment criteria as described above, when moving from the relevant treatment step to the next treatment step, as described above, each inlet gas flow rate, reaction bath temperature and reactor Set some or all of the pressure appropriately. This setting is carried out according to the predetermined procedure manual for air treatment. These are known to those skilled in the art and are intended to be included in the present invention.
  • the method according to the present embodiment further comprises causing the computer device to perform an output step of outputting comparison information between the assistance information and assistance information output in the past air treatment in the multi-tubular reactor 10.
  • the support information output in the past air processing may be the support information output in the previous air processing, or the support information output in the past multiple times of air processing. It may be information obtained by statistically processing assistance information output in a plurality of times of air processing.
  • comparison information for example, information such as outlet CO 2 concentration, carbon treatment amount per unit time, integrated carbon treatment amount, catalyst peak temperature, etc., which is support information output in the air treatment currently being performed. , and the same information output in the past air treatment are collectively displayed in one table.
  • comparative information graphs plotting outlet CO2 concentration, carbon throughput per unit time, integrated carbon throughput, catalyst peak temperature, etc. against air treatment time as shown in FIGS. , a graph in which similar graphs output as support information in the past air treatment are overlaid.
  • the present invention scrutinize information such as the above-mentioned progress rate of air treatment, problems, elapsed time, etc., and information on input (heat medium temperature, flow rate of each gas such as air and steam, pressure control, etc.) in air treatment work
  • information on input heat medium temperature, flow rate of each gas such as air and steam, pressure control, etc.
  • the timing of air treatment is particularly important. If the pressure difference inside the reaction tube rises due to damage to the catalyst due to long-term reaction and the deposition of coke-like carbon compounds on the catalyst, and the gas stops flowing, the productivity of the plant will drop significantly. In addition, the operation of extracting the catalyst becomes complicated.
  • the background pattern of the cell (No. 12) in which the catalyst peak temperature was as high as 378°C and the cell (No. 14) in which the air treatment was judged to be completed was It is displayed by changing it to a cell.
  • the present invention has been described above using the above-described embodiments as examples, the present invention is not limited to these.
  • the amount of carbon treated per unit time and the cumulative amount of carbon treated are calculated from the viewpoint of removing coke-like carbon compounds by air treatment.
  • the oxygen absorption amount per unit time or the accumulated oxygen absorption amount may be calculated.
  • the method of calculating the amount of oxygen absorbed per unit time and the accumulated amount of absorbed oxygen conforms to the method of calculating the amount of carbon treated per unit time and the accumulated amount of carbon treated as described above, and detailed description thereof will be omitted.
  • the present invention relates to a multi-tube reactor containing a plurality of reaction tubes for producing unsaturated aldehydes, unsaturated carboxylic acids or conjugated dienes by oxidation reaction using a catalyst, and air treatment required according to the reaction time. , more efficiently and with less catalyst deterioration.

Abstract

This method for supporting air treatment in a multitubular reactor including a plurality of reaction tubes for producing at least one of unsaturated carboxylic acid and unsaturated aldehyde by means of an oxidation reaction using a catalyst or a conjugated diene by means of an oxidative dehydrogenation reaction causes a computer device to execute: an acquisition step for acquiring information pertaining to a gas flowing into and out of the reactor as reaction information; and an output step for outputting assistance information for assisting in the air treatment by numerically processing the reaction information.

