WO2023157548A1 - Voltage measurement device and voltage measurement method - Google Patents

Voltage measurement device and voltage measurement method Download PDF

Info

Publication number
WO2023157548A1
WO2023157548A1 PCT/JP2023/001471 JP2023001471W WO2023157548A1 WO 2023157548 A1 WO2023157548 A1 WO 2023157548A1 JP 2023001471 W JP2023001471 W JP 2023001471W WO 2023157548 A1 WO2023157548 A1 WO 2023157548A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
measured
temperature
measuring device
conversion
Prior art date
Application number
PCT/JP2023/001471
Other languages
French (fr)
Japanese (ja)
Inventor
広基 遠藤
英俊 片山
Original Assignee
ソニーセミコンダクタソリューションズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニーセミコンダクタソリューションズ株式会社 filed Critical ソニーセミコンダクタソリューションズ株式会社
Publication of WO2023157548A1 publication Critical patent/WO2023157548A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/32Compensating for temperature change
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body

Definitions

  • the present disclosure relates to a voltage measuring device and a voltage measuring method.
  • the measurement voltage is measured by dividing the resistance voltage of a resistor ladder circuit in which resistors are connected in series.
  • the resistance ratio of each resistor in the resistor ladder circuit changes when the temperature changes. As a result, the measurement accuracy of the voltage measured by the voltage measuring device may be degraded.
  • the present disclosure provides a voltage measuring device and a voltage measuring method capable of suppressing deterioration in measurement accuracy due to temperature changes.
  • a resistor ladder circuit in which a plurality of resistors are connected in series; a conversion unit that converts the divided voltage divided by the resistor ladder circuit into a digital value; a processing unit that corrects the digital value according to the measured temperature;
  • a voltage measurement device comprising:
  • the processing unit is a calculation unit for calculating a first measurement voltage by a predetermined voltage conversion calculation process for the digital value; a correction unit that corrects the first measured voltage according to the measured temperature; may have
  • the correction coefficient may be a coefficient that brings the first measured voltage when the temperature of the resistance ladder circuit is changed closer to the first measured voltage at a predetermined temperature.
  • the correction unit may perform the correction based on at least one of the formula stored in the storage unit and the conversion table.
  • the storage unit further stores at least one of a second mathematical expression that defines the voltage conversion calculation process and a second conversion table,
  • the calculation unit may perform the voltage conversion calculation process based on at least one of the second formula stored in the storage unit and the second conversion table.
  • the first synchronization signal and the second synchronization signal may have different frame rates.
  • the processing unit is A first measured voltage obtained by a predetermined voltage conversion calculation process may be corrected with respect to the digital value according to the measured temperature.
  • the divided voltage may be a voltage between the reference voltage of the resistor ladder circuit and a predetermined connection point of the plurality of resistors.
  • the divided voltage may be a voltage between a predetermined first connection point and a second connection point of the plurality of resistors.
  • a temperature sensor for measuring the measured temperature may be further provided.
  • a voltage measurement method comprising:
  • the step of generating a voltage conversion equation that associates the plurality of digital values with the plurality of known measured voltages may be further included.
  • the computing step is converting to a first measured voltage based on the voltage conversion formula; and a correcting step of correcting the first measured voltage according to the measured temperature.
  • the computing step is converting to a first measured voltage based on the voltage conversion formula; and a correcting step of correcting the first measured voltage according to a correction factor corresponding to the measured temperature.
  • FIG. 1 is a block diagram showing a configuration example of a voltage measuring device according to a first embodiment
  • FIG. FIG. 4 is a diagram showing a configuration example of a resistance ladder circuit of a voltage sensor and an AD converter
  • FIG. 4 is a diagram showing the relationship between the reference voltage and the output voltage of the AD converter
  • FIG. 4 is a diagram schematically showing an example of changes in the resistance ratio of a resistance ladder circuit, temperature, and measured voltage
  • FIG. 4 is a diagram showing the temperature characteristics of the output voltage of the resistor ladder circuit
  • FIG. 10 is a diagram showing a calculated value before correction calculated by a calculating unit with respect to a measured voltage of a terminal
  • FIG. 4 is a diagram schematically showing an example of correction calculation by a correction unit using a correction coefficient
  • FIG. 5 is a diagram showing an example of linear approximation of calculated values before correction calculated by a calculation unit;
  • FIG. 10 is a diagram showing an approximate measured voltage when the approximate voltage is multiplied by a correction factor; 4 is a flowchart showing an example of processing for generating a voltage conversion formula; 4 is a flowchart showing an example of correction coefficient generation processing; 4 is a flow chart showing an example of voltage measurement processing after calibration.
  • FIG. 2 is a block diagram showing a configuration example of a voltage measuring device according to Modification 1 of the first embodiment;
  • FIG. 5 is a diagram showing a configuration example of a resistor ladder circuit 1 and an AD converter according to a second embodiment;
  • FIG. 4 is a diagram showing resistance ratios of a resistance ladder circuit;
  • FIG. 4 is a diagram showing an example of temperature characteristics of voltage;
  • FIG. 4 is a diagram showing an example of temperature characteristics of voltage;
  • Embodiments of a voltage measuring device and a voltage measuring method will be described below with reference to the drawings.
  • the main components of the voltage measurement device will be mainly described below, the voltage measurement device may have components and functions that are not illustrated or described. The following description does not exclude components or features not shown or described.
  • FIG. 1 is a block diagram showing a configuration example of a voltage measuring device 1 according to a first embodiment of the present technology.
  • This voltage measuring device is a device capable of temperature correction and can be configured as an integrated circuit on a semiconductor substrate.
  • the voltage measuring device 1 includes, for example, a CPU (Central Processing Unit), and includes a temperature sensor 10 , a storage section 20 , a voltage sensor 30 and a correction section 40 .
  • a CPU Central Processing Unit
  • terminals O10 to O22 are also illustrated.
  • a measurement voltage VDDX is input to the terminal O10, and a reference voltage Vref is input to the terminal O12.
  • the control signal S0 is input to the terminal O14.
  • a measurement voltage Vte having temperature dependence is input to the terminal O16, and a reference voltage Vref is input to the terminal O18.
  • a corrected voltage VDDZ obtained by correcting the measured voltage VDDX is output from the terminal O20, and the measured temperature Te is output from the terminal O22.
  • the temperature sensor 10 is a sensor based on the reference voltage Vref input from the terminal O18.
  • a measurement voltage Vte having temperature dependence is input to the voltage sensor 30 from a terminal O16.
  • This measurement voltage Vte is, for example, the forward voltage of a diode provided to allow a predetermined current to flow. Since the measured voltage Vte, which is the forward voltage of the diode, varies with temperature, the temperature sensor 10 can detect the temperature Te according to the measured voltage Vte.
  • a circuit such as a diode that allows a predetermined current to flow may be configured within the temperature sensor 10 .
  • the storage unit 20 includes at least one of a nonvolatile storage medium and a volatile storage medium, and is capable of storing data and programs.
  • the storage unit 20 is used, for example, as EEPROM (Electrically Erasable Programmable Read Only Memory) and RAM (Random Access Memory).
  • the storage unit 20 stores various information such as the voltage sensor 30 and the arithmetic expression Eq10 and the correction coefficient Tab20 required for the calculation of the correction unit 40 .
  • the voltage sensor 30 is a voltage sensor with a calibration function.
  • This voltage sensor 30 has a resistor ladder circuit 100 , an AD converter 102 and a calculator 104 .
  • the correction unit 40 and the calculation unit 104 according to this embodiment constitute the processing unit 50 . That is, in the present embodiment, the calculation unit 104 is configured inside the voltage sensor 30 and the correction unit 40 is configured outside the voltage sensor 30, but the present invention is not limited to this.
  • the correction unit 40 may be integrated with the calculation unit 104 inside the voltage sensor 30 .
  • the calculation unit 104 may be integrated with the correction unit 40 outside the voltage sensor 30.
  • FIG. 2 is a diagram showing a configuration example of the resistance ladder circuit 100 and the AD converter 102 of the voltage sensor 30.
  • the resistor ladder circuit 100 has a plurality of resistors 100a and switching elements 100b.
  • a plurality of resistors 100a and switching elements 100b are connected in series between the terminal O10 and the voltage VSS line.
  • the switching element 100b is, for example, a transistor, and becomes conductive or non-conductive according to the control signal S0.
  • a node n1 of the plurality of resistors 100a and the AD converter 102 are connected.
  • the control signal S0 according to the present embodiment is input from an external control device, but is not limited to this.
  • the calculation unit 104 may generate the control signal SO for controlling each circuit.
  • the switching element 100b when the switching element 100b is in a conductive state, the voltages of the measurement voltage VDDX and the voltage VSS are The voltage is divided by the resistors 100 a of the resistor ladder circuit 100 and the divided voltage Vsense is supplied to the AD converter 102 .
  • the AD converter 102 analog-to-digital converts the divided voltage Vsense to generate a voltage Vad.
  • AD converter 102 is connected to calculator 104 .
  • the calculation unit 104 converts the output voltage Vad of the AD converter 102 into the measurement voltage VDDXa by, for example, the voltage conversion formula Eq10.
  • the voltage conversion equation Eq10 will be described with reference to FIG. Note that VDDXa according to the present embodiment corresponds to the first measurement voltage.
  • FIG. 3 is a diagram showing the relationship between the reference voltage Vref and the output voltage Vad of the AD converter 102.
  • FIG. The horizontal axis indicates the reference voltage Vref during calibration, and the vertical axis indicates the output voltage Vad of the AD converter 102 when the reference voltage Vref is input.
  • the reference voltage Vref means a voltage whose correct value is known in advance.
  • a line Lab20 is a characteristic line showing the relationship between the reference voltage Vref and the output voltage Vad. This line Lab20 is, for example, the characteristic at a predetermined temperature (for example, 20 degrees or 40 degrees).
  • the characteristic line Lab20 is between the output voltage VDDA of the AD converter 102 when the reference voltage VA is input to the terminal O10 and the output voltage VDDB of the AD converter 102 when the reference voltage VB is input to the terminal O10. characterize.
  • the characteristic line Lab20 is linear. That is, when there is no temperature change, the output voltage Vad changes linearly with respect to changes in the reference voltage Vref.
  • This linear characteristic Lab20 becomes, for example, the formula (1).
  • the equation (1) calculated in advance in this manner is stored in the storage unit 20 as the voltage conversion equation Eq10.
  • This calculation unit 104 converts the output voltage Vad of the AD converter 102 into VDDXa, for example, according to Eq10.
  • the calculation unit 104 may calculate the formula (1) in advance within the range of the measured voltage and store it in the storage unit 20 as a table.
  • the calculation unit 104 can calculate VDDXa according to the table stored in the storage unit 30 . Note that when the linearity of the linear characteristic Lab20 is completely established, VDDXa has the same value as VDDX.
  • FIG. 4 is a diagram schematically showing an example of changes in the resistance ratio A:B of the resistance ladder circuit 100, temperature, and measured voltage.
  • the resistance ratio A:B changes as the temperature changes from TVDD1 to TVDD3.
  • the measured voltage drops from VDD1 to VDD3.
  • the temperature change of the resistance ratio A:B is considered to be the effect of the parasitic capacitance of the resistance 100a of the resistance ladder circuit 100 and the parasitic resistance.
  • FIG. 5 is a diagram showing temperature characteristics Lab10a and b of the output voltage Vsense of the resistance ladder circuit 100.
  • a linear characteristic Lab10a at a low temperature TVDD1 and a linear characteristic Lab10b at a temperature TVDD2 higher than that at a low temperature are shown.
  • the horizontal axis indicates the measured voltage VDDX, and the vertical axis indicates the output voltage Vad of the AD converter 102 .
  • the output voltage Vad in FIG. 5 corresponds to the output characteristics of the output voltage Vsense of the resistance ladder circuit 100.
  • the resistance ratio A:B of each resistor in the resistance ladder circuit 100 changes when the temperature changes due to, for example, parasitic resistances having different temperature coefficients. put away.
  • the output voltage Vsense of the resistor ladder circuit 100 decreases as the temperature rises. Therefore, when the temperature rises after calculating the equation (1) according to the temperature characteristic Lab 10a at a low temperature and then converting to the temperature characteristic Lab 10b, the measured voltage VDD1 is calculated as a lower value VDD2 than the actual value. be done. Similarly, when the temperature TVDD3 becomes even higher, the measured voltage VDD1 is calculated as a further lower value VDD3.
  • the output voltage Vsense of the resistor ladder circuit 100 decreases as the temperature increases, the present invention is not limited to this. For example, the output voltage Vsense of resistor ladder circuit 100 may increase as the temperature increases.
  • FIG. 6 is a diagram showing the calculated value V10 before correction calculated by the calculating unit 104 for the measured voltage VDD1 of the terminal V10.
  • the horizontal axis indicates the temperature, and the vertical axis indicates the calculated value V10. In this way, as the temperature rises, the calculated value will decrease unless corrected.
  • the correction unit 40 further performs correction calculation according to the temperature when the temperature characteristics Lab10a, b of the output voltage Vsense change. For example, when the voltage conversion formula Eq10 is calculated when the temperature is TVDD1, in the example of FIG. 5, the measured voltage VDD2 is increased by a correction coefficient according to the temperature TVDD2, and the calculation is performed so that it becomes VDD1. More specifically, the correction calculation shown in FIG. 7 is performed.
  • FIG. 7 is a diagram schematically showing an example of correction calculation by the correction unit 40 using correction coefficients.
  • the figure shows the correction coefficient Tab20.
  • the horizontal axis indicates the temperature, and the vertical axis indicates the value of the correction coefficient.
