WO2023157308A1 - Wire electrical discharge machining device, wire electrical discharge machining method, learning device, and inference device - Google Patents

Wire electrical discharge machining device, wire electrical discharge machining method, learning device, and inference device Download PDF

Info

Publication number
WO2023157308A1
WO2023157308A1 PCT/JP2022/006991 JP2022006991W WO2023157308A1 WO 2023157308 A1 WO2023157308 A1 WO 2023157308A1 JP 2022006991 W JP2022006991 W JP 2022006991W WO 2023157308 A1 WO2023157308 A1 WO 2023157308A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate thickness
machining
electric discharge
data
wire electric
Prior art date
Application number
PCT/JP2022/006991
Other languages
French (fr)
Japanese (ja)
Inventor
克彦 林
信行 太田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022545906A priority Critical patent/JP7233615B1/en
Priority to PCT/JP2022/006991 priority patent/WO2023157308A1/en
Publication of WO2023157308A1 publication Critical patent/WO2023157308A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23HWORKING OF METAL BY THE ACTION OF A HIGH CONCENTRATION OF ELECTRIC CURRENT ON A WORKPIECE USING AN ELECTRODE WHICH TAKES THE PLACE OF A TOOL; SUCH WORKING COMBINED WITH OTHER FORMS OF WORKING OF METAL
    • B23H7/00Processes or apparatus applicable to both electrical discharge machining and electrochemical machining
    • B23H7/02Wire-cutting