Description

多管式反応器の空気処理をサポートする方法および装置Method and apparatus for supporting air handling in multi-tubular reactors
 本発明は、多管式反応器の空気処理をサポートする方法および装置に関する。 The present invention relates to methods and apparatus for supporting air handling in multitubular reactors.
 特許文献1には、多管式反応器を用いた不飽和アルデヒドや不飽和カルボン酸、および共役ジエンを製造する酸化反応において、ガス混合物による処理を行う方法が開示されている。ガス混合物による処理の目的は様々であるが、例えば長期間の反応により触媒の内外に蓄積されたコーク状の炭素化合物を除去すること、還元状態になった触媒を再生すること、触媒の再酸化処理による性能改善等が挙げられる。用いられるガスは目的に応じて適宜選択されるが、通常炭化水素を含まない空気および分子状酸素含有ガスを入口ガスとして用いられる。その他の入口ガスとして、空気処理の効果を向上させるため水蒸気を導入する場合もある。さらに各入口ガス流量、反応浴温度や反応器圧力の一部または全部を適切に設定する処理(以下空気処理と表現する)が一般的である。 Patent Document 1 discloses a method of treating with a gas mixture in an oxidation reaction for producing unsaturated aldehydes, unsaturated carboxylic acids, and conjugated dienes using a multitubular reactor. The purpose of treatment with a gas mixture is various, for example, removing coke-like carbon compounds accumulated inside and outside the catalyst due to a long-term reaction, regenerating the catalyst in a reduced state, and reoxidizing the catalyst. Performance improvement by processing and the like can be mentioned. The gas to be used is appropriately selected depending on the purpose, but air containing no hydrocarbons and gas containing molecular oxygen are usually used as the inlet gas. As another inlet gas, water vapor may be introduced to improve the effectiveness of air treatment. Further, a treatment (hereinafter referred to as air treatment) in which part or all of each inlet gas flow rate, reaction bath temperature and reactor pressure are appropriately set is generally used.
国際公開2005/047224WO2005/047224
 一方で、酸化反応に用いられる触媒に高温で空気処理を行うと、コーク状の炭素化合物の燃焼や触媒の再酸化により、急激な発熱が生じ触媒へダメージを与えることも考えられる為、適切な温度プロファイルの設定が必要である。さらにMo(モリブデン)、W(タングステン)、P(リン)を主体とした触媒の場合は、これらの成分が空気処理により消失する可能性がある。また実プラントにおいては、空気処理中はプラントの稼働が停止した状態となるため、プラントの生産性の観点からは空気処理が長時間にわたることは好ましくない。したがって空気処理を短時間で済ませるため、空気処理終了の見極めを適切に行うことが重要になる。しかし、この見極めは経験的になされることも多く、熟練した技術者がいなければ決して容易とは言えない。すなわち、多管式反応器を用いた不飽和アルデヒドや不飽和カルボン酸、および共役ジエンを製造する酸化反応において、実プラントにおける空気処理作業は上記の通り、長期の触媒使用や安定運転の改善、触媒の性能改善の観点で必要な作業であるが、より短時間で効率的に実施する方法が望まれていた。
 本発明は、触媒を用いた酸化反応により不飽和アルデヒド、不飽和カルボン酸または共役ジエンを製造する複数の反応管を含む多管式反応器の空気処理時において、各処理ステップの条件設定や終了の見極めを容易にすることを課題とする。
On the other hand, if the catalyst used in the oxidation reaction is subjected to high-temperature air treatment, the combustion of coke-like carbon compounds and the reoxidation of the catalyst may cause sudden heat generation and damage to the catalyst. A temperature profile setting is required. Furthermore, in the case of a catalyst mainly composed of Mo (molybdenum), W (tungsten), and P (phosphorus), these components may disappear due to air treatment. In addition, in an actual plant, since the operation of the plant is stopped during air treatment, it is not preferable from the viewpoint of the productivity of the plant that the air treatment takes a long time. Therefore, in order to complete the air treatment in a short time, it is important to appropriately determine when the air treatment is finished. However, this determination is often made empirically, and it is by no means easy without a skilled technician. In other words, in the oxidation reaction that produces unsaturated aldehydes, unsaturated carboxylic acids, and conjugated dienes using a multitubular reactor, the air treatment work in the actual plant is, as described above, long-term use of the catalyst, improvement of stable operation, Although this work is necessary from the viewpoint of improving the performance of the catalyst, there has been a demand for a method that can be carried out efficiently in a shorter period of time.
The present invention provides conditions for setting and ending each treatment step during air treatment in a multi-tubular reactor containing a plurality of reaction tubes for producing unsaturated aldehydes, unsaturated carboxylic acids, or conjugated dienes by an oxidation reaction using a catalyst. The task is to facilitate the identification of
 以下、上記課題を解決するための手段を列記する。
1)
 触媒を用いた酸化反応により不飽和アルデヒドおよび不飽和カルボン酸の少なくとも一方を、または酸化的脱水素反応により共役ジエンを製造する複数の反応管を含む多管式反応器の空気処理をサポートする方法であって、
 コンピュータ装置に、
 前記反応器に流出入するガスに関する情報を反応情報として取得する取得ステップと、
 前記反応情報を数値処理することにより前記空気処理を支援する支援情報を出力する出力ステップと、を実行させることを含む、空気処理のサポート方法。
2)
 前記反応情報が、前記多管式反応器の出口におけるガス成分に関する情報を含み、
 前記支援情報が、前記多管式反応器の積算の炭素処理量に関する情報または前記多管式反応器の単位時間当たりの炭素処理量に関する情報の少なくともいずれかを含む、
 上記1)に記載の空気処理のサポート方法。
3)
 前記反応情報が、前記多管式反応器の出口におけるガス成分に関する情報を含み、
 前記支援情報が、前記多管式反応器の積算の酸素吸収量に関する情報または前記多管式反応器の単位時間当たりの酸素吸収量に関する情報の少なくともいずれかを含む、
 上記1)に記載の空気処理のサポート方法。
4)
 前記反応情報が、前記多管式反応器の反応管の管内温度分布に関する情報を含み、
 前記支援情報が、前記空気処理中の前記管内温度分布の経時的変化に関する情報を含む、
 上記1)から3)のいずれか一項に記載の空気処理のサポート方法。
5)
 前記コンピュータ装置に、
 前記支援情報と、前記多管式反応器における過去の空気処理において出力された支援情報との比較情報を出力する出力ステップを実行させることをさらに含む、上記1)から4)のいずれか一項に記載の空気処理のサポート方法。
6)
 触媒を用いた酸化反応により不飽和アルデヒドおよび不飽和カルボン酸の少なくとも一方を、または酸化的脱水素反応により共役ジエンを製造する複数の反応管を含む多管式反応器の空気処理をサポートする装置であって、
 前記装置は、取得部と出力部を有し、
 前記取得部は、前記反応器に流出入するガスに関する情報を反応情報として取得するように構成され、
 前記出力部は、前記反応情報を数値処理することにより前記空気処理を支援する支援情報を出力するように構成されている、
 空気処理をサポートする装置。
Means for solving the above problems are listed below.
1)
A method for supporting air treatment of a shell-and-tube reactor comprising a plurality of reactor tubes producing unsaturated aldehydes and/or unsaturated carboxylic acids by catalytic oxidation or conjugated dienes by oxidative dehydrogenation. and
computer equipment,
an obtaining step of obtaining, as reaction information, information on gases flowing into and out of the reactor;
and an output step of numerically processing the reaction information to output assistance information for assisting the air treatment.
2)
the reaction information includes information about gas composition at the outlet of the shell-and-tube reactor;
The support information includes at least one of information on the integrated carbon throughput of the multi-tubular reactor or information on the carbon throughput per unit time of the multi-tubular reactor,
A method of supporting air handling as described in 1) above.
3)
the reaction information includes information about gas composition at the outlet of the shell-and-tube reactor;
The support information includes at least one of information on the accumulated oxygen absorption amount of the multi-tubular reactor and information on the oxygen absorption amount per unit time of the multi-tubular reactor.
A method of supporting air handling as described in 1) above.
4)
the reaction information includes information about the temperature distribution in the reaction tubes of the multi-tubular reactor;
The support information includes information about changes in the pipe temperature distribution over time during the air treatment.
A method of supporting air handling according to any one of 1) to 3) above.
5)
to the computer device,
Any one of 1) to 4) above, further comprising executing an output step of outputting comparison information between the support information and support information output in the past air treatment in the multitubular reactor. Air handling support method as described in .
6)
Apparatus to support air treatment in multi-tube reactors containing multiple reaction tubes producing unsaturated aldehydes and/or unsaturated carboxylic acids by catalytic oxidation or conjugated dienes by oxidative dehydrogenation. and
The device has an acquisition unit and an output unit,
The acquisition unit is configured to acquire information about gas flowing into and out of the reactor as reaction information,
The output unit is configured to output support information for supporting the air treatment by numerically processing the reaction information.
A device that supports air handling.
 本発明によれば、多管式反応器の空気処理工程における各処理ステップの条件設定や終了の見極めをサポートすることができる。 According to the present invention, it is possible to support the setting of conditions for each treatment step in the air treatment process of a multi-tubular reactor and the determination of completion.
実施形態に係る多管式反応器を示す平面模式図であり、かつ当該多管式反応器を空間的に3区画に分割した例を示す図である。FIG. 4 is a schematic plan view showing a multi-tubular reactor according to an embodiment, and a diagram showing an example in which the multi-tubular reactor is spatially divided into three sections. 1つの反応管に充填された触媒の層を示す模式図である。FIG. 3 is a schematic diagram showing layers of catalyst packed in one reaction tube. 実施形態に係る方法のフローチャートを示す図である。Fig. 3 shows a flow chart of a method according to an embodiment; 表1で例示されたデータに基づいて、空気処理時間に対する反応器出口ガスに含まれる二酸化炭素濃度をプロットしたグラフである。2 is a graph plotting the concentration of carbon dioxide contained in the reactor outlet gas versus air treatment time, based on the data illustrated in Table 1; 表1で例示されたデータに基づいて、空気処理時間に対する単位時間あたり炭素処理量をプロットしたグラフである。2 is a graph plotting carbon throughput per unit time versus air treatment time based on the data illustrated in Table 1; 表1で例示されたデータに基づいて、空気処理時間に対する積算炭素処理量をプロットしたグラフである。2 is a graph plotting integrated carbon throughput versus air treatment time based on the data illustrated in Table 1; 表1で例示されたデータに基づいて、空気処理時間に対する触媒ピーク温度をプロットしたグラフである。2 is a graph plotting catalyst peak temperature versus air treatment time based on the data illustrated in Table 1;
 以下、図面を参照しつつ本発明の実施形態について説明する。本実施形態に係る方法は、触媒を用いた酸化反応により不飽和アルデヒド、不飽和カルボン酸、または共役ジエンを製造する複数の反応管を含む多管式反応器の空気処理をサポートする方法である。当該方法は、コンピュータ装置に、多管式反応器の流出入ガスの分析情報を取得する取得ステップと、当該分析情報を統計処理することにより多管式反応器の空気処理を支援する支援情報を出力する出力ステップと、を実行させることを含む。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. The method according to the present embodiment is a method for supporting air treatment of a multi-tube reactor containing multiple reaction tubes for producing unsaturated aldehydes, unsaturated carboxylic acids, or conjugated dienes by catalytic oxidation reactions. . The method comprises a step of acquiring analysis information of gas inflow and outflow of the multi-tubular reactor, and supporting information for assisting air treatment of the multi-tubular reactor by statistically processing the analysis information in a computer device. and an output step of outputting.
 本実施形態において用いられるコンピュータ装置は、CPU(Central Processing Unit)などのマイクロプロセッサ、ROM(Read Only Memory)、RAM(Random Access Memory)、フラッシュメモリなどのメモリ、およびバスを備えるコンピュータ装置である。コンピュータ装置は、コンピュータ装置が備えるメモリやコンピュータ装置が読み取り可能な記録媒体に記録されたプログラムによって、本実施形態に係る方法の少なくとも一部を実行してもよい。本実施形態では、後述する方法の少なくとも一部をコンピュータ装置に実行させるためのプログラム、および当該プログラムを記録した記録媒体も提示される。なお、本実施形態において用いることのできるコンピュータ装置はこの態様に限定されない。例えば、コンピュータ資源をネットワークを介して接続したクラウドコンピューティングシステムなどを、本開示の方法に用いるコンピュータ装置としてもよい。 The computer device used in this embodiment is a computer device comprising a microprocessor such as a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a memory such as a flash memory, and a bus. The computer device may execute at least part of the method according to the present embodiment by means of a program recorded in a memory included in the computer device or in a recording medium readable by the computer device. The present embodiment also presents a program for causing a computer device to execute at least part of a method described later, and a recording medium recording the program. Note that the computer device that can be used in this embodiment is not limited to this aspect. For example, a cloud computing system in which computer resources are connected via a network may be used as the computer device used in the method of the present disclosure.