  • this correction coefficient Tab20 shows an example of a correction coefficient for correcting the voltage conversion formula Eq10 (see formula (1)) calculated when the temperature is 20 degrees, for example.
  • (b) is a diagram showing a voltage example obtained by linearly approximating the measured voltage VDD1.
  • the horizontal axis indicates temperature and the vertical axis indicates voltage.
  • a line LV10a indicates the temperature change of the measured voltage VDD1.
  • FIG. (c) is a diagram linearly showing an example in which the measurement voltage VDD1 is temperature-corrected by the calculation unit 104.
  • FIG. A line LV10b linearly indicates an example of temperature correction of the measured voltage VDD1.
  • a correction coefficient Tab20 indicates an example of a correction coefficient for correcting equation (1) calculated when the temperature is 20 degrees, for example. The vertical axis indicates the correction coefficient, and the horizontal axis indicates the temperature.
  • the correction unit 40 multiplies the output voltage Vad of the AD converter 102 by the correction coefficient Tab20 (see formula (3) described later) so as to suppress the temperature change of the output voltage Vsense.
  • the correcting unit 40 corrects the measured voltage VDDXa calculated by the calculating unit 104 based on the correction coefficient Tab20(Te) corresponding to the measured temperature Te.
  • FIG. 8 is a diagram showing an example of linear approximation of the pre-correction calculated value V10 calculated by the calculator 104.
  • FIG. 8A is a diagram showing calculated value V10 before correction calculated by calculation unit 104 using voltage conversion formula Eq10 (see formula (1)).
  • FIG. 8(b) is a diagram showing a calculated value LV10a obtained by linearly approximating the calculated value V10.
  • the vertical axis indicates temperature and the horizontal axis indicates measured voltage.
  • the calculation unit 104 approximates the pre-correction calculated value V10 using a more linear formula such as the least-squares method.
  • the linear expression for the measured temperature Te can be represented by, for example, equation (2).
  • the coefficient K1 is the value of the cross section at a temperature of 0 degrees, and the coefficient K2 is the slope.
  • the actual calculated value V10 (see FIG. 8) has a value slightly deviated from linearity, the temperature fluctuation is suppressed by multiplying the calculated value V10 by the correction coefficient Tab20(T). In this way, once the temperature characteristic of the resistance ladder circuit 100 of the voltage measuring device 1 is measured, it is almost unchanged. It becomes possible to calculate the correction coefficient in accordance with the measured temperature Te when the is generated.
  • FIG. 10 is a flow chart showing an example of processing for generating the voltage conversion equation Eq10 (see equation (1)).
  • the case where the reference voltages VA and VB (see FIG. 3) are supplied according to the control signal S0 of the external control device will be described.
  • an example of arithmetic processing by the calculation unit 104 is described, similar processing may be performed by an external device.
  • the calculation unit 104 inputs a known reference voltage Vref (see FIG. 3) from the terminal O10 (step S100), and the output voltage Vad of the AD converter 102 (for example, VDDA) and a reference voltage Vref (for example, VA) are associated and stored in the storage unit 20 (step S101).
  • Vref known reference voltage
  • VA reference voltage
  • the calculation unit 104 determines whether or not a predetermined number of voltages (eg VA, VB) have been input (S102). If it is determined that the number is not the predetermined number (NO in S102), the reference voltage Vref (for example, VB) is changed according to the operation instruction of the control signal S0, and the process from step S100 is repeated.
  • a predetermined number of voltages eg VA, VB
  • Vref for example, VB
  • the calculation unit 104 uses the output voltage Vad (for example, VDDA, VDDB) and the reference voltage Vref (for example, VA, VB) stored in the storage unit 20 to A voltage conversion formula Eq10 (see formula (1)) is calculated.
  • the calculation unit 104 associates the measured temperature Te (for example, 20 degrees) with the voltage conversion equation Eq10 and stores them in the storage unit 20 .
  • the calculator 104 can calculate the voltage conversion equation Eq10 associated with the measured temperature Te (eg, 20 degrees).
  • FIG. 11 is a flow chart showing an example of processing for generating correction coefficients (see formula (3)).
  • the case where the voltage measuring device 1 is arranged in the temperature control device and controlled according to the control signal S0 of the external control device will be described.
  • an example of arithmetic processing by the calculation unit 104 is described, similar processing may be performed by an external device.
  • the calculation unit 104 when changing the temperature, according to the operation instruction of the control signal S0, the calculation unit 104 inputs a specific measurement voltage VDDX (for example, VDD1) (step S200), converts the output voltage Vad of the AD converter 102 into a voltage conversion formula Using Eq10, an operation is performed to convert to the measured voltage VDDXa (step S201). Subsequently, the calculation unit 104 associates the measured voltage VDDXa with the measured temperature Te, and stores them in the storage unit 20 (step S202).
  • VDDX for example, VDD1
  • VDD1 voltage conversion formula
  • Eq10 an operation is performed to convert to the measured voltage VDDXa
  • the calculation unit 104 associates the measured voltage VDDXa with the measured temperature Te, and stores them in the storage unit 20 (step S202).
  • the calculation unit 104 determines whether or not calculations have been performed for a predetermined number of measured temperatures Te (step S203). If it is determined that the number is not the predetermined number (NO in S203), the voltage measuring device 1 is changed to a different temperature (step S204) according to the operation instruction of the control signal S0, and the process from step S200 is repeated.
  • the calculation unit 104 determines that the number is equal to the predetermined number (YES in S203)
  • the calculation unit 104 uses the measured voltage VDDXa and the measured temperature Te stored in the storage unit 20 to obtain a voltage linear approximation formula (formula (2)). is calculated (step S205). At this time, the calculation unit 104 stores the linear approximation formula (formula (2)) in the storage unit 20 .
  • calculation unit 104 uses the linear approximation formula (formula (2)) and the measured temperature Te (for example, 20 degrees) associated with the voltage conversion formula Eq10 to calculate the correction coefficient Tab20(Te) (formula (3) ) is calculated and stored in the storage unit 20 in association with the voltage conversion equation Eq10.
  • calculation unit 104 can calculate correction coefficient Tab20(Te) associated with voltage conversion equation Eq10.
  • FIG. 12 is a flow chart showing an example of voltage measurement processing after the end of calibration. As shown in FIG. 12, first, the measurement voltage VDDX is input to the resistance ladder circuit 100 from the terminal O10 (step S300).
  • the resistance ladder circuit 100 divides the measurement voltage VDDX and supplies the divided voltage Vsense to the AD converter 102 (step S301). Subsequently, the AD converter 102 supplies the voltage Vad obtained by AD-converting the divided voltage Vsense to the calculation unit 104 (step S302).
  • the calculator 104 converts the voltage Vad into the measured voltage VDDXa according to the voltage conversion formula Eq10, and supplies it to the corrector 40 (step S303).
  • the correction unit 40 acquires the measured temperature Te from the temperature sensor 10 (step S304), multiplies the measured voltage VDDXa by the correction factor Tab20(Te) corresponding to the measured temperature Te, and obtains the temperature-corrected corrected voltage VDDZ. is output from the terminal O20 to the register (step S305).
  • the temperature sensor 10 also outputs the measured temperature Te from the terminal O22 to the register.
  • the correction unit 40 multiplies the measured voltage VDDXa by the correction coefficient Tab20(Te) corresponding to the measured temperature Te to generate the temperature-corrected correction voltage VDDZ.
  • the resistance ratio A:B of the resistance ladder circuit 100 varies with temperature, it is possible to measure the measurement voltage VDDX while suppressing temperature fluctuations.
  • the voltage measuring device 1 according to Modification 1 of the first embodiment is such that the processing unit 50 can perform the processing of the correcting unit 40 and the calculating unit 104 at the same time. differ from Differences from the voltage measuring device 1 according to the first embodiment will be described below.
  • FIG. 13 is a block diagram showing a configuration example of the voltage measuring device 1 according to Modification 1 of the first embodiment. It is different from the voltage measuring device 1 according to the first embodiment in that the processing section 50 is configured inside the voltage sensor 30 .
  • the processing unit 50 can simultaneously perform the processes of formulas (1) and (3) according to, for example, formula (4).
  • the processing unit 50 generates the corrected voltage VDDXZ by temperature-correcting the output voltage Vad according to the measured temperature Te and the output voltage Vad of the AD converter 102 based on the measured temperature Te and the output voltage Vad of the AD converter 102. I decided to As a result, the configuration of the processing unit 50 can be simplified, and the processing speed can be increased.
  • the voltage measuring device 1 according to the second embodiment differs from the table voltage measuring device 1 according to the first embodiment in that the voltage to be measured is measured using the divided voltage between two nodes of the resistance ladder circuit 100 . Differences from the voltage measuring device 1 according to the first embodiment will be described below.
  • FIG. 14 is a diagram showing a configuration example of the resistance ladder circuit 100 and the AD converter 102 according to the second embodiment. As shown in FIG. 14, the resistance ladder circuit 100 according to the second embodiment further has a switching element 100c.
  • the switching element 100c is a transistor, for example, and switches the connection between the node n1 and the node n2 according to the control signal S0.
  • the control signal S0 according to the present embodiment is input from an external control device, but is not limited to this.
  • the calculation unit 104 may generate the control signal SO for controlling each circuit.
  • the switching element 100b when the switching element 100b is in a conductive state, the voltages of the measurement voltage VDDX and the voltage VSS are The voltage is divided by the resistor 100 a of the resistor ladder circuit 100 .
  • the voltage VD1 is output from the node n1
  • the voltage VD2 is output from the node n2.
  • AD converter 102 converts voltage VD1 to voltage Vad1.
  • AD converter 102 converts voltage VD2 to voltage Vad2.
  • FIG. 15 is a diagram showing the resistance ratio A:B:C of the resistance ladder circuit 100.
  • the resistance ratio A:B:C changes to A':B':C'.
  • the voltages VD1 and VD2 also change to voltages VD1' and VD2'.
  • the rate of change R (equation 5) of the resistance ladder output when changing from -40 degrees to 125 degrees is the same value even if VDDX is different.
  • FIG. 16 is a diagram showing an example of temperature characteristics of voltages Vad1 and Vad2.
  • (a) is a diagram showing linear approximation characteristics of voltages Vad1 and Vad2.
  • the horizontal axis indicates temperature, and the vertical axis indicates the output voltage of AD converter 102 .
  • a line LV40a (Te) is a characteristic linearly approximating the temperature change of the voltage Vad1.
  • the line LV40b (Te) is a characteristic linearly approximating the temperature change of the voltage Vad2.
  • temperature changes in the output voltages of nodes n1 and n2 can be linearly approximated as shown in equations (6) and (7).
  • K40a and K40b are intercept values when the measured temperature Te is 0 degrees, and K42a and K42b are slopes.
  • (b) is a diagram showing a correction coefficient Tab401 for the linear approximation line LV40a (Te) and a correction coefficient Tab402 for the linear approximation line LV40b (Te).
  • Correction coefficients Tab401 and Tab402 can be calculated as shown in equations (8) and (9), like equation (3) in the first embodiment.
  • the differential voltage Vad3 Vad1 ⁇ Vad2 between the voltage Vad1 and the voltage Vad2 can be temperature corrected by the correction coefficients Tab401 and Tab402. Therefore, in the present embodiment, the voltage conversion equation Eq300 is generated as equation (10) for Vad3 in the same manner as equation (1).
  • VA40 is the voltage Vad3 when the voltage VDDA is supplied to the terminal O10
  • VB40 is the voltage Vad3 when the voltage VDDB is supplied to the terminal O10.
  • FIG. 17 is a diagram showing an example of temperature characteristics of the voltage Vad3.
  • (a) is a diagram showing a linear approximation characteristic of the voltage Vad3.
  • the horizontal axis indicates temperature, and the vertical axis indicates differential voltage Vad3 based on the output of AD converter 102 .
  • a line LV300 (Te) is a characteristic linearly approximating the temperature change of the voltage Vad3.
  • the temperature change of the differential voltage between the output voltages of the nodes n1 and n2 can be linearly approximated as shown in the equation (11). Referring to equations (6) and (7), for example, K300a corresponds to (K40a-K40b) and K300b corresponds to (K42a-K42b).
  • the calculation unit 104 measures the divided voltage Vad3 between the node n1 and the node n2 of the resistance ladder circuit 100 using the voltage conversion formula Eq300 (see formula 10).
  • the voltage measurement voltage VDDXa is generated, and the correction unit 40 corrects the measurement voltage VDDXa with the correction coefficient Tab300(Te) of the equation (11) using the measurement temperature Te to generate the correction voltage VDDZ.
  • the resistance ratio A:B:C of the resistance ladder circuit 100 varies with temperature, it is possible to measure the measurement voltage VDDX while suppressing temperature fluctuations.
  • this technique can take the following structures.
  • a resistor ladder circuit in which a plurality of resistors are connected in series; a conversion unit that converts the divided voltage divided by the resistor ladder circuit into a digital value; a processing unit that corrects the digital value according to the measured temperature; A voltage measuring device.
  • the processing unit is a calculation unit for calculating a first measurement voltage by a predetermined voltage conversion calculation process for the digital value; a correction unit that corrects the first measured voltage according to the measured temperature;
  • the voltage measuring device comprising:
  • the storage unit further stores at least one of a second mathematical expression that defines the voltage conversion calculation process and a second conversion table, The voltage measurement device according to (5), wherein the calculation unit performs the voltage conversion calculation process based on at least one of the second formula stored in the storage unit and the second conversion table.
  • the processing unit is The voltage measuring device according to (1), wherein a first measured voltage obtained by a predetermined voltage conversion calculation process is corrected for the digital value according to the measured temperature.
  • a voltage measurement method comprising:
  • the computing step is converting to a first measured voltage based on the voltage conversion formula; and a correction step of correcting the first measured voltage according to the measured temperature.
  • the computing step is converting to a first measured voltage based on the voltage conversion formula; and a correction step of correcting the first measured voltage according to a correction coefficient corresponding to the measured temperature.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

