WO2021039701A1 - Treatment liquid - Google Patents

Treatment liquid Download PDF

Info

Publication number
WO2021039701A1
WO2021039701A1 PCT/JP2020/031798 JP2020031798W WO2021039701A1 WO 2021039701 A1 WO2021039701 A1 WO 2021039701A1 JP 2020031798 W JP2020031798 W JP 2020031798W WO 2021039701 A1 WO2021039701 A1 WO 2021039701A1
Authority
WO
WIPO (PCT)
Prior art keywords
treatment liquid
mass
metal
content
metal ion
Prior art date
Application number
PCT/JP2020/031798
Other languages
French (fr)
Japanese (ja)
Inventor
祐継 室
篤史 水谷
智威 高橋
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2021039701A1 publication Critical patent/WO2021039701A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/08Liquid soap, e.g. for dispensers; capsuled
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/10Salts
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/22Organic compounds
    • C11D7/32Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/50Solvents
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23GCLEANING OR DE-GREASING OF METALLIC MATERIAL BY CHEMICAL METHODS OTHER THAN ELECTROLYSIS
    • C23G1/00Cleaning or pickling metallic material with solutions or molten salts
    • C23G1/14Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions
    • C23G1/16Cleaning or pickling metallic material with solutions or molten salts with alkaline solutions using inhibitors
    • C23G1/18Organic inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a treatment liquid.
  • the present invention relates to a treatment liquid that can be suitably used for manufacturing a semiconductor device.
  • Semiconductor devices such as CCD (Charge-Couple Device) and memory are manufactured by forming fine electronic circuit patterns on a substrate using photolithography technology. Specifically, a resist film is formed on a laminate having a metal film as a wiring material, an etching stop layer, and an interlayer insulating layer on a substrate, and a photolithography step and a dry etching step (for example, plasma etching treatment). By carrying out the above, a semiconductor device is manufactured.
  • CCD Charge-Couple Device
  • memory are manufactured by forming fine electronic circuit patterns on a substrate using photolithography technology. Specifically, a resist film is formed on a laminate having a metal film as a wiring material, an etching stop layer, and an interlayer insulating layer on a substrate, and a photolithography step and a dry etching step (for example, plasma etching treatment).
  • metal material-based resist films such as TiN and AlOx (so-called metal hard masks) are also used as the resist films.
  • a dry etching process for example, plasma etching treatment
  • a step of exposing the metal film surface to be a film is performed.
  • the substrate that has undergone the dry etching step contains a large amount of dry etching residue (when a metal hard mask is used as the resist film, a large amount of metal components such as titanium-based metals are contained as residue components. On the other hand, a photoresist film is used. In some cases, a large amount of organic components are contained as residual components). These residues are generally removed using a treatment liquid so as not to interfere with the next step.
  • Patent Document 1 states that "at least selected from the group consisting of hydroxyamine and 1,8-diazabicyclo [5.4.0] undecene-7 and 1,4-diazabicyclo [2.2.2] octane.
  • a cleaning solution for lithography containing one amine compound, a water-soluble organic solvent, and water and having a pH of 8 or more, and containing the water-soluble organic solvent in an amount of 10% by mass or more based on the total amount of the cleaning solution for lithography.
  • a cleaning solution for lithography which is characterized by the above, is disclosed.
  • the present inventors examined the time-dependent performance of the treatment liquid described in Patent Document 1, they found that the performance stability may be inferior when stored under predetermined conditions. More specifically, in general, the treatment liquid is refrigerated at a predetermined temperature when not in use, and when in use, the treatment liquid is taken out of the refrigeration storage and returned to room temperature for use. The present inventors repeatedly performed a series of operations in which the treatment liquid was refrigerated for a predetermined time and then allowed to stand at room temperature for a predetermined time, and the residue removing performance of the treatment liquid (particularly, metal hard).
  • the mask-derived residue removal performance) and the anticorrosion performance may be inferior, and the stability of these performances may be inferior. That is, it was clarified that there is room for improving the treatment liquid so that the residual removal performance and the anticorrosion performance are ensured even if the temperature environment changes as described above. In the following, ensuring the above performance is also referred to as being excellent in performance stability of residue removing performance and anticorrosion performance.
  • the present invention has a residue removing performance (particularly, a metal hard mask-derived residue removing performance) and an anticorrosion performance (particularly, an anticorrosion performance against a Co or Co alloy) even if the temperature environment changes such as refrigerated storage and room temperature standing are repeated. ), It is an object of the present invention to provide a treatment liquid having excellent performance stability.
  • Hydroxylamine compounds selected from the group consisting of hydroxyamines and hydroxyamine salts, and With organic solvent Basic compounds and A treatment liquid containing one or more first metal ions selected from the group consisting of Na, Al, K, Ca, Cr, Fe, Ni, and Zn.
  • a treatment liquid in which the total content of the first metal ions is 7.0 mass ppb to 800.0 mass ppb with respect to the total mass of the treatment liquid.
  • the content of at least one metal ion among the first metal ions contained in the treatment liquid is 1.0 mass ppb to 100.0 mass ppb with respect to the total mass of the treatment liquid. , [1].
  • the first metal ions contained in the treatment liquid are two or more kinds, and the content of each metal ion is 1.0 mass ppb to 100. With respect to the total mass of the treatment liquid.
  • the content of at least one metal ion among the second metal ions contained in the treatment liquid is 0.01 mass ppb to 1.0 mass ppb with respect to the total mass of the treatment liquid.
  • the number of the second metal ions contained in the treatment liquid is two or more, and the content of each metal ion is 0.01 mass ppb to 1. with respect to the total mass of the treatment liquid.
  • the present invention it is possible to provide a treatment liquid having excellent performance stability of residue removal performance and anticorrosion performance even if the temperature environment changes such as refrigerated storage and room temperature standing are repeated.
  • the numerical range represented by using "-” means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the term “preparation” includes not only synthesizing or blending a specific material to prepare the material, but also procuring a predetermined material by purchase or the like.
  • ppb means "parts-per-parts ( 10-9 )”.
  • 1 ⁇ (angstrom) corresponds to 0.1 nm.
  • notations that do not describe substitutions and non-substitutions include those that do not have substituents and those that have substituents as long as the effects of the present invention are not impaired. It includes.
  • the "hydrocarbon group” includes not only a hydrocarbon group having no substituent (unsubstituted hydrocarbon group) but also a hydrocarbon group having a substituent (substituted hydrocarbon group). .. This is synonymous with each compound.
  • the pH of the treatment liquid is a value measured by F-51 (trade name) manufactured by HORIBA, Ltd. at room temperature (25 ° C.).
  • the "radiation” in the present invention means, for example, the emission line spectrum of a mercury lamp, far ultraviolet rays typified by an excimer laser, extreme ultraviolet rays (EUV light), X-rays, electron beams, and the like.
  • light means active light rays or radiation.
  • exposure refers not only to exposure with far ultraviolet rays such as mercury lamps and excimer lasers, X-rays or EUV light, but also for drawing with particle beams such as electron beams or ion beams. Include in exposure.
  • the treatment liquid of the present invention is Hydroxylamine compounds selected from the group consisting of hydroxyamines and hydroxyamine salts, and With organic solvent Basic compounds and A treatment liquid containing one or more first metal ions selected from the group consisting of Na, Al, K, Ca, Cr, Fe, Ni, and Zn.
  • the total content of the first metal ions is 7.0 mass ppb to 800.0 mass ppb with respect to the total mass of the treatment liquid.
  • the above-mentioned treatment liquid can be applied as a treatment liquid for a semiconductor device to each process when manufacturing a semiconductor device.
  • the treatment liquid can be suitably used as a cleaning liquid after a dry etching step using a metal hard mask as a mask.
  • the treatment liquid of the present invention contains a hydroxyamine compound selected from the group consisting of hydroxyamines and hydroxyamine salts.
  • the hydroxyamine compound has a function of promoting decomposition and solubilization of the residue.
  • the "hydroxyamine” according to the hydroxyamine compound of the treatment liquid of the present invention refers to a hydroxyamine compound in a broad sense including a substituted or unsubstituted alkylhydroxyamine, and any of them is the present invention.
  • the effect of can be obtained.
  • the hydroxyamine compound is not particularly limited, but as a preferred embodiment, an unsubstituted hydroxyamine and a hydroxyamine derivative, and a salt thereof are preferable.
  • the hydroxyamine derivative is not particularly limited, but for example, O-methylhydroxyamine, O-ethylhydroxyamine, N-methylhydroxyamine, N, N-dimethylhydroxyamine, N, O-dimethylhydroxyamine, N-ethylhydroxy.
  • the inorganic acid salt or the organic acid salt of the above-mentioned unsubstituted hydroxyamine or the hydroxyamine derivative is preferable, and a non-metal atom such as Cl, S, N, or P is a hydrogen atom.
  • a salt of an inorganic acid formed by binding with is more preferable, and a salt of any of hydrochloric acid, sulfuric acid, and nitric acid is further preferable.
  • hydroxyamine nitrate hydroxyamine nitrate
  • hydroxyamine sulfate hydroxyamine sulfate
  • hydroxyamine hydrochloride hydroxyamine phosphate, N, N-diethylhydroxyamine sulfate, N, N-diethylhydroxyamine nitrate, or A mixture of these is preferred.
  • examples of the above-mentioned organic acid salt of the unsubstituted hydroxyamine or the hydroxyamine derivative include hydroxyammonium citrate, hydroxyammonium oxalate, and hydroxyammonium fluoride.
  • hydroxyamine compound at least one hydroxyamine compound selected from the group consisting of hydroxyamine and hydroxyamine sulfate is preferable in that the residue removing performance of the treatment liquid and the anticorrosion performance over time are more excellent. Unsubstituted hydroxyamines and sulfates thereof are more preferred, and unsubstituted hydroxyamines are even more preferred.
  • the lower limit of the content of the hydroxyamine compound is preferably 0.1% by mass or more with respect to the total mass of the treatment liquid, and is 1% by mass or more in that the residue removal property and defect suppression property of the treatment liquid are more excellent. Is more preferable, and 3% by mass or more is further preferable.
  • the upper limit of the content of the hydroxyamine compound is preferably 40% by mass or less, more preferably 30% by mass or less, and 25% by mass, because the anticorrosion performance of the treatment liquid is more excellent with respect to the total mass of the treatment liquid. The following is more preferable, 20% by mass or less is particularly preferable, and 15% by mass or less is most preferable.
  • the hydroxyamine compound may be used alone or in combination of two or more. When two or more types are used, the total content thereof is preferably within the above range.
  • the treatment liquid of the present invention contains a basic compound.
  • the "basic compound” referred to here and the above-mentioned hydroxyamine compound are different compounds. That is, the hydroxyamine compound is not included in the basic compound.
  • the basic compound may be either an inorganic base compound or an organic base compound, but an organic basic compound is preferable in that the treatment liquid has more excellent residue removing property and defect suppressing property, and an amine compound or a nitrogen-containing compound is preferable. Aromatic compounds are more preferred.
  • an amine compound having a cyclic structure is preferable.
  • the amino group may be present in only one of the cyclic structure and the outside of the cyclic structure, or may be present in both.
  • the amino group is a tertiary amino group
  • the tertiary amino group is present in the cyclic structure
  • the cyclic structure is a non-aromatic cyclic structure (nitrogen-containing non-aromatic ring).
  • amine compound examples include tetrahydrofurfurylamine, N- (2-aminoethyl) piperazine, 1,8-diazabicyclo [5.4.0] -7-undecene (DBU), and 1,4-diazabicyclo [2.2].
  • DBU 1,8-diazabicyclo [5.4.0] -7-undecene
  • amine compound examples include tetrahydrofurfurylamine, N- (2-aminoethyl) piperazine, 1,8-diazabicyclo [5.4.0] -7-undecene (DBU), and 1,4-diazabicyclo [2.2].
  • DBU 1,8-diazabicyclo [5.4.0] -7-undecene
  • .2] Octane, hydroxyethylpiperazine, piperazine, 2-methylpiperazine, trans-2,5-dimethylpiperazine, cis-2,6-dimethylpiperazine, 2-piperidine
  • tetrahydrofurfurylamine and N are used as amine compounds from the viewpoint of more effectively suppressing the corrosion of the metal layer (preferably the metal layer containing Co or Co alloy) on the substrate while ensuring the residue removing performance.
  • -(2-Aminoethyl) piperazin, 1,8-diazabicyclo [5.4.0] -7-undecene, or 1,4-diazabicyclo [2.2.2] octane is preferred.
  • the molecular weight of the amine compound is preferably 50 to 500, more preferably 75 to 400, and even more preferably 100 to 300.
  • the nitrogen-containing aromatic compound is not particularly limited, and for example, substituted or unsubstituted benzotriazole is preferable.
  • substituted benzotriazole for example, a benzotriazole substituted with an alkyl group or an aryl group is preferable.
  • Specific examples of the substituted or unsubstituted benzotriazole include benzotriazole (BTA) and 5-methyl-1H-benzotriazole (5M-BTA).
  • the basic compound may be used alone or in combination of two or more.
  • the content of the basic compound (the total content when two or more kinds are used) is, for example, 0.1 to 20% by mass and 0.5 to 15% by mass with respect to the total mass of the treatment liquid. preferable.
  • the treatment liquid of the present invention contains an organic solvent.
  • the organic solvent is not particularly limited, but an alcohol solvent is preferable, and a water-soluble alcohol solvent is more preferable.
  • the alcohol-based solvent include alkanediols, alkylene glycols, alkoxy alcohols, saturated aliphatic monohydric alcohols, unsaturated non-aromatic monohydric alcohols, and trihydric or higher alcohols.
  • alkanediol examples include glycol, 2-methyl-1,3-propanediol, 1,2-propanezyl, 1,3-dihydroxypropane, 2-methylpentane-2,4-diol, and 2,2-dimethyl.
  • alkylene glycol examples include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tetraethylene glycol and the like.
  • alkoxy alcohol examples include 3-methoxy-1-butanol, 3-methoxy-3-methylbutanol, 1-methoxy-2-butanol, glycol monoether and the like.
  • glycol monoether examples include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monon-propyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether (EGBE), diethylene glycol monomethyl ether, and diethylene glycol monoethyl ether.
  • Saturated aliphatic monohydric alcohols include, for example, methanol, ethanol, n-propyl alcohol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 2-pentanol, t-pentyl alcohol, and 1-Hexanol and the like can be mentioned.
  • unsaturated non-aromatic monohydric alcohols examples include allyl alcohol, propargyl alcohol, 2-butenyl alcohol, 3-butenyl alcohol, 4-pentene-2-ol and the like.
  • low molecular weight alcohols containing a ring structure examples include tetrahydrofurfuryl alcohol, furfuryl alcohol, and 1,3-cyclopentanediol.
  • trihydric or higher alcohols examples include glycerin and the like.
  • alkanediol preferably 2-methylpentane-2,4-diol
  • alkoxyalcohol preferably 3-methoxy-3-methylbutanol
  • glycol monoether preferably, preferably) EGBE
  • the molecular weight of the organic solvent is preferably 32 to 250, more preferably 40 to 200, and even more preferably 50 to 150.
  • the lower limit of the content of the organic solvent is preferably 1% by mass or more with respect to the total mass of the treatment liquid, and more preferably 2% by mass or more in that the residue removal performance and the anticorrosion performance are more excellent over time. ..
  • the upper limit of the content of the organic solvent is preferably 40% by mass or less with respect to the total mass of the treatment liquid, and more preferably 30% by mass or less in that the residue removal performance and the anticorrosion performance are more excellent over time. , 25% by mass or less is more preferable.
  • the organic solvent may be used alone or in combination of two or more. When two or more types are used, the total content thereof is preferably within the above range.
  • the treatment liquid of the present invention contains one or more first metal ions selected from the group consisting of Na, Al, K, Ca, Cr, Fe, Ni, and Zn.
  • the lower limit of the total content of the first metal ions in the treatment liquid of the present invention is 7.0 mass ppb or more with respect to the total mass of the treatment liquid, and the stability over time of the residue removal performance and the anticorrosion performance is good. In terms of superiority, 8.0 mass ppb or more is preferable, and 9.0 mass ppb or more is more preferable.
  • the upper limit of the total content of the first metal ion is 800.0 mass ppb or less with respect to the total mass of the treatment liquid, and 700 in that the residue removal performance and the anticorrosion performance are more excellent over time. It is preferably 0.0 mass ppb or less, and more preferably 600.0 mass ppb or less.
  • the content of at least one metal ion among the first metal ions contained in the treatment liquid is 1. With respect to the total mass of the treatment liquid, in that the residue removal performance and the anticorrosion performance are more excellent over time. It is preferably 0 to 100.0 mass ppb.
  • the treatment liquid contains two or more first metal ions, and the content of each metal ion is the total mass of the treatment liquid. It is preferably 1.0 to 100.0 mass ppb, and the treatment liquid is all selected from the group consisting of Na, Al, K, Ca, Cr, Fe, Ni, and Zn as the first metal ion. It is more preferable that the metal ions of the above are contained and the content of each metal ion is 1.0 to 100.0 mass ppb with respect to the total mass of the treatment liquid.
  • the treatment liquid contains at least Ca ion as the first metal ion in that the residue removal performance and the anticorrosion performance are more excellent over time.
  • the first metal ion may be a metal ion inevitably contained in each component (raw material) contained in the treatment liquid, or a metal ion inevitably contained in the production, storage, and / or transfer of the treatment liquid. It may be added intentionally.
  • Examples of the method of intentionally adding the first metal ion to the system include a method of adding a metal salt containing the corresponding metal atom.
  • the type of the metal salt is not particularly limited, and examples thereof include sulfates, chloride salts, and bromide salts.
  • the type and content of metal ions in the treatment liquid can be measured by the SP-ICP-MS method (Single Nano Particile Inductively Coupled Plasma Mass Spectrometry).
  • the SP-ICP-MS method uses the same apparatus as the ordinary ICP-MS method (inductively coupled plasma mass spectrometry), and differs only in data analysis. Data analysis of the SP-ICP-MS method can be performed by commercially available software.
  • the content of the metal component to be measured is measured regardless of its existence form. Therefore, the total mass of the metal particles and the metal ions to be measured is quantified as the content of the metal component.
  • the content of metal particles can be measured. Therefore, the content of metal ions in the sample can be calculated by subtracting the content of the metal particles from the content of the metal component in the sample.
  • the device for the SP-ICP-MS method include an Agilent 8800 triple quadrupole ICP-MS (inductively coupled plasma mass spectrometery, option # 200) manufactured by Agilent Technologies, Inc., which is described in Examples. It can be measured by the above method.
  • the Agilent 8900 manufactured by Agilent Technologies can also be used.
  • the treatment liquid of the present invention preferably further contains water.
  • the content of water in the treatment liquid of the present invention is not particularly limited, and is preferably 15 to 98% by mass, more preferably 30 to 95% by mass, and further 50 to 95% by mass with respect to the total mass of the treatment liquid. preferable.
  • the treatment liquid of the present invention preferably further contains a second metal ion.
  • the second metal ion is one or more metal ions selected from the group consisting of Li, Mg, Mn, Cu, Ag, Pb, and Co.
  • the lower limit of the total content of the second metal ion in the treatment liquid of the present invention is preferably 0.01 mass ppb or more with respect to the total mass of the treatment liquid, and the stability over time of the residue removal performance and the anticorrosion performance is good. In terms of superiority, 0.05 mass ppb or more is more preferable, and 0.1 mass ppb or more is further preferable.
  • the upper limit of the total content of the second metal ion is preferably 10.0 mass ppb or less with respect to the total mass of the treatment liquid, and the residue removal performance and the anticorrosion performance are more excellent over time. It is more preferably 0.0 mass ppb or less, and further preferably 6.0 mass ppb or less.
  • the content of at least one metal ion among the second metal ions contained in the treatment liquid is 0, based on the total mass of the treatment liquid, in that the residue removal performance and the anticorrosion performance are more excellent over time. It is preferably 01 to 1.0 mass ppb.
  • the treatment liquid contains two or more types of second metal ions, and the content of each metal ion is the total mass of the treatment liquid. It is preferably 0.01 to 1.0 mass ppb, and all metals selected from the group consisting of Li, Mg, Mn, Cu, Ag, Pb, and Co as the second metal ion in the treatment liquid. More preferably, it contains ions and the content of each metal ion is 0.01 to 1.0 mass ppb with respect to the total mass of the treatment liquid.
  • the second metal ion may be a metal ion inevitably contained in each component (raw material) contained in the treatment liquid, or a metal ion inevitably contained in the production, storage, and / or transfer of the treatment liquid. It may be added intentionally.
  • Examples of the method of intentionally adding the second metal ion to the system include a method of adding a metal salt containing the corresponding metal atom.
  • the type of the metal salt is not particularly limited, and examples thereof include sulfates, chloride salts, and bromide salts.
  • the method for measuring the content of the second metal ion in the treatment liquid is the same as the method for measuring the content of the first metal ion described above.
  • the treatment liquid of the present invention preferably further contains a chelating agent.
  • the chelating agent chelate with the oxidized metal contained in the residue.
  • the chelating agent is not particularly limited, but a polyaminopolycarboxylic acid is preferable.
  • a polyaminopolycarboxylic acid is a compound having a plurality of amino groups and a plurality of carboxylic acid groups. Examples of the polyaminopolycarboxylic acid include mono- or polyalkylene polyamine polycarboxylic acids, polyaminoalkane polycarboxylic acids, polyaminoalkanol polycarboxylic acids, and hydroxyalkyl ether polyamine polycarboxylic acids.
  • polyaminopolycarboxylic acid examples include butylenediaminetetraacetic acid, diethylenetriaminetetraacetic acid (DTPA), ethylenediaminetetrapropionic acid, triethylenetetraminehexacetic acid, 1,3-diamino-2-hydroxypropane-N, N, N', N'-tetraacetic acid, propylenediaminetetraacetic acid, ethylenediaminetetraacetic acid (EDTA), trans-1,2-diaminocyclohexanetetraacetic acid, ethylenediaminediaminetetraacetic acid, ethylenediaminediaminedipropionic acid, 1,6-hexamethylene-diamine-N, N , N', N'-tetraacetic acid, N, N-bis (2-hydroxybenzyl) ethylenediamine-N, N-diacetate, diaminopropanetetraacetic acid, 1,4,7,10-t
  • the content of the chelating agent in the treatment liquid of the present invention is not particularly limited, and is preferably 0.01 to 5% by mass, more preferably 0.01 to 3% by mass, based on the total mass of the treatment liquid.
  • the chelating agent may be used alone or in combination of two or more. When two or more types are used, the total content thereof is preferably within the above range.
  • the treatment liquid of the present invention may further contain other components other than the above-mentioned components.
  • other components include surfactants, quaternary ammonium hydroxide salts, reducing agents, pH adjusting agents, foodstuff-proofing agents, defoaming agents, rust-preventing agents, preservatives and the like.
  • the pH of the treatment liquid of the present invention is not particularly limited, but it is preferably in the alkaline region because it is excellent in residue removing performance.
  • the pH of the treatment liquid is preferably 8 or more, more preferably 9 or more, still more preferably 10 or more, in that the anticorrosion performance against Co is more excellent.
  • the pH of the treatment liquid is preferably 14 or less, more preferably 12 or less, in that the anticorrosion performance against W is more excellent.
  • the treatment liquid may further contain a pH adjusting agent.
  • the treatment liquid of the present invention can be suitably used as a treatment liquid for semiconductor devices.
  • “for semiconductor devices” means that it is used in the manufacture of semiconductor devices.
  • the treatment liquid of the present invention can be used in any step for manufacturing a semiconductor device, for example, treatment of an insulating film, a resist or an antireflection film existing on a substrate, a dry etching residue (resist of a photoresist film and a residue of a photoresist film). It can be used for the treatment of metal hard mask residues, etc.) and the treatment of ashing residues.
  • the treatment liquid As a more specific use of the treatment liquid, it is applied on a substrate to improve the coatability of the composition before the step of forming a photoresist film using the sensitive light-sensitive or radiation-sensitive resin composition.
  • the treatment liquid of the present invention may be used for only one of the above-mentioned uses, or may be used for two or more uses.
  • the treatment liquid of the present invention is preferably used for treating a substrate having a metal layer containing at least one selected from the group consisting of W and Co.
  • the treatment liquid of the present invention is preferably used as a treatment liquid for producing a semiconductor device including a substrate having a metal layer containing at least one selected from the group consisting of W and Co.
  • the metal layer containing at least one selected from the group consisting of W and / or Co may be a metal layer containing only W and / or Co, and is an alloy containing W and / or Co. It may be a metal layer of another form containing W and / or Co.
  • the treatment liquid can be produced by a known method. Hereinafter, the method for producing the above-mentioned treatment liquid will be described in detail.
  • ⁇ Raw material refining process> In the production of the above-mentioned treatment liquid, it is desirable to purify any one or more of the raw materials for preparing the treatment liquid in advance by distillation, ion exchange, filtration or the like. As for the degree of purification, for example, it is preferable to purify the raw material to a purity of 99% or more, and more preferably to a purity of 99.9% or more.
  • the purification method is not particularly limited, and examples thereof include a method of passing through an ion exchange resin or an RO membrane (Reverse Osmosis Membrane), distillation, or a method such as filtering described later.
  • a purification device made of a cation exchange resin, an anion exchange resin, or a mixed bed type ion exchange resin to perform secondary purification.
  • Examples thereof include a method for carrying out purification.
  • the purification treatment may be carried out by combining a plurality of the above-mentioned known purification methods. Moreover, the purification treatment may be carried out a plurality of times.
  • the filter is not particularly limited as long as it has been conventionally used for filtration.
  • fluororesins such as polytetrafluoroethylene (PTFE) and tetrafluoroethylene perfluoroalkyl vinyl ether copolymer (PFA), polyamide resins such as nylon, and polyolefin resins such as polyethylene and polypropylene (PP) (high density).
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene perfluoroalkyl vinyl ether copolymer
  • polyamide resins such as nylon
  • polyolefin resins such as polyethylene and polypropylene (PP) (high density).
  • PP polypropylene
  • a filter based on (including ultrahigh molecular weight) or the like can be mentioned.
  • a material selected from the group consisting of fluororesins such as polyethylene, polypropylene (including high-density polypropylene), PTFE and PFA, and polyamide-based resins such as nylon is preferable, and among them, fluororesins such as PTFE and PFA are preferable.
  • Resin filters are more preferred. By using a filter formed of these materials, it is possible to effectively remove highly polar foreign substances that are likely to cause defects.
  • the critical surface tension of the filter is preferably 70 mN / m or more, more preferably 95 mN / m or less, and even more preferably 75 to 85 mN / m.
  • the value of the critical surface tension is the nominal value of the manufacturer.
  • the pore diameter of the filter is preferably about 2 to 20 nm, more preferably 2 to 15 nm. Within this range, it is possible to reliably remove fine foreign substances such as impurities or agglomerates contained in the raw material while suppressing filtration clogging.
  • different filters may be combined. At that time, the filtering by the first filter may be performed only once or twice or more. When filtering is performed twice or more by combining different filters, it is preferable that the pore diameters of the second and subsequent times are the same or smaller than the pore diameter of the first filtering. Further, first filters having different pore diameters within the above-mentioned range may be combined.
  • the hole diameter here, the nominal value of the filter manufacturer can be referred to.
  • a commercially available filter for example, it can be selected from various filters provided by Nippon Pole Co., Ltd., Advantech Toyo Co., Ltd., Japan Entegris Co., Ltd.
  • P-nylon filter (pore diameter 0.02 ⁇ m, critical surface tension 77 mN / m) made of polyamide; (manufactured by Nippon Pole Co., Ltd.), "PE clean filter (pore diameter 0.02 ⁇ m)” made of high-density polyethylene; (Manufactured by Nippon Pole Co., Ltd.) and "PE / Clean Filter (hole diameter 0.01 ⁇ m)” made of high-density polyethylene; (manufactured by Nippon Pole Co., Ltd.) can also be used.
  • the second filter a filter formed of the same material as the first filter described above can be used.
  • the pore size of the second filter is preferably about 1 to 10 nm.
  • the temperature at which the filtering step is performed is preferably room temperature (25 ° C.) or lower, more preferably 23 ° C. or lower, and even more preferably 20 ° C. or lower. Further, 0 ° C. or higher is preferable, 5 ° C. or higher is more preferable, and 10 ° C. or higher is further preferable.
  • particulate foreign matter or impurities can be removed, but at the above temperature, the amount of the particulate foreign matter and / or impurities dissolved in the raw material is reduced, so that filtering is more efficient. Will be removed.
  • the purification treatment may be carried out by adjusting to.
  • the preparation of the treatment liquid of the present invention is not particularly limited, and can be produced, for example, by mixing the above-mentioned components.
  • the order and / or timing of mixing each of the above-mentioned components is not particularly limited, and examples thereof include a method in which a hydroxyamine compound is dispersed in advance in pH-adjusted water and predetermined components are sequentially mixed.
  • the treatment liquid in the present invention may be a kit obtained by dividing the raw material into a plurality of parts.
  • a liquid composition in which a hydroxyamine compound and a basic compound are dispersed or dissolved in an organic solvent is prepared as the first liquid, and the first metal ion is prepared as the second liquid.
  • the treatment liquid may be prepared by using a concentrated liquid. When a concentrated solution of the treatment liquid is prepared, the concentration ratio thereof is appropriately determined depending on the composition of the composition, but is preferably 5 to 2000 times. That is, the treatment liquid may be used by diluting the concentrated liquid 5 to 2000 times.
  • the treatment liquid of the present invention can be filled in an arbitrary container, stored, transported, and used as long as corrosiveness or the like is not a problem (whether it is a kit or a concentrated liquid or not).
  • the container it is preferable that the container has a high degree of cleanliness and less elution of impurities for semiconductor applications.
  • usable containers include, but are not limited to, the "clean bottle” series manufactured by Aicello Chemical Corporation and the "pure bottle” manufactured by Kodama Resin Industry.
  • the inner wall of this container is made of one or more resins selected from the group consisting of polyethylene resin, polypropylene resin, and polyethylene-polypropylene resin, or a resin different from this, or stainless steel, hasteroi, inconel, monel, etc. It is preferably formed from a metal that has been subjected to rust and metal elution prevention treatment.
  • a fluororesin (perfluororesin) is preferable.
  • a container whose inner wall is a fluororesin by using a container whose inner wall is a fluororesin, a problem of elution of ethylene or propylene oligomer occurs as compared with a container whose inner wall is polyethylene resin, polypropylene resin, or polyethylene-polypropylene resin. Can be suppressed.
  • Specific examples of such a container in which the inner wall is a fluororesin include a FluoroPure PFA composite drum manufactured by Entegris.
  • quartz and an electropolished metal material are also preferably used for the inner wall of the container.
  • the metal material used for producing the electropolished metal material includes at least one selected from the group consisting of chromium and nickel, and the total content of chromium and nickel is 25 with respect to the total mass of the metal material.
  • Metallic materials having a mass% of more than% are preferable, and examples thereof include stainless steel and nickel-chromium alloys.
  • the total content of chromium and nickel in the metal material is more preferably 30% by mass or more with respect to the total mass of the metal material.
  • the upper limit of the total content of chromium and nickel in the metal material is not particularly limited, but is generally preferably 90% by mass or less.
  • the stainless steel is not particularly limited, and known stainless steel can be used. Among them, an alloy containing 8% by mass or more of nickel is preferable, and an austenitic stainless steel containing 8% by mass or more of nickel is more preferable.
  • austenitic stainless steels include SUS (Steel Use Stainless) 304 (Ni content 8% by mass, Cr content 18% by mass), SUS304L (Ni content 9% by mass, Cr content 18% by mass), and SUS316 ( Ni content 10% by mass, Cr content 16% by mass), SUS316L (Ni content 12% by mass, Cr content 16% by mass) and the like.
  • the nickel-chromium alloy is not particularly limited, and a known nickel-chromium alloy can be used. Of these, nickel-chromium alloys having a nickel content of 40 to 75% by mass and a chromium content of 1 to 30% by mass are preferable. Examples of the nickel-chromium alloy include Hastelloy (trade name, the same shall apply hereinafter), Monel (trade name, the same shall apply hereinafter), Inconel (trade name, the same shall apply hereinafter) and the like. More specifically, Hastelloy C-276 (Ni content 63% by mass, Cr content 16% by mass), Hastelloy-C (Ni content 60% by mass, Cr content 17% by mass), and Hastelloy C-22.
  • the nickel-chromium alloy may further contain boron, silicon, tungsten, molybdenum, copper, cobalt and the like, if necessary, in addition to the above alloys.
  • the method for electropolishing a metal material is not particularly limited, and a known method can be used.
  • a known method can be used.
  • the methods described in paragraphs [0011]-[0014] of JP2015-227501 and paragraphs [0036]-[0042] of JP2008-264929 can be used.
  • the metal material is preferably buffed.
  • the method of buffing is not particularly limited, and a known method can be used.
  • the size of the abrasive grains used for finishing the buffing is not particularly limited, but # 400 or less is preferable because the unevenness on the surface of the metal material tends to be smaller.
  • the buffing is preferably performed before the electrolytic polishing.
  • the metal material may be processed by combining one or more of a plurality of stages of buffing, acid cleaning, magnetic fluid polishing, etc., which are performed by changing the count such as the size of abrasive grains. ..
  • a container having the container and the treatment liquid contained in the container may be referred to as a treatment liquid container.
  • the inside of these containers is cleaned before filling with the treatment liquid.
  • the liquid used for cleaning preferably has a reduced amount of metal impurities in the liquid.
  • the treatment liquid of the present invention may be bottling, transported and stored in a container such as a gallon bottle or a coated bottle after production.
  • the inside of the container may be replaced with an inert gas (chisso, argon, etc.) having a purity of 99.99995% by volume or more.
  • an inert gas chisso, argon, etc.
  • a gas having a low water content is preferable.
  • the temperature may be at room temperature, but in order to prevent deterioration, the temperature may be controlled in the range of ⁇ 20 ° C. to 20 ° C.
  • the clean room preferably meets the 14644-1 clean room standard. It is preferable to satisfy any one of ISO (International Organization for Standardization) class 1, ISO class 2, ISO class 3, and ISO class 4, more preferably ISO class 1 or ISO class 2, and ISO class 1 is satisfied. Is more preferable.
  • ISO International Organization for Standardization
  • the treatment liquid is used to clean a substrate having a metal layer containing one or more selected from the group consisting of W and Co.
  • An embodiment having a cleaning step (hereinafter, also referred to as “cleaning step B”) can be mentioned.
  • the cleaning method of the above aspect may include a treatment liquid preparation step (hereinafter referred to as "treatment liquid preparation step A") for preparing the treatment liquid before the cleaning step B.
  • treatment liquid preparation step A a treatment liquid preparation step for preparing the treatment liquid before the cleaning step B.
  • the object to be cleaned in the method for cleaning a substrate of the present invention is preferably a substrate having a metal layer containing at least one selected from the group consisting of W and Co.
  • the object to be cleaned in the method for cleaning the substrate of the present invention is, for example, a metal layer containing at least one selected from the group consisting of W and Co on the substrate (hereinafter, simply referred to as “metal layer”).
  • metal layer a metal layer containing at least one selected from the group consisting of W and Co on the substrate
  • Laminates provided with an interlayer insulating layer and a metal hard mask at least in this order. The laminate further has holes formed from the surface (opening) of the metal hard mask toward the substrate so as to expose the surface of the metal layer by undergoing a dry etching process or the like.
  • the method for producing a laminate having holes as described above is not particularly limited, but usually, for a pretreated laminate having a substrate, a metal layer, an interlayer insulating layer, and a metal hard mask in this order, A method of performing a dry etching process using a metal hard mask as a mask and etching the interlayer insulating layer so that the surface of the metal layer is exposed to provide holes penetrating the inside of the metal hard mask and the interlayer insulating layer. Can be mentioned.
  • the method for producing the metal hard mask is not particularly limited. For example, first, a metal layer containing a predetermined component is formed on the interlayer insulating layer, and a resist film having a predetermined pattern is formed on the metal layer.
  • the laminate may have a layer other than the above-mentioned layer, and examples thereof include an etching stop layer and an antireflection layer.
  • FIG. 1 shows a schematic cross-sectional view showing an example of a laminate that is a cleaning target of the substrate cleaning method of the present invention.
  • the laminate 10 shown in FIG. 1 is provided with a metal layer 2, an etching stop layer 3, an interlayer insulation layer 4, and a metal hard mask 5 in this order on a substrate 1, and is metal at a predetermined position after undergoing a dry etching process or the like.
  • a hole 6 is formed in which the layer 2 is exposed. That is, the object to be cleaned shown in FIG. 1 includes a substrate 1, a metal layer 2, an etching stop layer 3, an interlayer insulating layer 4, and a metal hard mask 5 in this order, and an opening of the metal hard mask 5.
  • the inner wall 11 of the hole 6 is composed of a cross-sectional wall 11a made of an etching stop layer 3, an interlayer insulating layer 4 and a metal hard mask 5, and a bottom wall 11b made of an exposed metal layer 2, to which a dry etching residue 12 adheres. doing.
  • the substrate cleaning method of the present invention can be suitably used for cleaning for the purpose of removing these dry etching residues 12. That is, while being excellent in removing the dry etching residue 12, it is also excellent in anticorrosion performance against the inner wall 11 (for example, the metal layer 2 and the like) of the object to be cleaned. Further, the method for cleaning the substrate of the present invention may be carried out on a laminate in which a dry ashing step is performed after the dry etching step.
  • a dry ashing step is performed after the dry etching step.
  • the metal hard mask preferably contains at least one component selected from the group consisting of Cu, Co, W, AlOx, AlN, AlOxNy, WOx, Ti, TiN, ZrOx, HfOx and TaOx.
  • Examples of the material of the metal hard mask include TiN, WO 2 and ZrO 2 .
  • the material of the interlayer insulating layer is not particularly limited, and a material having a dielectric constant k of 3.0 or less is preferable, and a material having a dielectric constant k of 2.6 or less is more preferable.
  • Specific examples of the material of the interlayer insulating layer include SiO 2 , SiOC materials, and organic polymers such as polyimide.
  • the material of the etching stop layer is not particularly limited. Specific examples of the etching stop layer material include SiN, SiON, SiOCN-based materials, and metal oxides such as AlOx.
  • the wiring material forming the metal layer contains at least W (tungsten) or Co (cobalt). Further, these metals may be alloys with other metals.
  • the wiring material of the present invention may further contain a metal other than W and Co, a metal nitride or an alloy. Specific examples thereof include copper, titanium, titanium-tungsten, titanium nitride, tantalum, tantalum compounds, chromium, chromium oxide, and aluminum.
  • the "substrate” here includes, for example, a semiconductor substrate made of a single layer and a semiconductor substrate made of multiple layers.
  • the material constituting the semiconductor substrate composed of a single layer is not particularly limited, and is generally preferably composed of a Group III-V compound such as silicon, silicon germanium, or GaAs, or any combination thereof.
  • the configuration is not particularly limited, and for example, an interconnect structure (interconnect features) such as a metal wire and a dielectric material is exposed and integrated on the above-mentioned semiconductor substrate such as silicon. It may have a circuit structure.
  • Metals and alloys used in interconnect structures include, but are limited to, aluminum, aluminum alloyed with copper, copper, titanium, tantalum, cobalt, silicon, titanium nitride, tantalum nitride, and tungsten. It's not a thing. Further, a layer such as an interlayer dielectric layer, silicon oxide, silicon nitride, silicon carbide, and carbon-doped silicon oxide may be provided on the semiconductor substrate.
  • the treatment liquid preparation step A is a step of preparing the treatment liquid.
  • Each component used in this step is as described above.
  • the procedure of this step is not particularly limited, and for example, a hydroxyamine compound, a basic compound, an organic solvent, a first metal ion, and other optional components are added and mixed by stirring to prepare a treatment liquid.
  • the method of preparation is mentioned.
  • each component When each component is added, it may be added all at once, or it may be added in multiple portions.
  • one classified as a semiconductor grade or one classified as a high-purity grade equivalent thereto is used to remove foreign substances by filtering and / or reduce ion components by ion exchange resin or the like.
  • the raw material components excluding the first metal ion contain a metal ion corresponding to the first metal ion and the total content thereof exceeds a predetermined amount
  • the hydroxyamine compound and the basic compound After mixing the organic solvent and other optional components as necessary, by removing foreign substances by filtering and / or reducing the ionic components by an ion exchange resin or the like, a predetermined amount of the first metal ion, the hydroxyamine compound, and A treatment liquid containing a basic compound, an organic solvent, and if necessary, other optional components may be prepared.
  • the concentrated solution is diluted to obtain a diluted solution before performing the cleaning step B, and then the cleaning step B is performed using this diluted solution. ..
  • the above dilution is preferably carried out using a diluent containing water.
  • the method of bringing the treatment liquid into contact with the cleaning target is not particularly limited, and for example, a method of immersing the cleaning target in the treatment liquid placed in the tank, a method of spraying the treatment liquid on the cleaning target, and a method of spraying the treatment liquid on the cleaning target.
  • a method of flowing the treatment liquid into the water, or any combination thereof can be mentioned. From the viewpoint of residue removing performance, a method of immersing the object to be cleaned in the treatment liquid is preferable.
  • the temperature of the treatment liquid is preferably 90 ° C. or lower, more preferably 25 to 80 ° C., further preferably 30 to 75 ° C., and particularly preferably 40 to 70 ° C.
  • the cleaning time can be adjusted according to the cleaning method used and the temperature of the treatment liquid.
  • the cleaning time is preferably 60 minutes or less, more preferably 1 to 60 minutes, and 3 to 20 minutes. Minutes are more preferred, and 4 to 15 minutes are particularly preferred.
  • the washing time is preferably 10 seconds to 5 minutes, more preferably 15 seconds to 4 minutes, further preferably 15 seconds to 3 minutes, and particularly preferably 20 seconds to 2 minutes.
  • a mechanical stirring method may be used in order to further improve the cleaning ability of the treatment liquid.
  • the mechanical stirring method include a method of circulating the treatment liquid on the object to be cleaned, a method of flowing or spraying the treatment liquid on the object to be cleaned, and a method of stirring the treatment liquid by ultrasonic waves or megasonic. And so on.
  • the method for cleaning a substrate using the treatment liquid of the present invention may further include a step of rinsing and cleaning the object to be cleaned with a solvent (hereinafter referred to as "rinsing step B2") after the cleaning step B. ..
  • the rinsing step B2 is preferably performed continuously with the washing step B and is a step of rinsing with a rinsing solvent (rinsing solution) for 5 seconds to 5 minutes.
  • the rinsing step B2 may be performed by using the above-mentioned mechanical stirring method.
  • rinsing solvent examples include deionized (DI: De Ionize) water, methanol, ethanol, isopropyl alcohol, N-methylpyrrolidinone, ⁇ -butyrolactone, dimethyl sulfoxide, ethyl lactate and propylene glycol monomethyl ether acetate. It is not limited to. Alternatively, an aqueous rinse solution having a pH> 8 (diluted aqueous ammonium hydroxide, etc.) may be used.
  • DI De Ionize
  • ammonium hydroxide aqueous solution, DI water, methanol, ethanol, or isopropyl alcohol is preferable, ammonium hydroxide aqueous solution, DI water, or isopropyl alcohol is more preferable, and ammonium hydroxide aqueous solution or DI water is further preferable.
  • a method of bringing the rinse solvent into contact with the object to be cleaned the above-mentioned method of bringing the treatment liquid into contact with the object to be cleaned can be similarly applied.
  • the temperature of the rinsing solvent in the rinsing step B2 is preferably 16 to 27 ° C.
  • the method for cleaning a substrate using the treatment liquid of the present invention may include a drying step B3 for drying the object to be cleaned after the rinsing step B2.
  • the drying method is not particularly limited. Examples of the drying method include a spin drying method, a method of flowing a dry gas over an object to be cleaned, a method of heating a substrate by a heating means such as a hot plate or an infrared lamp, a flatulence drying method, a rotagoni drying method, and an IPA. (Isopropyl alcohol) drying method, or any combination thereof can be mentioned.
  • the drying time depends on the specific method used, but is generally preferably 30 seconds to several minutes.
  • the objects to be cleaned in the method for cleaning a substrate using the treatment liquid of the present invention are a metal layer, an interlayer insulating layer, and a metal hard including one or more selected from the group consisting of W and Co on the substrate as described above. It is not limited to a laminate having masks at least in this order. That is, for example, it is also used for removing a photoresist etching residue of a laminate having a metal layer containing at least one selected from the group consisting of W and Co, an interlayer insulating layer, and a photoresist film on the substrate in this order. it can.
  • treatment solution 1 The treatment solutions (treatment solutions 1 to 8) shown in Table 1 were prepared respectively. The contents of various components used in each treatment liquid (all based on mass) are as described in the table.
  • a mixed solution was prepared by mixing each component so as to have the formulation shown in Table 1.
  • the first metal ion and the second metal ion were introduced into the liquid by adding a metal salt (metal chloride) containing the corresponding metal atom.
  • the content of metal ions in the treatment liquid was measured by the method described above. Those below the detection limit were measured after appropriately concentrating the drug solution, and the converted value was used.
  • HA Hydroxylamine
  • HAS Hydroxylamine Sulfate
  • DTPA Diethylenetriamine pentaacetic acid
  • EGBE Ethylene glycol monobutyl ether
  • 5M-BTA 5-Methyl-1H-benzotriazole
  • DBU Diazabicycloundecene
  • the substrate on which the Co film was formed was immersed in the treatment solution (65 ° C.) after the thermocycle treatment for 5 minutes, and the difference in the film thickness of the Co film before and after immersion in the treatment solution showed that the treatment solution
  • the etching rate ( ⁇ / min) for the Co film was calculated, and the etching rate was defined as ER Age .
  • the stability of anticorrosion performance against Co film over time was evaluated. The closer the etching rate maintenance rate (%) is to 100%, the better the maintenance rate of the anticorrosion performance against the Co film. That is, the anticorrosion performance against the Co film is stable over time.
  • the etching rate maintenance rate (%) was evaluated based on the following evaluation criteria.
  • Etching rate maintenance rate (%) is 100 to 102%
  • AA Etching rate maintenance rate (%) is more than 102% and 106% or less
  • a + Etching rate maintenance rate (%) is more than 106% and 114% or less
  • A- Etching rate maintenance rate (%) is 114 % More than 130%
  • B Etching rate maintenance rate (%) is more than 130% and less than 200%
  • C Etching rate maintenance rate (%) is more than 200% and less than 430%
  • D Etching rate maintenance rate ( %) Is over 430%
  • the etching rate maintenance rate (%) is preferably 100 to 114%, more preferably 100 to 106%, and even more preferably 100 to 102%.
  • the substrate provided with the TiO 2 film is immersed in the treatment liquid (65 ° C.) after the thermocycle treatment for 5 minutes, and the treatment is performed based on the difference in the thickness of the dio 2 film before and after the immersion in the treatment liquid.
  • the etching rate ( ⁇ / min) of the liquid with respect to the TiO 2 film was calculated, and the etching rate was defined as ER Age .
  • the stability of the residue removability over time was evaluated. The closer the etching rate maintenance rate (%) is to 100%, the better the maintenance rate of the residue removal performance. That is, the residue-removing property with time is good.
  • the etching rate maintenance rate (%) was evaluated based on the following evaluation criteria.
  • the etching rate retention rate (%) is preferably 86 to 100%, more preferably 92 to 100%, and even more preferably 97 to 100%.
  • Table 1 shows the basic compositions of the treatment liquids 1 to 8.
  • Tables 2 (No. 1) to (No. 4) show the composition and content of the first metal ion and the second metal ion in the treatment liquid 1 in Table 1, and the evaluation result of the treatment liquid 1. That is, for example, the treatment liquid of Example 1001 shown in Table 2 (No. 1) is the treatment liquid 1 shown in Table 1, and Na, Al, K, Ca, Cr, Fe, Ni, as the first metal ion.
  • All metal ions selected from the group consisting of and Zn are contained in a total content of 400.0 mass ppb with respect to the total mass of the treatment liquid, and Li, Mg, Mn, Cu, Ag, as second metal ions. It is a treatment liquid containing 5.55 mass ppb in total content with respect to the total mass of the treatment liquid, which contains all the metal ions selected from the group consisting of Pb and Co.
  • Tables 3 (No. 1) to (No. 3) show the composition and content of the first metal ion in the treatment liquid 2 in Table 1, and the evaluation results of the treatment liquid 2.
  • the treatment liquid 2 does not contain the second metal ion (below the detection limit).
  • Tables 5 (No. 1) to (No. 3) show the composition and content of the first metal ion in the treatment liquid 4 in Table 1, and the evaluation results of the treatment liquid 4.
  • the treatment liquid 4 does not contain the second metal ion (below the detection limit).
  • Tables 6 (No. 1) to (No. 3) show the composition and content of the first metal ion in the treatment liquid 5 in Table 1, and the evaluation results of the treatment liquid 5.
  • the treatment liquid 5 does not contain the second metal ion (below the detection limit).
  • Tables 8 (No. 1) to (No. 3) show the composition and content of the first metal ion in the treatment liquid 7 in Table 1, and the evaluation results of the treatment liquid 7.
  • the treatment liquid 7 does not contain the second metal ion (below the detection limit).
  • Tables 9 (No. 1) to (No. 3) show the composition and content of the first metal ion in the treatment liquid 8 in Table 1, and the evaluation results of the treatment liquid 8.
  • the treatment liquid 8 does not contain the second metal ion (below the detection limit).
  • the treatment liquid when the treatment liquid satisfies the requirements X1 and Y1 (corresponding to Examples 1001A to 1017A and Examples 1001B to 1017B), more preferably when the treatment liquid satisfies the requirements X1 and the requirement Y2 (Examples 1001 to 1017). It is clear that it is superior in performance stability of residue removal performance and anticorrosion performance.
  • the treatment liquid contains two or more first metal ions, and the content of each metal ion is 1.0 mass ppb to 100.0 mass ppb with respect to the total mass of the treatment liquid. is there.
  • the treatment liquid contains a second metal ion.
  • the treatment liquid contains two or more kinds of second metal ions, and the total content thereof is 0.01 mass ppb to 10.0 mass ppb with respect to the total mass of the treatment liquid, and further, the treatment liquid.
  • the content of each second metal ion contained therein is 0.01 mass ppb to 1.0 mass ppb with respect to the total mass of the treatment liquid.
  • the treatment liquid of the comparative example cannot achieve both the residue removal performance and the anticorrosion performance stability when the temperature environment changes such as refrigerated storage and room temperature standing are repeated.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Inorganic Chemistry (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Detergent Compositions (AREA)

Abstract

The present invention addresses the problem of providing a treatment liquid that maintains excellent residue removal performance and corrosion prevention performance, even when repeatedly subjected to changes in thermal environment between cold storage and sitting at room temperature. This treatment liquid includes a hydroxyamine compound selected from the group that consists of hydroxyamines and hydroxyamine salts, an organic solvent, a basic compound, and at least one type of first metal ion selected from the group that consists of Na, Al, K, Ca, Cr, Fe, Ni, and Zn. The total first metal ion content of the treatment liquid is 7.0–800.0 mass ppb relative to the total mass of the treatment liquid.