Definitions

  • the present disclosure relates to a wire electric discharge machine, a wire electric discharge machining method, a learning device, and an inference device for electric discharge machining of a workpiece.
  • machining conditions corresponding to the plate thickness of the workpiece to be machined or machining conditions corresponding to the required specifications such as surface roughness are prepared in advance.
  • a worker who performs work using a wire electric discharge machine can perform high-precision machining, for example, a tolerance of 1/100 mm to 1/1000 mm, by appropriately selecting machining conditions suitable for machining from among prepared machining conditions. processing can be realized.
  • a dimensional error may occur at a stepped portion, which is a boundary portion between portions of the workpiece having different plate thicknesses.
  • streaks may occur on the surface of the stepped portion.
  • Patent Document 1 the plate thickness of the workpiece is detected during rough machining of the workpiece, the thickness information is stored, and the step position is estimated and processed based on the thickness information during finish machining of the workpiece.
  • a wire electrical discharge machine with changing conditions is disclosed. According to Patent Literature 1, a wire electric discharge machine stores plate thickness information in a storage area of the wire electric discharge machine.
  • An object of the present invention is to obtain a wire electric discharge machine capable of
  • a wire electric discharge machine is a wire electric discharge machine that performs electric discharge machining of a work by applying a pulse voltage between a wire electrode and the work.
  • the wire electric discharge machining apparatus includes a machining mechanism that is a mechanism for electric discharge machining, and when rough machining of the workpiece by electric discharge machining is performed, the plate thickness of the workpiece at the position where machining is performed.
  • a plate thickness estimator for estimating a plate thickness for estimating a plate thickness
  • a plate thickness input device that inputs plate thickness data from the outside
  • a step position estimator that estimates the position of a step where the plate thickness changes based on the input plate thickness data
  • a rough machining An electric condition controller that controls the application of pulse voltage based on plate thickness data and level difference information indicating the position of a level difference part when the workpiece is being finish processed by electric discharge machining afterward, and finish machining is performed.
  • a control device for controlling the processing mechanism based on the plate thickness data and the step information when the plate thickness data and the step information are being processed.
  • the wire electric discharge machine according to the present disclosure has the effect of being able to perform control for improving machining quality without limiting the data amount of plate thickness information that can be used for estimating the step position in the work. Play.
  • FIG. 1 is a diagram showing a configuration example of a wire electric discharge machining apparatus according to a first embodiment
  • FIG. FIG. 2 is a diagram showing functional configurations of a power supply unit and a control unit provided in the wire electric discharge machining apparatus according to the first embodiment
  • 4 is a flow chart showing the operation procedure of the wire electric discharge machine according to the first embodiment
  • FIG. 2 is a block diagram for explaining control during rough machining by the wire electric discharge machine according to the first embodiment
  • FIG. FIG. 2 is a block diagram for explaining control during finish machining by the wire electric discharge machine according to the first embodiment
  • FIG. 4 is a diagram showing a control unit to which a coordinate corrector, which is a position information correction unit, is added in Embodiment 1;
  • FIG. 7 is a block diagram for explaining control during finish machining by the wire electric discharge machine to which the coordinate corrector shown in FIG. 6 is added;
  • FIG. 2 is a diagram for explaining a machine coordinate system of the wire electric discharge machine according to the first embodiment;
  • FIG. 4 is a diagram for explaining a relative coordinate system applicable to coordinates associated with plate thickness information in Embodiment 1.
  • FIG. 1 is a diagram showing a configuration example of a control circuit according to a first embodiment;
  • FIG. FIG. 11 shows a learning device according to a second embodiment;
  • FIG. 8 is a diagram showing a configuration example of a neural network used for learning in the learning device according to the second embodiment;
  • 4 is a flowchart showing the procedure of learning processing by the learning device according to the second embodiment;
  • FIG. 11 shows an inference apparatus according to a third embodiment;
  • 10 is a flowchart showing the procedure of inference processing by the inference device according to the third embodiment;
  • a wire electric discharge machining apparatus, a wire electric discharge machining method, a learning apparatus, and an inference apparatus according to embodiments will be described in detail below with reference to the drawings.
  • FIG. 1 is a diagram showing a configuration example of a wire electric discharge machining apparatus 100 according to a first embodiment.
  • a wire electric discharge machine 100 is a machine tool that processes a work 18 by generating electric discharge in a gap between the work 18 and a wire electrode 2, which is a machining electrode.
  • the X-axis, Y-axis and Z-axis are the three axes of the machine coordinate system of the wire electric discharge machine 100 .
  • the XY plane is the horizontal plane
  • the Z-axis direction is the vertical direction.
  • the plus Z direction is the upward direction
  • the minus Z direction is the downward direction.
  • the wire electric discharge machine 100 includes a machining mechanism 13 that is a mechanism for electric discharge machining, a power supply section 14 that includes a machining power supply, and a control section 15 that includes a numerical control (NC) device that is a controller. .
  • a machining mechanism 13 that is a mechanism for electric discharge machining
  • a power supply section 14 that includes a machining power supply
  • a control section 15 that includes a numerical control (NC) device that is a controller.
  • the processing mechanism 13 includes the wire electrode bobbin 1 , the conveying roller 3 that conveys the wire electrode 2 drawn out from the wire electrode bobbin 1 , the upper feeder 4 arranged above the work 18 , and the work 18 below the work 18 . upper and lower guides 6 and 7 for supporting the wire electrode 2 during machining of the work 18; and a work table 8 on which the work 18 is placed.
  • the processing mechanism 13 includes a lower roller 9 for transporting the wire electrode 2 used for processing, a recovery roller 10 for generating a driving force for transporting the wire electrode 2, and a wire electrode for recovering the wire electrode 2 after use. It has a collection box 11 and an X-axis drive motor 12X and a Y-axis drive motor 12Y that drive the work table 8 .
  • the NC device sends position commands to each of the upper guide 6 and lower guide 7.
  • the upper guide 6 and the lower guide 7 support the wire electrode 2 at a position according to the position command and with an inclination according to the position command.
  • Each of the upper feeder 4 and the lower feeder 5 is connected to a machining power supply.
  • the NC device sends axis commands to each of the X-axis drive motor 12X and the Y-axis drive motor 12Y.
  • the X-axis drive motor 12X drives the worktable 8 in the X-axis direction according to the axis command.
  • the Y-axis drive motor 12Y drives the worktable 8 in the Y-axis direction according to the axis command.
  • the processed portion 16 is the wire electrode 2 between the upper guide 6 and the lower guide 7 .
  • FIG. 2 is a diagram showing the functional configurations of the power supply section 14 and the control section 15 provided in the wire electric discharge machine 100 according to the first embodiment.
  • FIG. 2 shows a power supply unit 14 and a control unit 15, an upper feeder 4 and a lower feeder 5 connected to a machining power supply 20, an upper guide 6 and a lower guide operating according to commands sent from the NC device 23. 7, an X-axis drive motor 12X and a Y-axis drive motor 12Y.
  • the power supply unit 14 includes a machining power supply 20 , a machining voltage detector 21 and an electrical condition controller 22 .
  • the machining power supply 20 applies a pulse voltage between the wire electrode 2 and the work 18 according to the voltage command output by the NC device 23 .
  • a machining voltage detector 21 detects a machining voltage.
  • the machining voltage is the inter-electrode voltage applied between the wire electrode 2 and the workpiece 18 .
  • the electrical condition controller 22 controls application of the pulse voltage.
  • the control unit 15 includes an NC device 23 , a plate thickness estimator 24 , a plate thickness output device 25 , a plate thickness input device 26 and a step position estimator 27 .
  • the NC device 23 generates various commands according to machining conditions according to a machining program for electrical discharge machining.
  • the NC device 23 controls the processing mechanism 13 and the power supply section 14 by outputting various commands.
  • the plate thickness estimator 24 estimates the plate thickness of the work 18 at the position where the work 18 is being rough-machined by electrical discharge machining.
  • the plate thickness output device 25 outputs plate thickness data to the outside of the wire electric discharge machining apparatus 100 .
  • the plate thickness data is data in which position information is linked to plate thickness information indicating the plate thickness estimated by the plate thickness estimator 24 .
  • the thickness data is input to the thickness input device 26 from the outside of the wire electric discharge machine 100 .
  • the step position estimator 27 estimates the position of the step based on the plate thickness data input to the plate thickness input device 26 .
  • the stepped portion is a portion of the work 18 where the plate thickness changes, that is, a portion that hits the boundary between portions with different plate thicknesses.
  • the electrical condition controller 22 controls the application of the pulse voltage based on the plate thickness data and the step information during the finishing process.
  • the step information is information indicating the position of the step.
  • the NC device 23 controls the processing mechanism 13 based on the plate thickness data and the step information during finishing processing.
  • the plate thickness output device 25 outputs plate thickness data by writing the plate thickness data to a file 17 stored outside the wire electric discharge machining apparatus 100 .
  • the file 17 is stored in storage means such as a storage device or a storage medium.
  • the plate thickness output device 25 may output the plate thickness data by writing the plate thickness data to a machining program stored outside the wire electric discharge machining apparatus 100 .
  • the plate thickness data is input to the plate thickness input device 26 by the plate thickness input device 26 reading the plate thickness data from the file 17 or from the processing program.
  • FIG. 3 is a flow chart showing the operation procedure of the wire electric discharge machine 100 according to the first embodiment.
  • the wire electric discharge machine 100 performs machining a plurality of times until obtaining a machined shape that meets the required specifications.
  • Rough machining is machining performed first among a plurality of times of machining, and is machining in which machining speed is emphasized rather than shape accuracy.
  • Finish machining is machining that is performed after rough machining among a plurality of machining operations. The number of finishing processes is arbitrary.
  • FIG. 3 shows a sequence of operations performed by the wire electric discharge machine 100 to adjust the machining of the stepped portion of the workpiece 18 during rough machining and finish machining.
  • the wire electric discharge machine 100 performs the operations of steps S1 and S2 in rough machining.
  • step S ⁇ b>1 the wire electric discharge machine 100 estimates the plate thickness of the workpiece 18 using the plate thickness estimator 24 .
  • step S2 the wire electric discharge machining apparatus 100 writes the thickness data to the file 17 or machining program by the thickness output device 25. FIG. Thereby, the wire electric discharge machining apparatus 100 outputs the plate thickness data to the outside of the wire electric discharge machining apparatus 100 .
  • the wire electric discharge machine 100 performs operations from step S3 to step S5 in finish machining.
  • step S ⁇ b>3 the wire electric discharge machine 100 uses the plate thickness input device 26 to read the plate thickness data from the file 17 or the machining program. That is, the wire electric discharge machine 100 reads plate thickness data from the outside of the wire electric discharge machine 100 .
  • step S4 the wire electric discharge machining apparatus 100 estimates the position of the stepped portion based on the read plate thickness data.
  • the wire electric discharge machine 100 adjusts at least one of the electrical conditions and the axis command based on the plate thickness data and the step information.
  • the electrical condition is a condition for applying a pulse voltage, such as a voltage value or a pulse rest time.
  • the wire electric discharge machine 100 controls at least one of the application of the pulse voltage and the machining mechanism 13 based on the plate thickness data and step information by adjusting at least one of the electrical conditions and the axis command. As described above, the wire electric discharge machine 100 completes the operation according to the procedure shown in FIG.
  • FIG. 4 is a block diagram for explaining control during rough machining by the wire electric discharge machine 100 according to the first embodiment.
  • the machining power supply 20 applies a pulse voltage between the wire electrode 2 and the workpiece 18 according to the voltage command from the NC device 23 .
  • the X-axis drive motor 12X and the Y-axis drive motor 12Y move the work table 8 in the X-axis direction and the Y-axis direction in accordance with axis commands from the NC device 23 .
  • the wire electric discharge machine 100 adjusts the distance between the wire electrode 2 and the work 18 by moving the work table 8 .
  • the wire electric discharge machine 100 controls the electric discharge energy in the machining section 16 based on the voltage command and the axis command. Thus, the wire electric discharge machine 100 controls electric discharge machining.
  • the machining voltage detector 21 detects the machining voltage in the machining section 16 .
  • the wire electric discharge machine 100 adjusts the electrical conditions indicated by the voltage command by feedback of the machining voltage detected by the machining voltage detector 21 .
  • the machining power source 20 applies a pulse voltage according to the voltage command with the adjusted electrical conditions.
  • the wire electric discharge machine 100 adjusts the axis command by feedback of the machining voltage detected by the machining voltage detector 21 .
  • the X-axis drive motor 12X and the Y-axis drive motor 12Y move the work table 8 according to the adjusted axis commands. Adjustment by feedback of machining voltage is not limited to adjustment of both electrical conditions and axis commands.
  • the wire electric discharge machine 100 should adjust at least one of the electrical condition and the axis command by feedback of the machining voltage.
  • the plate thickness estimator 24 estimates the plate thickness at the position where rough processing is being performed based on the processing data.
  • the machining data is data such as machining voltage, machining current, the number of discharge pulses, or machining speed, and is data representing the state of the machining unit 16 .
  • the plate thickness estimator 24 generates plate thickness data in which position information is linked to the plate thickness estimation result.
  • the thickness estimator 24 outputs thickness data to the thickness output device 25 .
  • the plate thickness output device 25 writes the plate thickness data to the file 17 or processing program.
  • FIG. 5 is a block diagram for explaining control during finish machining by the wire electric discharge machine 100 according to the first embodiment.
  • the wire electric discharge machine 100 controls electric discharge machining based on a voltage command and an axis command.
  • the wire electric discharge machine 100 adjusts at least one of the electrical conditions and the axis command by feedback of the machining voltage detected by the machining voltage detector 21 .
  • the plate thickness input device 26 reads plate thickness data from the file 17 or the processing program.
  • the plate thickness input device 26 outputs plate thickness data to each of the step position estimator 27 and the electrical condition controller 22 .
  • the step position estimator 27 detects changes in the plate thickness at each position of the workpiece 18 from the plate thickness data.
  • the step position estimator 27 estimates the position where the plate thickness abruptly changes as the position of the step.
  • the step position estimator 27 generates step information indicating the estimated position.
  • the bump position estimator 27 outputs the bump information to the electrical condition controller 22 .
  • the electric condition controller 22 determines the timing at which the position where finishing is being performed reaches the step portion based on the step information.
  • the electrical condition controller 22 adjusts the electrical conditions according to the plate thickness indicated by the plate thickness data.
  • the electric condition controller 22 controls the application of the pulse voltage based on the plate thickness data and the step information during the finishing process.
  • the electric condition controller 22 adjusts the position of the work table 8 indicated by the axis command according to the plate thickness indicated by the plate thickness data.
  • the NC unit 23 controls the electric discharge machining according to the machining conditions adjusted based on the plate thickness data and the step information during finishing machining. Note that the adjustment based on the plate thickness data and the step information is not limited to the adjustment of both the electrical conditions and the axis command.
  • the wire electric discharge machine 100 should adjust at least one of the electrical conditions and the axis command based on the plate thickness data and the step information. That is, the wire electric discharge machine 100 controls at least one of the application of the pulse voltage and the machining mechanism 13 based on the plate thickness data and the step data.
  • the wire electric discharge machine 100 outputs the plate thickness data generated in the rough machining to the outside of the wire electric discharge machine 100.
  • the wire electric discharge machining apparatus 100 generates step information based on the plate thickness data input from the outside of the wire electric discharge machine 100 during finish machining, and generates a pulse based on the plate thickness data and the step information. It controls the application of voltage or the processing mechanism 13 .
  • the wire electric discharge machining apparatus 100 can achieve high machining quality by enabling machining suitable for the plate thickness at the stepped portion.
  • Embodiment 1 since it is not necessary to accumulate plate thickness data inside the wire electric discharge machining apparatus 100, it is necessary to set a limit on the data amount of plate thickness information that can be used for estimating the position of the stepped portion. disappear. By storing the plate thickness data in the file 17 or machining program stored outside the wire electric discharge machine 100, it is possible to ensure the traceability of the machining process by the wire electric discharge machine 100.
  • the wire electric discharge machining apparatus 100 may include a position information correction unit that corrects the position information included in the plate thickness data.
  • a position information correction unit that corrects the position information included in the plate thickness data.
  • FIG. 6 shows the controller 15 to which the coordinate corrector 28, which is the position information corrector, is added in the first embodiment.
  • the coordinate corrector 28 corrects the coordinates, which are the position information included in the thickness data, when the position or inclination of the workpiece 18 on the work table 8 has changed since the thickness data was generated.
  • the coordinate corrector 28 corrects the coordinates so that the change in the position or tilt of the workpiece 18 is offset.
  • the electrical condition controller 22 controls the application of the pulse voltage based on the plate thickness data including the corrected positional information and the step information.
  • the NC device 23 controls the processing mechanism 13 based on the plate thickness data including the corrected position information and the step information.
  • the wire electric discharge machine 100 can control the pulse voltage or the machining mechanism 13 based on the plate thickness data by correcting the coordinates with the coordinate corrector 28 even when the position or inclination of the work 18 is changed. .
  • the position or inclination of the work 18 may be changed by removing the work 18 from the work table 8 after rough machining and placing the work 18 on the work table 8 again. Further, when the work 18 is machined by changing the model of the wire electric discharge machine 100 for each machining step such as rough machining and finish machining, the position or inclination of the work 18 in the finish machining is the same as the position of the work 18 in the rough machining. Or it can be changed from tilt.
  • the model of the wire electric discharge machine 100 the wire electric discharge machine 100 using water as the machining fluid is used for rough machining, and the wire electric discharge machine 100 using oil as the machining fluid is used for finish machining. are mentioned.
  • wire electric discharge machining apparatus 100 that uses water as a machining fluid for rough machining, machining can be performed at a high machining speed.
  • wire electric discharge machining apparatus 100 that uses oil as a machining fluid for finish machining, high-precision machining can be performed at a low machining speed.
  • the wire electric discharge machine 100 can control the pulse voltage or the machining mechanism 13 based on the plate thickness data in finishing machining by correcting the coordinates with the coordinate corrector 28 .
  • FIG. 7 is a block diagram for explaining control during finish machining by the wire electric discharge machine 100 to which the coordinate corrector 28 shown in FIG. 6 is added.
  • the plate thickness input device 26 outputs the input plate thickness data to the coordinate corrector 28 .
  • the coordinate corrector 28 corrects the coordinates included in the thickness data when the position or inclination of the workpiece 18 has changed since the thickness data was generated.
  • the coordinate corrector 28 outputs the plate thickness data whose coordinates have been corrected to the step position estimator 27 and the electrical condition controller 22, respectively.
  • the wire electric discharge machine 100 adjusts the pulse voltage or the machining mechanism 13 based on the thickness data when the position or inclination of the workpiece 18 on the work table 8 is changed after the thickness data is generated. can be controlled.
  • the coordinates linked to the thickness information in the thickness data may be the coordinates of a coordinate system based on the work 18 instead of the coordinates of the machine coordinate system unique to the wire electric discharge machining apparatus 100 .
  • a coordinate system based on the work 18 is a coordinate system having a preset position on the work 18 as an origin.
  • a coordinate system based on the workpiece 18 is called a relative coordinate system.
  • FIG. 8 is a diagram for explaining the machine coordinate system of the wire electric discharge machining device 100 according to the first embodiment.
  • one point on the work table 8 is assumed to be the origin of the machine coordinate system.
  • the work 18 is removed from the work table 8 after the plate thickness data is generated, and the work 18 is placed on the work table 8 again. may change the position of the workpiece 18 with respect to the origin. Alternatively, the tilt of the workpiece 18 with respect to the machine coordinate system may be changed. During finish machining, if the position or inclination of the workpiece 18 is changed from that during rough machining, the wire electric discharge machine 100 cannot control the pulse voltage or the machining mechanism 13 based on the plate thickness data. .
  • the position or inclination of the workpiece 18 during finish machining is the same as the position or inclination of the workpiece 18 during rough machining. can be changed from Further, when the model of the wire electric discharge machine 100 is changed for each machining step, the size of the work table 8 may differ for each model. In such a case as well, the wire electric discharge machine 100 cannot control the pulse voltage or the machining mechanism 13 based on the plate thickness data.
  • FIG. 9 is a diagram for explaining a relative coordinate system that can be applied to coordinates linked to plate thickness information in the first embodiment.
  • the x-axis, y-axis and z-axis shown in FIG. 9 are the three axes of the relative coordinate system.
  • the origin of the relative coordinate system is the starting point of the machining locus 19, that is, the machining start position.
  • the origin of the relative coordinate system may be a position other than the machining start position.
  • the origin of the relative coordinate system may be a position other than the position on the machining locus 19 .
  • the wire electric discharge machine 100 can set any position of the workpiece 18 as the origin of the relative coordinate system.
  • the wire electric discharge machine 100 can apply the pulse voltage or the machining mechanism 13 based on the plate thickness data even if the position or inclination of the work 18 is changed. can be controlled.
  • the wire electric discharge machine 100 can also control the pulse voltage or the machining mechanism 13 based on the plate thickness data even when the model of the wire electric discharge machine 100 is changed.
  • a processing circuit which is a circuit in which a processor executes software.
  • the processing circuit executing the software is, for example, the control circuit shown in FIG. FIG. 10 is a diagram showing a configuration example of the control circuit 30 according to the first embodiment.
  • the control circuit 30 comprises an input section 31 , a processor 32 , a memory 33 and an output section 34 .
  • the input unit 31 is an interface circuit that receives data input from outside the control circuit 30 and provides it to the processor 32 .
  • the output unit 34 is an interface circuit that sends data from the processor 32 or memory 33 to the outside of the control circuit 30 .
  • the processing circuit is the control circuit 30 shown in FIG. 10
  • the above components are implemented by the processor 32 reading out and executing programs corresponding to the respective components stored in the memory 33 .
  • Memory 33 is also used as temporary memory in each process performed by processor 32 .
  • the processor 32 may output data such as calculation results to the memory 33 for storage, or may store data such as calculation results in an auxiliary storage device via the volatile memory of the memory 33 .
  • the processor 32 is a CPU (Central Processing Unit, also referred to as a central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, or DSP (Digital Signal Processor)).
  • the memory 33 is non-volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory), etc.
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory), etc.
  • EEPROM registered trademark
  • a volatile semiconductor memory a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), or the like.
  • FIG. 10 is an example of hardware in which the above components are implemented by a general-purpose processor 32 and memory 33, the above components may be implemented by dedicated hardware circuits.
  • the processing circuit which is a dedicated hardware circuit, can be a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination of these circuit.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the wire electric discharge machining apparatus 100 outputs the plate thickness data to the outside of the wire electric discharge machining apparatus 100, and determines the position of the stepped portion based on the plate thickness data input from the outside of the wire electric discharge machining apparatus 100. to estimate As a result, the wire electric discharge machine 100 can perform control for improving machining quality without limiting the data amount of plate thickness information that can be used for estimating the step position in the workpiece 18. play.
  • Embodiment 2 describes a learning device for using machine learning for at least one of plate thickness estimation and step position estimation.
  • FIG. 11 shows a learning device 40 according to the second embodiment.
  • the same reference numerals are given to the same components as in the first embodiment, and the configuration different from the first embodiment will be mainly described.
  • the learning device 40 learns the relationship between the machining data about the state of electric discharge machining and at least one of the thickness of the workpiece 18 and the position of the step portion of the workpiece 18 where the thickness changes. .
  • a case in which the learning device 40 learns the relationship between the processing data and both the plate thickness and the position of the step will be described below as an example.
  • the learning device 40 includes a data acquisition unit 41 and a model generation unit 42. Processing data, plate thickness data, and step information are input to the data acquisition unit 41 .
  • the data acquisition unit 41 creates learning data using the input processing data, plate thickness data, and step information.
  • learning data is data in which processing data, plate thickness information, and step information are associated with each other. In this manner, the data acquisition unit 41 acquires learning data including processing data, plate thickness information, and step information.
  • the model generation unit 42 uses the learning data to generate a learned model 43 for inferring the plate thickness and the position of the step from the processing data.
  • the trained model storage unit 44 stores the generated trained model 43 .
  • a learned model storage unit 44 shown in FIG. 11 is an external storage unit of the learning device 40 .
  • the trained model storage unit 44 may be provided inside the learning device 40 .
  • a known algorithm such as supervised learning, unsupervised learning, or reinforcement learning can be used as the learning algorithm used by the model generation unit 42 .
  • supervised learning unsupervised learning
  • reinforcement learning can be used as the learning algorithm used by the model generation unit 42 .
  • a case of applying a neural network will be described.
  • the model generation unit 42 learns the plate thickness and the position of the step by so-called supervised learning according to the neural network model.
  • supervised learning is a method of learning a feature in the learning data by giving a set of input and result data to the learning device 40 and inferring the result from the input.
  • the learning data includes inputs and labels that are the results corresponding to the inputs.
  • Processing data corresponds to input, and plate thickness information and step information correspond to labels.
  • a neural network is composed of an input layer consisting of a plurality of neurons, a hidden layer which is an intermediate layer consisting of a plurality of neurons, and an output layer consisting of a plurality of neurons.
  • the intermediate layer may be one layer, or two or more layers.
  • FIG. 12 is a diagram showing a configuration example of a neural network used for learning in the learning device 40 according to the second embodiment.
  • the neural network shown in FIG. 12 is a three-layer neural network.
  • the input layer includes neurons X1, X2, X3.
  • the middle layer contains neurons Y1 and Y2.
  • the output layer contains neurons Z1, Z2, Z3. Note that the number of neurons in each layer is arbitrary.
  • a plurality of values input to the input layer are multiplied by w11, w12, w13, w14, w15, and w16, which are weights W1, and input to the intermediate layer.
  • a plurality of values input to the intermediate layer are multiplied by w21, w22, w23, w24, w25, and w26, which are weights W2, and output from the output layer.
  • the output result output from the output layer changes according to the values of weights W1 and W2.
  • the neural network learns the plate thickness and the position of the step by so-called supervised learning according to learning data acquired by the data acquisition unit 41 . That is, the neural network adjusts the weights W1 and W2 so that the processed data is input to the input layer and the result output from the output layer approaches the thickness information and step information. Learn location.
  • the model generation unit 42 generates the learned model 43 by executing the learning as described above, and outputs the learned model 43 .
  • the learned model storage unit 44 stores the learned model 43 output from the model generation unit 42 .
  • the model generation unit 42 may read the already generated learned model 43 from the learned model storage unit 44 and update the learned model 43 by re-learning according to the learning data.
  • FIG. 13 is a flow chart showing the procedure of learning processing by the learning device 40 according to the second embodiment.
  • the learning device 40 acquires learning data including processing data, plate thickness information, and step information using the data acquisition unit 41 .
  • the data acquisition unit 41 creates learning data using the processing data, the plate thickness data, and the step information, all of which are acquired at the same time. Note that the data acquisition unit 41 only needs to create learning data in which the processing data, the thickness information, and the step information are associated with each other, and does not necessarily acquire the processing data, the plate thickness data, and the step information at the same time.
  • step S12 the learning device 40 uses the model generation unit 42 to learn the plate thickness and the position of the stepped portion by so-called supervised learning according to the learning data, and generates or updates the learned model 43.
  • step S13 the model generating unit 42 outputs the generated or updated learned model 43.
  • FIG. With the above, the learning device 40 ends the learning process according to the procedure shown in FIG. 13 .
  • the learned model storage unit 44 stores the learned model 43 obtained by the learning process.
  • the model generator 42 may perform machine learning using learning algorithms such as reinforcement learning, unsupervised learning, or semi-supervised learning.
  • the model generation unit 42 may perform machine learning using learning algorithms such as deep learning, genetic programming, inductive logic programming, or support vector machines.
  • the learning device 40 is a device external to the wire electric discharge machining device 100 .
  • the learning device 40 may be a device connected to the wire electric discharge machine 100 via a network.
  • the learning device 40 may be a device existing on a cloud server.
  • the learning device 40 is not limited to a device external to the wire electric discharge machine 100 , and may be a device built into the wire electric discharge machine 100 .
  • the learning device 40 is not limited to learning the plate thickness and the position of the stepped portion according to learning data created for one wire electric discharge machining device 100 .
  • the learning device 40 may learn the plate thickness and the position of the stepped portion according to learning data created for a plurality of wire electric discharge machines 100 .
  • the learning device 40 may acquire learning data from a plurality of wire electric discharge machines 100 used at the same place, or may acquire learning data from a plurality of wire electric discharge machines 100 used at different places. may be obtained.
  • the learning data may be obtained from a plurality of wire electric discharge machines 100 that operate independently of each other at a plurality of locations. After starting acquisition of learning data from a plurality of wire electric discharge machines 100, a new wire electric discharge machine 100 may be added as a target for acquiring learning data. Also, after starting acquisition of learning data from a plurality of wire electric discharge machines 100, some of the plurality of wire electric discharge machines 100 may be excluded from targets for which learning data is acquired.
  • the learning device 40 that has learned about one wire electric discharge machine 100 may learn about other wire electric discharge machines 100 other than the wire electric discharge machine 100 concerned.
  • the learning device 40 can update the learned model 43 by re-learning the other wire electric discharge machining device 100 .
  • the learning device 40 should just learn the relationship between the processing data and at least one of the plate thickness and the position of the stepped portion.
  • the processing data and the plate thickness data are input to the data acquisition unit 41 .
  • the data acquisition unit 41 uses the input processing data and plate thickness data to create learning data, which is data in which the processing data and plate thickness information are associated with each other.
  • the data acquisition unit 41 acquires learning data including processing data and plate thickness information.
  • the model generator 42 uses the learning data to generate a learned model 43 for inferring the plate thickness from the processed data.
  • the processing data and the step information are input to the data acquisition unit 41 .
  • the data acquisition unit 41 uses the input processing data and step information to create learning data, which is data in which the processing data and the step information are associated with each other.
  • the data acquisition unit 41 acquires learning data including processed data and step information.
  • the model generator 42 uses the learning data to generate a trained model 43 for inferring the position of the step from the processed data.
  • the learning device 40 is realized by hardware similar to the hardware shown in FIG.
  • Each part of the learning device 40 is realized by a processing circuit, which is a circuit in which a processor executes software.
  • Each part of the learning device 40 may be realized by a dedicated processing circuit, or by a combination of a processing circuit in which a processor executes software and a dedicated processing circuit.
  • the learning device 40 generates the learned model 43 using learning data including processing data and at least one of plate thickness information and step information.
  • the learning device 40 can generate a learned model 43 for inferring at least one of the plate thickness and the position of the step from the processed data.
  • Embodiment 3 describes an inference device that infers at least one of the plate thickness and the position of the step using the learned model 43 .
  • FIG. 14 shows an inference device 50 according to the third embodiment.
  • the same components as those in the first or second embodiment are denoted by the same reference numerals, and the configuration different from that in the first or second embodiment will be mainly described.
  • the inference device 50 infers at least one of the thickness of the workpiece 18 and the position of the step portion of the workpiece 18 where the thickness changes, based on the machining data about the state of electric discharge machining for the wire electric discharge machine 100 .
  • the inference device 50 infers both the plate thickness and the position of the stepped portion based on the processing data.
  • the inference device 50 includes a data acquisition unit 51 and an inference unit 52 .
  • Processed data is input to the data acquisition unit 51 . That is, the data acquisition unit 51 acquires processed data.
  • the inference unit 52 reads the learned model 43 for inferring the plate thickness and the position of the step from the processed data from the learned model storage unit 44 .
  • the inference unit 52 outputs thickness information and step information by inputting processing data, which is data for inference, to the learned model 43 .
  • a trained model storage unit 44 shown in FIG. 14 is an external storage unit of the inference device 50 .
  • the learned model storage unit 44 may be provided inside the inference device 50 .
  • the inference device 50 uses the learned model 43 generated by the learning device 40 according to the second embodiment to infer the plate thickness and the position of the step from the processed data.
  • FIG. 15 is a flowchart showing the procedure of inference processing by the inference device 50 according to the third embodiment.
  • the inference device 50 acquires processed data using the data acquisition unit 51 .
  • the inference unit 52 of the inference device 50 inputs processed data to the learned model 43 .
  • the inference unit 52 outputs plate thickness information and step information.
  • the inference device 50 ends the inference processing according to the procedure shown in FIG. 15 .
  • the inference device 50 sends the plate thickness information and the step information to the wire electric discharge machining device 100 .
  • the inference device 50 is a device external to the wire electric discharge machining device 100 .
  • the inference device 50 may be a device connected to the wire electric discharge machine 100 via a network.
  • the inference device 50 may be a device existing on a cloud server.
  • the reasoning device 50 is not limited to a device external to the wire electric discharge machining device 100 , and may be a device built into the wire electric discharge machining device 100 .
  • the inference device 50 may use the learned model 43 to infer at least one of the plate thickness and the position of the step.
  • the inference unit 52 outputs plate thickness information by inputting the processed data to the learned model 43 for inferring the plate thickness from the processed data.
  • the inferred portion 52 inputs the processed data to the learned model 43 for inferring the position of the stepped portion from the processed data. to output
  • the inference device 50 is realized by hardware similar to the hardware shown in FIG. Each part of the inference device 50 is implemented by a processing circuit, which is a circuit in which a processor executes software. Each part of the inference device 50 may be realized by a dedicated processing circuit, or by a combination of a processing circuit in which a processor executes software and a dedicated processing circuit.
  • the inference device 50 inputs the machining data to the learned model 43 for inferring at least one of the thickness and the position of the stepped portion from the machining data, thereby obtaining the thickness information and the step information. Output at least one.
  • the inference device 50 can infer at least one of the plate thickness and the position of the step from the processing data.
  • the wire electric discharge machine 100 controls machining based on at least one of the plate thickness and the position of the step portion inferred by the inference device 50 .
  • the wire electric discharge machining apparatus 100 can achieve high machining quality by enabling machining suitable for the plate thickness at the stepped portion.
  • each embodiment is an example of the content of the present disclosure.
  • the configuration of each embodiment can be combined with another known technique. Configurations of respective embodiments may be combined as appropriate. A part of the configuration of each embodiment can be omitted or changed without departing from the gist of the present disclosure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