 図1は、本実施形態に係る方法の対象となる多管式反応器10を示す平面模式図である。図1に示される多管式反応器10は筒状である。図1では、多管式反応器10を平面視した時の中心を基準として120°毎に分けられた3つの区画A,B,Cが示されている。区画Aに含まれる複数の反応管20の一部が一点鎖線で囲まれて示されている。区画Aにおける一点鎖線の外側、並びに区画B及びCにも複数の反応管20が備えられているが、それらの反応管20については図示を省略する。多管式反応器10は、充填する触媒、供給する原料などに応じて、目的とする不飽和アルデヒド、不飽和カルボン酸、および共役ジエンの少なくとも一種を製造する。製造される不飽和アルデヒドおよび不飽和カルボン酸としては、アクロレインおよびアクリル酸、メタクロレインおよびメタクリル酸、などが例示され、共役ジエンとしては、1,3-ブタジエン、イソプレン、などが例示される。多管式反応器10が含む複数の反応管20のそれぞれに触媒が充填される。また、図1では例として多管式反応器10を平面視した面内で回転軸方向に区画を区切っているが、他の任意の区切り方、例えば半径方向や半径方向および回転軸方向、更に任意の多角形で区切る方法も本発明に含まれるものとする。なお、本発明の空気処理のサポート方法は多管式反応器の流出入ガスの分析情報を用いる方法である為、反応器中の反応管の配置は、必ずしも複数の区画に分かれている必要はない。 FIG. 1 is a schematic plan view showing a multi-tubular reactor 10 to be subjected to the method according to this embodiment. The shell-and-tube reactor 10 shown in FIG. 1 is cylindrical. FIG. 1 shows three compartments A, B, and C that are divided every 120° with respect to the center of the multi-tubular reactor 10 in plan view. A portion of the plurality of reaction tubes 20 included in section A is shown surrounded by a dashed line. A plurality of reaction tubes 20 are also provided outside the dashed line in section A and in sections B and C, but illustration of these reaction tubes 20 is omitted. The multitubular reactor 10 produces at least one of the target unsaturated aldehyde, unsaturated carboxylic acid, and conjugated diene depending on the catalyst to be filled, the raw material to be supplied, and the like. Examples of unsaturated aldehydes and unsaturated carboxylic acids to be produced include acrolein and acrylic acid, methacrolein and methacrylic acid, and examples of conjugated dienes include 1,3-butadiene and isoprene. Each of the plurality of reaction tubes 20 included in the multitubular reactor 10 is filled with a catalyst. In addition, in FIG. 1, as an example, the sections are divided in the direction of the rotation axis in the plane of the multi-tubular reactor 10, but other arbitrary division methods, such as the radial direction, the radial direction and the direction of the rotation axis, and further A method of partitioning with arbitrary polygons is also included in the present invention. Since the air treatment support method of the present invention is a method that uses analytical information on the inflow and outflow gases of the multi-tubular reactor, the arrangement of the reaction tubes in the reactor does not necessarily have to be divided into a plurality of compartments. do not have.
 触媒は、一般に多管式反応器に互いに異なる触媒種が2以上の層をなすようにして反応管20に充填される。図2は1つの反応管20に充填された触媒の層を示す模式図である。図2に示す例では、サポートリング30の上に充填された4層の触媒層22,24,26,28が示されている。複数の層はそれぞれ互いに活性が異なり、例えば原料が供給される入口側、充填される順番で第4の触媒層28は活性が低く、出口側(サポートリング30側)に向かうにつれて活性が大きくなるように(入口側から数えて第4の触媒層28の活性<第3の触媒層26の活性<第2の触媒層24の活性<第1の触媒層22の活性、となるように)充填されてもよい。複数の層をなすように触媒が充填された反応管20に原料を供給し、温度等の運転条件を制御することで目的とする不飽和アルデヒド、不飽和カルボン酸、および共役ジエンの少なくとも一種が製造される。 The catalyst is generally packed in the reaction tube 20 in a shell-and-tube reactor so that different catalyst species form two or more layers. FIG. 2 is a schematic diagram showing a catalyst layer packed in one reaction tube 20. As shown in FIG. In the example shown in FIG. 2, four layers of catalyst layers 22, 24, 26, 28 packed on the support ring 30 are shown. The activity of the plurality of layers is different from each other. For example, the activity of the fourth catalyst layer 28 is low in the order of filling on the inlet side where the raw material is supplied, and the activity increases toward the outlet side (support ring 30 side). (Counting from the inlet side, activity of the fourth catalyst layer 28<activity of the third catalyst layer 26<activity of the second catalyst layer 24<activity of the first catalyst layer 22) may be At least one of the target unsaturated aldehyde, unsaturated carboxylic acid, and conjugated diene is produced by supplying raw materials to a reaction tube 20 filled with a catalyst so as to form a plurality of layers and controlling operating conditions such as temperature. manufactured.
 そしてこの反応管には、深さ方向に一定の間隔で熱電対が挿入されているのが通常である。挿入された熱電対により、触媒が充填された触媒層および/または不活性担体が充填されたイナート層の温度情報を得られる。ここで得られる温度情報が、管内温度情報である。熱電対の挿入のされ方は、当業者にとって公知な方法であれば限定されないが、例えば、以下が挙げられる。熱電対を挿入する方向は、反応管の深さ方向および/または反応管の深さ方向に垂直な方向である。熱電対の挿入方法は、反応管と平行に熱電対を直接挿入する方法、および/または熱電対が挿入されるケース(サーモウェル)を挿入し、その内部に熱電対を挿入する方法(すなわち、反応管は二重管構造となる)である。熱電対の位置の経時的変化の態様は、まったく移動しない固定タイプおよび/または経時的に反応管内の任意の位置に移動するタイプである。 In addition, thermocouples are usually inserted in this reaction tube at regular intervals in the depth direction. The inserted thermocouples provide temperature information of the catalyst layer filled with catalyst and/or the inert layer filled with inert support. The temperature information obtained here is the in-pipe temperature information. The method of inserting the thermocouple is not limited as long as it is a method known to those skilled in the art, and examples thereof include the following. The direction in which the thermocouple is inserted is the depth direction of the reaction tube and/or the direction perpendicular to the depth direction of the reaction tube. The method of inserting the thermocouple is a method of directly inserting the thermocouple in parallel with the reaction tube, and/or a method of inserting a case (thermowell) in which the thermocouple is inserted and inserting the thermocouple inside it (i.e., The reaction tube has a double tube structure). The mode of change in the position of the thermocouple over time is a fixed type that does not move at all and/or a type that moves to an arbitrary position within the reaction tube over time.
 なお、通常、熱電対が挿入される反応管は反応器中の全ての反応管ではなく、一部の反応管である。例えば数千本~数万本の反応管の内、通常5以上100本以下、好ましくは6以上50本以下、さらに好ましくは7以上40本以下、特に好ましくは8以上16本以下の反応管に熱電対を挿入する。また、熱電対を挿入する反応管は、例えば図1において3分割された区画について、一部の区画のみから選択しても良いし、全ての区画から偏り無く選択しても良い。ただし反応器全体の温度を把握する為には、少なくとも1本の反応管が選択された区画が全区画中40%以上を占める態様が好ましく、より好ましくは60%以上の区画を占める態様であり、さらに好ましくは75%以上の区画を占める態様である。例えば、図1において区画Aから1本、区画Bから1本、区画Cから0本の反応管が選択された場合、少なくとも1本の反応管が選択された区画が全区画の67%を占める。区画数は多い方がより正確であり、したがって区画数は通常3区画以上、好ましくは4区画以上、更に好ましくは5区画以上、特に好ましくは6区画以上である。そして、区画分けの方法は特に制限されず、反応管選択時に適宜決定できる。また、区画の選択のほか図1のように多管式反応器10を平面視した面内で、半径方向に万遍無く温度情報を把握することも重要である。なお、本発明において特に断りがない限り、熱電対が挿入された反応管も単に反応管と記載する。
 なお温度情報は、空気処理時に触媒ピーク温度を測定して得られる情報であり、触媒ピーク温度が触媒の使用制限温度にどの程度近いかを把握する為に用いられる情報である。後述するように、温度情報は、空気処理状況の把握にも利用できる。例えば、空気処理中の触媒ピーク温度が経時的に横ばいであるとき、コーク燃焼は行われておらず空気処理が完了していると判断できる。
Note that the reaction tubes into which thermocouples are usually inserted are not all the reaction tubes in the reactor, but some of the reaction tubes. For example, among thousands to tens of thousands of reaction tubes, usually 5 to 100, preferably 6 to 50, more preferably 7 to 40, particularly preferably 8 to 16. Insert a thermocouple. Further, the reaction tubes into which the thermocouples are inserted may be selected from only a portion of, for example, three divided sections in FIG. 1, or may be selected from all sections without bias. However, in order to grasp the temperature of the entire reactor, it is preferable that the section in which at least one reaction tube is selected occupies 40% or more of the total section, more preferably 60% or more. , More preferably, it is a mode that occupies 75% or more of the compartment. For example, in FIG. 1, when one reaction tube is selected from section A, one from section B, and zero reaction tube from section C, sections in which at least one reaction tube is selected account for 67% of all sections. . The greater the number of compartments, the more accurate the analysis. Therefore, the number of compartments is usually 3 or more, preferably 4 or more, more preferably 5 or more, and particularly preferably 6 or more. The partitioning method is not particularly limited, and can be appropriately determined when selecting reaction tubes. In addition to the selection of the section, it is also important to grasp the temperature information evenly in the radial direction within the plane of the multi-tubular reactor 10 as shown in FIG. In the present invention, unless otherwise specified, a reaction tube into which a thermocouple is inserted is simply referred to as a reaction tube.
The temperature information is information obtained by measuring the catalyst peak temperature during air treatment, and is information used to grasp how close the catalyst peak temperature is to the use limit temperature of the catalyst. As will be described later, the temperature information can also be used to understand the air treatment status. For example, when the catalyst peak temperature during air treatment remains flat over time, it can be determined that coke combustion is not occurring and air treatment is complete.
 本実施形態における多管式反応器10の空気処理とは、不飽和アルデヒド、不飽和カルボン酸、および共役ジエンの少なくとも一種を製造する為の触媒が充填された反応管20について、一定時間の酸化反応(以下運転とも言う)後に、炭化水素を含まない空気および分子状酸素含有ガスを入口ガスとして、各入口ガス流量、反応浴温度や反応器圧力の一部または全部を適切に設定する処理を表す。当該処理は、例えば長期間の反応により触媒の内外に蓄積されたコーク状の炭素化合物を除去すること、還元状態になった触媒を再生すること、触媒の再酸化処理による性能改善等の目的で行われる工程である。表1に示すように、空気処理は一つ又は複数の処理ステップからなっており、各入口ガス流量、反応浴温度や反応器圧力の一部または全部を変更する処理が、一つの処理ステップを構成する。上述の通り、空気処理中において実プラントは稼働停止状態であるため、迅速に処理ステップを進める必要があるが、そのための見極めは経験的になされることも多く、熟練した技術者がいなければ決して容易とは言えなかった。本発明の方法は、この見極めをより簡便に効率的、かつ迅速に行うための支援情報を得るためのものである。そして短時間で空気処理を完了することにより、触媒の不要な活性化を防ぐことが出来る場合がある。これにより再稼働からの選択率・収率回復までの、触媒の不要な活性化による目的生成物の燃焼によるロスを軽減できるという利点もある。このような不要な活性化が生じる触媒種としては、例えばモリブデンとビスマスを必須元素として含む複合金属酸化物触媒が挙げられる。本発明の方法は、このような触媒を用いる多管式反応器に特に好適に適用される。 The air treatment of the multitubular reactor 10 in the present embodiment means that the reaction tube 20 filled with a catalyst for producing at least one of unsaturated aldehydes, unsaturated carboxylic acids, and conjugated dienes is oxidized for a certain period of time. After the reaction (hereinafter also referred to as operation), air containing no hydrocarbons and a molecular oxygen-containing gas are used as the inlet gas, and some or all of the inlet gas flow rate, reaction bath temperature, and reactor pressure are appropriately set. represent. The treatment is, for example, for the purpose of removing coke-like carbon compounds accumulated inside and outside the catalyst due to long-term reaction, regenerating the catalyst in a reduced state, improving performance by reoxidizing the catalyst, etc. It is the process that takes place. As shown in Table 1, the air treatment consists of one or more treatment steps, and the treatment of changing part or all of each inlet gas flow rate, reaction bath temperature and reactor pressure constitutes one treatment step. Configure. As mentioned above, since the actual plant is in a shutdown state during air treatment, it is necessary to proceed with the treatment steps quickly. It wasn't easy. The method of the present invention is for obtaining support information for making this determination more simply, efficiently, and quickly. By completing the air treatment in a short time, unnecessary activation of the catalyst can sometimes be prevented. This also has the advantage of reducing loss due to combustion of the target product due to unnecessary activation of the catalyst until recovery of selectivity and yield from restart. Catalyst species that cause such unwanted activation include, for example, a composite metal oxide catalyst containing molybdenum and bismuth as essential elements. The method of the present invention is particularly suitably applied to multitubular reactors using such catalysts.
 本発明における流出入するガスに関する情報(以下、流出入ガス情報と呼ぶ)とは、空気処理によって反応器入口側に導入されるガス(入口ガス)および/または、出口側から排出されるガス(出口ガス)の情報である。流出入ガス情報は、好ましくは出口ガスの成分に関する情報を含み、より好ましくは出口ガス中に含まれる二酸化炭素量に関する情報を含む。流出入ガス情報は、例えば入口ガスおよび/または出口ガスをガスクロマトグラフィーによって分析することで得ることができる。また更には当該二酸化炭素量に関する情報を処理することで、炭素処理量や積算炭素処理量を導出することも可能である。ここで、空気処理によって生じる二酸化炭素は、水性ガスシフト反応等により一部は一酸化炭素として検出されることが、当業者にとって公知である。すなわち本発明において二酸化炭素は、より広義には二酸化炭素および一酸化炭素の混合ガスを指しており、特に断りがない限りはこの意味で用いられるものとする。 The information about gas flowing in and out in the present invention (hereinafter referred to as inflow and outflow gas information) refers to the gas introduced into the reactor inlet side by air treatment (inlet gas) and/or the gas discharged from the outlet side ( outlet gas). The inflow and outflow gas information preferably includes information about the composition of the outlet gas, more preferably about the amount of carbon dioxide contained in the outlet gas. Inflow and outflow gas information can be obtained, for example, by analyzing the inlet gas and/or the outlet gas by gas chromatography. Furthermore, by processing the information on the amount of carbon dioxide, it is also possible to derive the carbon treatment amount and the integrated carbon treatment amount. Here, it is known to those skilled in the art that part of the carbon dioxide produced by air treatment is detected as carbon monoxide by the water gas shift reaction or the like. That is, in the present invention, carbon dioxide refers to a mixed gas of carbon dioxide and carbon monoxide in a broader sense, and is used in this sense unless otherwise specified.