Description

処理液Treatment liquid
 本発明は、処理液に関する。特に、半導体デバイスの製造に好適に使用できる処理液に関する。 The present invention relates to a treatment liquid. In particular, the present invention relates to a treatment liquid that can be suitably used for manufacturing a semiconductor device.
 CCD(Charge-Coupled Device)、及びメモリー等の半導体デバイスは、フォトリソグラフィー技術を用いて、基板上に微細な電子回路パターンを形成して製造される。具体的には、基板上に、配線材料となる金属膜、エッチング停止層、及び層間絶縁層を有する積層体上にレジスト膜を形成し、フォトリソグラフィー工程及びドライエッチング工程(例えば、プラズマエッチング処理)を実施することにより、半導体デバイスが製造される。 Semiconductor devices such as CCD (Charge-Couple Device) and memory are manufactured by forming fine electronic circuit patterns on a substrate using photolithography technology. Specifically, a resist film is formed on a laminate having a metal film as a wiring material, an etching stop layer, and an interlayer insulating layer on a substrate, and a photolithography step and a dry etching step (for example, plasma etching treatment). By carrying out the above, a semiconductor device is manufactured.
 また、昨今、半導体デバイスのより一層の微細化を実現するために、上記のレジスト膜としてTiN、AlOx等の金属材料系レジスト膜(いわゆるメタルハードマスク)も用いられている。レジスト膜としてメタルハードマスクを用いる場合においては、通常、メタルハードマスクをマスクとして用いてドライエッチング工程(例えば、プラズマエッチング処理)を行い、メタルハードマスクのパターン形状に基づいたホールを形成して配線膜となる金属膜面を露出させる工程を行う。 Recently, in order to realize further miniaturization of semiconductor devices, metal material-based resist films such as TiN and AlOx (so-called metal hard masks) are also used as the resist films. When a metal hard mask is used as a resist film, a dry etching process (for example, plasma etching treatment) is usually performed using the metal hard mask as a mask to form holes based on the pattern shape of the metal hard mask for wiring. A step of exposing the metal film surface to be a film is performed.
 ドライエッチング工程を経た基板にはドライエッチング残渣(レジスト膜としてメタルハードマスクを用いた場合には、残渣成分として、例えばチタン系金属等の金属成分が多く含まれる。一方、フォトレジスト膜を用いた場合には、残渣成分として有機成分が多く含まれる)が堆積している。これらの残渣は、次工程の妨げとならないよう、処理液を用いて除去されるのが一般的である。 The substrate that has undergone the dry etching step contains a large amount of dry etching residue (when a metal hard mask is used as the resist film, a large amount of metal components such as titanium-based metals are contained as residue components. On the other hand, a photoresist film is used. In some cases, a large amount of organic components are contained as residual components). These residues are generally removed using a treatment liquid so as not to interfere with the next step.
 例えば、特許文献1には、「ヒドロキシアミンと、1,8-ジアザビシクロ[5.4.0]ウンデセン-7及び1,4-ジアザビシクロ[2.2.2]オクタンからなる群より選択される少なくとも1つのアミン化合物と、水溶性有機溶剤と、水とを含有し、pHが8以上であるリソグラフィー用洗浄液であって、上記水溶性有機溶剤を上記リソグラフィー用洗浄液全量に対して10質量%以上含むことを特徴とする、リソグラフィー用洗浄液」が開示されている。 For example, Patent Document 1 states that "at least selected from the group consisting of hydroxyamine and 1,8-diazabicyclo [5.4.0] undecene-7 and 1,4-diazabicyclo [2.2.2] octane. A cleaning solution for lithography containing one amine compound, a water-soluble organic solvent, and water and having a pH of 8 or more, and containing the water-soluble organic solvent in an amount of 10% by mass or more based on the total amount of the cleaning solution for lithography. A cleaning solution for lithography, which is characterized by the above, is disclosed.
特表第6486652号公報Special Table No. 6486652
 本発明者らは、特許文献1に記載された処理液の経時性能について検討したところ、所定条件で保管された場合、性能安定性が劣る場合があることを知見した。より具体的には、一般的に、処理液は不使用時には所定温度で冷蔵保管され、使用時には処理液を冷蔵保管から取り出し室温に戻して使用する。本発明者らは、処理液を所定時間冷蔵保管した後、処理液を室温下にて所定時間静置する一連の操作を繰り返して実施した際に、処理液の残渣除去性能(特に、メタルハードマスク由来の残渣物の除去性能)と防食性能(特に、Co(コバルト)又はCo合金に対する防食性能)とが劣る場合があり、これらの性能の安定性が劣る場合があることを見いだした。
 すなわち、上述のような温度環境変化があっても、残渣除去性能及び防食性能の性能が担保されるように処理液を改善する余地があることを明らかとした。なお、以下では上記性能が担保されることを、残渣除去性能及び防食性能の性能安定性に優れる、ともいう。
When the present inventors examined the time-dependent performance of the treatment liquid described in Patent Document 1, they found that the performance stability may be inferior when stored under predetermined conditions. More specifically, in general, the treatment liquid is refrigerated at a predetermined temperature when not in use, and when in use, the treatment liquid is taken out of the refrigeration storage and returned to room temperature for use. The present inventors repeatedly performed a series of operations in which the treatment liquid was refrigerated for a predetermined time and then allowed to stand at room temperature for a predetermined time, and the residue removing performance of the treatment liquid (particularly, metal hard). It has been found that the mask-derived residue removal performance) and the anticorrosion performance (particularly, the anticorrosion performance against Co (cobalt) or Co alloy) may be inferior, and the stability of these performances may be inferior.
That is, it was clarified that there is room for improving the treatment liquid so that the residual removal performance and the anticorrosion performance are ensured even if the temperature environment changes as described above. In the following, ensuring the above performance is also referred to as being excellent in performance stability of residue removing performance and anticorrosion performance.
 そこで、本発明は、冷蔵保管及び室温静置という温度環境変化を繰り返しても残渣除去性能(特に、メタルハードマスク由来の残渣物の除去性能)及び防食性能(特に、Co又はCo合金に対する防食性能)の性能安定性に優れる処理液を提供することを課題とする。 Therefore, the present invention has a residue removing performance (particularly, a metal hard mask-derived residue removing performance) and an anticorrosion performance (particularly, an anticorrosion performance against a Co or Co alloy) even if the temperature environment changes such as refrigerated storage and room temperature standing are repeated. ), It is an object of the present invention to provide a treatment liquid having excellent performance stability.
 本発明者らは、上記課題を解決すべく鋭意検討した結果、以下の構成により上記課題を解決できることを見出した。 As a result of diligent studies to solve the above problems, the present inventors have found that the above problems can be solved by the following configuration.
 〔1〕 ヒドロキシアミン及びヒドロキシアミン塩からなる群より選ばれるヒドロキシアミン化合物と、
 有機溶媒と、
 塩基性化合物と、
 Na、Al、K、Ca、Cr、Fe、Ni、及びZnからなる群から選択される1種以上の第1金属イオンと、を含む処理液であり、
 上記第1金属イオンの合計含有量が、処理液の全質量に対して、7.0質量ppb~800.0質量ppbである、処理液。
 〔2〕 処理液中に含まれる上記第1金属イオンのうち、少なくとも1種の金属イオンの含有量が、処理液の全質量に対して、1.0質量ppb~100.0質量ppbである、〔1〕に記載の処理液。
 〔3〕 処理液中に含まれる上記第1金属イオンが2種以上であり、且つ、各金属イオンの含有量がいずれも、処理液の全質量に対して、1.0質量ppb~100.0質量ppbである、〔1〕又は〔2〕に記載の処理液。
 〔4〕 さらに、Li、Mg、Mn、Cu、Ag、Pb、及びCoからなる群から選択される1種以上の第2金属イオンを含み、
 上記第2金属イオンの合計含有量が、処理液の全質量に対して、0.01質量ppb~10.0質量ppbである、〔1〕~〔3〕のいずれかに記載の処理液。
 〔5〕 処理液中に含まれる上記第2金属イオンのうち、少なくとも1種の金属イオンの含有量が、処理液の全質量に対して、0.01質量ppb~1.0質量ppbである、〔4〕に記載の処理液。
 〔6〕 処理液中に含まれる上記第2金属イオンが2種以上であり、且つ、各金属イオンの含有量がいずれも、処理液の全質量に対して、0.01質量ppb~1.0質量ppbである、〔4〕又は〔5〕に記載の処理液。
 〔7〕 上記ヒドロキシアミン化合物が、ヒドロキシアミン及び硫酸ヒドロキシアミンからなる群より選ばれる少なくとも1種を含む、〔1〕~〔6〕のいずれかに記載の処理液。
[1] Hydroxylamine compounds selected from the group consisting of hydroxyamines and hydroxyamine salts, and
With organic solvent
Basic compounds and
A treatment liquid containing one or more first metal ions selected from the group consisting of Na, Al, K, Ca, Cr, Fe, Ni, and Zn.
A treatment liquid in which the total content of the first metal ions is 7.0 mass ppb to 800.0 mass ppb with respect to the total mass of the treatment liquid.
[2] The content of at least one metal ion among the first metal ions contained in the treatment liquid is 1.0 mass ppb to 100.0 mass ppb with respect to the total mass of the treatment liquid. , [1].
[3] The first metal ions contained in the treatment liquid are two or more kinds, and the content of each metal ion is 1.0 mass ppb to 100. With respect to the total mass of the treatment liquid. The treatment solution according to [1] or [2], which has 0 mass ppb.
[4] Further, it contains one or more second metal ions selected from the group consisting of Li, Mg, Mn, Cu, Ag, Pb, and Co.
The treatment liquid according to any one of [1] to [3], wherein the total content of the second metal ion is 0.01 mass ppb to 10.0 mass ppb with respect to the total mass of the treatment liquid.
[5] The content of at least one metal ion among the second metal ions contained in the treatment liquid is 0.01 mass ppb to 1.0 mass ppb with respect to the total mass of the treatment liquid. , [4].
[6] The number of the second metal ions contained in the treatment liquid is two or more, and the content of each metal ion is 0.01 mass ppb to 1. with respect to the total mass of the treatment liquid. The treatment solution according to [4] or [5], which has 0 mass ppb.
[7] The treatment solution according to any one of [1] to [6], wherein the hydroxyamine compound contains at least one selected from the group consisting of hydroxyamine and hydroxyamine sulfate.
 本発明によれば、冷蔵保管及び室温静置という温度環境変化を繰り返しても残渣除去性能及び防食性能の性能安定性に優れる処理液を提供できる。 According to the present invention, it is possible to provide a treatment liquid having excellent performance stability of residue removal performance and anticorrosion performance even if the temperature environment changes such as refrigerated storage and room temperature standing are repeated.
本発明の処理液を用いた基板の洗浄方法に適用できる積層物の一例を示す断面模式図である。It is sectional drawing which shows an example of the laminate applicable to the method of cleaning a substrate using the processing liquid of this invention.
 以下、本発明について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に制限されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 また、本発明において「準備」というときには、特定の材料を合成ないし調合等して備えることのほか、購入等により所定の物を調達することを含む意味である。
 また、本発明において、「ppb」は「parts-per-billion(10-9)」を意味する。
 また、本発明において、1Å(オングストローム)は、0.1nmに相当する。
 また、本発明における基(原子群)の表記において、置換及び無置換を記していない表記は、本発明の効果を損ねない範囲で、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば、「炭化水素基」とは、置換基を有さない炭化水素基(無置換炭化水素基)のみならず、置換基を有する炭化水素基(置換炭化水素基)をも包含するものである。このことは、各化合物についても同義である。
 本明細書において、処理液のpHは、室温(25℃)において、(株)堀場製作所製、F-51(商品名)で測定した値である。
 また、本発明における「放射線」とは、例えば、水銀灯の輝線スペクトル、エキシマレーザーに代表される遠紫外線、極紫外線(EUV光)、X線、又は電子線等を意味する。また、本発明において光とは、活性光線又は放射線を意味する。本発明中における「露光」とは、特に断らない限り、水銀灯、エキシマレーザーに代表される遠紫外線、X線又はEUV光等による露光のみならず、電子線又はイオンビーム等の粒子線による描画も露光に含める。
Hereinafter, the present invention will be described in detail.
The description of the constituent elements described below may be based on typical embodiments of the present invention, but the present invention is not limited to such embodiments.
In the present specification, the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
Further, in the present invention, the term "preparation" includes not only synthesizing or blending a specific material to prepare the material, but also procuring a predetermined material by purchase or the like.
Further, in the present invention, "ppb" means "parts-per-parts ( 10-9 )".
Further, in the present invention, 1 Å (angstrom) corresponds to 0.1 nm.
In addition, in the notation of groups (atomic groups) in the present invention, notations that do not describe substitutions and non-substitutions include those that do not have substituents and those that have substituents as long as the effects of the present invention are not impaired. It includes. For example, the "hydrocarbon group" includes not only a hydrocarbon group having no substituent (unsubstituted hydrocarbon group) but also a hydrocarbon group having a substituent (substituted hydrocarbon group). .. This is synonymous with each compound.
In the present specification, the pH of the treatment liquid is a value measured by F-51 (trade name) manufactured by HORIBA, Ltd. at room temperature (25 ° C.).
Further, the "radiation" in the present invention means, for example, the emission line spectrum of a mercury lamp, far ultraviolet rays typified by an excimer laser, extreme ultraviolet rays (EUV light), X-rays, electron beams, and the like. Further, in the present invention, light means active light rays or radiation. Unless otherwise specified, the term "exposure" in the present invention refers not only to exposure with far ultraviolet rays such as mercury lamps and excimer lasers, X-rays or EUV light, but also for drawing with particle beams such as electron beams or ion beams. Include in exposure.
[処理液]
 本発明の処理液は、
 ヒドロキシアミン及びヒドロキシアミン塩からなる群より選ばれるヒドロキシアミン化合物と、
 有機溶媒と、
 塩基性化合物と、
 Na、Al、K、Ca、Cr、Fe、Ni、及びZnからなる群から選択される1種以上の第1金属イオンと、を含む処理液であり、
 上記第1金属イオンの合計含有量が、処理液の全質量に対して、7.0質量ppb~800.0質量ppbである。
[Treatment liquid]
The treatment liquid of the present invention is
Hydroxylamine compounds selected from the group consisting of hydroxyamines and hydroxyamine salts, and
With organic solvent
Basic compounds and
A treatment liquid containing one or more first metal ions selected from the group consisting of Na, Al, K, Ca, Cr, Fe, Ni, and Zn.
The total content of the first metal ions is 7.0 mass ppb to 800.0 mass ppb with respect to the total mass of the treatment liquid.
 発明者らは鋭意検討の結果、作用機序は明らかではないが、上記構成の処理液によれば、冷蔵保管及び室温静置という温度環境変化を繰り返しても残渣除去性能及び防食性能の性能安定性に優れる(以下、「残渣除去性能及び防食性能の経時安定性に優れる」ともいう。)ことを明らかとしている。
 上記処理液は、半導体デバイス用処理液として、半導体デバイスを製造する際の各工程に適用できる。特に、上記処理液は、メタルハードマスクをマスクとして用いたドライエッチング工程の後の洗浄液として好適に使用され得る。
 以下、本発明の処理液に含まれる各成分について説明する。
As a result of diligent studies, the inventors have not clarified the mechanism of action, but according to the treatment liquid having the above configuration, the performance of residue removal performance and anticorrosion performance is stable even if the temperature environment changes such as refrigerated storage and room temperature standing are repeated. It has been clarified that it has excellent properties (hereinafter, also referred to as "excellent in stability over time of residue removing performance and anticorrosion performance").
The above-mentioned treatment liquid can be applied as a treatment liquid for a semiconductor device to each process when manufacturing a semiconductor device. In particular, the treatment liquid can be suitably used as a cleaning liquid after a dry etching step using a metal hard mask as a mask.
Hereinafter, each component contained in the treatment liquid of the present invention will be described.
〔ヒドロキシアミン化合物〕
 本発明の処理液は、ヒドロキシアミン及びヒドロキシアミン塩からなる群より選ばれるヒドロキシアミン化合物を含む。ヒドロキシアミン化合物は、残渣の分解及び可溶化を促進する機能を有する。
[Hydroxyamine compound]
The treatment liquid of the present invention contains a hydroxyamine compound selected from the group consisting of hydroxyamines and hydroxyamine salts. The hydroxyamine compound has a function of promoting decomposition and solubilization of the residue.
 ここで、本発明の処理液のヒドロキシアミン化合物に係る「ヒドロキシアミン」は、置換若しくは無置換のアルキルヒドロキシアミン等を含む広義のヒドロキシアミン化合物を指すものであって、いずれであっても本発明の効果を得ることができる。
 ヒドロキシアミン化合物としては、特に制限はされないが、好ましい態様として、無置換ヒドロキシアミン及びヒドロキシアミン誘導体、並びに、その塩が好ましい。
Here, the "hydroxyamine" according to the hydroxyamine compound of the treatment liquid of the present invention refers to a hydroxyamine compound in a broad sense including a substituted or unsubstituted alkylhydroxyamine, and any of them is the present invention. The effect of can be obtained.
The hydroxyamine compound is not particularly limited, but as a preferred embodiment, an unsubstituted hydroxyamine and a hydroxyamine derivative, and a salt thereof are preferable.
 ヒドロキシアミン誘導体としては特に制限されないが、例えば、O-メチルヒドロキシアミン、O-エチルヒドロキシアミン、N-メチルヒドロキシアミン、N,N-ジメチルヒドロキシアミン、N,O-ジメチルヒドロキシアミン、N-エチルヒドロキシアミン、N,N-ジエチルヒドロキシアミン、N,O-ジエチルヒドロキシアミン、O,N,N-トリメチルヒドロキシアミン、N,N-ジカルボキシエチルヒドロキシアミン、及びN,N-ジスルホエチルヒドロキシアミン等が挙げられる。 The hydroxyamine derivative is not particularly limited, but for example, O-methylhydroxyamine, O-ethylhydroxyamine, N-methylhydroxyamine, N, N-dimethylhydroxyamine, N, O-dimethylhydroxyamine, N-ethylhydroxy. Amin, N, N-diethylhydroxyamine, N, O-diethylhydroxyamine, O, N, N-trimethylhydroxyamine, N, N-dicarboxyethyl hydroxyamine, N, N-disulfoethyl hydroxyamine, etc. Can be mentioned.
 無置換ヒドロキシアミン又はヒドロキシアミン誘導体の塩としては、上述した無置換ヒドロキシアミン又はヒドロキシアミン誘導体の無機酸塩若しくは有機酸塩が好ましく、Cl、S、N、又はP等の非金属原子が水素原子と結合してできた無機酸の塩がより好ましく、塩酸、硫酸、及び硝酸のいずれかの酸の塩が更に好ましい。なかでも、硝酸ヒドロキシアミン(ヒドロキシアミン硝酸塩)、硫酸ヒドロキシアミン(ヒドロキシアミン硫酸塩)、塩酸ヒドロキシアミン、リン酸ヒドロキシアミン、硫酸N,N-ジエチルヒドロキシアミン、硝酸N,N-ジエチルヒドロキシアミン、又はこれらの混合物が好ましい。
 また、上述した無置換ヒドロキシアミン又はヒドロキシアミン誘導体の有機酸塩としては、例えば、ヒドロキシアンモニウムクエン酸塩、ヒドロキシアンモニウムシュウ酸塩、及びヒドロキシアンモニウムフルオライド等が挙げられる。
As the salt of the unsubstituted hydroxyamine or the hydroxyamine derivative, the inorganic acid salt or the organic acid salt of the above-mentioned unsubstituted hydroxyamine or the hydroxyamine derivative is preferable, and a non-metal atom such as Cl, S, N, or P is a hydrogen atom. A salt of an inorganic acid formed by binding with is more preferable, and a salt of any of hydrochloric acid, sulfuric acid, and nitric acid is further preferable. Among them, hydroxyamine nitrate (hydroxyamine nitrate), hydroxyamine sulfate (hydroxyamine sulfate), hydroxyamine hydrochloride, hydroxyamine phosphate, N, N-diethylhydroxyamine sulfate, N, N-diethylhydroxyamine nitrate, or A mixture of these is preferred.
In addition, examples of the above-mentioned organic acid salt of the unsubstituted hydroxyamine or the hydroxyamine derivative include hydroxyammonium citrate, hydroxyammonium oxalate, and hydroxyammonium fluoride.
 ヒドロキシアミン化合物としては、処理液の残渣除去性能及び防食性能の経時安定性がより優れる点で、なかでも、ヒドロキシアミン及び硫酸ヒドロキシアミンからなる群より選ばれる少なくとも1種のヒドロキシアミン化合物が好ましく、無置換ヒドロキシアミン及びその硫酸塩がより好ましく、無置換ヒドロキシアミンが更に好ましい。 As the hydroxyamine compound, at least one hydroxyamine compound selected from the group consisting of hydroxyamine and hydroxyamine sulfate is preferable in that the residue removing performance of the treatment liquid and the anticorrosion performance over time are more excellent. Unsubstituted hydroxyamines and sulfates thereof are more preferred, and unsubstituted hydroxyamines are even more preferred.
 ヒドロキシアミン化合物の含有量の下限値としては、処理液の全質量に対して、0.1質量%以上が好ましく、処理液の残渣除去性及び欠陥抑制性がより優れる点で、1質量%以上がより好ましく、3質量%以上が更に好ましい。ヒドロキシアミン化合物の含有量の上限値としては、処理液の全質量に対して、40質量%以下が好ましく、処理液の防食性能がより優れる点で、30質量%以下がより好ましく、25質量%以下が更に好ましく、20質量%以下が特に好ましく、15質量%以下が最も好ましい。
 ヒドロキシアミン化合物は1種単独で使用してもよく、2種以上使用してもよい。2種以上使用する場合は、それらの合計含有量が上記範囲内であるのが好ましい。
The lower limit of the content of the hydroxyamine compound is preferably 0.1% by mass or more with respect to the total mass of the treatment liquid, and is 1% by mass or more in that the residue removal property and defect suppression property of the treatment liquid are more excellent. Is more preferable, and 3% by mass or more is further preferable. The upper limit of the content of the hydroxyamine compound is preferably 40% by mass or less, more preferably 30% by mass or less, and 25% by mass, because the anticorrosion performance of the treatment liquid is more excellent with respect to the total mass of the treatment liquid. The following is more preferable, 20% by mass or less is particularly preferable, and 15% by mass or less is most preferable.
The hydroxyamine compound may be used alone or in combination of two or more. When two or more types are used, the total content thereof is preferably within the above range.
〔塩基性化合物〕
 本発明の処理液は、塩基性化合物を含む。なお、ここでいう「塩基性化合物」と上述のヒドロキシアミン化合物とは、異なる化合物である。つまり、ヒドロキシアミン化合物は、塩基性化合物には含まれない。
 塩基性化合物としては、無機塩基化合物及び有機塩基化合物のいずれであってもよいが、処理液の残渣除去性及び欠陥抑制性がより優れる点で、有機塩基性化合物が好ましく、アミン化合物又は含窒素芳香族化合物がより好ましい。
[Basic compound]
The treatment liquid of the present invention contains a basic compound. The "basic compound" referred to here and the above-mentioned hydroxyamine compound are different compounds. That is, the hydroxyamine compound is not included in the basic compound.
The basic compound may be either an inorganic base compound or an organic base compound, but an organic basic compound is preferable in that the treatment liquid has more excellent residue removing property and defect suppressing property, and an amine compound or a nitrogen-containing compound is preferable. Aromatic compounds are more preferred.
 アミン化合物としては、残渣除去性能を確保しつつ、基板上の金属層(好ましくは、W(タングステン)及び/又はCo(コバルト)を含む金属層)の腐食をより効果的に抑えることができる点で、環状構造を有するアミン化合物が好ましい。
 環状構造を有するアミン化合物において、アミノ基は、上記環状構造中及び上記環状構造外のいずれか一方のみに存在していても、両方に存在していてもよい。ただし、アミノ基が3級アミノ基である場合は、上記3級アミノ基が環状構造中に存在し、かつ、環状構造が、非芳香族の環状構造(含窒素非芳香環)であるのも好ましい。
 アミン化合物としては、例えば、テトラヒドロフルフリルアミン、N-(2-アミノエチル)ピペラジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)、1,4-ジアザビシクロ[2.2.2]オクタン、ヒドロキシエチルピペラジン、ピペラジン、2-メチルピペラジン、トランス-2,5-ジメチルピペラジン、シス-2,6-ジメチルピペラジン、2-ピペリジンメタノール、シクロヘキシルアミン、1,5-ジアザビシクロ[4,3,0]-5-ノネン、ジエチレントリアミン、トリエチレンテトラミン、及びテトラエチレンペンタミン等が挙げられる。
 なかでも、残渣除去性能を確保しつつ、基板上の金属層(好ましくは、Co又はCo合金を含む金属層)の腐食をより効果的に抑えられる観点から、アミン化合物として、テトラヒドロフルフリルアミン、N-(2-アミノエチル)ピペラジン、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、又は1,4-ジアザビシクロ[2.2.2]オクタンが好ましい。
 アミン化合物の分子量は、50~500が好ましく、75~400がより好ましく、100~300が更に好ましい。
As the amine compound, it is possible to more effectively suppress the corrosion of the metal layer (preferably the metal layer containing W (tungsten) and / or Co (cobalt)) on the substrate while ensuring the residue removing performance. Therefore, an amine compound having a cyclic structure is preferable.
In the amine compound having a cyclic structure, the amino group may be present in only one of the cyclic structure and the outside of the cyclic structure, or may be present in both. However, when the amino group is a tertiary amino group, the tertiary amino group is present in the cyclic structure, and the cyclic structure is a non-aromatic cyclic structure (nitrogen-containing non-aromatic ring). preferable.
Examples of the amine compound include tetrahydrofurfurylamine, N- (2-aminoethyl) piperazine, 1,8-diazabicyclo [5.4.0] -7-undecene (DBU), and 1,4-diazabicyclo [2.2]. .2] Octane, hydroxyethylpiperazine, piperazine, 2-methylpiperazine, trans-2,5-dimethylpiperazine, cis-2,6-dimethylpiperazine, 2-piperidinemethanol, cyclohexylamine, 1,5-diazabicyclo [4, 3,0] -5-nonene, diethylenetriamine, triethylenetetramine, tetraethylenepentamine and the like can be mentioned.
Among them, tetrahydrofurfurylamine and N are used as amine compounds from the viewpoint of more effectively suppressing the corrosion of the metal layer (preferably the metal layer containing Co or Co alloy) on the substrate while ensuring the residue removing performance. -(2-Aminoethyl) piperazin, 1,8-diazabicyclo [5.4.0] -7-undecene, or 1,4-diazabicyclo [2.2.2] octane is preferred.