A wire electrical discharge machining device according to the present invention comprises: a machining mechanism (13) for electrical discharge machining; a thickness estimating device (24) that estimates the thickness of a workpiece at a position where machining is being carried out during rough machining of the workpiece by electrical discharge machining; a thickness output device (25) that outputs, to outside of the wire electrical discharge machining device, thickness data in which position data is associated with thickness information indicating the estimated thickness; a thickness input device (26) into which thickness data is input from outside of the wire electrical discharge machining device; a step position estimating device (27) that estimates, on the basis of the inputted thickness data, the position of stepped sections where the thickness of the workpiece changes; an electrical condition control device (22) that controls application of a pulse voltage on the basis of the thickness data and the step information indicating the position of the stepped sections when finishing of a workpiece by electrical discharge machining is being carried out after the rough machining; and a control device that controls the machining mechanism on the basis of the thickness data and the step information when finishing is being carried out.

Description

ワイヤ放電加工装置、ワイヤ放電加工方法、学習装置および推論装置WIRE EDM MACHINE, WIRE EDM METHOD, LEARNING DEVICE, AND REASONING DEVICE
 本開示は、ワークの放電加工を行うワイヤ放電加工装置、ワイヤ放電加工方法、学習装置および推論装置に関する。 The present disclosure relates to a wire electric discharge machine, a wire electric discharge machining method, a learning device, and an inference device for electric discharge machining of a workpiece.
 ワイヤ放電加工装置には、加工対象であるワークの板厚に対応する加工条件、または面粗さ等の要求仕様に対応する加工条件があらかじめ用意されている。ワイヤ放電加工装置の使用により作業を行う作業者は、用意されている加工条件の中から加工に適した加工条件を適宜選択することで、高精度加工、例えば1/100mmから1/1000mmの公差での加工を実現し得る。ただし、1つの加工形状を加工する過程において板厚が急に変化するワークの場合、ワークのうち板厚が互いに異なる部分同士の境界部分である段差部に寸法誤差が生じることがある。また、段差部の表面に筋が生じることがある。寸法誤差の発生または筋の発生による加工品質の低下を防ぐために、従来、ワークの段差位置、すなわち段差部の位置を推定して、板厚に適した加工条件での放電加工を行う手法が提案されている。 For wire electric discharge machines, machining conditions corresponding to the plate thickness of the workpiece to be machined or machining conditions corresponding to the required specifications such as surface roughness are prepared in advance. A worker who performs work using a wire electric discharge machine can perform high-precision machining, for example, a tolerance of 1/100 mm to 1/1000 mm, by appropriately selecting machining conditions suitable for machining from among prepared machining conditions. processing can be realized. However, in the case of a workpiece whose plate thickness changes abruptly in the process of machining one machining shape, a dimensional error may occur at a stepped portion, which is a boundary portion between portions of the workpiece having different plate thicknesses. In addition, streaks may occur on the surface of the stepped portion. Conventionally, in order to prevent the deterioration of machining quality due to the occurrence of dimensional errors or the occurrence of streaks, a method of estimating the step position of the workpiece, that is, the position of the step part, and performing electric discharge machining under the machining conditions suitable for the plate thickness has been proposed. It is
 特許文献1には、ワークの荒加工の際にワークの板厚を検出して板厚情報を記憶しておき、ワークの仕上げ加工の際に板厚情報に基づいて段差位置を推定して加工条件を変更するワイヤ放電加工装置が開示されている。特許文献1によると、ワイヤ放電加工装置は、ワイヤ放電加工装置の記憶領域に板厚の情報を記憶する。 In Patent Document 1, the plate thickness of the workpiece is detected during rough machining of the workpiece, the thickness information is stored, and the step position is estimated and processed based on the thickness information during finish machining of the workpiece. A wire electrical discharge machine with changing conditions is disclosed. According to Patent Literature 1, a wire electric discharge machine stores plate thickness information in a storage area of the wire electric discharge machine.
特許第6808868号公報Japanese Patent No. 6808868
 特許文献1の技術では、荒加工を行ったワイヤ放電加工装置の記憶領域に板厚情報が蓄積されるため、保存可能な板厚情報のデータ量は、ワイヤ放電加工装置内の記憶領域の容量に制限される。そのため、段差位置の推定のために使用できる板厚情報のデータ量に制限があることによって、加工品質の改善のための制御が困難となる場合があるという問題があった。 In the technique of Patent Document 1, since the plate thickness information is accumulated in the storage area of the wire electric discharge machine that performed the rough machining, the amount of data of the plate thickness information that can be stored is the capacity of the storage area in the wire electric discharge machine. is limited to Therefore, there is a problem that the amount of plate thickness information that can be used for estimating the step position is limited, which may make it difficult to perform control for improving the processing quality.
 本開示は、上記に鑑みてなされたものであって、ワークにおける段差位置の推定のために使用できる板厚情報のデータ量に制限を設けること無く、加工品質の改善のための制御を行うことができるワイヤ放電加工装置を得ることを目的とする。 The present disclosure has been made in view of the above, and performs control for improving processing quality without limiting the data amount of plate thickness information that can be used for estimating the step position in the work. An object of the present invention is to obtain a wire electric discharge machine capable of
 上述した課題を解決し、目的を達成するために、本開示にかかるワイヤ放電加工装置は、ワイヤ電極とワークとの間へのパルス電圧の印加によってワークの放電加工を行うワイヤ放電加工装置である。本開示にかかるワイヤ放電加工装置は、放電加工のための機構である加工機構と、放電加工によるワークの荒加工が行われているときに、加工が行われている位置におけるワークの板厚を推定する板厚推定器と、推定された板厚を示す板厚情報に位置情報が紐付けられた板厚データをワイヤ放電加工装置の外部へ出力する板厚出力器と、ワイヤ放電加工装置の外部から板厚データが入力される板厚入力器と、入力された板厚データに基づいて、ワークのうち板厚が変化する段差部の位置を推定する段差位置推定器と、荒加工よりも後の放電加工によるワークの仕上げ加工が行われているときに、板厚データと段差部の位置を示す段差情報とに基づいてパルス電圧の印加を制御する電気条件制御器と、仕上げ加工が行われているときに、板厚データと段差情報とに基づいて加工機構を制御する制御装置と、を備える。 In order to solve the above-described problems and achieve the object, a wire electric discharge machine according to the present disclosure is a wire electric discharge machine that performs electric discharge machining of a work by applying a pulse voltage between a wire electrode and the work. . The wire electric discharge machining apparatus according to the present disclosure includes a machining mechanism that is a mechanism for electric discharge machining, and when rough machining of the workpiece by electric discharge machining is performed, the plate thickness of the workpiece at the position where machining is performed. A plate thickness estimator for estimating a plate thickness, a plate thickness output device for outputting plate thickness data in which position information is linked to plate thickness information indicating the estimated plate thickness to the outside of the wire electric discharge machine, and a wire electric discharge machine A plate thickness input device that inputs plate thickness data from the outside, a step position estimator that estimates the position of a step where the plate thickness changes based on the input plate thickness data, and a rough machining An electric condition controller that controls the application of pulse voltage based on plate thickness data and level difference information indicating the position of a level difference part when the workpiece is being finish processed by electric discharge machining afterward, and finish machining is performed. and a control device for controlling the processing mechanism based on the plate thickness data and the step information when the plate thickness data and the step information are being processed.
 本開示にかかるワイヤ放電加工装置は、ワークにおける段差位置の推定のために使用できる板厚情報のデータ量に制限を設けること無く、加工品質の改善のための制御を行うことができるという効果を奏する。 The wire electric discharge machine according to the present disclosure has the effect of being able to perform control for improving machining quality without limiting the data amount of plate thickness information that can be used for estimating the step position in the work. Play.
実施の形態1にかかるワイヤ放電加工装置の構成例を示す図1 is a diagram showing a configuration example of a wire electric discharge machining apparatus according to a first embodiment; FIG. 実施の形態1にかかるワイヤ放電加工装置に備えられた電源部および制御部の機能構成を示す図FIG. 2 is a diagram showing functional configurations of a power supply unit and a control unit provided in the wire electric discharge machining apparatus according to the first embodiment; 実施の形態1にかかるワイヤ放電加工装置の動作手順を示すフローチャート4 is a flow chart showing the operation procedure of the wire electric discharge machine according to the first embodiment; 実施の形態1にかかるワイヤ放電加工装置による、荒加工の際における制御について説明するためのブロック線図FIG. 2 is a block diagram for explaining control during rough machining by the wire electric discharge machine according to the first embodiment; FIG. 実施の形態1にかかるワイヤ放電加工装置による、仕上げ加工の際における制御について説明するためのブロック線図FIG. 2 is a block diagram for explaining control during finish machining by the wire electric discharge machine according to the first embodiment; 実施の形態1において位置情報補正部である座標補正器が追加された制御部を示す図FIG. 4 is a diagram showing a control unit to which a coordinate corrector, which is a position information correction unit, is added in Embodiment 1; 図6に示す座標補正器が追加されたワイヤ放電加工装置による、仕上げ加工の際における制御について説明するためのブロック線図FIG. 7 is a block diagram for explaining control during finish machining by the wire electric discharge machine to which the coordinate corrector shown in FIG. 6 is added; 実施の形態1にかかるワイヤ放電加工装置の機械座標系について説明するための図FIG. 2 is a diagram for explaining a machine coordinate system of the wire electric discharge machine according to the first embodiment; 実施の形態1において、板厚の情報に紐付けられる座標に適用可能な相対座標系について説明するための図FIG. 4 is a diagram for explaining a relative coordinate system applicable to coordinates associated with plate thickness information in Embodiment 1. FIG. 実施の形態1にかかる制御回路の構成例を示す図1 is a diagram showing a configuration example of a control circuit according to a first embodiment; FIG. 実施の形態2にかかる学習装置を示す図FIG. 11 shows a learning device according to a second embodiment; 実施の形態2にかかる学習装置における学習に使用されるニューラルネットワークの構成例を示す図FIG. 8 is a diagram showing a configuration example of a neural network used for learning in the learning device according to the second embodiment; 実施の形態2にかかる学習装置による学習処理の手順を示すフローチャート4 is a flowchart showing the procedure of learning processing by the learning device according to the second embodiment; 実施の形態3にかかる推論装置を示す図FIG. 11 shows an inference apparatus according to a third embodiment; 実施の形態3にかかる推論装置による推論処理の手順を示すフローチャート10 is a flowchart showing the procedure of inference processing by the inference device according to the third embodiment;
 以下に、実施の形態にかかるワイヤ放電加工装置、ワイヤ放電加工方法、学習装置および推論装置を図面に基づいて詳細に説明する。 A wire electric discharge machining apparatus, a wire electric discharge machining method, a learning apparatus, and an inference apparatus according to embodiments will be described in detail below with reference to the drawings.
実施の形態1.
 図1は、実施の形態1にかかるワイヤ放電加工装置100の構成例を示す図である。ワイヤ放電加工装置100は、ワーク18と加工電極であるワイヤ電極2との間隙において放電を発生させることによってワーク18を加工する工作機械である。X軸、Y軸およびZ軸は、ワイヤ放電加工装置100が持つ機械座標系の3軸とする。例えば、XY平面が水平面であり、Z軸方向が鉛直方向である。以下の説明では、プラスZ方向を上方向、マイナスZ方向を下方向とする。
Embodiment 1.
FIG. 1 is a diagram showing a configuration example of a wire electric discharge machining apparatus 100 according to a first embodiment. A wire electric discharge machine 100 is a machine tool that processes a work 18 by generating electric discharge in a gap between the work 18 and a wire electrode 2, which is a machining electrode. The X-axis, Y-axis and Z-axis are the three axes of the machine coordinate system of the wire electric discharge machine 100 . For example, the XY plane is the horizontal plane, and the Z-axis direction is the vertical direction. In the following description, the plus Z direction is the upward direction, and the minus Z direction is the downward direction.
 ワイヤ放電加工装置100は、放電加工のための機構である加工機構13と、加工電源を含む電源部14と、制御装置である数値制御(NC:Numerical Control)装置を含む制御部15とを備える。 The wire electric discharge machine 100 includes a machining mechanism 13 that is a mechanism for electric discharge machining, a power supply section 14 that includes a machining power supply, and a control section 15 that includes a numerical control (NC) device that is a controller. .
 加工機構13は、ワイヤ電極ボビン1と、ワイヤ電極ボビン1から引き出されたワイヤ電極2を搬送する搬送ローラ3と、ワーク18の上方に配置された上側給電子4と、ワーク18の下方に配置された下側給電子5と、ワーク18の加工中にワイヤ電極2を支持する上部ガイド6および下部ガイド7と、ワーク18が配置されるワークテーブル8とを備える。また、加工機構13は、加工に使用されたワイヤ電極2を搬送する下部ローラ9と、ワイヤ電極2を搬送する駆動力を発生する回収ローラ10と、使用後のワイヤ電極2を回収するワイヤ電極回収箱11と、ワークテーブル8を駆動するX軸駆動モータ12XおよびY軸駆動モータ12Yとを備える。 The processing mechanism 13 includes the wire electrode bobbin 1 , the conveying roller 3 that conveys the wire electrode 2 drawn out from the wire electrode bobbin 1 , the upper feeder 4 arranged above the work 18 , and the work 18 below the work 18 . upper and lower guides 6 and 7 for supporting the wire electrode 2 during machining of the work 18; and a work table 8 on which the work 18 is placed. The processing mechanism 13 includes a lower roller 9 for transporting the wire electrode 2 used for processing, a recovery roller 10 for generating a driving force for transporting the wire electrode 2, and a wire electrode for recovering the wire electrode 2 after use. It has a collection box 11 and an X-axis drive motor 12X and a Y-axis drive motor 12Y that drive the work table 8 .
 NC装置は、上部ガイド6および下部ガイド7の各々へ位置指令を送る。上部ガイド6および下部ガイド7は、位置指令に従った位置において、かつ、位置指令に従った傾きで、ワイヤ電極2を支持する。上側給電子4および下側給電子5の各々は、加工電源に接続されている。NC装置は、X軸駆動モータ12XおよびY軸駆動モータ12Yの各々へ軸指令を送る。X軸駆動モータ12Xは、軸指令に従って、X軸方向へワークテーブル8を駆動する。Y軸駆動モータ12Yは、軸指令に従って、Y軸方向へワークテーブル8を駆動する。加工部16は、上部ガイド6と下部ガイド7との間のワイヤ電極2とする。 The NC device sends position commands to each of the upper guide 6 and lower guide 7. The upper guide 6 and the lower guide 7 support the wire electrode 2 at a position according to the position command and with an inclination according to the position command. Each of the upper feeder 4 and the lower feeder 5 is connected to a machining power supply. The NC device sends axis commands to each of the X-axis drive motor 12X and the Y-axis drive motor 12Y. The X-axis drive motor 12X drives the worktable 8 in the X-axis direction according to the axis command. The Y-axis drive motor 12Y drives the worktable 8 in the Y-axis direction according to the axis command. The processed portion 16 is the wire electrode 2 between the upper guide 6 and the lower guide 7 .
 図2は、実施の形態1にかかるワイヤ放電加工装置100に備えられた電源部14および制御部15の機能構成を示す図である。図2には、電源部14および制御部15と、加工電源20に接続されている上側給電子4および下側給電子5と、NC装置23から送られる指令に従って動作する上部ガイド6、下部ガイド7、X軸駆動モータ12X、およびY軸駆動モータ12Yとを示す。 FIG. 2 is a diagram showing the functional configurations of the power supply section 14 and the control section 15 provided in the wire electric discharge machine 100 according to the first embodiment. FIG. 2 shows a power supply unit 14 and a control unit 15, an upper feeder 4 and a lower feeder 5 connected to a machining power supply 20, an upper guide 6 and a lower guide operating according to commands sent from the NC device 23. 7, an X-axis drive motor 12X and a Y-axis drive motor 12Y.
 電源部14は、加工電源20と、加工電圧検出器21と、電気条件制御器22とを備える。加工電源20は、NC装置23が出力する電圧指令にしたがって、ワイヤ電極2とワーク18との間にパルス電圧を印加する。加工電圧検出器21は、加工電圧を検出する。加工電圧は、ワイヤ電極2とワーク18との間に印加される極間電圧である。電気条件制御器22は、パルス電圧の印加を制御する。 The power supply unit 14 includes a machining power supply 20 , a machining voltage detector 21 and an electrical condition controller 22 . The machining power supply 20 applies a pulse voltage between the wire electrode 2 and the work 18 according to the voltage command output by the NC device 23 . A machining voltage detector 21 detects a machining voltage. The machining voltage is the inter-electrode voltage applied between the wire electrode 2 and the workpiece 18 . The electrical condition controller 22 controls application of the pulse voltage.
 制御部15は、NC装置23と、板厚推定器24と、板厚出力器25と、板厚入力器26と、段差位置推定器27とを備える。NC装置23は、放電加工のための加工プログラムに従って、加工条件に応じた各種指令を生成する。NC装置23は、各種指令を出力することによって、加工機構13と電源部14とを制御する。 The control unit 15 includes an NC device 23 , a plate thickness estimator 24 , a plate thickness output device 25 , a plate thickness input device 26 and a step position estimator 27 . The NC device 23 generates various commands according to machining conditions according to a machining program for electrical discharge machining. The NC device 23 controls the processing mechanism 13 and the power supply section 14 by outputting various commands.
 板厚推定器24は、放電加工によるワーク18の荒加工が行われているときに、加工が行われている位置におけるワーク18の板厚を推定する。板厚出力器25は、ワイヤ放電加工装置100の外部へ板厚データを出力する。板厚データは、板厚推定器24によって推定された板厚を示す板厚情報に位置情報が紐付けられたデータである。荒加工よりも後の放電加工によるワーク18の仕上げ加工が行われる際に、板厚入力器26には、ワイヤ放電加工装置100の外部から板厚データが入力される。段差位置推定器27は、板厚入力器26へ入力された板厚データに基づいて段差部の位置を推定する。段差部は、ワーク18のうち板厚が変化する部分、すなわち、板厚が互いに異なる部分同士の境界に当たる部分である。 The plate thickness estimator 24 estimates the plate thickness of the work 18 at the position where the work 18 is being rough-machined by electrical discharge machining. The plate thickness output device 25 outputs plate thickness data to the outside of the wire electric discharge machining apparatus 100 . The plate thickness data is data in which position information is linked to plate thickness information indicating the plate thickness estimated by the plate thickness estimator 24 . When the workpiece 18 is finished by electric discharge machining after rough machining, the thickness data is input to the thickness input device 26 from the outside of the wire electric discharge machine 100 . The step position estimator 27 estimates the position of the step based on the plate thickness data input to the plate thickness input device 26 . The stepped portion is a portion of the work 18 where the plate thickness changes, that is, a portion that hits the boundary between portions with different plate thicknesses.
 電気条件制御器22は、仕上げ加工が行われているときに、板厚データと段差情報とに基づいてパルス電圧の印加を制御する。段差情報は、段差部の位置を示す情報である。NC装置23は、仕上げ加工が行われているときに、板厚データと段差情報とに基づいて加工機構13を制御する。 The electrical condition controller 22 controls the application of the pulse voltage based on the plate thickness data and the step information during the finishing process. The step information is information indicating the position of the step. The NC device 23 controls the processing mechanism 13 based on the plate thickness data and the step information during finishing processing.
 板厚出力器25は、ワイヤ放電加工装置100の外部にて保存されるファイル17へ板厚データを書き出すことによって、板厚データを出力する。ファイル17は、記憶装置または記憶媒体といった記憶手段に保存される。板厚出力器25は、ワイヤ放電加工装置100の外部にて保存される加工プログラムへ板厚データを書き出すことによって板厚データを出力しても良い。板厚入力器26が、ファイル17から、または加工プログラムから板厚データを読み出すことによって、板厚入力器26に板厚データが入力される。 The plate thickness output device 25 outputs plate thickness data by writing the plate thickness data to a file 17 stored outside the wire electric discharge machining apparatus 100 . The file 17 is stored in storage means such as a storage device or a storage medium. The plate thickness output device 25 may output the plate thickness data by writing the plate thickness data to a machining program stored outside the wire electric discharge machining apparatus 100 . The plate thickness data is input to the plate thickness input device 26 by the plate thickness input device 26 reading the plate thickness data from the file 17 or from the processing program.
 次に、ワイヤ放電加工装置100の動作について説明する。図3は、実施の形態1にかかるワイヤ放電加工装置100の動作手順を示すフローチャートである。ワイヤ放電加工装置100は、要求仕様に応じた加工形状を得るまでに、複数回の加工を実行する。荒加工は、複数回の加工のうち最初に実行される加工であって、形状の精度よりも加工速度が重視される加工である。仕上げ加工は、複数回の加工のうち荒加工よりも後に実行される加工である。仕上げ加工の回数は任意である。図3には、荒加工および仕上げ加工における動作であって、ワーク18の段差部における加工を調整するためにワイヤ放電加工装置100が行う動作の手順を示す。 Next, the operation of the wire electric discharge machine 100 will be described. FIG. 3 is a flow chart showing the operation procedure of the wire electric discharge machine 100 according to the first embodiment. The wire electric discharge machine 100 performs machining a plurality of times until obtaining a machined shape that meets the required specifications. Rough machining is machining performed first among a plurality of times of machining, and is machining in which machining speed is emphasized rather than shape accuracy. Finish machining is machining that is performed after rough machining among a plurality of machining operations. The number of finishing processes is arbitrary. FIG. 3 shows a sequence of operations performed by the wire electric discharge machine 100 to adjust the machining of the stepped portion of the workpiece 18 during rough machining and finish machining.
 ワイヤ放電加工装置100は、荒加工においてステップS1およびステップS2の動作を実行する。ステップS1において、ワイヤ放電加工装置100は、板厚推定器24によってワーク18の板厚を推定する。ステップS2において、ワイヤ放電加工装置100は、板厚出力器25によって、ファイル17または加工プログラムへ板厚データを書き出す。これにより、ワイヤ放電加工装置100は、ワイヤ放電加工装置100の外部へ板厚データを出力する。 The wire electric discharge machine 100 performs the operations of steps S1 and S2 in rough machining. In step S<b>1 , the wire electric discharge machine 100 estimates the plate thickness of the workpiece 18 using the plate thickness estimator 24 . In step S2, the wire electric discharge machining apparatus 100 writes the thickness data to the file 17 or machining program by the thickness output device 25. FIG. Thereby, the wire electric discharge machining apparatus 100 outputs the plate thickness data to the outside of the wire electric discharge machining apparatus 100 .
 ワイヤ放電加工装置100は、仕上げ加工においてステップS3からステップS5の動作を実行する。ステップS3において、ワイヤ放電加工装置100は、板厚入力器26によって、ファイル17または加工プログラムから板厚データを読み込む。すなわち、ワイヤ放電加工装置100は、ワイヤ放電加工装置100の外部から板厚データを読み込む。 The wire electric discharge machine 100 performs operations from step S3 to step S5 in finish machining. In step S<b>3 , the wire electric discharge machine 100 uses the plate thickness input device 26 to read the plate thickness data from the file 17 or the machining program. That is, the wire electric discharge machine 100 reads plate thickness data from the outside of the wire electric discharge machine 100 .
 ステップS4において、ワイヤ放電加工装置100は、読み込まれた板厚データに基づいて、段差部の位置を推定する。ステップS5において、ワイヤ放電加工装置100は、板厚データと段差情報とに基づいて、電気条件と軸指令との少なくとも一方を調整する。電気条件は、電圧値、またはパルスの休止時間といった、パルス電圧の印加についての条件である。ワイヤ放電加工装置100は、電気条件と軸指令との少なくとも一方を調整することによって、板厚データと段差情報とに基づいて、パルス電圧の印加と加工機構13との少なくとも一方を制御する。以上により、ワイヤ放電加工装置100は、図3に示す手順による動作を終了する。 In step S4, the wire electric discharge machining apparatus 100 estimates the position of the stepped portion based on the read plate thickness data. In step S5, the wire electric discharge machine 100 adjusts at least one of the electrical conditions and the axis command based on the plate thickness data and the step information. The electrical condition is a condition for applying a pulse voltage, such as a voltage value or a pulse rest time. The wire electric discharge machine 100 controls at least one of the application of the pulse voltage and the machining mechanism 13 based on the plate thickness data and step information by adjusting at least one of the electrical conditions and the axis command. As described above, the wire electric discharge machine 100 completes the operation according to the procedure shown in FIG.
 図4は、実施の形態1にかかるワイヤ放電加工装置100による、荒加工の際における制御について説明するためのブロック線図である。加工電源20は、NC装置23からの電圧指令に応じたパルス電圧をワイヤ電極2とワーク18との間に印加する。X軸駆動モータ12XおよびY軸駆動モータ12Yは、NC装置23からの軸指令に応じてワークテーブル8をX軸方向およびY軸方向に移動させる。ワイヤ放電加工装置100は、ワークテーブル8を移動させることによって、ワイヤ電極2とワーク18との間の距離を調整する。ワイヤ放電加工装置100は、電圧指令と軸指令とによって、加工部16における放電エネルギーを制御する。このようにして、ワイヤ放電加工装置100は、放電加工を制御する。 FIG. 4 is a block diagram for explaining control during rough machining by the wire electric discharge machine 100 according to the first embodiment. The machining power supply 20 applies a pulse voltage between the wire electrode 2 and the workpiece 18 according to the voltage command from the NC device 23 . The X-axis drive motor 12X and the Y-axis drive motor 12Y move the work table 8 in the X-axis direction and the Y-axis direction in accordance with axis commands from the NC device 23 . The wire electric discharge machine 100 adjusts the distance between the wire electrode 2 and the work 18 by moving the work table 8 . The wire electric discharge machine 100 controls the electric discharge energy in the machining section 16 based on the voltage command and the axis command. Thus, the wire electric discharge machine 100 controls electric discharge machining.
 加工電圧検出器21は、加工部16における加工電圧を検出する。ワイヤ放電加工装置100は、加工電圧検出器21によって検出された加工電圧のフィードバックによって、電圧指令に示される電気条件を調整する。加工電源20は、電気条件が調整された電圧指令に従ってパルス電圧を印加する。ワイヤ放電加工装置100は、加工電圧検出器21により検出された加工電圧のフィードバックによって、軸指令を調整する。X軸駆動モータ12XおよびY軸駆動モータ12Yは、調整された軸指令に従ってワークテーブル8を移動させる。なお、加工電圧のフィードバックによる調整は、電気条件と軸指令との双方の調整に限られない。ワイヤ放電加工装置100は、加工電圧のフィードバックによって、電気条件と軸指令との少なくとも一方を調整すれば良いものとする。 The machining voltage detector 21 detects the machining voltage in the machining section 16 . The wire electric discharge machine 100 adjusts the electrical conditions indicated by the voltage command by feedback of the machining voltage detected by the machining voltage detector 21 . The machining power source 20 applies a pulse voltage according to the voltage command with the adjusted electrical conditions. The wire electric discharge machine 100 adjusts the axis command by feedback of the machining voltage detected by the machining voltage detector 21 . The X-axis drive motor 12X and the Y-axis drive motor 12Y move the work table 8 according to the adjusted axis commands. Adjustment by feedback of machining voltage is not limited to adjustment of both electrical conditions and axis commands. The wire electric discharge machine 100 should adjust at least one of the electrical condition and the axis command by feedback of the machining voltage.
 板厚推定器24は、荒加工が行われている位置における板厚を加工データに基づいて推定する。加工データは、加工電圧、加工電流、放電パルス数、または加工速度等のデータであって、加工部16の状態を表すデータである。板厚推定器24は、板厚の推定結果に位置の情報が紐づけられた板厚データを生成する。板厚推定器24は、板厚出力器25へ板厚データを出力する。板厚出力器25は、ファイル17または加工プログラムへ板厚データを書き出す。 The plate thickness estimator 24 estimates the plate thickness at the position where rough processing is being performed based on the processing data. The machining data is data such as machining voltage, machining current, the number of discharge pulses, or machining speed, and is data representing the state of the machining unit 16 . The plate thickness estimator 24 generates plate thickness data in which position information is linked to the plate thickness estimation result. The thickness estimator 24 outputs thickness data to the thickness output device 25 . The plate thickness output device 25 writes the plate thickness data to the file 17 or processing program.
 図5は、実施の形態1にかかるワイヤ放電加工装置100による、仕上げ加工の際における制御について説明するためのブロック線図である。ワイヤ放電加工装置100は、電圧指令と軸指令とによって、放電加工を制御する。ワイヤ放電加工装置100は、加工電圧検出器21によって検出された加工電圧のフィードバックによって、電気条件と軸指令との少なくとも一方を調整する。 FIG. 5 is a block diagram for explaining control during finish machining by the wire electric discharge machine 100 according to the first embodiment. The wire electric discharge machine 100 controls electric discharge machining based on a voltage command and an axis command. The wire electric discharge machine 100 adjusts at least one of the electrical conditions and the axis command by feedback of the machining voltage detected by the machining voltage detector 21 .
 板厚入力器26は、ファイル17または加工プログラムから板厚データを読み出す。板厚入力器26は、段差位置推定器27と電気条件制御器22との各々へ板厚データを出力する。段差位置推定器27は、ワーク18の位置ごとにおける板厚の変化を板厚データから検出する。段差位置推定器27は、板厚が急峻に変化している位置を、段差部の位置と推定する。段差位置推定器27は、推定された位置を示す段差情報を生成する。段差位置推定器27は、電気条件制御器22へ段差情報を出力する。 The plate thickness input device 26 reads plate thickness data from the file 17 or the processing program. The plate thickness input device 26 outputs plate thickness data to each of the step position estimator 27 and the electrical condition controller 22 . The step position estimator 27 detects changes in the plate thickness at each position of the workpiece 18 from the plate thickness data. The step position estimator 27 estimates the position where the plate thickness abruptly changes as the position of the step. The step position estimator 27 generates step information indicating the estimated position. The bump position estimator 27 outputs the bump information to the electrical condition controller 22 .
 電気条件制御器22は、仕上げ加工が行われている位置が段差部に到達するタイミングを、段差情報に基づいて判断する。電気条件制御器22は、板厚データに示される板厚に応じて、電気条件を調整する。これにより、電気条件制御器22は、仕上げ加工が行われているときに、板厚データと段差情報とに基づいてパルス電圧の印加を制御する。電気条件制御器22は、板厚データに示される板厚に応じて、軸指令に示されるワークテーブル8の位置を調整する。これにより、NC装置23は、仕上げ加工が行われているときに、板厚データと段差情報とに基づいて調整された加工条件に応じて放電加工を制御する。なお、板厚データと段差情報とに基づいた調整は、電気条件と軸指令との双方の調整に限られない。ワイヤ放電加工装置100は、板厚データと段差情報とに基づいて、電気条件と軸指令との少なくとも一方を調整すれば良いものとする。すなわち、ワイヤ放電加工装置100は、板厚データと段差データとに基づいて、パルス電圧の印加と加工機構13との少なくとも一方を制御する。 The electric condition controller 22 determines the timing at which the position where finishing is being performed reaches the step portion based on the step information. The electrical condition controller 22 adjusts the electrical conditions according to the plate thickness indicated by the plate thickness data. Thereby, the electric condition controller 22 controls the application of the pulse voltage based on the plate thickness data and the step information during the finishing process. The electric condition controller 22 adjusts the position of the work table 8 indicated by the axis command according to the plate thickness indicated by the plate thickness data. Thereby, the NC unit 23 controls the electric discharge machining according to the machining conditions adjusted based on the plate thickness data and the step information during finishing machining. Note that the adjustment based on the plate thickness data and the step information is not limited to the adjustment of both the electrical conditions and the axis command. The wire electric discharge machine 100 should adjust at least one of the electrical conditions and the axis command based on the plate thickness data and the step information. That is, the wire electric discharge machine 100 controls at least one of the application of the pulse voltage and the machining mechanism 13 based on the plate thickness data and the step data.
 ワイヤ放電加工装置100は、荒加工において生成された板厚データをワイヤ放電加工装置100の外部へ出力する。また、ワイヤ放電加工装置100は、仕上げ加工の際に、ワイヤ放電加工装置100の外部から入力された板厚データに基づいて段差情報を生成し、板厚データと段差情報とに基づいて、パルス電圧の印加または加工機構13を制御する。ワイヤ放電加工装置100は、段差部において板厚に適した加工が可能となることによって、高い加工品質を実現できる。 The wire electric discharge machine 100 outputs the plate thickness data generated in the rough machining to the outside of the wire electric discharge machine 100. In addition, the wire electric discharge machining apparatus 100 generates step information based on the plate thickness data input from the outside of the wire electric discharge machine 100 during finish machining, and generates a pulse based on the plate thickness data and the step information. It controls the application of voltage or the processing mechanism 13 . The wire electric discharge machining apparatus 100 can achieve high machining quality by enabling machining suitable for the plate thickness at the stepped portion.
 実施の形態1によると、ワイヤ放電加工装置100の内部に板厚データを蓄積する必要が無いことから、段差部の位置の推定のために使用できる板厚情報のデータ量に制限を設ける必要が無くなる。ワイヤ放電加工装置100の外部にて保存されるファイル17または加工プログラムに板厚データを保存することによって、ワイヤ放電加工装置100による加工プロセスのトレーサビリティの確保も可能となる。 According to Embodiment 1, since it is not necessary to accumulate plate thickness data inside the wire electric discharge machining apparatus 100, it is necessary to set a limit on the data amount of plate thickness information that can be used for estimating the position of the stepped portion. disappear. By storing the plate thickness data in the file 17 or machining program stored outside the wire electric discharge machine 100, it is possible to ensure the traceability of the machining process by the wire electric discharge machine 100.
 ワイヤ放電加工装置100は、板厚データに含まれる位置情報を補正する位置情報補正部を備えても良い。ここでは、制御部15に位置情報補正部を追加する例を説明する。図6は、実施の形態1において位置情報補正部である座標補正器28が追加された制御部15を示す図である。 The wire electric discharge machining apparatus 100 may include a position information correction unit that corrects the position information included in the plate thickness data. Here, an example in which a position information correction unit is added to the control unit 15 will be described. FIG. 6 shows the controller 15 to which the coordinate corrector 28, which is the position information corrector, is added in the first embodiment.
 座標補正器28は、板厚データが生成されたときからワークテーブル8上のワーク18の位置または傾きが変更された場合に、板厚データに含まれる位置情報である座標を補正する。座標補正器28は、ワーク18の位置または傾きの変更分が相殺されるように、座標を補正する。電気条件制御器22は、補正された位置情報を含む板厚データと段差情報とに基づいてパルス電圧の印加を制御する。NC装置23は、補正された位置情報を含む板厚データと段差情報とに基づいて加工機構13を制御する。ワイヤ放電加工装置100は、ワーク18の位置または傾きが変更された場合でも、座標補正器28で座標を補正することによって、板厚データに基づいてパルス電圧または加工機構13を制御することができる。 The coordinate corrector 28 corrects the coordinates, which are the position information included in the thickness data, when the position or inclination of the workpiece 18 on the work table 8 has changed since the thickness data was generated. The coordinate corrector 28 corrects the coordinates so that the change in the position or tilt of the workpiece 18 is offset. The electrical condition controller 22 controls the application of the pulse voltage based on the plate thickness data including the corrected positional information and the step information. The NC device 23 controls the processing mechanism 13 based on the plate thickness data including the corrected position information and the step information. The wire electric discharge machine 100 can control the pulse voltage or the machining mechanism 13 based on the plate thickness data by correcting the coordinates with the coordinate corrector 28 even when the position or inclination of the work 18 is changed. .
 荒加工が行われた後にワーク18がワークテーブル8から取り外されて、再びワークテーブル8にワーク18が設置されることによって、ワーク18の位置または傾きが変更される場合がある。また、荒加工および仕上げ加工といった加工ステップごとにワイヤ放電加工装置100の機種を変更してワーク18を加工する場合、仕上げ加工におけるワーク18の位置または傾きが、荒加工のときにおけるワーク18の位置または傾きから変更され得る。ワイヤ放電加工装置100の機種を変更する例としては、水を加工液として用いるワイヤ放電加工装置100を荒加工に使用し、油を加工液として用いるワイヤ放電加工装置100を仕上げ加工に使用する場合が挙げられる。水を加工液として用いるワイヤ放電加工装置100を荒加工に使用することで、高い加工速度での加工を行うことができる。油を加工液として用いるワイヤ放電加工装置100を仕上げ加工に使用することで、加工速度は低いが高精度な加工を行うことができる。 The position or inclination of the work 18 may be changed by removing the work 18 from the work table 8 after rough machining and placing the work 18 on the work table 8 again. Further, when the work 18 is machined by changing the model of the wire electric discharge machine 100 for each machining step such as rough machining and finish machining, the position or inclination of the work 18 in the finish machining is the same as the position of the work 18 in the rough machining. Or it can be changed from tilt. As an example of changing the model of the wire electric discharge machine 100, the wire electric discharge machine 100 using water as the machining fluid is used for rough machining, and the wire electric discharge machine 100 using oil as the machining fluid is used for finish machining. are mentioned. By using the wire electric discharge machining apparatus 100 that uses water as a machining fluid for rough machining, machining can be performed at a high machining speed. By using the wire electric discharge machining apparatus 100 that uses oil as a machining fluid for finish machining, high-precision machining can be performed at a low machining speed.
 また、加工ステップごとにワイヤ放電加工装置100の機種を変更する場合は、ワークテーブル8のサイズが機種ごとに異なることがある。この場合も、ワイヤ放電加工装置100は、座標補正器28で座標を補正することによって、仕上げ加工において、板厚データに基づいてパルス電圧または加工機構13を制御することができる。 Also, when changing the model of the wire electric discharge machine 100 for each machining step, the size of the work table 8 may differ for each model. In this case as well, the wire electric discharge machine 100 can control the pulse voltage or the machining mechanism 13 based on the plate thickness data in finishing machining by correcting the coordinates with the coordinate corrector 28 .
 図7は、図6に示す座標補正器28が追加されたワイヤ放電加工装置100による、仕上げ加工の際における制御について説明するためのブロック線図である。板厚入力器26は、入力された板厚データを座標補正器28へ出力する。座標補正器28は、板厚データが生成されたときからワーク18の位置または傾きの変更があった場合に、板厚データに含まれる座標を補正する。座標補正器28は、座標が補正された板厚データを段差位置推定器27と電気条件制御器22との各々へ出力する。これにより、ワイヤ放電加工装置100は、板厚データが生成されたときからワークテーブル8上のワーク18の位置または傾きが変更された場合において、板厚データに基づいてパルス電圧または加工機構13を制御することができる。 FIG. 7 is a block diagram for explaining control during finish machining by the wire electric discharge machine 100 to which the coordinate corrector 28 shown in FIG. 6 is added. The plate thickness input device 26 outputs the input plate thickness data to the coordinate corrector 28 . The coordinate corrector 28 corrects the coordinates included in the thickness data when the position or inclination of the workpiece 18 has changed since the thickness data was generated. The coordinate corrector 28 outputs the plate thickness data whose coordinates have been corrected to the step position estimator 27 and the electrical condition controller 22, respectively. As a result, the wire electric discharge machine 100 adjusts the pulse voltage or the machining mechanism 13 based on the thickness data when the position or inclination of the workpiece 18 on the work table 8 is changed after the thickness data is generated. can be controlled.
 板厚データにおいて板厚の情報に紐付けられる座標は、ワイヤ放電加工装置100に固有の機械座標系の座標ではなく、ワーク18を基準とする座標系の座標であっても良い。ワーク18を基準とする座標系とは、ワーク18のうちあらかじめ設定された位置を原点とする座標系とする。以下の説明では、ワーク18を基準とする座標系を、相対座標系と称する。 The coordinates linked to the thickness information in the thickness data may be the coordinates of a coordinate system based on the work 18 instead of the coordinates of the machine coordinate system unique to the wire electric discharge machining apparatus 100 . A coordinate system based on the work 18 is a coordinate system having a preset position on the work 18 as an origin. In the following description, a coordinate system based on the workpiece 18 is called a relative coordinate system.
 図8は、実施の形態1にかかるワイヤ放電加工装置100の機械座標系について説明するための図である。図8に示す例では、ワークテーブル8の1つの点が、機械座標系の原点であるものとする。 FIG. 8 is a diagram for explaining the machine coordinate system of the wire electric discharge machining device 100 according to the first embodiment. In the example shown in FIG. 8, one point on the work table 8 is assumed to be the origin of the machine coordinate system.
 板厚の情報に紐付けられる座標を機械座標系の座標とした場合、板厚データが生成された後にワーク18がワークテーブル8から取り外されて、再びワークテーブル8にワーク18が設置されることによって、原点に対するワーク18の位置が変更されることがある。または、機械座標系に対するワーク18の傾きが変更されることがある。仕上げ加工のときに、荒加工のときからワーク18の位置または傾きが変更されている場合、ワイヤ放電加工装置100は、板厚データに基づいてパルス電圧または加工機構13を制御することができなくなる。 If the coordinates linked to the plate thickness information are the coordinates of the machine coordinate system, the work 18 is removed from the work table 8 after the plate thickness data is generated, and the work 18 is placed on the work table 8 again. may change the position of the workpiece 18 with respect to the origin. Alternatively, the tilt of the workpiece 18 with respect to the machine coordinate system may be changed. During finish machining, if the position or inclination of the workpiece 18 is changed from that during rough machining, the wire electric discharge machine 100 cannot control the pulse voltage or the machining mechanism 13 based on the plate thickness data. .
 荒加工および仕上げ加工といった加工ステップごとにワイヤ放電加工装置100の機種を変更してワーク18を加工する場合、仕上げ加工におけるワーク18の位置または傾きが、荒加工のときにおけるワーク18の位置または傾きから変更され得る。また、加工ステップごとにワイヤ放電加工装置100の機種を変更する場合は、ワークテーブル8のサイズが機種ごとに異なることがある。このような場合も、ワイヤ放電加工装置100は、板厚データに基づいてパルス電圧または加工機構13を制御することができなくなる。 When the workpiece 18 is machined by changing the model of the wire electric discharge machine 100 for each machining step such as rough machining and finish machining, the position or inclination of the workpiece 18 during finish machining is the same as the position or inclination of the workpiece 18 during rough machining. can be changed from Further, when the model of the wire electric discharge machine 100 is changed for each machining step, the size of the work table 8 may differ for each model. In such a case as well, the wire electric discharge machine 100 cannot control the pulse voltage or the machining mechanism 13 based on the plate thickness data.
 図9は、実施の形態1において、板厚の情報に紐付けられる座標に適用可能な相対座標系について説明するための図である。図9に示すx軸、y軸およびz軸は、相対座標系の3軸とする。図9に示す例では、相対座標系の原点は、加工軌跡19の始点、すなわち加工開始位置である。なお、相対座標系の原点は、加工開始位置以外の位置であっても良い。相対座標系の原点は、加工軌跡19上の位置以外の位置であっても良い。ワイヤ放電加工装置100は、ワーク18の任意の位置を、相対座標系の原点とすることができる。 FIG. 9 is a diagram for explaining a relative coordinate system that can be applied to coordinates linked to plate thickness information in the first embodiment. The x-axis, y-axis and z-axis shown in FIG. 9 are the three axes of the relative coordinate system. In the example shown in FIG. 9, the origin of the relative coordinate system is the starting point of the machining locus 19, that is, the machining start position. The origin of the relative coordinate system may be a position other than the machining start position. The origin of the relative coordinate system may be a position other than the position on the machining locus 19 . The wire electric discharge machine 100 can set any position of the workpiece 18 as the origin of the relative coordinate system.
 ワイヤ放電加工装置100は、板厚データに含まれる座標を相対座標系の座標とすることによって、ワーク18の位置または傾きが変更された場合でも、板厚データに基づいてパルス電圧または加工機構13を制御することができる。また、ワイヤ放電加工装置100は、ワイヤ放電加工装置100の機種が変更される場合も、板厚データに基づいてパルス電圧または加工機構13を制御することができる。 By using the coordinates included in the plate thickness data as the coordinates of the relative coordinate system, the wire electric discharge machine 100 can apply the pulse voltage or the machining mechanism 13 based on the plate thickness data even if the position or inclination of the work 18 is changed. can be controlled. The wire electric discharge machine 100 can also control the pulse voltage or the machining mechanism 13 based on the plate thickness data even when the model of the wire electric discharge machine 100 is changed.
 次に、加工電圧検出器21、電気条件制御器22、NC装置23、板厚推定器24、板厚出力器25、板厚入力器26、段差位置推定器27、および座標補正器28の各構成要素を実現するハードウェア構成について説明する。上記各構成要素は、プロセッサがソフトウェアを実行する回路である処理回路により実現される。ソフトウェアを実行する処理回路は、例えば、図10に示す制御回路である。図10は、実施の形態1にかかる制御回路30の構成例を示す図である。制御回路30は、入力部31、プロセッサ32、メモリ33および出力部34を備える。 Next, a machining voltage detector 21, an electrical condition controller 22, an NC device 23, a plate thickness estimator 24, a plate thickness output device 25, a plate thickness input device 26, a step position estimator 27, and a coordinate corrector 28. A hardware configuration that implements the components will be described. Each component described above is implemented by a processing circuit, which is a circuit in which a processor executes software. The processing circuit executing the software is, for example, the control circuit shown in FIG. FIG. 10 is a diagram showing a configuration example of the control circuit 30 according to the first embodiment. The control circuit 30 comprises an input section 31 , a processor 32 , a memory 33 and an output section 34 .
 入力部31は、制御回路30の外部から入力されたデータを受信してプロセッサ32に与えるインターフェース回路である。出力部34は、プロセッサ32またはメモリ33からのデータを制御回路30の外部に送るインターフェース回路である。処理回路が図10に示す制御回路30である場合、メモリ33に記憶された、各構成要素に対応するプログラムをプロセッサ32が読み出して実行することにより上記各構成要素が実現される。メモリ33は、プロセッサ32が実施する各処理における一時メモリとしても使用される。プロセッサ32は、演算結果等のデータをメモリ33に出力して記憶させても良いし、演算結果等のデータを、メモリ33の揮発性メモリを介して補助記憶装置に記憶させても良い。 The input unit 31 is an interface circuit that receives data input from outside the control circuit 30 and provides it to the processor 32 . The output unit 34 is an interface circuit that sends data from the processor 32 or memory 33 to the outside of the control circuit 30 . When the processing circuit is the control circuit 30 shown in FIG. 10, the above components are implemented by the processor 32 reading out and executing programs corresponding to the respective components stored in the memory 33 . Memory 33 is also used as temporary memory in each process performed by processor 32 . The processor 32 may output data such as calculation results to the memory 33 for storage, or may store data such as calculation results in an auxiliary storage device via the volatile memory of the memory 33 .
 プロセッサ32は、CPU(Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサ、またはDSP(Digital Signal Processor)ともいう)である。メモリ33は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(登録商標)(Electrically Erasable Programmable Read Only Memory)等の、不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスクまたはDVD(Digital Versatile Disc)等が該当する。 The processor 32 is a CPU (Central Processing Unit, also referred to as a central processing unit, processing unit, arithmetic unit, microprocessor, microcomputer, processor, or DSP (Digital Signal Processor)). The memory 33 is non-volatile such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Programmable Read Only Memory), EEPROM (registered trademark) (Electrically Erasable Programmable Read Only Memory), etc. Alternatively, a volatile semiconductor memory, a magnetic disk, a flexible disk, an optical disk, a compact disk, a mini disk, a DVD (Digital Versatile Disc), or the like.
 図10は、汎用のプロセッサ32およびメモリ33により上記各構成要素を実現する場合のハードウェアの例であるが、専用のハードウェア回路により上記各構成要素を実現しても良い。専用のハードウェア回路である処理回路は、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field Programmable Gate Array)、またはこれらを組み合わせた回路である。制御回路30と専用のハードウェア回路との組み合わせによって、上記各構成要素を実現しても良い。 Although FIG. 10 is an example of hardware in which the above components are implemented by a general-purpose processor 32 and memory 33, the above components may be implemented by dedicated hardware circuits. The processing circuit, which is a dedicated hardware circuit, can be a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field Programmable Gate Array), or a combination of these circuit. Each component described above may be realized by a combination of the control circuit 30 and a dedicated hardware circuit.
 実施の形態1によると、ワイヤ放電加工装置100は、ワイヤ放電加工装置100の外部へ板厚データを出力し、ワイヤ放電加工装置100の外部から入力された板厚データに基づいて段差部の位置を推定する。これにより、ワイヤ放電加工装置100は、ワーク18における段差位置の推定のために使用できる板厚情報のデータ量に制限を設けること無く、加工品質の改善のための制御を行うことができるという効果を奏する。 According to Embodiment 1, the wire electric discharge machining apparatus 100 outputs the plate thickness data to the outside of the wire electric discharge machining apparatus 100, and determines the position of the stepped portion based on the plate thickness data input from the outside of the wire electric discharge machining apparatus 100. to estimate As a result, the wire electric discharge machine 100 can perform control for improving machining quality without limiting the data amount of plate thickness information that can be used for estimating the step position in the workpiece 18. play.
実施の形態2.
 実施の形態2では、板厚の推定と段差位置の推定との少なくとも一方に機械学習を用いるための学習装置について説明する。図11は、実施の形態2にかかる学習装置40を示す図である。実施の形態2では、実施の形態1と同一の構成要素には同一の符号を付し、実施の形態1とは異なる構成について主に説明する。
Embodiment 2.
Embodiment 2 describes a learning device for using machine learning for at least one of plate thickness estimation and step position estimation. FIG. 11 shows a learning device 40 according to the second embodiment. In the second embodiment, the same reference numerals are given to the same components as in the first embodiment, and the configuration different from the first embodiment will be mainly described.
 学習装置40は、ワイヤ放電加工装置100について、放電加工の状態についての加工データと、ワーク18の板厚およびワーク18のうち板厚が変化する段差部の位置の少なくとも一方との関係を学習する。以下、学習装置40が、加工データと板厚および段差部の位置の双方との関係を学習する場合を例として説明する。 The learning device 40 learns the relationship between the machining data about the state of electric discharge machining and at least one of the thickness of the workpiece 18 and the position of the step portion of the workpiece 18 where the thickness changes. . A case in which the learning device 40 learns the relationship between the processing data and both the plate thickness and the position of the step will be described below as an example.
 学習装置40は、データ取得部41およびモデル生成部42を備える。データ取得部41には、加工データと、板厚データと、段差情報とが入力される。データ取得部41は、入力された加工データ、板厚データ、および段差情報を使用して、学習用データを作成する。実施の形態2において、学習用データは、加工データと板厚情報と段差情報とを互いに関連付けたデータである。このようにして、データ取得部41は、加工データと板厚情報と段差情報とを含む学習用データを取得する。 The learning device 40 includes a data acquisition unit 41 and a model generation unit 42. Processing data, plate thickness data, and step information are input to the data acquisition unit 41 . The data acquisition unit 41 creates learning data using the input processing data, plate thickness data, and step information. In Embodiment 2, learning data is data in which processing data, plate thickness information, and step information are associated with each other. In this manner, the data acquisition unit 41 acquires learning data including processing data, plate thickness information, and step information.
 モデル生成部42は、学習用データを用いて、加工データから板厚および段差部の位置を推論するための学習済モデル43を生成する。学習済モデル記憶部44は、生成された学習済モデル43を記憶する。図11に示す学習済モデル記憶部44は、学習装置40の外部の記憶部である。学習済モデル記憶部44は、学習装置40の内部に備えられても良い。 The model generation unit 42 uses the learning data to generate a learned model 43 for inferring the plate thickness and the position of the step from the processing data. The trained model storage unit 44 stores the generated trained model 43 . A learned model storage unit 44 shown in FIG. 11 is an external storage unit of the learning device 40 . The trained model storage unit 44 may be provided inside the learning device 40 .
 モデル生成部42が用いる学習アルゴリズムとしては、教師あり学習、教師なし学習、または強化学習等の公知のアルゴリズムを用いることができる。一例として、ニューラルネットワークを適用する場合について説明する。 A known algorithm such as supervised learning, unsupervised learning, or reinforcement learning can be used as the learning algorithm used by the model generation unit 42 . As an example, a case of applying a neural network will be described.
 モデル生成部42は、例えば、ニューラルネットワークモデルに従い、いわゆる教師あり学習によって、板厚および段差部の位置を学習する。ここで、教師あり学習とは、入力および結果のデータの組を学習装置40に与えることで、学習用データにある特徴を学習し、入力から結果を推論する手法である。 For example, the model generation unit 42 learns the plate thickness and the position of the step by so-called supervised learning according to the neural network model. Here, supervised learning is a method of learning a feature in the learning data by giving a set of input and result data to the learning device 40 and inferring the result from the input.
 学習用データは、入力と、入力に対応する結果であるラベルとを含む。加工データは入力に相当し、板厚情報および段差情報はラベルに相当する。ニューラルネットワークは、複数のニューロンからなる入力層と、複数のニューロンからなる中間層である隠れ層と、複数のニューロンからなる出力層とで構成される。中間層は、1層、または2層以上でも良い。 The learning data includes inputs and labels that are the results corresponding to the inputs. Processing data corresponds to input, and plate thickness information and step information correspond to labels. A neural network is composed of an input layer consisting of a plurality of neurons, a hidden layer which is an intermediate layer consisting of a plurality of neurons, and an output layer consisting of a plurality of neurons. The intermediate layer may be one layer, or two or more layers.
 図12は、実施の形態2にかかる学習装置40における学習に使用されるニューラルネットワークの構成例を示す図である。図12に示すニューラルネットワークは、3層のニューラルネットワークである。入力層は、ニューロンX1,X2,X3を含む。中間層は、ニューロンY1,Y2を含む。出力層は、ニューロンZ1,Z2,Z3を含む。なお、各層のニューロンの数は任意とする。入力層へ入力された複数の値は、重みW1であるw11,w12,w13,w14,w15,w16が乗算されて、中間層へ入力される。中間層へ入力された複数の値は、重みW2であるw21,w22,w23,w24,w25,w26が乗算されて、出力層から出力される。出力層から出力される出力結果は、重みW1,W2の値に従って変化する。 FIG. 12 is a diagram showing a configuration example of a neural network used for learning in the learning device 40 according to the second embodiment. The neural network shown in FIG. 12 is a three-layer neural network. The input layer includes neurons X1, X2, X3. The middle layer contains neurons Y1 and Y2. The output layer contains neurons Z1, Z2, Z3. Note that the number of neurons in each layer is arbitrary. A plurality of values input to the input layer are multiplied by w11, w12, w13, w14, w15, and w16, which are weights W1, and input to the intermediate layer. A plurality of values input to the intermediate layer are multiplied by w21, w22, w23, w24, w25, and w26, which are weights W2, and output from the output layer. The output result output from the output layer changes according to the values of weights W1 and W2.
 実施の形態2において、ニューラルネットワークは、データ取得部41によって取得される学習用データに従って、いわゆる教師あり学習により、板厚および段差部の位置を学習する。すなわち、ニューラルネットワークは、入力層に加工データを入力して出力層から出力された結果が、板厚情報および段差情報に近づくように重みW1,W2を調整することによって、板厚および段差部の位置を学習する。モデル生成部42は、以上のような学習を実行することで学習済モデル43を生成し、学習済モデル43を出力する。学習済モデル記憶部44は、モデル生成部42から出力された学習済モデル43を記憶する。モデル生成部42は、既に生成された学習済モデル43を学習済モデル記憶部44から読み出し、学習用データに従った再学習により学習済モデル43を更新しても良い。 In Embodiment 2, the neural network learns the plate thickness and the position of the step by so-called supervised learning according to learning data acquired by the data acquisition unit 41 . That is, the neural network adjusts the weights W1 and W2 so that the processed data is input to the input layer and the result output from the output layer approaches the thickness information and step information. Learn location. The model generation unit 42 generates the learned model 43 by executing the learning as described above, and outputs the learned model 43 . The learned model storage unit 44 stores the learned model 43 output from the model generation unit 42 . The model generation unit 42 may read the already generated learned model 43 from the learned model storage unit 44 and update the learned model 43 by re-learning according to the learning data.
 次に、学習装置40による学習処理について説明する。図13は、実施の形態2にかかる学習装置40による学習処理の手順を示すフローチャートである。ステップS11において、学習装置40は、データ取得部41により、加工データと板厚情報と段差情報とを含む学習用データを取得する。データ取得部41は、いずれも同時に取得された加工データと板厚データと段差情報とを使用して、学習用データを作成する。なお、データ取得部41は、加工データと板厚情報と段差情報とを互いに関連付けた学習用データを作成できれば良く、加工データと板厚データと段差情報とを必ずしも同時に取得しなくても良い。 Next, learning processing by the learning device 40 will be described. FIG. 13 is a flow chart showing the procedure of learning processing by the learning device 40 according to the second embodiment. In step S<b>11 , the learning device 40 acquires learning data including processing data, plate thickness information, and step information using the data acquisition unit 41 . The data acquisition unit 41 creates learning data using the processing data, the plate thickness data, and the step information, all of which are acquired at the same time. Note that the data acquisition unit 41 only needs to create learning data in which the processing data, the thickness information, and the step information are associated with each other, and does not necessarily acquire the processing data, the plate thickness data, and the step information at the same time.
 ステップS12において、学習装置40は、モデル生成部42により、学習用データに従っていわゆる教師あり学習により板厚および段差部の位置を学習し、学習済モデル43を生成または更新する。ステップS13において、モデル生成部42は、生成または更新された学習済モデル43を出力する。以上により、学習装置40は、図13に示す手順による学習処理を終了する。学習済モデル記憶部44は、学習処理により得られた学習済モデル43を記憶する。 In step S12, the learning device 40 uses the model generation unit 42 to learn the plate thickness and the position of the stepped portion by so-called supervised learning according to the learning data, and generates or updates the learned model 43. In step S13, the model generating unit 42 outputs the generated or updated learned model 43. FIG. With the above, the learning device 40 ends the learning process according to the procedure shown in FIG. 13 . The learned model storage unit 44 stores the learned model 43 obtained by the learning process.
 実施の形態2では、モデル生成部42が用いる学習アルゴリズムに教師あり学習を適用する場合について説明したが、学習アルゴリズムには、教師あり学習以外の学習が適用されても良い。モデル生成部42は、強化学習、教師なし学習、または半教師あり学習といった学習アルゴリズムを用いて機械学習を実行しても良い。モデル生成部42は、深層学習(Deep Learning)、遺伝的プログラミング、帰納論理プログラミング、またはサポートベクターマシンといった学習アルゴリズムを用いて機械学習を実行しても良い。 In Embodiment 2, the case where supervised learning is applied to the learning algorithm used by the model generation unit 42 has been described, but learning other than supervised learning may be applied to the learning algorithm. The model generator 42 may perform machine learning using learning algorithms such as reinforcement learning, unsupervised learning, or semi-supervised learning. The model generation unit 42 may perform machine learning using learning algorithms such as deep learning, genetic programming, inductive logic programming, or support vector machines.
 実施の形態2において、学習装置40は、ワイヤ放電加工装置100の外部の装置とする。学習装置40は、ネットワークを介してワイヤ放電加工装置100に接続される装置でも良い。学習装置40は、クラウドサーバ上に存在する装置でも良い。学習装置40は、ワイヤ放電加工装置100の外部の装置に限られず、ワイヤ放電加工装置100に内蔵される装置であっても良い。 In Embodiment 2, the learning device 40 is a device external to the wire electric discharge machining device 100 . The learning device 40 may be a device connected to the wire electric discharge machine 100 via a network. The learning device 40 may be a device existing on a cloud server. The learning device 40 is not limited to a device external to the wire electric discharge machine 100 , and may be a device built into the wire electric discharge machine 100 .
 学習装置40は、1つのワイヤ放電加工装置100について作成された学習用データに従って板厚および段差部の位置を学習するものに限られない。学習装置40は、複数のワイヤ放電加工装置100について作成された学習用データに従って、板厚および段差部の位置を学習しても良い。学習装置40は、同一の場所で使用される複数のワイヤ放電加工装置100から学習用データを取得しても良く、または、互いに異なる場所で使用される複数のワイヤ放電加工装置100から学習用データを取得しても良い。学習用データは、複数の場所において互いに独立して稼働する複数のワイヤ放電加工装置100から取得されても良い。複数のワイヤ放電加工装置100からの学習用データの取得を開始した後に、学習用データが取得される対象に新たなワイヤ放電加工装置100が追加されても良い。また、複数のワイヤ放電加工装置100からの学習用データの取得を開始した後に、学習用データが取得される対象から、複数のワイヤ放電加工装置100の一部が除外されても良い。 The learning device 40 is not limited to learning the plate thickness and the position of the stepped portion according to learning data created for one wire electric discharge machining device 100 . The learning device 40 may learn the plate thickness and the position of the stepped portion according to learning data created for a plurality of wire electric discharge machines 100 . The learning device 40 may acquire learning data from a plurality of wire electric discharge machines 100 used at the same place, or may acquire learning data from a plurality of wire electric discharge machines 100 used at different places. may be obtained. The learning data may be obtained from a plurality of wire electric discharge machines 100 that operate independently of each other at a plurality of locations. After starting acquisition of learning data from a plurality of wire electric discharge machines 100, a new wire electric discharge machine 100 may be added as a target for acquiring learning data. Also, after starting acquisition of learning data from a plurality of wire electric discharge machines 100, some of the plurality of wire electric discharge machines 100 may be excluded from targets for which learning data is acquired.
 ある1つのワイヤ放電加工装置100について学習を行った学習装置40は、当該ワイヤ放電加工装置100以外の他のワイヤ放電加工装置100についての学習を行っても良い。学習装置40は、当該他のワイヤ放電加工装置100についての再学習によって、学習済モデル43を更新することができる。 The learning device 40 that has learned about one wire electric discharge machine 100 may learn about other wire electric discharge machines 100 other than the wire electric discharge machine 100 concerned. The learning device 40 can update the learned model 43 by re-learning the other wire electric discharge machining device 100 .
 学習装置40は、加工データと、板厚および段差部の位置の少なくとも一方との関係を学習するものであれば良い。学習装置40が、加工データと板厚との関係を学習する場合、データ取得部41には、加工データと板厚データとが入力される。データ取得部41は、入力された加工データおよび板厚データを使用して、加工データと板厚情報とを互いに関連付けたデータである学習用データを作成する。データ取得部41は、加工データと板厚情報とを含む学習用データを取得する。モデル生成部42は、学習用データを用いて、加工データから板厚を推論するための学習済モデル43を生成する。 The learning device 40 should just learn the relationship between the processing data and at least one of the plate thickness and the position of the stepped portion. When the learning device 40 learns the relationship between the processing data and the plate thickness, the processing data and the plate thickness data are input to the data acquisition unit 41 . The data acquisition unit 41 uses the input processing data and plate thickness data to create learning data, which is data in which the processing data and plate thickness information are associated with each other. The data acquisition unit 41 acquires learning data including processing data and plate thickness information. The model generator 42 uses the learning data to generate a learned model 43 for inferring the plate thickness from the processed data.
 また、学習装置40が、加工データと段差部の位置との関係を学習する場合、データ取得部41には、加工データと段差情報とが入力される。データ取得部41は、入力された加工データおよび段差情報を使用して、加工データと段差情報とを互いに関連付けたデータである学習用データを作成する。データ取得部41は、加工データと段差情報とを含む学習用データを取得する。モデル生成部42は、学習用データを用いて、加工データから段差部の位置を推論するための学習済モデル43を生成する。 In addition, when the learning device 40 learns the relationship between the processing data and the position of the step, the processing data and the step information are input to the data acquisition unit 41 . The data acquisition unit 41 uses the input processing data and step information to create learning data, which is data in which the processing data and the step information are associated with each other. The data acquisition unit 41 acquires learning data including processed data and step information. The model generator 42 uses the learning data to generate a trained model 43 for inferring the position of the step from the processed data.
 学習装置40は、図10に示すハードウェアと同様のハードウェアにより実現される。学習装置40の各部は、プロセッサがソフトウェアを実行する回路である処理回路により実現される。専用の処理回路により、または、プロセッサがソフトウェアを実行する処理回路と専用の処理回路との組み合わせにより、学習装置40の各部を実現しても良い。 The learning device 40 is realized by hardware similar to the hardware shown in FIG. Each part of the learning device 40 is realized by a processing circuit, which is a circuit in which a processor executes software. Each part of the learning device 40 may be realized by a dedicated processing circuit, or by a combination of a processing circuit in which a processor executes software and a dedicated processing circuit.
 実施の形態2によると、学習装置40は、加工データと、板厚情報および段差情報の少なくとも一方とを含む学習用データを用いて学習済モデル43を生成する。学習装置40は、加工データから板厚および段差部の位置の少なくとも一方を推論するための学習済モデル43を生成することができる。 According to the second embodiment, the learning device 40 generates the learned model 43 using learning data including processing data and at least one of plate thickness information and step information. The learning device 40 can generate a learned model 43 for inferring at least one of the plate thickness and the position of the step from the processed data.
実施の形態3.
 実施の形態3では、学習済モデル43を用いて板厚と段差部の位置との少なくとも一方を推論する推論装置について説明する。図14は、実施の形態3にかかる推論装置50を示す図である。実施の形態3では、実施の形態1または2と同一の構成要素には同一の符号を付し、実施の形態1または2とは異なる構成について主に説明する。
Embodiment 3.
Embodiment 3 describes an inference device that infers at least one of the plate thickness and the position of the step using the learned model 43 . FIG. 14 shows an inference device 50 according to the third embodiment. In the third embodiment, the same components as those in the first or second embodiment are denoted by the same reference numerals, and the configuration different from that in the first or second embodiment will be mainly described.
 推論装置50は、ワイヤ放電加工装置100について、放電加工の状態についての加工データに基づいて、ワーク18の板厚およびワーク18のうち板厚が変化する段差部の位置の少なくとも一方を推論する。なお、以下の説明では、推論装置50は、加工データに基づいて板厚および段差部の位置の双方を推論する場合を例として説明する。 The inference device 50 infers at least one of the thickness of the workpiece 18 and the position of the step portion of the workpiece 18 where the thickness changes, based on the machining data about the state of electric discharge machining for the wire electric discharge machine 100 . In the following description, an example will be described in which the inference device 50 infers both the plate thickness and the position of the stepped portion based on the processing data.
 推論装置50は、データ取得部51および推論部52を備える。データ取得部51には、加工データが入力される。すなわち、データ取得部51は、加工データを取得する。推論部52は、加工データから板厚および段差部の位置を推論するための学習済モデル43を学習済モデル記憶部44から読み出す。推論部52は、推論用データである加工データを学習済モデル43へ入力することによって、板厚情報および段差情報を出力する。図14に示す学習済モデル記憶部44は、推論装置50の外部の記憶部である。学習済モデル記憶部44は、推論装置50の内部に備えられても良い。実施の形態3において、推論装置50は、実施の形態2にかかる学習装置40によって生成された学習済モデル43を用いて、加工データから板厚および段差部の位置を推論する。 The inference device 50 includes a data acquisition unit 51 and an inference unit 52 . Processed data is input to the data acquisition unit 51 . That is, the data acquisition unit 51 acquires processed data. The inference unit 52 reads the learned model 43 for inferring the plate thickness and the position of the step from the processed data from the learned model storage unit 44 . The inference unit 52 outputs thickness information and step information by inputting processing data, which is data for inference, to the learned model 43 . A trained model storage unit 44 shown in FIG. 14 is an external storage unit of the inference device 50 . The learned model storage unit 44 may be provided inside the inference device 50 . In the third embodiment, the inference device 50 uses the learned model 43 generated by the learning device 40 according to the second embodiment to infer the plate thickness and the position of the step from the processed data.
 次に、推論装置50による推論処理について説明する。図15は、実施の形態3にかかる推論装置50による推論処理の手順を示すフローチャートである。ステップS21において、推論装置50は、データ取得部51により、加工データを取得する。ステップS22において、推論装置50は、推論部52により、学習済モデル43へ加工データを入力する。ステップS23において、推論部52は、板厚情報と段差情報とを出力する。以上により、推論装置50は、図15に示す手順による推論処理を終了する。推論装置50は、板厚情報と段差情報とをワイヤ放電加工装置100へ送る。 Next, the inference processing by the inference device 50 will be described. FIG. 15 is a flowchart showing the procedure of inference processing by the inference device 50 according to the third embodiment. In step S<b>21 , the inference device 50 acquires processed data using the data acquisition unit 51 . In step S<b>22 , the inference unit 52 of the inference device 50 inputs processed data to the learned model 43 . In step S23, the inference unit 52 outputs plate thickness information and step information. With the above, the inference device 50 ends the inference processing according to the procedure shown in FIG. 15 . The inference device 50 sends the plate thickness information and the step information to the wire electric discharge machining device 100 .
 実施の形態3において、推論装置50は、ワイヤ放電加工装置100の外部の装置とする。推論装置50は、ネットワークを介してワイヤ放電加工装置100に接続される装置でも良い。推論装置50は、クラウドサーバ上に存在する装置でも良い。推論装置50は、ワイヤ放電加工装置100の外部の装置に限られず、ワイヤ放電加工装置100に内蔵される装置であっても良い。 In the third embodiment, the inference device 50 is a device external to the wire electric discharge machining device 100 . The inference device 50 may be a device connected to the wire electric discharge machine 100 via a network. The inference device 50 may be a device existing on a cloud server. The reasoning device 50 is not limited to a device external to the wire electric discharge machining device 100 , and may be a device built into the wire electric discharge machining device 100 .
 推論装置50は、学習済モデル43を用いて板厚と段差部の位置との少なくとも一方を推論するものであれば良い。推論装置50が加工データから板厚を推論する場合、推論部52は、加工データから板厚を推論するための学習済モデル43へ加工データを入力することによって、板厚情報を出力する。また、推論装置50が加工データから段差部の位置を推論する場合、推論部52は、加工データから段差部の位置を推論するための学習済モデル43へ加工データを入力することによって、段差情報を出力する。 The inference device 50 may use the learned model 43 to infer at least one of the plate thickness and the position of the step. When the inference device 50 infers the plate thickness from the processed data, the inference unit 52 outputs plate thickness information by inputting the processed data to the learned model 43 for inferring the plate thickness from the processed data. Further, when the inference device 50 infers the position of the stepped portion from the processed data, the inferred portion 52 inputs the processed data to the learned model 43 for inferring the position of the stepped portion from the processed data. to output
 推論装置50は、図10に示すハードウェアと同様のハードウェアにより実現される。推論装置50の各部は、プロセッサがソフトウェアを実行する回路である処理回路により実現される。専用の処理回路により、または、プロセッサがソフトウェアを実行する処理回路と専用の処理回路との組み合わせにより、推論装置50の各部を実現しても良い。 The inference device 50 is realized by hardware similar to the hardware shown in FIG. Each part of the inference device 50 is implemented by a processing circuit, which is a circuit in which a processor executes software. Each part of the inference device 50 may be realized by a dedicated processing circuit, or by a combination of a processing circuit in which a processor executes software and a dedicated processing circuit.
 実施の形態3によると、推論装置50は、加工データから板厚および段差部の位置の少なくとも一方を推論するための学習済モデル43へ加工データを入力することによって、板厚情報および段差情報の少なくとも一方を出力する。推論装置50は、加工データから板厚および段差部の位置の少なくとも一方を推論することができる。 According to the third embodiment, the inference device 50 inputs the machining data to the learned model 43 for inferring at least one of the thickness and the position of the stepped portion from the machining data, thereby obtaining the thickness information and the step information. Output at least one. The inference device 50 can infer at least one of the plate thickness and the position of the step from the processing data.
 ワイヤ放電加工装置100は、推論装置50によって推論された板厚および段差部の位置の少なくとも一方に基づいて加工を制御する。ワイヤ放電加工装置100は、段差部において板厚に適した加工が可能となることによって、高い加工品質を実現できる。 The wire electric discharge machine 100 controls machining based on at least one of the plate thickness and the position of the step portion inferred by the inference device 50 . The wire electric discharge machining apparatus 100 can achieve high machining quality by enabling machining suitable for the plate thickness at the stepped portion.
 以上の各実施の形態に示した構成は、本開示の内容の一例を示すものである。各実施の形態の構成は、別の公知の技術と組み合わせることが可能である。各実施の形態の構成同士が適宜組み合わせられても良い。本開示の要旨を逸脱しない範囲で、各実施の形態の構成の一部を省略または変更することが可能である。 The configuration shown in each embodiment above is an example of the content of the present disclosure. The configuration of each embodiment can be combined with another known technique. Configurations of respective embodiments may be combined as appropriate. A part of the configuration of each embodiment can be omitted or changed without departing from the gist of the present disclosure.
 1 ワイヤ電極ボビン、2 ワイヤ電極、3 搬送ローラ、4 上側給電子、5 下側給電子、6 上部ガイド、7 下部ガイド、8 ワークテーブル、9 下部ローラ、10 回収ローラ、11 ワイヤ電極回収箱、12X X軸駆動モータ、12Y Y軸駆動モータ、13 加工機構、14 電源部、15 制御部、16 加工部、17 ファイル、18 ワーク、19 加工軌跡、20 加工電源、21 加工電圧検出器、22 電気条件制御器、23 NC装置、24 板厚推定器、25 板厚出力器、26 板厚入力器、27 段差位置推定器、28 座標補正器、30 制御回路、31 入力部、32 プロセッサ、33 メモリ、34 出力部、40 学習装置、41,51 データ取得部、42 モデル生成部、43 学習済モデル、44 学習済モデル記憶部、50 推論装置、52 推論部、100 ワイヤ放電加工装置。 1 wire electrode bobbin, 2 wire electrode, 3 transport roller, 4 upper feeder, 5 lower feeder, 6 upper guide, 7 lower guide, 8 work table, 9 lower roller, 10 recovery roller, 11 wire electrode recovery box, 12X X-axis drive motor, 12Y Y-axis drive motor, 13 Machining mechanism, 14 Power supply unit, 15 Control unit, 16 Machining unit, 17 File, 18 Workpiece, 19 Machining trajectory, 20 Machining power supply, 21 Machining voltage detector, 22 Electricity Condition controller, 23 NC unit, 24 plate thickness estimator, 25 plate thickness output device, 26 plate thickness input device, 27 step position estimator, 28 coordinate corrector, 30 control circuit, 31 input unit, 32 processor, 33 memory , 34 output unit, 40 learning device, 41, 51 data acquisition unit, 42 model generation unit, 43 learned model, 44 learned model storage unit, 50 reasoning device, 52 reasoning unit, 100 wire electric discharge machining device.

Claims (7)

  1.  ワイヤ電極とワークとの間へのパルス電圧の印加によって前記ワークの放電加工を行うワイヤ放電加工装置であって、
     前記放電加工のための機構である加工機構と、
     前記放電加工による前記ワークの荒加工が行われているときに、加工が行われている位置における前記ワークの板厚を推定する板厚推定器と、
     推定された前記板厚を示す板厚情報に位置情報が紐付けられた板厚データを前記ワイヤ放電加工装置の外部へ出力する板厚出力器と、
     前記ワイヤ放電加工装置の外部から前記板厚データが入力される板厚入力器と、
     入力された前記板厚データに基づいて、前記ワークのうち前記板厚が変化する段差部の位置を推定する段差位置推定器と、
     前記荒加工よりも後の前記放電加工による前記ワークの仕上げ加工が行われているときに、前記板厚データと前記段差部の位置を示す段差情報とに基づいて前記パルス電圧の印加を制御する電気条件制御器と、
     前記仕上げ加工が行われているときに、前記板厚データと前記段差情報とに基づいて前記加工機構を制御する制御装置と、
     を備えることを特徴とするワイヤ放電加工装置。
    A wire electric discharge machine for performing electric discharge machining of a work by applying a pulse voltage between a wire electrode and the work,
    a machining mechanism that is a mechanism for electrical discharge machining;
    a plate thickness estimator for estimating the plate thickness of the work at a position where the work is being rough-machined by the electrical discharge machining;
    a plate thickness output device that outputs plate thickness data in which position information is linked to plate thickness information indicating the estimated plate thickness to the outside of the wire electric discharge machining apparatus;
    a plate thickness input device for inputting the plate thickness data from the outside of the wire electric discharge machine;
    a step position estimator for estimating the position of a stepped portion of the workpiece where the plate thickness changes, based on the input plate thickness data;
    Controlling the application of the pulse voltage based on the plate thickness data and step information indicating the position of the stepped portion when the workpiece is being finished by the electrical discharge machining after the rough machining. an electrical condition controller;
    a control device that controls the processing mechanism based on the plate thickness data and the step information when the finish processing is being performed;
    A wire electric discharge machine comprising:
  2.  前記板厚データに含まれる前記位置情報は、前記ワークのうちあらかじめ設定された位置を原点とする座標系の座標であることを特徴とする請求項1に記載のワイヤ放電加工装置。 The wire electric discharge machining apparatus according to claim 1, wherein the position information included in the plate thickness data is coordinates of a coordinate system having a preset position in the workpiece as an origin.
  3.  前記板厚入力器へ入力された前記板厚データに含まれる前記位置情報を補正する位置情報補正部を備え、
     前記電気条件制御器は、補正された前記位置情報を含む前記板厚データと前記段差情報とに基づいて前記パルス電圧の印加を制御し、
     前記制御装置は、補正された前記位置情報を含む前記板厚データと前記段差情報とに基づいて前記加工機構を制御することを特徴とする請求項1に記載のワイヤ放電加工装置。
    A position information correction unit that corrects the position information included in the plate thickness data input to the plate thickness input device,
    The electrical condition controller controls application of the pulse voltage based on the plate thickness data including the corrected position information and the step information,
    2. The wire electric discharge machining apparatus according to claim 1, wherein the control device controls the machining mechanism based on the plate thickness data including the corrected position information and the step information.
  4.  前記板厚出力器は、前記ワイヤ放電加工装置の外部にて保存されるファイルまたは前記放電加工のための加工プログラムへ前記板厚データを書き出すことを特徴とする請求項1から3のいずれか1つに記載のワイヤ放電加工装置。 4. Any one of claims 1 to 3, wherein the plate thickness output device writes the plate thickness data to a file stored outside the wire electric discharge machining apparatus or to a machining program for the electric discharge machining. The wire electric discharge machine according to 1.
  5.  ワイヤ放電加工装置が、ワイヤ電極とワークとの間へのパルス電圧の印加によってワークの放電加工を行うワイヤ放電加工方法であって、
     前記放電加工による前記ワークの荒加工が行われているときに、加工が行われている位置における前記ワークの板厚を推定するステップと、
     推定された前記板厚を示す板厚情報に位置情報が紐付けられた板厚データを前記ワイヤ放電加工装置の外部へ出力するステップと、
     前記ワイヤ放電加工装置の外部から前記板厚データを読み込むステップと、
     読み込まれた前記板厚データに基づいて、前記ワークのうち前記板厚が変化する段差部の位置を推定するステップと、
     前記荒加工よりも後の前記放電加工による前記ワークの仕上げ加工が行われているときに、前記板厚データと前記段差部の位置を示す段差情報とに基づいて、前記パルス電圧の印加と前記放電加工のための機構である加工機構との少なくとも一方を制御するステップと、
     を含むことを特徴とするワイヤ放電加工方法。
    A wire electric discharge machining method in which a wire electric discharge machine performs electric discharge machining of a work by applying a pulse voltage between a wire electrode and the work,
    a step of estimating the plate thickness of the work at the position where the work is being rough-machined by the electrical discharge machining;
    A step of outputting plate thickness data in which position information is linked to plate thickness information indicating the estimated plate thickness to the outside of the wire electric discharge machining apparatus;
    a step of reading the plate thickness data from outside the wire electric discharge machine;
    a step of estimating the position of a stepped portion of the workpiece where the plate thickness changes, based on the read plate thickness data;
    When finish machining of the workpiece by the electrical discharge machining after the rough machining is being performed, the application of the pulse voltage and the a step of controlling at least one of a machining mechanism that is a mechanism for electric discharge machining;
    A wire electric discharge machining method comprising:
  6.  ワイヤ電極とワークとの間へのパルス電圧の印加による前記ワークの放電加工を行うワイヤ放電加工装置について、前記放電加工の状態についての加工データと、前記ワークの板厚および前記ワークのうち前記板厚が変化する段差部の位置の少なくとも一方との関係を学習する学習装置であって、
     前記加工データと、前記板厚を示す板厚情報および前記段差部の位置を示す段差情報の少なくとも一方とを含む学習用データを取得するデータ取得部と、
     前記学習用データを用いて、前記加工データから前記板厚および前記段差部の位置の少なくとも一方を推論するための学習済モデルを生成するモデル生成部と、
     を備えることを特徴とする学習装置。
    For a wire electric discharge machine that performs electric discharge machining of the work by applying a pulse voltage between a wire electrode and the work, machining data on the state of the electric discharge machining, the plate thickness of the work, and the plate of the work A learning device for learning a relationship with at least one of the positions of a stepped portion whose thickness changes,
    a data acquisition unit that acquires learning data including the processed data and at least one of plate thickness information indicating the plate thickness and step information indicating the position of the stepped portion;
    a model generation unit that uses the learning data to generate a trained model for inferring at least one of the plate thickness and the position of the stepped portion from the processing data;
    A learning device comprising:
  7.  ワイヤ電極とワークとの間へのパルス電圧の印加による前記ワークの放電加工を行うワイヤ放電加工装置について、前記放電加工の状態についての加工データに基づいて、前記ワークの板厚および前記ワークのうち前記板厚が変化する段差部の位置の少なくとも一方を推論する推論装置であって、
     前記加工データを取得するデータ取得部と、
     前記加工データから前記板厚および前記段差部の位置の少なくとも一方を推論するための学習済モデルへ前記加工データを入力することによって、前記板厚を示す板厚情報および前記段差部の位置を示す段差情報の少なくとも一方を出力する推論部と、
     を備えることを特徴とする推論装置。
    For a wire electric discharge machine that performs electric discharge machining of the work by applying a pulse voltage between the wire electrode and the work, the thickness of the work and the thickness of the work are determined based on machining data on the state of the electric discharge machining. An inference device for inferring at least one of the positions of the stepped portion where the plate thickness changes,
    a data acquisition unit that acquires the processed data;
    By inputting the processed data into a trained model for inferring at least one of the thickness and the position of the stepped portion from the processed data, thickness information indicating the plate thickness and the position of the stepped portion are indicated. an inference unit that outputs at least one of step information;
    An inference device characterized by comprising:
PCT/JP2022/006991 2022-02-21 2022-02-21 Wire electrical discharge machining device, wire electrical discharge machining method, learning device, and inference device WO2023157308A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022545906A JP7233615B1 (en) 2022-02-21 2022-02-21 WIRE EDM MACHINE, WIRE EDM METHOD, LEARNING DEVICE, AND REASONING DEVICE
PCT/JP2022/006991 WO2023157308A1 (en) 2022-02-21 2022-02-21 Wire electrical discharge machining device, wire electrical discharge machining method, learning device, and inference device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/006991 WO2023157308A1 (en) 2022-02-21 2022-02-21 Wire electrical discharge machining device, wire electrical discharge machining method, learning device, and inference device

Publications (1)

Publication Number Publication Date
WO2023157308A1 true WO2023157308A1 (en) 2023-08-24

Family

ID=85414440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006991 WO2023157308A1 (en) 2022-02-21 2022-02-21 Wire electrical discharge machining device, wire electrical discharge machining method, learning device, and inference device

Country Status (2)

Country Link
JP (1) JP7233615B1 (en)
WO (1) WO2023157308A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2885228B2 (en) * 1997-06-02 1999-04-19 日本電気株式会社 Wire electric discharge machining method and apparatus
JP4294638B2 (en) * 2005-11-29 2009-07-15 株式会社ソディック Wire cut electric discharge machining method and numerically controlled wire cut electric discharge machining apparatus
JP2010173040A (en) * 2009-01-30 2010-08-12 Sodick Co Ltd Wire cut electric discharge machining apparatus
JP2020146787A (en) * 2019-03-12 2020-09-17 ファナック株式会社 Wire electric discharge machine, and processing program editing device
JP6775719B1 (en) * 2020-03-17 2020-10-28 三菱電機株式会社 Wire EDM and Machine Learning Equipment
JP6808868B1 (en) * 2020-03-31 2021-01-06 株式会社ソディック Wire electric discharge machining method and wire electric discharge machining equipment
JP6972443B1 (en) * 2021-03-03 2021-11-24 三菱電機株式会社 Wire EDM, Shape Dimension Compensator, Wire EDM Method, Learning Equipment, and Inference Equipment

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2885228B2 (en) * 1997-06-02 1999-04-19 日本電気株式会社 Wire electric discharge machining method and apparatus
JP4294638B2 (en) * 2005-11-29 2009-07-15 株式会社ソディック Wire cut electric discharge machining method and numerically controlled wire cut electric discharge machining apparatus
JP2010173040A (en) * 2009-01-30 2010-08-12 Sodick Co Ltd Wire cut electric discharge machining apparatus
JP2020146787A (en) * 2019-03-12 2020-09-17 ファナック株式会社 Wire electric discharge machine, and processing program editing device
JP6775719B1 (en) * 2020-03-17 2020-10-28 三菱電機株式会社 Wire EDM and Machine Learning Equipment
JP6808868B1 (en) * 2020-03-31 2021-01-06 株式会社ソディック Wire electric discharge machining method and wire electric discharge machining equipment
JP6972443B1 (en) * 2021-03-03 2021-11-24 三菱電機株式会社 Wire EDM, Shape Dimension Compensator, Wire EDM Method, Learning Equipment, and Inference Equipment

Also Published As

Publication number Publication date
JP7233615B1 (en) 2023-03-06
JPWO2023157308A1 (en) 2023-08-24

Similar Documents

Publication Publication Date Title
CN110997217B (en) Lamination condition control device
KR101485932B1 (en) Method and device for generating tool path
JP6450732B2 (en) Numerical controller
JP2009217326A (en) Numerical controller controlling five-axis machining machine
WO2010050014A1 (en) Wire electric discharge processing apparatus
JP6684962B2 (en) Tool path generation method and device
JP6740483B1 (en) Numerical control device and numerical control method
TWI788637B (en) Wire electrical discharge machine and wire electrical discharge machining method
JP2019013984A (en) Robot for performing learning control in application for which constant speed is required and control method therefor
JP7233615B1 (en) WIRE EDM MACHINE, WIRE EDM METHOD, LEARNING DEVICE, AND REASONING DEVICE
CN114730171A (en) Machining program conversion device, numerical control device, and machining program conversion method
US9442479B2 (en) Wire electric discharge machine controller, wire electric discharge machine, and wire electric discharge machining method
CN108356371B (en) Numerical controller
JP6643462B2 (en) Method, controller, machine, and computer program for providing roaming profile
JP6775719B1 (en) Wire EDM and Machine Learning Equipment
JP5307696B2 (en) Wire cut electric discharge machining method and wire cut electric discharge machining apparatus
US11048233B2 (en) Program correction device
KR20230033507A (en) System for optimizing feedrate based on cutting force and method for optimizing feedrate using the same
JP3875253B2 (en) EDM machine
JP3009755B2 (en) Processing condition generator for electric discharge
JP7278507B1 (en) Numerical controller, numerically controlled machine tool, machining program generation device and machining program generation method
JPWO2023157308A5 (en)
JP2605427B2 (en) Processing condition setting method
JPH0557642A (en) Industrial robot control device
CN118043750A (en) Control device and computer-readable recording medium having program recorded thereon

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2022545906

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927207

Country of ref document: EP

Kind code of ref document: A1