WO2023157619A1 - Liquid chemical, modified substrate manufacturing method, and laminate manufacturing method - Google Patents

Liquid chemical, modified substrate manufacturing method, and laminate manufacturing method Download PDF

Info

Publication number
WO2023157619A1
WO2023157619A1 PCT/JP2023/002802 JP2023002802W WO2023157619A1 WO 2023157619 A1 WO2023157619 A1 WO 2023157619A1 JP 2023002802 W JP2023002802 W JP 2023002802W WO 2023157619 A1 WO2023157619 A1 WO 2023157619A1
Authority
WO
WIPO (PCT)
Prior art keywords
chemical solution
aldehyde compound
based material
silicon nitride
substrate
Prior art date
Application number
PCT/JP2023/002802
Other languages
French (fr)
Japanese (ja)
Inventor
宏一 佐藤
旺弘 袴田
篤史 水谷
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2023157619A1 publication Critical patent/WO2023157619A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers

Definitions

  • the present invention relates to a chemical liquid, a method for manufacturing a modified substrate, and a method for manufacturing a laminate.
  • Patent Document 1 discloses a composition that may contain an aldehyde as a reducing agent, and the composition is used as a stripping agent for a resist layer and an antireflection film layer, and a lower Low-k film (fluorine-containing It is described that the above layer can be peeled off without removing the silicon oxide film, etc.).
  • a silicon nitride-based material containing nitrogen and silicon has been applied as a specific material for forming a film of the above compound. Further, a film formation process is performed using a chemical solution on a substrate including a region formed of a silicon nitride-based material and a region formed of a silicon-based material containing silicon different from the silicon nitride-based material. At that time, there was a demand for selectively forming a film on a silicon nitride-based material. When the present inventors examined the composition (chemical solution) described in Patent Document 1, it was found that even using formaldehyde and acetaldehyde as reducing agents disclosed in Patent Document 1, it was selective to silicon nitride-based materials. A film could not be formed on the Therefore, development of a chemical liquid that satisfies the above requirements has been desired.
  • the present invention provides a chemical solution for manufacturing semiconductors that can selectively form a film on a silicon nitride-based material when applied to a substrate containing a silicon nitride-based material and a silicon-based material other than a silicon nitride-based material.
  • the challenge is to provide Another object of the present invention is to provide a method for manufacturing a modified substrate using the chemical solution, and a method for manufacturing a laminate.
  • the present inventor has completed the present invention as a result of diligent studies aimed at solving the above problems. That is, the inventors have found that the above problems can be solved by the following configuration.
  • a substrate comprising a first region made of a silicon nitride-based material containing nitrogen and silicon, and a second region made of a silicon-based material containing silicon different from the silicon nitride-based material;
  • a method for producing a modified substrate comprising the step of contacting the chemical solution according to any one of [1] to [8] to form a film containing the aldehyde compound on the first region.
  • the step is a step of contacting the substrate with the chemical solution and rinsing the substrate brought into contact with the chemical solution to form a coating containing the aldehyde compound on the first region.
  • the method for producing a modified substrate according to [9].
  • a method for manufacturing a laminate further comprising: [12] The method for producing a laminate according to [11], further comprising the step of removing the film containing the aldehyde compound formed on the first region.
  • a chemical solution for manufacturing semiconductors that can selectively form a film on a silicon nitride-based material when applied to a substrate containing a silicon nitride-based material and a silicon-based material other than a silicon nitride-based material. can provide. Further, according to the present invention, it is also possible to provide a method for manufacturing a modified substrate and a method for manufacturing a laminate using the above chemical solution.
  • a numerical range represented by "to” means a range including the numerical values before and after “to” as lower and upper limits.
  • the isomers of the components may be included.
  • the above isomers include structural isomers and stereoisomers.
  • the chemical solution for semiconductor manufacturing of the present invention (hereinafter also simply referred to as "chemical solution”) contains an aldehyde compound having 3 or more carbon atoms and an organic solvent different from the aldehyde compound.
  • the mechanism by which the chemical solution of the present invention can selectively form a coating on a silicon nitride-based material when applied to a substrate containing a silicon nitride-based material and a silicon-based material other than a silicon nitride-based material is not necessarily clear. No, but the inventors presume as follows.
  • the chemical solution of the present invention contains an aldehyde compound having 3 or more carbon atoms.
  • An aldehyde group of an aldehyde compound easily forms a chemical bond with a nitrogen atom of a silicon nitride-based material, and a bond is difficult to form with constituent atoms of a silicon-based material other than a silicon nitride-based material. Also, since the aldehyde compound has 3 or more carbon atoms, it is easy to form a film containing the aldehyde compound. As a result, it is believed that the chemical solution of the present invention can selectively form a film on silicon nitride-based materials. The components of the chemical solution of the present invention are described below.
  • a substrate containing a silicon nitride-based material and a silicon-based material other than a silicon nitride-based material is also referred to as a "silicon nitride-based material-containing substrate.”
  • the ability to selectively form a coating on a silicon-based material is also simply referred to as "excellent selective coating formation”.
  • the chemical solution of the present invention contains an aldehyde compound having 3 or more carbon atoms.
  • the number of carbon atoms in the aldehyde compound includes the carbon atoms contained in the aldehyde group (--COH) of the aldehyde compound.
  • the number of carbon atoms in the aldehyde compound is preferably 4 or more, more preferably 6 or more, and even more preferably 8 or more.
  • the contact angle of water can be easily increased when a film is formed on the silicon nitride-based material by the method described later.
  • the upper limit of the number of carbon atoms in the aldehyde compound is not particularly limited, it is preferably 20 or less, more preferably 18 or less, and even more preferably 16 or less.
  • the number of aldehyde groups possessed by the aldehyde compound is preferably 1 to 4, more preferably 1 or 2, and even more preferably 1.
  • the aldehyde compound may have a substituent other than the aldehyde group.
  • Substituents other than aldehyde groups include halogen atoms, hydroxy groups, phosphonic groups, sulfo groups, and mercapto groups.
  • Substituents other than the aldehyde group are preferably halogen atoms. It is also preferred that the aldehyde compound does not have substituents other than the aldehyde group.
  • the aldehyde compound contained in the chemical solution of the present invention is preferably a compound represented by the following formula (1).
  • R represents a hydrocarbon group optionally having a halogen atom or a heterocyclic group.
  • the hydrocarbon groups include aromatic hydrocarbon groups and aliphatic hydrocarbon groups.
  • aromatic hydrocarbon group may be monocyclic or polycyclic.
  • Aromatic hydrocarbon groups include, for example, phenyl, biphenyl, naphthyl, anthracenyl, and terphenyl groups.
  • the aromatic hydrocarbon group preferably has 6 to 18 carbon atoms.
  • the aliphatic hydrocarbon group may be linear, branched, or cyclic, and the linear or branched aliphatic hydrocarbon group may have a cyclic structure. good. Moreover, the aliphatic hydrocarbon group may have an unsaturated bond.
  • Linear or branched aliphatic hydrocarbon groups include, for example, alkyl groups, alkenyl groups, and alkynyl groups. The number of carbon atoms in the linear or branched aliphatic hydrocarbon group is 2 or more, preferably 3 to 19, more preferably 5 to 17, even more preferably 7 to 15.
  • Cyclic aliphatic hydrocarbon groups include, for example, cycloalkyl groups, cycloalkenyl groups, and cycloalkynyl groups.
  • the number of carbon atoms in the cyclic aliphatic hydrocarbon group is preferably 3-10, more preferably 5-8.
  • the linear or branched aliphatic hydrocarbon group has a cyclic structure, for example, one or more selected from the group consisting of a cycloalkyl group, a cycloalkenyl group, and a cycloalkynyl group and one or more groups selected from the group consisting of an alkyl group, an alkynyl group, and an alkenyl group.
  • the number of carbon atoms is preferably 4-19, more preferably 5-17, even more preferably 7-15.
  • the above heterocyclic group refers to a group having a ring structure containing atoms other than carbon atoms as ring members.
  • the heterocyclic group may or may not have aromaticity.
  • An aromatic heterocyclic group which is a heterocyclic group having aromaticity, may be monocyclic or polycyclic. Atoms other than carbon atoms possessed by the aromatic heterocyclic group include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • Heterocyclic rings possessed by aromatic heterocyclic groups include, for example, pyrrole, furan, thiophene, pyridine, pyrimidine, pyrazine, imidazole, pyrazole, oxazole, and thiazole rings.
  • the aromatic heterocyclic group includes, for example, pyrrole, furan, thiophene, pyridine, imidazole, pyrazole, oxazole, benzofuran, indole, benzimidazole, purine, and benzothiophene, from which one hydrogen atom is removed. and a group consisting of The number of carbon atoms in the aromatic heterocyclic group is preferably 3-18.
  • a non-aromatic heterocyclic group having no aromatic character may be monocyclic or polycyclic. Atoms other than carbon atoms possessed by the aromatic heterocyclic group include a nitrogen atom, an oxygen atom, and a sulfur atom.
  • the non-aromatic heterocyclic group includes, for example, compounds selected from pyrrolidine, tetrahydrofuran, tetrahydrothiophene, piperidine, tetrahydropyran, tetrahydrothiopyran, morpholine, dioxolane, dioxane, and trioxane. A removed group can be mentioned.
  • the non-aromatic heterocyclic group preferably has 3 to 18 carbon atoms.
  • the aromatic heterocyclic group also includes a condensed ring structure of an aromatic hydrocarbon ring and a non-aromatic heterocyclic ring and a condensed ring structure of an aliphatic hydrocarbon ring and an aromatic heterocyclic ring.
  • the heterocyclic group may be a group formed by combining the aromatic heterocyclic group and the non-aromatic heterocyclic group.
  • the hydrocarbon group also includes a group obtained by substituting a hydrogen atom of an aromatic ring group with an aliphatic hydrocarbon group.
  • groups in the above embodiment include aralkyl groups and alkyl-arylene groups.
  • a group obtained by substituting an aliphatic hydrocarbon group for a hydrogen atom of an aromatic ring group preferably has 7 to 19 carbon atoms.
  • the heterocyclic group also includes a group obtained by substituting a hydrogen atom of the heterocyclic group with an aliphatic hydrocarbon group.
  • the number of carbon atoms in the group obtained by substituting the hydrogen atom of the heterocyclic group with an aliphatic hydrocarbon group is preferably 4-19.
  • the hydrocarbon group is preferably an aliphatic hydrocarbon group, more preferably a straight-chain aliphatic hydrocarbon group, and even more preferably a straight-chain alkyl group.
  • the preferred number of carbon atoms in the straight-chain alkyl group is the same as the preferred number of carbon atoms in the straight-chain or branched-chain aliphatic hydrocarbon group.
  • the hydrocarbon group represented by R may have a halogen atom.
  • a halogen atom includes a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, with a fluorine atom being preferred.
  • the hydrocarbon group has halogen atoms, some of the hydrogen atoms in the hydrocarbon group may be substituted with halogen atoms, or all hydrogen atoms may be substituted with halogen atoms.
  • the hydrocarbon group represented by R is also preferably an unsubstituted hydrocarbon group having no halogen atom.
  • aldehyde compounds include propionaldehyde (propanal), glyceraldehyde (2,3-dihydroxypropanal), 2-fluoropropanal, 2,2,3,3,3-pentafluoropropanal, butanal.
  • Aldehyde compounds include propionaldehyde (propanal), glyceraldehyde (2,3-dihydroxypropanal), butanal, pentanal, hexanal, heptanal, octanal, nonanal, decanal, undecanal, dodecanal, tridecanal, and tetradecanal. , heptadecanal, hexadecanal, heptadecanal or octadecanal are preferred.
  • the content of the aldehyde compound is preferably 0.0005 mol/L or more, more preferably 0.005 mol/L or more, and even more preferably 0.05 mol/L or more, relative to the total volume of the chemical solution.
  • the upper limit of the content of the aldehyde compound is preferably 10 mol/L or less, more preferably 5 mol/L or less, and even more preferably 1 mol/L or less, relative to the total volume of the chemical solution.
  • the chemical solution of the present invention may contain two or more aldehyde compounds, preferably two or more.
  • the contact angle of water tends to increase when a film is formed on a silicon nitride-based material by the method described later.
  • the total content is also preferably within the preferred range.
  • the phrase "containing two or more aldehyde compounds” means that the chemical contains two or more aldehyde compounds having different structures, and the two or more aldehyde compounds are the above preferred aldehyde compounds (e.g., the above R in formula (1) represents a straight-chain alkyl group, and the alkyl group preferably has 7 to 15 carbon atoms).
  • Organic solvent The chemical solution of the present invention contains an organic solvent different from the aldehyde compound.
  • the organic solvent is not particularly limited as long as it differs from the aldehyde compound, and commonly used organic solvents can be applied.
  • Examples of organic solvents include hydrocarbon solvents, alcohol solvents, polyol solvents, glycol ether solvents, ether solvents, ketone solvents, amide solvents, sulfur-containing solvents, and ester solvents. .
  • hydrocarbon solvents examples include aliphatic hydrocarbon solvents such as n-pentane and n-hexane; alicyclic hydrocarbon solvents such as cyclohexane and methylcyclohexane; aromatic solvents such as toluene and xylene. Examples include hydrocarbon solvents.
  • alcohol solvents examples include ethanol, 1-propanol, 2-propanol (also called isopropyl alcohol (IPA)), 2-butanol, isobutyl alcohol, tert-butyl alcohol, isopentyl alcohol, and 4-methyl- Aliphatic alcohol solvents having 1 to 18 carbon atoms such as 2-pentanol (also referred to as methyl isobutyl carbinol (MIBC)); alicyclic alcohol solvents having 3 to 18 carbon atoms such as cyclohexanol; benzyl alcohol, etc. aromatic alcohol solvents; ketone alcohol solvents such as diacetone alcohol; The number of carbon atoms in the alcohol-based solvent is preferably 2-8, more preferably 2-7, and even more preferably 2-6.
  • polyol solvents examples include glycol solvents having 2 to 18 carbon atoms.
  • Glycol-based solvents include ethylene glycol, propylene glycol (1,2-propanediol), 1,3-propanediol, diethylene glycol, and dipropylene glycol.
  • Glycol ether solvents include, for example, glycol monoether solvents having 3 to 19 carbon atoms.
  • glycol monoether solvents include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-isopropyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol monomethyl ether, and diethylene glycol monoethyl ether.
  • the number of carbon atoms in the glycol ether solvent is preferably 1-8, more preferably 2-7, and even more preferably 3-6.
  • Ketone solvents include, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
  • ether solvents include diethyl ether, diisopropyl ether, dibutyl ether, t-butyl methyl ether, cyclohexyl methyl ether, and tetrahydrofuran.
  • amide solvents include formamide, monomethylformamide, dimethylformamide, acetamide, monomethylacetamide, dimethylacetamide, monoethylacetamide, diethylacetamide, and N-methylpyrrolidone.
  • sulfur-containing solvents examples include dimethylsulfone, dimethylsulfoxide, and sulfolane.
  • ester-based solvents examples include n-butyl acetate, ethyl lactate, propylene glycol acetate, propylene glycol monomethyl ether acetate, ⁇ -butyrolactone, and ⁇ -valerolactone.
  • the content of the organic solvent is preferably 40 to 99.99% by mass, more preferably 50 to 99.9% by mass, even more preferably 60 to 99% by mass, relative to the total mass of the chemical solution.
  • An organic solvent may be used individually by 1 type, and may use 2 or more types together. When two or more organic solvents are used, it is also preferable that the total content is within the above preferred range.
  • the chemical solution of the present invention preferably does not substantially contain methanol.
  • “Substantially free of methanol” means that the content of methanol is 1% by mass or less with respect to the total mass of the chemical solution, and the content of methanol is 0.5 mass with respect to the total mass of the chemical solution. % or less is preferable, and 0.1 mass % or less is more preferable. Although the lower limit is not particularly limited, it may be 0% by mass.
  • the chemical solution of the present invention does not substantially contain water.
  • “Substantially free of water” means that the water content is 0.02% by mass or less with respect to the total mass of the chemical solution, and the water content is 0.01% with respect to the total mass of the chemical solution. % by mass or less is preferable, and 0.005% by mass or less is more preferable. Although the lower limit is not particularly limited, it may be 0% by mass.
  • the contact angle of water tends to increase when a film is formed on a silicon nitride-based material by the method described later.
  • the drug solution of the present invention may contain other components than those mentioned above. Other components are described below.
  • carboxylic acid compounds include carboxylic acid compounds.
  • the carboxylic acid compound as another component may be produced by oxidation of the aldehyde compound.
  • the structure of the carboxylic acid compound may be one in which the aldehyde group of the aldehyde compound is oxidized to a carboxy group.
  • a carboxylic acid compound having a structure not derived from the aldehyde compound may be included.
  • the content of the carboxylic acid compound is preferably 10% by mass or less, more preferably 5% by mass or less, even more preferably 3% by mass or less, particularly preferably 1% by mass or less, and 0.5% by mass or less, based on the total mass of the chemical solution. % by mass or less is most preferred.
  • the lower limit of the content of the carboxylic acid compound is not particularly limited, it may be 0% by mass or more, and may be 0% by mass.
  • Antioxidants may be used to reduce oxidation of aldehyde compounds, and known compounds can be used. Antioxidants include phenol antioxidants, hindered amine antioxidants, phosphorus antioxidants, sulfur antioxidants, benzotriazole antioxidants, benzophenone antioxidants, hydroxylamine antioxidants, Examples include salicylic acid ester-based antioxidants and triazine-based antioxidants. More specifically, antioxidants described in paragraphs [0019] to [0026] of WO 2018/043690 can be mentioned.
  • the method for producing the chemical solution of the present invention is not particularly limited, and for example, it can be produced by mixing the above components.
  • the order or timing of mixing each component, and the order and timing are not particularly limited.
  • a chemical solution can be produced by adding an aldehyde compound to a mixer such as a mixing mixer containing a purified organic solvent and sufficiently stirring the mixture.
  • the steps described below may be performed.
  • the production method may include a metal removal step of removing metal components from the components and/or the chemical solution (hereinafter also referred to as "substance to be purified"). Examples of the metal removal step include step P of subjecting the material to be purified to an ion exchange method.
  • step P the material to be purified is subjected to an ion exchange method.
  • the ion exchange method is not particularly limited as long as it is a method that can adjust (reduce) the amount of metal components in the substance to be purified.
  • one or more of methods P1-P3 are included. More preferably, the ion exchange method includes two or more of methods P1 to P3, and more preferably includes all of methods P1 to P3.
  • the order of implementation is not particularly limited, but it is preferable to carry out the methods P1 to P3 in that order.
  • Method P1 A method of passing the substance to be purified through a first filling section filled with a mixed resin containing two or more resins selected from the group consisting of a cation exchange resin, an anion exchange resin, and a chelate resin.
  • Method P2 Covering at least one of the second filling section filled with the cation exchange resin, the third filling section filled with the anion exchange resin, and the fourth filling section filled with the chelate resin A method of passing a purified product through a liquid.
  • Method P3 A method of passing the substance to be purified through a membrane ion exchanger.
  • the ion exchange resins (cation exchange resins, anion exchange resins), chelate resins, and membranous ion exchangers used in each method, if in a form other than H + form or OH - form, are H + form or It is preferably used after being regenerated to the OH - form.
  • the space velocity (SV) of the material to be purified in each method is preferably 0.01 to 20.0 (1/h), more preferably 0.1 to 10.0 (1/h).
  • the treatment temperature in each method is preferably 0 to 60.degree. C., more preferably 10 to 50.degree.
  • the forms of ion exchange resins and chelate resins include, for example, granular, fibrous, and porous monolithic forms, with granular or fibrous forms being preferred.
  • the average particle diameter of the granular ion exchange resin and chelate resin is preferably 10 to 2000 ⁇ m, more preferably 100 to 1000 ⁇ m.
  • the particle size distribution of the granular ion-exchange resin and chelate resin it is preferable that the proportion of resin particles in the range of ⁇ 200 ⁇ m of the average particle size is 90% or more.
  • the average particle size and particle size distribution can be measured, for example, by using a particle size distribution analyzer (Microtrac HRA3920, manufactured by Nikkiso Co., Ltd.) using water as a dispersion medium.
  • the ion exchange method is preferably carried out until the content of the metal components contained in the material to be purified falls within the preferred range of the content of the metal components described above.
  • the manufacturing method preferably includes a filtration step of filtering the liquid in order to remove foreign matter, coarse particles, and the like from the liquid.
  • the filtration method is not particularly limited, and known filtration methods can be used. Among them, filtering using a filter is preferable.
  • Filters used for filtering can be used without any particular limitation as long as they are conventionally used for filtering purposes.
  • Materials constituting the filter include, for example, fluorine-based resins such as PTFE (polytetrafluoroethylene), polyamide-based resins such as nylon, and polyolefin resins such as polyethylene and polypropylene (PP) (including high-density and ultra-high molecular weight). , and polyarylsulfones.
  • fluorine-based resins such as PTFE (polytetrafluoroethylene), polyamide-based resins such as nylon, and polyolefin resins such as polyethylene and polypropylene (PP) (including high-density and ultra-high molecular weight).
  • PP polypropylene
  • polyarylsulfones are preferred.
  • the lower limit is preferably 70 mN/m or more, and the upper limit is preferably 95 mN/m or less.
  • the critical surface tension of the filter is preferably 75-85 mN/m.
  • the critical surface tension value is the manufacturer's nominal value.
  • the pore size of the filter is preferably about 0.001-1.0 ⁇ m, more preferably about 0.02-0.5 ⁇ m, and even more preferably about 0.01-0.1 ⁇ m.
  • the filtering by the first filter may be performed only once, or may be performed twice or more.
  • the filters may be of the same type or of different types, but are preferably of different types.
  • the first filter and the second filter preferably differ in at least one of pore size and material of construction. It is preferable that the pore size in the second and subsequent filtering is the same as or smaller than the pore size in the first filtering. Also, the first filters having different pore diameters within the above range may be combined.
  • the pore size here can refer to the nominal value of the filter manufacturer.
  • the chemical solution manufacturing method may further include a static elimination step of neutralizing the chemical solution.
  • a known container can be used as the container for storing the chemical solution. It is preferable that the container has a high degree of cleanliness in the container for use in semiconductors and less elution of impurities.
  • Examples of containers include "Clean Bottle” series (manufactured by Aicello Chemical Co., Ltd.) and “Pure Bottle” (manufactured by Kodama Resin Industry).
  • the inner wall of the container is a multilayer container having a six-layer structure composed of six resins, or a multilayer container having a seven-layer structure composed of seven resins. It is also preferred to use a container.
  • multilayer containers examples include containers described in JP-A-2015-123351, the contents of which are incorporated herein.
  • Materials for the inner wall of the container include, for example, at least one first resin selected from the group consisting of polyethylene resin, polypropylene resin, and polyethylene-polypropylene resin, a second resin different from the first resin, stainless steel, and hastelloy. , Inconel, and Monel.
  • the inner wall of the container is preferably formed or coated using the above materials.
  • a fluorine resin (perfluoro resin) is preferable as the second resin.
  • a fluororesin is used, elution of oligomers of ethylene or propylene can be suppressed.
  • the container include FluoroPure PFA composite drum (manufactured by Entegris), page 4 of Japanese Patent Publication No. 3-502677, page 3 of International Publication No. 2004/016526, and International Publication No. 99/046309. No. 9 pamphlet and the container described on page 16 can be mentioned.
  • quartz and an electropolished metal material are also preferable other than the fluororesin.
  • the metal material used for the electrolytically polished metal material contains at least one selected from the group consisting of chromium (Cr) and nickel (Ni), and the total content of Cr and Ni is Preference is given to metallic materials that are more than 25% by weight relative to the total weight. Examples include stainless steel and Ni--Cr alloys.
  • the total content of Cr and Ni in the metal material is preferably 25% by mass or more, more preferably 30% by mass or more, relative to the total mass of the metal material.
  • the upper limit is preferably 90% by mass or less with respect to the total mass of the metal material.
  • stainless steel examples include known stainless steels. Among them, stainless steel containing 8% by mass or more of Ni is preferable, and austenitic stainless steel containing 8% by mass or more of Ni is more preferable.
  • Ni--Cr alloys include, for example, known Ni--Cr alloys. Among them, a Ni—Cr alloy having a Ni content of 40 to 75% by mass and a Cr content of 1 to 30% by mass is preferable.
  • the Ni—Cr alloy may further contain boron, silicon, tungsten, molybdenum, copper, or cobalt in addition to the above alloys, if necessary.
  • Examples of methods for electropolishing a metal material include known methods. Specifically, the methods described in paragraphs [0011] to [0014] of JP-A-2015-227501 and paragraphs [0036] to [0042] of JP-A-2008-264929 are mentioned. the contents of which are incorporated herein.
  • the metal material is preferably buffed.
  • Examples of the buffing method include known methods.
  • the size of the abrasive grains used for the buffing finish is preferably #400 or less because the unevenness of the surface of the metal material is likely to be smaller. Buffing is preferably performed before electropolishing.
  • the metal material may be processed by combining one or more of multiple stages of buffing, acid cleaning, magnetic fluid polishing, and the like, which are performed by changing the count such as the size of abrasive grains.
  • the inside of the container is preferably cleaned before being filled with the chemical solution.
  • the liquid used for washing can be appropriately selected according to the application, and liquid containing at least one of the chemical solution or the component added to the chemical solution is preferable.
  • the inside of the container may be replaced with an inert gas (for example, nitrogen and argon) with a purity of 99.99995% by volume or more in order to prevent changes in the components of the chemical solution during storage.
  • an inert gas for example, nitrogen and argon
  • a gas with a particularly low water content is preferred.
  • room temperature or temperature control may be used. Among them, it is preferable to control the temperature in the range of -20 to 20°C from the viewpoint of preventing deterioration.
  • the chemical solution of the present invention is preferably used for processing a silicon nitride-based material-containing substrate (a substrate containing a silicon nitride-based material and a silicon-based material other than a silicon nitride-based material).
  • a method for treating a silicon nitride-based material-containing substrate the chemical solution of the present invention may be brought into contact with the silicon nitride-based material-containing substrate.
  • a modified substrate is obtained in which a film containing the aldehyde compound contained in the chemical solution of the present invention is formed on the silicon nitride-based material of the silicon nitride-based material-containing substrate. A method for manufacturing the modified substrate will be described later.
  • a substrate containing a silicon nitride-based material is a substrate containing a silicon nitride-based material and a silicon-based material other than the silicon nitride-based material. It is preferable that the surface of the silicon nitride-based material-containing substrate has a region formed of a silicon nitride-based material and a region formed of a silicon-based material.
  • the silicon nitride-based material contained in the silicon nitride-based material-containing substrate refers to a material containing silicon (Si) and nitrogen (N), and may contain other elements (other elements). Other elements that the silicon nitride-based material may contain include, but are not limited to, hydrogen, boron, carbon, oxygen, fluorine, and phosphorus.
  • the total content of silicon and nitrogen in the silicon nitride-based material is preferably 50 mol % or more, more preferably 70 mol % or more, relative to the total molar amount of the silicon nitride-based material.
  • the upper limit is not particularly limited, and may be 100 mol %.
  • a more specific embodiment of the silicon nitride-based material is, for example, a material represented by the composition of SiN x (where x is preferably 0.3 to 1.5, more preferably 0.5 to 1.4). ).
  • a material represented by the composition of SiNx a material represented by the composition of Si3N4 is also preferable.
  • the method of forming the silicon nitride-based material is not particularly limited, and known methods can be used, such as CVD, physical vapor deposition, and plasma irradiation containing nitrogen atoms.
  • the silicon-based material contained in the silicon nitride-based material-containing substrate refers to a material containing silicon, which is different from the silicon nitride-based material, and may contain elements other than nitrogen (other elements). Other elements that the silicon-based material may contain include, but are not limited to, hydrogen, boron, carbon, oxygen, fluorine, and phosphorus, and one or more selected from the group consisting of carbon and oxygen. Elements are preferably included.
  • the content of silicon in the silicon-based material is preferably 15 mol % or more, more preferably 30 mol % or more, relative to the total molar amount of the silicon-based material.
  • the upper limit is not particularly limited, and may be 100 mol %.
  • the silicon-based material include, for example, a material represented by a composition of Si, a material represented by a composition of SiO y (where y is preferably 0.5 to 2.0, more preferably 1.5 to 2.0). 0 to 2.0), and a material represented by the composition of SiO z C w (z preferably represents 0.5 to 2.0, more preferably 1.0 to 2.0, w is preferably 0.5 to 2.0, more preferably 1.0 to 2.0).
  • a material represented by a composition of SiO 2 is also preferable as a material represented by a composition of SiO y .
  • the material represented by the composition SiO y and the material represented by the composition SiO z Cw may further contain hydrogen.
  • the method of forming the silicon-based material is not particularly limited, and known methods can be used, such as CVD, physical vapor deposition, plasma irradiation containing the above-described element, and application of a precursor compound containing silicon. is mentioned.
  • the silicon nitride-based material-containing substrate may have a material other than the silicon nitride-based material and the silicon-based material, such as a metal material.
  • Metal materials include materials containing one or more elements selected from the group consisting of aluminum, copper, ruthenium, and tungsten.
  • a coating containing an aldehyde compound is formed on the silicon nitride-based material of the silicon nitride-based material-containing substrate, and more preferably a coating containing an aldehyde compound is formed only on the silicon nitride-based material.
  • the film containing the aldehyde compound thus formed preferably has a large contact angle with water.
  • the film containing the aldehyde compound preferably functions as a mask when forming a film on the substrate containing the silicon nitride-based material by chemical vapor deposition (CVD).
  • the film formed by CVD (hereinafter also referred to as "CVD film") is difficult to deposit, and the film containing the aldehyde compound is not formed. It is preferred that the CVD film is deposited in areas that are not exposed.
  • CVD film When the film containing the aldehyde compound functions as a mask for CVD, a layered product is obtained in which the CVD film is selectively formed on the region formed of the silicon-based material on the substrate containing the silicon nitride-based material. A method for manufacturing the laminate will be described later.
  • the water contact angle of the film containing the aldehyde compound is preferably 50° or more, more preferably 60° or more, and even more preferably 80° or more, because the film containing the aldehyde compound easily functions as a mask for CVD.
  • the upper limit is not particularly limited, and is often 120° or less.
  • a modified substrate containing a film containing an aldehyde compound is preferably produced by bringing the chemical solution of the present invention into contact with a substrate containing a silicon nitride-based material.
  • Preferred aspects of the silicon nitride-based material-containing substrate are as described above.
  • the film containing the aldehyde compound is formed only on the silicon nitride-based material.
  • the film containing the aldehyde compound functions as a mask for CVD.
  • a more preferred embodiment of the modified substrate can be preferably applied to the production of laminates.
  • the contact method is not particularly limited, and includes a method of coating or spraying a chemical solution onto the silicon nitride-based material-containing substrate, and a method of immersing the silicon nitride-based material-containing substrate in the chemical solution.
  • the method of applying the chemical solution to the silicon nitride-based material-containing substrate is not particularly limited, and a known method can be used, such as spin coating. Further, when the silicon nitride-based material-containing substrate is immersed in the chemical, the chemical may be caused to convect.
  • the contact temperature is not particularly limited, but is preferably 10 to 100°C.
  • the contact time is not particularly limited, but preferably 1 minute to 20 hours.
  • the silicon nitride-based material-containing substrate it is also preferable to heat the silicon nitride-based material-containing substrate after bringing the chemical solution into contact with the substrate.
  • the solvent contained in the chemical solution can be removed and the film containing the aldehyde compound can be made denser.
  • the heating temperature is not particularly limited, 50 to 300°C is preferable, and 60 to 180°C is more preferable.
  • the heating method is not particularly limited, and includes a method of contacting with a heating element (for example, heating with a hot plate) and a method of irradiating with infrared rays.
  • the rinsing treatment can remove the aldehyde compound on the silicon nitride-based material-containing substrate that adheres to areas other than the desired area from the substrate.
  • the rinsing method is not particularly limited, a method of contacting a silicon nitride-based material-containing substrate that has been brought into contact with a rinsing solution and a chemical solution can be mentioned.
  • a contacting method the same method as the method of contacting the chemical solution with the substrate containing the silicon nitride-based material can be used.
  • the contact temperature is not particularly limited, but is preferably 10 to 50°C.
  • the rinse liquid is not particularly limited, organic solvents contained in the chemical solution of the present invention can be used. An organic solvent contained in the chemical liquid used for forming the film containing the aldehyde compound may be used as the rinse liquid.
  • the silicon nitride-based material-containing substrate may be subjected to pretreatment before bringing the chemical solution of the present invention into contact with the silicon nitride-based material-containing substrate.
  • the pretreatment include a treatment in which the substrate is brought into contact with a treatment liquid different from the chemical liquid of the present invention.
  • a contacting method a method of immersing the silicon nitride-based material-containing substrate in the treatment liquid is preferable, and the treatment liquid may be caused to convect during the immersion.
  • the temperature of the treatment solution during contact is not particularly limited, but is preferably 10 to 60°C.
  • the treatment liquid include an aqueous solution containing an acidic compound.
  • Acidic compounds include hydrogen fluoride, hexafluorosilicic acid, hexafluorotitanic acid, hexafluorozirconic acid, hexafluorophosphoric acid, tetrafluoroboric acid, and salts thereof, with hydrogen fluoride being preferred.
  • the content of the acidic compound is preferably 0.01 to 5% by mass, more preferably 0.1 to 2% by mass, relative to the total mass of the treatment liquid.
  • the silicon nitride-based material and the aldehyde compound are more likely to form a chemical bond, and the film containing the aldehyde compound is formed. is considered to be easier to form.
  • a laminate is obtained in which a CVD film is formed on the region where the film containing the aldehyde compound is not formed (on the region formed of the silicon-based material).
  • the CVD process may be performed by a known technique, but thermal CVD, plasma CVD, or atomic layer deposition (ALD) is preferred, and ALD is more preferred.
  • ALD atomic layer deposition
  • a precursor which is the raw material for the CVD film, is supplied to the surface of the modified substrate. Materials constituting the CVD film to be formed can be controlled by the type of precursor to be supplied, the supply atmosphere, the oxidizing agent, and the like.
  • Metals include aluminum, titanium, chromium, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, ruthenium, palladium, lanthanum, cerium, hafnium, tantalum, tungsten, platinum, and bismuth. be done.
  • Metal oxides include aluminum oxide, titanium oxide, zinc oxide, zirconium oxide, hafnium oxide, and tantalum oxide.
  • Metal nitrides include titanium nitride and tantalum nitride. In the CVD treatment, a treatment may be performed to alter the surface of the region where the film containing the aldehyde compound is not formed.
  • the thickness of the CVD film on the region where the film containing an aldehyde compound is not formed is the thickness of the film containing the aldehyde compound.
  • the ratio of the thicknesses of the CVD films on the regions that have been coated is preferably 0.75 or less, more preferably 0.5 or less, and even more preferably 0.25 or less. The lower limit of the above ratio is 0, and may be 0. That is, the CVD film does not have to be formed on the region where the film containing the aldehyde compound is formed.
  • the film containing the aldehyde compound may be further removed.
  • a laminate having a CVD film formed only on the region formed of the silicon-based material is obtained.
  • a method for removing the film containing the aldehyde compound is not particularly limited, and dry etching, wet etching, and a combination thereof can be used. Dry etching includes a method of supplying reactive ions or reactive radicals to the surface of a laminate having a film containing an aldehyde compound. Reactive ions or reactive radicals may be generated by plasma or the like, and are preferably generated using a mixed gas containing one or more gases selected from the group consisting of oxygen, nitrogen and hydrogen.
  • the mixed gas may contain a rare gas.
  • dry etching may be physical etching using a sputtering phenomenon.
  • Wet etching may be performed by supplying an etchant to the surface of the laminate having the coating containing the aldehyde compound.
  • the etchant include an etchant containing an oxidizing agent such as ozone, and an etchant containing an organic solvent.
  • the organic solvent of the etching solution containing an organic solvent include the organic solvents contained in the above chemical solutions, and hydrocarbon-based solvents are preferred.
  • ethanol, heptanal, and nonanal were mixed so that the content of heptanal was 0.4 mol/L and the content of nonanal was 0.4 mol/L with respect to the total volume of the chemical solution. They were mixed so as to be 4 mol/L.
  • ethanol, undecanal, and undecylic acid were added to the total volume of the chemical solution so that the content of undecanal was 0.4 mol / L, and the total mass of the chemical solution was On the other hand, they were mixed so that the content of undecylic acid was 0.5% by mass.
  • ⁇ Evaluation method> According to the following procedure, a film containing an aldehyde compound was formed on a substrate using the chemical solutions of Examples and Comparative Examples, and the contact angle of water of the film was evaluated. Further, the substrate on which the film containing the aldehyde compound was formed was subjected to an oxide film forming process by ALD, and the deposition selectivity was evaluated from the thickness of the formed oxide film.
  • a silicon oxide layer wafer, a silicon nitride layer, a silicon oxide layer, a silicon nitride layer, and a silicon oxycarbide layer were formed on one surface of a commercially available silicon wafer (12 inches in diameter) by a CVD method.
  • a layer wafer and a silicon oxycarbide layer wafer were prepared. The processing time of the CVD method was adjusted so that the thickness of each layer was 20 nm.
  • the obtained silicon oxide layer wafer, silicon nitride layer wafer, silicon oxycarbide layer and silicon wafer were cut into 2 cm squares. Each cut wafer was immersed in a container filled with an aqueous solution containing 0.5% by mass of hydrogen fluoride, and the aqueous solution was stirred with a magnetic stirrer for pretreatment. The temperature of the aqueous solution during the pretreatment was 25° C., the immersion time was 1 minute, and the stirring speed was 250 rpm. Each pretreated wafer was dried by blowing nitrogen gas. Then, each pretreated wafer was immersed in each chemical solution. Each wafer was immersed in the chemical while stirring the chemical in a container with a magnetic stirrer at 250 rpm, the temperature of the chemical was 65° C., and the immersion time was 240 minutes.
  • each wafer was set to 25° C., and then rinse treatment was performed with isopropyl alcohol (IPA).
  • IPA isopropyl alcohol
  • the rinsing treatment is performed by immersing the substrate after the immersion treatment in IPA. The immersion is performed while stirring the IPA in a container with a magnetic stirrer at 250 rpm. The time was 30 seconds.
  • each wafer was dried by blowing nitrogen gas. Through the above treatment, each wafer was brought into contact with each chemical solution to obtain a sample.
  • the water contact angle of the sample obtained by the above method was measured by the following method. The measurement was carried out at 23° C. using DMs-501 manufactured by Kyowa Interface Science Co., Ltd. The value was measured three times 500 milliseconds after the water droplet contacted the surface, and the average value was taken as the contact angle. In addition, the surface tension of water was analyzed as 72.9 mN/m.
  • the contact angles of the silicon wafer, the silicon oxide layer wafer, the silicon nitride layer wafer, and the silicon oxycarbide layer wafer, which were not subjected to the above contact treatment, were measured to be 50°, 20°, 30°, and 50°, respectively. was less than °. When the contact angle of each wafer after the contact treatment is larger than the contact angle of each wafer without the contact treatment, it can be said that a film containing an aldehyde compound was formed on the surface of the wafer.
  • a sample was obtained in the same manner as for the above contact angle, ALD treatment was performed in the following procedure, and deposition selectivity was evaluated.
  • an aluminum oxide layer was formed on the obtained sample using an atomic layer deposition apparatus (AD-230LP manufactured by Samco). Trimethylaluminum was used as an organometallic raw material, and water was used as an oxidizing agent.
  • the ALD treatment temperature is 150° C., and the film thickness is 5 nm for each wafer (silicon wafer, silicon oxide layer wafer, silicon nitride layer wafer, and silicon oxycarbide layer wafer) that is not subjected to the above contact treatment. , ALD treatment was performed on each sample.
  • the film thickness of the aluminum oxide layer of each sample after the ALD treatment was measured using a spectroscopic ellipsometer (M-2000XI, manufactured by JA Woollam Japan Co., Ltd.). The film thickness was measured at 5 points on the sample, and the average value was taken as the film thickness. The measurement was performed with a measurement range of 1.2-2.5 eV and measurement angles of 70° and 75°. It should be noted that the smaller the film thickness, the more difficult it is to deposit a film by ALD processing.
  • Table 1 shows the chemical components, the water contact angle evaluation results, and the deposition selectivity evaluation results for each sample.
  • ⁇ X in the "water contact angle” column indicates that the water contact angle was less than X°.
  • the water content indicates a value determined by the Karl Fischer method.
  • Comparative Examples 1 to 3 which do not contain an aldehyde compound having 3 or more carbon atoms, there was no change in the contact angle of water, confirming that no film containing an aldehyde compound was formed on the surface of the silicon nitride layer wafer. was done. Therefore, it can be said that even if the chemical solutions of Comparative Examples 1 to 3 are applied to a silicon nitride-based material-containing substrate, a film cannot be selectively formed on the silicon nitride-based material. Further, from a comparison between Examples 1 to 4 and Examples 5 to 8, it was confirmed that when the carbon number of the aldehyde compound was 8 or more, the contact angle of water on the film containing the aldehyde compound increased.
  • Example 18 From a comparison between Example 18 and Examples 8, 16 and 17, when the chemical solution does not substantially contain water (water content is 0.02% by mass or less relative to the total mass of the chemical solution), It was confirmed that the water contact angle of the film containing the aldehyde compound was larger. In addition, when the water content is 0.01% by mass or less (more preferably 0.005% by mass or less) relative to the total mass of the chemical solution, the contact angle of water on the film containing the aldehyde compound is increased. was confirmed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