The molecular weight of the amine compound is preferably 50 to 500, more preferably 75 to 400, and even more preferably 100 to 300.
 含窒素芳香族化合物としては特に制限されず、例えば、置換又は無置換のベンゾトリアゾールが好ましい。置換ベンゾトリアゾールとしては、例えば、アルキル基又はアリール基で置換されたベンゾトリアゾールが好ましい。
 置換又は無置換のベンゾトリアゾールとしては、具体的には、ベンゾトリアゾール(BTA)、及び5-メチル-1H-ベンゾトリアゾール(5M-BTA)等が挙げられる。
The nitrogen-containing aromatic compound is not particularly limited, and for example, substituted or unsubstituted benzotriazole is preferable. As the substituted benzotriazole, for example, a benzotriazole substituted with an alkyl group or an aryl group is preferable.
Specific examples of the substituted or unsubstituted benzotriazole include benzotriazole (BTA) and 5-methyl-1H-benzotriazole (5M-BTA).
 塩基性化合物は、1種単独で使用してもよく、2種以上使用してもよい。
 塩基性化合物の含有量(2種以上使用する場合はその合計含有量)は、処理液の全質量に対して、例えば、0.1~20質量%であり、0.5~15質量%が好ましい。
The basic compound may be used alone or in combination of two or more.
The content of the basic compound (the total content when two or more kinds are used) is, for example, 0.1 to 20% by mass and 0.5 to 15% by mass with respect to the total mass of the treatment liquid. preferable.
〔有機溶媒〕
 本発明の処理液は、有機溶媒を含む。
 有機溶媒としては特に制限されないが、アルコール系溶剤が好ましく、水溶性アルコール系溶剤がより好ましい。
 アルコール系溶剤としては、例えば、アルカンジオール、アルキレングリコール、アルコキシアルコール、飽和脂肪族一価アルコール、不飽和非芳香族一価アルコール、及び三価以上のアルコール等が挙げられる。
[Organic solvent]
The treatment liquid of the present invention contains an organic solvent.
The organic solvent is not particularly limited, but an alcohol solvent is preferable, and a water-soluble alcohol solvent is more preferable.
Examples of the alcohol-based solvent include alkanediols, alkylene glycols, alkoxy alcohols, saturated aliphatic monohydric alcohols, unsaturated non-aromatic monohydric alcohols, and trihydric or higher alcohols.
 アルカンジオールとしては、例えば、グリコール、2-メチル-1,3-プロパンジオール、1,2-プロパンジール、1,3-ジヒドロキシプロパン、2-メチルペンタン-2,4-ジオール、2,2-ジメチル-1,3-ヘキサンジオール、1,4-ジヒドロキシブタン、1,3-ブタンジオール、1,2-ブタンジオール、2,3-ブタンジオール、2,5-ジヒドロキシ-2,5-ジメチルヘキサン、ピナコール、及びアルキレングリコール等が挙げられる。 Examples of the alkanediol include glycol, 2-methyl-1,3-propanediol, 1,2-propanezyl, 1,3-dihydroxypropane, 2-methylpentane-2,4-diol, and 2,2-dimethyl. -1,3-Hexanediol, 1,4-dihydroxybutane, 1,3-butanediol, 1,2-butanediol, 2,3-butanediol, 2,5-dihydroxy-2,5-dimethylhexane, pinacol , And alkylene glycol and the like.
 アルキレングリコールとしては、例えば、エチレングリコール、プロピレングリコール、ジエチレングリコール、ジプロピレングリコール、トリエチレングリコール、及びテトラエチレングリコール等が挙げられる。 Examples of the alkylene glycol include ethylene glycol, propylene glycol, diethylene glycol, dipropylene glycol, triethylene glycol, tetraethylene glycol and the like.
 アルコキシアルコールとしては、例えば、3-メトキシ-1-ブタノール、3-メトキシ-3-メチルブタノール、1-メトキシ-2-ブタノール、及びグリコールモノエーテル等が挙げられる。 Examples of the alkoxy alcohol include 3-methoxy-1-butanol, 3-methoxy-3-methylbutanol, 1-methoxy-2-butanol, glycol monoether and the like.
 グリコールモノエーテルとしては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn-プロピルエーテル、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル(EGBE)、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、トリエチレングリコールモノブチルエーテル、1-メトキシ-2-プロパノール、2-メトキシ-1-プロパノール、1-エトキシ-2-プロパノール、2-エトキシ-1-プロパノール、プロピレングリコールモノ-n-プロピルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノ-n-プロピルエーテル、トリプロピレングリコールモノエチルエーテル、トリプロピレングリコールモノメチルエーテル、エチレングリコールモノベンジルエーテル、及びジエチレングリコールモノベンジルエーテル等が挙げられる。 Examples of the glycol monoether include ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monon-propyl ether, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether (EGBE), diethylene glycol monomethyl ether, and diethylene glycol monoethyl ether. Diethylene glycol monobutyl ether, triethylene glycol monomethyl ether, triethylene glycol monoethyl ether, triethylene glycol monobutyl ether, 1-methoxy-2-propanol, 2-methoxy-1-propanol, 1-ethoxy-2-propanol, 2-ethoxy -1-propanol, propylene glycol mono-n-propyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol mono-n-propyl ether, tripropylene glycol monoethyl ether, tripropylene glycol monomethyl ether, Examples thereof include ethylene glycol monobenzyl ether and diethylene glycol monobenzyl ether.
 飽和脂肪族一価アルコールとしては、例えば、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、1-ブタノール、2-ブタノール、イソブチルアルコール、tert-ブチルアルコール、2-ペンタノール、t-ペンチルアルコール、及び1-ヘキサノール等が挙げられる。 Saturated aliphatic monohydric alcohols include, for example, methanol, ethanol, n-propyl alcohol, isopropyl alcohol, 1-butanol, 2-butanol, isobutyl alcohol, tert-butyl alcohol, 2-pentanol, t-pentyl alcohol, and 1-Hexanol and the like can be mentioned.
 不飽和非芳香族一価アルコールとしては、例えば、アリルアルコール、プロパルギルアルコール、2-ブテニルアルコール、3-ブテニルアルコール、及び4-ペンテン-2-オール等が挙げられる。 Examples of unsaturated non-aromatic monohydric alcohols include allyl alcohol, propargyl alcohol, 2-butenyl alcohol, 3-butenyl alcohol, 4-pentene-2-ol and the like.
 環構造を含む低分子量のアルコールとしては、例えば、テトラヒドロフルフリルアルコール、フルフリルアルコール、及び1,3-シクロペンタンジオール等が挙げられる。 Examples of low molecular weight alcohols containing a ring structure include tetrahydrofurfuryl alcohol, furfuryl alcohol, and 1,3-cyclopentanediol.
 三価以上のアルコールとしては、例えば、グリセリン等が挙げられる。 Examples of trihydric or higher alcohols include glycerin and the like.
 なかでも、有機溶媒としては、アルカンジオール(好ましくは、2-メチルペンタン-2,4-ジオール)、アルコキシアルコール(好ましくは、3-メトキシ-3-メチルブタノール)、又はグリコールモノエーテル(好ましくは、EGBE)が好ましい。 Among them, as the organic solvent, alkanediol (preferably 2-methylpentane-2,4-diol), alkoxyalcohol (preferably 3-methoxy-3-methylbutanol), or glycol monoether (preferably, preferably) EGBE) is preferred.
 有機溶媒の分子量としては、32~250が好ましく、40~200がより好ましく、50~150が更に好ましい。 The molecular weight of the organic solvent is preferably 32 to 250, more preferably 40 to 200, and even more preferably 50 to 150.
 有機溶媒の含有量の下限値としては、処理液の全質量に対して、1質量%以上が好ましく、残渣除去性能及び防食性能の経時安定性がより優れる点で、2質量%以上がより好ましい。有機溶媒の含有量の上限値としては、処理液の全質量に対して、40質量%以下が好ましく、残渣除去性能及び防食性能の経時安定性がより優れる点で、30質量%以下がより好ましく、25質量%以下が更に好ましい。
 有機溶媒は1種単独で使用してもよく、2種以上使用してもよい。2種以上使用する場合は、それらの合計含有量が上記範囲内であるのが好ましい。
The lower limit of the content of the organic solvent is preferably 1% by mass or more with respect to the total mass of the treatment liquid, and more preferably 2% by mass or more in that the residue removal performance and the anticorrosion performance are more excellent over time. .. The upper limit of the content of the organic solvent is preferably 40% by mass or less with respect to the total mass of the treatment liquid, and more preferably 30% by mass or less in that the residue removal performance and the anticorrosion performance are more excellent over time. , 25% by mass or less is more preferable.
The organic solvent may be used alone or in combination of two or more. When two or more types are used, the total content thereof is preferably within the above range.
〔第1金属イオン〕
 本発明の処理液は、Na、Al、K、Ca、Cr、Fe、Ni、及びZnからなる群から選択される1種以上の第1金属イオンを含む。
 本発明の処理液中、第1金属イオンの合計含有量の下限値としては、処理液の全質量に対して、7.0質量ppb以上であり、残渣除去性能及び防食性能の経時安定性がより優れる点で、8.0質量ppb以上が好ましく、9.0質量ppb以上がより好ましい。また、第1金属イオンの合計含有量の上限値は、処理液の全質量に対して、800.0質量ppb以下であり、残渣除去性能及び防食性能の経時安定性がより優れる点で、700.0質量ppb以下が好ましく、600.0質量ppb以下がより好ましい。
[First metal ion]
The treatment liquid of the present invention contains one or more first metal ions selected from the group consisting of Na, Al, K, Ca, Cr, Fe, Ni, and Zn.
The lower limit of the total content of the first metal ions in the treatment liquid of the present invention is 7.0 mass ppb or more with respect to the total mass of the treatment liquid, and the stability over time of the residue removal performance and the anticorrosion performance is good. In terms of superiority, 8.0 mass ppb or more is preferable, and 9.0 mass ppb or more is more preferable. Further, the upper limit of the total content of the first metal ion is 800.0 mass ppb or less with respect to the total mass of the treatment liquid, and 700 in that the residue removal performance and the anticorrosion performance are more excellent over time. It is preferably 0.0 mass ppb or less, and more preferably 600.0 mass ppb or less.
 残渣除去性能及び防食性能の経時安定性がより優れる点で、処理液中に含まれる第1金属イオンのうち、少なくとも1種の金属イオンの含有量が、処理液の全質量に対して1.0~100.0質量ppbであるのが好ましい。 The content of at least one metal ion among the first metal ions contained in the treatment liquid is 1. With respect to the total mass of the treatment liquid, in that the residue removal performance and the anticorrosion performance are more excellent over time. It is preferably 0 to 100.0 mass ppb.
 残渣除去性能及び防食性能の経時安定性がより優れる点で、処理液中に含まれる第1金属イオンが2種以上であり、且つ、各金属イオンの含有量がいずれも、処理液の全質量に対して1.0~100.0質量ppbであるのが好ましく、処理液が第1金属イオンとしてNa、Al、K、Ca、Cr、Fe、Ni、及びZnからなる群から選択される全ての金属イオンを含み、且つ、各金属イオンの含有量がいずれも、処理液の全質量に対して1.0~100.0質量ppbであるのがより好ましい。 In that the residue removal performance and the anticorrosion performance are more excellent over time, the treatment liquid contains two or more first metal ions, and the content of each metal ion is the total mass of the treatment liquid. It is preferably 1.0 to 100.0 mass ppb, and the treatment liquid is all selected from the group consisting of Na, Al, K, Ca, Cr, Fe, Ni, and Zn as the first metal ion. It is more preferable that the metal ions of the above are contained and the content of each metal ion is 1.0 to 100.0 mass ppb with respect to the total mass of the treatment liquid.
 残渣除去性能及び防食性能の経時安定性がより優れる点で、処理液は、第1金属イオンとして、Caイオンを少なくとも含むことが好ましい。 It is preferable that the treatment liquid contains at least Ca ion as the first metal ion in that the residue removal performance and the anticorrosion performance are more excellent over time.
 第1金属イオンは、処理液中に含まれる各成分(原料)に不可避的に含まれている金属イオンでもよいし、処理液の製造、貯蔵、及び/又は移送時に不可避的に含まれる金属イオンでもよいし、意図的に添加されたものでもよい。
 第1金属イオンを系中に意図的に添加する方法としては、例えば、対応する金属原子を含む金属塩を添加する方法が挙げられる。金属塩の種類としては特に制限されず、例えば、硫酸塩、塩化物塩、及び臭化物塩等が挙げられる。
The first metal ion may be a metal ion inevitably contained in each component (raw material) contained in the treatment liquid, or a metal ion inevitably contained in the production, storage, and / or transfer of the treatment liquid. It may be added intentionally.
Examples of the method of intentionally adding the first metal ion to the system include a method of adding a metal salt containing the corresponding metal atom. The type of the metal salt is not particularly limited, and examples thereof include sulfates, chloride salts, and bromide salts.
 処理液中の金属イオンの種類及び含有量は、SP-ICP-MS法(Single Nano Particle Inductively Coupled Plasma Mass Spectrometry)で測定できる。
 ここで、SP-ICP-MS法とは、通常のICP-MS法(誘導結合プラズマ質量分析法)と同様の装置を使用し、データ分析のみが異なる。SP-ICP-MS法のデータ分析は、市販のソフトウェアにより実施できる。
 ICP-MS法では、測定対象とされた金属成分の含有量が、その存在形態に関わらず、測定される。従って、測定対象とされた金属粒子と金属イオンとの合計質量が、金属成分の含有量として定量される。
The type and content of metal ions in the treatment liquid can be measured by the SP-ICP-MS method (Single Nano Particile Inductively Coupled Plasma Mass Spectrometry).
Here, the SP-ICP-MS method uses the same apparatus as the ordinary ICP-MS method (inductively coupled plasma mass spectrometry), and differs only in data analysis. Data analysis of the SP-ICP-MS method can be performed by commercially available software.
In the ICP-MS method, the content of the metal component to be measured is measured regardless of its existence form. Therefore, the total mass of the metal particles and the metal ions to be measured is quantified as the content of the metal component.
 一方、SP-ICP-MS法では、金属粒子の含有量が測定できる。従って、試料中の金属成分の含有量から、金属粒子の含有量を引くと、試料中の金属イオンの含有量が算出できる。
 SP-ICP-MS法の装置としては、例えば、アジレントテクノロジー社製、Agilent 8800 トリプル四重極ICP-MS(inductively coupled plasma mass spectrometry、半導体分析用、オプション#200)が挙げられ、実施例に記載した方法により測定できる。上記以外の他の装置としては、PerkinElmer社製 NexION350Sのほか、アジレントテクノロジー社製、Agilent 8900も使用できる。
On the other hand, in the SP-ICP-MS method, the content of metal particles can be measured. Therefore, the content of metal ions in the sample can be calculated by subtracting the content of the metal particles from the content of the metal component in the sample.
Examples of the device for the SP-ICP-MS method include an Agilent 8800 triple quadrupole ICP-MS (inductively coupled plasma mass spectrometery, option # 200) manufactured by Agilent Technologies, Inc., which is described in Examples. It can be measured by the above method. As other devices other than the above, in addition to the NexION 350S manufactured by PerkinElmer, the Agilent 8900 manufactured by Agilent Technologies can also be used.
〔水〕
 本発明の処理液は、更に、水を含むことが好ましい。
 本発明の処理液中、水の含有量は特に制限されず、処理液の全質量に対して、15~98質量%が好ましく、30~95質量%がより好ましく、50~95質量%が更に好ましい。
〔water〕
The treatment liquid of the present invention preferably further contains water.
The content of water in the treatment liquid of the present invention is not particularly limited, and is preferably 15 to 98% by mass, more preferably 30 to 95% by mass, and further 50 to 95% by mass with respect to the total mass of the treatment liquid. preferable.
〔第2金属イオン〕
 本発明の処理液は、更に第2金属イオンを含むことが好ましい。
 第2金属イオンは、Li、Mg、Mn、Cu、Ag、Pb、及びCoからなる群から選択される1種以上の金属イオンである。
 本発明の処理液中、第2金属イオンの合計含有量の下限値としては、処理液の全質量に対して、0.01質量ppb以上が好ましく、残渣除去性能及び防食性能の経時安定性がより優れる点で、0.05質量ppb以上がより好ましく、0.1質量ppb以上が更に好ましい。また、第2金属イオンの合計含有量の上限値は、処理液の全質量に対して、10.0質量ppb以下が好ましく、残渣除去性能及び防食性能の経時安定性がより優れる点で、8.0質量ppb以下がより好ましく、6.0質量ppb以下が更に好ましい。
[Second metal ion]
The treatment liquid of the present invention preferably further contains a second metal ion.
The second metal ion is one or more metal ions selected from the group consisting of Li, Mg, Mn, Cu, Ag, Pb, and Co.
The lower limit of the total content of the second metal ion in the treatment liquid of the present invention is preferably 0.01 mass ppb or more with respect to the total mass of the treatment liquid, and the stability over time of the residue removal performance and the anticorrosion performance is good. In terms of superiority, 0.05 mass ppb or more is more preferable, and 0.1 mass ppb or more is further preferable. Further, the upper limit of the total content of the second metal ion is preferably 10.0 mass ppb or less with respect to the total mass of the treatment liquid, and the residue removal performance and the anticorrosion performance are more excellent over time. It is more preferably 0.0 mass ppb or less, and further preferably 6.0 mass ppb or less.
 残渣除去性能及び防食性能の経時安定性がより優れる点で、処理液中に含まれる第2金属イオンのうち、少なくとも1種の金属イオンの含有量が、処理液の全質量に対して0.01~1.0質量ppbであるのが好ましい。 The content of at least one metal ion among the second metal ions contained in the treatment liquid is 0, based on the total mass of the treatment liquid, in that the residue removal performance and the anticorrosion performance are more excellent over time. It is preferably 01 to 1.0 mass ppb.
 残渣除去性能及び防食性能の経時安定性がより優れる点で、処理液中に含まれる第2金属イオンが2種以上であり、且つ、各金属イオンの含有量がいずれも、処理液の全質量に対して0.01~1.0質量ppbであるのが好ましく、処理液が第2金属イオンとしてLi、Mg、Mn、Cu、Ag、Pb、及びCoからなる群から選択される全ての金属イオンを含み、且つ、各金属イオンの含有量がいずれも、処理液の全質量に対して0.01~1.0質量ppbであるのがより好ましい。 In that the residue removal performance and the anticorrosion performance are more excellent over time, the treatment liquid contains two or more types of second metal ions, and the content of each metal ion is the total mass of the treatment liquid. It is preferably 0.01 to 1.0 mass ppb, and all metals selected from the group consisting of Li, Mg, Mn, Cu, Ag, Pb, and Co as the second metal ion in the treatment liquid. More preferably, it contains ions and the content of each metal ion is 0.01 to 1.0 mass ppb with respect to the total mass of the treatment liquid.
 第2金属イオンは、処理液中に含まれる各成分(原料)に不可避的に含まれている金属イオンでもよいし、処理液の製造、貯蔵、及び/又は移送時に不可避的に含まれる金属イオンでもよいし、意図的に添加されたものでもよい。
 第2金属イオンを系中に意図的に添加する方法としては、例えば、対応する金属原子を含む金属塩を添加する方法が挙げられる。金属塩の種類としては特に制限されず、例えば、硫酸塩、塩化物塩、及び臭化物塩等が挙げられる。
The second metal ion may be a metal ion inevitably contained in each component (raw material) contained in the treatment liquid, or a metal ion inevitably contained in the production, storage, and / or transfer of the treatment liquid. It may be added intentionally.
Examples of the method of intentionally adding the second metal ion to the system include a method of adding a metal salt containing the corresponding metal atom. The type of the metal salt is not particularly limited, and examples thereof include sulfates, chloride salts, and bromide salts.
 なお、処理液中の第2金属イオンの含有量の測定方法については、上述の第1金属イオンの含有量の測定方法と同じである。 The method for measuring the content of the second metal ion in the treatment liquid is the same as the method for measuring the content of the first metal ion described above.
〔キレート剤〕
 本発明の処理液は、更にキレート剤を含むことが好ましい。キレート剤は、残渣中に含まれる酸化した金属とキレート化する。
 キレート剤としては特に制限されないが、ポリアミノポリカルボン酸が好ましい。
 ポリアミノポリカルボン酸は、複数のアミノ基及び複数のカルボン酸基を有する化合物である。ポリアミノポリカルボン酸としては、例えば、モノ-又はポリアルキレンポリアミンポリカルボン酸、ポリアミノアルカンポリカルボン酸、ポリアミノアルカノールポリカルボン酸、及びヒドロキシアルキルエーテルポリアミンポリカルボン酸が挙げられる。
[Chelating agent]
The treatment liquid of the present invention preferably further contains a chelating agent. The chelating agent chelate with the oxidized metal contained in the residue.
The chelating agent is not particularly limited, but a polyaminopolycarboxylic acid is preferable.
A polyaminopolycarboxylic acid is a compound having a plurality of amino groups and a plurality of carboxylic acid groups. Examples of the polyaminopolycarboxylic acid include mono- or polyalkylene polyamine polycarboxylic acids, polyaminoalkane polycarboxylic acids, polyaminoalkanol polycarboxylic acids, and hydroxyalkyl ether polyamine polycarboxylic acids.
 ポリアミノポリカルボン酸としては、例えば、ブチレンジアミン四酢酸、ジエチレントリアミン五酢酸(DTPA)、エチレンジアミンテトラプロピオン酸、トリエチレンテトラミン六酢酸、1,3-ジアミノ-2-ヒドロキシプロパン-N,N,N’,N’-四酢酸、プロピレンジアミン四酢酸、エチレンジアミン四酢酸(EDTA)、トランス-1,2-ジアミノシクロヘキサン四酢酸、エチレンジアミン二酢酸、エチレンジアミンジプロピオン酸、1,6-ヘキサメチレン-ジアミン-N,N,N’,N’-四酢酸、N,N-ビス(2-ヒドロキシベンジル)エチレンジアミン-N,N-二酢酸、ジアミノプロパン四酢酸、1,4,7,10-テトラアザシクロドデカン-四酢酸、ジアミノプロパノール四酢酸、及び(ヒドロキシエチル)エチレンジアミン三酢酸等が挙げられる。なかでも、ジエチレントリアミン五酢酸(DTPA)、エチレンジアミン四酢酸(EDTA)、又はトランス-1,2-ジアミノシクロヘキサン四酢酸が好ましい。 Examples of the polyaminopolycarboxylic acid include butylenediaminetetraacetic acid, diethylenetriaminetetraacetic acid (DTPA), ethylenediaminetetrapropionic acid, triethylenetetraminehexacetic acid, 1,3-diamino-2-hydroxypropane-N, N, N', N'-tetraacetic acid, propylenediaminetetraacetic acid, ethylenediaminetetraacetic acid (EDTA), trans-1,2-diaminocyclohexanetetraacetic acid, ethylenediaminediaminetetraacetic acid, ethylenediaminediaminedipropionic acid, 1,6-hexamethylene-diamine-N, N , N', N'-tetraacetic acid, N, N-bis (2-hydroxybenzyl) ethylenediamine-N, N-diacetate, diaminopropanetetraacetic acid, 1,4,7,10-tetraazacyclododecane-4acetic acid , Diaminopropanol tetraacetic acid, (hydroxyethyl) ethylenediaminetetraacetic acid and the like. Of these, diethylenetriaminepentacetic acid (DTPA), ethylenediaminetetraacetic acid (EDTA), or trans-1,2-diaminocyclohexanetetraacetic acid is preferable.
 本発明の処理液中、キレート剤の含有量は特に制限されず、処理液の全質量に対して、0.01~5質量%が好ましく、0.01~3質量%がより好ましい。
 キレート剤は1種単独で使用してもよく、2種以上使用してもよい。2種以上使用する場合は、それらの合計含有量が上記範囲内であるのが好ましい。
The content of the chelating agent in the treatment liquid of the present invention is not particularly limited, and is preferably 0.01 to 5% by mass, more preferably 0.01 to 3% by mass, based on the total mass of the treatment liquid.
The chelating agent may be used alone or in combination of two or more. When two or more types are used, the total content thereof is preferably within the above range.
〔その他の成分〕
 本発明の処理液は、上述した成分以外のその他の成分を更に含んでいてもよい。
 その他の成分としては、例えば、界面活性剤、四級水酸化アンモニウム塩、還元剤、pH調製剤、防食材、消泡剤、防錆剤、及び防腐剤等が挙げられる。
[Other ingredients]
The treatment liquid of the present invention may further contain other components other than the above-mentioned components.
Examples of other components include surfactants, quaternary ammonium hydroxide salts, reducing agents, pH adjusting agents, foodstuff-proofing agents, defoaming agents, rust-preventing agents, preservatives and the like.
〔処理液のpH〕
 本発明の処理液のpHとしては特に制限されないが、残渣除去性能に優れる点で、アルカリ領域にあることが好ましい。なかでも、Coに対する防食性能がより優れる点で、処理液のpHは、8以上が好ましく、9以上がより好ましく、10以上が更に好ましい。なお、Wに対する防食性能がより優れる点で、処理液のpHとしては、14以下が好ましく、12以下がより好ましい。
 処理液を上記pHの範囲に調製するために、処理液は、更にpH調整剤を含んでいてもよい。
[PH of treatment solution]
The pH of the treatment liquid of the present invention is not particularly limited, but it is preferably in the alkaline region because it is excellent in residue removing performance. Among them, the pH of the treatment liquid is preferably 8 or more, more preferably 9 or more, still more preferably 10 or more, in that the anticorrosion performance against Co is more excellent. The pH of the treatment liquid is preferably 14 or less, more preferably 12 or less, in that the anticorrosion performance against W is more excellent.
In order to prepare the treatment liquid in the above pH range, the treatment liquid may further contain a pH adjusting agent.
〔用途〕
 本発明の処理液は、半導体デバイス用の処理液として好適に使用され得る。本発明においては、「半導体デバイス用」とは、半導体デバイスの製造の際に用いられるという意味である。本発明の処理液は、半導体デバイスを製造するためのいずれの工程にも使用でき、例えば、基板上に存在する絶縁膜、レジスト若しくは反射防止膜の処理、ドライエッチング残渣(フォトレジスト膜の残渣及びメタルハードマスクの残渣等)の処理、及びアッシング残渣の処理等に使用できる。
 処理液のより具体的な用途としては、感活性光線性又は感放射線性樹脂組成物を用いてフォトレジスト膜を形成する工程の前に、組成物の塗布性を改良するために基板上に塗布されるプリウェット液、ドライエッチング残渣等の残渣の除去等に用いられる洗浄液、パターン形成に用いられた各種レジスト膜(好ましくはフォトレジスト膜)の除去に用いられる溶液(例えば、除去液及び剥離液等)、及び永久膜(例えば、カラーフィルタ、透明絶縁膜、樹脂製のレンズ)等を基板から除去するために用いられる溶液(例えば、除去液及び剥離液等)等が挙げられる。また、パターン形成用の各種感活性光線性又は感放射線性樹脂組成物層の現像液としても使用できる。
 また、化学機械研磨後の基板から金属不純物又は微粒子等の残渣の除去に用いられる洗浄液としても使用できる。永久膜の除去後の基板は、再び半導体デバイスに用いられることがあるため、永久膜の除去は、半導体デバイスの製造工程に含むものとする。
 金属層を有する基板の上記金属層に対する処理用のエッチング液として用いてもよい。
 上記の用途の中でも、ドライエッチング残渣を除去するための洗浄液、パターン形成に用いられた各種レジスト膜を除去するための溶液、又は化学機械研磨後の基板から金属不純物又は微粒子等の残渣の除去に用いられる洗浄液として好適に使用できる。
 本発明の処理液は、上記用途のうち、1つの用途のみに用いられてもよいし、2以上の用途に用いられてもよい。
[Use]
The treatment liquid of the present invention can be suitably used as a treatment liquid for semiconductor devices. In the present invention, "for semiconductor devices" means that it is used in the manufacture of semiconductor devices. The treatment liquid of the present invention can be used in any step for manufacturing a semiconductor device, for example, treatment of an insulating film, a resist or an antireflection film existing on a substrate, a dry etching residue (resist of a photoresist film and a residue of a photoresist film). It can be used for the treatment of metal hard mask residues, etc.) and the treatment of ashing residues.