 図3は、本実施形態に係る方法のフローチャートを示す図である。本実施形態に係る方法は、コンピュータ装置に、多管式反応器10の流出入ガス情報を取得する取得ステップS1と、(1)当該流出入ガス情報を数値処理することにより多管式反応器10の空気処理を支援する支援情報を出力する出力ステップS2と、を実行させることを含む。出力ステップS2において、具体的にはグラフ化などの視覚化処理や、当該空気処理とは異なる時期もしくは異なる反応器での情報と比較する処理等を行うことができる。本実施形態に係る方法は、支援情報を多管式反応器10のユーザーに提供する提供ステップS3を任意にさらに含む。提供ステップS3は、コンピュータ装置により実行されてもよいし、コンピュータ装置により出力された支援情報を電話やFAXで多管式反応器10のユーザーに提供することにより実行されてもよい。また、ネットワークを介してユーザーの端末に支援情報を提供してもよい。ネットワークを介した支援情報の提供は、支援情報を出力するコンピュータ装置によって行われてもよいし、当該コンピュータ装置とは別の装置によって行われてもよい。 FIG. 3 is a diagram showing a flow chart of the method according to this embodiment. The method according to the present embodiment comprises a step S1 of acquiring inflow and outflow gas information of the multi-tubular reactor 10, and (1) numerically processing the inflow and outflow gas information into the multi-tubular reactor. and an output step S2 of outputting assistance information to assist the air treatment of 10. Specifically, in the output step S2, visualization processing such as graphing, processing of comparing with information at a time different from the air treatment or in a different reactor, and the like can be performed. The method according to this embodiment optionally further comprises a providing step S3 of providing assistance information to the user of the shell-and-tube reactor 10 . The providing step S3 may be performed by a computer device, or may be performed by providing the support information output by the computer device to the user of the multi-tubular reactor 10 by telephone or FAX. Also, the support information may be provided to the user's terminal via the network. The provision of the support information via the network may be performed by a computer device that outputs the support information, or may be performed by a device separate from the computer device.
 取得ステップS1において、コンピュータ装置は多管式反応器10のユーザーの端末からの入力またはコンピュータ装置の管理者からキーボードなどの入力装置などによる入力により流出入ガス情報を取得してもよく、多管式反応器10の入口側および/または出口側からガスをサンプリングして、ガスクロマトグラフィーによる分析データが自動的かつ一定の時間間隔をもって入力されることにより流出入ガス情報を取得してもよい。流出入ガス情報は、コンピュータ装置とネットワークを介して接続されたユーザーの端末から入力されるように構成してもよい。なお、多管式反応器10のユーザーと、コンピュータ装置の管理者は同一でありうる。以下、図を参照して、本実施形態に係る方法の具体的態様を説明する。ただし本願発明は、この具体的実施態様に限定されるものではなく、請求の範囲によって示された技術的範囲内におけるすべての変更が含まれることが意図される。 In the acquisition step S1, the computer device may acquire the inflow and outflow gas information by input from the terminal of the user of the multi-tube reactor 10 or input from the administrator of the computer device using an input device such as a keyboard. Inflow and outflow gas information may be obtained by sampling the gas from the inlet side and/or the outlet side of the reactor 10 and automatically inputting analysis data by gas chromatography at regular time intervals. The inflow/outflow gas information may be configured to be input from a user's terminal connected to the computer device via a network. In addition, the user of the multi-tubular reactor 10 and the administrator of the computer may be the same. Specific aspects of the method according to this embodiment will be described below with reference to the drawings. However, the present invention is not limited to this specific embodiment, and is intended to include all modifications within the technical scope indicated by the claims.
 具体的態様における方法は、数万本の反応管20を含む多管式反応器10について、空気処理工程における流出入ガス情報を取得するステップS1をコンピュータ装置に実行させることを含む。なお、多管式反応器10は、図1に示すように複数の区画A,B,C等に分けられていても良いが、ステップS1においては、区画の有無に関係なく、多管式反応器10の入口側のガスおよび/または出口側のガスについての情報を取得する。 A method in a specific embodiment includes causing a computer device to execute step S1 of acquiring inflow and outflow gas information in an air treatment process for a multi-tubular reactor 10 including tens of thousands of reaction tubes 20 . The multi-tubular reactor 10 may be divided into a plurality of compartments A, B, C, etc., as shown in FIG. Obtain information about the gas on the inlet side and/or the gas on the outlet side of the vessel 10 .
 図4は、ステップ1で得られた流出入ガス情報を、コンピュータ装置を用いて数値処理し、出口二酸化炭素量に関する情報として導出されたグラフを示す図である(なお詳細なデータは表1記載のものである)。出口二酸化炭素量に関する情報も本発明における支援情報の一例であり、これを出力する処理自体ステップS2に該当するが、更なる演算によってより理解容易な支援情報を得ることもできる。図4の例では各ガスのモル濃度を、単一のガスクロマトグラフィーによる分析値(エリア値)に、予め導出されたファクターを乗じて算出している。データは信頼性の担保のため2つ以上のエリア値の平均値や中央値、最頻値など統計処理された数値であってもよく、後述の通り必要に応じ外れ値と判断された測定データを棄却した上で算出された数値であってもよい。ガスクロマトグラフィーによる分析値が、前後または参照とする空気処理運転データと比較して、上記の棄却基準と照合し明らかに異常値を示す場合には、ガスクロマトグラフィー測定器そのものに不備があると判断することもできる。この場合に、測定器に不備があることを知らせるアラートを自動的に表示させ、多管式反応器のユーザーに明示的に示す機能も、本発明に含まれるものとする。出口二酸化炭素量は、濃度のデータ形式を取っていればその単位を問わず、図4の例に示すppmのほか、vol%、mol%、wt%など当業者にとって公知な単位が使われる。また、ガスクロマトグラフィーで検出するガス種も特に限定されず、図4の例に示す二酸化炭素ガスの他、酸素、窒素、水蒸気、一酸化炭素、その他任意の触媒反応の原料となる炭化水素ガスやその凝縮性液体、触媒反応の生成物および副生成物となる炭化水素ガスやその凝縮性液体、であってもよい。例えば、ビスマスモリブデート複合金属酸化物触媒では、空気処理で使用される水蒸気により触媒中のモリブデンが昇華し、触媒が失活するまたは後段の精製系で閉塞を起こすことが当業者にとって公知である。したがって、(1)空気処理の間に触媒へ流入した水蒸気の総量を時間積算した数値、および/または(2)空気処理の間に熱電対より得られた触媒最高温度と、流入する水蒸気量の関係による数値(たとえば最高温度×水蒸気流量)、が所定の値になった際にアラートを発する計算式を予め組んでおくことが考えられ、これらの態様も本発明に含まれる。 FIG. 4 is a diagram showing a graph derived as information on the outlet carbon dioxide amount by numerically processing the inflow and outflow gas information obtained in step 1 using a computer device (detailed data is shown in Table 1). belongs to). The information on the exit carbon dioxide amount is also an example of the assistance information in the present invention, and the process of outputting this itself corresponds to step S2, but it is also possible to obtain easier-to-understand assistance information by further calculation. In the example of FIG. 4, the molar concentration of each gas is calculated by multiplying a single analysis value (area value) by gas chromatography by a previously derived factor. The data may be statistically processed numerical values such as the average value, median value, or mode value of two or more area values to ensure reliability, and measurement data judged to be outliers as necessary as described later It may be a numerical value calculated after rejecting If the analysis value by gas chromatography shows an abnormal value when compared with the data before and after or with the air treatment operation data used as a reference, and the above rejection criteria are clearly shown, the gas chromatography measuring instrument itself is deemed to be inadequate. can also judge. In this case, the present invention also includes a function of automatically displaying an alert notifying that there is a defect in the measuring device, and explicitly indicating it to the user of the multi-tubular reactor. The amount of outlet carbon dioxide can be in units known to those skilled in the art, such as ppm shown in the example of FIG. In addition, the type of gas detected by gas chromatography is not particularly limited, and in addition to the carbon dioxide gas shown in the example of FIG. and condensable liquids thereof, hydrocarbon gases and condensable liquids thereof, which are products and by-products of the catalytic reaction. For example, in bismuth molybdate mixed metal oxide catalysts, it is known to those skilled in the art that the water vapor used in air treatment sublimates the molybdenum in the catalyst, deactivating the catalyst or causing plugging in downstream purification systems. . Therefore, (1) the time-integrated value of the total amount of water vapor that entered the catalyst during the air treatment, and/or (2) the maximum catalyst temperature obtained from the thermocouple during the air treatment and the amount of water vapor entering. It is conceivable to prepare in advance a calculation formula for issuing an alert when a numerical value based on the relationship (for example, maximum temperature x water vapor flow rate) reaches a predetermined value, and these aspects are also included in the present invention.
 データを棄却する基準は、(1)統計的に公知な方法、例えばQ検定(Qテスト)、4dルール、Dixonの方法、Grubbsの方法のほか、(2)複数本の反応管で同じ深さ位置での出口二酸化炭素量の標準偏差が、各種機器の分析精度に適切な係数をかけたパラメーターの範囲内に入っているか(入っていなければ、疑わしいデータを棄却)、などとなる。上記のうち、特にQテストであれば統計的根拠に基づき、異常値かどうかを判定でき好ましい。その信頼限界として、19%、34%、38%、43%、48%、49%、86%、90%、95%、99.7%が採用されるが、好ましくは86%、90%、95%であり、最も好ましくは90%である。なお、データの棄却作業は本発明において、上述の各ガスのモル濃度に限定されず、本発明のデータ、パラメーターすべてに適用されるものとする。
 図4において、例えば測定No.3の点(表1参照)において出口CO濃度は1000ppm程度まで低下しており、反応浴温度320℃においては炭素が燃焼していることを、多管式反応器のユーザーは視覚的に見極めることができる。このため、迅速に次の処理ステップである空気流量増加に移ることができる。このように、本発明の方法により出口ガス分析結果を入力するだけで早期な処理ステップ変更の見極めが可能となる。また、測定No.14では出口CO濃度が大気中のCO濃度の400ppmと同等のレベルまで低下している。このとき、出口CO濃度が大気中と同程度になった場合にコンピュータ装置によって自動的にセルの背景がドットパターンで表示されるように設定しておけば、表1の測定No.14の出口CO濃度の欄のようなドットパターンが表示される。これにより、この処理ステップでの空気処理は完了していると多管式反応器のユーザーは判断できる。このように出口CO濃度の結果と、過去の空気処理データおよび/または技術的知見との比較照合により、必要に応じコンピュータ装置が自動的に判断をし、表示を変えて空気処理および処理ステップの完了を多管式反応器のユーザーに明示的に示す方法も、本発明に含まれるものとする。ここで、上述のコンピュータ装置による自動判断の判断基準に関しては、後述する。
Criteria for rejecting data include (1) statistically known methods such as Q-test (Q-test), 4d rule, Dixon's method, Grubbs' method, and (2) the same depth in multiple reaction tubes. Whether the standard deviation of the exit carbon dioxide amount at the location is within the range of the parameters obtained by multiplying the analysis accuracy of each instrument by an appropriate factor (if not, discard the questionable data), and so on. Among the above, the Q test is particularly preferable because it can determine whether or not the value is an abnormal value based on statistical grounds. Confidence limits of 19%, 34%, 38%, 43%, 48%, 49%, 86%, 90%, 95% and 99.7% are employed, preferably 86%, 90%, 95%, most preferably 90%. In the present invention, the data rejection operation is not limited to the molar concentration of each gas described above, but is applied to all the data and parameters of the present invention.
In FIG. 4, for example, measurement No. At point 3 (see Table 1), the outlet CO2 concentration has dropped to around 1000 ppm, and at a reaction bath temperature of 320° C., the shell-and-tube reactor user can visually determine that the carbon is burning. be able to. Therefore, it is possible to quickly move to the next processing step, which is to increase the air flow rate. As described above, the method of the present invention enables early determination of a change in processing steps simply by inputting the outlet gas analysis result. Also, measurement No. At 14, the outlet CO 2 concentration is reduced to a level equivalent to the atmospheric CO 2 concentration of 400 ppm. At this time, if the computer device is set so that the background of the cell is automatically displayed in a dot pattern when the CO 2 concentration at the outlet reaches the same level as that in the atmosphere, measurement No. 1 in Table 1 can be obtained. A dot pattern such as 14 outlet CO2 concentration columns is displayed. This allows the shell-and-tube reactor user to determine that the air treatment in this treatment step is complete. By comparing the outlet CO2 concentration results with past air treatment data and/or technical knowledge in this way, the computer automatically makes judgments as necessary, and changes the display to indicate air treatment and treatment steps. A method of explicitly indicating to the user of the shell-and-tube reactor the completion of is also included in the present invention. Here, criteria for automatic determination by the above-described computer device will be described later.
 図5は、出口二酸化炭素量に関する情報を数値処理することで得られた単位時間あたりの炭素処理量に関する情報である。この数値処理も、支援情報を得る工程の一例であり、図3におけるステップS2に含まれる処理である。ある測定時点における単位時間あたりの炭素処理量は、具体的には以下式(1)によって得ることができる。上述の通り、出口二酸化炭素量(下記式における、当該ステップにおける出口CO濃度)の単位が異なる場合、下記式の係数1000000も必要に応じ修正されるものとする。また炭素処理量の単位も特に限定されず、当業者にとって公知な変換が必要に応じ行われるものとする(たとえば[mol/hr]など)。入口ガス流量の代わりに出口ガス流量を用いることもでき、その場合の計算式も同様である。
単位時間あたり炭素処理量 [g/hr]=当該測定時点における入口ガス流量[NL/hr]×当該測定時点における出口CO濃度[ppm]÷1000000÷22.4[NL/mol]×12[g/mol] (1)
 出口CO濃度から単位時間あたり炭素処理量に変換することにより、出口CO濃度の測定間の時間間隔および反応管内のガス流量を考慮した見方を、多管式反応器のユーザーに明示的に示すことができる。単位時間あたり炭素処理量は同じ空気処理における相対評価により、空気処理の進捗の見極めに活用される。また単位時間あたり炭素処理量と、過去の空気処理データおよび/または技術的知見との比較照合により、必要に応じコンピュータ装置が自動的に判断をし、表示を変えて空気処理および/または処理ステップの完了を多管式反応器のユーザーに明示的に示す方法も、本発明に含まれるものとする。ここで、上述のコンピュータ装置による自動判断の判断基準に関しては、後述する。
 図5において、測定No.10の出口CO濃度は6300ppm程度であり、測定No.6の出口CO濃度13000ppmより十分低いが、入口空気流量が倍増しているため単位時間あたり炭素処理量は0.34g/hr程度と高くなっている。すなわち、出口CO濃度のみならず単位時間あたり炭素処理量を支援情報として含むことにより、空気処理および/または処理ステップの完了の見極めがさらに容易になると言える。
FIG. 5 shows information on the amount of carbon treated per unit time obtained by numerically processing the information on the amount of carbon dioxide at the outlet. This numerical processing is also an example of the process of obtaining support information, and is a process included in step S2 in FIG. Specifically, the amount of carbon treated per unit time at a certain measurement point can be obtained by the following formula (1). As described above, if the unit of the outlet carbon dioxide amount (the outlet CO 2 concentration in the step in the formula below) is different, the coefficient 1000000 in the formula below is also modified as necessary. Also, the unit of carbon treatment amount is not particularly limited, and conversion known to those skilled in the art is performed as necessary (for example, [mol/hr], etc.). The outlet gas flow rate can be used instead of the inlet gas flow rate, and the calculation formula in that case is the same.