The present invention addresses the problem of providing a liquid chemical that is for manufacturing a semiconductor and makes it possible to selectively form a coating on a silicon nitride-based material when the liquid chemical is applied to a substrate that includes the silicon nitride-based material and a silicon-based material other than the silicon nitride-based material. This liquid chemical for manufacturing a semiconductor comprises: an aldehyde compound that has three or more carbon atoms; and an organic solvent that is different from the aldehyde compound.

Description

薬液、修飾基板の製造方法、積層体の製造方法Chemical solution, method for manufacturing modified substrate, method for manufacturing laminate
 本発明は、薬液、修飾基板の製造方法、および、積層体の製造方法に関する。 The present invention relates to a chemical liquid, a method for manufacturing a modified substrate, and a method for manufacturing a laminate.
 半導体デバイスの更なる微細化に伴い、より微細で精密な半導体素子の形成が求められている。従来、半導体素子の形成には、フォトリソグラフィ法が用いられてきたが、パターンの位置合わせ等が必要で、昨今求められる精度を満たさなくなりつつある。 With the further miniaturization of semiconductor devices, there is a demand for the formation of finer and more precise semiconductor elements. Conventionally, a photolithographic method has been used to form semiconductor elements, but it requires alignment of patterns and the like, and it is becoming difficult to satisfy the accuracy required these days.
 そこで、半導体素子の形成方法として、特定の材料で形成された領域に対する選択的な化合物の吸着を利用して、上記化合物を含む薬液を用いて上記化合物からなる被膜を選択的に形成し、その被膜を利用して、特定の材料以外の領域の処理を行う方法が検討されている。
 特許文献1では、還元剤としてアルデヒドを含んでいてもよい組成物が開示されており、その組成物をレジスト層および反射防止膜層の剥離剤として使用し、下層のLow-k膜(フッ素含有シリコン酸化膜等)を除去せずに上記層を剥離できることが記載されている。
Therefore, as a method for forming a semiconductor device, a chemical solution containing the compound is used to selectively form a film made of the compound by utilizing selective adsorption of a compound to a region formed of a specific material, and The use of coatings to treat areas other than specific materials has been explored.
Patent Document 1 discloses a composition that may contain an aldehyde as a reducing agent, and the composition is used as a stripping agent for a resist layer and an antireflection film layer, and a lower Low-k film (fluorine-containing It is described that the above layer can be peeled off without removing the silicon oxide film, etc.).
国際公開第2009/110582号WO2009/110582
 近年、上記化合物による被膜を形成する特定の材料として、窒素とケイ素とを含む窒化ケイ素系材料が適用されることがある。さらに、窒化ケイ素系材料で形成された領域、および、窒化ケイ素系材料とは異なる、ケイ素を含むケイ素系材料で形成された領域も含む基板に対して、薬液を用いて被膜の形成処理を行う際、窒化ケイ素系材料に対して選択的に被膜を形成する要求があった。
 本発明者らが特許文献1に記載の組成物(薬液)に関して検討したところ、特許文献1に開示される、還元剤としてのホルムアルデヒドおよびアセトアルデヒドを用いても、窒化ケイ素系材料に対して選択的に被膜を形成できなかった。したがって、上記要求を満たす薬液の開発が望まれていた。
In recent years, a silicon nitride-based material containing nitrogen and silicon has been applied as a specific material for forming a film of the above compound. Further, a film formation process is performed using a chemical solution on a substrate including a region formed of a silicon nitride-based material and a region formed of a silicon-based material containing silicon different from the silicon nitride-based material. At that time, there was a demand for selectively forming a film on a silicon nitride-based material.
When the present inventors examined the composition (chemical solution) described in Patent Document 1, it was found that even using formaldehyde and acetaldehyde as reducing agents disclosed in Patent Document 1, it was selective to silicon nitride-based materials. A film could not be formed on the Therefore, development of a chemical liquid that satisfies the above requirements has been desired.
 そこで、本発明は、窒化ケイ素系材料と、窒化ケイ素系材料以外のケイ素系材料とを含む基板に適用した際に、窒化ケイ素系材料上に選択的に被膜を形成できる、半導体製造用の薬液の提供を課題とする。
 また、本発明は、上記薬液を用いた修飾基板の製造方法の提供、および、積層体の製造方法の提供も課題とする。
Accordingly, the present invention provides a chemical solution for manufacturing semiconductors that can selectively form a film on a silicon nitride-based material when applied to a substrate containing a silicon nitride-based material and a silicon-based material other than a silicon nitride-based material. The challenge is to provide
Another object of the present invention is to provide a method for manufacturing a modified substrate using the chemical solution, and a method for manufacturing a laminate.
 本発明者は、上記課題を解決すべく鋭意検討した結果、本発明を完成させるに至った。すなわち、以下の構成により上記課題が解決されることを見出した。 The present inventor has completed the present invention as a result of diligent studies aimed at solving the above problems. That is, the inventors have found that the above problems can be solved by the following configuration.
 〔1〕 炭素数が3以上のアルデヒド化合物と、
 上記アルデヒド化合物とは異なる有機溶媒とを含む、半導体製造用の薬液。
 〔2〕 上記アルデヒド化合物の炭素数が、8以上である、〔1〕に記載の薬液。
 〔3〕 上記アルデヒド化合物が、後述する式(1)で表される化合物である、〔1〕または〔2〕に記載の薬液。
 〔4〕 上記アルデヒド化合物の含有量が、上記薬液の全容積に対して、0.0005mol/L以上である、〔1〕~〔3〕のいずれか1つに記載の薬液。
 〔5〕 上記薬液が、2種以上の上記アルデヒド化合物を含む、〔1〕~〔4〕のいずれか1つに記載の薬液。
 〔6〕 上記薬液が、水を実質的に含まない、〔1〕~〔5〕のいずれか1つに記載の薬液。
 〔7〕 上記薬液が、メタノールを実質的に含まない、〔1〕~〔6〕のいずれか1つに記載の薬液。
 〔8〕 少なくとも2種以上の絶縁体材料を有する基板に対する処理に用いられる、〔1〕~〔7〕のいずれか1つに記載の薬液。
 〔9〕 窒素とケイ素とを含む窒化ケイ素系材料からなる第1領域と、上記窒化ケイ素系材料とは異なる、ケイ素を含むケイ素系材料からなる第2領域とを含む基板と、
 〔1〕~〔8〕のいずれか1つに記載の薬液とを接触させて、上記第1領域上に上記アルデヒド化合物を含む被膜を形成する工程を有する、修飾基板の製造方法。
 〔10〕 上記工程が、上記薬液を上記基板に接触させ、上記薬液と接触させた上記基板に対してリンス処理を施して上記第1領域上に上記アルデヒド化合物を含む被膜を形成する工程である、〔9〕に記載の修飾基板の製造方法。
 〔11〕 〔9〕または〔10〕に記載の製造方法で製造された修飾基板に対して原子層堆積処理を行い、上記第1領域以外の領域上に金属膜または金属酸化膜を形成する工程をさらに有する、積層体の製造方法。
 〔12〕 上記第1領域上に形成された上記アルデヒド化合物を含む被膜を除去する工程をさらに有する、〔11〕に記載の積層体の製造方法。
[1] an aldehyde compound having 3 or more carbon atoms;
A chemical solution for manufacturing a semiconductor, containing an organic solvent different from the aldehyde compound.
[2] The chemical solution according to [1], wherein the aldehyde compound has 8 or more carbon atoms.
[3] The chemical solution according to [1] or [2], wherein the aldehyde compound is a compound represented by formula (1) described later.
[4] The chemical solution according to any one of [1] to [3], wherein the content of the aldehyde compound is 0.0005 mol/L or more relative to the total volume of the chemical solution.
[5] The chemical solution according to any one of [1] to [4], wherein the chemical solution contains two or more aldehyde compounds.
[6] The chemical solution according to any one of [1] to [5], wherein the chemical solution does not substantially contain water.
[7] The chemical solution according to any one of [1] to [6], wherein the chemical solution does not substantially contain methanol.
[8] The chemical solution according to any one of [1] to [7], which is used for processing a substrate having at least two kinds of insulator materials.
[9] a substrate comprising a first region made of a silicon nitride-based material containing nitrogen and silicon, and a second region made of a silicon-based material containing silicon different from the silicon nitride-based material;
A method for producing a modified substrate, comprising the step of contacting the chemical solution according to any one of [1] to [8] to form a film containing the aldehyde compound on the first region.
[10] The step is a step of contacting the substrate with the chemical solution and rinsing the substrate brought into contact with the chemical solution to form a coating containing the aldehyde compound on the first region. , the method for producing a modified substrate according to [9].
[11] A step of subjecting the modified substrate manufactured by the manufacturing method of [9] or [10] to an atomic layer deposition process to form a metal film or a metal oxide film on a region other than the first region. A method for manufacturing a laminate, further comprising:
[12] The method for producing a laminate according to [11], further comprising the step of removing the film containing the aldehyde compound formed on the first region.
 本発明によれば、窒化ケイ素系材料と、窒化ケイ素系材料以外のケイ素系材料とを含む基板に適用した際に、窒化ケイ素系材料上に選択的に被膜を形成できる、半導体製造用薬液を提供できる。
 また、本発明によれば、上記薬液を用いた修飾基板の製造方法、および、積層体の製造方法も提供できる。
According to the present invention, there is provided a chemical solution for manufacturing semiconductors that can selectively form a film on a silicon nitride-based material when applied to a substrate containing a silicon nitride-based material and a silicon-based material other than a silicon nitride-based material. can provide.
Further, according to the present invention, it is also possible to provide a method for manufacturing a modified substrate and a method for manufacturing a laminate using the above chemical solution.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされる場合があるが、本発明はそのような実施態様に制限されない。
The present invention will be described in detail below.
The description of the constituent elements described below may be made based on representative embodiments of the present invention, but the present invention is not limited to such embodiments.
 以下、本明細書における各記載の意味を表す。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本明細書において、薬液が含む成分において異性体が存在する場合、その成分の異性体を含んでいてもよい。上記異性体には、構造異性体、および、立体異性体を含める。
Hereinafter, the meaning of each description in this specification is expressed.
In the present specification, a numerical range represented by "to" means a range including the numerical values before and after "to" as lower and upper limits.
In the present specification, when isomers exist in the components contained in the drug solution, the isomers of the components may be included. The above isomers include structural isomers and stereoisomers.
<薬液>
 本発明の半導体製造用の薬液(以下、単に「薬液」ともいう。)は、炭素数が3以上のアルデヒド化合物と、アルデヒド化合物とは異なる有機溶媒とを含む。
 本発明の薬液によって、窒化ケイ素系材料と、窒化ケイ素系材料以外のケイ素系材料とを含む基板に適用した際に、窒化ケイ素系材料上に選択的に被膜を形成できる機序は必ずしも明らかではないが、本発明者らは以下のように推測している。
 本発明の薬液は炭素数が3以上のアルデヒド化合物を含む。アルデヒド化合物のアルデヒド基と、窒化ケイ素系材料の窒素原子とが化学的な結合を形成しやすく、窒化ケイ素系材料以外のケイ素系材料の構成原子とは結合を形成しにくい。また、アルデヒド化合物の炭素数が3以上であるため、アルデヒド化合物を含む被膜を形成しやすい。結果として、本発明の薬液によれば、窒化ケイ素系材料上に選択的に被膜を形成できると考えられる。
 以下、本発明の薬液の成分について説明する。
 なお、以下、窒化ケイ素系材料と、窒化ケイ素系材料以外のケイ素系材料とを含む基板のことを「窒化ケイ素系材料含有基板」ともいい、窒化ケイ素系材料含有基板に適用した際に、窒化ケイ素系材料上に選択的に被膜を形成できることを、単に、「選択被膜形成性に優れる」ともいう。
<Chemical solution>
The chemical solution for semiconductor manufacturing of the present invention (hereinafter also simply referred to as "chemical solution") contains an aldehyde compound having 3 or more carbon atoms and an organic solvent different from the aldehyde compound.
The mechanism by which the chemical solution of the present invention can selectively form a coating on a silicon nitride-based material when applied to a substrate containing a silicon nitride-based material and a silicon-based material other than a silicon nitride-based material is not necessarily clear. No, but the inventors presume as follows.
The chemical solution of the present invention contains an aldehyde compound having 3 or more carbon atoms. An aldehyde group of an aldehyde compound easily forms a chemical bond with a nitrogen atom of a silicon nitride-based material, and a bond is difficult to form with constituent atoms of a silicon-based material other than a silicon nitride-based material. Also, since the aldehyde compound has 3 or more carbon atoms, it is easy to form a film containing the aldehyde compound. As a result, it is believed that the chemical solution of the present invention can selectively form a film on silicon nitride-based materials.
The components of the chemical solution of the present invention are described below.
Hereinafter, a substrate containing a silicon nitride-based material and a silicon-based material other than a silicon nitride-based material is also referred to as a "silicon nitride-based material-containing substrate." The ability to selectively form a coating on a silicon-based material is also simply referred to as "excellent selective coating formation".
[アルデヒド化合物]
 本発明の薬液は、炭素数が3以上のアルデヒド化合物を含む。
 なお、アルデヒド化合物の炭素数には、アルデヒド化合物のアルデヒド基(-COH)に含まれる炭素原子も含める。
 アルデヒド化合物の炭素数は、4以上が好ましく、6以上がより好ましく、8以上がさらに好ましい。アルデヒド化合物の炭素数が上記好ましい範囲であると、後段で説明する方法で窒化ケイ素系材料上に被膜を形成した際、水の接触角をより大きくしやすい。アルデヒド化合物の炭素数の上限は、特に制限されないが、20以下が好ましく、18以下がより好ましく、16以下がさらに好ましい。
 アルデヒド化合物が有するアルデヒド基の数は、1~4が好ましく、1または2がより好ましく、1がさらに好ましい。
 アルデヒド化合物は、アルデヒド基以外の置換基を有していてもよい。
 アルデヒド基以外の置換基としては、ハロゲン原子、ヒドロキシ基、ホスホン基、スルホ基、および、メルカプト基が挙げられる。アルデヒド基以外の置換基は、ハロゲン原子が好ましい。
 アルデヒド化合物は、アルデヒド基以外の置換基を有さないことも好ましい。
[Aldehyde compound]
The chemical solution of the present invention contains an aldehyde compound having 3 or more carbon atoms.
The number of carbon atoms in the aldehyde compound includes the carbon atoms contained in the aldehyde group (--COH) of the aldehyde compound.
The number of carbon atoms in the aldehyde compound is preferably 4 or more, more preferably 6 or more, and even more preferably 8 or more. When the number of carbon atoms in the aldehyde compound is within the above preferable range, the contact angle of water can be easily increased when a film is formed on the silicon nitride-based material by the method described later. Although the upper limit of the number of carbon atoms in the aldehyde compound is not particularly limited, it is preferably 20 or less, more preferably 18 or less, and even more preferably 16 or less.
The number of aldehyde groups possessed by the aldehyde compound is preferably 1 to 4, more preferably 1 or 2, and even more preferably 1.
The aldehyde compound may have a substituent other than the aldehyde group.
Substituents other than aldehyde groups include halogen atoms, hydroxy groups, phosphonic groups, sulfo groups, and mercapto groups. Substituents other than the aldehyde group are preferably halogen atoms.
It is also preferred that the aldehyde compound does not have substituents other than the aldehyde group.
 本発明の薬液に含まれるアルデヒド化合物は、下記式(1)で表される化合物が好ましい。
 式(1)  R-CO-H
 式(1)中、Rは、ハロゲン原子を有していてもよい炭化水素基、または、複素環基を表す。上記炭化水素基としては、芳香族炭化水素基および脂肪族炭化水素基が挙げられる。
The aldehyde compound contained in the chemical solution of the present invention is preferably a compound represented by the following formula (1).
Formula (1) R—CO—H
In formula (1), R represents a hydrocarbon group optionally having a halogen atom or a heterocyclic group. Examples of the hydrocarbon groups include aromatic hydrocarbon groups and aliphatic hydrocarbon groups.
 上記芳香族炭化水素基は、単環であっても多環であってもよい。
 芳香族炭化水素基としては、例えば、フェニル基、ビフェニル基、ナフチル基、アントラセニル基、および、ターフェニル基が挙げられる。
 芳香族炭化水素基の炭素数は、6~18が好ましい。
The above aromatic hydrocarbon group may be monocyclic or polycyclic.
Aromatic hydrocarbon groups include, for example, phenyl, biphenyl, naphthyl, anthracenyl, and terphenyl groups.
The aromatic hydrocarbon group preferably has 6 to 18 carbon atoms.
 上記脂肪族炭化水素基は、直鎖状、分岐鎖状、および、環状のいずれであってもよく、直鎖状または分岐鎖状の脂肪族炭化水素基が、環状構造を有していてもよい。また、脂肪族炭化水素基は、不飽和結合を有していてもよい。
 直鎖状または分岐鎖状の脂肪族炭化水素基としては、例えば、アルキル基、アルケニル基、および、アルキニル基が挙げられる。直鎖状または分岐鎖状の脂肪族炭化水素基の炭素数は、2以上であり、3~19が好ましく、5~17がより好ましく、7~15がさらに好ましい。
 環状の脂肪族炭化水素基としては、例えば、シクロアルキル基、シクロアルケニル基、および、シクロアルキニル基が挙げられる。環状の脂肪族炭化水素基の炭素数は、3~10が好ましく、5~8がより好ましい。
 また、直鎖状または分岐鎖状の脂肪族炭化水素基が、環状構造を有する態様としては、例えば、シクロアルキル基、シクロアルケニル基、および、シクロアルキニル基からなる群から選択される1つ以上の基と、アルキル基、アルキニル基、および、アルケニル基からなる群から選択される1つ以上の基とを組み合わせてなる基が挙げられる。直鎖状または分岐鎖状の脂肪族炭化水素基が、環状構造を有する態様において、その炭素数は、4~19が好ましく、5~17がより好ましく、7~15がさらに好ましい。
The aliphatic hydrocarbon group may be linear, branched, or cyclic, and the linear or branched aliphatic hydrocarbon group may have a cyclic structure. good. Moreover, the aliphatic hydrocarbon group may have an unsaturated bond.
Linear or branched aliphatic hydrocarbon groups include, for example, alkyl groups, alkenyl groups, and alkynyl groups. The number of carbon atoms in the linear or branched aliphatic hydrocarbon group is 2 or more, preferably 3 to 19, more preferably 5 to 17, even more preferably 7 to 15.
Cyclic aliphatic hydrocarbon groups include, for example, cycloalkyl groups, cycloalkenyl groups, and cycloalkynyl groups. The number of carbon atoms in the cyclic aliphatic hydrocarbon group is preferably 3-10, more preferably 5-8.
Further, in embodiments where the linear or branched aliphatic hydrocarbon group has a cyclic structure, for example, one or more selected from the group consisting of a cycloalkyl group, a cycloalkenyl group, and a cycloalkynyl group and one or more groups selected from the group consisting of an alkyl group, an alkynyl group, and an alkenyl group. In embodiments where the linear or branched aliphatic hydrocarbon group has a cyclic structure, the number of carbon atoms is preferably 4-19, more preferably 5-17, even more preferably 7-15.
 上記複素環基は、環員に炭素原子以外の原子を含む環状構造を有する基をいう。複素環基は、芳香性を有していてもよく、有していなくてもよい。
 芳香性を有する複素環基である、芳香族複素環基は、単環であっても多環であってもよい。芳香族複素環基が有する炭素原子以外の原子としては、窒素原子、酸素原子、および、硫黄原子が挙げられる。
 芳香族複素環基が有する複素環としては、例えば、ピロール環、フラン環、チオフェン環、ピリジン環、ピリミジン環、ピラジン環、イミダゾール環、ピラゾール環、オキサゾール環、および、チアゾール環が挙げられる。
 芳香族複素環基としては、例えば、ピロール、フラン、チオフェン、ピリジン、イミダゾール、ピラゾール、オキサゾール、ベンゾフラン、インドール、ベンゾイミダゾール、プリン、および、ベンゾチオフェンから選択される化合物から、水素原子を1つ取り除いてなる基が挙げられる。
 芳香族複素環基の炭素数は、3~18が好ましい。
The above heterocyclic group refers to a group having a ring structure containing atoms other than carbon atoms as ring members. The heterocyclic group may or may not have aromaticity.