As a more specific use of the treatment liquid, it is applied on a substrate to improve the coatability of the composition before the step of forming a photoresist film using the sensitive light-sensitive or radiation-sensitive resin composition. A pre-wet solution, a cleaning solution used for removing residues such as dry etching residues, and a solution (for example, a removing solution and a stripping solution) used for removing various resist films (preferably photoresist films) used for pattern formation. Etc.), and a solution (for example, a removing solution and a stripping solution) used for removing a permanent film (for example, a color filter, a transparent insulating film, a resin lens) or the like from a substrate. It can also be used as a developing solution for various sensitive light-sensitive or radiation-sensitive resin composition layers for pattern formation.
It can also be used as a cleaning liquid used for removing residues such as metal impurities or fine particles from a substrate after chemical mechanical polishing. Since the substrate after removing the permanent film may be used again for the semiconductor device, the removal of the permanent film shall be included in the manufacturing process of the semiconductor device.
It may be used as an etching solution for treating the metal layer of a substrate having a metal layer.
Among the above applications, for removing residues such as metal impurities or fine particles from a cleaning liquid for removing dry etching residues, a solution for removing various resist films used for pattern formation, or a substrate after chemical mechanical polishing. It can be suitably used as a cleaning liquid to be used.
The treatment liquid of the present invention may be used for only one of the above-mentioned uses, or may be used for two or more uses.
 昨今、半導体デバイスの微細化及び高機能化が進むにつれて、配線材料及びプラグ材料等に使用される金属としては、より導電性の高いものが求められる。例えば、配線材料として使用される金属は、Al(アルミニウム)及びCu(銅)からCoへの置き換えが進むことが予測される。また、プラグ材料として使用される金属についても、Wに加えて、更にCoの需要が高まることが予想される。
 そのため、処理液の特性として、W及びCoに対する腐食が少ないことが好ましい。
 本発明の処理液は、W及びCoからなる群から選択される1種以上を含む金属層を有する基板に対する処理に用いられるのが好ましい。また、本発明の処理液は、W及びCoからなる群から選択される1種以上を含む金属層を有する基板を含む半導体デバイスを製造するための処理液として用いられることが好ましい。
 なお上記、W及びCoからなる群から選択される1種以上を含む金属層は、W及び/又はCoのみからなる金属層であってもよく、W及び/又はCoを含む合金である金属層であってもよく、W及び/又はCoを含むその他の形態の金属層であってもよい。
In recent years, as semiconductor devices have become finer and more sophisticated, metals with higher conductivity are required as metals used for wiring materials, plug materials, and the like. For example, it is expected that the metal used as a wiring material will be replaced with Co from Al (aluminum) and Cu (copper). As for the metal used as the plug material, it is expected that the demand for Co will increase further in addition to W.
Therefore, as a characteristic of the treatment liquid, it is preferable that there is little corrosion against W and Co.
The treatment liquid of the present invention is preferably used for treating a substrate having a metal layer containing at least one selected from the group consisting of W and Co. Further, the treatment liquid of the present invention is preferably used as a treatment liquid for producing a semiconductor device including a substrate having a metal layer containing at least one selected from the group consisting of W and Co.
The metal layer containing at least one selected from the group consisting of W and / or Co may be a metal layer containing only W and / or Co, and is an alloy containing W and / or Co. It may be a metal layer of another form containing W and / or Co.
[処理液の製造方法]
〔処理液の調液方法〕
 上記処理液は、公知の方法により製造できる。以下、上記処理液の製造方法について詳述する。
[Manufacturing method of treatment liquid]
[Method of preparing the treatment liquid]
The treatment liquid can be produced by a known method. Hereinafter, the method for producing the above-mentioned treatment liquid will be described in detail.
<原料精製工程>
 上記処理液の製造においては、処理液を調製するための原料のいずれか1種以上を、事前に蒸留、イオン交換、又はろ過等によって精製することが望ましい。精製の程度としては、例えば、原料の純度99%以上となるまで精製することが好ましく、純度99.9%以上となるまで精製することがより好ましい。
<Raw material refining process>
In the production of the above-mentioned treatment liquid, it is desirable to purify any one or more of the raw materials for preparing the treatment liquid in advance by distillation, ion exchange, filtration or the like. As for the degree of purification, for example, it is preferable to purify the raw material to a purity of 99% or more, and more preferably to a purity of 99.9% or more.
 精製方法としては、特に制限されないが、イオン交換樹脂若しくはRO膜(Reverse Osmosis Membrane)等に通す方法、蒸留、又は後述するフィルタリング等の方法が挙げられる。具体的には、例えば、逆浸透膜等に通液して1次精製を行った後、カチオン交換樹脂、アニオン交換樹脂、又は混床型イオン交換樹脂からなる精製装置に通液して2次精製を実施する方法等が挙げられる。
 なお、精製処理は、上述した公知の精製方法を複数組み合わせて、実施してもよい。
 また、精製処理は、複数回実施してもよい。
The purification method is not particularly limited, and examples thereof include a method of passing through an ion exchange resin or an RO membrane (Reverse Osmosis Membrane), distillation, or a method such as filtering described later. Specifically, for example, after passing the liquid through a reverse osmosis membrane or the like for primary purification, the liquid is passed through a purification device made of a cation exchange resin, an anion exchange resin, or a mixed bed type ion exchange resin to perform secondary purification. Examples thereof include a method for carrying out purification.
The purification treatment may be carried out by combining a plurality of the above-mentioned known purification methods.
Moreover, the purification treatment may be carried out a plurality of times.
<フィルタリング>
 フィルタとしては、従来からろ過用途等に用いられているものであれば特に制限されない。例えば、ポリテトラフルオロエチレン(PTFE)及びテトラフルオロエチレンパーフルオロアルキルビニルエーテル共重合体(PFA)等のフッ素樹脂、ナイロン等のポリアミド系樹脂、並びに、ポリエチレン及びポリプロピレン(PP)等のポリオレフィン樹脂(高密度又は超高分子量を含む)等によるフィルタが挙げられる。これら材料の中でもポリエチレン、ポリプロピレン(高密度ポリプロピレンを含む)、PTFE及びPFA等のフッ素樹脂、並びに、ナイロン等のポリアミド系樹脂からなる群より選ばれる材料が好ましく、なかでも、PTFE及びPFA等のフッ素樹脂のフィルタがより好ましい。これらの材料により形成されたフィルタを使用することで、欠陥の原因となり易い極性の高い異物を効果的に除去できる。
<Filtering>
The filter is not particularly limited as long as it has been conventionally used for filtration. For example, fluororesins such as polytetrafluoroethylene (PTFE) and tetrafluoroethylene perfluoroalkyl vinyl ether copolymer (PFA), polyamide resins such as nylon, and polyolefin resins such as polyethylene and polypropylene (PP) (high density). Alternatively, a filter based on (including ultrahigh molecular weight) or the like can be mentioned. Among these materials, a material selected from the group consisting of fluororesins such as polyethylene, polypropylene (including high-density polypropylene), PTFE and PFA, and polyamide-based resins such as nylon is preferable, and among them, fluororesins such as PTFE and PFA are preferable. Resin filters are more preferred. By using a filter formed of these materials, it is possible to effectively remove highly polar foreign substances that are likely to cause defects.
 フィルタの臨界表面張力としては、70mN/m以上が好ましく、95mN/m以下がより好ましく、75~85mN/mが更に好ましい。なお、臨界表面張力の値は、製造メーカーの公称値である。臨界表面張力が上記範囲のフィルタを使用することで、欠陥の原因となり易い極性の高い異物を効果的に除去できる。 The critical surface tension of the filter is preferably 70 mN / m or more, more preferably 95 mN / m or less, and even more preferably 75 to 85 mN / m. The value of the critical surface tension is the nominal value of the manufacturer. By using a filter having a critical surface tension in the above range, it is possible to effectively remove highly polar foreign substances that are likely to cause defects.
 フィルタの孔径は、2~20nm程度であることが好ましく、2~15nmであることがより好ましい。この範囲とすることにより、ろ過詰まりを抑えつつ、原料中に含まれる不純物又は凝集物等、微細な異物を確実に除去することが可能となる。 The pore diameter of the filter is preferably about 2 to 20 nm, more preferably 2 to 15 nm. Within this range, it is possible to reliably remove fine foreign substances such as impurities or agglomerates contained in the raw material while suppressing filtration clogging.
 フィルタを使用する際、異なるフィルタを組み合わせてもよい。その際、第1のフィルタでのフィルタリングは、1回のみでもよいし、2回以上行ってもよい。異なるフィルタを組み合わせて2回以上フィルタリングを行う場合は1回目のフィルタリングの孔径より2回目以降の孔径が同じ、又は小さい方が好ましい。また、上述した範囲内で異なる孔径の第1のフィルタを組み合わせてもよい。ここでの孔径は、フィルタメーカーの公称値を参照できる。市販のフィルタとしては、例えば、日本ポール株式会社、アドバンテック東洋株式会社、日本インテグリス株式会社(旧日本マイクロリス株式会社)又は株式会社キッツマイクロフィルタ等が提供する各種フィルタの中から選択できる。また、ポリアミド製の「P-ナイロンフィルター(孔径0.02μm、臨界表面張力77mN/m)」;(日本ポール株式会社製)、高密度ポリエチレン製の「PE・クリーンフィルタ(孔径0.02μm)」;(日本ポール株式会社製)、及び高密度ポリエチレン製の「PE・クリーンフィルタ(孔径0.01μm)」;(日本ポール株式会社製)も使用できる。
 第2のフィルタは、上述した第1のフィルタと同様の材料等で形成されたフィルタを使用できる。第2のフィルタの孔径は、1~10nm程度であることが好ましい。
When using filters, different filters may be combined. At that time, the filtering by the first filter may be performed only once or twice or more. When filtering is performed twice or more by combining different filters, it is preferable that the pore diameters of the second and subsequent times are the same or smaller than the pore diameter of the first filtering. Further, first filters having different pore diameters within the above-mentioned range may be combined. For the hole diameter here, the nominal value of the filter manufacturer can be referred to. As a commercially available filter, for example, it can be selected from various filters provided by Nippon Pole Co., Ltd., Advantech Toyo Co., Ltd., Japan Entegris Co., Ltd. (formerly Nippon Microlith Co., Ltd.), KITZ Micro Filter Co., Ltd., and the like. In addition, "P-nylon filter (pore diameter 0.02 μm, critical surface tension 77 mN / m)" made of polyamide; (manufactured by Nippon Pole Co., Ltd.), "PE clean filter (pore diameter 0.02 μm)" made of high-density polyethylene; (Manufactured by Nippon Pole Co., Ltd.) and "PE / Clean Filter (hole diameter 0.01 μm)" made of high-density polyethylene; (manufactured by Nippon Pole Co., Ltd.) can also be used.
As the second filter, a filter formed of the same material as the first filter described above can be used. The pore size of the second filter is preferably about 1 to 10 nm.
 また、本発明においては、フィルタリングの工程を行う際の温度は、室温(25℃)以下が好ましく、23℃以下がより好ましく、20℃以下が更に好ましい。また、0℃以上が好ましく、5℃以上がより好ましく、10℃以上が更に好ましい。 Further, in the present invention, the temperature at which the filtering step is performed is preferably room temperature (25 ° C.) or lower, more preferably 23 ° C. or lower, and even more preferably 20 ° C. or lower. Further, 0 ° C. or higher is preferable, 5 ° C. or higher is more preferable, and 10 ° C. or higher is further preferable.
 フィルタリングの工程では、粒子性の異物又は不純物が除去できるが、上記の温度であると、原料中に溶解している上記粒子性の異物及び/又は不純物の量が少なくなるため、フィルタリングにより効率的に除去されるようになる。 In the filtering step, particulate foreign matter or impurities can be removed, but at the above temperature, the amount of the particulate foreign matter and / or impurities dissolved in the raw material is reduced, so that filtering is more efficient. Will be removed.
 また、最終的に得られる処理液中の金属イオンの含有量を、上述したような範囲内に調製するために、一部又は全部の原料及びその混合物について、一定量の金属イオンが残留するように調整して精製処理を実施してもよい。 In addition, in order to adjust the content of metal ions in the finally obtained treatment liquid within the range as described above, a certain amount of metal ions remain in some or all of the raw materials and their mixture. The purification treatment may be carried out by adjusting to.
<調液工程>
 本発明の処理液の調液は特に制限されず、例えば、上述した各成分を混合することにより製造できる。上述した各成分を混合する順序及び/又はタイミングは特に制限されず、例えば、pHを調整した水に予めヒドロキシアミン化合物を分散し、所定の成分を順次混合する方法が挙げられる。
<Liquid preparation process>
The preparation of the treatment liquid of the present invention is not particularly limited, and can be produced, for example, by mixing the above-mentioned components. The order and / or timing of mixing each of the above-mentioned components is not particularly limited, and examples thereof include a method in which a hydroxyamine compound is dispersed in advance in pH-adjusted water and predetermined components are sequentially mixed.
[キット及び濃縮液]
 本発明における処理液は、その原料を複数に分割したキットとしてもよい。
 処理液をキットとする具体的な方法としては、例えば、第1液としてヒドロキシアミン化合物及び塩基性化合物を有機溶媒に分散又は溶解させた液組成物を準備し、第2液として第1金属イオン、第2金属イオン、及びその他の成分を含む液組成物を準備する態様が挙げられる。
 また、処理液は、濃縮液を用いて準備してもよい。処理液の濃縮液を準備する場合には、その濃縮倍率は、構成される組成により適宜決められるが、5~2000倍であることが好ましい。つまり、処理液は、濃縮液を5~2000倍に希釈して用いられてもよい。
[Kit and concentrate]
The treatment liquid in the present invention may be a kit obtained by dividing the raw material into a plurality of parts.
As a specific method using the treatment liquid as a kit, for example, a liquid composition in which a hydroxyamine compound and a basic compound are dispersed or dissolved in an organic solvent is prepared as the first liquid, and the first metal ion is prepared as the second liquid. , A mode of preparing a liquid composition containing a second metal ion, and other components.
Further, the treatment liquid may be prepared by using a concentrated liquid. When a concentrated solution of the treatment liquid is prepared, the concentration ratio thereof is appropriately determined depending on the composition of the composition, but is preferably 5 to 2000 times. That is, the treatment liquid may be used by diluting the concentrated liquid 5 to 2000 times.
〔容器(収容容器)〕
 本発明の処理液は、(キット及び濃縮液であるか否かに関わらず)腐食性等が問題とならない限り、任意の容器に充填して保管、運搬、そして使用できる。容器としては、半導体用途向けに、容器内のクリーン度が高く、不純物の溶出が少ないものが好ましい。使用可能な容器としては、アイセロ化学(株)製の「クリーンボトル」シリーズ、及びコダマ樹脂工業製の「ピュアボトル」等が挙げられるが、これらに制限されない。この容器の内壁は、ポリエチレン樹脂、ポリプロピレン樹脂、及びポリエチレン-ポリプロピレン樹脂からなる群より選択される1種以上の樹脂、若しくは、これとは異なる樹脂、又はステンレス、ハステロイ、インコネル、及びモネル等、防錆及び金属溶出防止処理が施された金属から形成されることが好ましい。
[Container (container)]
The treatment liquid of the present invention can be filled in an arbitrary container, stored, transported, and used as long as corrosiveness or the like is not a problem (whether it is a kit or a concentrated liquid or not). As the container, it is preferable that the container has a high degree of cleanliness and less elution of impurities for semiconductor applications. Examples of usable containers include, but are not limited to, the "clean bottle" series manufactured by Aicello Chemical Corporation and the "pure bottle" manufactured by Kodama Resin Industry. The inner wall of this container is made of one or more resins selected from the group consisting of polyethylene resin, polypropylene resin, and polyethylene-polypropylene resin, or a resin different from this, or stainless steel, hasteroi, inconel, monel, etc. It is preferably formed from a metal that has been subjected to rust and metal elution prevention treatment.
 上記の異なる樹脂としては、フッ素系樹脂(パーフルオロ樹脂)が好ましい。このように、内壁がフッ素系樹脂である容器を用いることで、内壁が、ポリエチレン樹脂、ポリプロピレン樹脂、又はポリエチレン-ポリプロピレン樹脂である容器と比べて、エチレン又はプロピレンのオリゴマーの溶出という不具合の発生を抑制できる。
 このような内壁がフッ素系樹脂である容器の具体例としては、例えば、Entegris社製 FluoroPurePFA複合ドラム等が挙げられる。また、特表平3-502677号公報の第4頁等、国際公開第2004/016526号パンフレットの第3頁等、及び国際公開第99/046309号パンフレットの第9頁及び16頁等に記載の容器も使用できる。
As the above-mentioned different resins, a fluororesin (perfluororesin) is preferable. In this way, by using a container whose inner wall is a fluororesin, a problem of elution of ethylene or propylene oligomer occurs as compared with a container whose inner wall is polyethylene resin, polypropylene resin, or polyethylene-polypropylene resin. Can be suppressed.
Specific examples of such a container in which the inner wall is a fluororesin include a FluoroPure PFA composite drum manufactured by Entegris. In addition, it is described on pages 4 of JP-A-3-502677, page 3 of the pamphlet of International Publication No. 2004/016526, and pages 9 and 16 of the pamphlet of International Publication No. 99/046309. Containers can also be used.
 また、容器の内壁には、上述したフッ素系樹脂の他に、石英及び電解研磨された金属材料(すなわち、電解研磨済みの金属材料)も好ましく用いられる。
 上記電解研磨された金属材料の製造に用いられる金属材料としては、クロム及びニッケルからなる群から選択される少なくとも1種を含み、クロム及びニッケルの含有量の合計が金属材料全質量に対して25質量%超である金属材料が好ましく、例えばステンレス鋼、及びニッケル-クロム合金等が挙げられる。
 金属材料におけるクロム及びニッケルの含有量の合計は、金属材料全質量に対して30質量%以上がより好ましい。
 なお、金属材料におけるクロム及びニッケルの含有量の合計の上限値としては特に制限されないが、一般的に90質量%以下が好ましい。
Further, in addition to the above-mentioned fluororesin, quartz and an electropolished metal material (that is, an electropolished metal material) are also preferably used for the inner wall of the container.
The metal material used for producing the electropolished metal material includes at least one selected from the group consisting of chromium and nickel, and the total content of chromium and nickel is 25 with respect to the total mass of the metal material. Metallic materials having a mass% of more than% are preferable, and examples thereof include stainless steel and nickel-chromium alloys.
The total content of chromium and nickel in the metal material is more preferably 30% by mass or more with respect to the total mass of the metal material.
The upper limit of the total content of chromium and nickel in the metal material is not particularly limited, but is generally preferably 90% by mass or less.
 ステンレス鋼としては、特に制限されず、公知のステンレス鋼を使用できる。なかでも、ニッケルを8質量%以上含む合金が好ましく、ニッケルを8質量%以上含むオーステナイト系ステンレス鋼がより好ましい。オーステナイト系ステンレス鋼としては、例えばSUS(Steel Use Stainless)304(Ni含有量8質量%、Cr含有量18質量%)、SUS304L(Ni含有量9質量%、Cr含有量18質量%)、SUS316(Ni含有量10質量%、Cr含有量16質量%)、及びSUS316L(Ni含有量12質量%、Cr含有量16質量%)等が挙げられる。 The stainless steel is not particularly limited, and known stainless steel can be used. Among them, an alloy containing 8% by mass or more of nickel is preferable, and an austenitic stainless steel containing 8% by mass or more of nickel is more preferable. Examples of austenitic stainless steels include SUS (Steel Use Stainless) 304 (Ni content 8% by mass, Cr content 18% by mass), SUS304L (Ni content 9% by mass, Cr content 18% by mass), and SUS316 ( Ni content 10% by mass, Cr content 16% by mass), SUS316L (Ni content 12% by mass, Cr content 16% by mass) and the like.
 ニッケル-クロム合金としては、特に制限されず、公知のニッケル-クロム合金を使用できる。なかでも、ニッケル含有量が40~75質量%、クロム含有量が1~30質量%のニッケル-クロム合金が好ましい。
 ニッケル-クロム合金としては、例えば、ハステロイ(商品名、以下同じ。)、モネル(商品名、以下同じ)、及びインコネル(商品名、以下同じ)等が挙げられる。より具体的には、ハステロイC-276(Ni含有量63質量%、Cr含有量16質量%)、ハステロイ-C(Ni含有量60質量%、Cr含有量17質量%)、及びハステロイC-22(Ni含有量61質量%、Cr含有量22質量%)等が挙げられる。
 また、ニッケル-クロム合金は、必要に応じて、上記した合金の他に、更に、ホウ素、ケイ素、タングステン、モリブデン、銅、及びコバルト等を含んでいてもよい。
The nickel-chromium alloy is not particularly limited, and a known nickel-chromium alloy can be used. Of these, nickel-chromium alloys having a nickel content of 40 to 75% by mass and a chromium content of 1 to 30% by mass are preferable.
Examples of the nickel-chromium alloy include Hastelloy (trade name, the same shall apply hereinafter), Monel (trade name, the same shall apply hereinafter), Inconel (trade name, the same shall apply hereinafter) and the like. More specifically, Hastelloy C-276 (Ni content 63% by mass, Cr content 16% by mass), Hastelloy-C (Ni content 60% by mass, Cr content 17% by mass), and Hastelloy C-22. (Ni content 61% by mass, Cr content 22% by mass) and the like.
Further, the nickel-chromium alloy may further contain boron, silicon, tungsten, molybdenum, copper, cobalt and the like, if necessary, in addition to the above alloys.
 金属材料を電解研磨する方法としては特に制限されず、公知の方法を使用できる。例えば、特開2015-227501号公報の段落[0011]-[0014]、及び特開2008-264929号公報の段落[0036]-[0042]等に記載された方法を使用できる。 The method for electropolishing a metal material is not particularly limited, and a known method can be used. For example, the methods described in paragraphs [0011]-[0014] of JP2015-227501 and paragraphs [0036]-[0042] of JP2008-264929 can be used.
 金属材料は、電解研磨されることにより表面の不動態層におけるクロムの含有量が、母相のクロムの含有量よりも多くなっているものと推測される。そのため、電解研磨された金属材料で被覆された内壁からは、処理液中に金属元素が流出しにくいため、金属不純物量が低減された処理液を得ることができるものと推測される。
 なお、金属材料はバフ研磨されていることが好ましい。バフ研磨の方法は特に制限されず、公知の方法を使用できる。バフ研磨の仕上げに用いられる研磨砥粒のサイズは特に制限されないが、金属材料の表面の凹凸がより小さくなり易い点で、#400以下が好ましい。
 なお、バフ研磨は、電解研磨の前に行われることが好ましい。
 また、金属材料は、研磨砥粒のサイズ等の番手を変えて行われる複数段階のバフ研磨、酸洗浄、及び磁性流体研磨等を、1又は2以上組み合わせて処理されたものであってもよい。
It is presumed that the content of chromium in the passivation layer on the surface of the metal material is higher than the content of chromium in the matrix by electropolishing. Therefore, it is presumed that the treatment liquid having a reduced amount of metal impurities can be obtained because the metal element does not easily flow out into the treatment liquid from the inner wall coated with the electropolished metal material.
The metal material is preferably buffed. The method of buffing is not particularly limited, and a known method can be used. The size of the abrasive grains used for finishing the buffing is not particularly limited, but # 400 or less is preferable because the unevenness on the surface of the metal material tends to be smaller.
The buffing is preferably performed before the electrolytic polishing.
Further, the metal material may be processed by combining one or more of a plurality of stages of buffing, acid cleaning, magnetic fluid polishing, etc., which are performed by changing the count such as the size of abrasive grains. ..
 本発明においては、上記容器と、この容器内に収容された上記処理液と、を有するものを、処理液収容体という場合がある。 In the present invention, a container having the container and the treatment liquid contained in the container may be referred to as a treatment liquid container.
 これらの容器は、処理液を充填前にその内部が洗浄されることが好ましい。洗浄に使用される液体は、その液中における金属不純物量が低減されていることが好ましい。本発明の処理液は、製造後にガロン瓶又はコート瓶等の容器にボトリングし、輸送、保管されてもよい。 It is preferable that the inside of these containers is cleaned before filling with the treatment liquid. The liquid used for cleaning preferably has a reduced amount of metal impurities in the liquid. The treatment liquid of the present invention may be bottling, transported and stored in a container such as a gallon bottle or a coated bottle after production.
 保管における処理液中の成分の変化を防ぐ目的で、容器内を純度99.99995体積%以上の不活性ガス(チッソ、又はアルゴン等)で置換しておいてもよい。特に、含水率が少ないガスが好ましい。また、輸送、及び保管に際しては、常温でもよいが、変質を防ぐため、-20℃~20℃の範囲に温度制御してもよい。 For the purpose of preventing changes in the components in the treatment liquid during storage, the inside of the container may be replaced with an inert gas (chisso, argon, etc.) having a purity of 99.99995% by volume or more. In particular, a gas having a low water content is preferable. Further, during transportation and storage, the temperature may be at room temperature, but in order to prevent deterioration, the temperature may be controlled in the range of −20 ° C. to 20 ° C.