Amount of carbon processed per unit time [g/hr] = Inlet gas flow rate at the time of measurement [NL/hr] x Outlet CO2 concentration at the time of measurement [ppm] ÷ 1000000 ÷ 22.4 [NL/mol] x 12 [ g/mol] (1)
By converting from outlet CO2 concentration to carbon throughput per unit time, the view taking into account the time interval between measurements of outlet CO2 concentration and the gas flow rate in the reaction tubes is made explicit to the user of the shell-and-tube reactor. can be shown. The amount of carbon treated per unit time is used to determine the progress of air treatment through relative evaluation for the same air treatment. In addition, by comparing and collating the amount of carbon treated per unit time with past air treatment data and/or technical knowledge, the computer device automatically makes a judgment as necessary, and changes the display to change the air treatment and/or treatment step A method of explicitly indicating to the user of the shell-and-tube reactor the completion of is also included in the present invention. Here, criteria for automatic determination by the above-described computer device will be described later.
In FIG. 5, measurement No. The outlet CO 2 concentration of measurement No. 10 is about 6300 ppm. Although the CO 2 concentration at the outlet of No. 6 is sufficiently lower than 13000 ppm, the amount of carbon treated per unit time is as high as about 0.34 g/hr because the inlet air flow rate is doubled. That is, it can be said that the inclusion of carbon throughput per unit time as well as outlet CO2 concentration as aiding information makes it easier to determine the completion of air treatment and/or treatment steps.
 図6は、単位時間あたりの炭素処理量に関する情報を数値処理することで得られる積算炭素処理量に関する情報である。この数値処理も、支援情報を得る工程の一例であり、図3におけるステップS2に含まれる処理である。積算炭素処理量は、具体的には以下式(2)によって得ることができる。積算炭素処理量の単位も特に限定されず、当業者にとって公知な変換が必要に応じ行われるものとする(たとえば[mol])。また、下記式では台形補間により区分求積しているが、上記見極めに大きな影響がなければ、その算出方法は長方形補間など当業者にとって公知ないずれの方法であってもよいものとする。
積算炭素処理量[g]=(当該測定時点における単位時間あたり炭素処理量[g/hr]+当該測定時点の一つ前の測定時点における単位時間あたり炭素処理量[g/hr])÷2×当該測定時点から当該測定時点の一つ前の測定時点までの処理時間[hr]+当該測定時点の一つ前の測定時点における積算炭素処理量[g] (2)
 図6から明らかであるとおり、空気処理時間が9時間を超えたあたりで積算炭素処理量が横ばいとなっている。これは、反応器中のコーク状炭素化合物がほぼ消失したことを意味すると考えられ、空気処理の終点を示すものと判断できる。図6の例では、測定No.14における積算炭素処理量が、測定No.13における積算炭素処理量とほぼ同等であるとコンピュータ装置が自動的に判断し、コンピュータ装置によって自動的にセルの背景の表示パターンを変えて表1に表示されるよう処理されている。当該表示に基づき、この処理ステップでの空気処理は完了していると多管式反応器のユーザーは判断できる。このように積算炭素処理量の結果と、過去の空気処理データおよび/または技術的知見との比較照合により、必要に応じコンピュータ装置が自動的に判断をし、表示を変えて空気処理および処理ステップの完了を多管式反応器のユーザーに明示的に示す方法も、本発明に含まれるものとする。ここで、上述のコンピュータ装置による自動判断の判断基準に関しては、後述する。
 このような視覚的情報を用いることで、熟練した技術者が存在しない状況においても一定のフローチャートを用いて空気処理が完了したかどうかの判断を迅速に行うことができる。
 なお積算炭素処理量の算出結果に基づいて、空気処理の頻度(プラントでの長期反応中、どれくらいの頻度で空気処理を実施するのか)や反応条件の最適化を行うことも可能である。例えば、原料の供給流量と稼働時間の積(すなわち、触媒による積算の反応原料処理量)は、空気処理における積算炭素処理量と比例関係にあると推定できる。このことから、積算炭素処理量が想定の2倍程度多かった場合には、次回の空気処理の頻度を2倍にするなど、空気処理の頻度を最適化することが可能である。また反応条件の最適化に関しては、長期反応においてガス条件や運転条件を変更した場合に、空気処理における積算炭素処理量がどのように変化するかをデータとして蓄積することで、次回以降、経験的または定量的に最適な条件を見出すことが容易となる。勿論、あるプラントでの積算炭素処理量のデータに基づいて、運転条件の似た他のプラントの空気処理の頻度や反応条件の最適化を行うことも、本発明に含まれるものとする。
FIG. 6 shows information on the integrated carbon treatment amount obtained by numerically processing the information on the carbon treatment amount per unit time. This numerical processing is also an example of the process of obtaining support information, and is a process included in step S2 in FIG. Specifically, the integrated carbon treatment amount can be obtained by the following formula (2). The unit of the integrated carbon treatment amount is not particularly limited either, and conversion known to those skilled in the art is performed as necessary (for example, [mol]). In addition, in the following formula, the piecewise quadrature is calculated by trapezoidal interpolation, but the calculation method may be any method known to those skilled in the art, such as rectangular interpolation, as long as it does not greatly affect the determination.
Cumulative carbon treatment amount [g] = (carbon treatment amount per unit time [g/hr] at the time of measurement + carbon treatment amount per unit time [g/hr] at the measurement point immediately before the measurement time) / 2 × Processing time from the time of measurement to the time of measurement one before the time of measurement [hr] + Cumulative amount of carbon processed at the time of measurement one before the time of measurement [g] (2)
As is clear from FIG. 6, the cumulative amount of carbon treated leveled off when the air treatment time exceeded 9 hours. This is considered to mean that the coke-like carbon compounds in the reactor have almost disappeared, and can be judged to indicate the end point of the air treatment. In the example of FIG. 6, measurement No. The integrated carbon treatment amount in measurement No. 14 is The computer device automatically determines that the integrated carbon treatment amount is approximately the same as in 13, and the computer device automatically changes the display pattern of the background of the cell so that it is displayed in Table 1. Based on this indication, the shell-and-tube reactor user can determine that the air treatment in this treatment step is complete. In this way, by comparing and collating the result of the accumulated carbon treatment amount with the past air treatment data and/or technical knowledge, the computer device automatically judges as necessary, and changes the display to change the air treatment and treatment step. A method of explicitly indicating to the user of the shell-and-tube reactor the completion of is also included in the present invention. Here, criteria for automatic determination by the above-described computer device will be described later.
By using such visual information, even in the absence of a skilled technician, it is possible to quickly determine whether the air treatment has been completed using a fixed flow chart.
It is also possible to optimize the frequency of air treatment (how often air treatment is performed during the long-term reaction in the plant) and reaction conditions based on the calculation result of the cumulative carbon treatment amount. For example, it can be estimated that the product of the raw material supply flow rate and the operating time (that is, the cumulative reaction raw material throughput by the catalyst) is proportional to the cumulative carbon throughput in air treatment. Therefore, when the cumulative amount of carbon treated is about twice as large as expected, it is possible to optimize the frequency of air treatment, such as by doubling the frequency of the next air treatment. Regarding the optimization of reaction conditions, by accumulating data on how the cumulative carbon treatment amount in air treatment changes when gas conditions and operating conditions are changed in a long-term reaction, it will be possible to empirically Alternatively, it becomes easier to quantitatively find optimal conditions. Of course, the present invention also includes optimizing the frequency of air treatment and the reaction conditions of other plants with similar operating conditions based on the data of the cumulative amount of carbon processed in a certain plant.
 図7は、触媒ピーク温度に関する情報を示す図である。この触媒ピーク温度の演算処理も、引き続き支援情報を得る工程であり、図3におけるステップS2に含まれる処理である。図7の例では、測定No.12において触媒ピーク温度が378℃と高温になったためセルの背景の表示パターンを変えたアラートが表1に表示されるように設定されている。これ以上高温になると触媒劣化が進むと考えられるが、この例ではその後、触媒ピーク温度は低下している。このように触媒ピーク温度の結果と、過去の空気処理データおよび/または技術的知見との比較照合により、必要に応じコンピュータ装置が自動的に判断をし、表示を変えて空気処理および処理ステップの完了を多管式反応器の支援情報として明示的に示す方法も、本発明に含まれるものとする。ここで、上述のコンピュータ装置による自動判断の判断基準に関しては、後述する。さらに、図7の例は触媒ピーク温度そのものをプロットしているが、触媒ピーク温度と反応浴温度との差を触媒発熱温度として算出し、発熱の状況を把握し、アラートを自動的に発報する方法も本発明に含まれるものとする。 FIG. 7 is a diagram showing information on the catalyst peak temperature. This catalyst peak temperature calculation process is also a subsequent step of obtaining support information, and is a process included in step S2 in FIG. In the example of FIG. 7, measurement No. 12, the catalyst peak temperature reached 378° C., so an alert with a different cell background display pattern is set to be displayed in Table 1. If the temperature rises above this level, the deterioration of the catalyst is considered to progress, but in this example, the catalyst peak temperature decreases after that. By comparing the result of catalyst peak temperature with past air treatment data and/or technical knowledge in this way, the computer device automatically makes judgments as necessary, changes the display, and performs air treatment and treatment steps. A method of explicitly indicating completion as supporting information for a shell-and-tube reactor is also intended to be included in the present invention. Here, criteria for automatic determination by the above-described computer device will be described later. Furthermore, the example of FIG. 7 plots the catalyst peak temperature itself, but the difference between the catalyst peak temperature and the reaction bath temperature is calculated as the catalyst heat generation temperature, the heat generation situation is grasped, and an alert is automatically issued. The method of doing is also included in the present invention.
 また仮に、上記の例において測定No.12の後に触媒ピーク温度がさらに高温になった場合、空気処理をいったん中断する必要がある。例えば、触媒ピーク温度が触媒の使用制限温度-20℃に到達した際には、空気および/または酸素含有ガスの流通を停止し、さらに必要に応じ窒素ガスやスチームなどの不活性ガスを流通させて、空気処理を中断させる。触媒の使用制限温度は、触媒種により異なり、別途設定されるが、例えば350℃から550℃である。 Also, hypothetically, in the above example, measurement No. If the catalyst peak temperature becomes higher after 12, air treatment should be discontinued. For example, when the catalyst peak temperature reaches the use limit temperature of the catalyst -20 ° C., the flow of air and / or oxygen-containing gas is stopped, and if necessary, an inert gas such as nitrogen gas or steam is flowed. to interrupt air treatment. The use limit temperature of the catalyst varies depending on the type of catalyst and is set separately, but is, for example, 350°C to 550°C.
 次に、触媒ピーク温度の取得方法を以下に示す。反応器内の複数本の反応管から管内温度情報(各反応管に設置された温度センサー(熱電対)によって得られる温度情報)を取得し、反応器のユーザーが入力装置によりコンピュータ装置に入力、または管内温度情報を自動的かつ一定の時間間隔でコンピュータ装置に取得させる。取得された管内温度情報は、まず表形式にまとめられる。この際、複数本の反応管で同じ深さ位置での管内温度情報を比較、平均化等の統計処理を行い、棄却すべきデータがあるかどうかを判断し、必要に応じ棄却してもよい。棄却する基準は、(1)統計的に公知な方法、例えばQ検定、4dルール、Dixonの方法、Grubbsの方法のほか、(2)複数本の反応管で同じ深さ位置での管内温度の標準偏差が、熱電対や各種機器の分析精度に適切な係数をかけたパラメーターの範囲内に入っているかを判断する(入っていなければ、疑わしいデータを棄却)などが挙げられる。棄却する対象は、特定の熱電対の入った反応管、特定の区画、特定の熱電対の特定の測定箇所、およびそれらの組み合わせ、のいずれでも良い。必要に応じデータを棄却した後、管内温度情報を統計処理する。この統計処理は、複数本の反応管で同じ深さ位置のデータにおいて、平均値、最小値、最大値、中央値、最頻値を使用する方法が挙げられる。発熱反応においては反応の暴走を適切に把握し、迅速に判断できることが求められるので、最大値を取得する方法が最も好ましい。こうして統計処理された管内温度情報を、視覚化処理(グラフ上にプロット)する。横軸を反応管入口からの距離、縦軸を各深さ位置での統計処理された管内温度情報とした分散図が最も好ましいが、当業者にとって公知な任意の視覚化であってよい。この処理によって得られた視覚化情報を、本発明では触媒層の温度分布とも呼ぶ。温度分布の中で最も温度が高いデータを、本発明では触媒ピーク温度と呼ぶ。 Next, the method for obtaining the catalyst peak temperature is shown below. In-tube temperature information (temperature information obtained by a temperature sensor (thermocouple) installed in each reaction tube) is obtained from multiple reaction tubes in the reactor, and the user of the reactor inputs it into a computer device using an input device. Alternatively, a computer device acquires pipe temperature information automatically and at regular time intervals. The obtained in-pipe temperature information is first summarized in a tabular format. At this time, the temperature information in the tubes at the same depth position is compared in multiple reaction tubes, statistical processing such as averaging is performed, and it is determined whether or not there is data to be rejected, and may be rejected if necessary. . Rejection criteria include (1) statistically known methods such as Q-test, 4d rule, Dixon's method, Grubbs' method, and (2) tube temperature at the same depth position in multiple reaction tubes. Judging whether the standard deviation is within the range of parameters obtained by multiplying the analytical accuracy of thermocouples and various instruments by an appropriate coefficient (if not, discard questionable data). Objects to be rejected may be reaction tubes containing specific thermocouples, specific compartments, specific measurement points of specific thermocouples, and combinations thereof. After discarding the data as necessary, the pipe temperature information is statistically processed. This statistical processing includes a method of using the average value, minimum value, maximum value, median value, and mode of data at the same depth position in a plurality of reaction tubes. In the case of an exothermic reaction, it is required to be able to appropriately grasp the runaway of the reaction and to judge it quickly. Therefore, the method of obtaining the maximum value is most preferable. The pipe internal temperature information thus statistically processed is visualized (plotted on a graph). A scatter diagram in which the horizontal axis is the distance from the inlet of the reaction tube and the vertical axis is the statistically processed in-tube temperature information at each depth position is most preferable, but any visualization known to those skilled in the art may be used. The visualization information obtained by this processing is also called the temperature distribution of the catalyst layer in the present invention. The data with the highest temperature in the temperature distribution is called catalyst peak temperature in the present invention.
 次に、上述の反応管内の出口CO濃度、単位時間あたりの炭素処理量、積算炭素処理量、触媒ピーク温度による空気処理および/または処理ステップの終了の判断基準について記載する。判断基準に使用されるデータの例として、出口CO濃度であれば反応器入口のガス組成(分析による入口CO濃度)や空気中のCO濃度、過去の類似または同一のプラントにおける空気処理データ、当該運転時の空気処理データが挙げられる。例えば単位時間あたりの炭素処理量および積算炭素処理量に関しては、過去の類似または同一のプラントにおける空気処理データ、および当該運転時の空気処理データを使用できる。また触媒ピーク温度に関しては、当該触媒の使用制限温度や過去の類似または同一のプラントにおける空気処理データ、および当該運転時の空気処理データを使用できる。その判断の方法としては、ある測定時点において取得されたデータが、(判断基準に使用されるデータの平均値またはデータそのもの)±(データの標準偏差または測定精度)×係数Xの範囲内であれば、当該空気処理または処理ステップは終了したとみなして次の処理に進む、等が挙げられる。上述の通り、当該判断がコンピュータ装置によって自動的に実行され、当該判断の結果を自動的にグラフや表などの支援情報に含めてユーザーに明示的に示すことも、本発明に含まれる。上述の係数Xは、大きすぎると空気処理が適切に実行されないおそれがあり、小さすぎると空気処理に必要な時間が長くなりプラントの生産性が悪化する。これらの観点から係数Xの適切な範囲は0.1以上1000以下となる。係数Xの上限は好ましい順に、750、500、250、150、100、90、80、70、60、50、40、30、20、10、8、6、5、4、3、2.0であり、下限は好ましい順に0.2、0.5、0.8、1.0である。すなわち最も好ましいXの範囲は1.0以上2.0以下である。また空気処理および処理ステップを終了する時の判断基準は上述のほか、プラントの稼働開始日から逆算してもよいし、その他の事情によりやむを得ず処理を途中で終了してもよく、当業者にとってこれら判断基準は公知である。
 上述の通りの判断基準より、人為的またはコンピュータ装置により自動的に判断がされたのち、当該処理ステップから次の処理ステップに移る際は、上述の通り各入口ガス流量、反応浴温度や反応器圧力の一部または全部を適切に設定する。この設定は、あらかじめ決められた空気処理の手順書に従い実施されるが、プラント稼働開始日や空気処理に要する日数を考慮して、手順書記載の処理ステップ通りに空気処理を実施しないことも、当業者にとっては公知であり本発明に含まれるものとする。
Next, criteria for air treatment and/or completion of the treatment step based on the outlet CO 2 concentration in the reaction tube, the amount of carbon treated per unit time, the cumulative amount of carbon treated, and the peak temperature of the catalyst will be described. Examples of data used for judgment criteria are the gas composition at the reactor inlet (inlet CO2 concentration by analysis) if the outlet CO2 concentration, CO2 concentration in the air, past air treatment in similar or identical plants data, and air treatment data during the operation. For example, for the carbon throughput per unit time and cumulative carbon throughput, past air treatment data in similar or identical plants and air treatment data during the operation can be used. As for the catalyst peak temperature, the use limit temperature of the catalyst, past air treatment data in a similar or the same plant, and air treatment data during the operation can be used. As a method of judgment, if the data obtained at a certain measurement time is within the range of (the average value of the data used as the judgment criterion or the data itself) ± (the standard deviation of the data or the measurement accuracy) × the coefficient X For example, it is assumed that the air treatment or treatment step is completed and the next treatment is proceeded to. As described above, it is also included in the present invention that the determination is automatically performed by a computer device and the result of the determination is automatically included in supporting information such as graphs and tables to be explicitly shown to the user. If the above-mentioned coefficient X is too large, there is a risk that the air treatment will not be performed properly, and if it is too small, the time required for air treatment will become longer, and the productivity of the plant will deteriorate. From these points of view, the appropriate range of the coefficient X is 0.1 or more and 1000 or less. The upper limits of the coefficient X are 750, 500, 250, 150, 100, 90, 80, 70, 60, 50, 40, 30, 20, 10, 8, 6, 5, 4, 3, and 2.0 in order of preference. and the lower limits are 0.2, 0.5, 0.8 and 1.0 in order of preference. That is, the most preferable range of X is 1.0 or more and 2.0 or less. In addition to the above, the criteria for deciding when to terminate the air treatment and treatment steps may be calculated backward from the start date of plant operation, or the treatment may be terminated midway due to other circumstances. Judgment criteria are known.
After the judgment is made manually or automatically by a computer device according to the judgment criteria as described above, when moving from the relevant treatment step to the next treatment step, as described above, each inlet gas flow rate, reaction bath temperature and reactor Set some or all of the pressure appropriately. This setting is carried out according to the predetermined procedure manual for air treatment. These are known to those skilled in the art and are intended to be included in the present invention.
 本実施形態に係る方法は、さらにコンピュータ装置に、上記支援情報と、多管式反応器10における過去の空気処理において出力された支援情報との比較情報を出力する出力ステップを実行させることをさらに含んでいてもよい。過去の空気処理において出力された支援情報と、現在行っている空気処理において出力される支援情報とを比較することにより、空気処理や反応器における異常を容易に判断しやすくなり、また空気処理の頻度を最適化することが容易となる。過去の空気処理において出力された支援情報とは、前回の空気処理において出力された支援情報であってもよく、過去の複数回の空気処理において出力された支援情報であってもよく、過去の複数回の空気処理において出力された支援情報を統計処理して得られた情報であってもよい。比較情報の具体的な態様としては、例えば現在行っている空気処理において出力される支援情報である出口CO濃度、単位時間あたりの炭素処理量、積算炭素処理量、触媒ピーク温度などの情報と、過去の空気処理において出力された同一の情報とをまとめて一つの表に表示したものが挙げられる。比較情報の別の例として、図4~7に示されるような空気処理時間に対して出口CO濃度、単位時間あたりの炭素処理量、積算炭素処理量、触媒ピーク温度などをプロットしたグラフに、過去の空気処理の際に支援情報として出力された同様のグラフを重ね合わせたグラフが挙げられる。 The method according to the present embodiment further comprises causing the computer device to perform an output step of outputting comparison information between the assistance information and assistance information output in the past air treatment in the multi-tubular reactor 10. may contain. By comparing the support information output in the past air treatment with the support information output in the current air treatment, it becomes easier to judge abnormalities in the air treatment and the reactor, and the air treatment It becomes easy to optimize the frequency. The support information output in the past air processing may be the support information output in the previous air processing, or the support information output in the past multiple times of air processing. It may be information obtained by statistically processing assistance information output in a plurality of times of air processing. As a specific aspect of the comparison information, for example, information such as outlet CO 2 concentration, carbon treatment amount per unit time, integrated carbon treatment amount, catalyst peak temperature, etc., which is support information output in the air treatment currently being performed. , and the same information output in the past air treatment are collectively displayed in one table. As another example of comparative information, graphs plotting outlet CO2 concentration, carbon throughput per unit time, integrated carbon throughput, catalyst peak temperature, etc. against air treatment time as shown in FIGS. , a graph in which similar graphs output as support information in the past air treatment are overlaid.
 本発明の利点として、上述の空気処理の進捗率や課題、経過時間などの情報と、空気処理作業におけるインプット(熱媒温度、空気やスチームなど各ガスの流量、圧力制御など)の情報を精査し、次回または類似した他のプラントにおける空気処理作業をより効率化するため、空気処理の実施時期、空気処理方法、触媒交換時期、必要な設備改造を検討することが可能になる。中でも空気処理の実施時期は重要であり、長期反応による触媒の破損や触媒上のコーク状炭素化合物の堆積により反応管内の差圧が上昇しガスが流れなくなると、プラントの生産性は極度に低下し、触媒の抜き出し作業も煩雑になる。また、空気処理を適切な時期に行うことで、長期的に安定で高い目的生成物収率を保持することができる。長期反応による触媒の破損やコーク状炭素化合物の堆積、目的生成物の収率の低下は、広義での触媒の劣化といえる。触媒の劣化を抑制する観点から、本発明の方法により空気処理実施時期を推定することもまた重要であると言える。 As an advantage of the present invention, scrutinize information such as the above-mentioned progress rate of air treatment, problems, elapsed time, etc., and information on input (heat medium temperature, flow rate of each gas such as air and steam, pressure control, etc.) in air treatment work However, in order to make the air treatment operation more efficient in the next or other similar plant, it becomes possible to consider the implementation timing of air treatment, the air treatment method, the timing of catalyst replacement, and necessary equipment modifications. The timing of air treatment is particularly important. If the pressure difference inside the reaction tube rises due to damage to the catalyst due to long-term reaction and the deposition of coke-like carbon compounds on the catalyst, and the gas stops flowing, the productivity of the plant will drop significantly. In addition, the operation of extracting the catalyst becomes complicated. In addition, by performing air treatment at an appropriate time, it is possible to maintain a stable high yield of the target product over a long period of time. Catalyst damage, deposition of coke-like carbon compounds, and reduction in the yield of the target product due to long-term reaction can be said to be deterioration of the catalyst in a broad sense. From the viewpoint of suppressing deterioration of the catalyst, it is also important to estimate the air treatment timing by the method of the present invention.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 既に説明したとおり、表1において、触媒ピーク温度が378℃と高温になったセル(No.12)や空気処理は完了していると判断されるセル(No.14)の背景パターンは他のセルと変えて表示させている。 As already explained, in Table 1, the background pattern of the cell (No. 12) in which the catalyst peak temperature was as high as 378°C and the cell (No. 14) in which the air treatment was judged to be completed was It is displayed by changing it to a cell.
 以上、上述した実施形態を一例として本発明を説明してきたが、本発明はこれらに限定されるものではない。例えば上述の実施形態では、空気処理によってコーク状の炭素化合物を除去するという観点から、単位時間あたりの炭素処理量や積算炭素処理量を算出したが、還元状態になった触媒の再生や、触媒の再酸化処理を行う観点からは、単位時間あたりの酸素吸収量や積算酸素吸収量を算出してもよい。単位時間あたりの酸素吸収量および積算酸素吸収量の算出方法は、上記で説明した単位時間あたりの炭素処理量および積算炭素処理量の算出方法に準ずるものであり、詳細な説明は省略する。 Although the present invention has been described above using the above-described embodiments as examples, the present invention is not limited to these. For example, in the above embodiment, the amount of carbon treated per unit time and the cumulative amount of carbon treated are calculated from the viewpoint of removing coke-like carbon compounds by air treatment. From the viewpoint of performing the reoxidation treatment, the oxygen absorption amount per unit time or the accumulated oxygen absorption amount may be calculated. The method of calculating the amount of oxygen absorbed per unit time and the accumulated amount of absorbed oxygen conforms to the method of calculating the amount of carbon treated per unit time and the accumulated amount of carbon treated as described above, and detailed description thereof will be omitted.
 本出願は、2022年2月18日出願の日本特許出願2022-23452に基づくものであり、その内容はここに参照として取り込まれる。 This application is based on Japanese Patent Application No. 2022-23452 filed on February 18, 2022, the contents of which are incorporated herein by reference.
 本発明は、触媒を用いた酸化反応により不飽和アルデヒド、不飽和カルボン酸または共役ジエンを製造する、複数の反応管を含む多管式反応器について、反応時間に応じて必要となる空気処理を、より効率的にそして触媒劣化を抑えて実施することを可能とするものである。 The present invention relates to a multi-tube reactor containing a plurality of reaction tubes for producing unsaturated aldehydes, unsaturated carboxylic acids or conjugated dienes by oxidation reaction using a catalyst, and air treatment required according to the reaction time. , more efficiently and with less catalyst deterioration.
10:多管式反応器、20:反応管、22、24、26、28:触媒層、30:サポートリング、S1:取得ステップ、S2:出力ステップ、S3:提供ステップ 10: multitubular reactor, 20: reaction tube, 22, 24, 26, 28: catalyst layer, 30: support ring, S1: acquisition step, S2: output step, S3: provision step

Claims (6)

  1.  触媒を用いた酸化反応により不飽和アルデヒドおよび不飽和カルボン酸の少なくとも一方を、または酸化的脱水素反応により共役ジエンを製造する複数の反応管を含む多管式反応器の空気処理をサポートする方法であって、
     コンピュータ装置に、
     前記反応器に流出入するガスに関する情報を反応情報として取得する取得ステップと、
     前記反応情報を数値処理することにより前記空気処理を支援する支援情報を出力する出力ステップと、を実行させることを含む、空気処理のサポート方法。
    A method for supporting air treatment of a shell-and-tube reactor comprising a plurality of reactor tubes producing unsaturated aldehydes and/or unsaturated carboxylic acids by catalytic oxidation or conjugated dienes by oxidative dehydrogenation. and
    computer equipment,
    an obtaining step of obtaining, as reaction information, information on gases flowing into and out of the reactor;
    and an output step of numerically processing the reaction information to output assistance information for assisting the air treatment.
  2.  前記反応情報が、前記多管式反応器の出口におけるガス成分に関する情報を含み、
     前記支援情報が、前記多管式反応器の積算の炭素処理量に関する情報または前記多管式反応器の単位時間当たりの炭素処理量に関する情報の少なくともいずれかを含む、
     請求項1に記載の空気処理のサポート方法。
    the reaction information includes information about gas composition at the outlet of the shell-and-tube reactor;
    The support information includes at least one of information on the integrated carbon throughput of the multi-tubular reactor or information on the carbon throughput per unit time of the multi-tubular reactor,
    The method of claim 1 for supporting air handling.
  3.  前記反応情報が、前記多管式反応器の出口におけるガス成分に関する情報を含み、
     前記支援情報が、前記多管式反応器の積算の酸素吸収量に関する情報または前記多管式反応器の単位時間当たりの酸素吸収量に関する情報の少なくともいずれかを含む、
     請求項1に記載の空気処理のサポート方法。
    the reaction information includes information about gas composition at the outlet of the shell-and-tube reactor;
    The support information includes at least one of information on the accumulated oxygen absorption amount of the multi-tubular reactor and information on the oxygen absorption amount per unit time of the multi-tubular reactor.
    The method of claim 1 for supporting air handling.
  4.  前記反応情報が、前記多管式反応器の反応管の管内温度分布に関する情報を含み、
     前記支援情報が、前記空気処理中の前記管内温度分布の経時的変化に関する情報を含む、
     請求項1から3のいずれか一項に記載の空気処理のサポート方法。
    the reaction information includes information about the temperature distribution in the reaction tubes of the multi-tubular reactor;
    The support information includes information about changes in the pipe temperature distribution over time during the air treatment.
    4. A method of supporting air handling according to any one of claims 1-3.
  5.  前記コンピュータ装置に、
     前記支援情報と、前記多管式反応器における過去の空気処理において出力された支援情報との比較情報を出力する出力ステップを実行させることをさらに含む、請求項1から4のいずれか一項に記載の空気処理のサポート方法。
    to the computer device,
    5. The method according to any one of claims 1 to 4, further comprising executing an output step of outputting comparison information between the assistance information and assistance information output in past air processing in the multitubular reactor. How to support air handling as described.
  6.  触媒を用いた酸化反応により不飽和アルデヒドおよび不飽和カルボン酸の少なくとも一方を、または酸化的脱水素反応により共役ジエンを製造する複数の反応管を含む多管式反応器の空気処理をサポートする装置であって、
     前記装置は、取得部と出力部を有し、
     前記取得部は、前記反応器に流出入するガスに関する情報を反応情報として取得するように構成され、
     前記出力部は、前記反応情報を数値処理することにより前記空気処理を支援する支援情報を出力するように構成されている、
     空気処理をサポートする装置。
    Apparatus to support air treatment in multi-tube reactors containing multiple reaction tubes producing unsaturated aldehydes and/or unsaturated carboxylic acids by catalytic oxidation or conjugated dienes by oxidative dehydrogenation. and
    The device has an acquisition unit and an output unit,
    The acquisition unit is configured to acquire information about gas flowing into and out of the reactor as reaction information,
    The output unit is configured to output support information for supporting the air treatment by numerically processing the reaction information.
    A device that supports air handling.
PCT/JP2023/003849 2022-02-18 2023-02-06 Method for supporting air treatment in multitubular reactor, and device WO2023157700A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023523518A JP7289419B1 (en) 2022-02-18 2023-02-06 Method and apparatus for supporting air handling in multi-tubular reactors
JP2023087052A JP2023121161A (en) 2022-02-18 2023-05-26 Method and apparatus for supporting air treatment of multitubular reactor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-023452 2022-02-18
JP2022023452 2022-02-18

Publications (1)

Publication Number Publication Date
WO2023157700A1 true WO2023157700A1 (en) 2023-08-24

Family

ID=87578593

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003849 WO2023157700A1 (en) 2022-02-18 2023-02-06 Method for supporting air treatment in multitubular reactor, and device

Country Status (1)

Country Link
WO (1) WO2023157700A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126835A (en) * 1994-10-28 1996-05-21 Mitsubishi Chem Corp Operation control of batch plant
US20060161019A1 (en) * 2005-01-14 2006-07-20 Decourcy Michael S Multiple catalyst system and its use in a high hydrocarbon space velocity process for preparing unsaturated aldehydes and acids
JP2021161089A (en) * 2020-04-02 2021-10-11 東ソー株式会社 Method of producing aromatic compound

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08126835A (en) * 1994-10-28 1996-05-21 Mitsubishi Chem Corp Operation control of batch plant
US20060161019A1 (en) * 2005-01-14 2006-07-20 Decourcy Michael S Multiple catalyst system and its use in a high hydrocarbon space velocity process for preparing unsaturated aldehydes and acids
JP2021161089A (en) * 2020-04-02 2021-10-11 東ソー株式会社 Method of producing aromatic compound

Similar Documents

Publication Publication Date Title
JP4838585B2 (en) Fixed-bed multitubular reactor
EP2331914B1 (en) Temperature control method of a catalytic bed using probability distribution
JP2005537261A (en) Method for safely operating continuous heterogeneous catalytic gas phase-partial oxidation of at least one organic compound
EP2671862A1 (en) Method for producing unsaturated aldehyde and/or unsaturated carboxylic acid
JP2002053519A (en) Method for start-up of reactor
JP4750448B2 (en) Method for determining the life of solid catalysts in chemical processing equipment
JP4145607B2 (en) Vapor phase catalytic oxidation method using multitubular reactor
JP7289419B1 (en) Method and apparatus for supporting air handling in multi-tubular reactors
WO2023157700A1 (en) Method for supporting air treatment in multitubular reactor, and device
HUE035733T2 (en) Method of shutting down a reactor
EP2370386B1 (en) Process for the oxidation of methanol to formaldehyde on fixed catalytic bed
JP4295462B2 (en) Gas phase catalytic oxidation method
JP7316482B1 (en) Methods and apparatus for supporting the operation or preparatory actions of a multitubular reactor
EP1484302B1 (en) Process for producing (meth)acrylic acid
JP2010132584A (en) Method for operating vapor-phase oxidation reaction by using multitubular heat exchanger-type reactor
WO2023157699A1 (en) Method and apparatus for supporting operation of multitubular reactor or preparation action thereof
CN101598737A (en) Among the pure terephthalic acid to the flexible measurement method of carboxyl benzaldehyde content
JP2005289919A (en) Method for producing (meth)acrylic acid or (meth)acrolein
JP4194359B2 (en) Gas phase catalytic oxidation method
KR20210020035A (en) Removal and cleaning of dehydrogenation catalyst
RU2184725C1 (en) Method for automatic monitoring and control of process for making ethylene base vinyl acetate
WO2004065851A1 (en) Apparatus and method for catalytic combustion
CA3212557A1 (en) Process and system for producing a product hydrocarbon
JPS60147226A (en) Operation of catalyst packed tube type solid-gas catalytic reaction apparatus
US7549341B2 (en) Method of maintaining a multitubular reactor

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023523518

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756227

Country of ref document: EP

Kind code of ref document: A1