An aromatic heterocyclic group, which is a heterocyclic group having aromaticity, may be monocyclic or polycyclic. Atoms other than carbon atoms possessed by the aromatic heterocyclic group include a nitrogen atom, an oxygen atom, and a sulfur atom.
Heterocyclic rings possessed by aromatic heterocyclic groups include, for example, pyrrole, furan, thiophene, pyridine, pyrimidine, pyrazine, imidazole, pyrazole, oxazole, and thiazole rings.
The aromatic heterocyclic group includes, for example, pyrrole, furan, thiophene, pyridine, imidazole, pyrazole, oxazole, benzofuran, indole, benzimidazole, purine, and benzothiophene, from which one hydrogen atom is removed. and a group consisting of
The number of carbon atoms in the aromatic heterocyclic group is preferably 3-18.
 芳香性を有さない非芳香性複素環基は、単環であっても多環であってもよい。芳香族複素環基が有する炭素原子以外の原子としては、窒素原子、酸素原子、および、硫黄原子が挙げられる。
 非芳香族複素環基としては、例えば、ピロリジン、テトラヒドロフラン、テトラヒドロチオフェン、ピぺリジン、テトラヒドロピラン、テトラヒドロチオピラン、モルホリン、ジオキソラン、ジオキサン、および、トリオキサンから選択される化合物から、水素原子を1つ取り除いてなる基が挙げられる。
 非芳香族複素環基の炭素数は、3~18が好ましい。
A non-aromatic heterocyclic group having no aromatic character may be monocyclic or polycyclic. Atoms other than carbon atoms possessed by the aromatic heterocyclic group include a nitrogen atom, an oxygen atom, and a sulfur atom.
The non-aromatic heterocyclic group includes, for example, compounds selected from pyrrolidine, tetrahydrofuran, tetrahydrothiophene, piperidine, tetrahydropyran, tetrahydrothiopyran, morpholine, dioxolane, dioxane, and trioxane. A removed group can be mentioned.
The non-aromatic heterocyclic group preferably has 3 to 18 carbon atoms.
 また、芳香族複素環基には、芳香族炭化水素環と非芳香族複素環との縮環構造、および、脂肪族炭化水素環と芳香族複素環との縮環構造も含める。
 なお、複素環基は、上記芳香性複素環基と非芳香性複素環基とを組み合わせてなる基であってもよい。
The aromatic heterocyclic group also includes a condensed ring structure of an aromatic hydrocarbon ring and a non-aromatic heterocyclic ring and a condensed ring structure of an aliphatic hydrocarbon ring and an aromatic heterocyclic ring.
The heterocyclic group may be a group formed by combining the aromatic heterocyclic group and the non-aromatic heterocyclic group.
 なお、炭化水素基には、芳香環基が有する水素原子が、脂肪族炭化水素基に置換してなる基も含める。上記態様の基としては、例えば、アラルキル基、および、アルキル基-アリーレン基が挙げられる。芳香環基が有する水素原子が、脂肪族炭化水素基に置換してなる基の炭素数は、7~19が好ましい。 The hydrocarbon group also includes a group obtained by substituting a hydrogen atom of an aromatic ring group with an aliphatic hydrocarbon group. Examples of groups in the above embodiment include aralkyl groups and alkyl-arylene groups. A group obtained by substituting an aliphatic hydrocarbon group for a hydrogen atom of an aromatic ring group preferably has 7 to 19 carbon atoms.
 なお、複素環基には、複素環基が有する水素原子が、脂肪族炭化水素基に置換してなる基も含める。複素環基が有する水素原子が、脂肪族炭化水素基に置換してなる基の炭素数は、4~19が好ましい。 The heterocyclic group also includes a group obtained by substituting a hydrogen atom of the heterocyclic group with an aliphatic hydrocarbon group. The number of carbon atoms in the group obtained by substituting the hydrogen atom of the heterocyclic group with an aliphatic hydrocarbon group is preferably 4-19.
 上記炭化水素基としては、脂肪族炭化水素基が好ましく、直鎖状の脂肪族炭化水素基がより好ましく、直鎖状のアルキル基がさらに好ましい。直鎖状のアルキル基の好ましい炭素数は、直鎖状または分岐鎖状の脂肪族炭化水素基の炭素数の好ましい態様と同様である。 The hydrocarbon group is preferably an aliphatic hydrocarbon group, more preferably a straight-chain aliphatic hydrocarbon group, and even more preferably a straight-chain alkyl group. The preferred number of carbon atoms in the straight-chain alkyl group is the same as the preferred number of carbon atoms in the straight-chain or branched-chain aliphatic hydrocarbon group.
 上記式(1)中、Rが表す炭化水素基は、ハロゲン原子を有していてもよい。ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、および、ヨウ素原子が挙げられ、フッ素原子が好ましい。
 炭化水素基がハロゲン原子を有する場合、炭化水素基の一部の水素原子がハロゲン原子に置換されていてもよく、全ての水素原子がハロゲン原子に置換されていてもよい。
 式(1)中、Rが表す炭化水素基は、ハロゲン原子を有さない無置換の炭化水素基であることも好ましい。
In the above formula (1), the hydrocarbon group represented by R may have a halogen atom. A halogen atom includes a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, with a fluorine atom being preferred.
When the hydrocarbon group has halogen atoms, some of the hydrogen atoms in the hydrocarbon group may be substituted with halogen atoms, or all hydrogen atoms may be substituted with halogen atoms.
In formula (1), the hydrocarbon group represented by R is also preferably an unsubstituted hydrocarbon group having no halogen atom.
 アルデヒド化合物の具体例としては、プロピオンアルデヒド(プロパナール)、グリセルアルデヒド(2,3-ジヒドロキシプロパナール)、2-フルオロプロパナール、2,2,3,3,3-ペンタフルオロプロパナール、ブタナール、ペンタナール、2-メチル-2-ペンテナール、2-メチルペンタナール、フルフラール、2-ホルミルピロール、N-ホルミルモルホリン、2-ホルミルテトラヒドロフラン、3-ホルミルテトラヒドロフラン、ヘキサナール、2-ホルミルピリジン、ヒドロキシメチルフルフラール、N-ホルミルピぺリジン、4-ホルミルテトラヒドロピラン、ヘキセナール、ヘプタナール、シクロヘキサンカルボキシアルデヒド、ベンズアルデヒド、オクタナール、フェニルアセトアルデヒド、2-ホルミルベンズイミダゾール、2-エチルヘキサナール、ノナナール、シンナムアルデヒド、3-ホルミルインドール、2-ホルミルベンゾフラン、2,3-ジヒドロベンゾフラン-5-カルボキシアルデヒド、6-モルホリノニコチンアルデヒド、デカナール、ぺリルアルデヒド、ウンデカナール、ドデカナール、トリデカナール、テトラデカナール、ヘプタデカナール、ヘキサデカナール、ヘプタデカナール、オクタデカナール、ノナデカナール、および、エイコサナールが挙げられる。
 アルデヒド化合物としては、プロピオンアルデヒド(プロパナール)、グリセルアルデヒド(2,3-ジヒドロキシプロパナール)、ブタナール、ペンタナール、ヘキサナール、ヘプタナール、オクタナール、ノナナール、デカナール、ウンデカナール、ドデカナール、トリデカナール、テトラデカナール、ヘプタデカナール、ヘキサデカナール、ヘプタデカナール、または、オクタデカナールが好ましい。
Specific examples of aldehyde compounds include propionaldehyde (propanal), glyceraldehyde (2,3-dihydroxypropanal), 2-fluoropropanal, 2,2,3,3,3-pentafluoropropanal, butanal. , pentanal, 2-methyl-2-pentenal, 2-methylpentanal, furfural, 2-formylpyrrole, N-formylmorpholine, 2-formyltetrahydrofuran, 3-formyltetrahydrofuran, hexanal, 2-formylpyridine, hydroxymethylfurfural, N-formylpiperidine, 4-formyltetrahydropyran, hexenal, heptanal, cyclohexanecarboxaldehyde, benzaldehyde, octanal, phenylacetaldehyde, 2-formylbenzimidazole, 2-ethylhexanal, nonanal, cinnamaldehyde, 3-formylindole, 2- Formylbenzofuran, 2,3-dihydrobenzofuran-5-carboxaldehyde, 6-morpholinonicotinaldehyde, decanal, perylaldehyde, undecanal, dodecanal, tridecanal, tetradecanal, heptadecanal, hexadecanal, heptadecanal , octadecanal, nonadecanal, and eicosanal.
Aldehyde compounds include propionaldehyde (propanal), glyceraldehyde (2,3-dihydroxypropanal), butanal, pentanal, hexanal, heptanal, octanal, nonanal, decanal, undecanal, dodecanal, tridecanal, and tetradecanal. , heptadecanal, hexadecanal, heptadecanal or octadecanal are preferred.
 アルデヒド化合物の含有量は、薬液の全容積に対して、0.0005mol/L以上が好ましく、0.005mol/L以上がより好ましく、0.05mol/L以上がさらに好ましい。アルデヒド化合物の含有量の上限は、薬液の全容積に対して、10mol/L以下が好ましく、5mol/L以下がより好ましく、1mol/L以下がさらに好ましい。
 アルデヒド化合物の含有量が上記好ましい範囲であると、窒化ケイ素系材料上に被膜を形成しやすく、後段で説明する方法で窒化ケイ素系材料上に被膜を形成した際、水の接触角をより大きくしやすい。
The content of the aldehyde compound is preferably 0.0005 mol/L or more, more preferably 0.005 mol/L or more, and even more preferably 0.05 mol/L or more, relative to the total volume of the chemical solution. The upper limit of the content of the aldehyde compound is preferably 10 mol/L or less, more preferably 5 mol/L or less, and even more preferably 1 mol/L or less, relative to the total volume of the chemical solution.
When the content of the aldehyde compound is within the above preferred range, it is easy to form a film on the silicon nitride-based material, and when a film is formed on the silicon nitride-based material by the method described later, the contact angle of water is increased. It's easy to do.
 本発明の薬液は、アルデヒド化合物を2種以上含んでいてもよく、2種以上含むことが好ましい。アルデヒド化合物を2種以上含むと、後段で説明する方法で窒化ケイ素系材料上に被膜を形成した際、水の接触角をより大きくしやすい。
 アルデヒド化合物を2種以上用いる場合、その合計含有量が、上記好ましい範囲であることも好ましい。
 なお、「アルデヒド化合物を2種以上含む」とは、薬液が、2種以上の構造の異なるアルデヒド化合物を含むことをいい、2種以上のアルデヒド化合物は、上記好ましい態様のアルデヒド化合物(例えば、上記式(1)のRが直鎖状のアルキル基を表し、アルキル基の炭素数が7~15の態様)から選択されることも好ましい。
The chemical solution of the present invention may contain two or more aldehyde compounds, preferably two or more. When two or more kinds of aldehyde compounds are contained, the contact angle of water tends to increase when a film is formed on a silicon nitride-based material by the method described later.
When two or more aldehyde compounds are used, the total content is also preferably within the preferred range.
In addition, the phrase "containing two or more aldehyde compounds" means that the chemical contains two or more aldehyde compounds having different structures, and the two or more aldehyde compounds are the above preferred aldehyde compounds (e.g., the above R in formula (1) represents a straight-chain alkyl group, and the alkyl group preferably has 7 to 15 carbon atoms).
[有機溶媒]
 本発明の薬液は、アルデヒド化合物とは異なる有機溶媒を含む。
 有機溶媒としては、アルデヒド化合物と異なれば特に制限されず、一般に用いられる有機溶媒が適用できる。
 有機溶媒としては、例えば、炭化水素系溶媒、アルコール系溶媒、ポリオール系溶媒、グリコールエーテル系溶媒、エーテル系溶媒、ケトン系溶媒、アミド系溶媒、含硫黄系溶媒、および、エステル系溶媒が挙げられる。
[Organic solvent]
The chemical solution of the present invention contains an organic solvent different from the aldehyde compound.
The organic solvent is not particularly limited as long as it differs from the aldehyde compound, and commonly used organic solvents can be applied.
Examples of organic solvents include hydrocarbon solvents, alcohol solvents, polyol solvents, glycol ether solvents, ether solvents, ketone solvents, amide solvents, sulfur-containing solvents, and ester solvents. .
 炭化水素系溶媒としては、n-ペンタン、および、n-ヘキサン等の脂肪族炭化水素系溶媒;シクロヘキサン、および、メチルシクロヘキサン等の脂環式炭化水素系溶媒;トルエン、および、キシレン等の芳香族炭化水素系溶媒が挙げられる。 Examples of hydrocarbon solvents include aliphatic hydrocarbon solvents such as n-pentane and n-hexane; alicyclic hydrocarbon solvents such as cyclohexane and methylcyclohexane; aromatic solvents such as toluene and xylene. Examples include hydrocarbon solvents.
 アルコール系溶媒としては、例えば、エタノール、1-プロパノール、2-プロパノール(イソプロピルアルコール(IPA)ともいう。)、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、イソペンチルアルコール、および、4-メチル-2-ペンタノール(メチルイソブチルカルビノール(MIBC)ともいう。)等の炭素数1~18の脂肪族アルコール系溶媒;シクロヘキサノール等の炭素数3~18の脂環式アルコール系溶媒;ベンジルアルコール等の芳香族アルコール系溶媒;ジアセトンアルコール等のケトンアルコール系溶媒等が挙げられる。
 アルコール系溶媒の炭素数は、2~8が好ましく、2~7がより好ましく、2~6がさらに好ましい。
Examples of alcohol solvents include ethanol, 1-propanol, 2-propanol (also called isopropyl alcohol (IPA)), 2-butanol, isobutyl alcohol, tert-butyl alcohol, isopentyl alcohol, and 4-methyl- Aliphatic alcohol solvents having 1 to 18 carbon atoms such as 2-pentanol (also referred to as methyl isobutyl carbinol (MIBC)); alicyclic alcohol solvents having 3 to 18 carbon atoms such as cyclohexanol; benzyl alcohol, etc. aromatic alcohol solvents; ketone alcohol solvents such as diacetone alcohol;
The number of carbon atoms in the alcohol-based solvent is preferably 2-8, more preferably 2-7, and even more preferably 2-6.
 ポリオール系溶媒としては、例えば、炭素数2~18のグリコール系溶媒が挙げられる。
 グリコール系溶媒としては、エチレングリコール、プロピレングリコール(1,2-プロパンジオール)、1,3-プロパンジオール、ジエチレングリコール、および、ジプロピレングリコールが挙げられる。
Examples of polyol solvents include glycol solvents having 2 to 18 carbon atoms.
Glycol-based solvents include ethylene glycol, propylene glycol (1,2-propanediol), 1,3-propanediol, diethylene glycol, and dipropylene glycol.
 グリコールエーテル系溶媒としては、例えば、炭素数3~19のグリコールモノエーテル系溶媒が挙げられる。
 グリコールモノエーテル系溶媒としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn-プロピルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノn-ブチルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、1-メトキシ-2-プロパノール、2-メトキシ-1-プロパノール、1-エトキシ-2-プロパノール、2-エトキシ-1-プロパノール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノ-n-プロピルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノ-n-プロピルエーテル、トリプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノベンジルエーテル、および、ジエチレングリコールモノベンジルエーテルが挙げられる。
 グリコールエーテル系溶媒の炭素数は、1~8が好ましく、2~7がより好ましく、3~6がさらに好ましい。
Glycol ether solvents include, for example, glycol monoether solvents having 3 to 19 carbon atoms.
Examples of glycol monoether solvents include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-isopropyl ether, ethylene glycol mono-n-butyl ether, diethylene glycol monomethyl ether, and diethylene glycol monoethyl ether. , diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol monobutyl ether, 1-methoxy-2-propanol, 2-methoxy-1-propanol, 1-ethoxy-2-propanol, 2- ethoxy-1-propanol, propylene glycol monomethyl ether, propylene glycol mono-n-propyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono-n-propyl ether, tripropylene glycol monoethyl ether, Tripropylene glycol monomethyl ether, ethylene glycol monobenzyl ether, and diethylene glycol monobenzyl ether are included.
The number of carbon atoms in the glycol ether solvent is preferably 1-8, more preferably 2-7, and even more preferably 3-6.
 ケトン系溶媒としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン、および、シクロヘキサノンが挙げられる。 Ketone solvents include, for example, acetone, methyl ethyl ketone, methyl isobutyl ketone, and cyclohexanone.
 エーテル系溶媒としては、例えば、ジエチルエーテル、ジイソプロピルエーテル、ジブチルエーテル、t-ブチルメチルエーテル、シクロヘキシルメチルエーテル、および、テトラヒドロフランが挙げられる。 Examples of ether solvents include diethyl ether, diisopropyl ether, dibutyl ether, t-butyl methyl ether, cyclohexyl methyl ether, and tetrahydrofuran.
 アミド系溶媒としては、例えば、ホルムアミド、モノメチルホルムアミド、ジメチルホルムアミド、アセトアミド、モノメチルアセトアミド、ジメチルアセトアミド、モノエチルアセトアミド、ジエチルアセトアミド、および、N-メチルピロリドンが挙げられる。 Examples of amide solvents include formamide, monomethylformamide, dimethylformamide, acetamide, monomethylacetamide, dimethylacetamide, monoethylacetamide, diethylacetamide, and N-methylpyrrolidone.
 含硫黄系溶媒としては、例えば、ジメチルスルホン、ジメチルスルホキシド、および、スルホランが挙げられる。 Examples of sulfur-containing solvents include dimethylsulfone, dimethylsulfoxide, and sulfolane.
 エステル系溶媒としては、例えば、酢酸n-ブチル、乳酸エチル、プロピレングリコールアセテート、プロピレングリコールモノメチルエーテルアセテート、γ-ブチロラクトン、および、δ-バレロラクトンが挙げられる。 Examples of ester-based solvents include n-butyl acetate, ethyl lactate, propylene glycol acetate, propylene glycol monomethyl ether acetate, γ-butyrolactone, and δ-valerolactone.
 有機溶媒の含有量は、薬液の全質量に対して、40~99.99質量%が好ましく、50~99.9質量%がより好ましく、60~99質量%がさらに好ましい。
 有機溶媒は、1種を単独で用いてもよく、2種以上を併用してもよい。有機溶媒を2種以上用いる場合、その合計含有量が、上記好ましい範囲であることも好ましい。
The content of the organic solvent is preferably 40 to 99.99% by mass, more preferably 50 to 99.9% by mass, even more preferably 60 to 99% by mass, relative to the total mass of the chemical solution.
An organic solvent may be used individually by 1 type, and may use 2 or more types together. When two or more organic solvents are used, it is also preferable that the total content is within the above preferred range.
 本発明の薬液は、実質的にメタノールを含まないことが好ましい。実質的にメタノールを含まないとは、メタノールの含有量が、薬液の全質量に対して1質量%以下であることをいい、メタノールの含有量は、薬液の全質量に対して0.5質量%以下が好ましく、0.1質量%以下がさらに好ましい。下限は特に制限されないが、0質量%が挙げられる。 The chemical solution of the present invention preferably does not substantially contain methanol. “Substantially free of methanol” means that the content of methanol is 1% by mass or less with respect to the total mass of the chemical solution, and the content of methanol is 0.5 mass with respect to the total mass of the chemical solution. % or less is preferable, and 0.1 mass % or less is more preferable. Although the lower limit is not particularly limited, it may be 0% by mass.
[水]
 本発明の薬液は、実質的に水を含まないことが好ましい。実質的に水を含まないとは、水の含有量が薬液の全質量に対して0.02質量%以下であることをいい、水の含有量は、薬液の全質量に対して0.01質量%以下が好ましく、0.005質量%以下がさらに好ましい。下限は特に制限されないが、0質量%が挙げられる。
 本発明の薬液が実質的に水を含まない場合、後段で説明する方法で窒化ケイ素系材料上に被膜を形成した際、水の接触角をより大きくしやすい。
[water]
Preferably, the chemical solution of the present invention does not substantially contain water. "Substantially free of water" means that the water content is 0.02% by mass or less with respect to the total mass of the chemical solution, and the water content is 0.01% with respect to the total mass of the chemical solution. % by mass or less is preferable, and 0.005% by mass or less is more preferable. Although the lower limit is not particularly limited, it may be 0% by mass.
When the chemical solution of the present invention does not substantially contain water, the contact angle of water tends to increase when a film is formed on a silicon nitride-based material by the method described later.
[その他成分]
 本発明の薬液は、上記以外のその他成分を含んでいてもよい。以下、その他成分について説明する。
[Other ingredients]
The drug solution of the present invention may contain other components than those mentioned above. Other components are described below.
 その他成分としては、カルボン酸化合物が挙げられる。
 その他成分としてのカルボン酸化合物は、上記アルデヒド化合物が酸化して生成したものであってもよい。その他成分としてのカルボン酸化合物が、上記アルデヒド化合物が酸化して生成したものである場合、そのカルボン酸化合物の構造は、アルデヒド化合物のアルデヒド基がカルボキシ基に酸化されたものが挙げられる。
 また、その他成分として、上記アルデヒド化合物に由来しない構造のカルボン酸化合物を含んでいてもよい。
 カルボン酸化合物の含有量は、薬液の全質量に対して、10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下がさらに好ましく、1質量%以下が特に好ましく、0.5質量%以下が最も好ましい。カルボン酸化合物の含有量の下限は特に制限されないが、0質量%以上が挙げられ、0質量%であってもよい。
Other components include carboxylic acid compounds.
The carboxylic acid compound as another component may be produced by oxidation of the aldehyde compound. When the carboxylic acid compound as the other component is produced by oxidation of the above aldehyde compound, the structure of the carboxylic acid compound may be one in which the aldehyde group of the aldehyde compound is oxidized to a carboxy group.
In addition, as other components, a carboxylic acid compound having a structure not derived from the aldehyde compound may be included.
The content of the carboxylic acid compound is preferably 10% by mass or less, more preferably 5% by mass or less, even more preferably 3% by mass or less, particularly preferably 1% by mass or less, and 0.5% by mass or less, based on the total mass of the chemical solution. % by mass or less is most preferred. Although the lower limit of the content of the carboxylic acid compound is not particularly limited, it may be 0% by mass or more, and may be 0% by mass.
 その他成分としては、酸化防止剤が挙げられる。
 酸化防止剤は、アルデヒド化合物の酸化を低減するために用いてもよく、公知の化合物を用いることができる。酸化防止剤としては、フェノール系酸化防止剤、ヒンダードアミン系酸化防止剤、リン系酸化防止剤、硫黄系酸化防止剤、ベンゾトリアゾール系酸化防止剤、ベンゾフェノン系酸化防止剤、ヒドロキシルアミン系酸化防止剤、サルチル酸エステル系酸化防止剤、および、トリアジン系酸化防止剤等が挙げられる。より具体的には、国際公開第2018/043690号の段落[0019]~[0026]に記載の酸化防止剤が挙げられる。
Other components include antioxidants.
Antioxidants may be used to reduce oxidation of aldehyde compounds, and known compounds can be used. Antioxidants include phenol antioxidants, hindered amine antioxidants, phosphorus antioxidants, sulfur antioxidants, benzotriazole antioxidants, benzophenone antioxidants, hydroxylamine antioxidants, Examples include salicylic acid ester-based antioxidants and triazine-based antioxidants. More specifically, antioxidants described in paragraphs [0019] to [0026] of WO 2018/043690 can be mentioned.
<薬液の製造方法>
 本発明の薬液の製造方法は特に制限されず、例えば、上記の各成分を混合することにより製造できる。各成分を混合する順序またはタイミング、ならびに、順序およびタイミングは、特に制限されない。例えば、精製した有機溶媒を入れた混合ミキサー等の撹拌機に、アルデヒド化合物を添加した後に十分撹拌することにより、薬液を製造する方法が挙げられる。
 本発明の薬液を製造する製造工程において、以下に説明する工程を行ってもよい。
[金属除去工程]
 上記製造方法は、上記成分および/または薬液(以下、「被精製物」ともいう。)から金属成分を除去する、金属除去工程を行ってもよい。
 金属除去工程としては、被精製物をイオン交換法に供する工程Pが挙げられる。
<Method for producing chemical solution>
The method for producing the chemical solution of the present invention is not particularly limited, and for example, it can be produced by mixing the above components. The order or timing of mixing each component, and the order and timing are not particularly limited. For example, a chemical solution can be produced by adding an aldehyde compound to a mixer such as a mixing mixer containing a purified organic solvent and sufficiently stirring the mixture.
In the manufacturing process for manufacturing the chemical solution of the present invention, the steps described below may be performed.
[Metal removal step]
The production method may include a metal removal step of removing metal components from the components and/or the chemical solution (hereinafter also referred to as "substance to be purified").
Examples of the metal removal step include step P of subjecting the material to be purified to an ion exchange method.
(工程P)
 工程Pでは、上述した被精製物をイオン交換法に供する。
 イオン交換法としては、被精製物中の金属成分量を調整できる(減らすことができる)方法であれば特に制限されないが、薬液の製造がより容易である観点から、イオン交換法は、以下の方法P1~方法P3の1種以上を含むことが好ましい。イオン交換法は、方法P1~方法P3のうちの2種以上を含むことがより好ましく、方法P1~方法P3の全てを含むことがさらに好ましい。なお、イオン交換法が方法P1~方法P3を全て含む場合は、その実施順番は特に制限されないが、方法P1~方法P3の順に実施することが好ましい。
 方法P1:カチオン交換樹脂、アニオン交換樹脂、および、キレート樹脂からなる群から選択される2種以上の樹脂を含む混合樹脂が充填された第1充填部に被精製物を通液する方法。
 方法P2:カチオン交換樹脂が充填された第2充填部、アニオン交換樹脂が充填された第3充填部、および、キレート樹脂が充填された第4充填部のうちの少なくとも1種の充填部に被精製物を通液する方法。
 方法P3:膜状イオン交換体に被精製物を通液する方法。
(Process P)
In step P, the material to be purified is subjected to an ion exchange method.
The ion exchange method is not particularly limited as long as it is a method that can adjust (reduce) the amount of metal components in the substance to be purified. Preferably, one or more of methods P1-P3 are included. More preferably, the ion exchange method includes two or more of methods P1 to P3, and more preferably includes all of methods P1 to P3. When the ion exchange method includes all of the methods P1 to P3, the order of implementation is not particularly limited, but it is preferable to carry out the methods P1 to P3 in that order.
Method P1: A method of passing the substance to be purified through a first filling section filled with a mixed resin containing two or more resins selected from the group consisting of a cation exchange resin, an anion exchange resin, and a chelate resin.
Method P2: Covering at least one of the second filling section filled with the cation exchange resin, the third filling section filled with the anion exchange resin, and the fourth filling section filled with the chelate resin A method of passing a purified product through a liquid.
Method P3: A method of passing the substance to be purified through a membrane ion exchanger.
 各方法で使用されるイオン交換樹脂(カチオン交換樹脂、アニオン交換樹脂)、キレート樹脂、および膜状イオン交換体は、H形またはOH形以外の形態である場合、それぞれ、H形またはOH形に再生した上で使用するのが好ましい。
 また、各方法での被精製物の空間速度(SV)は0.01~20.0(1/h)が好ましく、0.1~10.0(1/h)がより好ましい。
 また、各方法での処理温度は、0~60℃が好ましく、10~50℃がより好ましい。
The ion exchange resins (cation exchange resins, anion exchange resins), chelate resins, and membranous ion exchangers used in each method, if in a form other than H + form or OH - form, are H + form or It is preferably used after being regenerated to the OH - form.
The space velocity (SV) of the material to be purified in each method is preferably 0.01 to 20.0 (1/h), more preferably 0.1 to 10.0 (1/h).
The treatment temperature in each method is preferably 0 to 60.degree. C., more preferably 10 to 50.degree.
 また、イオン交換樹脂およびキレート樹脂の形態としては、例えば、粒状、繊維状、および、多孔質モノリス状が挙げられ、粒状または繊維状であるのが好ましい。
 粒状のイオン交換樹脂およびキレート樹脂の粒径の平均粒径としては、10~2000μmが好ましく、100~1000μmがより好ましい。
 粒状のイオン交換樹脂およびキレート樹脂の粒径分布としては、平均粒径の±200μmの範囲の樹脂粒存在率が90%以上であるのが好ましい。
 上記平均粒径および粒径分布は、例えば、粒子径分布測定装置(マイクロトラックHRA3920,日機装社製)を用いて、水を分散媒として測定する方法が挙げられる。
The forms of ion exchange resins and chelate resins include, for example, granular, fibrous, and porous monolithic forms, with granular or fibrous forms being preferred.
The average particle diameter of the granular ion exchange resin and chelate resin is preferably 10 to 2000 μm, more preferably 100 to 1000 μm.
As for the particle size distribution of the granular ion-exchange resin and chelate resin, it is preferable that the proportion of resin particles in the range of ±200 μm of the average particle size is 90% or more.
The average particle size and particle size distribution can be measured, for example, by using a particle size distribution analyzer (Microtrac HRA3920, manufactured by Nikkiso Co., Ltd.) using water as a dispersion medium.
 イオン交換法は、被精製物に含まれる金属成分の含有量が、上述した好ましい金属成分の含有量の範囲となるまで実施するのが好ましい。 The ion exchange method is preferably carried out until the content of the metal components contained in the material to be purified falls within the preferred range of the content of the metal components described above.
[ろ過工程]
 上記製造方法は、異物および粗大粒子等を液中から除去するために、液をろ過する、ろ過工程を含むことが好ましい。
 ろ過の方法としては特に制限されず、公知のろ過方法を使用できる。中でも、フィルタを用いたフィルタリングが好ましい。
[Filtration process]
The manufacturing method preferably includes a filtration step of filtering the liquid in order to remove foreign matter, coarse particles, and the like from the liquid.
The filtration method is not particularly limited, and known filtration methods can be used. Among them, filtering using a filter is preferable.
 フィルタリングに使用されるフィルタは、従来からろ過用途等に用いられるものであれば特に制限されることなく使用できる。フィルタを構成する材料としては、例えば、PTFE(ポリテトラフルオロエチレン)等のフッ素系樹脂、ナイロン等のポリアミド系樹脂、ポリエチレンおよびポリプロピレン(PP)等のポリオレフィン樹脂(高密度、超高分子量を含む)、ならびに、ポリアリールスルホン等が挙げられる。中でも、ポリアミド系樹脂、PTFE、ポリプロピレン(高密度ポリプロピレンを含む)、および、ポリアリールスルホンが好ましい。
 フィルタの臨界表面張力として、下限値としては70mN/m以上が好ましく、上限値としては、95mN/m以下が好ましい。特に、フィルタの臨界表面張力は、75~85mN/mが好ましい。
 なお、臨界表面張力の値は、製造メーカーの公称値である。
Filters used for filtering can be used without any particular limitation as long as they are conventionally used for filtering purposes. Materials constituting the filter include, for example, fluorine-based resins such as PTFE (polytetrafluoroethylene), polyamide-based resins such as nylon, and polyolefin resins such as polyethylene and polypropylene (PP) (including high-density and ultra-high molecular weight). , and polyarylsulfones. Among them, polyamide resin, PTFE, polypropylene (including high-density polypropylene), and polyarylsulfone are preferred.
As the critical surface tension of the filter, the lower limit is preferably 70 mN/m or more, and the upper limit is preferably 95 mN/m or less. In particular, the critical surface tension of the filter is preferably 75-85 mN/m.
The critical surface tension value is the manufacturer's nominal value.
 フィルタの孔径は、0.001~1.0μm程度が好ましく、0.02~0.5μm程度がより好ましく、0.01~0.1μm程度がさらに好ましい。フィルタの孔径を上記範囲とすることで、ろ過詰まりを抑えつつ、薬液に含まれる微細な異物を確実に除去することが可能となる。 The pore size of the filter is preferably about 0.001-1.0 μm, more preferably about 0.02-0.5 μm, and even more preferably about 0.01-0.1 μm. By setting the pore diameter of the filter within the above range, it is possible to reliably remove fine foreign matter contained in the chemical solution while suppressing filter clogging.
 フィルタを使用する際、異なるフィルタを組み合わせてもよい。その際、第1のフィルタでのフィルタリングは、1回のみでもよいし、2回以上行ってもよい。異なるフィルタを組み合わせて2回以上フィルタリングを行う場合には、各フィルタは、互いに同じ種類のものであってもよいし、互いに種類が異なってもよいが、互いに種類が異なることが好ましい。典型的には、第1のフィルタと第2フィルタとは、孔径および構成素材のうちの少なくとも一方が異なっていることが好ましい。
 1回目のフィルタリングの孔径より2回目以降の孔径が同じ、または、小さい方が好ましい。また、上記の範囲内で異なる孔径の第1のフィルタを組み合わせてもよい。ここでの孔径は、フィルタメーカーの公称値を参照できる。
When using filters, different filters may be combined. At that time, the filtering by the first filter may be performed only once, or may be performed twice or more. When filtering is performed two or more times by combining different filters, the filters may be of the same type or of different types, but are preferably of different types. Typically, the first filter and the second filter preferably differ in at least one of pore size and material of construction.
It is preferable that the pore size in the second and subsequent filtering is the same as or smaller than the pore size in the first filtering. Also, the first filters having different pore diameters within the above range may be combined. The pore size here can refer to the nominal value of the filter manufacturer.
[除電工程]
 薬液の製造方法は、さらに、薬液を除電する除電工程を含んでいてもよい。
[Static elimination process]
The chemical solution manufacturing method may further include a static elimination step of neutralizing the chemical solution.
[容器]
 薬液を収容する容器としては、例えば、公知の容器を使用できる。
 容器は、半導体用途向けの容器内のクリーン度が高く、かつ、不純物の溶出が少ないものが好ましい。
 容器としては、例えば、「クリーンボトル」シリーズ(アイセロ化学社製)、および、「ピュアボトル」(コダマ樹脂工業製)が挙げられる。また、原材料、および、薬液への不純物混入(コンタミ)防止の点で、容器内壁を6種の樹脂からなる6層構造である多層容器、または、7種の樹脂からなる7層構造である多層容器を使用することも好ましい。
 多層容器としては、例えば、特開2015-123351号公報に記載の容器が挙げられ、それらの内容は本明細書に組み込まれる。
 容器内壁の材料としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、および、ポリエチレン-ポリプロピレン樹脂からなる群より選択される少なくとも1つの第1樹脂、第1樹脂とは異なる第2樹脂、ならびに、ステンレス、ハステロイ、インコネル、および、モネル等の金属が挙げられる。また、容器内壁は、上記材料を用いて、形成されるまたは被覆されることが好ましい。
[container]
For example, a known container can be used as the container for storing the chemical solution.
It is preferable that the container has a high degree of cleanliness in the container for use in semiconductors and less elution of impurities.
Examples of containers include "Clean Bottle" series (manufactured by Aicello Chemical Co., Ltd.) and "Pure Bottle" (manufactured by Kodama Resin Industry). In addition, from the viewpoint of preventing contamination of raw materials and chemicals, the inner wall of the container is a multilayer container having a six-layer structure composed of six resins, or a multilayer container having a seven-layer structure composed of seven resins. It is also preferred to use a container.
Examples of multilayer containers include containers described in JP-A-2015-123351, the contents of which are incorporated herein.
Materials for the inner wall of the container include, for example, at least one first resin selected from the group consisting of polyethylene resin, polypropylene resin, and polyethylene-polypropylene resin, a second resin different from the first resin, stainless steel, and hastelloy. , Inconel, and Monel. Also, the inner wall of the container is preferably formed or coated using the above materials.
 第2樹脂としては、フッ素樹脂(パーフルオロ樹脂)が好ましい。
 フッ素樹脂を用いた場合、エチレンまたはプロピレンのオリゴマーの溶出を抑制できる。
 上記容器としては、例えば、FluoroPurePFA複合ドラム(Entegris社製)、特表平3-502677号公報の第4頁、国際公開第2004/016526号パンフレットの第3頁、ならびに、国際公開第99/046309号パンフレットの第9頁、および、第16頁に記載の容器が挙げられる。
A fluorine resin (perfluoro resin) is preferable as the second resin.
When a fluororesin is used, elution of oligomers of ethylene or propylene can be suppressed.
Examples of the container include FluoroPure PFA composite drum (manufactured by Entegris), page 4 of Japanese Patent Publication No. 3-502677, page 3 of International Publication No. 2004/016526, and International Publication No. 99/046309. No. 9 pamphlet and the container described on page 16 can be mentioned.
 容器内壁としては、フッ素樹脂以外に、例えば、石英、および、電解研磨された金属材料(電解研磨済みの金属材料)も好ましい。
 電解研磨された金属材料に用いられる金属材料は、クロム(Cr)、および、ニッケル(Ni)からなる群より選択される少なくとも1つを含み、Cr、および、Niの合計含有量が金属材料の全質量に対して25質量%超である金属材料が好ましい。例えば、ステンレス鋼、および、Ni-Cr合金が挙げられる。
 金属材料におけるCr、および、Niの合計含有量は、金属材料の全質量に対して、25質量%以上が好ましく、30質量%以上がより好ましい。上限は、金属材料の全質量に対して、90質量%以下が好ましい。
As the inner wall of the container, for example, quartz and an electropolished metal material (electropolished metal material) are also preferable other than the fluororesin.
The metal material used for the electrolytically polished metal material contains at least one selected from the group consisting of chromium (Cr) and nickel (Ni), and the total content of Cr and Ni is Preference is given to metallic materials that are more than 25% by weight relative to the total weight. Examples include stainless steel and Ni--Cr alloys.
The total content of Cr and Ni in the metal material is preferably 25% by mass or more, more preferably 30% by mass or more, relative to the total mass of the metal material. The upper limit is preferably 90% by mass or less with respect to the total mass of the metal material.
 ステンレス鋼としては、例えば、公知のステンレス鋼が挙げられる。
 中でも、Niを8質量%以上含むステンレス鋼が好ましく、Niを8質量%以上含むオーステナイト系ステンレス鋼がより好ましい。
Examples of stainless steel include known stainless steels.
Among them, stainless steel containing 8% by mass or more of Ni is preferable, and austenitic stainless steel containing 8% by mass or more of Ni is more preferable.
 Ni-Cr合金としては、例えば、公知のNi-Cr合金が挙げられる。
 中でも、Ni含有量が40~75質量%であり、Cr含有量が1~30質量%であるNi-Cr合金が好ましい。
 Ni-Cr合金は、必要に応じて、上記合金以外に、さらに、ホウ素、ケイ素、タングステン、モリブデン、銅、または、コバルトを含んでいてもよい。
Ni--Cr alloys include, for example, known Ni--Cr alloys.
Among them, a Ni—Cr alloy having a Ni content of 40 to 75% by mass and a Cr content of 1 to 30% by mass is preferable.
The Ni—Cr alloy may further contain boron, silicon, tungsten, molybdenum, copper, or cobalt in addition to the above alloys, if necessary.
 金属材料を電解研磨する方法としては、例えば、公知の方法が挙げられる。
 具体的には、特開2015-227501号公報の段落[0011]~[0014]、および、特開2008-264929号公報の段落[0036]~[0042]に記載された方法が挙げられ、それらの内容は本明細書に組み込まれる。
Examples of methods for electropolishing a metal material include known methods.
Specifically, the methods described in paragraphs [0011] to [0014] of JP-A-2015-227501 and paragraphs [0036] to [0042] of JP-A-2008-264929 are mentioned. the contents of which are incorporated herein.
 金属材料はバフ研磨されていることが好ましい。
 バフ研磨の方法としては、例えば、公知の方法が挙げられる。
 バフ研磨の仕上げに用いられる研磨砥粒のサイズは、金属材料の表面の凹凸がより小さくなりやすい点で、#400以下が好ましい。バフ研磨は、電解研磨の前に行われることが好ましい。
 金属材料は、研磨砥粒のサイズ等の番手を変えて行われる複数段階のバフ研磨、酸洗浄、および、磁性流体研磨等を、1または2以上組み合わせて処理されてもよい。
The metal material is preferably buffed.
Examples of the buffing method include known methods.
The size of the abrasive grains used for the buffing finish is preferably #400 or less because the unevenness of the surface of the metal material is likely to be smaller. Buffing is preferably performed before electropolishing.
The metal material may be processed by combining one or more of multiple stages of buffing, acid cleaning, magnetic fluid polishing, and the like, which are performed by changing the count such as the size of abrasive grains.
 容器は、薬液を充填する前に容器内部を洗浄することが好ましい。
 洗浄に用いる液体は、用途に応じて適宜選択でき、薬液または薬液に添加している成分の少なくとも1つを含む液体が好ましい。
The inside of the container is preferably cleaned before being filled with the chemical solution.
The liquid used for washing can be appropriately selected according to the application, and liquid containing at least one of the chemical solution or the component added to the chemical solution is preferable.
 保管における薬液中の成分の変化を防ぐ点で、容器内を純度99.99995体積%以上の不活性ガス(例えば、窒素、および、アルゴン)で置換してもよい。特に含水率が少ないガスが好ましい。また、薬液を収容した容器の輸送、および、保管の際には、常温、および、温度制御のいずれであってもよい。中でも、変質を防ぐ点で、-20~20℃の範囲に温度制御することが好ましい。 The inside of the container may be replaced with an inert gas (for example, nitrogen and argon) with a purity of 99.99995% by volume or more in order to prevent changes in the components of the chemical solution during storage. A gas with a particularly low water content is preferred. Further, when transporting and storing the container containing the chemical solution, either room temperature or temperature control may be used. Among them, it is preferable to control the temperature in the range of -20 to 20°C from the viewpoint of preventing deterioration.
<薬液の用途>
 本発明の薬液は、窒化ケイ素系材料含有基板(窒化ケイ素系材料と、窒化ケイ素系材料以外のケイ素系材料とを含む基板)の処理に用いることが好ましい。
 窒化ケイ素系材料含有基板の処理方法としては、本発明の薬液と、窒化ケイ素系材料含有基板とを接触させればよい。上記処理により、上記窒化ケイ素系材料含有基板の窒化ケイ素系材料上に、本発明の薬液に含まれるアルデヒド化合物を含む被膜が形成された修飾基板が得られる。修飾基板の製造方法については後段で説明する。
<Application of chemical solution>
The chemical solution of the present invention is preferably used for processing a silicon nitride-based material-containing substrate (a substrate containing a silicon nitride-based material and a silicon-based material other than a silicon nitride-based material).
As a method for treating a silicon nitride-based material-containing substrate, the chemical solution of the present invention may be brought into contact with the silicon nitride-based material-containing substrate. By the above treatment, a modified substrate is obtained in which a film containing the aldehyde compound contained in the chemical solution of the present invention is formed on the silicon nitride-based material of the silicon nitride-based material-containing substrate. A method for manufacturing the modified substrate will be described later.
 窒化ケイ素系材料含有基板は、窒化ケイ素系材料と、窒化ケイ素系材料以外のケイ素系材料とを含む基板である。窒化ケイ素系材料含有基板の表面において、窒化ケイ素系材料で形成された領域と、ケイ素系材料で形成された領域とを有することが好ましい。 A substrate containing a silicon nitride-based material is a substrate containing a silicon nitride-based material and a silicon-based material other than the silicon nitride-based material. It is preferable that the surface of the silicon nitride-based material-containing substrate has a region formed of a silicon nitride-based material and a region formed of a silicon-based material.
 窒化ケイ素系材料含有基板が含む窒化ケイ素系材料とは、ケイ素(Si)と窒素(N)とを含む材料のことをいい、それ以外の元素(その他の元素)を含んでいてもよい。窒化ケイ素系材料が含んでいてもよいその他の元素としては、特に制限されないが、水素、ホウ素、炭素、酸素、フッ素、および、リンが挙げられる。
 窒化ケイ素系材料における、ケイ素と窒素との合計含有量は、窒化ケイ素系材料の全モル量に対して、50モル%以上が好ましく、70モル%以上がより好ましい。上限は特に制限されず、100モル%であってもよい。
 窒化ケイ素系材料のより具体的な態様としては、例えば、SiNの組成で表される材料(xが好ましくは0.3~1.5、より好ましくは0.5~1.4を表す。)が挙げられる。SiNの組成で表される材料としては、Siの組成で表される材料も好ましい。
 窒化ケイ素系材料の形成方法は特に制限されず、公知の方法を用いることができ、例えば、CVD法、物理蒸着法、および、窒素原子を含むプラズマの照射等が挙げられる。
The silicon nitride-based material contained in the silicon nitride-based material-containing substrate refers to a material containing silicon (Si) and nitrogen (N), and may contain other elements (other elements). Other elements that the silicon nitride-based material may contain include, but are not limited to, hydrogen, boron, carbon, oxygen, fluorine, and phosphorus.
The total content of silicon and nitrogen in the silicon nitride-based material is preferably 50 mol % or more, more preferably 70 mol % or more, relative to the total molar amount of the silicon nitride-based material. The upper limit is not particularly limited, and may be 100 mol %.
A more specific embodiment of the silicon nitride-based material is, for example, a material represented by the composition of SiN x (where x is preferably 0.3 to 1.5, more preferably 0.5 to 1.4). ). As the material represented by the composition of SiNx , a material represented by the composition of Si3N4 is also preferable.
The method of forming the silicon nitride-based material is not particularly limited, and known methods can be used, such as CVD, physical vapor deposition, and plasma irradiation containing nitrogen atoms.
 窒化ケイ素系材料含有基板が含むケイ素系材料とは、窒化ケイ素系材料とは異なる、ケイ素を含む材料のこといい、窒素以外の以外の元素(その他元素)を含んでいてもよい。ケイ素系材料が含んでいてもよいその他元素としては、特に制限されないが、水素、ホウ素、炭素、酸素、フッ素、および、リンが挙げられ、炭素および酸素からなる群から選択される1種以上の元素を含むことが好ましい。
 ケイ素系材料におけるケイ素の含有量は、ケイ素系材料の全モル量に対して、15モル%以上が好ましく、30モル%以上がより好ましい。上限は特に制限されず、100モル%であってもよい。
 ケイ素系材料のより具体的な態様としては、例えば、Siの組成で表される材料、SiOの組成で表される材料(yが好ましくは0.5~2.0、より好ましくは1.0~2.0を表す。)、および、SiOの組成で表される材料(zが好ましくは0.5~2.0、より好ましくは1.0~2.0を表し、wが好ましくは0.5~2.0、より好ましくは1.0~2.0を表す。)が挙げられる。SiOの組成で表される材料としては、SiOの組成で表される材料も好ましい。また、SiOの組成で表される材料、および、SiOの組成で表される材料は、さらに水素を含んでいてもよい。
 ケイ素系材料の形成方法は特に制限されず、公知の方法を用いることができ、例えば、CVD法、物理蒸着法、上記含有元素を含むプラズマの照射、および、ケイ素を含む前駆体化合物の塗布等が挙げられる。
The silicon-based material contained in the silicon nitride-based material-containing substrate refers to a material containing silicon, which is different from the silicon nitride-based material, and may contain elements other than nitrogen (other elements). Other elements that the silicon-based material may contain include, but are not limited to, hydrogen, boron, carbon, oxygen, fluorine, and phosphorus, and one or more selected from the group consisting of carbon and oxygen. Elements are preferably included.
The content of silicon in the silicon-based material is preferably 15 mol % or more, more preferably 30 mol % or more, relative to the total molar amount of the silicon-based material. The upper limit is not particularly limited, and may be 100 mol %.
More specific aspects of the silicon-based material include, for example, a material represented by a composition of Si, a material represented by a composition of SiO y (where y is preferably 0.5 to 2.0, more preferably 1.5 to 2.0). 0 to 2.0), and a material represented by the composition of SiO z C w (z preferably represents 0.5 to 2.0, more preferably 1.0 to 2.0, w is preferably 0.5 to 2.0, more preferably 1.0 to 2.0). A material represented by a composition of SiO 2 is also preferable as a material represented by a composition of SiO y . In addition, the material represented by the composition SiO y and the material represented by the composition SiO z Cw may further contain hydrogen.
The method of forming the silicon-based material is not particularly limited, and known methods can be used, such as CVD, physical vapor deposition, plasma irradiation containing the above-described element, and application of a precursor compound containing silicon. is mentioned.
 また、窒化ケイ素系材料含有基板は、窒化ケイ素系材料およびケイ素系材料以外の材料を有していてもよく、例えば、金属材料が挙げられる。金属材料としては、アルミニウム、銅、ルテニウム、および、タングステンからなる群から選択される1種以上の元素を含む材料が挙げられる。 In addition, the silicon nitride-based material-containing substrate may have a material other than the silicon nitride-based material and the silicon-based material, such as a metal material. Metal materials include materials containing one or more elements selected from the group consisting of aluminum, copper, ruthenium, and tungsten.
 上記処理によって、窒化ケイ素系材料含有基板の窒化ケイ素系材料上にアルデヒド化合物を含む被膜が形成されることが好ましく、窒化ケイ素系材料上のみにアルデヒド化合物を含む被膜が形成されることがより好ましい。上記形成されたアルデヒド化合物を含む被膜は、水に対する接触角が大きいことが好ましい。
 さらに、アルデヒド化合物を含む被膜は、化学気相成長法(CVD:Chemical Vapar Deposition)で窒化ケイ素系材料含有基板に対して膜を形成する際のマスクとして機能することが好ましい。すなわち、本発明の薬液によって形成されたアルデヒド化合物を含む被膜が形成された領域においては、CVDによる膜(以下、「CVD膜」ともいう。)が堆積しにくく、アルデヒド化合物を含む被膜が形成されていない領域においてCVD膜が堆積することが好ましい。アルデヒド化合物を含む被膜がCVDのマスクとして機能する場合、窒化ケイ素系材料含有基板上のケイ素系材料で形成される領域に、選択的にCVD膜が形成された積層体が得られる。積層体の製造方法については、後段で説明する。
 アルデヒド化合物を含む被膜の水の接触角は、アルデヒド化合物を含む被膜がCVDのマスクとして機能しやすい点で、50°以上が好ましく、60°以上がより好ましく、80°以上がさらに好ましい。上限は特に制限されず、120°以下の場合が多い。
By the above treatment, it is preferable that a coating containing an aldehyde compound is formed on the silicon nitride-based material of the silicon nitride-based material-containing substrate, and more preferably a coating containing an aldehyde compound is formed only on the silicon nitride-based material. . The film containing the aldehyde compound thus formed preferably has a large contact angle with water.
Furthermore, the film containing the aldehyde compound preferably functions as a mask when forming a film on the substrate containing the silicon nitride-based material by chemical vapor deposition (CVD). That is, in the region where the film containing the aldehyde compound formed by the chemical solution of the present invention is formed, the film formed by CVD (hereinafter also referred to as "CVD film") is difficult to deposit, and the film containing the aldehyde compound is not formed. It is preferred that the CVD film is deposited in areas that are not exposed. When the film containing the aldehyde compound functions as a mask for CVD, a layered product is obtained in which the CVD film is selectively formed on the region formed of the silicon-based material on the substrate containing the silicon nitride-based material. A method for manufacturing the laminate will be described later.
The water contact angle of the film containing the aldehyde compound is preferably 50° or more, more preferably 60° or more, and even more preferably 80° or more, because the film containing the aldehyde compound easily functions as a mask for CVD. The upper limit is not particularly limited, and is often 120° or less.
<修飾基板の製造方法>
 アルデヒド化合物を含む被膜を含む修飾基板は、本発明の薬液と、窒化ケイ素系材料含有基板とを接触させて製造されることが好ましい。窒化ケイ素系材料含有基板の好ましい態様は、上述した通りである。なお、アルデヒド化合物を含む被膜は窒化ケイ素系材料上のみに形成されることが好ましい。また、アルデヒド化合物を含む被膜はCVDのマスクとして機能することがより好ましい。より好ましい態様の修飾基板は、積層体の製造に好ましく適用できる。
<Manufacturing method of modified substrate>
A modified substrate containing a film containing an aldehyde compound is preferably produced by bringing the chemical solution of the present invention into contact with a substrate containing a silicon nitride-based material. Preferred aspects of the silicon nitride-based material-containing substrate are as described above. Incidentally, it is preferable that the film containing the aldehyde compound is formed only on the silicon nitride-based material. Moreover, it is more preferable that the film containing the aldehyde compound functions as a mask for CVD. A more preferred embodiment of the modified substrate can be preferably applied to the production of laminates.
 接触方法は特に制限されず、窒化ケイ素系材料含有基板上に薬液を塗布または噴霧する方法、および、薬液に窒化ケイ素系材料含有基板を浸漬する方法が挙げられる。窒化ケイ素系材料含有基板に薬液を塗布する方法は特に制限されず、公知の方法を用いることができ、例えば、スピンコートが挙げられる。また、薬液に窒化ケイ素系材料含有基板を浸漬する際、薬液を対流させてもよい。
 接触時の温度は特に制限されないが、10~100℃が好ましい。
 接触時間は特に制限されないが、1分~20時間が好ましい。
The contact method is not particularly limited, and includes a method of coating or spraying a chemical solution onto the silicon nitride-based material-containing substrate, and a method of immersing the silicon nitride-based material-containing substrate in the chemical solution. The method of applying the chemical solution to the silicon nitride-based material-containing substrate is not particularly limited, and a known method can be used, such as spin coating. Further, when the silicon nitride-based material-containing substrate is immersed in the chemical, the chemical may be caused to convect.
The contact temperature is not particularly limited, but is preferably 10 to 100°C.
The contact time is not particularly limited, but preferably 1 minute to 20 hours.
 また窒化ケイ素系材料含有基板に薬液を接触させた後、加熱することも好ましい。加熱により、薬液に含まれる溶媒を除去し、アルデヒド化合物を含む被膜をより密にすることができる。
 加熱温度は特に制限されないが、50~300℃が好ましく、60~180℃がより好ましい。
 加熱方法は特に制限されず、発熱体と接触させる方法(例えば、ホットプレートによる加熱)、および、赤外線を照射する方法が挙げられる。
It is also preferable to heat the silicon nitride-based material-containing substrate after bringing the chemical solution into contact with the substrate. By heating, the solvent contained in the chemical solution can be removed and the film containing the aldehyde compound can be made denser.
Although the heating temperature is not particularly limited, 50 to 300°C is preferable, and 60 to 180°C is more preferable.
The heating method is not particularly limited, and includes a method of contacting with a heating element (for example, heating with a hot plate) and a method of irradiating with infrared rays.
 また、薬液を接触させた窒化ケイ素系材料含有基板に対してリンス処理を施すことも好ましい。リンス処理により、所望の領域以外に付着した窒化ケイ素系材料含有基板上のアルデヒド化合物を基板から除去することができる。
 リンス方法は特に制限されないが、リンス液と薬液を接触させた窒化ケイ素系材料含有基板とを接触させる方法が挙げられる。接触方法としては、上記薬液と窒化ケイ素系材料含有基板とを接触させる方法と同様の方法が挙げられる。接触時の温度は特に制限されないが、10~50℃が好ましい。
 リンス液は特に制限されないが、本発明の薬液に含まれる有機溶媒が挙げられる。上記アルデヒド化合物を含む被膜の形成に用いた薬液に含まれる有機溶媒をリンス液として用いてもよい。
It is also preferable to perform a rinsing treatment on the silicon nitride-based material-containing substrate that has been brought into contact with the chemical solution. The rinsing treatment can remove the aldehyde compound on the silicon nitride-based material-containing substrate that adheres to areas other than the desired area from the substrate.
Although the rinsing method is not particularly limited, a method of contacting a silicon nitride-based material-containing substrate that has been brought into contact with a rinsing solution and a chemical solution can be mentioned. As a contacting method, the same method as the method of contacting the chemical solution with the substrate containing the silicon nitride-based material can be used. The contact temperature is not particularly limited, but is preferably 10 to 50°C.
Although the rinse liquid is not particularly limited, organic solvents contained in the chemical solution of the present invention can be used. An organic solvent contained in the chemical liquid used for forming the film containing the aldehyde compound may be used as the rinse liquid.
 なお、窒化ケイ素系材料含有基板は、本発明の薬液と、窒化ケイ素系材料含有基板とを接触させる前に前処理を行ってもよい。前処理としては、本発明の薬液とは異なる処理液と接触させる処理が挙げられる。接触方法としては、窒化ケイ素系材料含有基板を処理液に浸漬する方法が好ましく、浸漬の際に処理液を対流させてもよい。接触時の処理液の温度は特に制限されないが、10~60℃が好ましい。
 上記処理液としては、酸性化合物を含む水溶液が挙げられる。酸性化合物としては、フッ化水素、ヘキサフルオロケイ酸、ヘキサフルオロチタン酸、ヘキサフルオロジルコニウム酸、ヘキサフルオロリン酸、テトラフルオロホウ酸、および、それらの塩が挙げられ、フッ化水素が好ましい。酸性化合物の含有量としては、処理液の全質量に対して0.01~5質量%が好ましく、0.1~2質量%がより好ましい。
 上記前処理を行った窒化ケイ素系材料含有基板に対して、本発明の薬液を接触させた場合、窒化ケイ素系材料とアルデヒド化合物とがより化学的な結合を形成しやすく、アルデヒド化合物を含む被膜をより形成しやすいと考えられる。
The silicon nitride-based material-containing substrate may be subjected to pretreatment before bringing the chemical solution of the present invention into contact with the silicon nitride-based material-containing substrate. Examples of the pretreatment include a treatment in which the substrate is brought into contact with a treatment liquid different from the chemical liquid of the present invention. As a contacting method, a method of immersing the silicon nitride-based material-containing substrate in the treatment liquid is preferable, and the treatment liquid may be caused to convect during the immersion. The temperature of the treatment solution during contact is not particularly limited, but is preferably 10 to 60°C.
Examples of the treatment liquid include an aqueous solution containing an acidic compound. Acidic compounds include hydrogen fluoride, hexafluorosilicic acid, hexafluorotitanic acid, hexafluorozirconic acid, hexafluorophosphoric acid, tetrafluoroboric acid, and salts thereof, with hydrogen fluoride being preferred. The content of the acidic compound is preferably 0.01 to 5% by mass, more preferably 0.1 to 2% by mass, relative to the total mass of the treatment liquid.
When the chemical solution of the present invention is brought into contact with the silicon nitride-based material-containing substrate that has undergone the above pretreatment, the silicon nitride-based material and the aldehyde compound are more likely to form a chemical bond, and the film containing the aldehyde compound is formed. is considered to be easier to form.
<積層体の製造方法>
 上記修飾基板を用いてCVD処理を行うと、アルデヒド化合物を含む被膜が形成されていない領域上(ケイ素系材料で形成される領域上)においてCVD膜が形成された積層体が得られる。
 CVD処理は、公知の手法で行われてよいが、熱CVD法、プラズマCVD法、または、原子層堆積法(ALD:Atomic Layer Deposition)が好ましく、ALDがより好ましい。
 CVD処理においては、CVD膜の原料となる前駆体を修飾基板の表面に供給する。形成されるCVD膜を構成する材料は、供給する前駆体の種類、供給雰囲気および酸化剤等によって制御できる。形成されるCVD膜の材料は特に制限されず、金属、金属酸化物および金属窒化物が挙げられる。金属としては、アルミニウム、チタン、クロム、鉄、コバルト、ニッケル、銅、亜鉛、イットリウム、ジルコニウム、ニオブ、モリブデン、ルテニウム、パラジウム、ランタン、セリウム、ハフニウム、タンタル、タングステン、白金、および、ビスマス等が挙げられる。金属酸化物としては、酸化アルミニウム、酸化チタン、酸化亜鉛、酸化ジルコニウム、酸化ハフニウム、および、酸化タンタル等が挙げられる。金属窒化物としては、窒化チタン、および、窒化タンタル等が挙げられる。
 CVD処理においては、アルデヒド化合物を含む被膜が形成されていない領域の表面を変質させるための処理を行ってもよい。
<Method for manufacturing laminate>
When the modified substrate is subjected to CVD treatment, a laminate is obtained in which a CVD film is formed on the region where the film containing the aldehyde compound is not formed (on the region formed of the silicon-based material).
The CVD process may be performed by a known technique, but thermal CVD, plasma CVD, or atomic layer deposition (ALD) is preferred, and ALD is more preferred.
In the CVD process, a precursor, which is the raw material for the CVD film, is supplied to the surface of the modified substrate. Materials constituting the CVD film to be formed can be controlled by the type of precursor to be supplied, the supply atmosphere, the oxidizing agent, and the like. Materials for the formed CVD film are not particularly limited, and include metals, metal oxides and metal nitrides. Metals include aluminum, titanium, chromium, iron, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium, molybdenum, ruthenium, palladium, lanthanum, cerium, hafnium, tantalum, tungsten, platinum, and bismuth. be done. Metal oxides include aluminum oxide, titanium oxide, zinc oxide, zirconium oxide, hafnium oxide, and tantalum oxide. Metal nitrides include titanium nitride and tantalum nitride.
In the CVD treatment, a treatment may be performed to alter the surface of the region where the film containing the aldehyde compound is not formed.
 CVD処理によって、アルデヒド化合物を含む被膜が形成されていない領域上にCVD膜を形成した場合、アルデヒド化合物を含む被膜が形成されていない領域上のCVD膜の厚みに対する、アルデヒド化合物を含む被膜が形成された領域上のCVD膜の厚みの比は、0.75以下が好ましく、0.5以下がより好ましく、0.25以下がさらに好ましい。上記比の下限は、0が挙げられ、0であってもよい。すなわち、アルデヒド化合物を含む被膜が形成された領域上にCVD膜が形成されなくてもよい。 When a CVD film is formed on a region where a film containing an aldehyde compound is not formed by CVD treatment, the thickness of the CVD film on the region where the film containing an aldehyde compound is not formed is the thickness of the film containing the aldehyde compound. The ratio of the thicknesses of the CVD films on the regions that have been coated is preferably 0.75 or less, more preferably 0.5 or less, and even more preferably 0.25 or less. The lower limit of the above ratio is 0, and may be 0. That is, the CVD film does not have to be formed on the region where the film containing the aldehyde compound is formed.
 上記方法で得られた積層体において、さらにアルデヒド化合物を含む被膜を除去してもよい。アルデヒド化合物を含む被膜を除去すると、ケイ素系材料で形成されるの領域上のみに、CVD膜が形成された積層体が得られる。
 アルデヒド化合物を含む被膜の除去方法は特に制限されないが、ドライエッチング、ウェットエッチング、および、それらの組み合わせが挙げられる。
 ドライエッチングとしては、アルデヒド化合物を含む被膜を有する積層体の表面に対して、反応性イオンまたは反応性ラジカルを供給する方法が挙げられる。反応性イオンまたは反応性ラジカルは、プラズマ等によって発生させればよく、酸素、窒素および水素からなる群から選択される1種以上のガスを含む混合ガスを用いて発生させることが好ましい。上記混合ガスは、希ガスを含んでいてもよい。また、ドライエッチングは、スパッタ現象を利用した物理エッチングであってもよい。
 ウェットエッチングは、エッチング液を、アルデヒド化合物を含む被膜を有する積層体の表面に供給すればよい。エッチング液としては、オゾン等の酸化剤を含むエッチング液、有機溶媒を含むエッチング液が挙げられる。有機溶媒を含むエッチング液の有機溶媒としては、上記薬液が有する有機溶媒が挙げられ、炭化水素系溶媒が好ましい。
In the laminate obtained by the above method, the film containing the aldehyde compound may be further removed. By removing the film containing the aldehyde compound, a laminate having a CVD film formed only on the region formed of the silicon-based material is obtained.
A method for removing the film containing the aldehyde compound is not particularly limited, and dry etching, wet etching, and a combination thereof can be used.
Dry etching includes a method of supplying reactive ions or reactive radicals to the surface of a laminate having a film containing an aldehyde compound. Reactive ions or reactive radicals may be generated by plasma or the like, and are preferably generated using a mixed gas containing one or more gases selected from the group consisting of oxygen, nitrogen and hydrogen. The mixed gas may contain a rare gas. Also, dry etching may be physical etching using a sputtering phenomenon.
Wet etching may be performed by supplying an etchant to the surface of the laminate having the coating containing the aldehyde compound. Examples of the etchant include an etchant containing an oxidizing agent such as ozone, and an etchant containing an organic solvent. Examples of the organic solvent of the etching solution containing an organic solvent include the organic solvents contained in the above chemical solutions, and hydrocarbon-based solvents are preferred.
 以下に実施例に基づいて本発明をさらに詳細に説明する。
 以下の実施例に示す材料、使用量、割合、処理内容、および、処理手順等は、本発明の趣旨を逸脱しない限り適宜変更できる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきではない。
The present invention will be described in more detail below based on examples.
The materials, amounts used, proportions, processing details, processing procedures, etc. shown in the following examples can be changed as appropriate without departing from the gist of the present invention. Therefore, the scope of the present invention should not be construed as limited by the examples shown below.
<薬液の調製>
 実施例および比較例に用いた薬液は、後段の表に示す含有量となるように各成分を混合して調製した。例えば、実施例1に用いた薬液の場合、エタノールと、プロピオンアルデヒドとを、薬液全容積に対してプロピオンアルデヒドの含有量が0.4mol/Lとなるように混合したことを表す。
 なお、実施例12に用いた薬液の調製においては、エタノールと、イソプロピルアルコールとを体積比で1:1となるようにした。
 また、実施例13に用いた薬液の調製においては、エタノールと、ヘプタナールと、ノナナールとを、薬液全容積に対してヘプタナールの含有量が0.4mol/L、かつ、ノナナールの含有量が0.4mol/Lとなるように混合した。
 また、実施例24に用いた薬液の調製においては、エタノールと、ウンデカナールと、ウンデシル酸とを、薬液全容積に対してウンデカナールの含有量が0.4mol/L、かつ、薬液全質量に対してウンデシル酸の含有量が0.5質量%となるように混合した。
 また、実施例28に用いた薬液の調製においては、エタノールと、ウンデカナールと、メタノールとを、薬液全容積に対してウンデカナールの含有量が0.4mol/L、かつ、薬液全質量に対してメタノールの含有量が1.0質量%となるように混合した。
<Preparation of chemical solution>
The chemical solutions used in Examples and Comparative Examples were prepared by mixing each component so as to have the contents shown in the table below. For example, in the case of the chemical solution used in Example 1, ethanol and propionaldehyde were mixed so that the content of propionaldehyde was 0.4 mol/L with respect to the total volume of the chemical solution.
In addition, in preparing the chemical solution used in Example 12, the volume ratio of ethanol and isopropyl alcohol was adjusted to 1:1.
In addition, in the preparation of the chemical solution used in Example 13, ethanol, heptanal, and nonanal were mixed so that the content of heptanal was 0.4 mol/L and the content of nonanal was 0.4 mol/L with respect to the total volume of the chemical solution. They were mixed so as to be 4 mol/L.
In addition, in the preparation of the chemical solution used in Example 24, ethanol, undecanal, and undecylic acid were added to the total volume of the chemical solution so that the content of undecanal was 0.4 mol / L, and the total mass of the chemical solution was On the other hand, they were mixed so that the content of undecylic acid was 0.5% by mass.
In addition, in the preparation of the chemical solution used in Example 28, ethanol, undecanal, and methanol were mixed so that the content of undecanal was 0.4 mol / L with respect to the total volume of the chemical solution, and were mixed so that the content of methanol was 1.0% by mass.
 後段の表中の略語は、以下の化合物を表す。
 ・EtOH:エタノール
 ・IPA:イソプロピルアルコール
 ・THF:テトラヒドロフラン
 ・PGMEA:プロピレングリコールモノメチルエーテルアセテート
 ・MeOH:メタノール
 なお、薬液の調製、充填および保管等は、全てISOクラス2以下を満たすレベルのクリーンルームで行った。また、薬液の調製、充填および保管等に使用した容器は、調製に用いる溶媒または調製した薬液で洗浄した後に使用した。
Abbreviations in the table below represent the following compounds.
・EtOH: Ethanol ・IPA: Isopropyl alcohol ・THF: Tetrahydrofuran ・PGMEA: Propylene glycol monomethyl ether acetate ・MeOH: Methanol Preparation, filling, and storage of chemical solutions were all performed in a clean room that satisfies ISO class 2 or lower. . In addition, the containers used for preparation, filling, storage, etc. of the drug solution were used after being washed with the solvent used for preparation or the prepared drug solution.
<評価方法>
 以下の手順にしたがって、実施例および比較例の薬液を用いてアルデヒド化合物を含む被膜を基板上に形成し、その膜の水の接触角の評価を行った。また、アルデヒド化合物を含む被膜を形成した基板において、ALD法による酸化物膜の形成処理を実施し、形成された酸化物膜の厚みから、堆積選択性を評価した。
<Evaluation method>
According to the following procedure, a film containing an aldehyde compound was formed on a substrate using the chemical solutions of Examples and Comparative Examples, and the contact angle of water of the film was evaluated. Further, the substrate on which the film containing the aldehyde compound was formed was subjected to an oxide film forming process by ALD, and the deposition selectivity was evaluated from the thickness of the formed oxide film.
[接触角評価]
 まず、基板として、市販のシリコンウエハ(直径12インチ)の一方の表面上に、CVD法により酸化ケイ素層、窒化ケイ素層、および、酸炭化ケイ素層をそれぞれ形成した、酸化ケイ素層ウエハ、窒化ケイ素層ウエハ、および、酸炭化ケイ素層ウエハを準備した。各層の厚みは、20nmとなるようにCVD法の処理時間を調整した。
[Contact angle evaluation]
First, as a substrate, a silicon oxide layer wafer, a silicon nitride layer, a silicon oxide layer, a silicon nitride layer, and a silicon oxycarbide layer were formed on one surface of a commercially available silicon wafer (12 inches in diameter) by a CVD method. A layer wafer and a silicon oxycarbide layer wafer were prepared. The processing time of the CVD method was adjusted so that the thickness of each layer was 20 nm.
 得られた酸化ケイ素層ウエハ、窒化ケイ素層ウエハ、および、酸炭化ケイ素層、ならびに、シリコンウエハを2cm角に裁断した。裁断した各ウエハは、0.5質量%のフッ化水素を含む水溶液を満たした容器に浸漬し、水溶液をマグネチックスターラーで撹拌して前処理を行った。前処理時の水溶液の温度は25℃であり、浸漬時間は1分、撹拌速度は250rpmとした。前処理を行った各ウエハは、窒素ガスを吹き付けて乾燥させた。
 次いで、前処理を実施した各ウエハを、各薬液に浸漬した。各ウエハの薬液への浸漬は、容器に入れた薬液を250rpmの条件にてマグネチックスターラーで撹拌しながら行い、薬液の温度は65℃、浸漬時間は240分とした。
The obtained silicon oxide layer wafer, silicon nitride layer wafer, silicon oxycarbide layer and silicon wafer were cut into 2 cm squares. Each cut wafer was immersed in a container filled with an aqueous solution containing 0.5% by mass of hydrogen fluoride, and the aqueous solution was stirred with a magnetic stirrer for pretreatment. The temperature of the aqueous solution during the pretreatment was 25° C., the immersion time was 1 minute, and the stirring speed was 250 rpm. Each pretreated wafer was dried by blowing nitrogen gas.
Then, each pretreated wafer was immersed in each chemical solution. Each wafer was immersed in the chemical while stirring the chemical in a container with a magnetic stirrer at 250 rpm, the temperature of the chemical was 65° C., and the immersion time was 240 minutes.
 浸漬処理後、各ウエハの温度を25℃とした後、イソプロピルアルコール(IPA)でリンス処理を行った。リンス処理は、IPAに浸漬処理後の基板を浸漬して実施し、上記浸漬は、容器に入れたIPAを250rpmの条件にてマグネチックスターラーで撹拌しながら行い、IPAの温度は25℃、浸漬時間は30秒とした。
 リンス処理後、各ウエハに窒素ガスを吹き付けて乾燥させた。
 上記処理により、各ウエハと各薬液とを接触させ、サンプルを得た。
After the immersion treatment, the temperature of each wafer was set to 25° C., and then rinse treatment was performed with isopropyl alcohol (IPA). The rinsing treatment is performed by immersing the substrate after the immersion treatment in IPA. The immersion is performed while stirring the IPA in a container with a magnetic stirrer at 250 rpm. The time was 30 seconds.
After rinsing, each wafer was dried by blowing nitrogen gas.
Through the above treatment, each wafer was brought into contact with each chemical solution to obtain a sample.
 上記方法で得られたサンプルの水の接触角は、以下の方法で測定した。
 測定は、協和界面科学(株)製のDMs-501を用い、23℃の環境下で行った。水の液滴が表面に接触してから500ミリ秒後の値を3回測定し、その平均値を接触角とした。なお、水の表面張力は72.9mN/mとして解析した。
 なお、上記接触処理を行わないシリコンウエハ、酸化ケイ素層ウエハ、窒化ケイ素層ウエハ、および、酸炭化ケイ素層ウエハにおける接触角を測定したところ、それぞれ、50°、20°、30°、および、50°未満であった。上記接触処理後の各ウエハの接触角が、接触処理を行わない各ウエハの接触角より大きくなった場合、そのウエハの表面において、アルデヒド化合物を含む被膜が形成されたといえる。
The water contact angle of the sample obtained by the above method was measured by the following method.
The measurement was carried out at 23° C. using DMs-501 manufactured by Kyowa Interface Science Co., Ltd. The value was measured three times 500 milliseconds after the water droplet contacted the surface, and the average value was taken as the contact angle. In addition, the surface tension of water was analyzed as 72.9 mN/m.
The contact angles of the silicon wafer, the silicon oxide layer wafer, the silicon nitride layer wafer, and the silicon oxycarbide layer wafer, which were not subjected to the above contact treatment, were measured to be 50°, 20°, 30°, and 50°, respectively. was less than °. When the contact angle of each wafer after the contact treatment is larger than the contact angle of each wafer without the contact treatment, it can be said that a film containing an aldehyde compound was formed on the surface of the wafer.
[堆積選択性評価]
 上記接触角と同様にしてサンプルを得て、以下の手順でALD処理を行い、堆積選択性の評価を行った。
 まず、得られたサンプルに対して、原子層堆積装置(サムコ社製AD-230LP)を用いて、酸化アルミニウム層を形成した。有機金属原料としてトリメチルアルミニウムを用い、酸化剤として水を用いた。なお、ALD処理温度は150℃とし、上記接触処理を行わない各ウエハ(シリコンウエハ、酸化ケイ素層ウエハ、窒化ケイ素層ウエハ、および、酸炭化ケイ素層ウエハ)に対して膜厚が5nmとなる条件で、各サンプルのALD処理を行った。
 ALD処理後の各サンプルの酸化アルミニウム層の膜厚は、分光エリプソメーター(M-2000XI、ジェー・エー・ウーラム・ジャパン(株)製)を用いて測定した。上記膜厚は、サンプルの5点について測定を行い、その平均値を膜厚とした。測定は、測定範囲を1.2-2.5eVとし、測定角は70°および75°として行った。
 なお、上記膜厚が小さいほど、ALD処理による膜が堆積しづらいことを意味する。
[Deposition selectivity evaluation]
A sample was obtained in the same manner as for the above contact angle, ALD treatment was performed in the following procedure, and deposition selectivity was evaluated.
First, an aluminum oxide layer was formed on the obtained sample using an atomic layer deposition apparatus (AD-230LP manufactured by Samco). Trimethylaluminum was used as an organometallic raw material, and water was used as an oxidizing agent. The ALD treatment temperature is 150° C., and the film thickness is 5 nm for each wafer (silicon wafer, silicon oxide layer wafer, silicon nitride layer wafer, and silicon oxycarbide layer wafer) that is not subjected to the above contact treatment. , ALD treatment was performed on each sample.
The film thickness of the aluminum oxide layer of each sample after the ALD treatment was measured using a spectroscopic ellipsometer (M-2000XI, manufactured by JA Woollam Japan Co., Ltd.). The film thickness was measured at 5 points on the sample, and the average value was taken as the film thickness. The measurement was performed with a measurement range of 1.2-2.5 eV and measurement angles of 70° and 75°.
It should be noted that the smaller the film thickness, the more difficult it is to deposit a film by ALD processing.
<結果>
 表1に、薬液の成分、各サンプルにおける水の接触角評価結果、および、堆積選択性評価結果について示す。
 なお、表1中、『水接触角』欄の「<X」の表記は、水の接触角がX°未満であったことを表す。
 表1中、含水率は、カールフィッシャー法により定量した値を示す。
<Results>
Table 1 shows the chemical components, the water contact angle evaluation results, and the deposition selectivity evaluation results for each sample.
In Table 1, "<X" in the "water contact angle" column indicates that the water contact angle was less than X°.
In Table 1, the water content indicates a value determined by the Karl Fischer method.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1の結果から、炭素数が3以上のアルデヒド化合物を含む本発明の薬液と、窒化ケイ素層ウエハとを接触させると、窒化ケイ素層ウエハの水の接触角が大きくなり、表面上にアルデヒド化合物を含む被膜が形成されたことが確認された。一方、それ以外のウエハ上の水の接触角は変化がなく、被膜が形成されていないことが確認された。すなわち、本発明の薬液を、窒化ケイ素系材料含有基板に適用した際に、窒化ケイ素系材料上に選択的に被膜を形成できるといえる。
 一方、炭素数が3以上のアルデヒド化合物を含まない比較例1~3では、水の接触角は変化がなく、窒化ケイ素層ウエハの表面上にアルデヒド化合物を含む被膜が形成されなかったことが確認された。したがって、比較例1~3の薬液を窒化ケイ素系材料含有基板に適用しても、窒化ケイ素系材料上に選択的に被膜を形成できないといえる。
 また、実施例1~4と、実施例5~8との比較から、アルデヒド化合物の炭素数が8以上である場合、アルデヒド化合物を含む被膜の水の接触角がより大きくなることが確認された。
 実施例19~21から、アルデヒド化合物の含有量が、薬液の全容積に対して、0.0005mol/L以上である場合も、アルデヒド化合物を含む被膜の水の接触角が大きくなることが確認された。また、実施例23と、実施例8および22との比較から、アルデヒド化合物の含有量が、薬液の全容積に対して、1mol/L以下である場合、アルデヒド化合物を含む被膜の水の接触角がより大きくなることが確認された。
 実施例8と、実施例13~15との比較から、薬液が2種以上の前記アルデヒド化合物を含む場合、アルデヒド化合物を含む被膜の水の接触角がより大きくなることが確認された。
 実施例18と、実施例8、16および17との比較から、薬液が水を実質的に含まない(水の含有量が、薬液全質量に対して0.02質量%以下である)場合、アルデヒド化合物を含む被膜の水の接触角がより大きくなることが確認された。また、水の含有量が、薬液全質量に対して0.01質量%以下(より好ましくは0.005質量%以下)である場合、アルデヒド化合物を含む被膜の水の接触角がより大きくなることが確認された。
 実施例29および30と、実施例8および28との比較から、薬液がメタノールを実質的に含まない(メタノールの含有量が、薬液全質量に対して1質量%以下である)場合、アルデヒド化合物を含む被膜の水の接触角がより大きくなることが確認された。
 実施例26および27と、実施例8、24および25との比較から、カルボン酸化合物の含有量が、薬液全質量に対して3.0質量%以下(より好ましくは0.5質量%以下)である場合、アルデヒド化合物を含む被膜の水の接触角がより大きくなることが確認された。また、実施例24および25と、実施例8との比較から、薬液がカルボン酸化合物を含まない場合、アルデヒド化合物を含む被膜の水の接触角がより大きくなることが確認された。
From the results in Table 1, when the chemical solution of the present invention containing an aldehyde compound having 3 or more carbon atoms is brought into contact with a silicon nitride layer wafer, the contact angle of water on the silicon nitride layer wafer increases, and the aldehyde compound is formed on the surface. It was confirmed that a coating containing was formed. On the other hand, there was no change in the contact angle of water on other wafers, confirming that no film was formed. That is, it can be said that when the chemical solution of the present invention is applied to a substrate containing a silicon nitride-based material, a coating can be selectively formed on the silicon nitride-based material.
On the other hand, in Comparative Examples 1 to 3, which do not contain an aldehyde compound having 3 or more carbon atoms, there was no change in the contact angle of water, confirming that no film containing an aldehyde compound was formed on the surface of the silicon nitride layer wafer. was done. Therefore, it can be said that even if the chemical solutions of Comparative Examples 1 to 3 are applied to a silicon nitride-based material-containing substrate, a film cannot be selectively formed on the silicon nitride-based material.
Further, from a comparison between Examples 1 to 4 and Examples 5 to 8, it was confirmed that when the carbon number of the aldehyde compound was 8 or more, the contact angle of water on the film containing the aldehyde compound increased. .
From Examples 19 to 21, it was confirmed that the water contact angle of the film containing the aldehyde compound increased even when the content of the aldehyde compound was 0.0005 mol/L or more relative to the total volume of the chemical solution. Ta. Further, from a comparison between Example 23 and Examples 8 and 22, when the content of the aldehyde compound is 1 mol/L or less with respect to the total volume of the chemical solution, the contact angle of water of the film containing the aldehyde compound was confirmed to be larger.
From the comparison between Example 8 and Examples 13 to 15, it was confirmed that the water contact angle of the film containing the aldehyde compound was larger when the chemical solution contained two or more of the aldehyde compounds.
From a comparison between Example 18 and Examples 8, 16 and 17, when the chemical solution does not substantially contain water (water content is 0.02% by mass or less relative to the total mass of the chemical solution), It was confirmed that the water contact angle of the film containing the aldehyde compound was larger. In addition, when the water content is 0.01% by mass or less (more preferably 0.005% by mass or less) relative to the total mass of the chemical solution, the contact angle of water on the film containing the aldehyde compound is increased. was confirmed.
From a comparison between Examples 29 and 30 and Examples 8 and 28, when the chemical solution does not substantially contain methanol (the content of methanol is 1% by mass or less with respect to the total mass of the chemical solution), aldehyde compounds It was confirmed that the contact angle of water of the coating containing is larger.
From a comparison between Examples 26 and 27 and Examples 8, 24 and 25, the content of the carboxylic acid compound is 3.0% by mass or less (more preferably 0.5% by mass or less) relative to the total mass of the chemical solution. , it was confirmed that the contact angle of water on the film containing the aldehyde compound was larger. Further, from a comparison between Examples 24 and 25 and Example 8, it was confirmed that the water contact angle of the film containing the aldehyde compound was larger when the chemical solution did not contain the carboxylic acid compound.

Claims (12)

  1.  炭素数が3以上のアルデヒド化合物と、
     前記アルデヒド化合物とは異なる有機溶媒とを含む、半導体製造用の薬液。
    an aldehyde compound having 3 or more carbon atoms;
    A chemical solution for manufacturing a semiconductor, containing an organic solvent different from the aldehyde compound.
  2.  前記アルデヒド化合物の炭素数が、8以上である、請求項1に記載の薬液。 The chemical solution according to claim 1, wherein the aldehyde compound has 8 or more carbon atoms.
  3.  前記アルデヒド化合物が、式(1)で表される化合物である、請求項1に記載の薬液。
     式(1)  R-CO-H
     式(1)中、Rは、ハロゲン原子を有していてもよい炭化水素基、または、複素環基を表す。
    The chemical solution according to claim 1, wherein the aldehyde compound is a compound represented by formula (1).
    Formula (1) R—CO—H
    In formula (1), R represents a hydrocarbon group optionally having a halogen atom or a heterocyclic group.
  4.  前記アルデヒド化合物の含有量が、前記薬液の全容積に対して、0.0005mol/L以上である、請求項1に記載の薬液。 The chemical solution according to claim 1, wherein the content of the aldehyde compound is 0.0005 mol/L or more with respect to the total volume of the chemical solution.
  5.  前記薬液が、2種以上の前記アルデヒド化合物を含む、請求項1に記載の薬液。 The chemical solution according to claim 1, wherein the chemical solution contains two or more of the aldehyde compounds.
  6.  前記薬液が、水を実質的に含まない、請求項1に記載の薬液。 The chemical solution according to claim 1, wherein the chemical solution does not substantially contain water.
  7.  前記薬液が、メタノールを実質的に含まない、請求項1に記載の薬液。 The chemical solution according to claim 1, wherein the chemical solution does not substantially contain methanol.
  8.  少なくとも2種以上の絶縁体材料を有する基板に対する処理に用いられる、請求項1に記載の薬液。 The chemical solution according to claim 1, which is used for processing a substrate having at least two kinds of insulator materials.
  9.  窒素とケイ素とを含む窒化ケイ素系材料からなる第1領域と、前記窒化ケイ素系材料とは異なる、ケイ素を含むケイ素系材料からなる第2領域とを含む基板と、
     請求項1~8のいずれか1項に記載の薬液とを接触させて、前記第1領域上に前記アルデヒド化合物を含む被膜を形成する工程を有する、修飾基板の製造方法。
    a substrate comprising a first region made of a silicon nitride-based material containing nitrogen and silicon and a second region made of a silicon-containing silicon-based material different from the silicon nitride-based material;
    A method for manufacturing a modified substrate, comprising the step of contacting the chemical solution according to any one of claims 1 to 8 to form a film containing the aldehyde compound on the first region.
  10.  前記工程が、前記薬液を前記基板に接触させ、前記薬液と接触させた前記基板に対してリンス処理を施して前記第1領域上に前記アルデヒド化合物を含む被膜を形成する工程である、請求項9に記載の修飾基板の製造方法。 2. The step of contacting the substrate with the chemical solution and rinsing the substrate contacted with the chemical solution to form a coating containing the aldehyde compound on the first region. 10. The method for manufacturing the modified substrate according to 9.
  11.  請求項9に記載の製造方法で製造された修飾基板に対して原子層堆積処理を行い、前記第1領域以外の領域上に金属膜または金属酸化膜を形成する工程をさらに有する、積層体の製造方法。 A laminate further comprising the step of subjecting the modified substrate manufactured by the manufacturing method according to claim 9 to an atomic layer deposition process to form a metal film or a metal oxide film on a region other than the first region. Production method.
  12.  前記第1領域上に形成された前記アルデヒド化合物を含む被膜を除去する工程をさらに有する、請求項11に記載の積層体の製造方法。 The method for manufacturing a laminate according to claim 11, further comprising the step of removing the film containing the aldehyde compound formed on the first region.
PCT/JP2023/002802 2022-02-18 2023-01-30 Liquid chemical, modified substrate manufacturing method, and laminate manufacturing method WO2023157619A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-023700 2022-02-18
JP2022023700 2022-02-18

Publications (1)

Publication Number Publication Date
WO2023157619A1 true WO2023157619A1 (en) 2023-08-24

Family

ID=87578419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002802 WO2023157619A1 (en) 2022-02-18 2023-01-30 Liquid chemical, modified substrate manufacturing method, and laminate manufacturing method

Country Status (2)

Country Link
TW (1) TW202337681A (en)
WO (1) WO2023157619A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013118347A (en) * 2010-12-28 2013-06-13 Central Glass Co Ltd Cleaning method of wafer
JP2016115916A (en) * 2014-12-16 2016-06-23 三星エスディアイ株式会社Samsung SDI Co., Ltd. Rinse solution for forming silica thin film, method of producing silica precursor thin film and silica thin film using the same, and silica thin film precursor and silica thin film produced using them
JP2017528597A (en) * 2014-08-27 2017-09-28 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Selective deposition by selective reduction and protection of alcohol
JP2020529513A (en) * 2017-07-23 2020-10-08 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Methods for selective deposition on silicon-based dielectrics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013118347A (en) * 2010-12-28 2013-06-13 Central Glass Co Ltd Cleaning method of wafer
JP2017528597A (en) * 2014-08-27 2017-09-28 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Selective deposition by selective reduction and protection of alcohol
JP2016115916A (en) * 2014-12-16 2016-06-23 三星エスディアイ株式会社Samsung SDI Co., Ltd. Rinse solution for forming silica thin film, method of producing silica precursor thin film and silica thin film using the same, and silica thin film precursor and silica thin film produced using them
JP2020529513A (en) * 2017-07-23 2020-10-08 アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated Methods for selective deposition on silicon-based dielectrics

Also Published As

Publication number Publication date
TW202337681A (en) 2023-10-01

Similar Documents

Publication Publication Date Title
TWI775751B (en) Purification apparatus, purification method, production apparatus, method for producing processing liquid, container, processing liquid storage body
JP6960477B2 (en) Chemical solution, manufacturing method of chemical solution, processing method of substrate
KR20190027875A (en) Process liquid, substrate cleaning method, semiconductor device manufacturing method
TW201834015A (en) Method for producing chemical liquid and apparatus for manufacturing chemical liquid
JP6924818B2 (en) Chemical solution purification method, chemical solution manufacturing method, and chemical solution
KR20180137018A (en) Process liquid, substrate cleaning method, and resist removal method
JP6880085B2 (en) Chemical solution, chemical container, and pattern forming method
KR102405559B1 (en) treatment liquid
JP2014022657A (en) Etching method, semiconductor substrate product and semiconductor element manufacturing method using the same, and etchant preparation kit
JP7090625B2 (en) How to clean the treatment liquid, kit, and substrate
TW202116996A (en) Treating liquid, kit, method for producing treating liquid, method for cleaning substrate and method for treating substrate
JP2022001511A (en) Container, container manufacturing method and chemical solution containing body
WO2023157619A1 (en) Liquid chemical, modified substrate manufacturing method, and laminate manufacturing method
EP3940749A1 (en) Composition for drying recessed and projected pattern and method for producing substrate having surface that is provided with recessed and projected pattern
TWI840502B (en) Chemical solution, resist pattern-forming method, method for producing semiconductor chip, chemical solution accommodating body, and chemical solution production method
JPWO2014013902A1 (en) Cleaning liquid for semiconductor and cleaning method using the same
WO2023136081A1 (en) Liquid chemical, modified substrate manufacturing method, and layered body manufacturing method
TWI754080B (en) Components, containers, chemical liquid containers, chemical liquid purification apparatuses, and manufacturing tanks
WO2023136042A1 (en) Chemical agent, method for producing modified substrate, method for producing multilayer body, and chemical agent containing body
WO2021049330A1 (en) Processing liquid, processing method
WO2021039701A1 (en) Treatment liquid
WO2024070526A1 (en) Chemical solution, method for producing modified substrate, and method for producing layered body
TW202246476A (en) Cleaning liquid and method for cleaning semiconductor substrate
KR20240021714A (en) Wafer edge protection film forming method, patterning process, and composition for forming wafer edge protection film
TW202229531A (en) Composition, and method for cleaning substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756147

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024501067

Country of ref document: JP

Kind code of ref document: A