〔クリーンルーム〕
 本発明の処理液の製造、収容容器の開封及び/又は洗浄、処理液の充填等を含めた取り扱い、処理分析、及び測定は、全てクリーンルームで行うことが好ましい。クリーンルームは、14644-1クリーンルーム基準を満たすことが好ましい。ISO(国際標準化機構)クラス1、ISOクラス2、ISOクラス3、及びISOクラス4のいずれかを満たすことが好ましく、ISOクラス1又はISOクラス2を満たすことがより好ましく、ISOクラス1を満たすことが更に好ましい。
[Clean room]
It is preferable that the production of the treatment liquid of the present invention, the opening and / or cleaning of the storage container, the handling including the filling of the treatment liquid, the treatment analysis, and the measurement are all performed in a clean room. The clean room preferably meets the 14644-1 clean room standard. It is preferable to satisfy any one of ISO (International Organization for Standardization) class 1, ISO class 2, ISO class 3, and ISO class 4, more preferably ISO class 1 or ISO class 2, and ISO class 1 is satisfied. Is more preferable.
[基板の洗浄方法]
 本発明の処理液を用いた基板の洗浄方法の態様の一つとしては、上記処理液を用いて、W及びCoからなる群から選択される1種以上を含む金属層を有する基板を洗浄する洗浄工程(以下「洗浄工程B」とも称する。)を有する態様が挙げられる。また、上記態様の洗浄方法は、洗浄工程Bの前に、上記処理液を調製する処理液調製工程(以下「処理液調製工程A」と称する。)を有していてもよい。
 以下の基板の洗浄方法の説明においては、洗浄工程Bの前に処理液調製工程Aを実施する場合を一例として示すが、これに制限されず、本発明の基板の洗浄方法は、予め準備された上記処理液を用いて行われるものであってもよい。
[How to clean the board]
As one aspect of the substrate cleaning method using the treatment liquid of the present invention, the treatment liquid is used to clean a substrate having a metal layer containing one or more selected from the group consisting of W and Co. An embodiment having a cleaning step (hereinafter, also referred to as “cleaning step B”) can be mentioned. Further, the cleaning method of the above aspect may include a treatment liquid preparation step (hereinafter referred to as "treatment liquid preparation step A") for preparing the treatment liquid before the cleaning step B.
In the following description of the substrate cleaning method, a case where the treatment liquid preparation step A is performed before the cleaning step B is shown as an example, but the present invention is not limited to this, and the substrate cleaning method of the present invention is prepared in advance. It may be carried out by using the above-mentioned treatment liquid.
〔洗浄対象物〕
 本発明の基板の洗浄方法の洗浄対象物は、W及びCoからなる群から選択される1種以上を含む金属層を有する基板が好ましい。本発明の基板の洗浄方法の洗浄対象物としては、例えば、基板上に、上記W及びCoからなる群から選択される1種以上を含む金属層(以下、単に「金属層」と称する。)、層間絶縁層及びメタルハードマスクを少なくともこの順に備えた積層物が挙げられる。積層物は、更に、ドライエッチング工程等を経たことにより、金属層の表面を露出するようにメタルハードマスクの表面(開口部)から基板に向かって形成されたホールを有する。
 上記のような、ホールを有する積層物の製造方法は特に制限されないが、通常、基板と、金属層と、層間絶縁層と、メタルハードマスクとをこの順で有する処理前積層物に対して、メタルハードマスクをマスクとして用いてドライエッチング工程を実施して、金属層の表面が露出するように層間絶縁層をエッチングすることにより、メタルハードマスク及び層間絶縁層内を貫通するホールを設ける方法が挙げられる。
 なお、メタルハードマスクの製造方法は特に制限されず、例えば、まず、層間絶縁層上に所定の成分を含む金属層を形成して、その上に所定のパターンのレジスト膜を形成する。次に、レジスト膜をマスクとして用いて、金属層をエッチングすることで、メタルハードマスク(すなわち、金属層がパターニングされた膜)を製造する方法が挙げられる。
 また、積層物は、上述の層以外の層を有していてもよく、例えば、エッチング停止層、反射防止層等が挙げられる。
[Object to be cleaned]
The object to be cleaned in the method for cleaning a substrate of the present invention is preferably a substrate having a metal layer containing at least one selected from the group consisting of W and Co. The object to be cleaned in the method for cleaning the substrate of the present invention is, for example, a metal layer containing at least one selected from the group consisting of W and Co on the substrate (hereinafter, simply referred to as “metal layer”). , Laminates provided with an interlayer insulating layer and a metal hard mask at least in this order. The laminate further has holes formed from the surface (opening) of the metal hard mask toward the substrate so as to expose the surface of the metal layer by undergoing a dry etching process or the like.
The method for producing a laminate having holes as described above is not particularly limited, but usually, for a pretreated laminate having a substrate, a metal layer, an interlayer insulating layer, and a metal hard mask in this order, A method of performing a dry etching process using a metal hard mask as a mask and etching the interlayer insulating layer so that the surface of the metal layer is exposed to provide holes penetrating the inside of the metal hard mask and the interlayer insulating layer. Can be mentioned.
The method for producing the metal hard mask is not particularly limited. For example, first, a metal layer containing a predetermined component is formed on the interlayer insulating layer, and a resist film having a predetermined pattern is formed on the metal layer. Next, there is a method of manufacturing a metal hard mask (that is, a film in which a metal layer is patterned) by etching a metal layer using a resist film as a mask.
Further, the laminate may have a layer other than the above-mentioned layer, and examples thereof include an etching stop layer and an antireflection layer.
 図1に、本発明の基板の洗浄方法の洗浄対象物である積層物の一例を示す断面模式図を示す。
 図1に示す積層物10は、基板1上に、金属層2、エッチング停止層3、層間絶縁層4、及びメタルハードマスク5をこの順に備え、ドライエッチング工程等を経たことで所定位置に金属層2が露出するホール6が形成されている。つまり、図1に示す洗浄対象物は、基板1と、金属層2と、エッチング停止層3と、層間絶縁層4と、メタルハードマスク5とをこの順で備え、メタルハードマスク5の開口部の位置において、その表面から金属層2の表面まで貫通するホール6を備える積層物である。ホール6の内壁11は、エッチング停止層3、層間絶縁層4及びメタルハードマスク5からなる断面壁11aと、露出された金属層2からなる底壁11bとで構成され、ドライエッチング残渣12が付着している。
FIG. 1 shows a schematic cross-sectional view showing an example of a laminate that is a cleaning target of the substrate cleaning method of the present invention.
The laminate 10 shown in FIG. 1 is provided with a metal layer 2, an etching stop layer 3, an interlayer insulation layer 4, and a metal hard mask 5 in this order on a substrate 1, and is metal at a predetermined position after undergoing a dry etching process or the like. A hole 6 is formed in which the layer 2 is exposed. That is, the object to be cleaned shown in FIG. 1 includes a substrate 1, a metal layer 2, an etching stop layer 3, an interlayer insulating layer 4, and a metal hard mask 5 in this order, and an opening of the metal hard mask 5. A laminate having holes 6 penetrating from its surface to the surface of the metal layer 2 at the position of. The inner wall 11 of the hole 6 is composed of a cross-sectional wall 11a made of an etching stop layer 3, an interlayer insulating layer 4 and a metal hard mask 5, and a bottom wall 11b made of an exposed metal layer 2, to which a dry etching residue 12 adheres. doing.
 本発明の基板の洗浄方法は、これらのドライエッチング残渣12の除去を目的とした洗浄に好適に使用できる。すなわち、ドライエッチング残渣12の除去性能に優れつつ、洗浄対象物の内壁11(例えば、金属層2等)に対する防食性能にも優れる。
 また、本発明の基板の洗浄方法は、ドライエッチング工程の後にドライアッシング工程が行われた積層物に対して実施してもよい。
 以下、上述した積層物の各層構成材料について説明する。
The substrate cleaning method of the present invention can be suitably used for cleaning for the purpose of removing these dry etching residues 12. That is, while being excellent in removing the dry etching residue 12, it is also excellent in anticorrosion performance against the inner wall 11 (for example, the metal layer 2 and the like) of the object to be cleaned.
Further, the method for cleaning the substrate of the present invention may be carried out on a laminate in which a dry ashing step is performed after the dry etching step.
Hereinafter, each layer constituent material of the above-mentioned laminate will be described.
<メタルハードマスク>
 メタルハードマスクは、Cu、Co、W、AlOx、AlN、AlOxNy、WOx、Ti、TiN、ZrOx、HfOx及びTaOxからなる群より選択される成分を少なくとも1種含むことが好ましい。ここで、x、yは、それぞれ、x=1~3、y=1~2で表される数である。
 上記メタルハードマスクの材料としては、例えば、TiN、WO及びZrOが挙げられる。
<Metal hard mask>
The metal hard mask preferably contains at least one component selected from the group consisting of Cu, Co, W, AlOx, AlN, AlOxNy, WOx, Ti, TiN, ZrOx, HfOx and TaOx. Here, x and y are numbers represented by x = 1 to 3 and y = 1 to 2, respectively.
Examples of the material of the metal hard mask include TiN, WO 2 and ZrO 2 .
<層間絶縁層>
 層間絶縁層の材料は、特に制限されず、誘電率kが3.0以下の材料が好ましく、誘電率kが2.6以下の材料がより好ましい。
 具体的な層間絶縁層の材料としては、SiO、SiOC系材料及びポリイミド等の有機系ポリマー等が挙げられる。
<Interlayer insulation layer>
The material of the interlayer insulating layer is not particularly limited, and a material having a dielectric constant k of 3.0 or less is preferable, and a material having a dielectric constant k of 2.6 or less is more preferable.
Specific examples of the material of the interlayer insulating layer include SiO 2 , SiOC materials, and organic polymers such as polyimide.
<エッチング停止層>
 エッチング停止層の材料は、特に制限されない。具体的なエッチング停止層の材料としてはSiN、SiON、SiOCN系材料及びAlOx等の金属酸化物が挙げられる。
<Etching stop layer>
The material of the etching stop layer is not particularly limited. Specific examples of the etching stop layer material include SiN, SiON, SiOCN-based materials, and metal oxides such as AlOx.
<金属層>
 金属層を形成する配線材料は、少なくともW(タングステン)又はCo(コバルト)を含む。また、これらの金属は、他の金属との合金であってもよい。
 本発明の配線材料は、W及びCo以外の金属、窒化金属又は合金を更に含有していてもよい。具体的には、銅、チタン、チタン-タングステン、窒化チタン、タンタル、タンタル化合物、クロム、クロム酸化物、及びアルミニウム等が挙げられる。
<Metal layer>
The wiring material forming the metal layer contains at least W (tungsten) or Co (cobalt). Further, these metals may be alloys with other metals.
The wiring material of the present invention may further contain a metal other than W and Co, a metal nitride or an alloy. Specific examples thereof include copper, titanium, titanium-tungsten, titanium nitride, tantalum, tantalum compounds, chromium, chromium oxide, and aluminum.
<基板>
 ここでいう「基板」には、例えば、単層からなる半導体基板、及び多層からなる半導体基板が含まれる。
 単層からなる半導体基板を構成する材料は特に制限されず、一般的に、シリコン、シリコンゲルマニウム、GaAsのような第III-V族化合物、又はそれらの任意の組み合わせから構成されることが好ましい。
 多層からなる半導体基板である場合には、その構成は特に制限されず、例えば、上述のシリコン等の半導体基板上に金属線及び誘電材料のような相互接続構造(interconnect features)等の露出した集積回路構造を有していてもよい。相互接続構造に用いられる金属及び合金としては、アルミニウム、銅と合金化されたアルミニウム、銅、チタン、タンタル、コバルト、シリコン、窒化チタン、窒化タンタル、及びタングステンが挙げられるが、これらに制限されるものではない。また、半導体基板上に、層間誘電体層、酸化シリコン、窒化シリコン、炭化シリコン、及び炭素ドープ酸化シリコン等の層を有していてもよい。
<Board>
The "substrate" here includes, for example, a semiconductor substrate made of a single layer and a semiconductor substrate made of multiple layers.
The material constituting the semiconductor substrate composed of a single layer is not particularly limited, and is generally preferably composed of a Group III-V compound such as silicon, silicon germanium, or GaAs, or any combination thereof.
In the case of a semiconductor substrate composed of multiple layers, the configuration is not particularly limited, and for example, an interconnect structure (interconnect features) such as a metal wire and a dielectric material is exposed and integrated on the above-mentioned semiconductor substrate such as silicon. It may have a circuit structure. Metals and alloys used in interconnect structures include, but are limited to, aluminum, aluminum alloyed with copper, copper, titanium, tantalum, cobalt, silicon, titanium nitride, tantalum nitride, and tungsten. It's not a thing. Further, a layer such as an interlayer dielectric layer, silicon oxide, silicon nitride, silicon carbide, and carbon-doped silicon oxide may be provided on the semiconductor substrate.
〔処理工程〕
 以下、処理液調製工程A及び洗浄工程Bについて、それぞれ詳述する。
[Processing process]
Hereinafter, the treatment liquid preparation step A and the cleaning step B will be described in detail.
<処理液調製工程A>
 処理液調製工程Aは、上記処理液を調製する工程である。本工程で使用される各成分は、上述した通りである。
 本工程の手順は特に制限されず、例えば、ヒドロキシアミン化合物と、塩基性化合物と、有機溶媒と、第1金属イオンと、その他の任意成分とを添加して、撹拌混合することにより処理液を調製する方法が挙げられる。なお、各成分を添加する場合は、一括して添加してもよいし、複数回に渡って分割して添加してもよい。
 また、処理液に含まれる各成分は、半導体グレードに分類されるもの、又はそれに準ずる高純度グレードに分類されるものを使用し、フィルタリングによる異物除去及び/又はイオン交換樹脂等によるイオン成分低減を行ったものを用いることが好ましい。
 なお、第1金属イオンを除く原料成分中に第1金属イオンに該当する金属イオンが含まれており、且つその合計含有量が所定量を超えている場合、ヒドロキシアミン化合物と、塩基性化合物と、有機溶媒と、必要に応じてその他の任意成分とを混合した後、フィルタリングによる異物除去及び/又はイオン交換樹脂等によるイオン成分低減によって、所定量の第1金属イオンと、ヒドロキシアミン化合物と、塩基性化合物と、有機溶媒と、必要に応じてその他の任意成分とを含む処理液を調製してもよい。
<Treatment liquid preparation step A>
The treatment liquid preparation step A is a step of preparing the treatment liquid. Each component used in this step is as described above.
The procedure of this step is not particularly limited, and for example, a hydroxyamine compound, a basic compound, an organic solvent, a first metal ion, and other optional components are added and mixed by stirring to prepare a treatment liquid. The method of preparation is mentioned. When each component is added, it may be added all at once, or it may be added in multiple portions.
In addition, as each component contained in the treatment liquid, one classified as a semiconductor grade or one classified as a high-purity grade equivalent thereto is used to remove foreign substances by filtering and / or reduce ion components by ion exchange resin or the like. It is preferable to use the one that has been used.
When the raw material components excluding the first metal ion contain a metal ion corresponding to the first metal ion and the total content thereof exceeds a predetermined amount, the hydroxyamine compound and the basic compound After mixing the organic solvent and other optional components as necessary, by removing foreign substances by filtering and / or reducing the ionic components by an ion exchange resin or the like, a predetermined amount of the first metal ion, the hydroxyamine compound, and A treatment liquid containing a basic compound, an organic solvent, and if necessary, other optional components may be prepared.
 また、処理液の濃縮液を準備している場合には、洗浄工程Bを実施する前に、濃縮液を希釈して希釈液を得た後、この希釈液を用いて洗浄工程Bを実施する。このとき、上記希釈は、水を含む希釈液を用いて行われることが好ましい。 When a concentrated solution of the treatment liquid is prepared, the concentrated solution is diluted to obtain a diluted solution before performing the cleaning step B, and then the cleaning step B is performed using this diluted solution. .. At this time, the above dilution is preferably carried out using a diluent containing water.
<洗浄工程B>
 洗浄工程Bで洗浄される洗浄対象物としては、上述した積層物が挙げられ、上述した通り、ドライエッチング工程が施されてホールが形成された積層物10が例示される(図1参照)。なお、この積層物10には、ホール6内にドライエッチング残渣12が付着している。
 なお、ドライエッチング工程の後に、ドライアッシング工程が行われた積層物を、洗浄対象物としてもよい。
<Washing step B>
Examples of the object to be cleaned to be cleaned in the cleaning step B include the above-mentioned laminate, and as described above, the laminate 10 in which holes are formed by performing a dry etching step is exemplified (see FIG. 1). The dry etching residue 12 is attached to the hole 6 in the laminate 10.
The laminate obtained by performing the dry ashing step after the dry etching step may be used as the object to be cleaned.
 洗浄対象物に処理液を接触させる方法は特に制限されないが、例えば、タンクに入れた処理液中に洗浄対象物を浸漬する方法、洗浄対象物上に処理液を噴霧する方法、洗浄対象物上に処理液を流す方法、又はそれらの任意の組み合わせが挙げられる。残渣除去性能の観点から、洗浄対象物を処理液中に浸漬する方法が好ましい。 The method of bringing the treatment liquid into contact with the cleaning target is not particularly limited, and for example, a method of immersing the cleaning target in the treatment liquid placed in the tank, a method of spraying the treatment liquid on the cleaning target, and a method of spraying the treatment liquid on the cleaning target. A method of flowing the treatment liquid into the water, or any combination thereof can be mentioned. From the viewpoint of residue removing performance, a method of immersing the object to be cleaned in the treatment liquid is preferable.
 処理液の温度は、90℃以下が好ましく、25~80℃がより好ましく、30~75℃が更に好ましく、40~70℃が特に好ましい。 The temperature of the treatment liquid is preferably 90 ° C. or lower, more preferably 25 to 80 ° C., further preferably 30 to 75 ° C., and particularly preferably 40 to 70 ° C.
 洗浄時間は、用いる洗浄方法及び処理液の温度に応じて調整できる。
 浸漬バッチ方式(処理槽内で複数枚の洗浄対象物を浸漬し処理するバッチ方式)で洗浄する場合には、洗浄時間は、60分以内が好ましく、1~60分がより好ましく、3~20分が更に好ましく、4~15分が特に好ましい。
The cleaning time can be adjusted according to the cleaning method used and the temperature of the treatment liquid.
When cleaning by a dipping batch method (a batch method in which a plurality of objects to be cleaned are immersed and processed in a treatment tank), the cleaning time is preferably 60 minutes or less, more preferably 1 to 60 minutes, and 3 to 20 minutes. Minutes are more preferred, and 4 to 15 minutes are particularly preferred.
 枚葉方式で洗浄する場合には、洗浄時間は、10秒~5分が好ましく、15秒~4分がより好ましく、15秒~3分が更に好ましく、20秒~2分が特に好ましい。 When washing by the single-wafer method, the washing time is preferably 10 seconds to 5 minutes, more preferably 15 seconds to 4 minutes, further preferably 15 seconds to 3 minutes, and particularly preferably 20 seconds to 2 minutes.
 更に、処理液の洗浄能力をより増進するために、機械的撹拌方法を用いてもよい。
 機械的撹拌方法としては、例えば、洗浄対象物上で処理液を循環させる方法、洗浄対象物上で処理液を流過又は噴霧させる方法、及び超音波又はメガソニックにて処理液を撹拌する方法等が挙げられる。
Further, a mechanical stirring method may be used in order to further improve the cleaning ability of the treatment liquid.
Examples of the mechanical stirring method include a method of circulating the treatment liquid on the object to be cleaned, a method of flowing or spraying the treatment liquid on the object to be cleaned, and a method of stirring the treatment liquid by ultrasonic waves or megasonic. And so on.
<リンス工程B2>
 本発明の処理液を用いた基板の洗浄方法は、洗浄工程Bの後に、洗浄対象物を溶剤ですすいで清浄する工程(以下「リンス工程B2」と称する。)を更に有していてもよい。
 リンス工程B2は、洗浄工程Bに連続して行われ、リンス溶剤(リンス液)で5秒~5分間にわたってすすぐ工程であることが好ましい。リンス工程B2は、上述の機械的撹拌方法を用いて行ってもよい。
<Rinse process B2>
The method for cleaning a substrate using the treatment liquid of the present invention may further include a step of rinsing and cleaning the object to be cleaned with a solvent (hereinafter referred to as "rinsing step B2") after the cleaning step B. ..
The rinsing step B2 is preferably performed continuously with the washing step B and is a step of rinsing with a rinsing solvent (rinsing solution) for 5 seconds to 5 minutes. The rinsing step B2 may be performed by using the above-mentioned mechanical stirring method.
 リンス溶剤としては、例えば、脱イオン(DI:De Ionize)水、メタノール、エタノール、イソプロピルアルコール、N-メチルピロリジノン、γ-ブチロラクトン、ジメチルスルホキシド、乳酸エチル及びプロピレングリコールモノメチルエーテルアセテートが挙げられるが、これらに制限されるものではない。あるいは、pH>8の水性リンス液(希釈した水性の水酸化アンモニウム等)を利用してもよい。
 リンス溶剤としては、水酸化アンモニウム水溶液、DI水、メタノール、エタノール、又はイソプロピルアルコールが好ましく、水酸化アンモニウム水溶液、DI水、又はイソプロピルアルコールがより好ましく、水酸化アンモニウム水溶液又はDI水が更に好ましい。
 リンス溶剤を洗浄対象物に接触させる方法としては、上述した処理液を洗浄対象物に接触させる方法を同様に適用できる。
 リンス工程B2におけるリンス溶剤の温度は、16~27℃であることが好ましい。
Examples of the rinsing solvent include deionized (DI: De Ionize) water, methanol, ethanol, isopropyl alcohol, N-methylpyrrolidinone, γ-butyrolactone, dimethyl sulfoxide, ethyl lactate and propylene glycol monomethyl ether acetate. It is not limited to. Alternatively, an aqueous rinse solution having a pH> 8 (diluted aqueous ammonium hydroxide, etc.) may be used.
As the rinsing solvent, ammonium hydroxide aqueous solution, DI water, methanol, ethanol, or isopropyl alcohol is preferable, ammonium hydroxide aqueous solution, DI water, or isopropyl alcohol is more preferable, and ammonium hydroxide aqueous solution or DI water is further preferable.
As a method of bringing the rinse solvent into contact with the object to be cleaned, the above-mentioned method of bringing the treatment liquid into contact with the object to be cleaned can be similarly applied.
The temperature of the rinsing solvent in the rinsing step B2 is preferably 16 to 27 ° C.
<乾燥工程B3>
 本発明の処理液を用いた基板の洗浄方法は、リンス工程B2の後に洗浄対象物を乾燥させる乾燥工程B3を有していてもよい。
 乾燥方法としては、特に制限されない。乾燥方法としては、例えば、スピン乾燥法、洗浄対象物上に乾性ガスを流過させる方法、ホットプレート若しくは赤外線ランプのような加熱手段によって基板を加熱する方法、マランゴニ乾燥法、ロタゴニ乾燥法、IPA(イソプロピルアルコール)乾燥法、又はそれらの任意の組み合わせが挙げられる。
 乾燥時間は、用いる特定の方法に依存するが、一般的には、30秒間~数分間であることが好ましい。
<Drying process B3>
The method for cleaning a substrate using the treatment liquid of the present invention may include a drying step B3 for drying the object to be cleaned after the rinsing step B2.
The drying method is not particularly limited. Examples of the drying method include a spin drying method, a method of flowing a dry gas over an object to be cleaned, a method of heating a substrate by a heating means such as a hot plate or an infrared lamp, a flatulence drying method, a rotagoni drying method, and an IPA. (Isopropyl alcohol) drying method, or any combination thereof can be mentioned.
The drying time depends on the specific method used, but is generally preferably 30 seconds to several minutes.
 本発明の処理液を用いた基板の洗浄方法の洗浄対象物は、上述したような、基板上にW及びCoからなる群から選択される1種以上を含む金属層、層間絶縁層及びメタルハードマスクを少なくともこの順に備えた積層物に制限されない。つまり、例えば、基板上にW及びCoからなる群から選択される1種以上を含む金属層、層間絶縁層及びフォトレジスト膜を少なくともこの順に備えた積層物のフォトレジストエッチング残渣の除去にも使用できる。 The objects to be cleaned in the method for cleaning a substrate using the treatment liquid of the present invention are a metal layer, an interlayer insulating layer, and a metal hard including one or more selected from the group consisting of W and Co on the substrate as described above. It is not limited to a laminate having masks at least in this order. That is, for example, it is also used for removing a photoresist etching residue of a laminate having a metal layer containing at least one selected from the group consisting of W and Co, an interlayer insulating layer, and a photoresist film on the substrate in this order. it can.
 以下に実施例に基づいて本発明をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び処理手順等は、本発明の趣旨を逸脱しない限り適宜変更できる。したがって、本発明の範囲は以下に示す実施例により制限的に解釈されるべきものではない。なお、特に断らない限り「%」は「質量%」を意図する。 The present invention will be described in more detail below based on examples. The materials, amounts used, proportions, treatment contents, treatment procedures, etc. shown in the following examples can be appropriately changed without departing from the spirit of the present invention. Therefore, the scope of the present invention should not be construed as restrictive by the examples shown below. Unless otherwise specified, "%" means "mass%".
[処理液の調製1]
 表1に示す処理液(処理液1~8)を各々調製した。なお、各処理液において、使用する各種成分の含有量(いずれも質量基準)は表中に記載の通りである。
[Preparation of treatment solution 1]
The treatment solutions (treatment solutions 1 to 8) shown in Table 1 were prepared respectively. The contents of various components used in each treatment liquid (all based on mass) are as described in the table.
 ここで、表1に示す各種成分はいずれも、半導体グレードに分類されるもの、又はそれに準ずる高純度グレードに分類されるものを使用し、液体成分についてはさらに複数回ろ過して精製したものを使用した。
 表1に記載の配合となるように各成分を混合して混合液を調製した。なお、第1金属イオン及び第2金属イオンは、対応する金属原子を含む金属塩(金属塩化物)を添加することで液中に導入した。
 処理液中の金属イオンの含有量は、既述の方法により測定した。検出限界以下のものは薬液を適宜濃縮した後測定し、換算した値を用いた。
Here, all of the various components shown in Table 1 are classified into semiconductor grades or high-purity grades equivalent thereto, and the liquid components are further filtered and purified multiple times. used.