[Problem] To provide, according to the present disclosure, a voltage measurement method and a voltage measurement device capable of suppress decreases in measurement accuracy caused by temperature changes. [Solution] According to the present disclosure, provided is a voltage measurement device comprising: a resistor ladder circuit in which a plurality of resistors are connected in series; a conversion unit that converts, to a digital value, a divided voltage that has been divided by the resistor ladder circuit; and a processing unit that corrects the digital value in accordance with the measured temperature.

Description

電圧測定装置、及び電圧測定方法Voltage measuring device and voltage measuring method
 本開示は電圧測定装置、及び電圧測定方法に関する。 The present disclosure relates to a voltage measuring device and a voltage measuring method.
 電圧測定装置では、直列に抵抗が接続された抵抗ラダー回路の抵抗電圧を分圧することにより測定電圧が測定される。ところが、温度変化時に異なる温度係数を持つ寄生抵抗の影響により、温度変化時に抵抗ラダー回路の各抵抗の抵抗比率が変化してしまう。これにより、電圧測定装置の測定電圧の測定精度が低下する恐れがある。 In the voltage measuring device, the measurement voltage is measured by dividing the resistance voltage of a resistor ladder circuit in which resistors are connected in series. However, due to the influence of parasitic resistances having different temperature coefficients when the temperature changes, the resistance ratio of each resistor in the resistor ladder circuit changes when the temperature changes. As a result, the measurement accuracy of the voltage measured by the voltage measuring device may be degraded.
特開2017-198523号公報JP 2017-198523 A
 そこで、本開示では、温度変化による測定精度の低下を抑制可能な電圧測定装置、及び電圧測定方法を提供するものである。 Therefore, the present disclosure provides a voltage measuring device and a voltage measuring method capable of suppressing deterioration in measurement accuracy due to temperature changes.
 上記の課題を解決するために、本開示によれば、複数の抵抗が直列に接続される抵抗ラダー回路と、
 前記抵抗ラダー回路により分圧された分圧電圧をデジタル値に変換する変換部と、
 前記デジタル値を測定温度に従い補正する処理部と、
 を備える、電圧測定装置が提供される。
In order to solve the above problems, according to the present disclosure, a resistor ladder circuit in which a plurality of resistors are connected in series;
a conversion unit that converts the divided voltage divided by the resistor ladder circuit into a digital value;
a processing unit that corrects the digital value according to the measured temperature;
A voltage measurement device is provided, comprising:
 前記処理部は、
 前記デジタル値に対して、所定の電圧変換計算処理により第1測定電圧を計算する計算部と、
 前記第1測定電圧を前記測定温度に従い補正する補正部と、
 を有してもよい。
The processing unit is
a calculation unit for calculating a first measurement voltage by a predetermined voltage conversion calculation process for the digital value;
a correction unit that corrects the first measured voltage according to the measured temperature;
may have
 前記補正係数は、前記抵抗ラダー回路の温度を変更させた場合の前記第1測定電圧を、所定の温度における前記第1測定電圧に近づける係数であってもよい。 The correction coefficient may be a coefficient that brings the first measured voltage when the temperature of the resistance ladder circuit is changed closer to the first measured voltage at a predetermined temperature.
 前記補正部の補正処理を規定する数式、及び変換テーブの少なくとも一方を記憶する記憶部を更に備え、
 前記補正部は、前記記憶部に記憶される前記数式、及び前記変換テーブの少なくとも一方に基づき、前記補正を行ってもよい。
Further comprising a storage unit that stores at least one of a formula that defines the correction process of the correction unit and a conversion table,
The correction unit may perform the correction based on at least one of the formula stored in the storage unit and the conversion table.
  前記記憶部は、前記電圧変換計算処理を規定する第2数式、及び第2変換テーブの少なくとも一方を更に記憶し、
 前記計算部は、前記記憶部に記憶される前記第2数式、及び前記第2変換テーブの少なくとも一方に基づき、前記電圧変換計算処理を行ってもよい。
The storage unit further stores at least one of a second mathematical expression that defines the voltage conversion calculation process and a second conversion table,
The calculation unit may perform the voltage conversion calculation process based on at least one of the second formula stored in the storage unit and the second conversion table.
 前記第1同期信号と、前記第2同期信号とは、フレームレートが異なってもよい。 The first synchronization signal and the second synchronization signal may have different frame rates.
 前記処理部は、
 前記デジタル値に対して、所定の電圧変換計算処理による第1測定電圧を
 前記測定温度に従い補正してもよい。
The processing unit is
A first measured voltage obtained by a predetermined voltage conversion calculation process may be corrected with respect to the digital value according to the measured temperature.
 前記分圧電圧は、前記抵抗ラダー回路の基準電圧と、前記複数の抵抗の所定の接続点との間の電圧であってもよい。 The divided voltage may be a voltage between the reference voltage of the resistor ladder circuit and a predetermined connection point of the plurality of resistors.
 前記分圧電圧は、前記複数の抵抗の所定の第1接続点と第2接続点との間の電圧であってもよい。 The divided voltage may be a voltage between a predetermined first connection point and a second connection point of the plurality of resistors.
 前記測定温度を測定する温度センサを更に備えてもよい。 A temperature sensor for measuring the measured temperature may be further provided.
 本開示によれば抵抗ラダー回路により分圧された分圧電圧をデジタル値に変換する変換工程と、
 前記デジタル値を温度センサの測定温度に従い補正する演算工程と、
 を備える、電圧測定方法が提供される。
According to the present disclosure, a conversion step of converting the divided voltage divided by the resistor ladder circuit into a digital value;
a calculation step of correcting the digital value according to the temperature measured by the temperature sensor;
A voltage measurement method is provided, comprising:
 複数の既知の測定電圧を前記抵抗ラダー回路により分圧して複数のデジタル値に変換する変換工程と、
 前記複数のデジタル値と前記複数の既知の測定電圧とを対応させる電圧変換式を生成する工程を更にそなえてもよい。
a conversion step of dividing a plurality of known measured voltages by the resistor ladder circuit and converting them into a plurality of digital values;
The step of generating a voltage conversion equation that associates the plurality of digital values with the plurality of known measured voltages may be further included.
 前記演算工程は、
 前記電圧変換式に基づき、第1測定電圧に変換する工程と、
 前記第1測定電圧を測定温度に従い補正する補正工程と、を有してもよい。
The computing step is
converting to a first measured voltage based on the voltage conversion formula;
and a correcting step of correcting the first measured voltage according to the measured temperature.
 所定の測定電圧を前記抵抗ラダー回路の温度を変更して、前記電圧変換式に基づき複数の第1測定電圧に変換する工程と、
 前記複数の第1測定電圧を所定温度の測定電圧に近づける、測定温度に対応する補正係数を生成する工程と、を更にそなえてもよい。
converting a predetermined measured voltage into a plurality of first measured voltages based on the voltage conversion equation by changing the temperature of the resistor ladder circuit;
generating a correction factor corresponding to the measured temperature to bring the plurality of first measured voltages closer to the measured voltage at the predetermined temperature.
前記演算工程は、
 前記電圧変換式に基づき、第1測定電圧に変換する工程と、
 前記第1測定電圧を測定温度に対応する補正係数に従い補正する補正工程と、を有してもよい。
The computing step is
converting to a first measured voltage based on the voltage conversion formula;
and a correcting step of correcting the first measured voltage according to a correction factor corresponding to the measured temperature.
第1実施形態における電圧測定装置の構成例を示すブロック図。1 is a block diagram showing a configuration example of a voltage measuring device according to a first embodiment; FIG. 電圧センサの抵抗ラダー回路と、AD変換器の構成例を示す図。FIG. 4 is a diagram showing a configuration example of a resistance ladder circuit of a voltage sensor and an AD converter; 参照電圧とAD変換器の出力電圧の関係を示す図。FIG. 4 is a diagram showing the relationship between the reference voltage and the output voltage of the AD converter; 抵抗ラダー回路の抵抗比と、温度、及び測定電圧との変化例を模式的に示す図。FIG. 4 is a diagram schematically showing an example of changes in the resistance ratio of a resistance ladder circuit, temperature, and measured voltage; 抵抗ラダー回路の出力電圧の温度特性を示す図。FIG. 4 is a diagram showing the temperature characteristics of the output voltage of the resistor ladder circuit; 端子の測定電圧に対して、計算部が計算する補正前の計算値を示す図。FIG. 10 is a diagram showing a calculated value before correction calculated by a calculating unit with respect to a measured voltage of a terminal; 補正係数を用いた補正部の補正演算例を模式的に示す図。FIG. 4 is a diagram schematically showing an example of correction calculation by a correction unit using a correction coefficient; 計算部が計算する補正前の計算値の線形近似例を示す図。FIG. 5 is a diagram showing an example of linear approximation of calculated values before correction calculated by a calculation unit; 補正係数を近似電圧に乗算した場合の近似測定電圧を示す図。FIG. 10 is a diagram showing an approximate measured voltage when the approximate voltage is multiplied by a correction factor; 電圧変換式の生成処理例を示すフロ-チャート。4 is a flowchart showing an example of processing for generating a voltage conversion formula; 補正係数の生成処理例を示すフロ-チャート。4 is a flowchart showing an example of correction coefficient generation processing; キャリブレーション終了後の、電圧測定処理例を示すフロ-チャート。4 is a flow chart showing an example of voltage measurement processing after calibration. 第1実施形態の変形例1に係る電圧測定装置の構成例を示すブロック図。FIG. 2 is a block diagram showing a configuration example of a voltage measuring device according to Modification 1 of the first embodiment; 第2実施形態に係る抵抗ラダー回路1と、AD変換器の構成例を示す図。FIG. 5 is a diagram showing a configuration example of a resistor ladder circuit 1 and an AD converter according to a second embodiment; 抵抗ラダー回路の抵抗比を示す図。FIG. 4 is a diagram showing resistance ratios of a resistance ladder circuit; 電圧の温度特性例を示す図。FIG. 4 is a diagram showing an example of temperature characteristics of voltage; 電圧の温度特性例を示す図。FIG. 4 is a diagram showing an example of temperature characteristics of voltage;
 以下、図面を参照して、電圧測定装置、及び電圧測定方法の実施形態について説明する。以下では、電圧測定装置の主要な構成部分を中心に説明するが、電圧測定装置には、図示又は説明されていない構成部分や機能が存在しうる。以下の説明は、図示又は説明されていない構成部分や機能を除外するものではない。 Embodiments of a voltage measuring device and a voltage measuring method will be described below with reference to the drawings. Although the main components of the voltage measurement device will be mainly described below, the voltage measurement device may have components and functions that are not illustrated or described. The following description does not exclude components or features not shown or described.
 (第1実施形態)
 図1は、本技術の第1実施形態における電圧測定装置1の構成例を示すブロック図である。この電圧測定装置は、温度補正が可能な装置であり、半導体基板上の集積回路として構成可能である。この電圧測定装置1は、例えばCPU(Central Processing Unitを含んで構成され、温度センサ10と、記憶部20と、電圧センサ30と、補正部40とを、備える。
(First embodiment)
FIG. 1 is a block diagram showing a configuration example of a voltage measuring device 1 according to a first embodiment of the present technology. This voltage measuring device is a device capable of temperature correction and can be configured as an integrated circuit on a semiconductor substrate. The voltage measuring device 1 includes, for example, a CPU (Central Processing Unit), and includes a temperature sensor 10 , a storage section 20 , a voltage sensor 30 and a correction section 40 .
 図1では、更に端子O10~O22が図示されている。端子O10には、測定電圧VDDXが入力され、端子O12には、参照電圧Vrefが入力される。また、端子O14には、例えば制御信号S0が入力される。また、端子O16には、温度依存性を有する測定電圧Vteが入力され、端子O18には、参照電圧Vrefが入力される。さらにまた、端子O20からは、測定電圧VDDXを補正した補正電圧VDDZが出力され、端子O22からは、測定温度Teが出力される。 In FIG. 1, terminals O10 to O22 are also illustrated. A measurement voltage VDDX is input to the terminal O10, and a reference voltage Vref is input to the terminal O12. For example, the control signal S0 is input to the terminal O14. A measurement voltage Vte having temperature dependence is input to the terminal O16, and a reference voltage Vref is input to the terminal O18. Furthermore, a corrected voltage VDDZ obtained by correcting the measured voltage VDDX is output from the terminal O20, and the measured temperature Te is output from the terminal O22.
 温度センサ10は、端子O18から入力される参照電圧Vrefに基づくセンサである。この電圧センサ30には、端子O16から温度依存性を有する測定電圧Vteが入力される。この測定電圧Vteは、例えば所定電流が流れるように設けられるダイオードの順方向電圧である。ダイオードの順方向電圧である測定電圧Vteは、温度によって変動するので、温度センサ10は測定電圧Vteに応じて温度Teを検出することが可能である。なお、所定電流が流れるように設けられるダイオードなどの回路は、温度センサ10内に構成してもよい。 The temperature sensor 10 is a sensor based on the reference voltage Vref input from the terminal O18. A measurement voltage Vte having temperature dependence is input to the voltage sensor 30 from a terminal O16. This measurement voltage Vte is, for example, the forward voltage of a diode provided to allow a predetermined current to flow. Since the measured voltage Vte, which is the forward voltage of the diode, varies with temperature, the temperature sensor 10 can detect the temperature Te according to the measured voltage Vte. A circuit such as a diode that allows a predetermined current to flow may be configured within the temperature sensor 10 .
 記憶部20は、不揮発性の記憶媒体及び揮発性の記憶媒体のうち少なくとも一方を含み、データやプログラムを記憶することが可能である。記憶部20は、例えばEEPROM(Electrically Erasable Programmable Read Only Memory)及びRAM(Random Access Memory)として用いられる。この記憶部20は、電圧センサ30、及び補正部40の計算に必要となる演算式Eq10、補正係数Tab20などの各種の情報を記憶する。 The storage unit 20 includes at least one of a nonvolatile storage medium and a volatile storage medium, and is capable of storing data and programs. The storage unit 20 is used, for example, as EEPROM (Electrically Erasable Programmable Read Only Memory) and RAM (Random Access Memory). The storage unit 20 stores various information such as the voltage sensor 30 and the arithmetic expression Eq10 and the correction coefficient Tab20 required for the calculation of the correction unit 40 .
 電圧センサ30はキャリブレーソン機能付きの、電圧センサである。この電圧センサ30は、抵抗ラダー回路100と、AD変換器102と、計算部104とを有する。なお、本実施形態に係る補正部40と計算部104とが処理部50を構成する。すなわち、本実施形態では、計算部104は、電圧センサ30内に構成され、補正部40は、電圧センサ30外に構成されるが、これに限定されない。例えば、補正部40を電圧センサ30内に計算部104と一体的に構成してもよい。或いは、計算部104を電圧センサ30外に補正部40と一体的に構成してもよい The voltage sensor 30 is a voltage sensor with a calibration function. This voltage sensor 30 has a resistor ladder circuit 100 , an AD converter 102 and a calculator 104 . Note that the correction unit 40 and the calculation unit 104 according to this embodiment constitute the processing unit 50 . That is, in the present embodiment, the calculation unit 104 is configured inside the voltage sensor 30 and the correction unit 40 is configured outside the voltage sensor 30, but the present invention is not limited to this. For example, the correction unit 40 may be integrated with the calculation unit 104 inside the voltage sensor 30 . Alternatively, the calculation unit 104 may be integrated with the correction unit 40 outside the voltage sensor 30.
 図2は、電圧センサ30の抵抗ラダー回路100と、AD変換器102の構成例を示す図である。図2に示すように、抵抗ラダー回路100は、複数の抵抗100aと、スイッティング素子100bとを有する。複数の抵抗100aとスイッティング素子100bとは端子O10と電圧VSS線との間に直列に接続される。 FIG. 2 is a diagram showing a configuration example of the resistance ladder circuit 100 and the AD converter 102 of the voltage sensor 30. As shown in FIG. As shown in FIG. 2, the resistor ladder circuit 100 has a plurality of resistors 100a and switching elements 100b. A plurality of resistors 100a and switching elements 100b are connected in series between the terminal O10 and the voltage VSS line.
 スイッティング素子100bは、例えばトランジスタであり、制御信号S0にしたがい、導通状態、又は非導通状態になる。複数の抵抗100aのノードn1とAD変換器102とは接続されている。なお、本実施形態に係る制御信号S0は外部の制御装置から入力されるが、これに限定されない。例えば計算部104が各回路を制御する制御信号SOを生成してもよい。 The switching element 100b is, for example, a transistor, and becomes conductive or non-conductive according to the control signal S0. A node n1 of the plurality of resistors 100a and the AD converter 102 are connected. Note that the control signal S0 according to the present embodiment is input from an external control device, but is not limited to this. For example, the calculation unit 104 may generate the control signal SO for controlling each circuit.
 これにより、スイッティング素子100bが導通状態の際に、測定電圧VDDXと電圧VSSとの電圧は、
抵抗ラダー回路100の抵抗100aにより分圧され、分圧電圧VsenseがAD変換器102に供給される。
As a result, when the switching element 100b is in a conductive state, the voltages of the measurement voltage VDDX and the voltage VSS are
The voltage is divided by the resistors 100 a of the resistor ladder circuit 100 and the divided voltage Vsense is supplied to the AD converter 102 .
 AD変換器102は、分圧電圧Vsenseをアナログ、デジタル変換し、電圧Vadを生成する。AD変換器102は、計算部104に接続される。 The AD converter 102 analog-to-digital converts the divided voltage Vsense to generate a voltage Vad. AD converter 102 is connected to calculator 104 .
 計算部104は、例えば電圧変換式Eq10により、AD変換器102の出力電圧Vadを測定電圧VDDXaに変換する。ここで図3を用いて電圧変換式Eq10に関して説明する。なお、本実施形態に係るVDDXaが第1測定電圧に対応する。 The calculation unit 104 converts the output voltage Vad of the AD converter 102 into the measurement voltage VDDXa by, for example, the voltage conversion formula Eq10. Here, the voltage conversion equation Eq10 will be described with reference to FIG. Note that VDDXa according to the present embodiment corresponds to the first measurement voltage.
 図3は、参照電圧VrefとAD変換器102の出力電圧Vadの関係を示す図である。横軸はキャリブレーション時の参照電圧Vrefを示し、縦軸は参照電圧Vrefを入力した際の、AD変換器102の出力電圧Vadを示す。ここで、参照電圧Vrefは、予め正しい値が既知である電圧を意味する。ラインLab20は、参照電圧Vrefと出力電圧Vadとの関係を示す特性線である。このラインLab20は、例えば所定の温度(例えば20度、或いは40度など)の時の特性である。 FIG. 3 is a diagram showing the relationship between the reference voltage Vref and the output voltage Vad of the AD converter 102. FIG. The horizontal axis indicates the reference voltage Vref during calibration, and the vertical axis indicates the output voltage Vad of the AD converter 102 when the reference voltage Vref is input. Here, the reference voltage Vref means a voltage whose correct value is known in advance. A line Lab20 is a characteristic line showing the relationship between the reference voltage Vref and the output voltage Vad. This line Lab20 is, for example, the characteristic at a predetermined temperature (for example, 20 degrees or 40 degrees).
 例えば特性線Lab20は、参照電圧VAを端子O10に入力した際のAD変換器102の出力電圧VDDAと、参照電圧VBを端子O10に入力した際のAD変換器102の出力電圧VDDBとの間の特性を示す。このように、特性線Lab20は、線形である。すなわち、温度変化が無い場合には、参照電圧Vrefの変化に対して、出力電圧Vadは線形に変化する。 For example, the characteristic line Lab20 is between the output voltage VDDA of the AD converter 102 when the reference voltage VA is input to the terminal O10 and the output voltage VDDB of the AD converter 102 when the reference voltage VB is input to the terminal O10. characterize. Thus, the characteristic line Lab20 is linear. That is, when there is no temperature change, the output voltage Vad changes linearly with respect to changes in the reference voltage Vref.
 この線線形特性Lab20は例えば、(1)式となる。このように予め演算した(1)式を、電圧変換式Eq10として、記憶部20に記憶する。
This linear characteristic Lab20 becomes, for example, the formula (1). The equation (1) calculated in advance in this manner is stored in the storage unit 20 as the voltage conversion equation Eq10.
 この計算部104は、例えばEq10にしたがい、AD変換器102の出力電圧VadをVDDXaに変換する。或いは、計算部104は、あらかじめ(1)式を測定電圧の範囲で演算し、テーブルとして記憶部20に記憶させておいてもよい。この場合、計算部104は、記憶部30に記憶されるテーブルに従いVDDXaを計算することが可能である。なお、線形特性Lab20の線形性が完全に成り立つときは、VDDXaはVDDXと同値になる。 This calculation unit 104 converts the output voltage Vad of the AD converter 102 into VDDXa, for example, according to Eq10. Alternatively, the calculation unit 104 may calculate the formula (1) in advance within the range of the measured voltage and store it in the storage unit 20 as a table. In this case, the calculation unit 104 can calculate VDDXa according to the table stored in the storage unit 30 . Note that when the linearity of the linear characteristic Lab20 is completely established, VDDXa has the same value as VDDX.
 図4は、抵抗ラダー回路100の抵抗比A:Bと、温度、及び測定電圧との変化例を模式的に示す図である。このように、抵抗ラダー回路100では、温度がTVDD1からTVDD3に変化するに従い、抗比A:Bが変化する。これにより、測定電圧は、VDD1からVDD3に低下する。例えば、抵抗比A:Bの温度変化は、抵抗ラダー回路100の抵抗100aの寄生容量と寄生抵抗の影響であると考えられている。 FIG. 4 is a diagram schematically showing an example of changes in the resistance ratio A:B of the resistance ladder circuit 100, temperature, and measured voltage. Thus, in the resistance ladder circuit 100, the resistance ratio A:B changes as the temperature changes from TVDD1 to TVDD3. As a result, the measured voltage drops from VDD1 to VDD3. For example, the temperature change of the resistance ratio A:B is considered to be the effect of the parasitic capacitance of the resistance 100a of the resistance ladder circuit 100 and the parasitic resistance.
 図5を用いて、図4で示すTVDD1、TVDD2における温度特性例を説明する。図5は、抵抗ラダー回路100の出力電圧Vsenseの温度特性Lab10a、bを示す図である。低温TVDD1時の線形特性Lab10aと、低温時よりも高温TVDD2時の線形特性Lab10bを示す。横軸は測定電圧VDDXを示し、縦軸はAD変換器102の出力電圧Vadを示す。 An example of temperature characteristics in TVDD1 and TVDD2 shown in FIG. 4 will be described using FIG. FIG. 5 is a diagram showing temperature characteristics Lab10a and b of the output voltage Vsense of the resistance ladder circuit 100. As shown in FIG. A linear characteristic Lab10a at a low temperature TVDD1 and a linear characteristic Lab10b at a temperature TVDD2 higher than that at a low temperature are shown. The horizontal axis indicates the measured voltage VDDX, and the vertical axis indicates the output voltage Vad of the AD converter 102 .
 AD変換器102は、入出力が線形比例するので、図5の出力電圧Vadは、抵抗ラダー回路100の出力電圧Vsenseの出力特性に対応する。図4、5に示すように、抵抗ラダー回路100は、温度変化時に例えば異なる温度係数を持つ寄生抵抗の影響により、温度変化時に抵抗ラダー回路100の各抵抗の抵抗比A:Bが変化してしまう。 Since the input and output of the AD converter 102 are linearly proportional, the output voltage Vad in FIG. 5 corresponds to the output characteristics of the output voltage Vsense of the resistance ladder circuit 100. As shown in FIGS. 4 and 5, in the resistance ladder circuit 100, the resistance ratio A:B of each resistor in the resistance ladder circuit 100 changes when the temperature changes due to, for example, parasitic resistances having different temperature coefficients. put away.
 この例では、抵抗ラダー回路100の出力電圧Vsenseは高温になるにしたがい低下する。このため、低温時の温度特性Lab10aにしたがい(1)式を演算した後に、温度が上昇し、温度特性Lab10bに変換した場合には、測定電圧VDD1は、実際よりも下側の値VDD2として演算される。同様に、更に高温TVDD3となると、測定電圧VDD1は、更に下側の値VDD3として演算される。なお、抵抗ラダー回路100の出力電圧Vsenseは高温になるにしたがい低下するが、これに限定されない。例えば、抵抗ラダー回路100の出力電圧Vsenseは高温になるにしたがい増加してもよい。 In this example, the output voltage Vsense of the resistor ladder circuit 100 decreases as the temperature rises. Therefore, when the temperature rises after calculating the equation (1) according to the temperature characteristic Lab 10a at a low temperature and then converting to the temperature characteristic Lab 10b, the measured voltage VDD1 is calculated as a lower value VDD2 than the actual value. be done. Similarly, when the temperature TVDD3 becomes even higher, the measured voltage VDD1 is calculated as a further lower value VDD3. Although the output voltage Vsense of the resistor ladder circuit 100 decreases as the temperature increases, the present invention is not limited to this. For example, the output voltage Vsense of resistor ladder circuit 100 may increase as the temperature increases.
 図6は、端子V10の測定電圧VDD1に対して、計算部104が計算する補正前の計算値V10を示す図である。横軸は温度を示し、縦軸は計算値V10を示す。このように、温度上昇にしたがい、補正しないと計算値は低下してしまう。 FIG. 6 is a diagram showing the calculated value V10 before correction calculated by the calculating unit 104 for the measured voltage VDD1 of the terminal V10. The horizontal axis indicates the temperature, and the vertical axis indicates the calculated value V10. In this way, as the temperature rises, the calculated value will decrease unless corrected.
 そこで、本実施形態に係る補正部40は、図5に示すように、出力電圧Vsenseの温度特性Lab10a、bが変化する場合に、温度に応じた補正演算を更に行う。例えば、温度がTVDD1のときに電圧変換式Eq10を演算した場合、図5の例では、温度TVDD2に応じた補正係数により、測定電圧VDD2を増加させ、VDD1になるように演算処理する。より具体的には、図7に示す補正演算を行う。 Therefore, as shown in FIG. 5, the correction unit 40 according to the present embodiment further performs correction calculation according to the temperature when the temperature characteristics Lab10a, b of the output voltage Vsense change. For example, when the voltage conversion formula Eq10 is calculated when the temperature is TVDD1, in the example of FIG. 5, the measured voltage VDD2 is increased by a correction coefficient according to the temperature TVDD2, and the calculation is performed so that it becomes VDD1. More specifically, the correction calculation shown in FIG. 7 is performed.
 図7は、補正係数を用いた補正部40の補正演算例を模式的に示す図である。(a)図は、補正係数Tab20を示す。横軸は温度を示し、縦軸は補正係数の値を示す。例えば、電圧変換式Eq10を演算したキャリブレーション時の温度が20度とする。すなわち、この補正係数Tab20は、例えば温度20度の時に演算した電圧変換式Eq10((1)式参照)を補正する補正係数例を示す。 FIG. 7 is a diagram schematically showing an example of correction calculation by the correction unit 40 using correction coefficients. (a) The figure shows the correction coefficient Tab20. The horizontal axis indicates the temperature, and the vertical axis indicates the value of the correction coefficient. For example, assume that the temperature at the time of calibration at which the voltage conversion formula Eq10 is calculated is 20 degrees. That is, this correction coefficient Tab20 shows an example of a correction coefficient for correcting the voltage conversion formula Eq10 (see formula (1)) calculated when the temperature is 20 degrees, for example.
 (b)図は、測定電圧VDD1を線形近似した電圧例を示す図である。横軸は温度を示し、縦軸は電圧を示す。ラインLV10aが測定電圧VDD1の温度変化を示す。  (b) is a diagram showing a voltage example obtained by linearly approximating the measured voltage VDD1. The horizontal axis indicates temperature and the vertical axis indicates voltage. A line LV10a indicates the temperature change of the measured voltage VDD1.
 (c)図は、計算部104により、測定電圧VDD1を温度補正した例を線形に示す図である。ラインLV10bが測定電圧VDD1の温度補正例を線形で示す。補正係数Tab20は、例えば温度20度の時に演算した(1)式を補正する補正係数例を示す。縦軸は、補正係数を示し、横軸は温度を示す。このように、補正部40は、出力電圧Vsenseの温度変化を抑制するように補正係数Tab20(後述の(3)式を参照)をAD変換器102の出力電圧Vadに乗算する。このように、補正部40は、計算部104が演算した測定電圧VDDXaを、測定温度Teに応じた補正係数Tab20(Te)に基づき、補正する。  (c) is a diagram linearly showing an example in which the measurement voltage VDD1 is temperature-corrected by the calculation unit 104. FIG. A line LV10b linearly indicates an example of temperature correction of the measured voltage VDD1. A correction coefficient Tab20 indicates an example of a correction coefficient for correcting equation (1) calculated when the temperature is 20 degrees, for example. The vertical axis indicates the correction coefficient, and the horizontal axis indicates the temperature. In this manner, the correction unit 40 multiplies the output voltage Vad of the AD converter 102 by the correction coefficient Tab20 (see formula (3) described later) so as to suppress the temperature change of the output voltage Vsense. In this manner, the correcting unit 40 corrects the measured voltage VDDXa calculated by the calculating unit 104 based on the correction coefficient Tab20(Te) corresponding to the measured temperature Te.
 ここで、図8、9を用いて補正係数Tab20(Te)の演算例を説明する。図8は、計算部104が計算する補正前の計算値V10の線形近似例を示す図である。図8(a)は、計算部104が電圧変換式Eq10((1)式参照)を用いて計算する補正前の計算値V10を示す図である。図8(b)は、計算値V10を線形近似した計算値LV10aを示す図である。例えば、電圧測定装置1では、予備実験により、図8(a)で示した測定データに応じた計算値V10を予め取得し、例えば記憶部20に記憶してある。縦軸は、温度を示し、横軸は測定電圧を示す。 Here, a calculation example of the correction coefficient Tab20(Te) will be described using FIGS. FIG. 8 is a diagram showing an example of linear approximation of the pre-correction calculated value V10 calculated by the calculator 104. As shown in FIG. FIG. 8A is a diagram showing calculated value V10 before correction calculated by calculation unit 104 using voltage conversion formula Eq10 (see formula (1)). FIG. 8(b) is a diagram showing a calculated value LV10a obtained by linearly approximating the calculated value V10. For example, in the voltage measuring device 1, the calculated value V10 corresponding to the measurement data shown in FIG. The vertical axis indicates temperature and the horizontal axis indicates measured voltage.
 計算部104は、補正前の計算値V10を例えば最小二乗法などのより線形式で近似する。この場合、測定温度Teに対する線形式は、例えば(2)式で示すことが可能である。係数K1は温度0度の時の切辺の値であり、係数K2は、傾きである。
The calculation unit 104 approximates the pre-correction calculated value V10 using a more linear formula such as the least-squares method. In this case, the linear expression for the measured temperature Te can be represented by, for example, equation (2). The coefficient K1 is the value of the cross section at a temperature of 0 degrees, and the coefficient K2 is the slope.
 このときの電圧変換式Eq10((1)式参照)の演算時の温度が20度であれば、20度に対応する近似電圧LV10a(Te=20)を(2)式を除算すると(3)式で示す補正係数Tab20(Te)が演算される。このように、測定温度Teに対する補正係数Tab20(Te)が演算される。 If the temperature at the time of calculation of the voltage conversion formula Eq10 (see formula (1)) at this time is 20 degrees, dividing the approximate voltage LV10a (Te=20) corresponding to 20 degrees by the formula (2) yields (3) A correction coefficient Tab20(Te) represented by the formula is calculated. Thus, the correction coefficient Tab20(Te) for the measured temperature Te is calculated.
 図9は、(3)式で示す補正係数Tab20(Te)を(2)式で示す近似電圧LV10a(Te)に乗算した場合の近似測定電圧LV10a(Te=20度)を示す図である。このように、測定温度係数Teに応じて、Tab20(Te)を近似電圧LV10a(Te)に乗算すると、20度に対応する近似電圧LV10a(Te=20)になる。実際の計算値V10(図8参照)は、線形から若干ずれた値を有するが、計算値V10に補正係数Tab20(T)を乗算することで、温度変動が抑制される。このように、電圧測定装置1の抵抗ラダー回路100の温度特性は一度測定するとほぼ不変であるので、(2)式で示す線形式を一度演算すると、電圧変換式Eq10((1)式参照)を生成したときの測定温度Teに合わせて、補正係数を演算可能となる。 FIG. 9 is a diagram showing the approximate measured voltage LV10a (Te=20 degrees) obtained by multiplying the approximate voltage LV10a (Te) shown in Equation (2) by the correction coefficient Tab20(Te) shown in Equation (3). Multiplying the approximate voltage LV10a (Te) by Tab20(Te) according to the measured temperature coefficient Te results in the approximate voltage LV10a (Te=20) corresponding to 20 degrees. Although the actual calculated value V10 (see FIG. 8) has a value slightly deviated from linearity, the temperature fluctuation is suppressed by multiplying the calculated value V10 by the correction coefficient Tab20(T). In this way, once the temperature characteristic of the resistance ladder circuit 100 of the voltage measuring device 1 is measured, it is almost unchanged. It becomes possible to calculate the correction coefficient in accordance with the measured temperature Te when the is generated.
 以上が本実施形態に係る電圧測定装置1の構成の説明であるが、以下に処理例を説明する。図10は、電圧変換式Eq10((1)式参照)の生成処理例を示すフロ-チャートである。ここでは、参照電圧VA、VB(図3参照)が、外部の制御装置の制御信号S0にしたがい供給される場合を説明する。また、計算部104の演算処理例として説明するが、外部装置で同様の処理を行ってもよい。 The above is the description of the configuration of the voltage measurement device 1 according to the present embodiment, and a processing example will be described below. FIG. 10 is a flow chart showing an example of processing for generating the voltage conversion equation Eq10 (see equation (1)). Here, the case where the reference voltages VA and VB (see FIG. 3) are supplied according to the control signal S0 of the external control device will be described. Further, although an example of arithmetic processing by the calculation unit 104 is described, similar processing may be performed by an external device.
 まず、キャリブレーション時には、制御信号S0の動作指示にしたがい、計算部104は端子O10から既知の参照電圧Vref(図3参照)を入力し(ステップS100)、AD変換器102の出力電圧Vad(例えばVDDA)と参照電圧Vref(例えばVA)とを関連づけ、記憶部20に記憶する(ステップS101)。 First, during calibration, according to the operation instruction of the control signal S0, the calculation unit 104 inputs a known reference voltage Vref (see FIG. 3) from the terminal O10 (step S100), and the output voltage Vad of the AD converter 102 (for example, VDDA) and a reference voltage Vref (for example, VA) are associated and stored in the storage unit 20 (step S101).
 次に、計算部104は所定数の電圧(例えばVA、VB)が入力されたか否かを判定する(S102)。所定数でないと判定する場合(S102のNO)、御信号S0の動作指示にしたがい、異なる参照電圧Vref(例えばVB)に変更され、ステップS100からの処理をくり返す。 Next, the calculation unit 104 determines whether or not a predetermined number of voltages (eg VA, VB) have been input (S102). If it is determined that the number is not the predetermined number (NO in S102), the reference voltage Vref (for example, VB) is changed according to the operation instruction of the control signal S0, and the process from step S100 is repeated.
 一方で、計算部104は、所定数であると判定する場合(S102のYES)、記憶部20に記憶する出力電圧Vad(例えばVDDA、VDDB)と参照電圧Vref(例えばVA、VB)を用いて電圧変換式Eq10((1)式参照)を演算する。このとき、計算部104は、測定温度Te(例えば20度)と電圧変換式Eq10を関連づけて記憶部20に記憶する。このように、計算部104は、測定温度Te(例えば20度)に関連づけられた電圧変換式Eq10を演算することが可能である。 On the other hand, if the calculation unit 104 determines that the number is the predetermined number (YES in S102), the calculation unit 104 uses the output voltage Vad (for example, VDDA, VDDB) and the reference voltage Vref (for example, VA, VB) stored in the storage unit 20 to A voltage conversion formula Eq10 (see formula (1)) is calculated. At this time, the calculation unit 104 associates the measured temperature Te (for example, 20 degrees) with the voltage conversion equation Eq10 and stores them in the storage unit 20 . Thus, the calculator 104 can calculate the voltage conversion equation Eq10 associated with the measured temperature Te (eg, 20 degrees).
 図11は、補正係数((3)式参照)の生成処理例を示すフロ-チャートである。ここでは、電圧測定装置1が温度制御装置内に配置され、外部の制御装置の制御信号S0にしたがい制御される場合を説明する。また、計算部104の演算処理例として説明するが、外部装置で同様の処理を行ってもよい。 FIG. 11 is a flow chart showing an example of processing for generating correction coefficients (see formula (3)). Here, the case where the voltage measuring device 1 is arranged in the temperature control device and controlled according to the control signal S0 of the external control device will be described. Further, although an example of arithmetic processing by the calculation unit 104 is described, similar processing may be performed by an external device.
 まず、温度変更時には、制御信号S0の動作指示にしたがい、計算部104は、特定の測定電圧VDDX(例えばVDD1)を入力し(ステップS200)、AD変換器102の出力電圧Vadを、電圧変換式Eq10を用いて測定電圧VDDXaに変換する演算を行う(ステップS201)。続けて計算部104は、測定電圧VDDXaと測定温度Teとを関連づけ、記憶部20に記憶する(ステップS202)。 First, when changing the temperature, according to the operation instruction of the control signal S0, the calculation unit 104 inputs a specific measurement voltage VDDX (for example, VDD1) (step S200), converts the output voltage Vad of the AD converter 102 into a voltage conversion formula Using Eq10, an operation is performed to convert to the measured voltage VDDXa (step S201). Subsequently, the calculation unit 104 associates the measured voltage VDDXa with the measured temperature Te, and stores them in the storage unit 20 (step S202).
 次に、計算部104は所定数の測定温度Teに対する演算がされたか否かを判定する(ステップS203)。所定数でないと判定する場合(S203のNO)、制御信号S0の動作指示にしたがい、電圧測定装置1は異なる温度(ステップS204)に変更され、ステップS200からの処理をくり返す。 Next, the calculation unit 104 determines whether or not calculations have been performed for a predetermined number of measured temperatures Te (step S203). If it is determined that the number is not the predetermined number (NO in S203), the voltage measuring device 1 is changed to a different temperature (step S204) according to the operation instruction of the control signal S0, and the process from step S200 is repeated.
 一方で、計算部104は、所定数であると判定する場合(S203のYES)、記憶部20に記憶する測定電圧VDDXaと測定温度Teとを用いて電圧の線形近似式((2)式)を演算する(ステップS205)。このとき、計算部104は線形近似式((2)式)を記憶部20に記憶する。 On the other hand, if the calculation unit 104 determines that the number is equal to the predetermined number (YES in S203), the calculation unit 104 uses the measured voltage VDDXa and the measured temperature Te stored in the storage unit 20 to obtain a voltage linear approximation formula (formula (2)). is calculated (step S205). At this time, the calculation unit 104 stores the linear approximation formula (formula (2)) in the storage unit 20 .
 次に、計算部104は、線形近似式((2)式)と、電圧変換式Eq10に関連づけられた測定温度Te(例えば20度)を用いて、補正係数Tab20(Te)((3)式)を演算し、電圧変換式Eq10に関連づけて記憶部20に記憶する。このように、計算部104は、電圧変換式Eq10に関連づけられた補正係数Tab20(Te)を演算することが可能である。 Next, the calculation unit 104 uses the linear approximation formula (formula (2)) and the measured temperature Te (for example, 20 degrees) associated with the voltage conversion formula Eq10 to calculate the correction coefficient Tab20(Te) (formula (3) ) is calculated and stored in the storage unit 20 in association with the voltage conversion equation Eq10. Thus, calculation unit 104 can calculate correction coefficient Tab20(Te) associated with voltage conversion equation Eq10.
 図12は、キャリブレーション終了後の、電圧測定処理例を示すフロ-チャートである。図12に示すように、まず、抵抗ラダー回路100に端子O10から測定電圧VDDXが入力される(ステップS300)。 FIG. 12 is a flow chart showing an example of voltage measurement processing after the end of calibration. As shown in FIG. 12, first, the measurement voltage VDDX is input to the resistance ladder circuit 100 from the terminal O10 (step S300).
 次に、抵抗ラダー回路100は、測定電圧VDDXを分圧し、分圧電圧VsenseをAD変換器102に供給する(ステップS301)。続けて、AD変換器102は、分圧電圧VsenseをAD変換した電圧Vadを計算部104に供給する(ステップS302)。 Next, the resistance ladder circuit 100 divides the measurement voltage VDDX and supplies the divided voltage Vsense to the AD converter 102 (step S301). Subsequently, the AD converter 102 supplies the voltage Vad obtained by AD-converting the divided voltage Vsense to the calculation unit 104 (step S302).
 次に、計算部104は、電圧Vadを電圧変換式Eq10に従い、測定電圧VDDXaに変換し、補正部40に供給する(ステップS303)。続けて、補正部40は測定温度Teを温度センサ10から取得し(ステップS304)、測定温度Teに対応する補正形数Tab20(Te)を測定電圧VDDXaに乗算して、温度補正した補正電圧VDDZを端子O20からレジスタに出力する(ステップS305)。このとき、温度センサ10も測定温度Teを端子O22からレジスタに出力する。 Next, the calculator 104 converts the voltage Vad into the measured voltage VDDXa according to the voltage conversion formula Eq10, and supplies it to the corrector 40 (step S303). Subsequently, the correction unit 40 acquires the measured temperature Te from the temperature sensor 10 (step S304), multiplies the measured voltage VDDXa by the correction factor Tab20(Te) corresponding to the measured temperature Te, and obtains the temperature-corrected corrected voltage VDDZ. is output from the terminal O20 to the register (step S305). At this time, the temperature sensor 10 also outputs the measured temperature Te from the terminal O22 to the register.
 以上説明したように、本実施形態では、補正部40が、測定温度Teに対応する補正係数Tab20(Te)を測定電圧VDDXaに乗算して、温度補正した補正電圧VDDZを生成する。これにより、抵抗ラダー回路100の抵抗比A:Bが温度により変わる場合にも、温度変動を抑制した測定電圧VDDXの計測が可能となる。 As described above, in the present embodiment, the correction unit 40 multiplies the measured voltage VDDXa by the correction coefficient Tab20(Te) corresponding to the measured temperature Te to generate the temperature-corrected correction voltage VDDZ. As a result, even when the resistance ratio A:B of the resistance ladder circuit 100 varies with temperature, it is possible to measure the measurement voltage VDDX while suppressing temperature fluctuations.
(第1実施形態の変形例1)
 第1実施形態の変形例1に係る電圧測定装置1は、処理部50が補正部40及び計算部104の処理を同時行うことが可能である点で、第1実施形態に係る電圧測定装置1と相違する。以下では第1実施形態に係る電圧測定装置1と相違する点を説明する。
(Modification 1 of the first embodiment)
The voltage measuring device 1 according to Modification 1 of the first embodiment is such that the processing unit 50 can perform the processing of the correcting unit 40 and the calculating unit 104 at the same time. differ from Differences from the voltage measuring device 1 according to the first embodiment will be described below.
 図13は、第1実施形態の変形例1に係る電圧測定装置1の構成例を示すブロック図である。処理部50を、電圧センサ30内に構成している点で第1実施形態に係る電圧測定装置1と相違する。処理部50は、例えば(4)式にしたがい、(1)式と(3)式の処理を同時に行うことが可能である。 FIG. 13 is a block diagram showing a configuration example of the voltage measuring device 1 according to Modification 1 of the first embodiment. It is different from the voltage measuring device 1 according to the first embodiment in that the processing section 50 is configured inside the voltage sensor 30 . The processing unit 50 can simultaneously perform the processes of formulas (1) and (3) according to, for example, formula (4).
 以上説明したように、本実施形態では、処理部50が、測定温度TeとAD変換器102の出力電圧Vadに基づき、測定温度Teに応じて出力電圧Vadを温度補正した補正電圧VDDXZを生成することとした。これにより、処理部50の構成を簡略化でき、処理速度も速くすることも可能である。 As described above, in the present embodiment, the processing unit 50 generates the corrected voltage VDDXZ by temperature-correcting the output voltage Vad according to the measured temperature Te and the output voltage Vad of the AD converter 102 based on the measured temperature Te and the output voltage Vad of the AD converter 102. I decided to As a result, the configuration of the processing unit 50 can be simplified, and the processing speed can be increased.
(第2実施形態)
 第2実施形態に係る電圧測定装置1は、抵抗ラダー回路100の2つのノード間の分圧電圧を用いて測定電圧を測定する点で第1実施形態に係る表電圧測定装置1と相違する。以下では、第1実施形態に係る電圧測定装置1と相違する点を説明する。
(Second embodiment)
The voltage measuring device 1 according to the second embodiment differs from the table voltage measuring device 1 according to the first embodiment in that the voltage to be measured is measured using the divided voltage between two nodes of the resistance ladder circuit 100 . Differences from the voltage measuring device 1 according to the first embodiment will be described below.
図14は、第2実施形態に係る抵抗ラダー回路100と、AD変換器102の構成例を示す図である。図14に示すように、第2実施形態に係る抵抗ラダー回路100は、スイッティング素子100cを更に有する。 FIG. 14 is a diagram showing a configuration example of the resistance ladder circuit 100 and the AD converter 102 according to the second embodiment. As shown in FIG. 14, the resistance ladder circuit 100 according to the second embodiment further has a switching element 100c.
 スイッティング素子100cは、例えばトランジスタであり、制御信号S0にしたがい、ノードn1とノードn2との接続を切り換える。なお、本実施形態に係る制御信号S0は外部の制御装置から入力されるが、これに限定されない。例えば計算部104が各回路を制御する制御信号SOを生成してもよい。 The switching element 100c is a transistor, for example, and switches the connection between the node n1 and the node n2 according to the control signal S0. Note that the control signal S0 according to the present embodiment is input from an external control device, but is not limited to this. For example, the calculation unit 104 may generate the control signal SO for controlling each circuit.
 これにより、スイッティング素子100bが導通状態の際に、測定電圧VDDXと電圧VSSとの電圧は、
抵抗ラダー回路100の抵抗100aにより分圧される。これにより、ノードn1から電圧VD1が出力され、ノードn2から電圧VD2が出力される。AD変換器102は、電圧VD1を電圧Vad1に変換する。同様に、AD変換器102は、電圧VD2を電圧Vad2に変換する。
As a result, when the switching element 100b is in a conductive state, the voltages of the measurement voltage VDDX and the voltage VSS are
The voltage is divided by the resistor 100 a of the resistor ladder circuit 100 . As a result, the voltage VD1 is output from the node n1, and the voltage VD2 is output from the node n2. AD converter 102 converts voltage VD1 to voltage Vad1. Similarly, AD converter 102 converts voltage VD2 to voltage Vad2.
 図15は、抵抗ラダー回路100の抵抗比A:B:Cを示す図である。すなわち、端子O10とノードn1との間の抵抗Aと、ノードn1とノードn2の間の抵抗Bと、ノードn2と素子100bとの間の抵抗Cと、の比を示す。温度が例えば-40度から125度に変化すると抵抗比A:B:Cは、A‘:B’:C‘に変化する。これにより、電圧VD1、VD2も電圧VD1’、VD2‘に変化する。 FIG. 15 is a diagram showing the resistance ratio A:B:C of the resistance ladder circuit 100. FIG. That is, it represents the ratio of the resistance A between the terminal O10 and the node n1, the resistance B between the node n1 and the node n2, and the resistance C between the node n2 and the element 100b. When the temperature changes, for example, from -40 degrees to 125 degrees, the resistance ratio A:B:C changes to A':B':C'. As a result, the voltages VD1 and VD2 also change to voltages VD1' and VD2'.
-40度から125度に変化させたときの抵抗ラダー出力の変化率R(5式)は、VDDXが異なる値でも同じ値となる。 The rate of change R (equation 5) of the resistance ladder output when changing from -40 degrees to 125 degrees is the same value even if VDDX is different.
 図16は、電圧Vad1、Vad2の温度特性例を示す図である。(a)図は、電圧Vad1、Vad2の線形近似特性を示す図である。横軸は温度を示し、縦軸はAD変換器102の出力電圧をしめす。ラインLV40a(Te)は、電圧Vad1の温度変化を線形近似した特性である。一方で、ラインLV40b(Te)は、電圧Vad2の温度変化を線形近似した特性である。第1実施形態の(2)式と同様に、ノードn1とノードn2の出力電圧の温度変化は、(6)、(7)式で示す様に線形近似することが可能である。
K40a、K40bは、測定温度Teが0度のときの切片の値であり、K42a、K42bは傾きである。
FIG. 16 is a diagram showing an example of temperature characteristics of voltages Vad1 and Vad2. (a) is a diagram showing linear approximation characteristics of voltages Vad1 and Vad2. The horizontal axis indicates temperature, and the vertical axis indicates the output voltage of AD converter 102 . A line LV40a (Te) is a characteristic linearly approximating the temperature change of the voltage Vad1. On the other hand, the line LV40b (Te) is a characteristic linearly approximating the temperature change of the voltage Vad2. Similar to equation (2) in the first embodiment, temperature changes in the output voltages of nodes n1 and n2 can be linearly approximated as shown in equations (6) and (7).
K40a and K40b are intercept values when the measured temperature Te is 0 degrees, and K42a and K42b are slopes.
 (b)図は、線形近似線ラインLV40a(Te)の補正係数Tab401と、線形近似線ラインLV40b(Te)の補正係数Tab402とを示す図である。第1実施形態の(3)式と同様に、(8)、(9)式で示す様に補正係数Tab401、Tab402を演算可能である。
(b) is a diagram showing a correction coefficient Tab401 for the linear approximation line LV40a (Te) and a correction coefficient Tab402 for the linear approximation line LV40b (Te). Correction coefficients Tab401 and Tab402 can be calculated as shown in equations (8) and (9), like equation (3) in the first embodiment.
 これらか分かる様に、電圧Vad1と電圧Vad2との差分電圧Vad3=Vad1-Vad2は、補正係数Tab401、Tab402により温度補正可能である。そこで、本実施形態では、Vad3に対して(1)式と同様に電圧変換式Eq300を(10)式として生成する。ここで、VA40は、端子O10に電圧VDDAを供給した時の電圧Vad3であり、VB40は、端子O10に電圧VDDBを供給した時の電圧Vad3である。
As can be seen from these, the differential voltage Vad3=Vad1−Vad2 between the voltage Vad1 and the voltage Vad2 can be temperature corrected by the correction coefficients Tab401 and Tab402. Therefore, in the present embodiment, the voltage conversion equation Eq300 is generated as equation (10) for Vad3 in the same manner as equation (1). Here, VA40 is the voltage Vad3 when the voltage VDDA is supplied to the terminal O10, and VB40 is the voltage Vad3 when the voltage VDDB is supplied to the terminal O10.
 図17は、電圧Vad3の温度特性例を示す図である。(a)図は、電圧Vad3の線形近似特性を示す図である。横軸は温度を示し、縦軸はAD変換器102の出力に基づく差分電圧Vad3をしめす。ラインLV300(Te)は、電圧Vad3の温度変化を線形近似した特性である。第1実施形態の(2)式と同様に、ノードn1とノードn2の出力電圧の差分電圧の温度変化は、(11)式で示す様に線形近似することが可能である。(6)、(7)式を参照すると、例えばK300aは、(K40a-K40b)に対応し、K300bは、(K42a-K42b)に対応する。
FIG. 17 is a diagram showing an example of temperature characteristics of the voltage Vad3. (a) is a diagram showing a linear approximation characteristic of the voltage Vad3. The horizontal axis indicates temperature, and the vertical axis indicates differential voltage Vad3 based on the output of AD converter 102 . A line LV300 (Te) is a characteristic linearly approximating the temperature change of the voltage Vad3. As with the equation (2) of the first embodiment, the temperature change of the differential voltage between the output voltages of the nodes n1 and n2 can be linearly approximated as shown in the equation (11). Referring to equations (6) and (7), for example, K300a corresponds to (K40a-K40b) and K300b corresponds to (K42a-K42b).
 このときの電圧変換式Eq300((10)式参照)の演算時の温度が40度であれば、40度に対応する近似電圧LV300a(Te=40)で(11)式を除算すると(12)式で示す補正係数Tab300(Te)が演算される。このように、測定温度Teに対する補正係数Tab300(Te)が演算される。 If the temperature at the time of calculation of the voltage conversion formula Eq300 (see formula (10)) at this time is 40 degrees, dividing the formula (11) by the approximate voltage LV300a (Te=40) corresponding to 40 degrees yields (12) A correction coefficient Tab300(Te) shown in the formula is calculated. Thus, the correction coefficient Tab300(Te) for the measured temperature Te is calculated.
 本実施形態に係る計算部104は、差分電圧Vad3=Vad1-Vad2を演算し、電圧変換式Eq300(10式を参照)を用いて測定電圧VDDXaを生成する。補正部40は、測定温度Teを用いて、(11)式の補正係数Tab300(Te)により測定電圧VDDXaを補正し、補正電圧VDDZを生成する。 The calculation unit 104 according to the present embodiment calculates the difference voltage Vad3=Vad1−Vad2 and generates the measurement voltage VDDXa using the voltage conversion formula Eq300 (see formula 10). Using the measured temperature Te, the correction unit 40 corrects the measured voltage VDDXa with the correction coefficient Tab300(Te) of the equation (11) to generate the corrected voltage VDDZ.
 以上説明したように、本実施形態では、抵抗ラダー回路100のノードn1とノードn2との間の分圧Vad3に対して、計算部104が電圧変換式Eq300(10式を参照)を用いて測定電圧測定電圧VDDXa生成し、補正部40は、測定温度Teを用いて、(11)式の補正係数Tab300(Te)により測定電圧VDDXaを補正し、補正電圧VDDZを生成することとした。これにより、抵抗ラダー回路100の抵抗比A:B:Cが温度により変わる場合にも、温度変動を抑制した測定電圧VDDXの計測が可能となる。 As described above, in the present embodiment, the calculation unit 104 measures the divided voltage Vad3 between the node n1 and the node n2 of the resistance ladder circuit 100 using the voltage conversion formula Eq300 (see formula 10). The voltage measurement voltage VDDXa is generated, and the correction unit 40 corrects the measurement voltage VDDXa with the correction coefficient Tab300(Te) of the equation (11) using the measurement temperature Te to generate the correction voltage VDDZ. As a result, even when the resistance ratio A:B:C of the resistance ladder circuit 100 varies with temperature, it is possible to measure the measurement voltage VDDX while suppressing temperature fluctuations.
なお、本技術は以下のような構成を取ることができる。 In addition, this technique can take the following structures.
(1)
 複数の抵抗が直列に接続される抵抗ラダー回路と、
 前記抵抗ラダー回路により分圧された分圧電圧をデジタル値に変換する変換部と、
 前記デジタル値を測定温度に従い補正する処理部と、
 を備える、電圧測定装置。
(1)
a resistor ladder circuit in which a plurality of resistors are connected in series;
a conversion unit that converts the divided voltage divided by the resistor ladder circuit into a digital value;
a processing unit that corrects the digital value according to the measured temperature;
A voltage measuring device.
(2)
 前記処理部は、
 前記デジタル値に対して、所定の電圧変換計算処理により第1測定電圧を計算する計算部と、
 前記第1測定電圧を前記測定温度に従い補正する補正部と、
 を有する、(1)に記載の電圧測定装置。
(2)
The processing unit is
a calculation unit for calculating a first measurement voltage by a predetermined voltage conversion calculation process for the digital value;
a correction unit that corrects the first measured voltage according to the measured temperature;
The voltage measuring device according to (1), comprising:
(3)
 前記補正部は、前記測定温度に対して定まる補正係数に基づき、前記第1測定電圧を補正する、(2)に記載の電圧測定装置。
(3)
The voltage measuring device according to (2), wherein the correcting unit corrects the first measured voltage based on a correction coefficient determined with respect to the measured temperature.
(4)
 前記補正係数は、前記抵抗ラダー回路の温度を変更させた場合の前記第1測定電圧を、所定の温度における前記第1測定電圧に近づける係数である、(3)に記載の電圧測定装置。
(4)
The voltage measuring device according to (3), wherein the correction coefficient is a coefficient that approximates the first measured voltage when the temperature of the resistance ladder circuit is changed to the first measured voltage at a predetermined temperature.
(5)
 前記補正部の補正処理を規定する数式、及び変換テーブの少なくとも一方を記憶する記憶部を更に備え、
 前記補正部は、前記記憶部に記憶される前記数式、及び前記変換テーブの少なくとも一方に基づき、前記補正を行う、(4)に記載の電圧測定装置。
(5)
Further comprising a storage unit that stores at least one of a formula that defines the correction process of the correction unit and a conversion table,
The voltage measuring device according to (4), wherein the correcting unit performs the correction based on at least one of the formula stored in the storage unit and the conversion table.
(6)
 前記記憶部は、前記電圧変換計算処理を規定する第2数式、及び第2変換テーブの少なくとも一方を更に記憶し、
 前記計算部は、前記記憶部に記憶される前記第2数式、及び前記第2変換テーブの少なくとも一方に基づき、前記電圧変換計算処理を行う、(5)に記載の電圧測定装置。
(6)
The storage unit further stores at least one of a second mathematical expression that defines the voltage conversion calculation process and a second conversion table,
The voltage measurement device according to (5), wherein the calculation unit performs the voltage conversion calculation process based on at least one of the second formula stored in the storage unit and the second conversion table.
(7)
 前記処理部は、
 前記デジタル値に対して、所定の電圧変換計算処理による第1測定電圧を
 前記測定温度に従い補正する、(1)に記載の電圧測定装置。
(7)
The processing unit is
The voltage measuring device according to (1), wherein a first measured voltage obtained by a predetermined voltage conversion calculation process is corrected for the digital value according to the measured temperature.
(8)
 前記分圧電圧は、前記抵抗ラダー回路の基準電圧と、前記複数の抵抗の所定の接続点との間の電圧である、(1)に記載の電圧測定装置。
(8)
The voltage measuring device according to (1), wherein the divided voltage is a voltage between a reference voltage of the resistor ladder circuit and a predetermined connection point of the plurality of resistors.
(9)
 前記分圧電圧は、前記複数の抵抗の所定の第1接続点と第2接続点との間の電圧である、(1)に記載の電圧測定装置。
(9)
The voltage measuring device according to (1), wherein the divided voltage is a voltage between a predetermined first connection point and a second connection point of the plurality of resistors.
(10)
 前記測定温度を測定する温度センサを更に備える、(1)に記載の電圧測定装置。
(10)
The voltage measuring device according to (1), further comprising a temperature sensor that measures the measured temperature.
(11)
 抵抗ラダー回路により分圧された分圧電圧をデジタル値に変換する変換工程と、
 前記デジタル値を温度センサの測定温度に従い補正する演算工程と、
 を備える、電圧測定方法。
(11)
a conversion step of converting the divided voltage divided by the resistor ladder circuit into a digital value;
a calculation step of correcting the digital value according to the temperature measured by the temperature sensor;
A voltage measurement method, comprising:
(12)
 複数の既知の測定電圧を前記抵抗ラダー回路により分圧して複数のデジタル値に変換する変換工程と、
 前記複数のデジタル値と前記複数の既知の測定電圧とを対応させる電圧変換式を生成する工程を更にそなえる、(11)に記載の電圧測定方法。
(12)
a conversion step of dividing a plurality of known measured voltages by the resistor ladder circuit and converting them into a plurality of digital values;
The voltage measurement method according to (11), further comprising the step of generating a voltage conversion formula that associates the plurality of digital values with the plurality of known measurement voltages.
(13)
 前記演算工程は、
 前記電圧変換式に基づき、第1測定電圧に変換する工程と、
 前記第1測定電圧を測定温度に従い補正する補正工程と、を有する、(11)に記載の電圧測定方法。
(13)
The computing step is
converting to a first measured voltage based on the voltage conversion formula;
and a correction step of correcting the first measured voltage according to the measured temperature.
(14)
 所定の測定電圧を前記抵抗ラダー回路の温度を変更して、前記電圧変換式に基づき複数の第1測定電圧に変換する工程と、
 前記複数の第1測定電圧を所定温度の測定電圧に近づける、測定温度に対応する補正係数を生成する工程と、を更にそなえる、(11)に記載の電圧測定方法。
(14)
converting a predetermined measured voltage into a plurality of first measured voltages based on the voltage conversion equation by changing the temperature of the resistor ladder circuit;
The voltage measurement method according to (11), further comprising: generating a correction factor corresponding to the measured temperature for bringing the plurality of first measured voltages closer to the measured voltage at the predetermined temperature.
(15)
 前記演算工程は、
 前記電圧変換式に基づき、第1測定電圧に変換する工程と、
 前記第1測定電圧を測定温度に対応する補正係数に従い補正する補正工程と、を有する、(14)に記載の電圧測定方法。
(15)
The computing step is
converting to a first measured voltage based on the voltage conversion formula;
and a correction step of correcting the first measured voltage according to a correction coefficient corresponding to the measured temperature.
本開示の態様は、上述した個々の実施形態に限定されるものではなく、当業者が想到しうる種々の変形も含むものであり、本開示の効果も上述した内容に限定されない。すなわち、特許請求の範囲に規定された内容およびその均等物から導き出される本開示の概念的な思想と趣旨を逸脱しない範囲で種々の追加、変更および部分的削除が可能である。 Aspects of the present disclosure are not limited to the individual embodiments described above, but include various modifications that can be conceived by those skilled in the art, and the effects of the present disclosure are not limited to the above-described contents. That is, various additions, changes, and partial deletions are possible without departing from the conceptual idea and spirit of the present disclosure derived from the content defined in the claims and equivalents thereof.
1:電圧測定装置、10:温度センサ10:記憶部、40:補正部、50:処理部、100:抵抗ラダー回路、102:AD変換器(変換部)、104:計算部。 1: Voltage measuring device, 10: Temperature sensor 10: Storage unit, 40: Correction unit, 50: Processing unit, 100: Resistance ladder circuit, 102: AD converter (conversion unit), 104: Calculation unit.

Claims (15)

  1.  複数の抵抗が直列に接続される抵抗ラダー回路と、
     前記抵抗ラダー回路により分圧された分圧電圧をデジタル値に変換する変換部と、
     前記デジタル値を測定温度に従い補正する処理部と、
     を備える、電圧測定装置。
    a resistor ladder circuit in which a plurality of resistors are connected in series;
    a conversion unit that converts the divided voltage divided by the resistor ladder circuit into a digital value;
    a processing unit that corrects the digital value according to the measured temperature;
    A voltage measuring device.
  2.  前記処理部は、
     前記デジタル値に対して、所定の電圧変換計算処理により第1測定電圧を計算する計算部と、
     前記第1測定電圧を前記測定温度に従い補正する補正部と、
     を有する、請求項1に記載の電圧測定装置。
    The processing unit is
    a calculation unit for calculating a first measurement voltage by a predetermined voltage conversion calculation process for the digital value;
    a correction unit that corrects the first measured voltage according to the measured temperature;
    The voltage measuring device according to claim 1, comprising:
  3.  前記補正部は、前記測定温度に対して定まる補正係数に基づき、前記第1測定電圧を補正する、請求項2に記載の電圧測定装置。 The voltage measuring device according to claim 2, wherein the correction unit corrects the first measured voltage based on a correction coefficient determined with respect to the measured temperature.
  4.  前記補正係数は、前記抵抗ラダー回路の温度を変更させた場合の前記第1測定電圧を、所定の温度における前記第1測定電圧に近づける係数である、請求項3に記載の電圧測定装置。 4. The voltage measuring device according to claim 3, wherein the correction coefficient is a coefficient that brings the first measured voltage when the temperature of the resistance ladder circuit is changed closer to the first measured voltage at a predetermined temperature.
  5.  前記補正部の補正処理を規定する数式、及び変換テーブの少なくとも一方を記憶する記憶部を更に備え、
     前記補正部は、前記記憶部に記憶される前記数式、及び前記変換テーブの少なくとも一方に基づき、前記補正を行う、請求項4に記載の電圧測定装置。
    Further comprising a storage unit that stores at least one of a formula that defines the correction process of the correction unit and a conversion table,
    5. The voltage measuring device according to claim 4, wherein said correcting section performs said correction based on at least one of said formula stored in said storage section and said conversion table.
  6.  前記記憶部は、前記電圧変換計算処理を規定する第2数式、及び第2変換テーブの少なくとも一方を更に記憶し、
     前記計算部は、前記記憶部に記憶される前記第2数式、及び前記第2変換テーブの少なくとも一方に基づき、前記電圧変換計算処理を行う、請求項5に記載の電圧測定装置。
    The storage unit further stores at least one of a second mathematical expression that defines the voltage conversion calculation process and a second conversion table,
    6. The voltage measuring device according to claim 5, wherein said calculation section performs said voltage conversion calculation processing based on at least one of said second mathematical expression stored in said storage section and said second conversion table.
  7.  前記処理部は、
     前記デジタル値に対して、所定の電圧変換計算処理による第1測定電圧を
     前記測定温度に従い補正する、請求項1に記載の電圧測定装置。
    The processing unit is
    2. The voltage measuring device according to claim 1, wherein the first measured voltage obtained by a predetermined voltage conversion calculation process is corrected with respect to the digital value according to the measured temperature.
  8.  前記分圧電圧は、前記抵抗ラダー回路の基準電圧と、前記複数の抵抗の所定の接続点との間の電圧である、請求項1に記載の電圧測定装置。 2. The voltage measuring device according to claim 1, wherein said divided voltage is a voltage between a reference voltage of said resistor ladder circuit and a predetermined connection point of said plurality of resistors.
  9.  前記分圧電圧は、前記複数の抵抗の所定の第1接続点と第2接続点との間の電圧である、請求項1に記載の電圧測定装置。 2. The voltage measuring device according to claim 1, wherein said divided voltage is a voltage between a predetermined first connection point and a second connection point of said plurality of resistors.
  10.  前記測定温度を測定する温度センサを更に備える、請求項1に記載の電圧測定装置。 The voltage measuring device according to claim 1, further comprising a temperature sensor that measures the measured temperature.
  11.  抵抗ラダー回路により分圧された分圧電圧をデジタル値に変換する変換工程と、
     前記デジタル値を温度センサの測定温度に従い補正する演算工程と、
     を備える、電圧測定方法。
    a conversion step of converting the divided voltage divided by the resistor ladder circuit into a digital value;
    a calculation step of correcting the digital value according to the temperature measured by the temperature sensor;
    A voltage measurement method, comprising:
  12.  複数の既知の測定電圧を前記抵抗ラダー回路により分圧して複数のデジタル値に変換する変換工程と、
     前記複数のデジタル値と前記複数の既知の測定電圧とを対応させる電圧変換式を生成する工程を更にそなえる、請求項11に記載の電圧測定方法。
    a conversion step of dividing a plurality of known measured voltages by the resistor ladder circuit and converting them into a plurality of digital values;
    12. The voltage measurement method of claim 11, further comprising generating a voltage transformation equation that associates the plurality of digital values with the plurality of known measured voltages.
  13.  前記演算工程は、
     前記電圧変換式に基づき、第1測定電圧に変換する工程と、
     前記第1測定電圧を測定温度に従い補正する補正工程と、を有する、請求項11に記載の電圧測定方法。
    The computing step is
    converting to a first measured voltage based on the voltage conversion formula;
    12. The voltage measuring method according to claim 11, comprising a correcting step of correcting the first measured voltage according to the measured temperature.
  14.  所定の測定電圧を前記抵抗ラダー回路の温度を変更して、前記電圧変換式に基づき複数の第1測定電圧に変換する工程と、
     前記複数の第1測定電圧を所定温度の測定電圧に近づける、測定温度に対応する補正係数を生成する工程と、を更にそなえる、請求項11に記載の電圧測定方法。
    converting a predetermined measured voltage into a plurality of first measured voltages based on the voltage conversion equation by changing the temperature of the resistor ladder circuit;
    12. The voltage measurement method of claim 11, further comprising generating a correction factor corresponding to the measured temperature to bring the plurality of first measured voltages closer to the measured voltage at a predetermined temperature.
  15.  前記演算工程は、
     前記電圧変換式に基づき、第1測定電圧に変換する工程と、
     前記第1測定電圧を測定温度に対応する補正係数に従い補正する補正工程と、を有する、請求項14に記載の電圧測定方法。
    The computing step is
    converting to a first measured voltage based on the voltage conversion formula;
    15. The voltage measuring method according to claim 14, comprising correcting the first measured voltage according to a correction factor corresponding to the measured temperature.
PCT/JP2023/001471 2022-02-17 2023-01-19 Voltage measurement device and voltage measurement method WO2023157548A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022023219 2022-02-17
JP2022-023219 2022-02-17

Publications (1)

Publication Number Publication Date
WO2023157548A1 true WO2023157548A1 (en) 2023-08-24

Family

ID=87578350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001471 WO2023157548A1 (en) 2022-02-17 2023-01-19 Voltage measurement device and voltage measurement method

Country Status (1)

Country Link
WO (1) WO2023157548A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289037A (en) * 1997-04-11 1998-10-27 Matsushita Electric Ind Co Ltd Battery voltage monitoring device and wireless printer
US20160274149A1 (en) * 2012-11-16 2016-09-22 Alstom Technology Ltd. Very high-voltage dc line voltage sensor
CN211955635U (en) * 2019-12-12 2020-11-17 联合汽车电子有限公司 Direct current bus voltage detection circuit, dc-to-ac converter and electric automobile

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10289037A (en) * 1997-04-11 1998-10-27 Matsushita Electric Ind Co Ltd Battery voltage monitoring device and wireless printer
US20160274149A1 (en) * 2012-11-16 2016-09-22 Alstom Technology Ltd. Very high-voltage dc line voltage sensor
CN211955635U (en) * 2019-12-12 2020-11-17 联合汽车电子有限公司 Direct current bus voltage detection circuit, dc-to-ac converter and electric automobile

Similar Documents

Publication Publication Date Title
US20140358317A1 (en) Output value correction method for physical quantity sensor apparatus, output correction method for physical quantity sensor, physical quantity sensor apparatus and output value correction apparatus for physical quantity sensor
US9587994B2 (en) Semiconductor device
KR20130069543A (en) Method and mass flow controller for enhanced operating range
US7796060B2 (en) Circuits and methods to minimize nonlinearity errors in interpolating circuits
US4647907A (en) Digital-to-analogue converter including calibrated current sources
US7373266B2 (en) Sensor calibration using selectively disconnected temperature
US8421477B2 (en) Resistance variation detection circuit, semiconductor device and resistance variation detection method
KR20120093164A (en) Flow rate sensor
WO2010137088A1 (en) Interface circuit
US8659455B2 (en) System and method for operating an analog to digital converter
JP2011215129A (en) Temperature sensor, semiconductor device, and method of calibrating the semiconductor device
US20070005289A1 (en) Temperature compensation apparatus for electronic signal
WO2023157548A1 (en) Voltage measurement device and voltage measurement method
JP6342100B1 (en) Analog input unit and reference voltage stabilization circuit
JP2009218796A (en) Linear correction circuit and linear correction method, and sensor device
JP5488159B2 (en) Constant power control circuit
JP2015200633A (en) Device for correcting temperature characteristic of thermistor and method for correcting temperature characteristic of thermistor
JP2009188696A (en) Analog/digital conversion apparatus
WO2022209321A1 (en) Mass flow controller utilizing nonlinearity component functions
US6181192B1 (en) Constant voltage circuit comprising temperature dependent elements and a differential amplifier
JPH066218A (en) A/d converter with temperature compensating function
CN114577378B (en) Non-ideal factor correction system for bridge sensor
JP2010117246A (en) Voltage measurement apparatus
EP0070086A2 (en) Digital-to-analogue converter which can be calibrated automatically
JPH06294664A (en) Nonlinear circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23756076

Country of ref document: EP

Kind code of ref document: A1