A mixed solution was prepared by mixing each component so as to have the formulation shown in Table 1. The first metal ion and the second metal ion were introduced into the liquid by adding a metal salt (metal chloride) containing the corresponding metal atom.
The content of metal ions in the treatment liquid was measured by the method described above. Those below the detection limit were measured after appropriately concentrating the drug solution, and the converted value was used.
 表1中の略語は、以下のとおりである。
 HA:ヒドロキシアミン
 HAS:硫酸ヒドロキシアミン
 DTPA:ジエチレントリアミン五酢酸
 EGBE:エチレングリコールモノブチルエーテル
 5M―BTA:5-メチル-1H-ベンゾトリアゾール
 DBU:ジアザビシクロウンデセン
The abbreviations in Table 1 are as follows.
HA: Hydroxylamine HAS: Hydroxylamine Sulfate DTPA: Diethylenetriamine pentaacetic acid EGBE: Ethylene glycol monobutyl ether 5M-BTA: 5-Methyl-1H-benzotriazole DBU: Diazabicycloundecene
[評価]
 上記で調製した各処理液について、下記に示す各種の評価を行った。
[Evaluation]
Each of the treatment solutions prepared above was evaluated in various ways as shown below.
〔Co膜に対する防食性能の経時安定性〕
 実施例及び比較例の各処理液を使用して、Co膜に対する防食性能の経時安定性を評価した。具体的には以下のとおりである。
<Co膜を備えた基板の作製>
 基板(シリコンウエハ(直径:12インチ))の一方の表面上に、CVD(Chemical Vapor Deposition)法によりCo膜を形成した基板を準備した。
<エッチング試験>
 調製した実施例及び比較例の各処理液を用いて、Co膜をエッチング処理した。なお、本試験で計測されるCo膜に対するエッチングレートが低いほど、Co膜に対する防食性能が良好である。以下において、エッチング試験の詳細について説明する。
[Stability of anticorrosion performance against Co film over time]
The temporal stability of the anticorrosion performance against the Co film was evaluated using each of the treatment solutions of Examples and Comparative Examples. Specifically, it is as follows.
<Manufacturing a substrate with a Co film>
A substrate having a Co film formed on one surface of a substrate (silicon wafer (diameter: 12 inches)) by a CVD (Chemical Vapor Deposition) method was prepared.
<Etching test>
The Co film was etched using the prepared treatment solutions of Examples and Comparative Examples. The lower the etching rate for the Co film measured in this test, the better the anticorrosion performance for the Co film. The details of the etching test will be described below.
 (1)Fresh時におけるエッチングレート(ERFr
 上記Co膜を形成した基板を、調製直後の処理液(以下「fresh」ともいう。)(65℃)中に5分間浸漬した。次いで、処理液への浸漬前後における、Co膜の膜厚の差から、処理液のCo膜に対するエッチングレート(Å/分)を計算し、そのエッチングレートをERFrとした。
 なお、処理前後のCo膜の膜厚は、エリプソメトリー(分光エリプソメーター、名商品名「Vase」、ジェー・エー・ウーラム・ジャパン社製)を用いて、測定範囲250-1000nm、測定角度70度及び75度の条件で測定した。
(1) Etching rate at the time of Fresh (ER Fr )
The substrate on which the Co film was formed was immersed in a treatment liquid (hereinafter, also referred to as “fresh”) (65 ° C.) immediately after preparation for 5 minutes. Next, the etching rate (Å / min) of the treatment liquid with respect to the Co film was calculated from the difference in the film thickness of the Co film before and after immersion in the treatment liquid, and the etching rate was defined as ER Fr.
The film thickness of the Co film before and after the treatment was measured using ellipsometry (spectral ellipsometer, trade name "Vase", manufactured by JA Woolam Japan Co., Ltd.) in a measurement range of 250 to 1000 nm and a measurement angle of 70 degrees. And measured under the condition of 75 degrees.
 (2)サーモサイクル処理後のエッチングレート(ERAge
 24℃、大気圧下で、実施例及び比較例の各処理液を樹脂製容器に封入した。樹脂製容器は、アイセロ化学製クリーンボトルであり、容器の総容量は500ミリリットルのものを用いた。そして、容器に封入された各処理液に対し、冷蔵保管温度である-5℃で5日→室温(24℃)で2日の計7日を1セットとして、これを26回(182日間)繰り返すサーモサイクル処理を実施した。次いで、上記Co膜を形成した基板を、上記サーモサイクル処理後の処理液(65℃)中に5分間浸漬し、処理液への浸漬前後における、Co膜の膜厚の差から、処理液のCo膜に対するエッチングレート(Å/分)を計算し、そのエッチングレートをERAgeとした。
(2) Etching rate after thermocycle treatment (ER Age )
Each of the treatment liquids of Examples and Comparative Examples was sealed in a resin container at 24 ° C. and atmospheric pressure. The resin container was a clean bottle manufactured by Aicello Chemical Corporation, and the total capacity of the container was 500 ml. Then, for each treatment liquid sealed in the container, a total of 7 days of 5 days at the refrigerated storage temperature of -5 ° C → 2 days at room temperature (24 ° C) is set as one set, and this is performed 26 times (182 days). Repeated thermocycle processing was performed. Next, the substrate on which the Co film was formed was immersed in the treatment solution (65 ° C.) after the thermocycle treatment for 5 minutes, and the difference in the film thickness of the Co film before and after immersion in the treatment solution showed that the treatment solution The etching rate (Å / min) for the Co film was calculated, and the etching rate was defined as ER Age .
 (3)エッチングレート維持率の算定及び評価
 得られたエッチングレートERFr及びERAgeに基づき、エッチングレートの維持率(エッチングレート維持率(%)=ERAge/ERFr×100)を算定して、Co膜に対する防食性能の経時安定性を評価した。
 なお、エッチングレート維持率(%)が100%に近いほど、Co膜に対する防食性能の維持率が良好である。つまり、Co膜に対する防食性能の経時安定性が良好である。
 エッチングレート維持率(%)を以下の評価基準に基づいて評価した。
(評価基準)
 「AAA」:エッチングレート維持率(%)が100~102%
 「AA」:エッチングレート維持率(%)が102%超106%以下
 「A+」:エッチングレート維持率(%)が106%超114%以下
 「A-」:エッチングレート維持率(%)が114%超130%以下
 「B」:エッチングレート維持率(%)が130%超200%以下
 「C」:エッチングレート維持率(%)が200%超430%以下
 「D」:エッチングレート維持率(%)が430%超
(3) Calculation and evaluation of etching rate maintenance rate Based on the obtained etching rates ER Fr and ER Age , the etching rate maintenance rate (etching rate maintenance rate (%) = ER Age / ER Fr × 100) is calculated. , The stability of anticorrosion performance against Co film over time was evaluated.
The closer the etching rate maintenance rate (%) is to 100%, the better the maintenance rate of the anticorrosion performance against the Co film. That is, the anticorrosion performance against the Co film is stable over time.
The etching rate maintenance rate (%) was evaluated based on the following evaluation criteria.
(Evaluation criteria)
"AAA": Etching rate maintenance rate (%) is 100 to 102%
"AA": Etching rate maintenance rate (%) is more than 102% and 106% or less "A +": Etching rate maintenance rate (%) is more than 106% and 114% or less "A-": Etching rate maintenance rate (%) is 114 % More than 130% "B": Etching rate maintenance rate (%) is more than 130% and less than 200% "C": Etching rate maintenance rate (%) is more than 200% and less than 430% "D": Etching rate maintenance rate ( %) Is over 430%
 なお、エッチングレート維持率(%)としては、100~114%が好ましく、100~106%がより好ましく、100~102%が更に好ましい。 The etching rate maintenance rate (%) is preferably 100 to 114%, more preferably 100 to 106%, and even more preferably 100 to 102%.
〔残渣除去性の経時安定性〕
 実施例及び比較例の各処理液を用いて、残渣除去性の経時安定性の評価を行った。
 なお、以下の評価では、MHM(メタルハードマスク)をプラズマエッチングした際に生成される残渣の一種であるTiOからなるモデル膜を準備し、そのエッチングレートを評価することにより残渣除去性の経時安定性を評価した。TiOからなるモデル膜(TiO膜)は、Si基板上に1000Åの膜厚で設けられている。
[Stability over time for residue removal]
Using each of the treatment solutions of Examples and Comparative Examples, the stability over time of residue removability was evaluated.
In the following evaluation, a model film made of TiO 2, which is a kind of residue generated when MHM (metal hard mask) is plasma-etched, is prepared, and the etching rate is evaluated to evaluate the residue removability over time. Stability was evaluated. Model membranes composed of TiO 2 (TiO 2 film) is provided in a film thickness of 1000Å on a Si substrate.
<エッチング試験>
 調製した実施例及び比較例の各処理液を用いて、TiO膜をエッチング処理した。なお、本試験で計測されるTiO膜に対するエッチングレートが高いほど、残渣除去性能が良好である。以下において、エッチング試験の詳細について説明する。
<Etching test>
The TiO 2 film was etched using the prepared treatment solutions of Examples and Comparative Examples. The higher the etching rate for the TiO 2 film measured in this test, the better the residue removal performance. The details of the etching test will be described below.
 (1)Fresh時におけるエッチングレート(ERFr
 上記TiO膜を備えた基板を、調製直後の処理液(「fresh)(65℃)中に5分間浸漬した。次いで、処理液への浸漬前後における、TiO膜の膜厚の差から、処理液のTiO膜に対するエッチングレート(Å/分)を計算し、そのエッチングレートをERFrとした。
 なお、処理前後のTiO膜の膜厚は、エリプソメトリー(分光エリプソメーター、名商品名「Vase」、ジェー・エー・ウーラム・ジャパン社製)を用いて、測定範囲250-1000nm、測定角度70度及び75度の条件で測定した。
(1) Etching rate at the time of Fresh (ER Fr )
The substrate provided with the nitro 2 film was immersed in the treatment liquid (“fresh) (65 ° C.) immediately after preparation for 5 minutes. Then, from the difference in the film thickness of the dio 2 film before and after the immersion in the treatment liquid, The etching rate (Å / min) of the treatment liquid with respect to the TiO 2 film was calculated, and the etching rate was defined as ER Fr.
The film thickness of the TiO 2 film before and after the treatment was measured using ellipsometry (spectral ellipsometer, trade name "Vase", manufactured by JA Woolam Japan Co., Ltd.) in a measuring range of 250 to 1000 nm and a measuring angle of 70. It was measured under the conditions of degree and 75 degrees.
 (2)サーモサイクル処理後のエッチングレート(ERAge
 24℃、大気圧下で、実施例及び比較例の各処理液を樹脂製容器に封入した。樹脂製容器は、アイセロ化学製クリーンボトルであり、容器の総容量は500ミリリットルのものを用いた。そして、容器に封入された各処理液に対し、冷蔵保管温度である-5℃で5日→室温(24℃)で2日の計7日を1セットとして、これを26回(182日間)繰り返すサーモサイクル処理を実施した。次いで、上記TiO膜を備えた基板を、上記サーモサイクル処理後の処理液(65℃)中に5分間浸漬し、処理液への浸漬前後における、TiO膜の膜厚の差から、処理液のTiO膜に対するエッチングレート(Å/分)を計算し、そのエッチングレートをERAgeとした。
(2) Etching rate after thermocycle treatment (ER Age )
Each of the treatment liquids of Examples and Comparative Examples was sealed in a resin container at 24 ° C. and atmospheric pressure. The resin container was a clean bottle manufactured by Aicello Chemical Corporation, and the total capacity of the container was 500 ml. Then, for each treatment liquid sealed in the container, a total of 7 days of 5 days at the refrigerated storage temperature of -5 ° C → 2 days at room temperature (24 ° C) is set as one set, and this is performed 26 times (182 days). Repeated thermocycle processing was performed. Next, the substrate provided with the TiO 2 film is immersed in the treatment liquid (65 ° C.) after the thermocycle treatment for 5 minutes, and the treatment is performed based on the difference in the thickness of the dio 2 film before and after the immersion in the treatment liquid. The etching rate (Å / min) of the liquid with respect to the TiO 2 film was calculated, and the etching rate was defined as ER Age .
 (3)エッチングレート維持率の算定及び評価
 得られたエッチングレートERFr及びERAgeに基づき、エッチングレートの維持率(エッチングレート維持率(%)=ERAge/ERFr×100)を算定して、残渣除去性の経時性能の経時安定性を評価した。
 なお、エッチングレート維持率(%)が100%に近いほど、残渣除去性能の維持率が良好である。つまり、残渣除去性の経時安定性が良好である。
 エッチングレート維持率(%)を以下の評価基準に基づいて評価した。
(評価基準)
 「AAA」:エッチングレート維持率(%)が97~100%
 「AA」:エッチングレート維持率(%)が92%以上97%未満
 「A+」:エッチングレート維持率(%)が86%以上92%未満
 「A-」:エッチングレート維持率(%)が78%以上86%未満
 「B」:エッチングレート維持率(%)が70%以上78%未満
 「C」:エッチングレート維持率(%)が60%以上70%未満
 「D」:エッチングレート維持率(%)が60%未満
(3) Calculation and evaluation of etching rate maintenance rate Based on the obtained etching rates ER Fr and ER Age , the etching rate maintenance rate (etching rate maintenance rate (%) = ER Age / ER Fr x 100) is calculated. , The stability of the residue removability over time was evaluated.
The closer the etching rate maintenance rate (%) is to 100%, the better the maintenance rate of the residue removal performance. That is, the residue-removing property with time is good.
The etching rate maintenance rate (%) was evaluated based on the following evaluation criteria.
(Evaluation criteria)
"AAA": Etching rate maintenance rate (%) is 97 to 100%
"AA": Etching rate maintenance rate (%) is 92% or more and less than 97% "A +": Etching rate maintenance rate (%) is 86% or more and less than 92% "A-": Etching rate maintenance rate (%) is 78 % Or more and less than 86% "B": Etching rate maintenance rate (%) is 70% or more and less than 78% "C": Etching rate maintenance rate (%) is 60% or more and less than 70% "D": Etching rate maintenance rate ( %) Is less than 60%
 なお、エッチングレート維持率(%)としては、86~100%が好ましく、92~100%がより好ましく、97~100%が更に好ましい。 The etching rate retention rate (%) is preferably 86 to 100%, more preferably 92 to 100%, and even more preferably 97 to 100%.
〔結果〕
 各処理液の配合及び試験の結果を下記表に示す。
 表1中、水の含有量として示した「残部」の記載は、最終的に得られる処理液が、各成分の欄に示した量の成分を含むように調整したうえで、残りの成分が水であることを意味する。
 表2(その1)~表9(その3)中、「ERFr(Å/min)」の欄において、「Co ERFr」及び「TiO ERFr」の欄は、それぞれ、各処理液のFresh時におけるCo膜とTiO膜に対するエッチングレート(Å/分)を意味する。
 表2(その1)~表9(その3)中、「ERAge(Å/min)」の欄において、「Co ERAge」及び「TiO ERAge」の欄は、それぞれ、各処理液のサーモサイクル処理後におけるCo膜とTiO膜に対するエッチングレート(Å/分)を意味する。
 なお、以下において、表1は、処理液1~8の基本組成を表す。
 表2(その1)~(その4)は、表1中の処理液1中の第1金属イオン及び第2金属イオンの配合及び含有量、並びに処理液1の評価結果を表す。つまり、例えば、表2(その1)に示す実施例1001の処理液は、表1に示す処理液1であって、第1金属イオンとしてNa、Al、K、Ca、Cr、Fe、Ni、及びZnからなる群から選択される全ての金属イオンを処理液の全質量に対して合計含有量で400.0質量ppb含み、且つ、第2金属イオンとしてLi、Mg、Mn、Cu、Ag、Pb、及びCoからなる群から選択される全ての金属イオンを処理液の全質量に対して合計含有量で5.55質量ppb含む処理液である。
 表3(その1)~(その3)は、表1中の処理液2中の第1金属イオンの配合及び含有量、並びに処理液2の評価結果を表す。なお、処理液2中、第2金属イオンは含まれていない(検出限界以下である)。
 表4(その1)~(その3)は、表1中の処理液3中の第1金属イオンの配合及び含有量、並びに処理液3の評価結果を表す。なお、処理液3中、第2金属イオンは含まれていない(検出限界以下である)。
 表5(その1)~(その3)は、表1中の処理液4中の第1金属イオンの配合及び含有量、並びに処理液4の評価結果を表す。なお、処理液4中、第2金属イオンは含まれていない(検出限界以下である)。
 表6(その1)~(その3)は、表1中の処理液5中の第1金属イオンの配合及び含有量、並びに処理液5の評価結果を表す。なお、処理液5中、第2金属イオンは含まれていない(検出限界以下である)。
 表7(その1)~(その3)は、表1中の処理液6中の第1金属イオンの配合及び含有量、並びに処理液6の評価結果を表す。なお、処理液6中、第2金属イオンは含まれていない(検出限界以下である)。
 表8(その1)~(その3)は、表1中の処理液7中の第1金属イオンの配合及び含有量、並びに処理液7の評価結果を表す。なお、処理液7中、第2金属イオンは含まれていない(検出限界以下である)。
 表9(その1)~(その3)は、表1中の処理液8中の第1金属イオンの配合及び含有量、並びに処理液8の評価結果を表す。なお、処理液8中、第2金属イオンは含まれていない(検出限界以下である)。
〔result〕
The table below shows the formulation of each treatment solution and the test results.
In Table 1, the description of "remaining portion" shown as the water content is adjusted so that the finally obtained treatment liquid contains the amount of the component shown in the column of each component, and then the remaining component is contained. It means that it is water.
In Table 2 (No. 1) to Table 9 (No. 3), in the "ERFr (Å / min)" column, the "Co ERFr" and " TIO 2 ERFr" columns are the respective treatment liquids at the time of fresh. It means the etching rate (Å / min) for the Co film and the TiO 2 film.
In Table 2 (No. 1) to Table 9 (No. 3), in the "ERAge (Å / min)" column, the "Co ERAge" and " TIO 2 ERAge" columns are the thermocycle treatment of each treatment liquid, respectively. It means the etching rate (Å / min) for the Co film and the TiO 2 film later.
In the following, Table 1 shows the basic compositions of the treatment liquids 1 to 8.
Tables 2 (No. 1) to (No. 4) show the composition and content of the first metal ion and the second metal ion in the treatment liquid 1 in Table 1, and the evaluation result of the treatment liquid 1. That is, for example, the treatment liquid of Example 1001 shown in Table 2 (No. 1) is the treatment liquid 1 shown in Table 1, and Na, Al, K, Ca, Cr, Fe, Ni, as the first metal ion. All metal ions selected from the group consisting of and Zn are contained in a total content of 400.0 mass ppb with respect to the total mass of the treatment liquid, and Li, Mg, Mn, Cu, Ag, as second metal ions. It is a treatment liquid containing 5.55 mass ppb in total content with respect to the total mass of the treatment liquid, which contains all the metal ions selected from the group consisting of Pb and Co.
Tables 3 (No. 1) to (No. 3) show the composition and content of the first metal ion in the treatment liquid 2 in Table 1, and the evaluation results of the treatment liquid 2. The treatment liquid 2 does not contain the second metal ion (below the detection limit).
Tables 4 (No. 1) to (No. 3) show the composition and content of the first metal ion in the treatment liquid 3 in Table 1, and the evaluation results of the treatment liquid 3. The treatment liquid 3 does not contain the second metal ion (below the detection limit).
Tables 5 (No. 1) to (No. 3) show the composition and content of the first metal ion in the treatment liquid 4 in Table 1, and the evaluation results of the treatment liquid 4. The treatment liquid 4 does not contain the second metal ion (below the detection limit).
Tables 6 (No. 1) to (No. 3) show the composition and content of the first metal ion in the treatment liquid 5 in Table 1, and the evaluation results of the treatment liquid 5. The treatment liquid 5 does not contain the second metal ion (below the detection limit).
Tables 7 (No. 1) to (No. 3) show the composition and content of the first metal ion in the treatment liquid 6 in Table 1, and the evaluation results of the treatment liquid 6. The treatment liquid 6 does not contain the second metal ion (below the detection limit).
Tables 8 (No. 1) to (No. 3) show the composition and content of the first metal ion in the treatment liquid 7 in Table 1, and the evaluation results of the treatment liquid 7. The treatment liquid 7 does not contain the second metal ion (below the detection limit).
Tables 9 (No. 1) to (No. 3) show the composition and content of the first metal ion in the treatment liquid 8 in Table 1, and the evaluation results of the treatment liquid 8. The treatment liquid 8 does not contain the second metal ion (below the detection limit).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000022
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000023
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000024
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
Figure JPOXMLDOC01-appb-T000026
[処理液の調製2]
 上述した実施例1001~1017の処理液において、各処理液中に含まれる第2の金属イオンの合計含有量を20.0質量ppbとなるように調整した処理液(各々、実施例1001A~1017A)を調整し、同様の評価を実施したところ、Co膜に対するエッチングレート維持率(%)が劣化し、各処理液ともに102%超106%以下の数値範囲(評価:AA)となった。またTiO膜に対するエッチングレート維持率(%)についても劣化が観察され、各処理液ともに92%以上97%未満の数値範囲(評価:AA)となった。
[Preparation of treatment solution 2]
In the above-mentioned treatment liquids of Examples 1001 to 1017, the total content of the second metal ions contained in each treatment liquid was adjusted to be 20.0 mass ppb (each of Examples 1001A to 1017A). ) Was adjusted and the same evaluation was carried out. As a result, the etching rate maintenance rate (%) for the Co film deteriorated, and each treatment liquid was in the numerical range of more than 102% and 106% or less (evaluation: AA). Deterioration was also observed in the etching rate retention rate (%) for the TiO 2 film, and each treatment liquid was in the numerical range of 92% or more and less than 97% (evaluation: AA).
[処理液の調製3]
 上述した実施例1001~1017の処理液において、各処理液中に含まれる第2の金属イオンの合計含有量を0.004質量ppbとなるように調整した処理液(各々、実施例1001B~1017B)を調整し、同様の評価を実施したところ、Co膜に対するエッチングレート維持率(%)が劣化し、各処理液ともに102%超106%以下の数値範囲(評価:AA)となった。またTiO膜に対するエッチングレート維持率(%)についても劣化が観察され、各処理液ともに92%以上97%未満の数値範囲(評価:AA)となった。
[Preparation of treatment solution 3]
In the above-mentioned treatment liquids of Examples 1001 to 1017, the total content of the second metal ions contained in each treatment liquid was adjusted to be 0.004 mass ppb (each of Examples 1001B to 1017B). ) Was adjusted and the same evaluation was carried out. As a result, the etching rate retention rate (%) for the Co film deteriorated, and each treatment liquid was in the numerical range of more than 102% and 106% or less (evaluation: AA). Deterioration was also observed in the etching rate retention rate (%) for the TiO 2 film, and each treatment liquid was in the numerical range of 92% or more and less than 97% (evaluation: AA).
 上記処理液の調製1(表2(その1)~表9(その3))に示す結果並びに上記処理液の調製2及び3に示す結果から、実施例の処理液は、冷蔵保管及び室温静置という温度環境変化を繰り返しても残渣除去性能と防食性能の性能安定性に優れることが明らかである。
 上記処理液の調製1(表2(その1)~表9(その3)) に示す結果並びに上記処理液の調製2及び3に示す結果から、処理液が、以下に示す要件X1を満たす場合(好ましくは処理液が要件X1及び要件Y1を満たす場合(実施例1001A~1017A及び実施例1001B~1017Bが該当)、より好ましくは処理液が要件X1及び要件Y2を満たす場合(実施例1001~1017が該当))、残渣除去性能と防食性能の性能安定性により優れることが明らかである。
 (要件X1)処理液が第1の金属イオンを2種以上含み、且つ各金属イオンの含有量がいずれも、処理液の全質量に対して、1.0質量ppb~100.0質量ppbである。
 (要件Y1)処理液が第2の金属イオンを含む。
 (要件Y2)処理液が第2の金属イオンを2種以上含み、且つその合計含有量が処理液の全質量に対して0.01質量ppb~10.0質量ppbであり、更に、処理液中に含まれる各第2の金属イオンの含有量がいずれも、処理液の全質量に対して、0.01質量ppb~1.0質量ppbである。
From the results shown in Preparation 1 of the above-mentioned treatment liquid (Table 2 (No. 1) to Table 9 (No. 3)) and the results shown in Preparation 2 and 3 of the above-mentioned treatment liquid, the treatment liquid of the example was stored in a refrigerator and kept at room temperature. It is clear that the performance stability of the residue removal performance and the anticorrosion performance is excellent even if the temperature environment is changed repeatedly.
From the results shown in Preparation 1 of the above-mentioned treatment liquid (Table 2 (No. 1) to Table 9 (No. 3)) and the results shown in Preparation 2 and 3 of the above-mentioned treatment liquid, when the treatment liquid satisfies the requirement X1 shown below. (Preferably, when the treatment liquid satisfies the requirements X1 and Y1 (corresponding to Examples 1001A to 1017A and Examples 1001B to 1017B), more preferably when the treatment liquid satisfies the requirements X1 and the requirement Y2 (Examples 1001 to 1017). It is clear that it is superior in performance stability of residue removal performance and anticorrosion performance.
(Requirement X1) The treatment liquid contains two or more first metal ions, and the content of each metal ion is 1.0 mass ppb to 100.0 mass ppb with respect to the total mass of the treatment liquid. is there.
(Requirement Y1) The treatment liquid contains a second metal ion.
(Requirement Y2) The treatment liquid contains two or more kinds of second metal ions, and the total content thereof is 0.01 mass ppb to 10.0 mass ppb with respect to the total mass of the treatment liquid, and further, the treatment liquid. The content of each second metal ion contained therein is 0.01 mass ppb to 1.0 mass ppb with respect to the total mass of the treatment liquid.
 一方、比較例の処理液は、冷蔵保管及び室温静置という温度環境変化を繰り返した場合、残渣除去性能と防食性能の性能安定性が両立できないことが明らかである。 On the other hand, it is clear that the treatment liquid of the comparative example cannot achieve both the residue removal performance and the anticorrosion performance stability when the temperature environment changes such as refrigerated storage and room temperature standing are repeated.
 1 基板
 2 金属層
 3 エッチング停止層
 4 層間絶縁層
 5 メタルハードマスク
 6 ホール
 10 積層物
 11 内壁
 11a 断面壁
 11b 底壁
 12 ドライエッチング残渣
1 Substrate 2 Metal layer 3 Etching stop layer 4 Interlayer insulation layer 5 Metal hard mask 6 holes 10 Laminate 11 Inner wall 11a Cross-section wall 11b Bottom wall 12 Dry etching residue

Claims (7)

  1.  ヒドロキシアミン及びヒドロキシアミン塩からなる群より選ばれるヒドロキシアミン化合物と、
     有機溶媒と、
     塩基性化合物と、
     Na、Al、K、Ca、Cr、Fe、Ni、及びZnからなる群から選択される1種以上の第1金属イオンと、を含む処理液であり、
     前記第1金属イオンの合計含有量が、処理液の全質量に対して、7.0質量ppb~800.0質量ppbである、処理液。
    Hydroxylamine compounds selected from the group consisting of hydroxyamines and hydroxyamine salts, and
    With organic solvent
    Basic compounds and
    A treatment liquid containing one or more first metal ions selected from the group consisting of Na, Al, K, Ca, Cr, Fe, Ni, and Zn.
    A treatment liquid having a total content of the first metal ions of 7.0 mass ppb to 800.0 mass ppb with respect to the total mass of the treatment liquid.
  2.  処理液中に含まれる前記第1金属イオンのうち、少なくとも1種の金属イオンの含有量が、処理液の全質量に対して、1.0質量ppb~100.0質量ppbである、請求項1に記載の処理液。 Claimed that the content of at least one metal ion among the first metal ions contained in the treatment liquid is 1.0 mass ppb to 100.0 mass ppb with respect to the total mass of the treatment liquid. The treatment liquid according to 1.
  3.  処理液中に含まれる前記第1金属イオンが2種以上であり、且つ、各金属イオンの含有量がいずれも、処理液の全質量に対して、1.0質量ppb~100.0質量ppbである、請求項1又は2に記載の処理液。 The first metal ion contained in the treatment liquid is two or more kinds, and the content of each metal ion is 1.0 mass ppb to 100.0 mass ppb with respect to the total mass of the treatment liquid. The treatment liquid according to claim 1 or 2.
  4.  さらに、Li、Mg、Mn、Cu、Ag、Pb、及びCoからなる群から選択される1種以上の第2金属イオンを含み、
     前記第2金属イオンの合計含有量が、処理液の全質量に対して、0.01質量ppb~10.0質量ppbである、請求項1~3のいずれか1項に記載の処理液。
    Further, it contains one or more second metal ions selected from the group consisting of Li, Mg, Mn, Cu, Ag, Pb, and Co.
    The treatment liquid according to any one of claims 1 to 3, wherein the total content of the second metal ion is 0.01 mass ppb to 10.0 mass ppb with respect to the total mass of the treatment liquid.
  5.  処理液中に含まれる前記第2金属イオンのうち、少なくとも1種の金属イオンの含有量が、処理液の全質量に対して、0.01質量ppb~1.0質量ppbである、請求項4に記載の処理液。 The claim that the content of at least one metal ion among the second metal ions contained in the treatment liquid is 0.01 mass ppb to 1.0 mass ppb with respect to the total mass of the treatment liquid. The treatment liquid according to 4.
  6.  処理液中に含まれる前記第2金属イオンが2種以上であり、且つ、各金属イオンの含有量がいずれも、処理液の全質量に対して、0.01質量ppb~1.0質量ppbである、請求項4又は5に記載の処理液。 The second metal ion contained in the treatment liquid is two or more kinds, and the content of each metal ion is 0.01 mass ppb to 1.0 mass ppb with respect to the total mass of the treatment liquid. The treatment liquid according to claim 4 or 5.
  7.  前記ヒドロキシアミン化合物が、ヒドロキシアミン及び硫酸ヒドロキシアミンからなる群より選ばれる少なくとも1種を含む、請求項1~6のいずれか1項に記載の処理液。 The treatment solution according to any one of claims 1 to 6, wherein the hydroxyamine compound contains at least one selected from the group consisting of hydroxyamine and hydroxyamine sulfate.
PCT/JP2020/031798 2019-08-29 2020-08-24 Treatment liquid WO2021039701A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019157014 2019-08-29
JP2019-157014 2019-08-29

Publications (1)

Publication Number Publication Date
WO2021039701A1 true WO2021039701A1 (en) 2021-03-04

Family

ID=74685879

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/031798 WO2021039701A1 (en) 2019-08-29 2020-08-24 Treatment liquid

Country Status (2)

Country Link
TW (1) TW202115233A (en)
WO (1) WO2021039701A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099211A1 (en) * 2015-12-11 2017-06-15 富士フイルム株式会社 Cleaning liquid, method for cleaning substrate, and method for manufacturing semiconductor device
WO2017208749A1 (en) * 2016-06-02 2017-12-07 富士フイルム株式会社 Processing liquid, substrate cleaning method, and resist removal method
WO2017208767A1 (en) * 2016-06-03 2017-12-07 富士フイルム株式会社 Treatment liquid, substrate cleaning method and method for removing resist
WO2018043440A1 (en) * 2016-08-31 2018-03-08 富士フイルム株式会社 Processing liquid, substrate cleaning method, and method for producing semiconductor devices
WO2019044463A1 (en) * 2017-08-31 2019-03-07 富士フイルム株式会社 Processing liquid, kit, and method for cleaning substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099211A1 (en) * 2015-12-11 2017-06-15 富士フイルム株式会社 Cleaning liquid, method for cleaning substrate, and method for manufacturing semiconductor device
WO2017208749A1 (en) * 2016-06-02 2017-12-07 富士フイルム株式会社 Processing liquid, substrate cleaning method, and resist removal method
WO2017208767A1 (en) * 2016-06-03 2017-12-07 富士フイルム株式会社 Treatment liquid, substrate cleaning method and method for removing resist
WO2018043440A1 (en) * 2016-08-31 2018-03-08 富士フイルム株式会社 Processing liquid, substrate cleaning method, and method for producing semiconductor devices
WO2019044463A1 (en) * 2017-08-31 2019-03-07 富士フイルム株式会社 Processing liquid, kit, and method for cleaning substrate

Also Published As

Publication number Publication date
TW202115233A (en) 2021-04-16

Similar Documents

Publication Publication Date Title
TWI737798B (en) Process liquid, method for cleaning substrate, and method for manufacturing semiconductor device
TWI702310B (en) Treatment liquid, substrate cleaning method and resist removal method
JP7449391B2 (en) Processing liquid and substrate processing method
US11072767B2 (en) Treatment liquid, kit, and method for washing substrate
US11410859B2 (en) Treatment liquid
JP7324290B2 (en) Processing liquid, kit, manufacturing method of processing liquid, cleaning method of substrate, processing method of substrate
WO2019151001A1 (en) Method for processing substrate, method for manufacturing semiconductor device, and substrate-processing kit
WO2021039701A1 (en) Treatment liquid
WO2021153171A1 (en) Composition, and substrate processing method
CN114341328A (en) Cleaning agent composition
WO2022024609A1 (en) Treatment liquid and substrate washing method
WO2022176663A1 (en) Cleaning liquid and method for cleaning semiconductor substrate
JP7273165B2 (en) Treatment liquid, treatment method for treated object
WO2023157655A1 (en) Composition, compound, resin, method for processing substrate, and method for producing semiconductor device
WO2023248649A1 (en) Processing liquid, substrate processing method, and manufacturing method for semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20856462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20856462

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP