WO2023157252A1 - Terminal, wireless communication method, and base station - Google Patents

Terminal, wireless communication method, and base station Download PDF

Info

Publication number
WO2023157252A1
WO2023157252A1 PCT/JP2022/006719 JP2022006719W WO2023157252A1 WO 2023157252 A1 WO2023157252 A1 WO 2023157252A1 JP 2022006719 W JP2022006719 W JP 2022006719W WO 2023157252 A1 WO2023157252 A1 WO 2023157252A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci
tci state
bat
dci
information
Prior art date
Application number
PCT/JP2022/006719
Other languages
French (fr)
Japanese (ja)
Inventor
春陽 越後
浩樹 原田
祐輝 松村
尚哉 芝池
チーピン ピ
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2022/006719 priority Critical patent/WO2023157252A1/en
Publication of WO2023157252A1 publication Critical patent/WO2023157252A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • LTE successor systems for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later
  • 5G 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • UE User Equipment
  • QCL assumption/Transmission Configuration Indication It has been considered to control transmission and reception processes based on TCI (state/space relationship).
  • a unified TCI state is being considered that applies the set/activated/indicated TCI state to multiple types of channels/reference signals (RS).
  • RS channels/reference signals
  • one object of the present disclosure is to provide a terminal, a wireless communication method, and a base station that appropriately determine the TCI state.
  • a terminal provides configuration information including settings related to transmission configuration indication (TCI) states applied to multiple types of channels, a first instruction related to the TCI state, and a second instruction related to the TCI state. based on at least one of a receiving unit that receives at least one of an instruction, information about a TCI state application start timing included in the setting information, the first instruction, and the second instruction , a control unit that determines application of a first TCI state based on the first instruction and application of a second TCI state based on the second instruction.
  • TCI transmission configuration indication
  • the TCI state can be properly recognized.
  • FIG. 1A and 1B are diagrams showing an example of a common beam.
  • FIG. 2 is a diagram of Rel. 16 is a diagram showing an example of MAC CE defined in V.16.
  • FIG. 3 is a diagram of Rel. 16 is a diagram showing another example of MAC CE defined in X.16.
  • FIG. 4 shows Rel. 16 is a diagram showing another example of MAC CE defined in X.16.
  • 5A and 5B are diagrams illustrating an example of joint/separate TCI state indications.
  • FIG. 6 is a diagram illustrating an example of timing until application of the indicated TCI state.
  • FIG. 7 is a diagram illustrating an example of criteria for starting BAT according to the first embodiment.
  • FIGS. 8A and 8B are diagrams showing an example of application of the TCI state according to option 1-1-1.
  • 9A and 9B are diagrams showing an example of application of the TCI state according to option 1-1-3.
  • FIG. 10 is a diagram showing an example of application of the TCI state according to Option 1-1-4.
  • FIG. 11 is a diagram showing an example of application of the TCI state according to Modification 1 of Option 1-1-4.
  • FIG. 12 is a diagram showing an example of application of the TCI state according to Modification 2 of Option 1-1-4.
  • FIG. 13 is a diagram showing an example of the MAC CE configuration according to Option 1-1-5-1.
  • FIG. 14 is a diagram showing an example of the MAC CE configuration according to Option 1-1-5-2.
  • FIG. 15A and 15B are diagrams showing an example of application of the TCI state according to option 1-2-1.
  • FIG. 16 is a diagram showing an example of application of the TCI state according to option 1-2-2.
  • FIG. 17A is a diagram showing an example of association of BAT values according to option 1-3-1.
  • FIG. 17B is a diagram showing an example of association of BAT values according to Option 1-3-2.
  • 18A and 18B are diagrams illustrating an example of application of TCI states according to the second embodiment.
  • FIG. 19 is a diagram showing another example of application of the TCI state according to the second embodiment.
  • FIG. 20 is a diagram showing an example of TCI state parameters according to Option 2-1-1.
  • FIG. 21A is a diagram showing an example of application of the TCI state according to variation 2-1-1-1.
  • FIG. 21B is a diagram showing an example of application of the TCI state according to variation 2-1-1-2.
  • FIG. 22A is a diagram showing an example of application of the TCI state according to variation 2-1-1-3.
  • FIG. 22B is a diagram showing an example of application of the TCI state according to variation 2-1-1-4.
  • FIG. 23 is a diagram showing an example of TCI state parameters according to option 2-1-2.
  • FIG. 24 is a diagram showing an example of the MAC CE configuration according to Option 2-1-3-1.
  • FIG. 25 is a diagram showing an example of the MAC CE configuration according to Option 2-1-3-2.
  • 26A and 26B are diagrams showing an example of application of the TCI state according to option 2-2-1.
  • 27A and 27B are diagrams showing an example of application of the TCI state according to option 2-2-2.
  • FIG. 28 is a diagram illustrating an example of application of the TCI state according to example 5-1.
  • FIG. 29 is a diagram showing another example of application of the TCI state according to example 5-1.
  • FIG. 30 is a diagram showing an example of application of the TCI state according to aspect 5-3.
  • FIG. 31 is a diagram showing an example of application of the TCI state according to Option 5-5-1.
  • FIG. 32 is a diagram showing an example of application of the TCI state according to Option 5-5-2.
  • FIG. 33 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment;
  • FIG. 34 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • FIG. 35 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment
  • FIG. 36 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to an embodiment.
  • FIG. 37 is a diagram illustrating an example of a vehicle according to one embodiment;
  • the reception processing e.g., reception, demapping, demodulation, decoding
  • transmission processing e.g, at least one of transmission, mapping, precoding, modulation, encoding
  • the TCI state may represent those that apply to downlink signals/channels.
  • the equivalent of TCI conditions applied to uplink signals/channels may be expressed as spatial relations.
  • the TCI state is information about the pseudo-co-location (QCL) of signals/channels, and may be called spatial reception parameters, spatial relation information, or the like.
  • the TCI state may be set in the UE on a channel-by-channel or signal-by-signal basis.
  • QCL is an index that indicates the statistical properties of a signal/channel. For example, when one signal/channel and another signal/channel have a QCL relationship, Doppler shift, Doppler spread, average delay ), delay spread, spatial parameters (e.g., spatial Rx parameter) are identical (QCL with respect to at least one of these). You may
  • the spatial reception parameters may correspond to the reception beams of the UE (eg, reception analog beams), and the beams may be specified based on the spatial QCL.
  • QCL or at least one element of QCL in the present disclosure may be read as sQCL (spatial QCL).
  • QCL types A plurality of types (QCL types) may be defined for the QCL.
  • QCL types AD may be provided with different parameters (or parameter sets) that can be assumed to be the same, and the parameters (which may be referred to as QCL parameters) are shown below:
  • QCL type A QCL-A
  • QCL type B QCL-B
  • QCL type C QCL-C
  • QCL-D Spatial reception parameters.
  • CORESET Control Resource Set
  • QCL QCL type D
  • a UE may determine at least one of a transmit beam (Tx beam) and a receive beam (Rx beam) for a signal/channel based on the TCI conditions or QCL assumptions of that signal/channel.
  • Tx beam transmit beam
  • Rx beam receive beam
  • the TCI state may be, for example, information about the QCL between the channel of interest (in other words, the reference signal (RS) for the channel) and another signal (for example, another RS). .
  • the TCI state may be set (indicated) by higher layer signaling, physical layer signaling or a combination thereof.
  • Physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • Channels for which TCI states or spatial relationships are set are, for example, Physical Downlink Shared Channel (PDSCH), Physical Downlink Control Channel (PDCCH), Physical Uplink Shared Channel It may be at least one of a channel (PUSCH)) and an uplink control channel (Physical Uplink Control Channel (PUCCH)).
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Uplink Control Channel
  • RSs that have a QCL relationship with the channel are, for example, a synchronization signal block (SSB), a channel state information reference signal (CSI-RS), a measurement reference signal (Sounding It may be at least one of a reference signal (SRS)), a tracking CSI-RS (also called a tracking reference signal (TRS)), and a QCL detection reference signal (also called a QRS).
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • Sounding It may be at least one of a reference signal (SRS)), a tracking CSI-RS (also called a tracking reference signal (TRS)), and a QCL detection reference signal (also called a QRS).
  • SRS reference signal
  • TRS tracking reference signal
  • QRS QCL detection reference signal
  • An SSB is a signal block that includes at least one of a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • An SSB may also be called an SS/PBCH block.
  • a QCL type X RS in a TCI state may mean an RS that has a QCL type X relationship with (the DMRS of) a certain channel/signal, and this RS is called a QCL type X QCL source in that TCI state.
  • QCL type A RS is always set for PDCCH and PDSCH, and QCL type D RS may be additionally set. Since it is difficult to estimate Doppler shift, delay, etc. by receiving DMRS one-shot, QCL type A RS is used to improve channel estimation accuracy. QCL type D RS is used for receive beam determination during DMRS reception.
  • TRS 1-1, 1-2, 1-3, 1-4 are transmitted, and TRS 1-1 is notified as QCL type C/D RS depending on the TCI status of PDSCH.
  • the UE can use the information obtained from the past periodic TRS1-1 reception/measurement results for PDSCH DMRS reception/channel estimation.
  • the PDSCH QCL source is TRS1-1 and the QCL target is the PDSCH DMRS.
  • Multi-TRP In NR, one or more transmission/reception points (Transmission/Reception Points (TRP)) (multi TRP (multi TRP (MTRP))) uses one or more panels (multi-panel) to the UE DL transmission is under consideration. It is also being considered that the UE uses one or more panels to perform UL transmissions for one or more TRPs.
  • TRP Transmission/Reception Points
  • MTRP multi TRP
  • a plurality of TRPs may correspond to the same cell identifier (cell identifier (ID)) or may correspond to different cell IDs.
  • the cell ID may be a physical cell ID or a virtual cell ID.
  • Multi-TRPs may be connected by ideal/non-ideal backhauls to exchange information, data, and the like.
  • Different codewords (CW) and different layers may be transmitted from each TRP of the multi-TRP.
  • Non-Coherent Joint Transmission NCJT may be used as one form of multi-TRP transmission.
  • TRP#1 modulate-maps a first codeword and layer-maps a first number of layers (e.g., two layers) with a first precoding to transmit a first PDSCH.
  • TRP#2 also modulates and layer-maps a second codeword to transmit a second PDSCH with a second number of layers (eg, 2 layers) with a second precoding.
  • multiple PDSCHs to be NCJTed may be defined as partially or completely overlapping in at least one of the time and frequency domains. That is, the first PDSCH from the first TRP and the second PDSCH from the second TRP may overlap at least one of time and frequency resources.
  • first PDSCH and second PDSCH are not quasi-co-located (QCL).
  • Reception of multiple PDSCHs may be translated as simultaneous reception of PDSCHs that are not of a certain QCL type (eg, QCL type D).
  • Multiple PDSCHs from multiple TRPs may be scheduled using one DCI (single DCI, single PDCCH) (single master mode, based on single DCI Multi-TRP (single-DCI based multi-TRP)).
  • Multiple PDSCHs from multi-TRP may be scheduled using multiple DCIs (multi-DCI, multiple PDCCH) (multi-master mode, multi-DCI based multi-TRP (multiple PDCCH)). TRP)).
  • PDSCH transport block (TB) or codeword (CW) repetition across multi-TRPs.
  • repetition schemes URLLC schemes, eg schemes 1, 2a, 2b, 3, 4
  • SDM space division multiplexed
  • FDM frequency division multiplexed
  • RV redundancy version
  • the RVs may be the same or different for the multi-TRPs.
  • multiple PDSCHs from multiple TRPs are time division multiplexed (TDM).
  • TDM time division multiplexed
  • multiple PDSCHs from multiple TRPs are transmitted within one slot.
  • multiple PDSCHs from multiple TRPs are transmitted in different slots.
  • one control resource set (CORESET) in PDCCH configuration information (PDCCH-Config) may correspond to one TRP.
  • the UE may determine multi-TRP based on multi-DCI if at least one of the following conditions 1 and 2 is met: In this case, TRP may be read as a CORESET pool index.
  • TRP may be read as a CORESET pool index.
  • a CORESET pool index of 1 is set.
  • Two different values (eg, 0 and 1) of the CORESET pool index are set.
  • the UE may determine multi-TRP based on single DCI if the following conditions are met: In this case, two TRPs may be translated into two TCI states indicated by MAC CE/DCI. [conditions] "Enhanced TCI States Activation/Deactivation for UE- specific PDSCH MAC CE)” is used.
  • DCI for common beam indication may be a UE-specific DCI format (e.g., DL DCI format (e.g., 1_1, 1_2), UL DCI format (e.g., 0_1, 0_2)), or a UE group common (UE-group common) DCI format.
  • DL DCI format e.g., 1_1, 1_2
  • UL DCI format e.g., 0_1, 0_2
  • UE group common UE-group common
  • the unified TCI framework allows UL and DL channels to be controlled by a common framework.
  • the unified TCI framework is Rel. Instead of defining TCI conditions or spatial relationships per channel as in 15, a common beam (common TCI condition) may be indicated and applied to all channels in the UL and DL, or for the UL A common beam may be applied to all channels in the UL and a common beam for the DL may be applied to all channels in the DL.
  • One common beam for both DL and UL, or a common beam for DL and a common beam for UL (two common beams in total) are being considered.
  • the UE may assume the same TCI state (joint TCI state, joint TCI pool, joint common TCI pool, joint TCI state set) for UL and DL.
  • the UE assumes different TCI states for each of UL and DL (separate TCI state, separate TCI pool, UL separate TCI pool and DL separate TCI pool, separate common TCI pool, UL common TCI pool and DL common TCI pool).
  • the UL and DL default beams may be aligned by MAC CE-based beam management (MAC CE level beam designation).
  • the PDSCH default TCI state may be updated to match the default UL beam (spatial relationship).
  • DCI-based beam management may indicate common beam/unified TCI state from the same TCI pool for both UL and DL (joint common TCI pool, joint TCI pool, set).
  • X (>1) TCI states may be activated by MAC CE.
  • the UL/DL DCI may select 1 out of X active TCI states.
  • the selected TCI state may apply to both UL and DL channels/RS.
  • the TCI pool (set) may be a plurality of TCI states set by RRC parameters, or a plurality of TCI states activated by MAC CE (active TCI state, active TCI pool, set).
  • Each TCI state may be a QCL type A/D RS.
  • SSB, CSI-RS, or SRS may be set as QCL type A/D RS.
  • the number of TCI states corresponding to each of one or more TRPs may be defined. For example, the number N ( ⁇ 1) of TCI states (UL TCI states) applied to UL channels/RSs and the number M ( ⁇ 1) of TCI states (DL TCI states) applied to DL channels/RSs and may be defined. At least one of N and M may be signaled/configured/indicated to the UE via higher layer signaling/physical layer signaling.
  • the UE has X UL and DL common TCI states (corresponding to X TRPs) (joint TCI status) is signaled/set/indicated.
  • N X (X is an arbitrary integer)
  • X (X TRPs) and Y DL TCI states are signaled/set/indicated.
  • the UL TCI state and the DL TCI state may mean a TCI state common to UL and DL (i.e., joint TCI state), or may mean a TCI state for each of UL and DL (i.e., separate TCI state).
  • the UE is notified/configured/instructed of a TCI state common to multiple (two) ULs and DLs for multiple (two) TRPs (joint TCI state for multiple TRPs).
  • multiple (two) UL TCI states and multiple (two) DL TCI states for multiple (two) TRPs State may mean signaled/set/indicated (separate TCI state for multiple TRPs).
  • the UE may use the two configured/indicated TCI states as the UL TCI state, and use one of the two configured/indicated TCI states as the DL TCI state.
  • N and M are 1 or 2
  • N and M may be 3 or more, and N and M may be different.
  • the case of M>1/N>1 may indicate at least one of TCI status indications for multiple TRPs and multiple TCI status indications for inter-band CA.
  • the RRC parameters configure multiple TCI states for both DL and UL.
  • the MAC CE may activate multiple TCI states out of multiple configured TCI states.
  • a DCI may indicate one of multiple TCI states that have been activated.
  • DCI may be UL/DL DCI.
  • the indicated TCI conditions may apply to at least one (or all) of the UL/DL channels/RSs.
  • One DCI may indicate both UL TCI and DL TCI.
  • one point may be one TCI state that applies to both UL and DL, or two TCI states that apply to UL and DL respectively.
  • At least one of the multiple TCI states set by the RRC parameters and the multiple TCI states activated by the MAC CE may be called a TCI pool (common TCI pool, joint TCI pool, TCI state pool). good.
  • Multiple TCI states activated by a MAC CE may be called an active TCI pool (active common TCI pool).
  • RRC parameters higher layer parameters that configure multiple TCI states
  • configuration information that configures multiple TCI states, or simply "configuration information.”
  • to indicate one of the plurality of TCI states using the DCI may be receiving indication information indicating one of the plurality of TCI states included in the DCI. , it may simply be to receive "instruction information”.
  • the RRC parameters configure multiple TCI states (joint common TCI pools) for both DL and UL.
  • the MAC CE may activate multiple TCI states (active TCI pool) out of multiple configured TCI states. Separate active TCI pools for each of the UL and DL may be configured/activated.
  • a DL DCI or a new DCI format may select (indicate) one or more (eg, one) TCI states.
  • the selected TCI state may be applied to one or more (or all) DL channels/RS.
  • the DL channel may be PDCCH/PDSCH/CSI-RS.
  • the UE is Rel.
  • a 16 TCI state operation (TCI framework) may be used to determine the TCI state for each channel/RS in the DL.
  • a UL DCI or new DCI format may select (indicate) one or more (eg, one) TCI states.
  • the selected TCI state may be applied to one or more (or all) UL channels/RS.
  • the UL channel may be PUSCH/SRS/PUCCH.
  • different DCIs may indicate UL TCI and DL DCI separately.
  • the existing DCI format 1_1/1_2 may be used to indicate common TCI status.
  • the DCI format that indicates the TCI status may be a specific DCI format.
  • the particular DCI format may be DCI format 1_1/1_2 (defined in Rel. 15/16/17).
  • the DCI format (DCI format 1_1/1_2) indicating the TCI state may be a DCI format without DL assignment.
  • a DCI format without a DL assignment a DCI format that does not schedule PDSCH (DCI format 1_1/1_2), a DCI format that does not contain one or more specific fields (DCI format 1_1/1_2), one or more A DCI format in which a specific field is set to a fixed value (DCI format 1_1/1_2) may be read interchangeably.
  • the specific fields are: TCI field, DCI format identifier field, carrier indicator field, bandwidth part (BWP) indicator field , Time Domain Resource Assignment (TDRA) field, Downlink Assignment Index (DAI) field (if set), Transmission Power Control (for scheduled PUCCH) (TPC)) command field, PUCCH resource indicator field, and PDSCH-to-HARQ feedback timing indicator field (if present), fields other than .
  • the particular field may be set as a reserved field or may be ignored.
  • the specific fields are Redundancy Version (RV) field, Modulation and Coding Scheme (MCS) field, New Data Indicator field, and Frequency Domain Resource Assignment (FDRA) field.
  • RV Redundancy Version
  • MCS Modulation and Coding Scheme
  • FDRA Frequency Domain Resource Assignment
  • All RV fields may be set to 1.
  • the MCS field may be set to all ones.
  • the NDI field may be set to 0.
  • Type 0 FDRA fields may be set to all zeros.
  • Type 1 FDRA field may be set to all ones.
  • the FDRA field for dynamic switching (higher layer parameter dynamicSwitch) may be set to all zeros.
  • a common TCI framework may have separate TCI states for DL and UL.
  • MAC CE TCI States Activation/Deactivation for UE-specific PDSCH MAC CE
  • the relevant MAC CE is identified by a MAC subheader with a Logical Channel ID (LCID).
  • LCID Logical Channel ID
  • the MAC CE may be used in an environment that uses a single TRP or multi-TRP based on multi-DCI.
  • the MAC CE includes a Serving Cell ID field, a BWP ID field, a field (Ti) for indicating activation/deactivation of the TCI state, and a CORESET pool ID (CORESET Pool ID) field.
  • a Serving Cell ID field a BWP ID field
  • a CORESET pool ID CORESET Pool ID
  • the serving cell ID field may be a field for indicating the serving cell to which the MAC CE is applied.
  • the BWP ID field may be a field for indicating the DL BWP to which the MAC CE is applied.
  • the CORESET pool ID field the correspondence (mapping) between the activated TCI state and the TCI field code point indicated by the DCI set in the field Ti (DCI TCI code point) is set by the CORESET pool ID. It may be a field indicating that it is unique to the specified ControlResourceSetId.
  • MAC CE Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE
  • UE-specific PDSCH TCI state activation/deactivation see FIG. 3
  • the relevant MAC CE is identified by a MAC PDU subheader with an eLCID.
  • This MAC CE may be used in an environment that uses multiple TRPs based on a single DCI.
  • the MAC CE contains a Serving Cell ID field, a BWP ID field, a field for indicating the TCI state identified by the TCI-State ID (TCI state IDi,j (i is an integer from 0 to N, j is 1 or 2)), a field (Ci) indicating whether TCI state IDi,2 is present in the corresponding octet, and a reserved bit field (R, set to 0).
  • TCI state IDi,j a field for indicating the TCI state identified by the TCI-State ID
  • Ci indicating whether TCI state IDi,2 is present in the corresponding octet
  • R reserved bit field
  • i may correspond to the codepoint index of the TCI field indicated by the DCI.
  • TCI state IDi,j may indicate the j-th TCI state of the i-th TCI field codepoint.
  • MAC CE TCI State Indication for UE-specific PDCCH MAC CE
  • UE-specific PDCCH/CORESET TCI state activation/deactivation see FIG. 4
  • the relevant MAC CE is identified by a MAC subheader with LCID.
  • the MAC CE contains a Serving Cell ID field, a field indicating the CORESET (CORESET ID) indicating the TCI state, and a field for indicating the TCI state applicable to the CORESET identified by the CORESET ID. (TCI state ID) may be included.
  • Beam application time (BAT)) Rel Beam application time (BAT) Rel.
  • BAT beam application time
  • the first slot to apply the indicated TCI is at least Y symbols after the last symbol of the acknowledgment (ACK) for joint or separate DL/UL beam indication. It is considered that the first slot to apply the indicated TCI is at least Y symbols after the last symbol of the ACK/negative acknowledgment (NACK) for joint or separate DL/UL beam indications.
  • the Y symbol may be set by the base station based on the UE capabilities reported by the UE. The UE capabilities may be reported on a symbol-by-symbol basis.
  • the ACK may be an ACK for the PDSCH scheduled by the beam pointing DCI.
  • PDSCH may not be scheduled by beam pointing DCI.
  • the ACK in this case may be an ACK for the beam pointing DCI.
  • At least one Y symbol per BWP/CC is configured in the UE for 17 DCI-based beam indications.
  • the Y symbol values are also different, so there is a possibility that the application time will be different between multiple CCs.
  • the application time of the beam pointing may follow any of options 1 to 3 below.
  • [Option 1] Both the first slot and the Y symbol are determined on the carrier with the lowest SCS among the one or more carriers to which the beam pointing applies.
  • [Option 2] Both the first slot and the Y symbol are determined on the carrier with the lowest SCS among the one or more carriers applying the beam pointing and the UL carrier carrying the ACK.
  • the beam instruction application time (Y symbols) for CA may be determined on the carrier with the minimum SCS among the carriers to which the beam instruction is applied.
  • Rel. 17 MAC CE-based beam indications (if only a single TCI codepoint is activated), the MAC CE activation Rel. 16 application timeline.
  • the indicated TCI states with 17 TCI states may start to apply from the first slot that is at least Y symbols after the last symbol of that PUCCH.
  • Y may be a higher layer parameter (eg, BeamAppTime_r17[symbol]). Both the first slot and the Y symbols may be determined on the carrier with the lowest SCS among the carriers to which beam pointing applies.
  • the UE may, at a given moment, assume one indicated TCI state with Rel17 TCI states for DL and UL, or one indicated TCI (apart from DL) with Rel17 TCI state for UL. state can be assumed.
  • X [ms] may be used instead of Y [symbol].
  • the UE reports at least one of the following UE capabilities 1 and 2.
  • UE Capability 1 Minimum application time per SCS (minimum value of Y symbols between the last symbol of PUCCH carrying an ACK and the first slot in which the beam is applied).
  • UE Capability 2 Minimum time gap between the last symbol of the beam directed PDCCH (DCI) and the first slot where the beam applies. The gap between the last symbol of the beam pointing PDCCH (DCI) and the first slot where the beam applies may satisfy the UE capability (minimum time gap).
  • UE capability 2 may be an existing UE capability (eg, timeDurationForQCL).
  • the relationship between the beam designation and the channel/RS to which the beam applies may satisfy at least one of UE capabilities 1 and 2.
  • AI artificial intelligence
  • ML machine learning
  • AI/ML can enable prediction of beam quality.
  • BAT from HARQ-ACK related to beam pointing is Rel. It is considered to be at least one value to be set/(pre-)defined for the TCI states defined since 17 onwards.
  • beam pattern indication (a sequence of TCI states) is not supported.
  • the TCI state field (TCI field, up to 3 bit) to indicate one or more TCI states (common TCI state).
  • FIG. 5A is a diagram showing an example of joint TCI state indication.
  • one joint TCI state (DL/UL joint TCI state) may correspond to one code point of one TCI field.
  • the UE may determine the TCI state to apply to the DL channel/signal and the UL channel/signal (DL/UL joint TCI state) based on the codepoints of the indicated TCI field.
  • FIG. 5B is a diagram showing an example of a separate TCI state indication.
  • one or two TCI states correspond to codepoints in one TCI field.
  • Each of the two TCI states may be a DL (separate) TCI state and a UL (separate) TCI state.
  • the UE determines the TCI state to apply to DL channels/signals and the TCI state to apply to UL channels/signals based on the codepoints of the indicated TCI field. If the UE is informed of a TCI field codepoint corresponding to only one TCI state (e.g., codepoint "000" in FIG.
  • the UE may be notified of an unindicated TCI state (e.g., codepoint "000” in FIG. 5B).
  • an unindicated TCI state e.g., codepoint "000” in FIG. 5B.
  • 000” case, the UL TCI state may continue/indicate the UL TCI state that applies until the notification.
  • a timeline is considered for indication of TCI conditions (which may be referred to as "beam indication") to application of the indicated TCI conditions.
  • the timing from reception of the beam indication to application of the TCI state (which may be referred to as beam application timing (BAT)) is the transmission of HARQ-ACK for the PDSCH scheduled with the DCI indicating the TCI state. It may be the timing (see FIG. 6) after a certain time (for example, after K symbols). The timing may be at least the first slot after a certain amount of time (eg, K symbols).
  • BAT beam application start timing
  • K symbols, Y symbols, X [ms], time offset, and timing offset may be read interchangeably.
  • the K may be determined based on higher layer signaling (RRC parameters) based on capability information reported by the UE (UE Capability Information, for example, "timeDurationForQCL-rel18").
  • RRC parameters higher layer signaling
  • UE Capability Information for example, "timeDurationForQCL-rel18"
  • the BAT for a specific subcarrier interval may be set for multiple (for example, all) CCs/BWPs in which a common TCI state ID of a common TCI state in carrier aggregation (CA) is set.
  • CA carrier aggregation
  • each embodiment of the present disclosure may be applied when AI/prediction is not utilized.
  • a terminal user equipment (UE)/base station (base station (BS)) trains an ML model in a training mode, and a test mode , testing mode, etc.).
  • UE user equipment
  • BS base station
  • test mode validation of the accuracy of the ML model trained in the training mode may be performed.
  • the UE/BS inputs channel state information, reference signal measurements, etc. to the ML model to obtain highly accurate channel state information/measurements/beam selection/position, future channel state information / Radio link quality etc. may be output.
  • AI may be read as an object (also called object, object, data, function, program, etc.) having (implementing) at least one of the following characteristics: Estimates based on observed or collected information; - Choices based on information observed or collected; • Predictions based on observed or collected information.
  • the object may be, for example, a terminal, a device such as a base station, or a device. Also, the object may correspond to a program included in the device.
  • an ML model may be read as an object that has (enforces) at least one of the following characteristics: Generating an estimate by feeding, Informed to predict estimates; ⁇ Discover characteristics by giving information, • Selecting actions by giving information.
  • the ML model may be read as at least one of a model, an AI model, predictive analytics, a predictive analysis model, and the like. Also, the ML model may be derived using at least one of regression analysis (e.g., linear regression analysis, multiple regression analysis, logistic regression analysis), support vector machines, random forests, neural networks, deep learning, and the like. In this disclosure, model may be translated as at least one of encoder, decoder, tool, and the like.
  • regression analysis e.g., linear regression analysis, multiple regression analysis, logistic regression analysis
  • support vector machines e.g., multiple regression analysis, logistic regression analysis
  • model may be translated as at least one of encoder, decoder, tool, and the like.
  • the ML model outputs at least one information such as estimated value, predicted value, selected action, classification, etc., based on the input information.
  • the ML model may include supervised learning, unsupervised learning, reinforcement learning, etc.
  • Supervised learning may be used to learn general rules that map inputs to outputs.
  • Unsupervised learning may be used to learn features of data.
  • Reinforcement learning may be used to learn actions to maximize a goal.
  • implementation, operation, operation, execution, etc. may be read interchangeably.
  • testing, after-training, production use, actual use, etc. may be read interchangeably.
  • a signal may be interchanged with signal/channel.
  • the training mode may correspond to the mode in which the UE/BS transmits/receives signals for the ML model (in other words, the mode of operation during training).
  • the test mode corresponds to the mode in which the UE/BS implements the ML model (e.g., implements the trained ML model to predict the output) (in other words, the operating mode during the test). good.
  • training mode may refer to a mode in which a specific signal transmitted in test mode has a large overhead (eg, a large amount of resources) is transmitted.
  • training mode may refer to a mode that refers to a first configuration (eg, first DMRS configuration, first CSI-RS configuration).
  • test mode may refer to a mode that refers to a second configuration (eg, second DMRS configuration, second CSI-RS configuration) different from the first configuration.
  • At least one of time resources, frequency resources, code resources, and ports (antenna ports) related to measurement may be set more in the first setting than in the second setting.
  • estimation, prediction, and inference may be read interchangeably. Also, in the present disclosure, estimate, predict, and infer may be read interchangeably.
  • A/B/C and “at least one of A, B and C” may be read interchangeably.
  • cell, serving cell, CC, carrier, BWP, DL BWP, UL BWP, active DL BWP, active UL BWP, band may be read interchangeably.
  • indices, IDs, indicators, and resource IDs may be read interchangeably.
  • sequences, lists, sets, groups, groups, clusters, subsets, etc. may be read interchangeably.
  • supporting, controlling, controllable, operating, and capable of operating may be read interchangeably.
  • configure, activate, update, indicate, enable, specify, and select may be read interchangeably.
  • higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • RRC, RRC signaling, RRC parameters, higher layers, higher layer parameters, RRC information elements (IEs), RRC messages, and configuration may be read interchangeably.
  • MAC CE MAC Control Element
  • PDU MAC Protocol Data Unit
  • MAC CE update command
  • activation/deactivation command may be read interchangeably.
  • Broadcast information is, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), SIB1), other system It may be information (Other System Information (OSI)) or the like.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • SIB1 other system It may be information (Other System Information (OSI)) or the like.
  • beams, spatial domain filters, spatial settings, TCI states, UL TCI states, unified TCI states, unified beams, common TCI states, common beams, TCI assumptions, QCL assumptions, QCL parameters, spatial Domain Receive Filter, UE Spatial Domain Receive Filter, UE Receive Beam, DL Beam, DL Receive Beam, DL Precoding, DL Precoder, DL-RS, TCI State/QCL Assumed QCL Type D RS, TCI State/QCL Assumed QCL type A RS, spatial relationship, spatial domain transmit filter, UE spatial domain transmit filter, UE transmit beam, UL beam, UL transmit beam, UL precoding, UL precoder, PL-RS may be read interchangeably.
  • QCL type X-RS, DL-RS associated with QCL type X, DL-RS with QCL type X, source of DL-RS, SSB, CSI-RS, SRS may be read interchangeably. good.
  • CDM Code Division Multiplexing
  • reference signal group reference signal group
  • CORESET group Physical Uplink Control Channel
  • PUCCH resource group resource (e.g., reference signal resource, SRS resource), resource set (e.g., reference signal resource set), CORESET pool, CORESET subset, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink Link TCI state (UL TCI state), unified TCI state, common TCI state, Quasi-Co-Location (QCL), QCL assumption, redundancy version version (RV)) and layers (multi-input multi-output (MIMO) layer, transmission layer, spatial layer) may be read interchangeably.
  • panel identifier (ID) and panel may be read interchangeably.
  • TRP ID and TRP may be read interchangeably.
  • the panel identifier (ID) and the panel may be read interchangeably.
  • ID and the panel may be read interchangeably.
  • TRP ID and TRP, CORESET group ID and CORESET group, etc. may be read interchangeably.
  • TRP transmission point
  • panel DMRS port group
  • CORESET pool one of two TCI states associated with one codepoint of the TCI field may be read interchangeably.
  • Each embodiment of the present disclosure is used for at least one of transmission/reception using single DCI-based single TRP, transmission/reception using single DCI-based multi-TRP, and transmission/reception using multi-DCI-based multi-TRP. good too.
  • single PDCCH may be assumed to be supported when multiple TRPs utilize the ideal backhaul.
  • Multi-PDCCH may be assumed to be supported when inter-multi-TRP utilizes non-ideal backhaul.
  • the ideal backhaul may also be called DMRS port group type 1, reference signal related group type 1, antenna port group type 1, CORESET pool type 1, and so on.
  • Non-ideal backhaul may be referred to as DMRS port group type 2, reference signal associated group type 2, antenna port group type 2, CORESET pool type 2, and so on. Names are not limited to these.
  • single (single) TRP, single TRP system, single TRP transmission, and single PDSCH may be read interchangeably.
  • multi (multiple) TRPs, multi-TRP systems, multi-TRP transmissions, and multi-PDSCHs may be interchanged.
  • a single DCI, a single PDCCH, multiple TRPs based on a single DCI, and activating two TCI states on at least one TCI codepoint may be read interchangeably.
  • single TRP channels with single TRP, channels with one TCI state/spatial relationship, multi-TRP not enabled by RRC/DCI, multiple TCI states/spatial relations enabled by RRC/DCI may be interchanged with that no CORESET is set to a CORESETPoolIndex value of 1 for any CORESET, and that no codepoint in the TCI field maps to two TCI states. .
  • multi-TRP channels with multi-TRP, channels with multiple TCI state/spatial relationships, multi-TRP enabled by RRC/DCI, multiple TCI state/spatial relationships enabled by RRC/DCI and at least one of multi-TRP based on a single DCI and multi-TRP based on multiple DCIs
  • multi-TRPs based on multi-DCI setting a CORESET pool index (CORESETPoolIndex) value of 1 for a CORESET, may be read interchangeably.
  • multiple TRPs based on a single DCI, where at least one codepoint of a TCI field is mapped to two TCI states may be read interchangeably.
  • TRP#2 Secondary TRP
  • single DCI sDCI
  • single PDCCH multi-TRP system based on single DCI
  • sDCI-based MTRP activating two TCI states on at least one TCI codepoint
  • multi-DCI multi-PDCI
  • multi-PDCCH multi-PDCCH
  • multi-TRP system based on multi-DCI
  • the QCL of the present disclosure may be read interchangeably with QCL Type D.
  • TCI state A is the same QCL type D as TCI state B
  • TCI state A is the same as TCI state B
  • TCI state A is TCI state B
  • QCL type D in the present disclosure There is” etc. may be read interchangeably.
  • the code point of the DCI field 'Transmission Configuration Indication', the TCI code point, the DCI code point, and the code point of the TCI field may be read interchangeably.
  • single TRP and single frequency network may be read interchangeably.
  • high speed train (HST) high speed train (HST), HST scheme, high-speed travel scheme, scheme 1, scheme 2, NW pre-compensation scheme, HST scheme 1, HST scheme 2, HST NW pre-compensation scheme are read interchangeably.
  • PDSCH/PDCCH using single TRP may be read as PDSCH/PDCCH based on single TRP and single TRP PDSCH/PDCCH.
  • PDSCH/PDCCH using SFN may be read as PDSCH/PDCCH using SFN in multi, PDSCH/PDCCH based on SFN, and SFN PDSCH/PDCCH.
  • receiving DL signals (PDSCH/PDCCH) using SFN may be performed using the same time/frequency resources and/or transmitting the same data (PDSCH)/control information (PDCCH) to multiple It may mean receiving from a send/receive point.
  • receiving a DL signal using an SFN may utilize multiple TCI states/spatial domain filters/beams/QCLs using the same time/frequency resources and/or the same data/control information. may mean to receive
  • the precompensation schemes, scheme 1 (HST scheme 1) and at least one of the Doppler precompensation schemes may be read interchangeably.
  • Doppler pre-compensation scheme, base station pre-compensation scheme, TRP pre-compensation scheme, pre-Doppler compensation scheme, Doppler pre-compensation scheme, NW pre-compensation scheme, HST NW pre-compensation scheme, TRP pre-compensation scheme , TRP-based pre-compensation scheme, HST-SFN scheme A/B, and HST-SFN type A/B may be read interchangeably.
  • precompensation scheme, reduction scheme, improvement scheme, and correction scheme may be read interchangeably.
  • PDCCH/search space (SS)/CORESET with linkage, linked PDCCH/SS/CORESET, and PDCCH/SS/CORESET pair may be read interchangeably.
  • PDCCH/SS/CORESET without linkage, PDCCH/SS/CORESET not linked, and PDCCH/SS/CORESET alone may be read interchangeably.
  • two linked CORESETs for PDCCH repetition and two CORESETs respectively associated with two linked SS sets may be read interchangeably.
  • SFN-PDCCH repetitions PDCCH repetitions, two linked PDCCHs, and one DCI being received across the two linked search spaces (SS)/CORESET are interchangeable. good.
  • PDCCH repetition, SFN-PDCCH repetition, PDCCH repetition for higher reliability, PDCCH for higher reliability, PDCCH for reliability, two linked PDCCH are interchanged. good too.
  • the PDCCH reception method, PDCCH repetition, SFN-PDCCH repetition, HST-SFN, and HST-SFN scheme may be read interchangeably.
  • the PDSCH reception method, single DCI-based multi-TRP, and HST-SFN scheme may be read interchangeably.
  • single DCI-based multi-TRP repetition may be NCJT for enhanced mobile broadband (eMBB) service (low priority, priority 0), or URL LLC service for ultra-reliable and low latency communications service (high Priority, priority 1) may be repeated.
  • eMBB enhanced mobile broadband
  • URL LLC ultra-reliable and low latency communications service
  • PDSCH for multiple TRPs based on a single DCI may be interchanged with PDSCH to which TDM/FDM/SDM for multiple TRPs (defined in Rel. 16) is applied.
  • PDSCH for multiple TRPs may be interchanged with PDSCH to which TDM/FDM/SDM for multiple TRPs based on a single DCI (defined in Rel.16) is applied.
  • PUSCH/PUCCH/PDCCH for multiple TRPs based on a single DCI is repeated transmission (repetition) of PUSCH/PUCCH/PDCCH for multiple TRPs (defined after Rel.17). It may be reread.
  • SFN PDSCH/PDCCH is Rel. 17 or later may be read interchangeably as SFN PDSCH/PDCCH.
  • UL transmission with multiple panels may refer to a UL transmission scheme with multiple panels of the UE with DCI enhancement.
  • the joint TCI state/separate TCI state in the unified TCI state framework is not applicable to each channel/signal, determine the TCI state/QCL/spatial relationship for each channel. To do so, the default TCI state/QCL/spatial relationships described above may be used.
  • applying TCI conditions to each channel/signal/resource may mean applying TCI conditions to transmission and reception of each channel/signal/resource.
  • “highest (maximum)” and “lowest (minimum)” may be read interchangeably.
  • “maximum” may be read as “the nth (n is an arbitrary natural number)” larger, higher, higher, or the like.
  • “minimum” may be read as “nth (n is any natural number) smaller", smaller, lower, and the like.
  • repetition, repeated transmission, and repeated reception may be read interchangeably.
  • channels, signals, and channels/signals may be read interchangeably.
  • DL channel, DL signal, DL signal/channel, transmission/reception of DL signal/channel, DL reception, and DL transmission may be read interchangeably.
  • UL channel, UL signal, UL signal/channel, transmission/reception of UL signal/channel, UL reception, and UL transmission may be read interchangeably.
  • a first TCI state may correspond to a first TRP.
  • a second TCI state may correspond to a second TRP.
  • the nth TCI state may correspond to the nth TRP.
  • a first CORESET pool index value (eg, 0), a first TRP index value (eg, 1), and a first TCI state (first DL/UL (joint/separate) TCI states) may correspond to each other.
  • a second CORESET pool index value (eg, 1), a second TRP index value (eg, 2), and a second TCI state (second DL/UL (joint/separate) TCI states) may correspond to each other.
  • timing, time, time, time instance, slot, subslot, symbol, subframe, etc. may be read interchangeably.
  • Each embodiment/aspect/option/option/variation of the present disclosure may be used under at least one of the following conditions: • (explicitly) setting the corresponding higher layer parameters. • (implicitly) setting of relevant higher layer parameters. • An indication of (the fields contained in) the MAC CE/DCI. • (reported) UE Capability. ⁇ Stipulated within the specifications. • Specific conditions defined in the specification. • Configuration/indication by higher layer parameters, MAC CE, DCI and/or (reported) UE capabilities.
  • the first embodiment relates to BAT indication.
  • a UE refers to an RS with a TCI state indicated ("if applicable") as an RS configured with a particular QCL type (e.g., QCL type D) for a particular signal.
  • the UE may apply the TCI state to transmission/reception of one or more channels/signals.
  • the specific signal may be, for example, at least one of PDSCH DMRS, PDCCH DMRS, and CSI-RS.
  • the UE determines to apply the TCI state indicated using a beam indication (DCI) from a particular time resource (e.g., a particular symbol/slot) in the first symbol/slot after the BAT has elapsed.
  • DCI beam indication
  • the specific time resource may be at least one of options 1-0-1 to 1-0-3 below.
  • the specific time resource is the first/last symbol of PUCCH with HARQ-ACK scheduled by DCI (beam directed DCI) containing an indication of the TCI state, and the slot of the PUCCH (e.g., the first/last slot ) (option 1-0-1).
  • HARQ-ACKs scheduled by a certain DCI may be interchanged with HARQ-ACKs associated with a certain DCI.
  • the DCI for beam indication may be a DCI format with DL assignment or a DCI format without DL assignment.
  • the specific time resource may be at least one of the first/last symbol of the PDCCH of the DCI (beam directed DCI) containing the indication of the TCI state, and the slot of the PDCCH (eg, the first/last slot). Good (option 1-0-2).
  • the specific time resource may be the indicated symbol/slot/subframe (option 1-0-3).
  • the symbol/slot/subframe may be represented by at least one of a symbol (index) within a slot, a slot index within a subframe, and a subframe index.
  • the time resources in at least one of the above options 1-0-1 to 1-0-3 may be specified in advance, and higher layer signaling (RRC/MAC CE)/DCI (beam indication DCI/DCI other than beam directing DCI), or may be determined based on UE capability information reported by the UE.
  • RRC/MAC CE higher layer signaling
  • DCI beam indication DCI/DCI other than beam directing DCI
  • FIG. 7 is a diagram showing an example of criteria for starting BAT according to the first embodiment.
  • the UE receives beam pointing DCI.
  • the BAT is a certain period of time from the transmission of the HARQ-ACK associated with that DCI.
  • a specific period from the reception of the DCI becomes BAT.
  • the UE may determine to apply beam indication (by TCI state) after a specific period of time from the time resources described in at least one of options 1-0-1 to 1-0-3 above.
  • the specific period may be represented by a specific (eg, X (X is an arbitrary integer)) symbol/slot/subframe, or may be represented by Y [ms] (Y is an arbitrary number). good.
  • the specific period may be determined according to at least one of options 1-1-1 to 1-1-7 below.
  • the specified time period may be a value predefined in the specification.
  • This value may be determined, for example, based on the reported UE Capability information and the set higher layer parameters (RRC parameters/MAC CE fields).
  • the RRC parameter may be an RRC parameter indicating enabled/disabled of beam indications of a plurality of beam application times (BAT).
  • BAT beam application times
  • the value may be determined for each specific number (eg, N (N is an integer greater than 0)) of TCI code points in the TCI field included in the DCI.
  • the N may be defined in advance in the specification, or may be set/indicated to the UE using higher layer signaling (RRC/MAC CE)/DCI (beam directing DCI/DCI other than beam directing DCI). Alternatively, it may be determined based on UE capability information reported by the UE.
  • RRC/MAC CE higher layer signaling
  • DCI beam directing DCI/DCI other than beam directing DCI
  • the value may be determined for each TCI state/source RS within a specific QCL (QCL information).
  • QCL QCL information
  • the particular QCL may be the QCL corresponding to a particular number (eg, N) of TCI codepoints in the TCI field included in the DCI.
  • Figs. 8A and 8B are diagrams showing an example of application of the TCI state according to option 1-1-1.
  • a UE is configured with an association between TCI codepoints and (TCI states (joint DL/UL TCI states in the example of FIG. 8A)) and BAT.
  • TCI codepoints and TCI states described in each embodiment of the present disclosure is merely an example, and the number of bits of codepoints and the indicated TCI state are not limited to the examples shown. Also, the TCI states described in the association will be mainly described using the joint DL/UL TCI state as an example, but the TCI states included in the association may be separate DL/UL TCI states.
  • the UE determines that the BAT is BAT#1. Also, when the TCI codepoint "100" is indicated to the UE using the beam indication DCI, the UE determines that the BAT is BAT#2.
  • the specific time period may be determined/configured based on specific RRC parameters.
  • the specific RRC parameter may be a (independent) RRC parameter unrelated to a codepoint in DCI (eg, TCI codepoint).
  • the specific RRC parameter may be an RRC parameter relating to the application time of the beam (TCI state) (eg, "BeamAppTime”).
  • the specific time period may be determined/configured based on specific RRC parameters.
  • the specific RRC parameter is an RRC parameter that sets the specific period for every specific number (eg, N (N is an integer greater than 0)) of TCI code points in the TCI field included in the DCI, good too.
  • FIG. 9A is diagrams showing an example of application of the TCI state according to Option 1-1-3.
  • TCI codepoints for a UE, an association between TCI codepoints and (TCI states (joint DL/UL TCI states in the example of FIG. 9A)) and BAT is set.
  • the PDSCH configuration includes a parameter (beamApptimeperTCIlist) regarding the beam application time for each TCI state (TCI list).
  • the beam application time parameter includes the beam application time ID (beamApptimeId) of the maximum number of codepoints (maxNrofcodepointsinTCI-StateField) in the corresponding TCI field.
  • the ID of the beam application time may be a parameter for identifying an RRC parameter (eg, “beamApptime”) regarding the application time of the beam (TCI state).
  • the BAT instruction may be indicated by the BAT index (number) or by an index related to the BAT.
  • the association between the BAT-related index and the BAT value may be set by higher layer signaling (RRC/MAC CE), or may be defined in advance in the specifications.
  • the maximum number of codepoints in the TCI field may be a specific number. For example, if N is 1, the maximum number of codepoints in the corresponding TCI field (maxNrofcodepointsinTCI-StateField) may be a first value (eg, 8). For example, if N is 2, the maximum number of codepoints in the corresponding TCI field (maxNrofcodepointsinTCI-StateField) may be a second value (eg, 4).
  • the specific time period may be determined/configured based on specific RRC parameters.
  • the specific RRC parameter may be a TCI state configuration parameter ("TCI-State").
  • TCI-State TCI state configuration parameter
  • the setting parameter (“TCI-State”) of the TCI state may include an RRC parameter (eg, “beamApptime”) regarding the application time of the beam (TCI state).
  • FIG. 10 is a diagram showing an example of applying the TCI state according to Option 1-1-4.
  • the TCI state setting parameter (“TCI-State”) includes an RRC parameter (eg, “beamApptime”) regarding the beam (TCI state) application time.
  • the RRC parameter (e.g., "beamApptime”) relating to beam (TCI state) application time may indicate one of multiple values (n1, n2, n4, n8 or n16 in the example of FIG. 10). good. It should be noted that the multiple values shown in the drawing are merely examples, and the present invention is not limited to this.
  • the specific RRC parameter may be a QCL information parameter (“QCL-Info”) included in a TCI state configuration parameter (“TCI-State”).
  • QCL-Info QCL information parameter
  • the parameter of the QCL information (“QCL-Info”) may include an RRC parameter (eg, “beamApptime”) regarding the beam (TCI state) application time.
  • the parameter of the QCL information (“QCL-Info”) is indicated in at least one of the parameter indicating the first QCL type (“qcl-Type1”) and the parameter indicating the second QCL type (“qcl-Type2”). may be
  • FIG. 11 is a diagram showing an example of application of the TCI state according to Modification 1 of Option 1-1-4.
  • the TCI state setting parameter (“TCI-State”) includes the QCL information parameter (“QCL-Info”)
  • the QCL information parameter (“QCL-Info”) includes beam
  • An RRC parameter (eg, "beamApptime") for application time of (TCI state) is included.
  • the RRC parameter (e.g., "beamApptime”) for beam (TCI state) application time indicates one of multiple values (n1, n2, n4, n8 or n16 in the example of FIG. 11). good too. It should be noted that the multiple values shown in the drawing are merely examples, and the present invention is not limited to this.
  • the UE may be configured/notified with information on the correspondence relationship (mapping) between the TCI state ID and the BAT ID.
  • the BAT ID may be a parameter for specifying the BAT value.
  • the correspondence relationship between the BAT ID and the BAT value may be defined in advance in the specifications, may be set/instructed to the UE using higher layer signaling (RRC/MAC CE)/DCI, or may be reported. It may be determined based on UE capability information.
  • the information about the correspondence (mapping) between the TCI state ID and the BAT ID may be information that associates the TCI state ID and the BAT ID.
  • the information may be notified to the UE using higher layer signaling (RRC/MAC CE).
  • FIG. 12 is a diagram showing an example of application of the TCI state according to Modification 2 of Option 1-1-4.
  • associations for N TCI state IDs and associations for M BATs are described.
  • Information about each association and the correspondence (mapping) between the TCI state ID and the BAT ID is configured for the UE.
  • the UE determines the BAT for applying the TCI state based on these correspondences and the indicated TCI state (ID).
  • the specific time period may be determined/set/indicated based on parameters/fields indicated in the MAC CE.
  • the MAC CE may be, for example, MAC CE of at least one of options 1-1-5-1 and 1-1-5-2 below.
  • the MAC CE may be a new MAC CE (defined after Rel.17).
  • a new Logical Channel ID may be included in the MAC CE subheader.
  • the MAC CE may include a field indicating activation of the TCI state.
  • FIG. 13 is a diagram showing an example of a MAC CE configuration according to Option 1-1-5-1.
  • a field indicating a CORESET pool ID a field indicating a serving cell ID, a field indicating a BWP ID, and a field indicating activation/deactivation of TCI state i (denoted as T i ) are included.
  • the MAC CE shown in FIG. 13 further includes a field indicating the BAT corresponding to each activated TCI codepoint.
  • the UE determines the BAT corresponding to the indicated TCI state based on the BAT indication field.
  • the MAC CE may be an existing MAC CE (for example, defined by Rel.15/16).
  • the reserved bit included in the existing (for example, defined by Rel. 15/16) MAC CE has a field for activating a list of TCI states with BAT (time offset) It may be used as a field indicating whether to interpret as
  • This MAC CE may be a MAC CE in which new fields/octets are added to the existing (for example, defined by Rel. 15/16) MAC CE.
  • the existing (for example, defined by Rel. 15/16) MAC CE for example, MAC CE (Enhanced TCI States Activation /Deactivation for UE-specific PDSCH MAC CE).
  • FIG. 14 is a diagram showing an example of a MAC CE configuration according to option 1-1-5-2.
  • a serving cell ID Serving Cell ID
  • BWP ID BWP ID
  • TCI state IDi,j i is an integer from 0 to N, j is 1 or 2
  • C i a field indicating whether or not TCI state IDi,2 exists in the corresponding octet
  • R reserved bit field
  • i may correspond to the codepoint index of the TCI field indicated by the DCI.
  • TCI state IDi,j may indicate the j-th TCI state of the i-th TCI field codepoint.
  • the MAC CE shown in FIG. 14 further includes a field (D i ) and a field indicating the presence of an octet in the BAT corresponding to the second TCI state field corresponding to the i-th TCI state ID (i.e., TCI state IDi,2) (labeled Ei ). included.
  • the UE may determine that a field indicating BAT corresponding to TCI state IDi,1 is included.
  • the D i field indicates a second value (eg, 1 (or 0))
  • the UE may determine that the field indicating BAT corresponding to TCI state IDi,1 is not included.
  • the UE may determine that a field indicating BAT corresponding to TCI state IDi,2 is included.
  • the E i field indicates a second value (eg, 1 (or 0))
  • the UE may determine that the field indicating BAT corresponding to TCI state IDi,2 is not included.
  • the UE determines the BAT corresponding to the indicated TCI state based on the field indicating the BAT.
  • the specific time period may be determined/indicated based on specific fields included in the DCI.
  • the DCI may be an existing DCI (format A_B (A and B are arbitrary positive numbers)).
  • the cyclic redundancy check (CRC) of the DCI may be scrambled with an existing radio network temporary identifier (RNTI).
  • RNTI radio network temporary identifier
  • a new DCI field may be included for this DCI.
  • the new DCI field may be a field that indicates BAT.
  • existing fields may be used/interpreted as fields for indicating BAT.
  • the specific condition is, for example, that a specific field (for example, at least one of the FDRA field, the TDRA field, the MCS field, the RV field, and the NDI field) is (all) a specific value (for example, 0 (or 1) ) may be set.
  • a specific field for example, at least one of the FDRA field, the TDRA field, the MCS field, the RV field, and the NDI field
  • a specific value for example, 0 (or 1)
  • the DCI may be an existing DCI (format A_B (A and B are arbitrary positive numbers)).
  • the CRC of the DCI is Rel. It may be scrambled by the new RNTI defined in V.17 and later.
  • a new DCI field may be included for this DCI.
  • the new DCI field may be a field that indicates BAT.
  • existing fields may be used/interpreted as fields for indicating BAT.
  • the specific condition is, for example, that a specific field (for example, at least one of the FDRA field, the TDRA field, the MCS field, the RV field, and the NDI field) is (all) a specific value (for example, 0 (or 1) ) may be set.
  • a specific field for example, at least one of the FDRA field, the TDRA field, the MCS field, the RV field, and the NDI field
  • a specific value for example, 0 (or 1)
  • the DCI is Rel. 17 or later (format A_B (A and B are arbitrary positive numbers)).
  • the CRC attached to that DCI may be scrambled with an existing RNTI.
  • the DCI is Rel. 17 or later (format A_B (A and B are arbitrary positive numbers)).
  • the CRC attached to the DCI is Rel. It may be scrambled by the new RNTI defined in V.17 and later.
  • the UE may apply at least two of the above options 1-1-1 to 1-1-6 in combination.
  • options 1-1-1/1-1-2 above may be used. .
  • the length (period) of BAT can be determined appropriately.
  • a BAT common to multiple (eg, all) TCI codepoints and a differential BAT for some codepoints of the multiple TCI codepoints are provided. May be set/indicated.
  • the UE may determine the BAT based on the differential BAT. For this example, at least one of options 1-2-1 and 1-2-2 below may be followed.
  • the UE calculates/derives/determines the BAT based on a specific number (eg, N (N is an integer equal to or greater than 1)) associated difference value (differential BAT) for each TCI codepoint and the common BAT.
  • a common BAT may be set by specific higher layer signaling (RRC parameters), may be predefined in specifications, or may be indicated using MAC CE/DCI.
  • RRC parameters may, for example, be an RRC parameter relating to beam (TCI state) application time (eg, “BeamAppTime”).
  • the UE calculates the BAT based on the difference values associated with every specific number (e.g., N, where N is an integer greater than or equal to 1) of TCI codepoints and the BAT associated with the specific TCI codepoints. / derived / determined.
  • N is an integer greater than or equal to 1
  • the UE may calculate/derive/determine the BAT based on the BAT value associated with a specific TCI codepoint and the difference value associated with other TCI codepoints.
  • the BAT corresponding to each TCI codepoint is calculated/derived/determined from the sum of the BAT value associated with the particular TCI codepoint and the BAT associated with each TCI codepoint (common BAT). good too.
  • the particular TCI codepoint is, for example, the TCI codepoint corresponding to the highest (or lowest) codepoint index among the lower (or higher) codepoint indices associated with different values, and good too.
  • the value of the difference BAT may be determined based on at least one method (optional) described in the first embodiment. Also, positive and negative values may be supported for the value of the difference BAT.
  • option 1-2-2 it is sufficient to set a difference value with a smaller bit width compared to option 1-2-1, so the overhead required for setting BAT can be reduced.
  • Figs. 15A and 15B are diagrams showing an example of application of the TCI state according to Option 1-2-1.
  • the UE receives the beam indication DCI and applies the TCI state indicated in the DCI.
  • a TCI codepoint for the UE, a TCI codepoint, a TCI state (a joint DL/UL TCI state is shown in the example of FIG. 15A, but may be a separate TCI state), and a BAT (differential BAT ) is set. Also, a common BAT is set/defined for the UE.
  • the UE determines that the common BAT is BAT. Also, when 011/100 is indicated as the TCI codepoint to the UE, the UE determines that the value obtained by adding (the value corresponding to) BAT#1 to the common BAT is the BAT. Also, when 101/110/111 is indicated to the UE as the TCI codepoint, the UE determines that the value obtained by adding (the value corresponding to) BAT#2 to the common BAT is the BAT.
  • FIG. 16 is a diagram showing an example of application of the TCI state according to Option 1-2-2.
  • the UE receives the beam indication DCI and applies the TCI state indicated in the DCI.
  • the example shown in FIG. 16 shows an example in which option 1-2-1 is also applied in addition to option 1-2-2.
  • a common BAT is set/defined for the UE. Also, the correspondence between TCI codepoints, TCI states, and BATs is set for the UE.
  • the maximum BAT (TCI codepoint corresponding to) of the BATs in the corresponding relationship is indicated to the UE
  • the maximum BAT in the example of FIG. 16 , BAT#1
  • the common BAT is determined to be the BAT.
  • the UE uses the maximum BAT value (BAT # 1) and the maximum BAT is determined to be the sum of BAT other than BAT (BAT#2 in the example of FIG. 16).
  • the UE may determine the value of the time offset (BAT) based on the BAT (bit field) with quantized bits. For this example, at least one of options 1-3-1 and 1-3-2 below may be followed.
  • the association between the BAT bitfield/BAT ID and the BAT value may be configured in the UE using higher layer signaling (RRC signaling).
  • RRC signaling higher layer signaling
  • a UE may be configured with multiple BAT values (associations including) using RRC signaling. The UE may then determine one (or more than one) BAT value from among the multiple BAT values.
  • the UE may not receive the quantized bits indicating the BAT value (bit field indicating BAT). .
  • FIG. 17A is a diagram showing an example of BAT value association according to option 1-3-1.
  • the UE is associated with the bit field (or ID of BAT) and the BAT value as shown in FIG. good too.
  • the UE may receive quantized bits (bit field indicating BAT) that indicate the BAT value based on that particular rule.
  • FIG. 17B is a diagram showing an example of BAT value association according to Option 1-3-2.
  • the association between bit fields (or BAT IDs) and BAT values as shown in FIG. 17B is defined/determined in advance.
  • the UE may determine the BAT based on the association and the indicated quantized bits (bit field indicating BAT).
  • the UE applies at least one option of the present embodiment (eg, option 1-2-1/1-2-2) even when performing operations that utilize multi-panel / multi-TRP / multi-cell, BAT may be determined.
  • a common BAT may be set for the UE.
  • Common BAT may be set by specific higher layer signaling (RRC parameters), may be predefined in specifications, or may be indicated using MAC CE/DCI.
  • RRC parameters may, for example, be an RRC parameter relating to beam (TCI state) application time (eg, “BeamAppTime”).
  • a differential BAT according to information related to specific information may be set/instructed to the UE.
  • the specific information may be, for example, at least one of physical cell ID (PCI), information about the panel to be used, information about whether to use a single panel or multi-panel, and information about TRP.
  • the information on the TRP is, for example, information on the CORESET pool index (RRC parameter "coresetPoolIndex"), information on which TCI state to refer to when multiple (two) TCI states are indicated for the CORESET, and information regarding which spatial relationship to refer to when multiple (two) spatial relationships are configured for each PUCCH resource.
  • BAT can be determined/set/instructed appropriately.
  • a second embodiment relates to mapping between BAT and TCI states.
  • the UE may refer to a plurality of RSs indicated by the codepoints of the TCI field of the beam indication DCI in the first symbol/slot after a specific time resource and a specific time period after receiving the beam indication DCI. good.
  • the UE shall apply one or more TCI states indicated by the codepoints of the TCI field of the beam indication in the first symbol/slot after a particular time resource and a particular time period after receiving the beam indication DCI. You may
  • This embodiment may be applied in combination with at least one method described in the first embodiment.
  • the specific time resource may follow at least one of options 1-0-1 to 1-0-3 above.
  • the specific period may be the BAT/time offset in the first embodiment.
  • One TCI state (common TCI state/joint (DL/UL) TCI state/separate (DL/UL) TCI state) may be mapped with one BAT. That is, if one TCI codepoint indicates multiple TCI states, a BAT may be mapped to each of the TCI states.
  • one DCI (TCI codepoint) can be used to indicate the pattern and BAT of beams (TCI states) over multiple time domains.
  • the TCI state will mainly be described as an application method for two TCI states, a first TCI state and a second TCI state, but the number of TCI states is not limited to two, and may be three or more. may be
  • the beam pattern, the TCI state pattern, the series of TCI states, the correspondence regarding a plurality of TCI states, and the correspondence regarding a plurality of TCI states and BAT may be read interchangeably.
  • a beam pattern may refer to a correspondence for indicating multiple TCI states over multiple time domains using one TCI codepoint.
  • FIGS. 18A and 18B are diagrams showing an example of application of the TCI state according to the second embodiment.
  • a TCI codepoint for the UE, a TCI codepoint, a TCI state (a first joint DL/UL TCI state and a second joint DL/UL TCI state), and a BAT corresponding to the TCI state.
  • Correspondence is set/defined.
  • the UE receives a TCI field with a codepoint of 000 using beam pointing DCI. Based on the TCI field, the UE applies a first TCI state (TCI#0) based on BAT#1 and a second TCI state (TCI#1) based on BAT#2.
  • TCI#0 first TCI state
  • TCI#1 second TCI state
  • FIG. 19 is a diagram showing another example of application of the TCI state according to the second embodiment.
  • the correspondence between TCI codepoints, TCI states, and BATs corresponding to the TCI states set in the UE is the joint DL/UL TCI state and the separate DL/UL TCI state. At least one of the states may be included. Of the separate DL/UL TCI states, the DL TCI state and the UL TCI state may indicate the same TCI state or different TCI states. Even in such an example, at least one method of the first embodiment may be applied.
  • TCI state parameter (“TCI-State”) containing multiple QCL information (“QCL-info”) of the same type may be configured using RRC.
  • FIG. 20 is a diagram showing an example of TCI state parameters according to option 2-1-1.
  • the RRC parameter (“TCI-State”) includes a TCI state ID, a plurality of type 1 QCL information (first type 1 QCL information “qcl-Type1”, second type 1 QCL information “Secondqcl-Type1” and third type 1 QCL information “Thirdqcl-Type1”) and type 2 QCL information (first type 2 QCL information “qcl-Type2”, second type 2 QCL information "Secondqcl-Type2" and third type 2 QCL information "Thirdqcl-Type2”) and parameters for setting the beam application time corresponding to the QCL information ("beamApptime”, "SecondbeamApptime” and "ThirdbeamApptime”) included.
  • type 1 QCL information first type 1 QCL information “qcl-Type1”, second type 1 QCL information “Secondqcl-Type1” and third type 1 QCL information “Third
  • FIG. 20 shows an example in which the number of pieces of QCL information is three, the number is not limited to this example, and may be three or more. Also, the name of each parameter is merely an example, and is not limited to this example.
  • the UE supports the first type 1/type 2 QCL information for application of the first TCI state among the plurality of TCI states indicated using one TCI codepoint.
  • the application timing of the indicated TCI state may be determined based on a parameter (“beamApptime”) that sets the beam application time to be applied.
  • the UE sets the beam application time corresponding to the second type 1/type 2 QCL information for application of the second TCI state among the plurality of TCI states indicated using one TCI codepoint.
  • the application timing of the instructed TCI state may be determined based on the set parameter (“SecondbeamApptime”).
  • the UE sets the beam application time corresponding to the third type 1/type 2 QCL information for application of the third TCI state among the plurality of TCI states indicated using one TCI codepoint.
  • the application timing of the instructed TCI state may be determined based on the set parameter (“ThirdbeamApptime”).
  • the determination of BAT based on the parameters that set these multiple beam application times may follow at least one of variations 2-1-1-1 to 2-1-1-4 described below.
  • the UE may determine that the BAT set in the parameter (“beamApptime”) setting the beam application time corresponding to the first type 1/type 2 QCL information is the common BAT.
  • the UE may apply the first TCI state corresponding to the first Type 1/Type 2 QCL information at the timing based on the common BAT.
  • the UE is the n-th (n is an integer of 2 or more) BAT set with parameters for setting the beam application time corresponding to the type 1 / type 2 QCL information, and the common BAT, at the timing based on the n-th A first TCI state application corresponding to type 1/type 2 QCL information may be performed.
  • FIG. 21A is a diagram showing an example of application of the TCI state according to variation 2-1-1-1.
  • the UE determines that the BAT set by the parameter (“beamApptime”) for setting the beam application time corresponding to the first type 1/type 2 QCL information is the common BAT, Apply the first TCI state.
  • beamApptime the parameter for setting the beam application time corresponding to the first type 1/type 2 QCL information
  • the UE uses a parameter (“SecondbeamApptime”) for setting the beam application time corresponding to the second type 1/type 2 QCL information. 1) and the common BAT at the combined timing of the second TCI state.
  • BeamApptime a parameter for setting the beam application time corresponding to the second type 1/type 2 QCL information.
  • the BAT set with the parameter for setting the beam application time corresponding to the mth (m is a positive integer) type 1/type 2 QCL information is the BAT for applying the mth TCI state. You can judge that there is.
  • FIG. 21B is a diagram showing an example of application of the TCI state according to variation 2-1-1-2.
  • the UE determines that the BAT set by the parameter (“beamApptime”) for setting the beam application time corresponding to the first type 1/type 2 QCL information is BAT#1 (common BAT). may) and apply the first TCI state.
  • beamApptime the parameter for setting the beam application time corresponding to the first type 1/type 2 QCL information
  • BAT#1 common BAT
  • the UE determines that the BAT set by the parameter (“SecondbeamApptime”) for setting the beam application time corresponding to the second type 1/type 2 QCL information is BAT#2. decision and apply the second TCI state.
  • the parameter (“SecondbeamApptime”) for setting the beam application time corresponding to the second type 1/type 2 QCL information is BAT#2.
  • the UE may determine that the BAT set in the parameter (“beamApptime”) setting the beam application time corresponding to the first type 1/type 2 QCL information is the common BAT.
  • the UE may apply the first TCI state corresponding to the first Type 1/Type 2 QCL information at the timing based on the common BAT.
  • the UE is set with a parameter for setting the beam application time corresponding to the n-th (n is an integer of 2 or more) type 1 / type 2 QCL information, and the n-1 type 1 / type 2 of The first TCI state corresponding to the n-th type 1/type 2 QCL information may be applied at the timing based on the BAT set by the parameter for setting the beam application time corresponding to the QCL information. .
  • the period from the application timing of the (n ⁇ 1)th TCI state to the application timing of the nth TCI state uses a parameter for setting the beam application time corresponding to the nth type 1/type 2 QCL information. may be set as
  • parameters for setting the beam application time corresponding to the n-th type 1/type 2 QCL information for example, the above “SecondbeamApptime” and “ThirdbeamApptime" in the RRC parameter of the TCI state ("TCI-State") is not included, and instead a parameter indicating a switching gap (switching gap) may be included.
  • the parameter indicating the switching gap may be a parameter indicating the period/gap from the application timing of the n-1th TCI state to the application timing of the nth TCI state.
  • FIG. 22A is a diagram showing an example of application of the TCI state according to variation 2-1-1-3.
  • the UE determines that the common BAT is set by the parameter (“beamApptime”) for setting the beam application time corresponding to the first type 1/type 2 QCL information, and the first apply the TCI conditions of
  • a parameter indicating a switching gap is set for the UE.
  • the UE determines the application timing of the second TCI state and the third TCI state based on the timing (BAT#1 in FIG. 22A) indicated by the parameter of the switching gap.
  • the BAT set by the parameter (for example, "beamApptime") for setting the beam application time corresponding to the first type 1/type 2 QCL information is the first from the application timing of the m-1th TCI state. It may be determined to be a parameter indicating the switching gap until the application timing of the TCI state of m.
  • a parameter for setting the beam application time corresponding to the m-th type 1/type 2 QCL information may not be included and instead a parameter indicating the switching gap may be included.
  • FIG. 22B is a diagram showing an example of application of the TCI state according to variation 2-1-1-4.
  • the UE determines the application timing of the first/second/third TCI state based on the BAT (BAT#1 in FIG. 22B) set by the parameter indicating the switching gap.
  • QCL information containing information about multiple source RSs may be configured using RRC.
  • information about multiple source RSs may be included in the QCL information in the parameters of one TCI state. Therefore, the UE receives an indication of one TCI codepoint (TCI state ID) and determines the BAT to apply to multiple TCI states based on information about multiple source RSs contained in the indicated TCI state.
  • TCI state ID an indication of one TCI codepoint
  • BAT the BAT to apply to multiple TCI states based on information about multiple source RSs contained in the indicated TCI state.
  • the information about the multiple source RSs may be, for example, an RRC parameter indicating a first reference signal (eg, "referenceSignal”), an RRC parameter indicating a second reference signal (eg, "SecondreferenceSignal”), a third reference signal.
  • An RRC parameter (eg, "ThirdreferenceSignal") to indicate.
  • the parameter indicating each reference signal may indicate the index of the reference signal (eg, CSI-RS/SSB) of the reference destination.
  • the number of pieces of information about the source RS is not limited to three, and may be any number. Also, the name of each parameter is merely an example, and is not limited to this example.
  • FIG. 23 is a diagram showing an example of TCI state parameters according to option 2-1-2.
  • type 1 QCL information (“qcl-Type1”)
  • type 2 QCL information (“qcl-Type2”)
  • beam application time are included in the RRC parameter (“TCI-State”).
  • TCI-State the RRC parameter
  • beamApptime a parameter that sets the
  • the parameter (“QCL-Info”) of the QCL information referred to by the type 1 QCL information (“qcl-Type1”) and the type 2 QCL information (“qcl-Type2”) includes an RRC parameter (“referenceSignal”) indicating the first reference signal and an RRC parameter (“SecondreferenceSignal”) indicating the second reference signal.
  • FIG. 23 shows an example in which the number of parameters related to reference signals in the QCL information is two, the number is not limited to this example, and may be three or more.
  • the UE determines the TCI state based on the information about the first source RS for application of the first TCI state among the multiple TCI states indicated using one TCI codepoint. determine applicability. Also, the UE determines application of a second TCI state among a plurality of TCI states indicated using one TCI codepoint based on information on the second source RS.
  • the application timings of the first and second TCI states may be determined based on a parameter ("beamApptime") for setting the beam application time included in the parameters of the TCI state.
  • beamApptime a parameter for setting the beam application time included in the parameters of the TCI state.
  • the parameter for setting the beam application time (“beamApptime”) is included in the TCI state parameters, but the parameter for setting the beam application time (“beamApptime”) is May be included in the information parameter ("QCL-Info").
  • each of the parameters related to the plurality of source RSs included in the QCL information parameter (“QCL-Info”) may correspond to each of the parameters for setting the beam application time.
  • the UE may apply the BAT corresponding to the parameters for the source RS to apply the TCI state to which the parameters for the source RS correspond.
  • At least one of the above variations 2-1-1-1 to 2-1-1-4 may be appropriately applied to the determination of BAT based on the parameter for setting the beam application time in option 2-1-2.
  • the UE may receive a MAC CE (activation/deactivation command MAC CE) containing fields for multiple TCI states for multiple (different) BATs.
  • MAC CE activation/deactivation command MAC CE
  • the plurality of BATs may be BATs corresponding to each application of a plurality of TCI states associated with one TCI codepoint.
  • the MAC CE may be the MAC CE described in at least one of options 2-1-3-1 and 2-1-3-2 below.
  • the MAC CE may be a new MAC CE (defined after Rel.17).
  • a new Logical Channel ID may be included in the MAC CE subheader.
  • the MAC CE may include a field indicating activation of the TCI state.
  • the number of fields/octets included in the MAC CE may be set using RRC signaling, or may be determined based on reported UE capability information.
  • the UE capability information may for example be defined by the maximum number of BATs associated with one codepoint.
  • FIG. 24 is a diagram showing an example of the configuration of MAC CE according to Option 2-1-3-1.
  • the MAC CE shown in FIG. 24 includes a field indicating the CORESET pool ID, a field indicating the ID of the serving cell, a field indicating the BWP ID, and a field indicating activation of the TCI state (described as TN ).
  • the field indicating activation of the TCI state may correspond to BAT.
  • the field that activates the first TCI state among multiple TCI states corresponding to one TCI state corresponds to the first BAT (eg, BAT#1).
  • the field for activating the second TCI state among the multiple TCI states corresponding to one TCI state corresponds to the second BAT (eg, BAT#2).
  • the UE may refer to the first TCI state related field in the first BAT application and the second TCI state related field in the second BAT application.
  • the MAC CE shown in FIG. 24 further includes a field indicating BAT#1 and a field indicating BAT#2 corresponding to each TCI state.
  • the UE determines the BAT corresponding to the indicated TCI state based on the BAT indication field.
  • the field indicating BAT may be added/deleted according to the LCID, for example.
  • the MAC CE may be an existing MAC CE (for example, defined by Rel.15/16).
  • the reserved bit included in the existing (for example, defined by Rel. 15/16) MAC CE has a field for activating a list of TCI states with BAT (time offset) It may be used as a field indicating whether to interpret as
  • This MAC CE may be a MAC CE in which new fields/octets are added to the existing (for example, defined by Rel. 15/16) MAC CE.
  • the existing (for example, defined by Rel. 15/16) MAC CE for example, MAC CE (Enhanced TCI States Activation /Deactivation for UE-specific PDSCH MAC CE).
  • FIG. 25 is a diagram showing an example of a MAC CE configuration according to Option 2-1-3-2.
  • a serving cell ID (Serving Cell ID) field a BWP ID field, a field (TCI state IDi,j (i is an integer from 0 to N, j is 1 or 2), a field indicating whether or not TCI state IDi,2 exists in the corresponding octet (C i ), and a reserved bit field (R, set to 0) may be included.
  • the field for indicating the TCI state corresponding to each BAT may mean a field for indicating the TCI state to be referenced after each BAT has passed.
  • i may correspond to the codepoint index of the TCI field indicated by the DCI.
  • TCI state IDi,j may indicate the j-th TCI state of the i-th TCI field codepoint.
  • the MAC CE shown in FIG. 25 further includes an octet corresponding to the first TCI state field (that is, TCI state IDi,1) of the i-th TCI state ID corresponding to BAT#Y (Y is an arbitrary integer). and a field indicating the presence of an octet corresponding to the second TCI state field (i.e., TCI state IDi,2) of the i-th TCI state ID corresponding to BAT# Y . (denoted as EiY ) and are included.
  • the UE When the DiY field indicates a first value (eg, 0 (or 1)), the UE includes a field for indicating the TCI state corresponding to TCI state IDi,1 corresponding to BAT#Y. You may judge that When the DiY field indicates a second value (eg, 1 (or 0)), the UE includes a field for indicating the TCI state corresponding to TCI state IDi,1 corresponding to BAT#Y. You may decide not to.
  • a first value eg, 0 (or 1)
  • the UE When the DiY field indicates a second value (eg, 1 (or 0)), the UE includes a field for indicating the TCI state corresponding to TCI state IDi,1 corresponding to BAT#Y. You may decide not to.
  • the UE determines that a field indicating BAT corresponding to TCI state IDi,2 corresponding to BAT#Y is included. You may When the E iY field indicates a second value (eg, 1 (or 0)), the UE indicates that the field indicating the BAT corresponding to the TCI state IDi,2 corresponding to BAT#Y is not included. You can judge.
  • the UE determines the BAT corresponding to the indicated TCI state based on the field indicating the BAT.
  • each BAT corresponding to the TCI state ID as described in option 1-1-5-2 of the first embodiment (for example, FIG. 25 example, a field indicating BAT#1/#2) may be included.
  • the TCI state/BAT can be set appropriately.
  • the following describes the start timing (symbol/slot) of TCI state application/RS reference by the UE when one TCI codepoint is mapped to multiple TCI states/source RSs with multiple BATs. .
  • the UE may set the start timing (symbol/slot) referring to the RS for the indicated TCI state in a specific manner. may be determined based on
  • the specific method may follow at least one of options 2-2-1 and 2-2-2 below.
  • ⁇ Option 2-2-1 ⁇ The UE starts referencing the RS for the indicated TCI state based on the configured/indicated BAT after a specific time resource determined based on at least one method described in the first embodiment above. good too.
  • the UE starts applying the indicated TCI state based on the configured/indicated BAT after a certain time resource determined based on at least one method described in the first embodiment above.
  • the set/indicated BAT may indicate a duration from the specific time resource.
  • FIGS. 26A and 26B are diagrams showing an example of application of the TCI state according to option 2-2-1.
  • the UE is configured with associations between TCI codepoints, multiple TCI states (first TCI state/second TCI state), and BAT corresponding to each TCI state. be.
  • the UE receives a beam pointing DCI that indicates the TCI codepoint "000".
  • the UE determines the start of application of the first TCI state (TCI#0) to be timing BAT#1 after the transmission of the HARQ-ACK associated with the beam directing DCI.
  • the UE also determines the start of application of the second TCI state (TCI#1) to be timing BAT#2 after the transmission of the HARQ-ACK associated with the beam directed DCI.
  • ⁇ Option 2-2-2 ⁇ The UE starts referencing the RS for the indicated TCI state based on the configured/indicated BAT after a specific time resource determined based on at least one method described in the first embodiment above. good too.
  • the UE starts applying the indicated TCI state based on the configured/indicated BAT after a certain time resource determined based on at least one method described in the first embodiment above.
  • the set/instructed BAT may indicate at least one of the period from the specific time resource and the period to be added (that is, differential BAT).
  • the UE performs BAT corresponding to the first TCI state after the specific time resource. It may be determined to start the application after (first BAT) has elapsed. At this time, the UE applies the second TCI state after the specific time resource, after the first BAT, and after the BAT corresponding to the second TCI state (second BAT). You may decide to start Thus, the initiation of application of the nth TCI state may be determined/determined based on the initiation timing of application of the n-1th TCI state and the indicated BAT.
  • FIGS. 27A and 27B are diagrams showing an example of application of the TCI state according to option 2-2-2.
  • the UE is configured with associations between TCI codepoints, multiple TCI states (first TCI state/second TCI state), and BAT corresponding to each TCI state. be.
  • the UE receives a beam pointing DCI that indicates the TCI codepoint "000".
  • the UE determines the start of application of the first TCI state (TCI#0) to be timing BAT#1 after the transmission of the HARQ-ACK associated with the beam directing DCI.
  • the UE starts applying the second TCI state (TCI # 1) at the application start timing of the first TCI state (after BAT # 1 has elapsed from the transmission of HARQ-ACK related to the beam instruction DCI timing), it is determined that the timing is after BAT#2 has elapsed.
  • the UE may assume that application of the first TCI state starts before application of the second TCI state.
  • the UE may assume that the application of the nth TCI state starts before the application of the n+1th TCI state.
  • the UE may assume that the first BAT and the second BAT are the same value. In this case, information indicating one BAT value may be notified to the UE. According to this method, the overhead of BAT notification to the UE can be reduced.
  • a third embodiment relates to the number of TCI states to activate for the UE.
  • the UE may receive activation commands (MAC CE) corresponding to a certain number (eg, up to X) of TCI state combinations/pairs.
  • MAC CE activation commands
  • the MAC CE may activate up to eight TCI state combinations/pairs.
  • one TCI state combination may correspond to a TCI state (pair of TCI states) indicated by one TCI codepoint.
  • the UE may receive an activation command (MAC CE) corresponding to a combination of TCI states, consisting of a certain number (eg, up to X) of total TCI states (TCI state pairs).
  • MAC CE activation command
  • the MAC CE may activate up to eight TCI states (TCI state pairs) in total. By limiting the maximum TCI state in this manner, the number of active TCI states can be limited.
  • the UE may receive an activation command (MAC CE) corresponding to a combination/pair of TCI states, consisting of a certain number (eg, up to X) of source RSs of QCL information in total.
  • MAC CE activation command
  • the MAC CE may activate TCI states (pairs of TCI states) including up to eight source RSs in total.
  • the X may be determined/set for each QCL type.
  • the X may be determined/set for each specific QCL type (eg, QCL type D).
  • the X may represent the maximum number relative to the total number of source RSs of a particular QCL type (eg, QCL type A/B/C).
  • X may be a value defined in the specifications in advance, or determined based on higher layer signaling (RRC/MAC CE)/DCI. may be determined based on reported UE capability information.
  • RRC/MAC CE higher layer signaling
  • the number of TCI states to activate for the UE can be determined appropriately.
  • a fourth embodiment relates to the maximum/minimum value of BAT.
  • the maximum/minimum value of BAT that is set/instructed for the UE may be a value defined in the specifications in advance, or may be determined based on higher layer signaling (RRC/MAC CE)/DCI. Alternatively, it may be determined based on reported UE capability information.
  • the UE may not expect/expect to receive an indication/activation/configuration that includes a BAT with a value greater than the specified/determined maximum BAT.
  • the UE may assume/expect not to receive an indication/activation/configuration containing a BAT with a value greater than the specified/determined maximum BAT.
  • the UE determines to use the specified/determined maximum BAT value.
  • the UE may not expect/expect to receive an indication/activation/configuration that includes a BAT with a value less than the specified/determined minimum BAT.
  • the UE may assume/expect not to receive an indication/activation/configuration containing a BAT with a value less than the specified/determined minimum BAT.
  • the UE determines to use the specified/determined minimum BAT.
  • the fourth embodiment it is possible to appropriately determine the maximum/minimum value of BAT and perform the UE operation related to the maximum/minimum value.
  • the fifth embodiment relates to the operation when the UE receives multiple beam indication DCI.
  • the UE may not expect/expect to receive a specific DCI/MAC CE after receiving a DCI/MAC CE indicating the TCI status.
  • the specific DCI/MAC CE may be a DCI/MAC CE that instructs BAT at a timing before the last BAT (beam application timing) instructed using the received DCI/MAC CE.
  • FIG. 28 is a diagram showing an example of application of the TCI state according to aspect 5-1.
  • the UE receives beam indication DCI#1 instructing to refer to RS#0 after BAT#0 and to refer to RS#1 after BAT#1. do.
  • the referred RS may be read interchangeably with the source RS (reference RS) of the TCI state used at a certain time.
  • FIG. 28 describes beam instruction DCI#2 that instructs to refer to RS#2 after BAT#2 has passed.
  • Beam directing DCI#2 exists after receiving beam directing DCI#1, and BAT#2 indicates the timing prior to BAT#1 (ie, the last BAT pointed to by beam directing DCI#1).
  • the UE does not expect/expect to receive beam indication DCI#2.
  • FIG. 29 is a diagram showing another example of application of the TCI state according to aspect 5-1.
  • the UE receives beam indication DCI#1 instructing to refer to RS#0 after BAT#0 and to refer to RS#1 after BAT#1. do.
  • FIG. 29 describes beam instruction DCI#2 that instructs to refer to RS#2 after BAT#2 has elapsed.
  • Beam directing DCI#2 exists after receiving beam directing DCI#1, and BAT#2 indicates the timing after BAT#1 (ie, the last BAT pointed to by beam directing DCI#1).
  • the UE determines to refer to RS#2 according to the beam instruction DCI#2.
  • the specific DCI/MAC CE may be a DCI/MAC CE that instructs BAT at a timing before the last BAT (beam application timing) instructed using the received DCI/MAC CE.
  • the UE ignores part/all of the instruction by the beam instruction DCI#2 as shown in FIG.
  • the UE may not expect/expect to receive a specific DCI/MAC CE after receiving a DCI/MAC CE indicating the TCI status.
  • the specific DCI/MAC CE indicates a TCI state/RS that is different from the TCI state/RS indicated at the timing before the last BAT (beam application timing) indicated using the received DCI/MAC CE It may be a DCI/MAC CE that
  • FIG. 30 is a diagram showing an example of application of the TCI state according to aspect 5-3.
  • the UE receives beam indication DCI#1 instructing to refer to RS#0 after BAT#0 and to refer to RS#1 after BAT#1. do.
  • FIG. 30 shows reference to RS#0 in a specific period from after BAT#0 to before BAT#1, and specific period from after BAT#1 to after BAT#2.
  • Beam indication DCI#2 is described to instruct that reference to RS#1 is made in BAT#2 and that reference to RS#2 is made after BAT#2 has passed.
  • the instructions for RS#0 and RS#1 by beam instruction DCI#2 include the same instructions as those of beam instruction DCI#1.
  • the UE determines to refer to RS#2 (and RS#0/#1) according to the beam instruction DCI#2.
  • the UE does not assume/expect to receive the beam directing DCI.
  • the specific DCI/MAC CE indicates a TCI state/RS that is different from the TCI state/RS indicated at the timing before the last BAT (beam application timing) indicated using the received DCI/MAC CE It may be a DCI/MAC CE that
  • Some information that the UE ignores may be specified in advance, may be determined based on higher layer signaling (RRC/MAC CE)/DCI, or may be based on reported UE capability information. may be determined by
  • Aspect 5-5 describes the operation when the UE receives a specific DCI/MAC CE after receiving the DCI/MAC CE indicating the TCI state.
  • the specific DCI/MAC CE is a TCI state/different from the instruction for the TCI state/RS at the timing before the last BAT (beam application (start) timing) indicated using the received DCI/MAC CE It may be a DCI/MAC CE that indicates an RS.
  • the UE shall apply (or change) may be made. At this time, the UE may not refer to the TCI state/source RS applied after a certain timing for previously received DCI/MAC CE indications.
  • the specific timing may be at least one of options 5-5-1 and 5-5-2 below.
  • the specific timing may be timing after a specific period (eg, X symbols/slots/subframes/Y [ms]) after reception of the DCI/MAC CE (received later).
  • a specific period eg, X symbols/slots/subframes/Y [ms]
  • the specific timing may be the transmission timing of the HARQ-ACK associated with the (later received) DCI/MAC CE.
  • FIG. 31 is a diagram showing an example of application of the TCI state according to option 5-5-1.
  • the UE refers to RS#0 after BAT#0, refers to RS#1 after BAT#1, and refers to RS#2 after BAT#2. receive the beam directing DCI#1 instructing that.
  • the UE receives beam instruction DCI#2 instructing to refer to RS#3 after BAT#3 has elapsed.
  • the BAT#3 exists between BAT#1 and BAT#2.
  • the UE refers to the RS by beam directing DCI#1 (applying the TCI state) after a specific timing (eg, after transmission of HARQ-ACK related to beam directing DCI#2). disobey. That is, the UE determines to refer to RS#0 (does not determine to refer to RS#1) from after transmission of HARQ-ACK related to beam instruction DCI#2 to BAT#3. The UE determines to refer to RS#3 after BAT#3 has elapsed.
  • the specific timing may be the time resource (symbol) for the first TCI state/RS application/reference as indicated by the (later received) DCI/MAC CE.
  • FIG. 32 is a diagram showing an example of application of the TCI state according to Option 5-5-2.
  • the UE refers to RS#0 after BAT#0, refers to RS#1 after BAT#1, and refers to RS#2 after BAT#2. receive the beam directing DCI#1 instructing that.
  • the UE receives beam instruction DCI#2 instructing to refer to RS#3 after BAT#3 has elapsed.
  • the BAT#3 exists between BAT#1 and BAT#2.
  • the UE after a specific timing (e.g., the first TCI state/RS application/reference symbol (ie, BAT #3) indicated by the beam indication DCI) Do not follow RS referencing (TCI state application) by DCI#1. That is, before BAT#3, the UE determines to refer to RS#0/#1 based on the beam instruction DCI#1, and determines to refer to RS#3 after BAT#3.
  • a specific timing e.g., the first TCI state/RS application/reference symbol (ie, BAT #3) indicated by the beam indication DCI
  • timing before the last BAT in aspects 5-1 to 5-5 above may be read as "timing before the elapse of a specific period after the last BAT”.
  • the specific period may be specified in advance, may be determined based on a specific rule, may be determined based on higher layer signaling (RRC/MAC CE)/DCI, It may be determined based on reported UE capability information (eg, capability information for application time of QCL (“timedurationForQCL”)).
  • the specific time period may be expressed in X symbols/slot/subframe/Y[ms].
  • At least one of the embodiments described above may only be applied to UEs that have reported or support a particular UE capability.
  • the specific UE capabilities may indicate at least one of the following (may be defined in at least one of the following): • Ability to operate/information on each embodiment/aspect. • Ability to act/information on each option/combination of options. • Ability to act/information about each option/option combination. • The maximum number of TCI states associated with one TCI codepoint (supported). • The maximum number of source RSs with the same QCL type associated with one TCI codepoint (supported). • Maximum number of activated TCI states (supported). • Maximum/minimum value of BAT (supported).
  • the UE capabilities are, for example, determining BAT (for AI-assisted beam prediction), setting/indicating BAT, setting/activating/indicating beam pattern (multiple TCI states), TCI state included in MAC CE (of combination/pair), maximum/minimum value of BAT, operation on receipt of multiple beam indications.
  • the UE capability may be defined by the maximum supported N/M/n/m/X/Y values (described in each embodiment).
  • the UE capabilities may be reported per frequency, or may be reported per frequency range (eg, Frequency Range 1 (FR1), Frequency Range 2 (FR2), FR2-1, FR2-2) , may be reported for each cell, or may be reported for each subcarrier spacing (SCS).
  • FR1 Frequency Range 1
  • FR2 Frequency Range 2
  • SCS subcarrier spacing
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • At least one of the above embodiments may be applied if the UE is configured with specific information related to the above embodiments by higher layer signaling.
  • the UE can implement the above functions while maintaining compatibility with existing specifications.
  • wireless communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the radio communication methods according to the above embodiments of the present disclosure or a combination thereof.
  • FIG. 33 is a diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
  • LTE Long Term Evolution
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • LTE Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB) )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB)
  • gNB NR base stations
  • a wireless communication system 1 includes a base station 11 forming a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) arranged in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. You may prepare.
  • a user terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminals 20 are not limited to the embodiment shown in the figure.
  • the base stations 11 and 12 are collectively referred to as the base station 10 when not distinguished.
  • the user terminal 20 may connect to at least one of the multiple base stations 10 .
  • the user terminal 20 may utilize at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)).
  • Macrocell C1 may be included in FR1, and small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a plurality of base stations 10 may be connected by wire (for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is an IAB Also called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 directly or via another base station 10 .
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication schemes such as LTE, LTE-A, and 5G.
  • a radio access scheme based on orthogonal frequency division multiplexing may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a radio access method may be called a waveform.
  • other radio access schemes for example, other single-carrier transmission schemes and other multi-carrier transmission schemes
  • the UL and DL radio access schemes may be used as the UL and DL radio access schemes.
  • a downlink shared channel Physical Downlink Shared Channel (PDSCH)
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • an uplink shared channel (PUSCH) shared by each user terminal 20 an uplink control channel (PUCCH), a random access channel (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, higher layer control information, and the like may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) including scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CControl Resource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource searching for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates.
  • a CORESET may be associated with one or more search spaces. The UE may monitor CORESETs associated with certain search spaces based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • PUCCH channel state information
  • acknowledgment information for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • SR scheduling request
  • a random access preamble for connection establishment with a cell may be transmitted by the PRACH.
  • downlink, uplink, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical" to the head.
  • synchronization signals SS
  • downlink reference signals DL-RS
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS)), Phase Tracking Reference Signal (PTRS)), etc.
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • DMRS Demodulation reference signal
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS Block (SSB), and so on.
  • SS, SSB, etc. may also be referred to as reference signals.
  • DMRS may also be called a user terminal-specific reference signal (UE-specific reference signal).
  • FIG. 34 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • the base station 10 comprises a control section 110 , a transmission/reception section 120 , a transmission/reception antenna 130 and a transmission line interface 140 .
  • One or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
  • this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the base station 10 as a whole.
  • the control unit 110 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping), and the like.
  • the control unit 110 may control transmission/reception, measurement, etc. using the transmission/reception unit 120 , the transmission/reception antenna 130 and the transmission line interface 140 .
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer them to the transmission/reception unit 120 .
  • the control unit 110 may perform call processing (setup, release, etc.) of communication channels, state management of the base station 10, management of radio resources, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121 , a radio frequency (RF) section 122 and a measuring section 123 .
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212 .
  • the transmitting/receiving unit 120 is configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
  • the transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of the transmission processing section 1211 and the RF section 122 .
  • the receiving section may be composed of a reception processing section 1212 , an RF section 122 and a measurement section 123 .
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (DFT) on the bit string to be transmitted. Processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-to-analog conversion may be performed, and the baseband signal may be output.
  • channel coding which may include error correction coding
  • modulation modulation
  • mapping mapping
  • filtering filtering
  • DFT discrete Fourier transform
  • DFT discrete Fourier transform
  • the transmitting/receiving unit 120 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 130. .
  • the transmitting/receiving unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmission/reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, Fast Fourier transform (FFT) processing, and Inverse Discrete Fourier transform (IDFT) processing on the acquired baseband signal. )) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing. User data and the like may be acquired.
  • FFT Fast Fourier transform
  • IDFT Inverse Discrete Fourier transform
  • the transmitting/receiving unit 120 may measure the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)) , signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), and the like may be measured.
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • RSSI Received Signal Strength Indicator
  • channel information for example, CSI
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, etc., and user data (user plane data) for the user terminal 20, control plane data, and the like. Data and the like may be obtained, transmitted, and the like.
  • the transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission line interface 140.
  • the transmitting/receiving unit 120 may transmit configuration information including settings related to transmission configuration indication (TCI) states applied to multiple types of channels, and an indication of the TCI states applied to the multiple types of channels.
  • the control unit 110 may instruct the application start timing of the TCI state using the information about the application start timing of the TCI state included in the setting information and the instruction (first embodiment).
  • the transmitting/receiving unit 120 may transmit setting information including settings related to transmission configuration indication (TCI) states applied to multiple types of channels, and an indication of the TCI states.
  • TCI transmission configuration indication
  • a codepoint of a TCI field included in said indication may be associated with multiple said TCI states.
  • the control unit 110 may instruct the application start timing of the TCI state using the information about the application start timing of the TCI state included in the setting information and the instruction (second embodiment).
  • Transmitting/receiving section 120 receives at least configuration information including settings regarding transmission configuration indication (TCI) states applied to multiple types of channels, a first instruction regarding the TCI states, and a second instruction regarding the TCI states. You can send one.
  • Control unit 110 uses at least one of the information about the application start timing of the TCI state included in the setting information, the first instruction, and the second instruction to perform the first step based on the first instruction. application of one TCI state and application of a second TCI state based on the second instruction may be instructed (fifth embodiment).
  • TCI transmission configuration indication
  • FIG. 35 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control section 210 , a transmission/reception section 220 and a transmission/reception antenna 230 .
  • One or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the user terminal 20 as a whole.
  • the control unit 210 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230 .
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals and transfer them to the transmission/reception unit 220 .
  • the transmitting/receiving section 220 may include a baseband section 221 , an RF section 222 and a measurement section 223 .
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212 .
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure.
  • the transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of a transmission processing section 2211 and an RF section 222 .
  • the receiving section may include a reception processing section 2212 , an RF section 222 and a measurement section 223 .
  • the transmitting/receiving antenna 230 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
  • the transmitter/receiver 220 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (eg, RLC retransmission control), MAC layer processing (eg, , HARQ retransmission control) and the like may be performed to generate a bit string to be transmitted.
  • RLC layer processing eg, RLC retransmission control
  • MAC layer processing eg, HARQ retransmission control
  • the transmission/reception unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing on a bit string to be transmitted. , precoding, digital-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
  • Whether or not to apply DFT processing may be based on transform precoding settings. Transmitting/receiving unit 220 (transmission processing unit 2211), for a certain channel (for example, PUSCH), if transform precoding is enabled, the above to transmit the channel using the DFT-s-OFDM waveform
  • the DFT process may be performed as the transmission process, or otherwise the DFT process may not be performed as the transmission process.
  • the transmitting/receiving unit 220 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (error correction) on the acquired baseband signal. decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmitting/receiving section 220 may measure the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measuring unit 223 may measure received power (eg, RSRP), received quality (eg, RSRQ, SINR, SNR), signal strength (eg, RSSI), channel information (eg, CSI), and the like.
  • the measurement result may be output to control section 210 .
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be configured by at least one of the transmitter/receiver 220 and the transmitter/receiver antenna 230 .
  • the transmitting/receiving unit 220 may receive configuration information including settings regarding transmission configuration indication (TCI) states applied to multiple types of channels, and indications of the TCI states applied to the multiple types of channels.
  • the control unit 210 may determine the application start timing of the TCI state based on the information about the application start timing of the TCI state included in the setting information and the instruction (first embodiment).
  • the setting information may be Radio Resource Control (RRC) parameters.
  • RRC Radio Resource Control
  • the information about the application start timing of the TCI state may be included in at least one of physical downlink shared channel configuration parameters, TCI state configuration parameters, and pseudo collocation configuration parameters (first embodiment ).
  • the setting information may be a Medium Access Control control element (MAC Control Element (CE)).
  • CE Medium Access Control Element
  • the information on the TCI state application start timing may be a specific field included in the MAC CE (first embodiment).
  • the setting information includes information about a first application start timing corresponding to a first TCI state among the TCI states and information about a second application start timing corresponding to a second TCI state among the TCI states. may include information;
  • the control unit 210 may determine the application start timing of the first TCI state based on the information on the first application start timing.
  • the control unit 210 determines the application start timing of the second TCI state based on the information on the first application start timing and the information on the second application start timing. You can judge.
  • the transmitting/receiving unit 220 may receive configuration information including settings related to transmission configuration indication (TCI) states applied to multiple types of channels, and the indication of the TCI states.
  • TCI transmission configuration indication
  • a codepoint of a TCI field included in said indication may be associated with multiple said TCI states.
  • the control unit 210 may determine the application start timing of the TCI state based on the information about the application start timing of the TCI state included in the setting information and the instruction (second embodiment).
  • the setting information includes information about a first application start timing corresponding to a first TCI state among the plurality of TCI states, and a second TCI state corresponding to a second TCI state among the plurality of TCI states. 2, and information on the application start timing.
  • the control unit 210 may determine the application start timing of the first TCI state based on the information on the first application start timing.
  • the control unit 210 determines the application start timing of the second TCI state based on the information on the first application start timing and the information on the second application start timing. You may judge (2nd Embodiment).
  • the setting information may be a Medium Access Control control element (MAC Control Element (CE)).
  • CE Medium Access Control Element
  • the MAC CE may activate TCI states included in at most a specified number of TCI state pairs or combinations (third embodiment).
  • the control unit 210 may not assume reception of at least one of an instruction regarding an application start timing that is greater than the maximum value regarding the application start timing and an instruction regarding an application start timing that is less than the minimum value regarding the application start timing. (Fourth embodiment).
  • the transmitting/receiving unit 220 receives at least configuration information including settings regarding transmission configuration indication (TCI) states applied to a plurality of types of channels, a first instruction regarding the TCI states, and a second instruction regarding the TCI states. You may receive one. Based on at least one of the information about the application start timing of the TCI state included in the setting information, the first instruction, and the second instruction, control unit 210 performs the first instruction based on the first instruction. A decision may be made between applying one TCI state and applying a second TCI state based on the second indication (fifth embodiment).
  • TCI transmission configuration indication
  • the control unit 210 may not assume that the second instruction instructing the application start timing of the second TCI state earlier than the specific timing regarding the application start timing of the first TCI state is received. Further, at least part of the second instruction instructing the application start timing of the second TCI state earlier than the specific timing may be ignored (fifth embodiment).
  • Control unit 210 receives the second instruction instructing to apply a TCI state other than the first TCI state during the period of applying the first TCI state based on the first instruction. It may not be assumed, and at least a part of the second instruction instructing application of a TCI state other than the first TCI state during the period may be ignored (fifth implementation form).
  • Control unit 210 changes the application of the first TCI state based on the first instruction after a specific period of time has passed since the reception of the second instruction, and changes the application of the first TCI state based on the second instruction. may be determined to apply the TCI state of (fifth embodiment).
  • each functional block may be implemented using one device physically or logically coupled, or directly or indirectly using two or more physically or logically separated devices (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • function includes judgment, decision, determination, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deem , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (component) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 36 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to an embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • processor 1001 may be implemented by one or more chips.
  • predetermined software program
  • the processor 1001 performs calculations, communication via the communication device 1004 and at least one of reading and writing data in the memory 1002 and the storage 1003 .
  • the processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission/reception unit 120 220
  • FIG. 10 FIG. 10
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 (210) may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
  • the memory 1002 is a computer-readable recording medium, such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), or at least any other suitable storage medium. may be configured by one.
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD), for example. may be configured to include
  • the transmitting/receiving unit 120 (220), the transmitting/receiving antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a signal may also be a message.
  • a reference signal may be abbreviated as RS, and may also be called a pilot, a pilot signal, etc. according to an applied standard.
  • a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may consist of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that make up a radio frame may be called a subframe.
  • a subframe may consist of one or more slots in the time domain.
  • a subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration , a particular filtering process performed by the transceiver in the frequency domain, a particular windowing process performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may also be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (PUSCH) Mapping Type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • an RB may contain one or more symbols in the time domain and may be 1 slot, 1 minislot, 1 subframe or 1 TTI long.
  • One TTI, one subframe, etc. may each be configured with one or more resource blocks.
  • One or more RBs are Physical Resource Block (PRB), Sub-Carrier Group (SCG), Resource Element Group (REG), PRB pair, RB Also called a pair.
  • PRB Physical Resource Block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair RB Also called a pair.
  • a resource block may be composed of one or more resource elements (Resource Element (RE)).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP for UL
  • BWP for DL DL BWP
  • One or multiple BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • information, signals, etc. can be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
  • Information, signals, etc. may be input and output through multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Input and output information, signals, etc. may be overwritten, updated or appended. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to other devices.
  • Uplink Control Information (UCI) Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of predetermined information is not limited to explicit notification, but implicit notification (for example, by not notifying the predetermined information or by providing another information (by notice of
  • the determination may be made by a value (0 or 1) represented by 1 bit, or by a boolean value represented by true or false. , may be performed by numerical comparison (eg, comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) , a server, or other remote source, these wired and/or wireless technologies are included within the definition of transmission media.
  • a “network” may refer to devices (eg, base stations) included in a network.
  • precoding "precoding weight”
  • QCL Quality of Co-Location
  • TCI state Transmission Configuration Indication state
  • spatialal patial relation
  • spatialal domain filter "transmission power”
  • phase rotation "antenna port
  • antenna port group "layer”
  • number of layers Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are interchangeable. can be used as intended.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is assigned to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head (RRH))) may also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)). Head (RRH)
  • RRH Head
  • the terms "cell” or “sector” refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , a handset, a user agent, a mobile client, a client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a moving object, the mobile itself, or the like.
  • the moving body refers to a movable object, the speed of movement is arbitrary, and it naturally includes cases where the moving body is stationary.
  • Examples of such moving bodies include vehicles, transportation vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , airplanes, rockets, satellites, drones, multi-copters, quad-copters, balloons and objects mounted on them.
  • the mobile body may be a mobile body that autonomously travels based on an operation command.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • a vehicle e.g., car, airplane, etc.
  • an unmanned mobile object e.g., drone, self-driving car, etc.
  • a robot manned or unmanned .
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 37 is a diagram showing an example of a vehicle according to one embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, revolution sensor 51, air pressure sensor 52, vehicle speed sensor 53, acceleration sensor 54, accelerator pedal sensor 55, brake pedal sensor 56, shift lever sensor 57, and object detection sensor 58), information service unit 59 and communication module 60.
  • various sensors current sensor 50, revolution sensor 51, air pressure sensor 52, vehicle speed sensor 53, acceleration sensor 54, accelerator pedal sensor 55, brake pedal sensor 56, shift lever sensor 57, and object detection sensor 58
  • information service unit 59 and communication module 60.
  • the driving unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor.
  • the steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 is composed of a microprocessor 61 , a memory (ROM, RAM) 62 , and a communication port (eg, input/output (IO) port) 63 . Signals from various sensors 50 to 58 provided in the vehicle are input to the electronic control unit 49 .
  • the electronic control unit 49 may be called an Electronic Control Unit (ECU).
  • ECU Electronic Control Unit
  • the signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheels 46/rear wheels 47 obtained by the rotation speed sensor 51, and an air pressure sensor 52.
  • air pressure signal of front wheels 46/rear wheels 47 vehicle speed signal obtained by vehicle speed sensor 53, acceleration signal obtained by acceleration sensor 54, depression amount signal of accelerator pedal 43 obtained by accelerator pedal sensor 55, brake pedal sensor
  • the information service unit 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios for providing (outputting) various information such as driving information, traffic information, and entertainment information, and these devices. and one or more ECUs that control The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
  • various information/services for example, multimedia information/multimedia services
  • the information service unit 59 may include an input device (e.g., keyboard, mouse, microphone, switch, button, sensor, touch panel, etc.) that receives input from the outside, and an output device that outputs to the outside (e.g., display, speaker, LED lamp, touch panel, etc.).
  • an input device e.g., keyboard, mouse, microphone, switch, button, sensor, touch panel, etc.
  • an output device e.g., display, speaker, LED lamp, touch panel, etc.
  • the driving support system unit 64 includes a millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., Global Navigation Satellite System (GNSS), etc.), map information (e.g., High Definition (HD)) maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMU), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving load, and one or more devices that control these devices ECU.
  • the driving support system unit 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63 .
  • the communication module 60 communicates with the vehicle 40 through a communication port 63 such as a driving unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from an external device via wireless communication.
  • Communication module 60 may be internal or external to electronic control 49 .
  • the external device may be, for example, the above-described base station 10, user terminal 20, or the like.
  • the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (and may function as at least one of the base station 10 and the user terminal 20).
  • the communication module 60 receives signals from the various sensors 50 to 58 described above input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. may be transmitted to the external device via wireless communication.
  • the electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by communication module 60 may include information based on the above inputs.
  • the communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device and displays it on the information service unit 59 provided in the vehicle.
  • the information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as displays and speakers based on the PDSCH received by the communication module 60 (or data/information decoded from the PDSCH)). may be called
  • the communication module 60 stores various information received from an external device in a memory 62 that can be used by the microprocessor 61 . Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, the steering unit 42, the accelerator pedal 43, the brake pedal 44, the shift lever 45, the left and right front wheels 46, and the left and right rear wheels provided in the vehicle 40. 47, axle 48, and various sensors 50-58 may be controlled.
  • the base station in the present disclosure may be read as a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the user terminal 20 may have the functions of the base station 10 described above.
  • words such as "uplink” and “downlink” may be replaced with words corresponding to communication between terminals (for example, "sidelink”).
  • uplink channels, downlink channels, etc. may be read as sidelink channels.
  • user terminals in the present disclosure may be read as base stations.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • operations that are assumed to be performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may involve the base station, one or more network nodes other than the base station (e.g., Clearly, this can be done by a Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Also, the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is, for example, an integer or a decimal number
  • Future Radio Access FAA
  • RAT New-Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802 .11 Wi-Fi®
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, or any other suitable wireless communication method. It may be applied to a system to be used, a next-generation system extended, modified, created or defined based on these.
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining includes judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry ( For example, looking up in a table, database, or another data structure), ascertaining, etc. may be considered to be “determining.”
  • determining (deciding) includes receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access ( accessing (e.g., accessing data in memory), etc.
  • determining is considered to be “determining” resolving, selecting, choosing, establishing, comparing, etc. good too. That is, “determining (determining)” may be regarded as “determining (determining)” some action.
  • Maximum transmit power described in this disclosure may mean the maximum value of transmit power, may mean the nominal maximum transmit power (the nominal UE maximum transmit power), or may mean the rated maximum transmit power (the rated UE maximum transmit power).
  • connection refers to any connection or coupling, direct or indirect, between two or more elements. and can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • radio frequency domain when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, radio frequency domain, microwave They can be considered to be “connected” or “coupled” together using the domain, electromagnetic energy having wavelengths in the optical (both visible and invisible) domain, and the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”

Abstract

A terminal according to one aspect of the present disclosure comprises: a reception unit that receives configuration information including configuration relating to a transmission configuration indication (TCI) state to be applied to multiple types of channels, and a first indication relating to the TCI state and/or a second indication relating to the TCI state; and a control unit that, on the basis of information relating to the application start timing of the TCI state included in the setting information and the first indication and/or the second indication, determines the application of a first TCI state based on the first indication and the application of a second TCI state based on the second indication. According to the one aspect of the present disclosure, the TCI state can be appropriately recognized.

Description

端末、無線通信方法及び基地局Terminal, wireless communication method and base station
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。 The present disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of further high data rate, low delay, etc. (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 LTE successor systems (for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later) are also being considered. .
 将来の無線通信システム(例えば、NR)において、ユーザ端末(端末、user terminal、User Equipment(UE))は、疑似コロケーション(Quasi-Co-Location(QCL))に関する情報(QCL想定/Transmission Configuration Indication(TCI)状態/空間関係)に基づいて、送受信処理を制御することが検討されている。 In future wireless communication systems (for example, NR), user terminals (terminals, user terminals, User Equipment (UE)) will receive information (QCL assumption/Transmission Configuration Indication ( It has been considered to control transmission and reception processes based on TCI (state/space relationship).
 設定/アクティベート/指示されたTCI状態をチャネル/reference signal(RS)の複数種類に適用する統一TCI状態が検討されている。しかしながら、統一TCI状態の適用方法について明らかでないケースがある。このような関係が明らかでなければ、通信品質の低下、スループットの低下など、を招くおそれがある。 A unified TCI state is being considered that applies the set/activated/indicated TCI state to multiple types of channels/reference signals (RS). However, there are cases where it is not clear how to apply the unified TCI state. If such a relationship is not clear, there is a risk of deterioration in communication quality and throughput.
 そこで、本開示は、TCI状態を適切に決定する端末、無線通信方法及び基地局を提供することを目的の1つとする。 Therefore, one object of the present disclosure is to provide a terminal, a wireless communication method, and a base station that appropriately determine the TCI state.
 本開示の一態様に係る端末は、複数種類のチャネルに適用されるtransmission configuration indication(TCI)状態に関する設定を含む設定情報と、前記TCI状態に関する第1の指示と、前記TCI状態に関する第2の指示と、の少なくとも1つを受信する受信部と、前記設定情報に含まれるTCI状態の適用開始タイミングに関する情報と、前記第1の指示と、前記第2の指示との少なくとも1つに基づいて、前記第1の指示に基づく第1のTCI状態の適用と、前記第2の指示に基づく第2のTCI状態の適用と、を判断する制御部と、を有する。 A terminal according to an aspect of the present disclosure provides configuration information including settings related to transmission configuration indication (TCI) states applied to multiple types of channels, a first instruction related to the TCI state, and a second instruction related to the TCI state. based on at least one of a receiving unit that receives at least one of an instruction, information about a TCI state application start timing included in the setting information, the first instruction, and the second instruction , a control unit that determines application of a first TCI state based on the first instruction and application of a second TCI state based on the second instruction.
 本開示の一態様によれば、TCI状態を適切に認識できる。 According to one aspect of the present disclosure, the TCI state can be properly recognized.
図1A及び図1Bは、共通ビームの一例を示す図である。1A and 1B are diagrams showing an example of a common beam. 図2は、Rel.16で規定されるMAC CEの一例を示す図である。FIG. 2 is a diagram of Rel. 16 is a diagram showing an example of MAC CE defined in V.16. 図3は、Rel.16で規定されるMAC CEの他の例を示す図である。FIG. 3 is a diagram of Rel. 16 is a diagram showing another example of MAC CE defined in X.16. 図4は、Rel.16で規定されるMAC CEの他の例を示す図である。FIG. 4 shows Rel. 16 is a diagram showing another example of MAC CE defined in X.16. 図5A及び図5Bは、ジョイント/セパレートTCI状態の指示の一例を示す図である。5A and 5B are diagrams illustrating an example of joint/separate TCI state indications. 図6は、指示されたTCI状態の適用までのタイミングの一例を示す図である。FIG. 6 is a diagram illustrating an example of timing until application of the indicated TCI state. 図7は、第1の実施形態に係るBATの開始の基準の一例を示す図である。FIG. 7 is a diagram illustrating an example of criteria for starting BAT according to the first embodiment. 図8A及び図8Bは、オプション1-1-1に係るTCI状態の適用の一例を示す図である。8A and 8B are diagrams showing an example of application of the TCI state according to option 1-1-1. 図9A及び図9Bは、オプション1-1-3に係るTCI状態の適用の一例を示す図である。9A and 9B are diagrams showing an example of application of the TCI state according to option 1-1-3. 図10は、オプション1-1-4に係るTCI状態の適用の一例を示す図である。FIG. 10 is a diagram showing an example of application of the TCI state according to Option 1-1-4. 図11は、オプション1-1-4の変形例1に係るTCI状態の適用の一例を示す図である。FIG. 11 is a diagram showing an example of application of the TCI state according to Modification 1 of Option 1-1-4. 図12は、オプション1-1-4の変形例2に係るTCI状態の適用の一例を示す図である。FIG. 12 is a diagram showing an example of application of the TCI state according to Modification 2 of Option 1-1-4. 図13は、オプション1-1-5-1に係るMAC CEの構成の一例を示す図である。FIG. 13 is a diagram showing an example of the MAC CE configuration according to Option 1-1-5-1. 図14は、オプション1-1-5-2に係るMAC CEの構成の一例を示す図である。FIG. 14 is a diagram showing an example of the MAC CE configuration according to Option 1-1-5-2. 図15A及び図15Bは、オプション1-2-1に係るTCI状態の適用の一例を示す図である。15A and 15B are diagrams showing an example of application of the TCI state according to option 1-2-1. 図16は、オプション1-2-2に係るTCI状態の適用の一例を示す図である。FIG. 16 is a diagram showing an example of application of the TCI state according to option 1-2-2. 図17Aは、オプション1-3-1に係るBAT値の関連付けの一例を示す図である。図17Bは、オプション1-3-2に係るBAT値の関連付けの一例を示す図である。FIG. 17A is a diagram showing an example of association of BAT values according to option 1-3-1. FIG. 17B is a diagram showing an example of association of BAT values according to Option 1-3-2. 図18A及び図18Bは、第2の実施形態に係るTCI状態の適用の一例を示す図である。18A and 18B are diagrams illustrating an example of application of TCI states according to the second embodiment. 図19は、第2の実施形態に係るTCI状態の適用の他の例を示す図である。FIG. 19 is a diagram showing another example of application of the TCI state according to the second embodiment. 図20は、オプション2-1-1に係るTCI状態のパラメータの一例を示す図である。FIG. 20 is a diagram showing an example of TCI state parameters according to Option 2-1-1. 図21Aは、バリエーション2-1-1-1に係るTCI状態の適用の一例を示す図である。図21Bは、バリエーション2-1-1-2に係るTCI状態の適用の一例を示す図である。FIG. 21A is a diagram showing an example of application of the TCI state according to variation 2-1-1-1. FIG. 21B is a diagram showing an example of application of the TCI state according to variation 2-1-1-2. 図22Aは、バリエーション2-1-1-3に係るTCI状態の適用の一例を示す図である。図22Bは、バリエーション2-1-1-4に係るTCI状態の適用の一例を示す図である。FIG. 22A is a diagram showing an example of application of the TCI state according to variation 2-1-1-3. FIG. 22B is a diagram showing an example of application of the TCI state according to variation 2-1-1-4. 図23は、オプション2-1-2に係るTCI状態のパラメータの一例を示す図である。FIG. 23 is a diagram showing an example of TCI state parameters according to option 2-1-2. 図24は、オプション2-1-3-1に係るMAC CEの構成の一例を示す図である。FIG. 24 is a diagram showing an example of the MAC CE configuration according to Option 2-1-3-1. 図25は、オプション2-1-3-2に係るMAC CEの構成の一例を示す図である。FIG. 25 is a diagram showing an example of the MAC CE configuration according to Option 2-1-3-2. 図26A及び図26Bは、選択肢2-2-1に係るTCI状態の適用の一例を示す図である。26A and 26B are diagrams showing an example of application of the TCI state according to option 2-2-1. 図27A及び図27Bは、選択肢2-2-2に係るTCI状態の適用の一例を示す図である。27A and 27B are diagrams showing an example of application of the TCI state according to option 2-2-2. 図28は、態様5-1に係るTCI状態の適用の一例を示す図である。FIG. 28 is a diagram illustrating an example of application of the TCI state according to example 5-1. 図29は、態様5-1に係るTCI状態の適用の他の例を示す図である。FIG. 29 is a diagram showing another example of application of the TCI state according to example 5-1. 図30は、態様5-3に係るTCI状態の適用の一例を示す図である。FIG. 30 is a diagram showing an example of application of the TCI state according to aspect 5-3. 図31は、オプション5-5-1に係るTCI状態の適用の一例を示す図である。FIG. 31 is a diagram showing an example of application of the TCI state according to Option 5-5-1. 図32は、オプション5-5-2に係るTCI状態の適用の一例を示す図である。FIG. 32 is a diagram showing an example of application of the TCI state according to Option 5-5-2. 図33は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 33 is a diagram illustrating an example of a schematic configuration of a wireless communication system according to an embodiment; 図34は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 34 is a diagram illustrating an example of the configuration of a base station according to one embodiment. 図35は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 35 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment; 図36は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 36 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to an embodiment. 図37は、一実施形態に係る車両の一例を示す図である。FIG. 37 is a diagram illustrating an example of a vehicle according to one embodiment;
(TCI、空間関係、QCL)
 NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
(TCI, spatial relations, QCL)
In NR, the reception processing (e.g., reception, demapping, demodulation, decoding), transmission processing (eg, at least one of transmission, mapping, precoding, modulation, encoding).
 TCI状態は下りリンクの信号/チャネルに適用されるものを表してもよい。上りリンクの信号/チャネルに適用されるTCI状態に相当するものは、空間関係(spatial relation)と表現されてもよい。 The TCI state may represent those that apply to downlink signals/channels. The equivalent of TCI conditions applied to uplink signals/channels may be expressed as spatial relations.
 TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information)などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。 The TCI state is information about the pseudo-co-location (QCL) of signals/channels, and may be called spatial reception parameters, spatial relation information, or the like. The TCI state may be set in the UE on a channel-by-channel or signal-by-signal basis.
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。  QCL is an index that indicates the statistical properties of a signal/channel. For example, when one signal/channel and another signal/channel have a QCL relationship, Doppler shift, Doppler spread, average delay ), delay spread, spatial parameters (e.g., spatial Rx parameter) are identical (QCL with respect to at least one of these). You may
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。 Note that the spatial reception parameters may correspond to the reception beams of the UE (eg, reception analog beams), and the beams may be specified based on the spatial QCL. QCL (or at least one element of QCL) in the present disclosure may be read as sQCL (spatial QCL).
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータ(QCLパラメータと呼ばれてもよい)について示す:
 ・QCLタイプA(QCL-A):ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB(QCL-B):ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC(QCL-C):ドップラーシフト及び平均遅延、
 ・QCLタイプD(QCL-D):空間受信パラメータ。
A plurality of types (QCL types) may be defined for the QCL. For example, four QCL types AD may be provided with different parameters (or parameter sets) that can be assumed to be the same, and the parameters (which may be referred to as QCL parameters) are shown below:
QCL type A (QCL-A): Doppler shift, Doppler spread, mean delay and delay spread,
QCL type B (QCL-B): Doppler shift and Doppler spread,
QCL type C (QCL-C): Doppler shift and mean delay;
• QCL Type D (QCL-D): Spatial reception parameters.
 ある制御リソースセット(Control Resource Set(CORESET))、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。 The UE's assumption that one Control Resource Set (CORESET), channel, or reference signal is in a specific QCL (e.g., QCL type D) relationship with another CORESET, channel, or reference signal is It may be called the QCL assumption.
 UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。 A UE may determine at least one of a transmit beam (Tx beam) and a receive beam (Rx beam) for a signal/channel based on the TCI conditions or QCL assumptions of that signal/channel.
 TCI状態は、例えば、対象となるチャネル(言い換えると、当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別のRS)とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。 The TCI state may be, for example, information about the QCL between the channel of interest (in other words, the reference signal (RS) for the channel) and another signal (for example, another RS). . The TCI state may be set (indicated) by higher layer signaling, physical layer signaling or a combination thereof.
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。 Physical layer signaling may be, for example, downlink control information (DCI).
 TCI状態又は空間関係が設定(指定)されるチャネルは、例えば、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも1つであってもよい。 Channels for which TCI states or spatial relationships are set (specified) are, for example, Physical Downlink Shared Channel (PDSCH), Physical Downlink Control Channel (PDCCH), Physical Uplink Shared Channel It may be at least one of a channel (PUSCH)) and an uplink control channel (Physical Uplink Control Channel (PUCCH)).
 また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、測定用参照信号(Sounding Reference Signal(SRS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、QCL検出用参照信号(QRSとも呼ぶ)の少なくとも1つであってもよい。 In addition, RSs that have a QCL relationship with the channel are, for example, a synchronization signal block (SSB), a channel state information reference signal (CSI-RS), a measurement reference signal (Sounding It may be at least one of a reference signal (SRS)), a tracking CSI-RS (also called a tracking reference signal (TRS)), and a QCL detection reference signal (also called a QRS).
 SSBは、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。 An SSB is a signal block that includes at least one of a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH). An SSB may also be called an SS/PBCH block.
 TCI状態のQCLタイプXのRSは、あるチャネル/信号(のDMRS)とQCLタイプXの関係にあるRSを意味してもよく、このRSは当該TCI状態のQCLタイプXのQCLソースと呼ばれてもよい。 A QCL type X RS in a TCI state may mean an RS that has a QCL type X relationship with (the DMRS of) a certain channel/signal, and this RS is called a QCL type X QCL source in that TCI state. may
 PDCCH及びPDSCHに対してQCLタイプA RSは必ず設定され、QCLタイプD RSは追加で設定されてもよい。DMRSのワンショットの受信によってドップラーシフト、遅延などを推定することが難しいため、チャネル推定精度の向上にQCLタイプA RSが使用される。QCLタイプD RSは、DMRS受信時の受信ビーム決定に使用される。 QCL type A RS is always set for PDCCH and PDSCH, and QCL type D RS may be additionally set. Since it is difficult to estimate Doppler shift, delay, etc. by receiving DMRS one-shot, QCL type A RS is used to improve channel estimation accuracy. QCL type D RS is used for receive beam determination during DMRS reception.
 例えば、TRS1-1、1-2、1-3、1-4が送信され、PDSCHのTCI状態によってQCLタイプC/D RSとしてTRS1-1が通知される。TCI状態が通知されることによって、UEは、過去の周期的なTRS1-1の受信/測定の結果から得た情報を、PDSCH用DMRSの受信/チャネル推定に利用できる。この場合、PDSCHのQCLソースはTRS1-1であり、QCLターゲットはPDSCH用DMRSである。 For example, TRS 1-1, 1-2, 1-3, 1-4 are transmitted, and TRS 1-1 is notified as QCL type C/D RS depending on the TCI status of PDSCH. By being notified of the TCI state, the UE can use the information obtained from the past periodic TRS1-1 reception/measurement results for PDSCH DMRS reception/channel estimation. In this case, the PDSCH QCL source is TRS1-1 and the QCL target is the PDSCH DMRS.
(マルチTRP)
 NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP(multi TRP(MTRP)))が、1つ又は複数のパネル(マルチパネル)を用いて、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のTRPに対して、1つ又は複数のパネルを用いて、UL送信を行うことが検討されている。
(Multi-TRP)
In NR, one or more transmission/reception points (Transmission/Reception Points (TRP)) (multi TRP (multi TRP (MTRP))) uses one or more panels (multi-panel) to the UE DL transmission is under consideration. It is also being considered that the UE uses one or more panels to perform UL transmissions for one or more TRPs.
 なお、複数のTRPは、同じセル識別子(セルIdentifier(ID))に対応してもよいし、異なるセルIDに対応してもよい。当該セルIDは、物理セルIDでもよいし、仮想セルIDでもよい。 A plurality of TRPs may correspond to the same cell identifier (cell identifier (ID)) or may correspond to different cell IDs. The cell ID may be a physical cell ID or a virtual cell ID.
 マルチTRP(例えば、TRP#1、#2)は、理想的(ideal)/非理想的(non-ideal)のバックホール(backhaul)によって接続され、情報、データなどがやり取りされてもよい。マルチTRPの各TRPからは、それぞれ異なるコードワード(Code Word(CW))及び異なるレイヤが送信されてもよい。マルチTRP送信の一形態として、ノンコヒーレントジョイント送信(Non-Coherent Joint Transmission(NCJT))が用いられてもよい。 Multi-TRPs (eg, TRP #1, #2) may be connected by ideal/non-ideal backhauls to exchange information, data, and the like. Different codewords (CW) and different layers may be transmitted from each TRP of the multi-TRP. Non-Coherent Joint Transmission (NCJT) may be used as one form of multi-TRP transmission.
 NCJTにおいて、例えば、TRP#1は、第1のコードワードを変調マッピングし、レイヤマッピングして第1の数のレイヤ(例えば2レイヤ)を第1のプリコーディングを用いて第1のPDSCHを送信する。また、TRP#2は、第2のコードワードを変調マッピングし、レイヤマッピングして第2の数のレイヤ(例えば2レイヤ)を第2のプリコーディングを用いて第2のPDSCHを送信する。 In NCJT, for example, TRP#1 modulate-maps a first codeword and layer-maps a first number of layers (e.g., two layers) with a first precoding to transmit a first PDSCH. do. TRP#2 also modulates and layer-maps a second codeword to transmit a second PDSCH with a second number of layers (eg, 2 layers) with a second precoding.
 なお、NCJTされる複数のPDSCH(マルチPDSCH)は、時間及び周波数ドメインの少なくとも一方に関して部分的に又は完全に重複すると定義されてもよい。つまり、第1のTRPからの第1のPDSCHと、第2のTRPからの第2のPDSCHと、は時間及び周波数リソースの少なくとも一方が重複してもよい。 It should be noted that multiple PDSCHs to be NCJTed (multi-PDSCH) may be defined as partially or completely overlapping in at least one of the time and frequency domains. That is, the first PDSCH from the first TRP and the second PDSCH from the second TRP may overlap at least one of time and frequency resources.
 これらの第1のPDSCH及び第2のPDSCHは、疑似コロケーション(Quasi-Co-Location(QCL))関係にない(not quasi-co-located)と想定されてもよい。マルチPDSCHの受信は、あるQCLタイプ(例えば、QCLタイプD)でないPDSCHの同時受信で読み替えられてもよい。 It may be assumed that these first PDSCH and second PDSCH are not quasi-co-located (QCL). Reception of multiple PDSCHs may be translated as simultaneous reception of PDSCHs that are not of a certain QCL type (eg, QCL type D).
 マルチTRPからの複数のPDSCH(マルチPDSCH(multiple PDSCH)と呼ばれてもよい)が、1つのDCI(シングルDCI、シングルPDCCH)を用いてスケジュールされてもよい(シングルマスタモード、シングルDCIに基づくマルチTRP(single-DCI based multi-TRP))。マルチTRPからの複数のPDSCHが、複数のDCI(マルチDCI、マルチPDCCH(multiple PDCCH))を用いてそれぞれスケジュールされてもよい(マルチマスタモード、マルチDCIに基づくマルチTRP(multi-DCI based multi-TRP))。 Multiple PDSCHs from multiple TRPs (which may be referred to as multiple PDSCHs) may be scheduled using one DCI (single DCI, single PDCCH) (single master mode, based on single DCI Multi-TRP (single-DCI based multi-TRP)). Multiple PDSCHs from multi-TRP may be scheduled using multiple DCIs (multi-DCI, multiple PDCCH) (multi-master mode, multi-DCI based multi-TRP (multiple PDCCH)). TRP)).
 マルチTRPに対するURLLCにおいて、マルチTRPにまたがるPDSCH(トランスポートブロック(TB)又はコードワード(CW))繰り返し(repetition)がサポートされることが検討されている。周波数ドメイン又はレイヤ(空間)ドメイン又は時間ドメイン上でマルチTRPにまたがる繰り返し方式(URLLCスキーム、例えば、スキーム1、2a、2b、3、4)がサポートされることが検討されている。スキーム1において、マルチTRPからのマルチPDSCHは、空間分割多重(space division multiplexing(SDM))される。スキーム2a、2bにおいて、マルチTRPからのPDSCHは、周波数分割多重(frequency division multiplexing(FDM))される。スキーム2aにおいては、マルチTRPに対して冗長バージョン(redundancy version(RV))は同じである。スキーム2bにおいては、マルチTRPに対してRVは同じであってもよいし、異なってもよい。スキーム3、4において、マルチTRPからのマルチPDSCHは、時間分割多重(time division multiplexing(TDM))される。スキーム3において、マルチTRPからのマルチPDSCHは、1つのスロット内で送信される。スキーム4において、マルチTRPからのマルチPDSCHは、異なるスロット内で送信される。  In URLLC for multi-TRPs, it is being considered to support PDSCH (transport block (TB) or codeword (CW)) repetition across multi-TRPs. It is contemplated that repetition schemes (URLLC schemes, eg schemes 1, 2a, 2b, 3, 4) spanning multiple TRPs on the frequency domain or layer (spatial) domain or time domain will be supported. In Scheme 1, multiple PDSCHs from multiple TRPs are space division multiplexed (SDM). In schemes 2a, 2b, the PDSCH from multiple TRPs is frequency division multiplexed (FDM). In scheme 2a, the redundancy version (RV) is the same for multiple TRPs. In scheme 2b, the RVs may be the same or different for the multi-TRPs. In schemes 3 and 4, multiple PDSCHs from multiple TRPs are time division multiplexed (TDM). In Scheme 3, multiple PDSCHs from multiple TRPs are transmitted within one slot. In Scheme 4, multiple PDSCHs from multiple TRPs are transmitted in different slots.
 このようなマルチTRPシナリオによれば、品質の良いチャネルを用いたより柔軟な送信制御が可能である。 According to such a multi-TRP scenario, more flexible transmission control using channels with good quality is possible.
 複数PDCCHに基づくセル内の(intra-cell、同じセルIDを有する)及びセル間の(inter-cell、異なるセルIDを有する)マルチTRP送信をサポートするために、複数TRPを有するPDCCH及びPDSCHの複数のペアをリンクするためのRRC設定情報において、PDCCH設定情報(PDCCH-Config)内の1つのcontrol resource set(CORESET)が1つのTRPに対応してもよい。 In order to support intra-cell (with same cell ID) and inter-cell (with different cell ID) multi-TRP transmissions based on multiple PDCCHs, PDCCH and PDSCH with multiple TRPs In RRC configuration information for linking multiple pairs, one control resource set (CORESET) in PDCCH configuration information (PDCCH-Config) may correspond to one TRP.
 次の条件1及び2の少なくとも1つが満たされた場合、UEは、マルチDCIに基づくマルチTRPと判定してもよい。この場合、TRPは、CORESETプールインデックスに読み替えられてもよい。
[条件1]
 1のCORESETプールインデックスが設定される。
[条件2]
 CORESETプールインデックスの2つの異なる値(例えば、0及び1)が設定される。
The UE may determine multi-TRP based on multi-DCI if at least one of the following conditions 1 and 2 is met: In this case, TRP may be read as a CORESET pool index.
[Condition 1]
A CORESET pool index of 1 is set.
[Condition 2]
Two different values (eg, 0 and 1) of the CORESET pool index are set.
 次の条件が満たされた場合、UEは、シングルDCIに基づくマルチTRPと判定してもよい。この場合、2つのTRPは、MAC CE/DCIによって指示される2つのTCI状態に読み替えられてもよい。
[条件]
 DCI内のTCIフィールドの1つのコードポイントに対する1つ又は2つのTCI状態を指示するために、「UE固有PDSCH用拡張TCI状態アクティベーション/ディアクティベーションMAC CE(Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)」が用いられる。
The UE may determine multi-TRP based on single DCI if the following conditions are met: In this case, two TRPs may be translated into two TCI states indicated by MAC CE/DCI.
[conditions]
"Enhanced TCI States Activation/Deactivation for UE- specific PDSCH MAC CE)” is used.
 共通ビーム指示用DCIは、UE固有DCIフォーマット(例えば、DL DCIフォーマット(例えば、1_1、1_2)、UL DCIフォーマット(例えば、0_1、0_2))であってもよいし、UEグループ共通(UE-group common)DCIフォーマットであってもよい。 DCI for common beam indication may be a UE-specific DCI format (e.g., DL DCI format (e.g., 1_1, 1_2), UL DCI format (e.g., 0_1, 0_2)), or a UE group common (UE-group common) DCI format.
(統一(unified)/共通(common)TCIフレームワーク)
 統一TCIフレームワークによれば、UL及びDLのチャネルを共通のフレームワークによって制御できる。統一TCIフレームワークは、Rel.15のようにTCI状態又は空間関係をチャネルごとに規定するのではなく、共通ビーム(共通TCI状態)を指示し、それをUL及びDLの全てのチャネルへ適用してもよいし、UL用の共通ビームをULの全てのチャネルに適用し、DL用の共通ビームをDLの全てのチャネルに適用してもよい。
(Unified/Common TCI Framework)
The unified TCI framework allows UL and DL channels to be controlled by a common framework. The unified TCI framework is Rel. Instead of defining TCI conditions or spatial relationships per channel as in 15, a common beam (common TCI condition) may be indicated and applied to all channels in the UL and DL, or for the UL A common beam may be applied to all channels in the UL and a common beam for the DL may be applied to all channels in the DL.
 DL及びULの両方のための1つの共通ビーム、又は、DL用の共通ビームとUL用の共通ビーム(全体で2つの共通ビーム)が検討されている。 One common beam for both DL and UL, or a common beam for DL and a common beam for UL (two common beams in total) are being considered.
 UEは、UL及びDLに対して同じTCI状態(ジョイントTCI状態、ジョイントTCIプール、ジョイント共通TCIプール、ジョイントTCI状態セット)を想定してもよい。UEは、UL及びDLのそれぞれに対して異なるTCI状態(セパレートTCI状態、セパレートTCIプール、ULセパレートTCIプール及びDLセパレートTCIプール、セパレート共通TCIプール、UL共通TCIプール及びDL共通TCIプール)を想定してもよい。 The UE may assume the same TCI state (joint TCI state, joint TCI pool, joint common TCI pool, joint TCI state set) for UL and DL. The UE assumes different TCI states for each of UL and DL (separate TCI state, separate TCI pool, UL separate TCI pool and DL separate TCI pool, separate common TCI pool, UL common TCI pool and DL common TCI pool). You may
 MAC CEに基づくビーム管理(MAC CEレベルビーム指示)によって、UL及びDLのデフォルトビームを揃えてもよい。PDSCHのデフォルトTCI状態を更新し、デフォルトULビーム(空間関係)に合わせてもよい。 The UL and DL default beams may be aligned by MAC CE-based beam management (MAC CE level beam designation). The PDSCH default TCI state may be updated to match the default UL beam (spatial relationship).
 DCIに基づくビーム管理(DCIレベルビーム指示)によって、UL及びDLの両方用の同じTCIプール(ジョイント共通TCIプール、ジョイントTCIプール、セット)から共通ビーム/統一TCI状態が指示されてもよい。X(>1)個のTCI状態がMAC CEによってアクティベートされてもよい。UL/DL DCIは、X個のアクティブTCI状態から1つを選択してもよい。選択されたTCI状態は、UL及びDLの両方のチャネル/RSに適用されてもよい。 DCI-based beam management (DCI level beam indication) may indicate common beam/unified TCI state from the same TCI pool for both UL and DL (joint common TCI pool, joint TCI pool, set). X (>1) TCI states may be activated by MAC CE. The UL/DL DCI may select 1 out of X active TCI states. The selected TCI state may apply to both UL and DL channels/RS.
 TCIプール(セット)は、RRCパラメータによって設定された複数のTCI状態であってもよいし、RRCパラメータによって設定された複数のTCI状態のうち、MAC CEによってアクティベートされた複数のTCI状態(アクティブTCI状態、アクティブTCIプール、セット)であってもよい。各TCI状態は、QCLタイプA/D RSであってもよい。QCLタイプA/D RSとしてSSB、CSI-RS、又はSRSが設定されてもよい。 The TCI pool (set) may be a plurality of TCI states set by RRC parameters, or a plurality of TCI states activated by MAC CE (active TCI state, active TCI pool, set). Each TCI state may be a QCL type A/D RS. SSB, CSI-RS, or SRS may be set as QCL type A/D RS.
 1以上のTRPのそれぞれに対応するTCI状態の個数が規定されてもよい。例えば、ULのチャネル/RSに適用されるTCI状態(UL TCI状態)の個数N(≧1)と、DLのチャネル/RSに適用されるTCI状態(DL TCI状態)の個数M(≧1)と、が規定されてもよい。N及びMの少なくとも一方は、上位レイヤシグナリング/物理レイヤシグナリングを介して、UEに通知/設定/指示されてもよい。 The number of TCI states corresponding to each of one or more TRPs may be defined. For example, the number N (≧1) of TCI states (UL TCI states) applied to UL channels/RSs and the number M (≧1) of TCI states (DL TCI states) applied to DL channels/RSs and may be defined. At least one of N and M may be signaled/configured/indicated to the UE via higher layer signaling/physical layer signaling.
 本開示において、N=M=X(Xは任意の整数)と記載される場合は、UEに対して、X個の(X個のTRPに対応する)UL及びDLに共通のTCI状態(ジョイントTCI状態)が通知/設定/指示されることを意味してもよい。 In this disclosure, when N = M = X (where X is any integer), the UE has X UL and DL common TCI states (corresponding to X TRPs) (joint TCI status) is signaled/set/indicated.
 また、N=X(Xは任意の整数)、M=Y(Yは任意の整数、Y=Xであってもよい)と記載される場合は、UEに対して、X個の(X個のTRPに対応する)UL TCI状態及びY個の(Y個のTRPに対応する)DL TCI状態が通知/設定/指示されることを意味してもよい。当該UL TCI状態及び当該DL TCI状態は、UL及びDLに共通のTCI状態(すなわち、ジョイントTCI状態)を意味してもよいし、UL及びDLそれぞれのTCI状態(すなわち、セパレートTCI状態)を意味してもよい。 Also, when N = X (X is an arbitrary integer), M = Y (Y is an arbitrary integer, Y = X may be), X (X TRPs) and Y DL TCI states (corresponding to Y TRPs) are signaled/set/indicated. The UL TCI state and the DL TCI state may mean a TCI state common to UL and DL (i.e., joint TCI state), or may mean a TCI state for each of UL and DL (i.e., separate TCI state). You may
 例えば、N=M=1と記載される場合は、UEに対し、単一のTRPに対する、1つのUL及びDLに共通のTCI状態が通知/設定/指示されることを意味してもよい(単一TRPのためのジョイントTCI状態)。 For example, if N = M = 1, it may mean that the UE is notified/configured/indicated of one UL and DL common TCI state for a single TRP ( joint TCI state for a single TRP).
 また、例えば、N=1、M=1と記載される場合は、UEに対し、単一のTRPに対する、1つのUL TCI状態と、1つのDL TCI状態と、が別々に通知/設定/指示されることを意味してもよい(単一TRPのためのセパレートTCI状態)。 Also, for example, when N = 1 and M = 1, the UE is separately notified/set/instructed of one UL TCI state and one DL TCI state for a single TRP (separate TCI state for single TRP).
 また、例えば、N=M=2と記載される場合は、UEに対し、複数の(2つの)TRPに対する、複数の(2つの)のUL及びDLに共通のTCI状態が通知/設定/指示されることを意味してもよい(複数TRPのためのジョイントTCI状態)。 Also, for example, if N = M = 2, the UE is notified/configured/instructed of a TCI state common to multiple (two) ULs and DLs for multiple (two) TRPs (joint TCI state for multiple TRPs).
 また、例えば、N=2、M=2と記載される場合は、UEに対し、複数(2つ)のTRPに対する、複数の(2つの)UL TCI状態と、複数の(2つの)DL TCI状態と、が通知/設定/指示されることを意味してもよい(複数TRPのためのセパレートTCI状態)。 Also, for example, when N = 2 and M = 2, for the UE, multiple (two) UL TCI states and multiple (two) DL TCI states for multiple (two) TRPs State may mean signaled/set/indicated (separate TCI state for multiple TRPs).
 また、例えば、N=2、M=1と記載される場合は、UEに対し、2つのUL及びDLに共通のTCI状態が通知/設定/指示されることを意味してもよい。このときUEは、設定/指示される2つのTCI状態をUL TCI状態として用い、設定/指示される2つのTCI状態のうちの1つのTCI状態をDL TCI状態として用いてもよい。 Also, for example, when N = 2 and M = 1, it may mean that the TCI state common to the two UL and DL is notified/configured/indicated to the UE. At this time, the UE may use the two configured/indicated TCI states as the UL TCI state, and use one of the two configured/indicated TCI states as the DL TCI state.
 また、例えば、N=2、M=1と記載される場合は、UEに対し、セパレートTCI状態として、2つのUL TCI状態と、1つのDL TCI状態とが通知/設定/指示されることを意味してもよい。 Also, for example, when N = 2 and M = 1, it means that two UL TCI states and one DL TCI state are notified/set/instructed to the UE as separate TCI states. may mean.
 なお、上記例においては、N及びMの値が1又は2のケースを説明したが、N及びMの値は3以上であってもよいし、N及びMは異なってもよい。 In the above example, the case where the values of N and M are 1 or 2 has been explained, but the values of N and M may be 3 or more, and N and M may be different.
 M>1/N>1のケースは、複数TRPのためのTCI状態指示、及び、バンド間(inter band)CAのための複数のTCI状態指示、の少なくとも一方を示してもよい。 The case of M>1/N>1 may indicate at least one of TCI status indications for multiple TRPs and multiple TCI status indications for inter-band CA.
 図1の例において、RRCパラメータ(情報要素)は、DL及びULの両方用の複数のTCI状態を設定する。MAC CEは、設定された複数のTCI状態のうちの複数のTCI状態をアクティベートしてもよい。DCIは、アクティベートされた複数のTCI状態の1つを指示してもよい。DCIは、UL/DL DCIであってもよい。指示されたTCI状態は、UL/DLのチャネル/RSの少なくとも1つ(又は全て)に適用されてもよい。1つのDCIがUL TCI及びDL TCIの両方を指示してもよい。 In the example of FIG. 1, the RRC parameters (information elements) configure multiple TCI states for both DL and UL. The MAC CE may activate multiple TCI states out of multiple configured TCI states. A DCI may indicate one of multiple TCI states that have been activated. DCI may be UL/DL DCI. The indicated TCI conditions may apply to at least one (or all) of the UL/DL channels/RSs. One DCI may indicate both UL TCI and DL TCI.
 図1Aの例において、1つの点は、UL及びDLの両方に適用される1つのTCI状態であってもよいし、UL及びDLにそれぞれ適用される2つのTCI状態であってもよい。 In the example of FIG. 1A, one point may be one TCI state that applies to both UL and DL, or two TCI states that apply to UL and DL respectively.
 RRCパラメータによって設定された複数のTCI状態と、MAC CEによってアクティベートされた複数のTCI状態と、の少なくとも1つは、TCIプール(共通TCIプール、ジョイントTCIプール、TCI状態プール)と呼ばれてもよい。MAC CEによってアクティベートされた複数のTCI状態は、アクティブTCIプール(アクティブ共通TCIプール)と呼ばれてもよい。 At least one of the multiple TCI states set by the RRC parameters and the multiple TCI states activated by the MAC CE may be called a TCI pool (common TCI pool, joint TCI pool, TCI state pool). good. Multiple TCI states activated by a MAC CE may be called an active TCI pool (active common TCI pool).
 なお、本開示において、複数のTCI状態を設定する上位レイヤパラメータ(RRCパラメータ)は、複数のTCI状態を設定する設定情報、単に「設定情報」と呼ばれてもよい。また、本開示において、DCIを用いて複数のTCI状態の1つを指示されることは、DCIに含まれる複数のTCI状態の1つを指示する指示情報を受信することであってもよいし、単に「指示情報」を受信することであってもよい。 In addition, in the present disclosure, higher layer parameters (RRC parameters) that configure multiple TCI states may be referred to as configuration information that configures multiple TCI states, or simply "configuration information." In addition, in the present disclosure, to indicate one of the plurality of TCI states using the DCI may be receiving indication information indicating one of the plurality of TCI states included in the DCI. , it may simply be to receive "instruction information".
 図1Bの例において、RRCパラメータは、DL及びULの両方用の複数のTCI状態(ジョイント共通TCIプール)を設定する。MAC CEは、設定された複数のTCI状態のうちの複数のTCI状態(アクティブTCIプール)をアクティベートしてもよい。UL及びDLのそれぞれに対する(別々の、separate)アクティブTCIプールが、設定/アクティベートされてもよい。 In the example of FIG. 1B, the RRC parameters configure multiple TCI states (joint common TCI pools) for both DL and UL. The MAC CE may activate multiple TCI states (active TCI pool) out of multiple configured TCI states. Separate active TCI pools for each of the UL and DL may be configured/activated.
 DL DCI、又は新規DCIフォーマットが、1以上(例えば、1つ)のTCI状態を選択(指示)してもよい。その選択されたTCI状態は、1以上(又は全て)のDLのチャネル/RSに適用されてもよい。DLチャネルは、PDCCH/PDSCH/CSI-RSであってもよい。UEは、Rel.16のTCI状態の動作(TCIフレームワーク)を用いて、DLの各チャネル/RSのTCI状態を決定してもよい。UL DCI、又は新規DCIフォーマットが、1以上(例えば、1つ)のTCI状態を選択(指示)してもよい。その選択されたTCI状態は、1以上(又は全て)のULチャネル/RSに適用されてもよい。ULチャネルは、PUSCH/SRS/PUCCHであってもよい。このように、異なるDCIが、UL TCI及びDL DCIを別々に指示してもよい。 A DL DCI or a new DCI format may select (indicate) one or more (eg, one) TCI states. The selected TCI state may be applied to one or more (or all) DL channels/RS. The DL channel may be PDCCH/PDSCH/CSI-RS. The UE is Rel. A 16 TCI state operation (TCI framework) may be used to determine the TCI state for each channel/RS in the DL. A UL DCI or new DCI format may select (indicate) one or more (eg, one) TCI states. The selected TCI state may be applied to one or more (or all) UL channels/RS. The UL channel may be PUSCH/SRS/PUCCH. Thus, different DCIs may indicate UL TCI and DL DCI separately.
 既存のDCIフォーマット1_1/1_2が、共通TCI状態の指示に用いられてもよい。 The existing DCI format 1_1/1_2 may be used to indicate common TCI status.
 TCI状態を指示するDCIフォーマットは、特定のDCIフォーマットであってもよい。例えば、当該特定のDCIフォーマットは、(Rel.15/16/17で規定される)DCIフォーマット1_1/1_2であってもよい。 The DCI format that indicates the TCI status may be a specific DCI format. For example, the particular DCI format may be DCI format 1_1/1_2 (defined in Rel. 15/16/17).
 TCI状態を指示するDCIフォーマット(DCIフォーマット1_1/1_2)は、DLアサインメントなしのDCIフォーマットであってもよい。本開示において、DLアサインメントなしのDCIフォーマット、PDSCHをスケジュールしないDCIフォーマット(DCIフォーマット1_1/1_2)、1つ以上の特定のフィールドを含まないDCIフォーマット(DCIフォーマット1_1/1_2)、1つ以上の特定のフィールドが固定値にセットされるDCIフォーマット(DCIフォーマット1_1/1_2)、などと互いに読み替えられてもよい。 The DCI format (DCI format 1_1/1_2) indicating the TCI state may be a DCI format without DL assignment. In this disclosure, a DCI format without a DL assignment, a DCI format that does not schedule PDSCH (DCI format 1_1/1_2), a DCI format that does not contain one or more specific fields (DCI format 1_1/1_2), one or more A DCI format in which a specific field is set to a fixed value (DCI format 1_1/1_2) may be read interchangeably.
 DLアサインメントなしのDCIフォーマット(1つ以上の特定のフィールドを含まないDCIフォーマット)について、当該特定のフィールドは、TCIフィールド、DCIフォーマットの識別子フィールド、キャリアインディケータフィールド、帯域幅部分(BWP)インディケータフィールド、時間ドメインリソースアサインメント(Time Domain Resource Assignment(TDRA))フィールド、Downlink Assignment Index(DAI)フィールド(もし設定される場合には)、(スケジュールされるPUCCHのための)送信電力制御(Transmission Power Control(TPC))コマンドフィールド、PUCCHリソースインディケータフィールド、及び、PDSCHからHARQ-ACKフィードバックまでのタイミング指示(PDSCH-to-HARQ feedback timing indicator)フィールド(もし存在する場合)、以外のフィールドであってもよい。当該特定のフィールドは、リザーブドフィールドとしてセットされてもよいし、無視されてもよい。 For a DCI format without DL assignment (a DCI format that does not contain one or more specific fields), the specific fields are: TCI field, DCI format identifier field, carrier indicator field, bandwidth part (BWP) indicator field , Time Domain Resource Assignment (TDRA) field, Downlink Assignment Index (DAI) field (if set), Transmission Power Control (for scheduled PUCCH) (TPC)) command field, PUCCH resource indicator field, and PDSCH-to-HARQ feedback timing indicator field (if present), fields other than . The particular field may be set as a reserved field or may be ignored.
 DLアサインメントなしのDCIフォーマット(1つ以上の特定のフィールドが固定値にセットされるDCIフォーマット)について、当該特定のフィールドは、冗長バージョン(Redundancy Version(RV))フィールド、変調符号化方式(Modulation and Coding Scheme(MCS))フィールド、新規データインディケータ(New Data Indicator)フィールド、及び、周波数ドメインリソースアサインメント(Frequency Domain Resource Assignment(FDRA))フィールドであってもよい。 For DCI formats without DL assignment (DCI formats in which one or more specific fields are set to fixed values), the specific fields are Redundancy Version (RV) field, Modulation and Coding Scheme (MCS) field, New Data Indicator field, and Frequency Domain Resource Assignment (FDRA) field.
 RVフィールドは全て1にセットされてもよい。MCSフィールドは、全て1にセットされてもよい。NDIフィールドは0にセットされてもよい。タイプ0のFDRAフィールドは、全て0にセットされてもよい。タイプ1のFDRAフィールドは、全て1にセットされてもよい。ダイナミックスイッチ(上位レイヤパラメータdynamicSwitch)用のFDRAフィールドは、全て0にセットされてもよい。 All RV fields may be set to 1. The MCS field may be set to all ones. The NDI field may be set to 0. Type 0 FDRA fields may be set to all zeros. The Type 1 FDRA field may be set to all ones. The FDRA field for dynamic switching (higher layer parameter dynamicSwitch) may be set to all zeros.
 共通TCIフレームワークは、DL及びULに対して別々のTCI状態を有してもよい。 A common TCI framework may have separate TCI states for DL and UL.
(MAC CE)
 Rel.16において、UE固有(UE-specific)のPDSCHのTCI状態のアクティベーション/ディアクティベーションに、MAC CE(TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)が用いられる(図2参照)。
(MAC CE)
Rel. At 16, MAC CE (TCI States Activation/Deactivation for UE-specific PDSCH MAC CE) is used for UE-specific PDSCH TCI state activation/deactivation (see FIG. 2).
 当該MAC CEは、Logical Channel ID(LCID)をもつMACサブヘッダで識別される。 The relevant MAC CE is identified by a MAC subheader with a Logical Channel ID (LCID).
 当該MAC CEは、シングルTRP、又は、マルチDCIに基づくマルチTRPを使用する環境において用いられてもよい。 The MAC CE may be used in an environment that uses a single TRP or multi-TRP based on multi-DCI.
 当該MAC CEには、サービングセルID(Serving Cell ID)フィールド、BWP IDフィールド、TCI状態のアクティベーション/ディアクティベーションを示すためのフィールド(Ti)、及び、CORESETプールID(CORESET Pool ID)フィールドが含まれてもよい。 The MAC CE includes a Serving Cell ID field, a BWP ID field, a field (Ti) for indicating activation/deactivation of the TCI state, and a CORESET pool ID (CORESET Pool ID) field. may be
 サービングセルIDフィールドは、当該MAC CEを適用するサービングセルを示すためのフィールドであってもよい。BWP IDフィールドは、当該MAC CEを適用するDL BWPを示すためのフィールドであってもよい。CORESETプールIDフィールドは、アクティベートされたTCI状態と、フィールドTiでセットされたDCIによって指示されるTCIフィールドのコードポイント(DCI TCIのコードポイント)と、の対応(マッピング)が、CORESETプールIDで設定されたControlResourceSetIdに固有のものであることを示すフィールドであってもよい。 The serving cell ID field may be a field for indicating the serving cell to which the MAC CE is applied. The BWP ID field may be a field for indicating the DL BWP to which the MAC CE is applied. In the CORESET pool ID field, the correspondence (mapping) between the activated TCI state and the TCI field code point indicated by the DCI set in the field Ti (DCI TCI code point) is set by the CORESET pool ID. It may be a field indicating that it is unique to the specified ControlResourceSetId.
 また、Rel.16において、UE固有(UE-specific)のPDSCHのTCI状態のアクティベーション/ディアクティベーションに、MAC CE(Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)が用いられる(図3参照)。 Also, Rel. In 16, MAC CE (Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE) is used for UE-specific PDSCH TCI state activation/deactivation (see FIG. 3).
 当該MAC CEは、eLCIDをもつMAC PDUサブヘッダで識別される。 The relevant MAC CE is identified by a MAC PDU subheader with an eLCID.
 当該MAC CEは、シングルDCIに基づくマルチTRPを使用する環境において用いられてもよい。 This MAC CE may be used in an environment that uses multiple TRPs based on a single DCI.
 当該MAC CEには、サービングセルID(Serving Cell ID)フィールド、BWP IDフィールド、TCI-StateIDで識別されるTCI状態を示すためのフィールド(TCI state IDi,j(iは0からNの整数、jは1又は2))、対応するオクテットにTCI state IDi,2が存在するか否かを示すフィールド(Ci)、及び、リザーブドビットフィールド(R、0にセットされる)が含まれてもよい。 The MAC CE contains a Serving Cell ID field, a BWP ID field, a field for indicating the TCI state identified by the TCI-State ID (TCI state IDi,j (i is an integer from 0 to N, j is 1 or 2)), a field (Ci) indicating whether TCI state IDi,2 is present in the corresponding octet, and a reserved bit field (R, set to 0).
 「i」は、DCIによって指示されるTCIフィールドのコードポイントのインデックスに対応してもよい。「TCI state IDi,j」は、i番目のTCIフィールドのコードポイントの、j番目のTCI状態を示してもよい。 "i" may correspond to the codepoint index of the TCI field indicated by the DCI. "TCI state IDi,j" may indicate the j-th TCI state of the i-th TCI field codepoint.
 また、Rel.16において、UE固有(UE-specific)のPDCCH/CORESETのTCI状態のアクティベーション/ディアクティベーションに、MAC CE(TCI State Indication for UE-specific PDCCH MAC CE)が用いられる(図4参照)。 Also, Rel. In 16, MAC CE (TCI State Indication for UE-specific PDCCH MAC CE) is used for UE-specific PDCCH/CORESET TCI state activation/deactivation (see FIG. 4).
 当該MAC CEは、LCIDをもつMACサブヘッダで識別される。 The relevant MAC CE is identified by a MAC subheader with LCID.
 当該MAC CEには、サービングセルID(Serving Cell ID)フィールド、TCI状態を指示されるCORESET(CORESET ID)を示すフィールド、及び、CORESET IDで識別されるCORESETに適用可能なTCI状態を示すためのフィールド(TCI state ID)が含まれてもよい。 The MAC CE contains a Serving Cell ID field, a field indicating the CORESET (CORESET ID) indicating the TCI state, and a field for indicating the TCI state applicable to the CORESET identified by the CORESET ID. (TCI state ID) may be included.
(beam application time(BAT))
 Rel.17におけるDCIベースビーム指示(DCI-based beam indication)において、ビーム/統一TCI状態の指示の適用時間に関し、以下の検討1及び2が検討されている。
(beam application time (BAT))
Rel. In the DCI-based beam indication in 17, Considerations 1 and 2 below are considered regarding the application time of the beam/unified TCI state indication.
[検討1]
 指示されたTCIを適用する最初のスロットは、ジョイント又はセパレートDL/ULビーム指示に対する肯定応答(acknowledgement(ACK))の最後のシンボルの少なくともYシンボル後であることが検討されている。指示されたTCIを適用する最初のスロットは、ジョイント又はセパレートDL/ULビーム指示に対するACK/否定応答(negative acknowledgement(NACK))の最後のシンボルの少なくともYシンボル後であることが検討されている。Yシンボルは、UEによって報告されたUE能力に基づき、基地局によって設定されてもよい。そのUE能力は、シンボルの単位で報告されてもよい。
[Study 1]
It is considered that the first slot to apply the indicated TCI is at least Y symbols after the last symbol of the acknowledgment (ACK) for joint or separate DL/UL beam indication. It is considered that the first slot to apply the indicated TCI is at least Y symbols after the last symbol of the ACK/negative acknowledgment (NACK) for joint or separate DL/UL beam indications. The Y symbol may be set by the base station based on the UE capabilities reported by the UE. The UE capabilities may be reported on a symbol-by-symbol basis.
 ACKは、ビーム指示DCIによってスケジュールされたPDSCHに対するACKであってもよい。ビーム指示DCIによってPDSCHがスケジュールされなくてもよい。この場合のACKは、ビーム指示DCIに対するACKであってもよい。 The ACK may be an ACK for the PDSCH scheduled by the beam pointing DCI. PDSCH may not be scheduled by beam pointing DCI. The ACK in this case may be an ACK for the beam pointing DCI.
 Rel.17のDCIベースビーム指示に対し、BWP/CC毎に少なくとも1つのYシンボルがUEに設定されることが検討されている。  Rel. It is considered that at least one Y symbol per BWP/CC is configured in the UE for 17 DCI-based beam indications.
 複数CCの間においてSCSが異なる場合、Yシンボルの値も異なるため、複数CCの間において、適用時間が異なる可能性がある。 When the SCS is different between multiple CCs, the Y symbol values are also different, so there is a possibility that the application time will be different between multiple CCs.
[検討2]
 CAのケースに対し、そのビーム指示の適用時刻は、以下の選択肢1から3のいずれかに従ってもよい。
[選択肢1]その最初のスロット及びYシンボルの両方は、そのビーム指示を適用する1つ以上のキャリアの内、最小SCSを伴うキャリア上において決定される。
[選択肢2]その最初のスロット及びYシンボルの両方は、そのビーム指示を適用する1つ以上のキャリアと、そのACKを運ぶULキャリアと、の内、最小SCSを伴うキャリア上において決定される。
[選択肢3]その最初のスロット及びYシンボルの両方は、そのACKを運ぶULキャリア上において決定される。
[Consideration 2]
For the CA case, the application time of the beam pointing may follow any of options 1 to 3 below.
[Option 1] Both the first slot and the Y symbol are determined on the carrier with the lowest SCS among the one or more carriers to which the beam pointing applies.
[Option 2] Both the first slot and the Y symbol are determined on the carrier with the lowest SCS among the one or more carriers applying the beam pointing and the UL carrier carrying the ACK.
[Option 3] Both the first slot and the Y symbol are determined on the UL carrier carrying the ACK.
 Rel.17のCC同時ビーム更新機能として、CAにおいて複数CC間においてビームを共通化することが検討されている。検討2によれば、複数CCの間において適用時間が共通になる。  Rel. As a 17 CC simultaneous beam update function, sharing a beam between a plurality of CCs in CA is under consideration. According to Study 2, the application time is common among multiple CCs.
 CAに対するビーム指示の適用時間(Yシンボル)は、ビーム指示が適用されるキャリアの内、最小SCSを伴うキャリア上において決定されてもよい。Rel.17のMAC CEベースビーム指示(単一のTCIコードポイントのみがアクティベートされた場合)は、MAC CEアクティベーションのRel.16適用タイムラインに従ってもよい。 The beam instruction application time (Y symbols) for CA may be determined on the carrier with the minimum SCS among the carriers to which the beam instruction is applied. Rel. 17 MAC CE-based beam indications (if only a single TCI codepoint is activated), the MAC CE activation Rel. 16 application timeline.
 これらの検討に基づき、以下の動作が仕様に規定されることが検討されている。
[動作]
 UEが、TCI状態指示を伝えるDCIに対応するHARQ-ACK情報を伴うPUCCHの最後のシンボルを送信する場合、Rel.17TCI状態を伴う指示されたTCI状態は、そのPUCCHの最後のシンボルから少なくともYシンボル後である最初のスロットから適用を開始されてもよい。Yは、上位レイヤパラメータ(例えば、BeamAppTime_r17[シンボル])であってもよい。その最初のスロットとYシンボルとの両方は、ビーム指示が適用されるキャリアの内、最小SCSを伴うキャリア上において決定されてもよい。UEは、ある時点において、DL及びUL用のRel17TCI状態を伴う指示された1つのTCI状態を想定してもよいし、UL用のRel17TCI状態を伴う(DLとは別に)指示された1つのTCI状態を想定してもよい。
Based on these considerations, the following operations are being considered for specification.
[motion]
If the UE transmits the last symbol of PUCCH with HARQ-ACK information corresponding to the DCI carrying the TCI status indication, Rel. The indicated TCI states with 17 TCI states may start to apply from the first slot that is at least Y symbols after the last symbol of that PUCCH. Y may be a higher layer parameter (eg, BeamAppTime_r17[symbol]). Both the first slot and the Y symbols may be determined on the carrier with the lowest SCS among the carriers to which beam pointing applies. The UE may, at a given moment, assume one indicated TCI state with Rel17 TCI states for DL and UL, or one indicated TCI (apart from DL) with Rel17 TCI state for UL. state can be assumed.
 Y[シンボル]の代わりにX[ms]が用いられてもよい。 X [ms] may be used instead of Y [symbol].
 適用時間に関し、UEが以下のUE能力1及び2の少なくとも1つを報告することが検討されている。
[UE能力1]
 SCS毎の最小適用時間(ACKを運ぶPUCCHの最後のシンボルと、ビームが適用される最初のスロットと、の間のYシンボルの最小値)。
[UE能力2]
 ビーム指示PDCCH(DCI)の最後のシンボルと、ビームが適用される最初のスロットと、の間の最小時間ギャップ。ビーム指示PDCCH(DCI)の最後のシンボルと、ビームが適用される最初のスロットと、の間のギャップが、UE能力(最小時間ギャップ)を満たしてもよい。
Regarding application time, it is considered that the UE reports at least one of the following UE capabilities 1 and 2.
[UE Capability 1]
Minimum application time per SCS (minimum value of Y symbols between the last symbol of PUCCH carrying an ACK and the first slot in which the beam is applied).
[UE Capability 2]
Minimum time gap between the last symbol of the beam directed PDCCH (DCI) and the first slot where the beam applies. The gap between the last symbol of the beam pointing PDCCH (DCI) and the first slot where the beam applies may satisfy the UE capability (minimum time gap).
 UE能力2は、既存のUE能力(例えば、timeDurationForQCL)であってもよい。  UE capability 2 may be an existing UE capability (eg, timeDurationForQCL).
 ビームの指示と、そのビームが適用されるチャネル/RSとの関係は、UE能力1及び2の少なくとも1つを満たしてもよい。 The relationship between the beam designation and the channel/RS to which the beam applies may satisfy at least one of UE capabilities 1 and 2.
(無線通信への人工知能(Artificial Intelligence(AI))技術の適用)
 将来の無線通信技術について、ネットワーク/デバイスの制御、管理などに、機械学習(Machine Learning(ML))のようなAI技術を活用することが検討されている。
(Application of artificial intelligence (AI) technology to wireless communication)
As for future wireless communication technology, utilization of AI technology such as machine learning (ML) for control and management of networks/devices is under consideration.
 例えば、将来の無線通信技術について、AI/MLを用いて予測したビーム品質を、未来のビーム指示に活用することが検討されている。AI/MLはビーム品質の予測を可能にすることができる。 For example, regarding future wireless communication technology, it is being considered to utilize beam quality predicted using AI/ML for future beam instructions. AI/ML can enable prediction of beam quality.
 ビーム指示に関連するHARQ-ACKからのBATは、Rel.17以降に規定されるTCI状態に対して設定/(予め)規定される少なくとも1つの値であることが検討されている。  BAT from HARQ-ACK related to beam pointing is Rel. It is considered to be at least one value to be set/(pre-)defined for the TCI states defined since 17 onwards.
 Rel.17においては、ビームパターン指示(TCI状態の系列)についてはサポートされないことが検討されている。  Rel. 17, it is considered that beam pattern indication (a sequence of TCI states) is not supported.
(分析)
 上述のように、Rel.17以降において、UEに対し、DCIフォーマット(例えば、DLアサインメントなし/ありのDCIフォーマット1_1/1_2(DCI format 1_1/1_2 without/with DL assignment))に含まれるTCI状態フィールド(TCIフィールド、最大3ビット)を用いて、1つ以上のTCI状態(共通TCI状態)が指示されることが検討されている。
(analysis)
As noted above, Rel. 17 and later, for the UE, the TCI state field (TCI field, up to 3 bit) to indicate one or more TCI states (common TCI state).
 図5Aは、ジョイントTCI状態の指示の一例を示す図である。図5Aに示すように、ジョイントTCI状態の指示において、1つのTCIフィールドのコードポイントに1つのジョイントTCI状態(DL/ULジョイントTCI状態)が対応してもよい。UEは、指示されるTCIフィールドのコードポイントに基づいて、DLチャネル/信号、及び、ULチャネル/信号に適用するTCI状態(DL/ULジョイントTCI状態)を判断してもよい。 FIG. 5A is a diagram showing an example of joint TCI state indication. As shown in FIG. 5A, in the joint TCI state indication, one joint TCI state (DL/UL joint TCI state) may correspond to one code point of one TCI field. The UE may determine the TCI state to apply to the DL channel/signal and the UL channel/signal (DL/UL joint TCI state) based on the codepoints of the indicated TCI field.
 図5Bは、セパレートTCI状態の指示の一例を示す図である。図5Bに示すように、セパレートTCI状態の指示において、1つのTCIフィールドのコードポイントに1つ又は2つのTCI状態が対応する。当該2つのTCI状態のそれぞれは、DL(セパレート)TCI状態及びUL(セパレート)TCI状態であってもよい。UEは、指示されるTCIフィールドのコードポイントに基づいて、DLチャネル/信号に適用するTCI状態、及び、ULチャネル/信号に適用するTCI状態を判断する。UEに対し1つのTCI状態のみに対応するTCIフィールドのコードポイント(例えば、図10Bにおけるコードポイント「000」)が通知される場合、UEは、指示されないTCI状態(例えば、図5Bのコードポイント「000」のケースでは、UL TCI状態)は、当該通知まで適用されるUL TCI状態を継続/指示してもよい。 FIG. 5B is a diagram showing an example of a separate TCI state indication. As shown in FIG. 5B, in the separate TCI state indication, one or two TCI states correspond to codepoints in one TCI field. Each of the two TCI states may be a DL (separate) TCI state and a UL (separate) TCI state. The UE determines the TCI state to apply to DL channels/signals and the TCI state to apply to UL channels/signals based on the codepoints of the indicated TCI field. If the UE is informed of a TCI field codepoint corresponding to only one TCI state (e.g., codepoint "000" in FIG. 10B), the UE may be notified of an unindicated TCI state (e.g., codepoint "000" in FIG. 5B). 000” case, the UL TCI state) may continue/indicate the UL TCI state that applies until the notification.
 また、Rel.17以降において、TCI状態の指示(「ビーム指示」と呼ばれてもよい)から指示されたTCI状態の適用までに関するタイムラインが検討されている。ビーム指示受信後からTCI状態の適用までのタイミング(ビーム適用タイミング(Beam application timing(BAT))と呼ばれてもよい)は、TCI状態を指示するDCIでスケジュールされるPDSCHに対するHARQ-ACKの送信後から、特定の時間後(例えば、Kシンボル後)までのタイミング(図6参照)であってもよい。そのタイミングは、少なくとも特定の時間(例えば、Kシンボル)の後の最初のスロットであってもよい。本開示において、BAT、ビーム適用開始タイミング、Kシンボル、Yシンボル、X[ms]、時間オフセット、タイミングオフセット、は互いに読み替えられてもよい。 Also, Rel. 17 et seq., a timeline is considered for indication of TCI conditions (which may be referred to as "beam indication") to application of the indicated TCI conditions. The timing from reception of the beam indication to application of the TCI state (which may be referred to as beam application timing (BAT)) is the transmission of HARQ-ACK for the PDSCH scheduled with the DCI indicating the TCI state. It may be the timing (see FIG. 6) after a certain time (for example, after K symbols). The timing may be at least the first slot after a certain amount of time (eg, K symbols). In the present disclosure, BAT, beam application start timing, K symbols, Y symbols, X [ms], time offset, and timing offset may be read interchangeably.
 当該Kは、UEが報告する能力情報(UE Capability Information、例えば、「timeDurationForQCL-rel18」)に基づく上位レイヤシグナリング(RRCパラメータ)に基づいて決定されてもよい。なお、特定のサブキャリア間隔に対するBATは、キャリアアグリゲーション(CA)における共通TCI状態の共通TCI状態IDが設定される複数の(例えば、全ての)CC/BWPに対して設定されてもよい。 The K may be determined based on higher layer signaling (RRC parameters) based on capability information reported by the UE (UE Capability Information, for example, "timeDurationForQCL-rel18"). Note that the BAT for a specific subcarrier interval may be set for multiple (for example, all) CCs/BWPs in which a common TCI state ID of a common TCI state in carrier aggregation (CA) is set.
 ところで、統一TCI状態の適用について、検討が十分でないケースがある。例えば、ビーム(TCI状態)の指示から適用までのタイムライン(例えば、上述のBAT)の動的な指示について検討が十分でない。また、例えば、統一TCI状態に対するビームパターンの指示についても検討が十分でない。このような検討が十分でなければ、通信品質の低下、スループットの低下など、を招くおそれがある。 By the way, there are cases where the application of the unified TCI status has not been sufficiently considered. For example, not enough consideration has been given to the dynamic indication of the timeline from beam (TCI state) indication to application (eg, BAT above). Also, for example, the indication of the beam pattern for unified TCI conditions is not well considered. Insufficient consideration like this may lead to deterioration in communication quality, throughput, and the like.
 そこで、本発明者らは、TCI状態を適切に設定/指示/適用する方法を着想した。なお、本開示の各実施形態は、AI/予測が利用されない場合に適用されてもよい。 Therefore, the inventors came up with a method for appropriately setting/indicating/applying the TCI state. Note that each embodiment of the present disclosure may be applied when AI/prediction is not utilized.
 本開示の一実施形態では、端末(ユーザ端末、User Equipment(UE))/基地局(Base Station(BS))は、訓練モード(training mode)においてMLモデルの訓練を行い、テストモード(test mode、testing modeなどとも呼ばれる)においてMLモデルを実施する。テストモードでは、訓練モードにおいて訓練されたMLモデル(trained ML model)の精度の検証(バリデーション)が行われてもよい。 In one embodiment of the present disclosure, a terminal (user equipment (UE))/base station (base station (BS)) trains an ML model in a training mode, and a test mode , testing mode, etc.). In the test mode, validation of the accuracy of the ML model trained in the training mode may be performed.
 本開示においては、UE/BSは、MLモデルに対して、チャネル状態情報、参照信号測定値などを入力して、高精度なチャネル状態情報/測定値/ビーム選択/位置、将来のチャネル状態情報/無線リンク品質などを出力してもよい。 In the present disclosure, the UE/BS inputs channel state information, reference signal measurements, etc. to the ML model to obtain highly accurate channel state information/measurements/beam selection/position, future channel state information / Radio link quality etc. may be output.
 なお、本開示において、AIは、以下の少なくとも1つの特徴を有する(実施する)オブジェクト(対象、客体、データ、関数、プログラムなどとも呼ばれる)で読み替えられてもよい:
・観測又は収集される情報に基づく推定、
・観測又は収集される情報に基づく選択、
・観測又は収集される情報に基づく予測。
It should be noted that in the present disclosure, AI may be read as an object (also called object, object, data, function, program, etc.) having (implementing) at least one of the following characteristics:
Estimates based on observed or collected information;
- Choices based on information observed or collected;
• Predictions based on observed or collected information.
 本開示において、当該物体は、例えば、端末、基地局などの装置、デバイスなどであってもよい。また、当該物体は、当該装置に含まれるプログラムに該当してもよい。 In the present disclosure, the object may be, for example, a terminal, a device such as a base station, or a device. Also, the object may correspond to a program included in the device.
 また、本開示において、MLモデルは、以下の少なくとも1つの特徴を有する(実施する)オブジェクトで読み替えられてもよい:
・情報を与えること(feeding)によって、推定値を生み出す、
・情報を与えることによって、推定値を予測する、
・情報を与えることによって、特徴を発見する、
・情報を与えることによって、動作を選択する。
Also, in this disclosure, an ML model may be read as an object that has (enforces) at least one of the following characteristics:
Generating an estimate by feeding,
Informed to predict estimates;
・Discover characteristics by giving information,
• Selecting actions by giving information.
 また、本開示において、MLモデルは、モデル、AIモデル、予測分析(predictive analytics)、予測分析モデルなどの少なくとも1つで読み替えられてもよい。また、MLモデルは、回帰分析(例えば、線形回帰分析、重回帰分析、ロジスティック回帰分析)、サポートベクターマシン、ランダムフォレスト、ニューラルネットワーク、ディープラーニングなどの少なくとも1つを用いて導出されてもよい。本開示において、モデルは、エンコーダ、デコーダ、ツールなどの少なくとも1つで読み替えられてもよい。 Also, in the present disclosure, the ML model may be read as at least one of a model, an AI model, predictive analytics, a predictive analysis model, and the like. Also, the ML model may be derived using at least one of regression analysis (e.g., linear regression analysis, multiple regression analysis, logistic regression analysis), support vector machines, random forests, neural networks, deep learning, and the like. In this disclosure, model may be translated as at least one of encoder, decoder, tool, and the like.
 MLモデルは、入力される情報に基づいて、推定値、予測値、選択される動作、分類、などの少なくとも1つの情報を出力する。  The ML model outputs at least one information such as estimated value, predicted value, selected action, classification, etc., based on the input information.
 MLモデルには、教師あり学習(supervised learning)、教師なし学習(unsupervised learning)、強化学習(Reinforcement learning)などが含まれてもよい。教師あり学習は、入力を出力にマップする一般的なルールを学習するために用いられてもよい。教師なし学習は、データの特徴を学習するために用いられてもよい。強化学習は、目的(ゴール)を最大化するための動作を学習するために用いられてもよい。 The ML model may include supervised learning, unsupervised learning, reinforcement learning, etc. Supervised learning may be used to learn general rules that map inputs to outputs. Unsupervised learning may be used to learn features of data. Reinforcement learning may be used to learn actions to maximize a goal.
 後述の各実施形態は、MLモデルに教師あり学習を利用する場合を想定して主に説明するが、これに限られない。 Each embodiment described later will be mainly described assuming that supervised learning is used in the ML model, but it is not limited to this.
 本開示において、実施、運用、動作、実行などは、互いに読み替えられてもよい。また、本開示において、テスト、訓練後(after-training)、本番の利用、実際の利用、などは互いに読み替えられてもよい。信号は、信号/チャネルと互いに読み替えられてもよい。 In the present disclosure, implementation, operation, operation, execution, etc. may be read interchangeably. Also, in this disclosure, testing, after-training, production use, actual use, etc. may be read interchangeably. A signal may be interchanged with signal/channel.
 本開示において、訓練モードは、UE/BSがMLモデルのために信号を送信/受信するモード(言い換えると、訓練期間における動作モード)に該当してもよい。本開示において、テストモードは、UE/BSがMLモデルを実施する(例えば、訓練されたMLモデルを実施して出力を予測する)モード(言い換えると、テスト期間における動作モード)に該当してもよい。 In the present disclosure, the training mode may correspond to the mode in which the UE/BS transmits/receives signals for the ML model (in other words, the mode of operation during training). In the present disclosure, the test mode corresponds to the mode in which the UE/BS implements the ML model (e.g., implements the trained ML model to predict the output) (in other words, the operating mode during the test). good.
 本開示において、訓練モードは、テストモードで送信される特定の信号について、オーバーヘッドが大きい(例えば、リソース量が多い)当該特定の信号が送信されるモードを意味してもよい。 In the present disclosure, training mode may refer to a mode in which a specific signal transmitted in test mode has a large overhead (eg, a large amount of resources) is transmitted.
 本開示において、訓練モードは、第1の設定(例えば、第1のDMRS設定、第1のCSI-RS設定)を参照するモードを意味してもよい。本開示において、テストモードは、第1の設定とは別の第2の設定(例えば、第2のDMRS設定、第2のCSI-RS設定)を参照するモードを意味してもよい。第1の設定は、第2の設定よりも、測定に関する時間リソース、周波数リソース、符号リソース、ポート(アンテナポート)の少なくとも1つが多く設定されてもよい。 In the present disclosure, training mode may refer to a mode that refers to a first configuration (eg, first DMRS configuration, first CSI-RS configuration). In the present disclosure, test mode may refer to a mode that refers to a second configuration (eg, second DMRS configuration, second CSI-RS configuration) different from the first configuration. At least one of time resources, frequency resources, code resources, and ports (antenna ports) related to measurement may be set more in the first setting than in the second setting.
 本開示において、推定(estimation)、予測(prediction)、推論(inference)は、互いに読み替えられてもよい。また、本開示において、推定する(estimate)、予測する(predict)、推論する(infer)は、互いに読み替えられてもよい。 In the present disclosure, estimation, prediction, and inference may be read interchangeably. Also, in the present disclosure, estimate, predict, and infer may be read interchangeably.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication method according to each embodiment may be applied independently, or may be applied in combination.
 本開示において、「A/B/C」、「A、B及びCの少なくとも1つ」、は互いに読み替えられてもよい。本開示において、セル、サービングセル、CC、キャリア、BWP、DL BWP、UL BWP、アクティブDL BWP、アクティブUL BWP、バンド、は互いに読み替えられてもよい。本開示において、インデックス、ID、インディケーター、リソースID、は互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できる、は互いに読み替えられてもよい。 In the present disclosure, "A/B/C" and "at least one of A, B and C" may be read interchangeably. In the present disclosure, cell, serving cell, CC, carrier, BWP, DL BWP, UL BWP, active DL BWP, active UL BWP, band may be read interchangeably. In the present disclosure, indices, IDs, indicators, and resource IDs may be read interchangeably. In the present disclosure, sequences, lists, sets, groups, groups, clusters, subsets, etc. may be read interchangeably. In the present disclosure, supporting, controlling, controllable, operating, and capable of operating may be read interchangeably.
 本開示において、設定(configure)、アクティベート(activate)、更新(update)、指示(indicate)、有効化(enable)、指定(specify)、選択(select)、は互いに読み替えられてもよい。 In the present disclosure, configure, activate, update, indicate, enable, specify, and select may be read interchangeably.
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。本開示において、RRC、RRCシグナリング、RRCパラメータ、上位レイヤ、上位レイヤパラメータ、RRC情報要素(IE)、RRCメッセージ、設定、は互いに読み替えられてもよい。 In the present disclosure, higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof. In this disclosure, RRC, RRC signaling, RRC parameters, higher layers, higher layer parameters, RRC information elements (IEs), RRC messages, and configuration may be read interchangeably.
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。本開示において、MAC CE、更新コマンド、アクティベーション/ディアクティベーションコマンド、は互いに読み替えられてもよい。 For MAC signaling, for example, MAC Control Element (MAC CE), MAC Protocol Data Unit (PDU), etc. may be used. In the present disclosure, MAC CE, update command, and activation/deactivation command may be read interchangeably.
 ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI)、SIB1)、その他のシステム情報(Other System Information(OSI))などであってもよい。 Broadcast information is, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), SIB1), other system It may be information (Other System Information (OSI)) or the like.
 本開示において、ビーム、空間ドメインフィルタ、空間セッティング、TCI状態、UL TCI状態、統一(unified)TCI状態、統一ビーム、共通(common)TCI状態、共通ビーム、TCI想定、QCL想定、QCLパラメータ、空間ドメイン受信フィルタ、UE空間ドメイン受信フィルタ、UE受信ビーム、DLビーム、DL受信ビーム、DLプリコーディング、DLプリコーダ、DL-RS、TCI状態/QCL想定のQCLタイプDのRS、TCI状態/QCL想定のQCLタイプAのRS、空間関係、空間ドメイン送信フィルタ、UE空間ドメイン送信フィルタ、UE送信ビーム、ULビーム、UL送信ビーム、ULプリコーディング、ULプリコーダ、PL-RS、は互いに読み替えられてもよい。本開示において、QCLタイプX-RS、QCLタイプXに関連付けられたDL-RS、QCLタイプXを有するDL-RS、DL-RSのソース、SSB、CSI-RS、SRS、は互いに読み替えられてもよい。 In the present disclosure, beams, spatial domain filters, spatial settings, TCI states, UL TCI states, unified TCI states, unified beams, common TCI states, common beams, TCI assumptions, QCL assumptions, QCL parameters, spatial Domain Receive Filter, UE Spatial Domain Receive Filter, UE Receive Beam, DL Beam, DL Receive Beam, DL Precoding, DL Precoder, DL-RS, TCI State/QCL Assumed QCL Type D RS, TCI State/QCL Assumed QCL type A RS, spatial relationship, spatial domain transmit filter, UE spatial domain transmit filter, UE transmit beam, UL beam, UL transmit beam, UL precoding, UL precoder, PL-RS may be read interchangeably. In this disclosure, QCL type X-RS, DL-RS associated with QCL type X, DL-RS with QCL type X, source of DL-RS, SSB, CSI-RS, SRS, may be read interchangeably. good.
 本開示において、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、基地局、ある信号のアンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、DMRS、ある信号のアンテナポートグループ(例えば、DMRSポートグループ)、多重のためのグループ(例えば、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ)、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、CORESETサブセット、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定、冗長バージョン(redundancy version(RV))、レイヤ(multi-input muti-output(MIMO)レイヤ、送信レイヤ、空間レイヤ)、は、互いに読み替えられてもよい。また、パネルIdentifier(ID)とパネルは互いに読み替えられてもよい。本開示において、TRP IDとTRPは、互いに読み替えられてもよい。 In the present disclosure, panels, UE panels, panel groups, beams, beam groups, precoders, Uplink (UL) transmitting entities, Transmission/Reception Points (TRPs), base stations, Spatial Relation Information (SRI )), spatial relationship, SRS resource indicator (SRI), control resource set (COntrol REsource SET (CORESET)), physical downlink shared channel (PDSCH), codeword (CW), transport Block (Transport Block (TB)), reference signal (Reference Signal (RS)), base station, antenna port of a certain signal (for example, demodulation reference signal (DeModulation Reference Signal (DMRS)) port), DMRS, of a certain signal Antenna port group (e.g. DMRS port group), group for multiplexing (e.g. Code Division Multiplexing (CDM) group, reference signal group, CORESET group), Physical Uplink Control Channel (PUCCH) group, PUCCH resource group, resource (e.g., reference signal resource, SRS resource), resource set (e.g., reference signal resource set), CORESET pool, CORESET subset, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink Link TCI state (UL TCI state), unified TCI state, common TCI state, Quasi-Co-Location (QCL), QCL assumption, redundancy version version (RV)) and layers (multi-input multi-output (MIMO) layer, transmission layer, spatial layer) may be read interchangeably. Also, panel identifier (ID) and panel may be read interchangeably. In the present disclosure, TRP ID and TRP may be read interchangeably.
 また、パネルIdentifier(ID)とパネルは互いに読み替えられてもよい。つまり、TRP IDとTRP、CORESETグループIDとCORESETグループなどは、互いに読み替えられてもよい。 Also, the panel identifier (ID) and the panel may be read interchangeably. In other words, TRP ID and TRP, CORESET group ID and CORESET group, etc. may be read interchangeably.
 本開示において、TRP、送信ポイント、パネル、DMRSポートグループ、CORESETプール、TCIフィールドの1つのコードポイントに関連付けられた2つのTCI状態の1つ、は互いに読み替えられてもよい。 In the present disclosure, TRP, transmission point, panel, DMRS port group, CORESET pool, one of two TCI states associated with one codepoint of the TCI field may be read interchangeably.
 本開示の各実施形態は、シングルDCIベースのシングルTRPを利用する送受信、シングルDCIベースのマルチTRPを利用する送受信、及び、マルチDCIベースのマルチTRPを利用する送受信の少なくとも1つに用いられてもよい。 Each embodiment of the present disclosure is used for at least one of transmission/reception using single DCI-based single TRP, transmission/reception using single DCI-based multi-TRP, and transmission/reception using multi-DCI-based multi-TRP. good too.
 本開示において、シングルPDCCH(DCI)は、マルチTRPが理想的バックホール(ideal backhaul)を利用する場合にサポートされると想定されてもよい。マルチPDCCH(DCI)は、マルチTRP間が非理想的バックホール(non-ideal backhaul)を利用する場合にサポートされると想定されてもよい。 In the present disclosure, single PDCCH (DCI) may be assumed to be supported when multiple TRPs utilize the ideal backhaul. Multi-PDCCH (DCI) may be assumed to be supported when inter-multi-TRP utilizes non-ideal backhaul.
 なお、理想的バックホールは、DMRSポートグループタイプ1、参照信号関連グループタイプ1、アンテナポートグループタイプ1、CORESETプールタイプ1、などと呼ばれてもよい。非理想的バックホールは、DMRSポートグループタイプ2、参照信号関連グループタイプ2、アンテナポートグループタイプ2、CORESETプールタイプ2、などと呼ばれてもよい。名前はこれらに限られない。 Note that the ideal backhaul may also be called DMRS port group type 1, reference signal related group type 1, antenna port group type 1, CORESET pool type 1, and so on. Non-ideal backhaul may be referred to as DMRS port group type 2, reference signal associated group type 2, antenna port group type 2, CORESET pool type 2, and so on. Names are not limited to these.
 本開示において、シングル(単一)TRP、シングルTRPシステム、シングルTRP送信、シングルPDSCH、は互いに読み替えられてもよい。本開示において、マルチ(複数)TRP、マルチTRPシステム、マルチTRP送信、マルチPDSCH、は互いに読み替えられてもよい。本開示において、シングルDCI、シングルPDCCH、シングルDCIに基づくマルチTRP、少なくとも1つのTCIコードポイント上の2つのTCI状態をアクティベートされること、は互いに読み替えられてもよい。 In the present disclosure, single (single) TRP, single TRP system, single TRP transmission, and single PDSCH may be read interchangeably. In this disclosure, multi (multiple) TRPs, multi-TRP systems, multi-TRP transmissions, and multi-PDSCHs may be interchanged. In this disclosure, a single DCI, a single PDCCH, multiple TRPs based on a single DCI, and activating two TCI states on at least one TCI codepoint may be read interchangeably.
 本開示において、シングルTRP、シングルTRPを用いるチャネル、1つのTCI状態/空間関係を用いるチャネル、マルチTRPがRRC/DCIによって有効化されないこと、複数のTCI状態/空間関係がRRC/DCIによって有効化されないこと、いずれのCORESETに対しても1のCORESETプールインデックス(CORESETPoolIndex)値が設定されず、且つ、TCIフィールドのいずれのコードポイントも2つのTCI状態にマップされないこと、は互いに読み替えられてもよい。 In the present disclosure, single TRP, channels with single TRP, channels with one TCI state/spatial relationship, multi-TRP not enabled by RRC/DCI, multiple TCI states/spatial relations enabled by RRC/DCI may be interchanged with that no CORESET is set to a CORESETPoolIndex value of 1 for any CORESET, and that no codepoint in the TCI field maps to two TCI states. .
 本開示において、マルチTRP、マルチTRPを用いるチャネル、複数のTCI状態/空間関係を用いるチャネル、マルチTRPがRRC/DCIによって有効化されること、複数のTCI状態/空間関係がRRC/DCIによって有効化されること、シングルDCIに基づくマルチTRPとマルチDCIに基づくマルチTRPとの少なくとも1つ、は互いに読み替えられてもよい。本開示において、マルチDCIに基づくマルチTRP、CORESETに対して1のCORESETプールインデックス(CORESETPoolIndex)値が設定されること、は互いに読み替えられてもよい。本開示において、シングルDCIに基づくマルチTRP、TCIフィールドの少なくとも1つのコードポイントが2つのTCI状態にマップされること、は互いに読み替えられてもよい。 In this disclosure, multi-TRP, channels with multi-TRP, channels with multiple TCI state/spatial relationships, multi-TRP enabled by RRC/DCI, multiple TCI state/spatial relationships enabled by RRC/DCI and at least one of multi-TRP based on a single DCI and multi-TRP based on multiple DCIs may be read interchangeably. In this disclosure, multi-TRPs based on multi-DCI, setting a CORESET pool index (CORESETPoolIndex) value of 1 for a CORESET, may be read interchangeably. In this disclosure, multiple TRPs based on a single DCI, where at least one codepoint of a TCI field is mapped to two TCI states, may be read interchangeably.
 本開示において、TRP#1(第1TRP)は、CORESETプールインデックス=0に対応してもよいし、TCIフィールドの1つのコードポイントに対応する2つのTCI状態のうちの1番目のTCI状態に対応してもよい。TRP#2(第2TRP)TRP#1(第1TRP)は、CORESETプールインデックス=1に対応してもよいし、TCIフィールドの1つのコードポイントに対応する2つのTCI状態のうちの2番目のTCI状態に対応してもよい。 In this disclosure, TRP #1 (first TRP) may correspond to CORESET pool index=0, or corresponds to the first TCI state of the two TCI states corresponding to one codepoint of the TCI field. You may TRP#2 (Secondary TRP) TRP#1 (First TRP) may correspond to CORESET pool index=1, or the second TCI of the two TCI states corresponding to one codepoint of the TCI field. It may correspond to the state.
 本開示において、シングルDCI(sDCI)、シングルPDCCH、シングルDCIに基づくマルチTRPシステム、sDCIベースMTRP、少なくとも1つのTCIコードポイント上の2つのTCI状態をアクティベートされること、は互いに読み替えられてもよい。 In this disclosure, single DCI (sDCI), single PDCCH, multi-TRP system based on single DCI, sDCI-based MTRP, activating two TCI states on at least one TCI codepoint may be read interchangeably. .
 本開示において、マルチDCI(mDCI)、マルチPDCCH、マルチDCIに基づくマルチTRPシステム、mDCIベースMTRP、2つのCORESETプールインデックス又はCORESETプールインデックス=1(又は1以上の値)が設定されること、は互いに読み替えられてもよい。 In the present disclosure, multi-DCI (mDCI), multi-PDCCH, multi-TRP system based on multi-DCI, mDCI-based MTRP, two CORESET pool indices or CORESET pool index = 1 (or a value of 1 or more) is set; You may read each other.
 本開示のQCLは、QCLタイプDと互いに読み替えられてもよい。 The QCL of the present disclosure may be read interchangeably with QCL Type D.
 本開示における「TCI状態Aが、TCI状態Bと同じQCLタイプDである」、「TCI状態Aが、TCI状態Bと同じである」、「TCI状態Aが、TCI状態BとQCLタイプDである」などは、互いに読み替えられてもよい。 "TCI state A is the same QCL type D as TCI state B", "TCI state A is the same as TCI state B", "TCI state A is TCI state B and QCL type D" in the present disclosure There is" etc. may be read interchangeably.
 本開示において、DCIフィールド‘Transmission Configuration Indication’のコードポイント、TCIコードポイント、DCIコードポイント、TCIフィールドのコードポイント、は互いに読み替えられてもよい。 In the present disclosure, the code point of the DCI field 'Transmission Configuration Indication', the TCI code point, the DCI code point, and the code point of the TCI field may be read interchangeably.
 本開示において、シングルTRP、single frequency network(SFN)、は互いに読み替えられてもよい。本開示において、high speed train(HST)、HSTスキーム、高速移動用スキーム、スキーム1、スキーム2、NW pre-compensationスキーム、HSTスキーム1、HSTスキーム2、HST NW pre-compensationスキーム、は互いに読み替えられてもよい。 In the present disclosure, single TRP and single frequency network (SFN) may be read interchangeably. In the present disclosure, high speed train (HST), HST scheme, high-speed travel scheme, scheme 1, scheme 2, NW pre-compensation scheme, HST scheme 1, HST scheme 2, HST NW pre-compensation scheme are read interchangeably. may
 本開示において、シングルTRPを利用するPDSCH/PDCCHは、シングルTRPに基づくPDSCH/PDCCH、シングルTRP PDSCH/PDCCH、と読み替えられてもよい。また、本開示において、SFNを利用するPDSCH/PDCCHは、マルチにおけるSFNを利用するPDSCH/PDCCH、SFNに基づくPDSCH/PDCCH、SFN PDSCH/PDCCH、と読み替えられてもよい。 In the present disclosure, PDSCH/PDCCH using single TRP may be read as PDSCH/PDCCH based on single TRP and single TRP PDSCH/PDCCH. Also, in the present disclosure, PDSCH/PDCCH using SFN may be read as PDSCH/PDCCH using SFN in multi, PDSCH/PDCCH based on SFN, and SFN PDSCH/PDCCH.
 本開示において、SFNを利用してDL信号(PDSCH/PDCCH)を受信することは、同一時間/周波数リソースを用いて、かつ/または、同一データ(PDSCH)/制御情報(PDCCH)を、複数の送受信ポイントから受信すること、を意味してもよい。また、SFNを利用してDL信号を受信することは、同一時間/周波数リソースを用いて、かつ/または、同一データ/制御情報を、複数のTCI状態/空間ドメインフィルタ/ビーム/QCLを利用して受信すること、を意味してもよい。 In the present disclosure, receiving DL signals (PDSCH/PDCCH) using SFN may be performed using the same time/frequency resources and/or transmitting the same data (PDSCH)/control information (PDCCH) to multiple It may mean receiving from a send/receive point. Also, receiving a DL signal using an SFN may utilize multiple TCI states/spatial domain filters/beams/QCLs using the same time/frequency resources and/or the same data/control information. may mean to receive
 本開示において、HST-SFNスキーム、Rel.17以降のSFNスキーム、新規SFNスキーム、新規HST-SFNスキーム、Rel.17以降のHST-SFNシナリオ、HST-SFNシナリオのためのHST-SFNスキーム、HST-SFNシナリオのためのSFNスキーム、スキーム1、HST-SFNスキームA/B、HST-SFNタイプA/B、ドップラー事前補償スキーム、スキーム1(HSTスキーム1)及びドップラー事前補償スキームの少なくとも1つ、は互いに読み替えられてもよい。 In the present disclosure, the HST-SFN scheme, Rel. 17 and later SFN schemes, new SFN schemes, new HST-SFN schemes, Rel. 17 and later HST-SFN scenarios, HST-SFN schemes for HST-SFN scenarios, SFN schemes for HST-SFN scenarios, scheme 1, HST-SFN schemes A/B, HST-SFN types A/B, Doppler The precompensation schemes, scheme 1 (HST scheme 1) and at least one of the Doppler precompensation schemes, may be read interchangeably.
 本開示において、ドップラー事前補償スキーム、基地局事前補償スキーム、TRP事前補償スキーム、pre-Doppler compensationスキーム、Doppler pre-compensationスキーム、NW pre-compensationスキーム、HST NW pre-compensationスキーム、TRP pre-compensationスキーム、TRP-based pre-compensationスキーム、HST-SFNスキームA/B、HST-SFNタイプA/B、は互いに読み替えられてもよい。本開示において、事前補償スキーム、低減スキーム、改善スキーム、補正スキーム、は互いに読み替えられてもよい。 In the present disclosure, Doppler pre-compensation scheme, base station pre-compensation scheme, TRP pre-compensation scheme, pre-Doppler compensation scheme, Doppler pre-compensation scheme, NW pre-compensation scheme, HST NW pre-compensation scheme, TRP pre-compensation scheme , TRP-based pre-compensation scheme, HST-SFN scheme A/B, and HST-SFN type A/B may be read interchangeably. In this disclosure, precompensation scheme, reduction scheme, improvement scheme, and correction scheme may be read interchangeably.
 本開示において、リンケージを有するPDCCH/サーチスペース(SS)/CORESET、リンクされたPDCCH/SS/CORESET、PDCCH/SS/CORESETのペア、は互いに読み替えられてもよい。本開示において、リンケージを有しないPDCCH/SS/CORESET、リンクされないPDCCH/SS/CORESET、単独のPDCCH/SS/CORESET、は互いに読み替えられてもよい。 In the present disclosure, PDCCH/search space (SS)/CORESET with linkage, linked PDCCH/SS/CORESET, and PDCCH/SS/CORESET pair may be read interchangeably. In this disclosure, PDCCH/SS/CORESET without linkage, PDCCH/SS/CORESET not linked, and PDCCH/SS/CORESET alone may be read interchangeably.
 本開示において、PDCCH繰り返しのための2つのリンクされたCORESET、2つのリンクされたSSセットにそれぞれ関連付けられた2つのCORESET、は互いに読み替えられてもよい。 In the present disclosure, two linked CORESETs for PDCCH repetition and two CORESETs respectively associated with two linked SS sets may be read interchangeably.
 本開示において、SFN-PDCCH繰り返し、PDCCH繰り返し、2つのリンクされたPDCCH、1つのDCIがその2つのリンクされたサーチスペース(SS)/CORESETに跨って受信されること、は互いに読み替えられてもよい。 In this disclosure, SFN-PDCCH repetitions, PDCCH repetitions, two linked PDCCHs, and one DCI being received across the two linked search spaces (SS)/CORESET are interchangeable. good.
 本開示において、PDCCH繰り返し、SFN-PDCCH繰り返し、より高い信頼性のためのPDCCH繰り返し、より高い信頼性のためのPDCCH、信頼性のためのPDCCH、2つのリンクされたPDCCH、は互いに読み替えられてもよい。 In the present disclosure, PDCCH repetition, SFN-PDCCH repetition, PDCCH repetition for higher reliability, PDCCH for higher reliability, PDCCH for reliability, two linked PDCCH, are interchanged. good too.
 本開示において、PDCCH受信方法、PDCCH繰り返し、SFN-PDCCH繰り返し、HST-SFN、HST-SFNスキーム、は互いに読み替えられてもよい。 In the present disclosure, the PDCCH reception method, PDCCH repetition, SFN-PDCCH repetition, HST-SFN, and HST-SFN scheme may be read interchangeably.
 本開示において、PDSCH受信方法、シングルDCIベースマルチTRP、HST-SFNスキーム、は互いに読み替えられてもよい。 In the present disclosure, the PDSCH reception method, single DCI-based multi-TRP, and HST-SFN scheme may be read interchangeably.
 本開示において、シングルDCIベースマルチTRP繰り返しは、enhanced mobile broadband(eMBB)サービス(低優先度、優先度0)のNCJTであってもよいし、ultra-reliable and low latency communicationsサービスのURLLCサービス(高優先度、優先度1)の繰り返しであってもよい。 In the present disclosure, single DCI-based multi-TRP repetition may be NCJT for enhanced mobile broadband (eMBB) service (low priority, priority 0), or URL LLC service for ultra-reliable and low latency communications service (high Priority, priority 1) may be repeated.
 本開示の各実施形態において、シングルDCIに基づく複数TRP用のPDSCHは、(Rel.16で規定される)複数TRP用のTDM/FDM/SDMが適用されるPDSCHと互いに読み替えられてもよい。 In each embodiment of the present disclosure, PDSCH for multiple TRPs based on a single DCI may be interchanged with PDSCH to which TDM/FDM/SDM for multiple TRPs (defined in Rel. 16) is applied.
 本開示の各実施形態において、複数TRP用のPDSCHは、(Rel.16で規定される)シングルDCIに基づく複数TRP用のTDM/FDM/SDMが適用されるPDSCHと互いに読み替えられてもよい。 In each embodiment of the present disclosure, PDSCH for multiple TRPs may be interchanged with PDSCH to which TDM/FDM/SDM for multiple TRPs based on a single DCI (defined in Rel.16) is applied.
 本開示の各実施形態において、シングルDCIに基づく複数TRP用のPUSCH/PUCCH/PDCCHは、(Rel.17以降で規定される)複数TRP用のPUSCH/PUCCH/PDCCHの繰り返し送信(repetition)と互いに読み替えられてもよい。 In each embodiment of the present disclosure, PUSCH/PUCCH/PDCCH for multiple TRPs based on a single DCI is repeated transmission (repetition) of PUSCH/PUCCH/PDCCH for multiple TRPs (defined after Rel.17). It may be reread.
 本開示の各実施形態において、SFN PDSCH/PDCCHは、Rel.17以降に規定されるSFN PDSCH/PDCCHと互いに読み替えられてもよい。 In each embodiment of the present disclosure, SFN PDSCH/PDCCH is Rel. 17 or later may be read interchangeably as SFN PDSCH/PDCCH.
 本開示の各実施形態において、マルチDCIに基づく複数TRPの利用が設定されることは、CORESETプールインデックス=1が設定されることを意味してもよい。また、マルチDCIに基づく複数TRPの利用が設定されることは、2つの異なる値(例えば、0及び1)のCORESETプールインデックスが設定されることを意味してもよい。 In each embodiment of the present disclosure, setting the use of multiple TRPs based on multiple DCIs may mean setting CORESET pool index=1. Also, configuring the use of multiple TRPs based on multiple DCIs may mean that two different values (eg, 0 and 1) of the CORESET pool index are configured.
 本開示の各実施形態において、複数パネルを用いるUL送信は、DCIエンハンスメントによるUEの複数パネルを用いるUL送信スキームを意味してもよい。 In each embodiment of the present disclosure, UL transmission with multiple panels may refer to a UL transmission scheme with multiple panels of the UE with DCI enhancement.
 本開示の各実施形態において、もし統一TCI状態フレームワークにおけるジョイントTCI状態/セパレートTCI状態が、各チャネル/信号に適用可能(applicable)でない場合、当該各チャネルのTCI状態/QCL/空間関係を決定するために、前述のデフォルトTCI状態/QCL/空間関係が用いられてもよい。 In each embodiment of the present disclosure, if the joint TCI state/separate TCI state in the unified TCI state framework is not applicable to each channel/signal, determine the TCI state/QCL/spatial relationship for each channel. To do so, the default TCI state/QCL/spatial relationships described above may be used.
 以下本開示の各実施形態は、上述したRel.17以降で規定される統一TCI状態フレームワークの適用対象である任意のチャネル/信号の送受信に適用されてもよい。 Each embodiment of the present disclosure below is described in the above-mentioned Rel. It may be applied to the transmission and reception of any channel/signal covered by the unified TCI state framework defined in 17 et seq.
 本開示において、各チャネル/信号/リソースにTCI状態を適用することは、各チャネル/信号/リソースの送受信にTCI状態を適用することを意味してもよい。 In the present disclosure, applying TCI conditions to each channel/signal/resource may mean applying TCI conditions to transmission and reception of each channel/signal/resource.
 本開示において、小さい、少ない、短い、低い、は互いに読み替えられてもよい。また、本開示において、無視(ignore)、ドロップ等は互いに読み替えられてもよい。 In the present disclosure, "small", "less", "short", and "low" may be read interchangeably. Also, in the present disclosure, ignore, drop, etc. may be read interchangeably.
 本開示において、「最高(最大)」及び「最低(最小)」は互いに読み替えられてもよい。また、本開示において、「最大」は、「n番目(nは任意の自然数)」に大きい、より大きい、より高い、などと互いに読み替えられてもよい。また、本開示において、「最小」は、「n番目(nは任意の自然数)に小さい」、より小さい、より低い、などと互いに読み替えられてもよい。 In the present disclosure, "highest (maximum)" and "lowest (minimum)" may be read interchangeably. In addition, in the present disclosure, "maximum" may be read as "the nth (n is an arbitrary natural number)" larger, higher, higher, or the like. Also, in the present disclosure, "minimum" may be read as "nth (n is any natural number) smaller", smaller, lower, and the like.
 本開示において、繰り返し(repetition)、繰り返し送信、繰り返し受信、は互いに読み替えられてもよい。 In the present disclosure, repetition, repeated transmission, and repeated reception may be read interchangeably.
 本開示において、チャネル、信号、チャネル/信号、は互いに読み替えられてもよい。本開示おいて、DLチャネル、DL信号、DL信号/チャネル、DL信号/チャネルの送信/受信、DL受信、DL送信、は互いに読み替えられてもよい。本開示おいて、ULチャネル、UL信号、UL信号/チャネル、UL信号/チャネルの送信/受信、UL受信、UL送信、は互いに読み替えられてもよい。 In the present disclosure, channels, signals, and channels/signals may be read interchangeably. In this disclosure, DL channel, DL signal, DL signal/channel, transmission/reception of DL signal/channel, DL reception, and DL transmission may be read interchangeably. In this disclosure, UL channel, UL signal, UL signal/channel, transmission/reception of UL signal/channel, UL reception, and UL transmission may be read interchangeably.
 本開示において、第1のTRPに第1のTCI状態が対応してもよい。本開示において、第2のTRPに第2のTCI状態が対応してもよい。本開示において、第nのTRPに第nのTCI状態が対応してもよい。 In the present disclosure, a first TCI state may correspond to a first TRP. In this disclosure, a second TCI state may correspond to a second TRP. In the present disclosure, the nth TCI state may correspond to the nth TRP.
 本開示において、第1のCORESETプールインデックスの値(例えば、0)、第1のTRPインデックスの値(例えば、1)、及び、第1のTCI状態(第1のDL/UL(ジョイント/セパレート)TCI状態)は互いに対応してもよい。本開示において、第2のCORESETプールインデックスの値(例えば、1)、第2のTRPインデックスの値(例えば、2)、及び、第2のTCI状態(第2のDL/UL(ジョイント/セパレート)TCI状態)は互いに対応してもよい。 In the present disclosure, a first CORESET pool index value (eg, 0), a first TRP index value (eg, 1), and a first TCI state (first DL/UL (joint/separate) TCI states) may correspond to each other. In the present disclosure, a second CORESET pool index value (eg, 1), a second TRP index value (eg, 2), and a second TCI state (second DL/UL (joint/separate) TCI states) may correspond to each other.
 本開示において、タイミング、時刻、時間、時間インスタンス、スロット、サブスロット、シンボル、サブフレームなどは、互いに読み替えられてもよい。 In the present disclosure, timing, time, time, time instance, slot, subslot, symbol, subframe, etc. may be read interchangeably.
(無線通信方法)
 本開示の各実施形態/態様/オプション/選択肢/変形例は、以下の条件の少なくとも1つに基づいて用いられてもよい:
 ・(明示的に)対応する上位レイヤパラメータの設定。
 ・(暗黙的に)関連する上位レイヤパラメータの設定。
 ・MAC CE/DCI(に含まれるフィールド)の指示。
 ・(報告された)UE能力(UE Capability)。
 ・仕様内による規定。
 ・仕様内に規定される特定の条件。
 ・上位レイヤパラメータ、MAC CE、DCI、及び、(報告された)UE能力の少なくとも1つによる設定/指示。
(Wireless communication method)
Each embodiment/aspect/option/option/variation of the present disclosure may be used under at least one of the following conditions:
• (explicitly) setting the corresponding higher layer parameters.
• (implicitly) setting of relevant higher layer parameters.
• An indication of (the fields contained in) the MAC CE/DCI.
• (reported) UE Capability.
・Stipulated within the specifications.
• Specific conditions defined in the specification.
• Configuration/indication by higher layer parameters, MAC CE, DCI and/or (reported) UE capabilities.
 本開示の各実施形態/態様/オプション/選択肢/変形例/バリエーションは、単独で用いられてもよいし、組み合わせて用いられてもよい。 Each embodiment/aspect/option/option/modification/variation of the present disclosure may be used alone or in combination.
<第1の実施形態>
 第1の実施形態は、BATの指示に関する。
<First embodiment>
The first embodiment relates to BAT indication.
 UEは、(もし適用可能であれば(「if applicable」))特定の信号のために特定のQCLタイプ(例えば、QCLタイプD)が設定されたRSとしてTCI状態が指示されたRSを参照してもよい。UEは、当該TCI状態を、1つ又は複数のチャネル/信号の送受信に適用してもよい。 A UE refers to an RS with a TCI state indicated ("if applicable") as an RS configured with a particular QCL type (e.g., QCL type D) for a particular signal. may The UE may apply the TCI state to transmission/reception of one or more channels/signals.
 当該特定の信号は、例えば、PDSCH用DMRS、PDCCH用DMRS、及び、CSI-RS、の少なくとも1つであってもよい。 The specific signal may be, for example, at least one of PDSCH DMRS, PDCCH DMRS, and CSI-RS.
 UEは、特定の時間リソース(例えば、特定のシンボル/スロット)から、BATの経過後の最初のシンボル/スロットにおいて、ビーム指示(DCI)を用いて指示されるTCI状態を適用することを判断してもよい。 The UE determines to apply the TCI state indicated using a beam indication (DCI) from a particular time resource (e.g., a particular symbol/slot) in the first symbol/slot after the BAT has elapsed. may
 当該特定の時間リソースは、以下のオプション1-0-1から1-0-3の少なくとも1つであってもよい。 The specific time resource may be at least one of options 1-0-1 to 1-0-3 below.
 当該特定の時間リソースは、TCI状態の指示を含むDCI(ビーム指示DCI)によってスケジュールされるHARQ-ACKを伴うPUCCHの最初/最後のシンボル、及び、当該PUCCHのスロット(例えば、最初/最後のスロット)の少なくとも一方であってもよい(オプション1-0-1)。 The specific time resource is the first/last symbol of PUCCH with HARQ-ACK scheduled by DCI (beam directed DCI) containing an indication of the TCI state, and the slot of the PUCCH (e.g., the first/last slot ) (option 1-0-1).
 本開示において、あるDCIによってスケジュールされるHARQ-ACKは、あるDCIに関連するHARQ-ACK、と互いに読み替えられてもよい。また、本開示において、ビーム指示のDCIは、DLアサインメントありのDCIフォーマットであってもよいし、DLアサインメントなしのDCIフォーマットであってもよい。 In the present disclosure, HARQ-ACKs scheduled by a certain DCI may be interchanged with HARQ-ACKs associated with a certain DCI. Also, in the present disclosure, the DCI for beam indication may be a DCI format with DL assignment or a DCI format without DL assignment.
 当該特定の時間リソースは、TCI状態の指示を含むDCI(ビーム指示DCI)のPDCCHの最初/最後のシンボル、及び、当該PDCCHのスロット(例えば、最初/最後のスロット)の少なくとも一方であってもよい(オプション1-0-2)。 The specific time resource may be at least one of the first/last symbol of the PDCCH of the DCI (beam directed DCI) containing the indication of the TCI state, and the slot of the PDCCH (eg, the first/last slot). Good (option 1-0-2).
 当該特定の時間リソースは、指示されるシンボル/スロット/サブフレームであってもよい(オプション1-0-3)。当該シンボル/スロット/サブフレームは、スロット内のシンボル(インデックス)、サブフレーム内のスロットインデックス、及び、サブフレームインデックス、の少なくとも1つで表されてもよい。 The specific time resource may be the indicated symbol/slot/subframe (option 1-0-3). The symbol/slot/subframe may be represented by at least one of a symbol (index) within a slot, a slot index within a subframe, and a subframe index.
 上記オプション1-0-1から1-0-3の少なくとも1つにおける時間リソースについて、予め仕様で規定されてもよいし、UEに対して上位レイヤシグナリング(RRC/MAC CE)/DCI(ビーム指示DCI/ビーム指示DCI以外のDCI)を用いて設定/指示されてもよいし、UEの報告するUE能力情報に基づいて決定されてもよい。 The time resources in at least one of the above options 1-0-1 to 1-0-3 may be specified in advance, and higher layer signaling (RRC/MAC CE)/DCI (beam indication DCI/DCI other than beam directing DCI), or may be determined based on UE capability information reported by the UE.
 図7は、第1の実施形態に係るBATの開始の基準の一例を示す図である。図7に示す例において、UEは、ビーム指示DCIを受信する。上記オプション1-0-1によれば、当該DCIに関連するHARQ-ACKの送信からの特定の期間がBATとなる。上記オプション1-0-2によれば、当該DCIの受信からの特定の期間がBATとなる。 FIG. 7 is a diagram showing an example of criteria for starting BAT according to the first embodiment. In the example shown in FIG. 7, the UE receives beam pointing DCI. According to option 1-0-1 above, the BAT is a certain period of time from the transmission of the HARQ-ACK associated with that DCI. According to option 1-0-2 above, a specific period from the reception of the DCI becomes BAT.
 以上オプション1-0-1から1-0-3によれば、BATの期間の開始となる時間リソースを適切に決定することができる。 According to options 1-0-1 to 1-0-3 above, it is possible to appropriately determine the time resource that will be the start of the BAT period.
 以下ではBATについて説明する。 BAT will be explained below.
 UEは、上記オプション1-0-1から1-0-3の少なくとも1つに記載した時間リソースから、特定の期間経過後に、ビーム指示(によるTCI状態)を適用すると判断してもよい。 The UE may determine to apply beam indication (by TCI state) after a specific period of time from the time resources described in at least one of options 1-0-1 to 1-0-3 above.
 当該特定の期間は、特定の(例えば、X(Xは任意の整数))シンボル/スロット/サブフレームで表されてもよいし、Y[ms](Yは任意の数)で表されてもよい。 The specific period may be represented by a specific (eg, X (X is an arbitrary integer)) symbol/slot/subframe, or may be represented by Y [ms] (Y is an arbitrary number). good.
 当該特定の期間は、以下のオプション1-1-1から1-1-7の少なくとも1つに従って決定されてもよい。 The specific period may be determined according to at least one of options 1-1-1 to 1-1-7 below.
《オプション1-1-1》
 特定の期間は、仕様で予め規定される値であってもよい。
《Option 1-1-1》
The specified time period may be a value predefined in the specification.
 当該値は、例えば、報告されるUE能力情報(UE Capability information)、及び、設定される上位レイヤパラメータ(RRCパラメータ/MAC CEフィールド)に基づいて決定されてもよい。 This value may be determined, for example, based on the reported UE Capability information and the set higher layer parameters (RRC parameters/MAC CE fields).
 例えば、当該RRCパラメータは、複数のビーム適用時刻(BAT)のビーム指示の有効(enabled)/無効(disabled)を示すRRCパラメータであってもよい。 For example, the RRC parameter may be an RRC parameter indicating enabled/disabled of beam indications of a plurality of beam application times (BAT).
 当該値は、DCIに含まれるTCIフィールドにおける特定数(例えば、N(Nは0より大きい整数))のTCIコードポイントごとに決定されてもよい。 The value may be determined for each specific number (eg, N (N is an integer greater than 0)) of TCI code points in the TCI field included in the DCI.
 当該Nは、予め仕様で規定されてもよいし、UEに対して上位レイヤシグナリング(RRC/MAC CE)/DCI(ビーム指示DCI/ビーム指示DCI以外のDCI)を用いて設定/指示されてもよいし、UEの報告するUE能力情報に基づいて決定されてもよい。 The N may be defined in advance in the specification, or may be set/indicated to the UE using higher layer signaling (RRC/MAC CE)/DCI (beam directing DCI/DCI other than beam directing DCI). Alternatively, it may be determined based on UE capability information reported by the UE.
 当該値は、特定のQCL(QCL情報)内のTCI状態/ソースRSごとに決定されてもよい。当該特定のQCLは、DCIに含まれるTCIフィールドにおける特定数(例えば、N)のTCIコードポイントに対応するQCLであってもよい。 The value may be determined for each TCI state/source RS within a specific QCL (QCL information). The particular QCL may be the QCL corresponding to a particular number (eg, N) of TCI codepoints in the TCI field included in the DCI.
 図8A及び図8Bは、オプション1-1-1に係るTCI状態の適用の一例を示す図である。図8Aに示すように、UEに対し、TCIコードポイントと(TCI状態(図8Aの例では、ジョイントDL/UL TCI状態)と)BATとについての関連付けが設定される。  Figs. 8A and 8B are diagrams showing an example of application of the TCI state according to option 1-1-1. As shown in FIG. 8A, a UE is configured with an association between TCI codepoints and (TCI states (joint DL/UL TCI states in the example of FIG. 8A)) and BAT.
 なお、本開示の各実施形態において記載するTCIコードポイントとTCI状態の関連付けは、あくまで一例であり、コードポイントのビット数、指示されるTCI状態は、示す例に限られない。また、当該関連付けの中で記載されるTCI状態を、主にジョイントDL/UL TCI状態を例に説明するが、当該関連付けに含まれるTCI状態は、セパレートDL/UL TCI状態であってもよい。 The association between TCI codepoints and TCI states described in each embodiment of the present disclosure is merely an example, and the number of bits of codepoints and the indicated TCI state are not limited to the examples shown. Also, the TCI states described in the association will be mainly described using the joint DL/UL TCI state as an example, but the TCI states included in the association may be separate DL/UL TCI states.
 図8Bに示す例では、UEに対してビーム指示DCIを用いてTCIコードポイント「000」が指示される場合、UEは、BATがBAT#1であることを判断する。また、UEに対してビーム指示DCIを用いてTCIコードポイント「100」が指示される場合、UEは、BATがBAT#2であることを判断する。 In the example shown in FIG. 8B, when the TCI codepoint "000" is indicated to the UE using the beam directing DCI, the UE determines that the BAT is BAT#1. Also, when the TCI codepoint "100" is indicated to the UE using the beam indication DCI, the UE determines that the BAT is BAT#2.
《オプション1-1-2》
 特定の期間は、特定のRRCパラメータに基づいて決定/設定されてもよい。
《Option 1-1-2》
The specific time period may be determined/configured based on specific RRC parameters.
 当該特定のRRCパラメータは、DCI内のコードポイント(例えば、TCIコードポイント)に関連しない(独立した)RRCパラメータであってもよい。 The specific RRC parameter may be a (independent) RRC parameter unrelated to a codepoint in DCI (eg, TCI codepoint).
 当該特定のRRCパラメータは、ビーム(TCI状態)の適用時刻に関するRRCパラメータ(例えば、「BeamAppTime」)であってもよい。 The specific RRC parameter may be an RRC parameter relating to the application time of the beam (TCI state) (eg, "BeamAppTime").
《オプション1-1-3》
 特定の期間は、特定のRRCパラメータに基づいて決定/設定されてもよい。
《Option 1-1-3》
The specific time period may be determined/configured based on specific RRC parameters.
 例えば、当該特定のRRCパラメータは、DCIに含まれるTCIフィールドにおける特定数(例えば、N(Nは0より大きい整数))のTCIコードポイントごとに、当該特定の期間を設定するRRCパラメータであってもよい。 For example, the specific RRC parameter is an RRC parameter that sets the specific period for every specific number (eg, N (N is an integer greater than 0)) of TCI code points in the TCI field included in the DCI, good too.
 図9A及び図9Bは、オプション1-1-3に係るTCI状態の適用の一例を示す図である。図9Aに示すように、UEに対し、TCIコードポイントと(TCI状態(図9Aの例では、ジョイントDL/UL TCI状態)と)BATとについての関連付けが設定される。  Figures 9A and 9B are diagrams showing an example of application of the TCI state according to Option 1-1-3. As shown in FIG. 9A, for a UE, an association between TCI codepoints and (TCI states (joint DL/UL TCI states in the example of FIG. 9A)) and BAT is set.
 図9Aに示す例では、2つ(N=2)のTCIコードポイントごとにBATが設定される。つまり、UEに対して、4つのBATがRRCパラメータによって設定される。当該設定は、特定のRRCパラメータの設定において行われてもよい。図9Bに示す例では、PDSCH設定(PDSCH-Config)内において、TCI状態(TCIリスト)ごとのビーム適用時刻に関するパラメータ(beamApptimeperTCIlist)が含まれている。当該ビーム適用時刻に関するパラメータ(beamApptimeperTCIlist)には、対応するTCIフィールドにおけるコードポイントの最大数(maxNrofcodepointsinTCI-StateField)のビーム適用時刻のID(beamApptimeId)が含まれる。ビーム適用時刻のID(beamApptimeId)は、ビーム(TCI状態)の適用時刻に関するRRCパラメータ(例えば、「beamApptime」)を特定するためのパラメータであってもよい。 In the example shown in FIG. 9A, BAT is set for every two (N=2) TCI codepoints. That is, 4 BATs are configured by the RRC parameters for the UE. Such configuration may be done in the configuration of specific RRC parameters. In the example shown in FIG. 9B, the PDSCH configuration (PDSCH-Config) includes a parameter (beamApptimeperTCIlist) regarding the beam application time for each TCI state (TCI list). The beam application time parameter (beamApptimeperTCIlist) includes the beam application time ID (beamApptimeId) of the maximum number of codepoints (maxNrofcodepointsinTCI-StateField) in the corresponding TCI field. The ID of the beam application time (beamApptimeId) may be a parameter for identifying an RRC parameter (eg, “beamApptime”) regarding the application time of the beam (TCI state).
 なお、本開示において、BATの指示について、BATのインデックス(番号)で示されてもよいし、BATに関連するインデックスで示されてもよい。BATに関連するインデックスとBATの値との関連付けは、上位レイヤシグナリング(RRC/MAC CE)で設定されてもよいし、仕様で予め規定されてもよい。 In the present disclosure, the BAT instruction may be indicated by the BAT index (number) or by an index related to the BAT. The association between the BAT-related index and the BAT value may be set by higher layer signaling (RRC/MAC CE), or may be defined in advance in the specifications.
 TCIフィールドにおけるコードポイントの最大数(maxNrofcodepointsinTCI-StateField)は、特定の数であってもよい。例えば、上記Nが1である場合、対応するTCIフィールドにおけるコードポイントの最大数(maxNrofcodepointsinTCI-StateField)は第1の値(例えば、8)であってもよい。例えば、上記Nが2である場合、対応するTCIフィールドにおけるコードポイントの最大数(maxNrofcodepointsinTCI-StateField)は第2の値(例えば、4)であってもよい。 The maximum number of codepoints in the TCI field (maxNrofcodepointsinTCI-StateField) may be a specific number. For example, if N is 1, the maximum number of codepoints in the corresponding TCI field (maxNrofcodepointsinTCI-StateField) may be a first value (eg, 8). For example, if N is 2, the maximum number of codepoints in the corresponding TCI field (maxNrofcodepointsinTCI-StateField) may be a second value (eg, 4).
《オプション1-1-4》
 特定の期間は、特定のRRCパラメータに基づいて決定/設定されてもよい。
《Option 1-1-4》
The specific time period may be determined/configured based on specific RRC parameters.
 例えば、当該特定のRRCパラメータは、TCI状態の設定パラメータ(「TCI-State」)であってもよい。当該TCI状態の設定パラメータ(「TCI-State」)に、ビーム(TCI状態)の適用時刻に関するRRCパラメータ(例えば、「beamApptime」)が含まれてもよい。 For example, the specific RRC parameter may be a TCI state configuration parameter ("TCI-State"). The setting parameter (“TCI-State”) of the TCI state may include an RRC parameter (eg, “beamApptime”) regarding the application time of the beam (TCI state).
 図10は、オプション1-1-4に係るTCI状態の適用の一例を示す図である。図10に示す例では、TCI状態の設定パラメータ(「TCI-State」)に、ビーム(TCI状態)の適用時刻に関するRRCパラメータ(例えば、「beamApptime」)が含まれる。ビーム(TCI状態)の適用時刻に関するRRCパラメータ(例えば、「beamApptime」)は、複数の値(図10の例では、n1、n2、n4、n8又はn16)の中から1つの値を示してもよい。なお、図中に示される複数の値はあくまで一例であり、これに限られない。 FIG. 10 is a diagram showing an example of applying the TCI state according to Option 1-1-4. In the example shown in FIG. 10, the TCI state setting parameter (“TCI-State”) includes an RRC parameter (eg, “beamApptime”) regarding the beam (TCI state) application time. The RRC parameter (e.g., "beamApptime") relating to beam (TCI state) application time may indicate one of multiple values (n1, n2, n4, n8 or n16 in the example of FIG. 10). good. It should be noted that the multiple values shown in the drawing are merely examples, and the present invention is not limited to this.
[オプション1-1-4の変形例1]
 例えば、上記特定のRRCパラメータは、TCI状態の設定パラメータ(「TCI-State」)に含まれるQCL情報のパラメータ(「QCL-Info」)であってもよい。当該QCL情報のパラメータ(「QCL-Info」)に、ビーム(TCI状態)の適用時刻に関するRRCパラメータ(例えば、「beamApptime」)が含まれてもよい。
[Modification 1 of Option 1-1-4]
For example, the specific RRC parameter may be a QCL information parameter (“QCL-Info”) included in a TCI state configuration parameter (“TCI-State”). The parameter of the QCL information (“QCL-Info”) may include an RRC parameter (eg, “beamApptime”) regarding the beam (TCI state) application time.
 当該QCL情報のパラメータ(「QCL-Info」)は、第1のQCLタイプを示すパラメータ(「qcl-Type1」)及び第2のQCLタイプを示すパラメータ(「qcl-Type2」)の少なくとも一方において示されてもよい。 The parameter of the QCL information (“QCL-Info”) is indicated in at least one of the parameter indicating the first QCL type (“qcl-Type1”) and the parameter indicating the second QCL type (“qcl-Type2”). may be
 図11は、オプション1-1-4の変形例1に係るTCI状態の適用の一例を示す図である。図11に示す例では、TCI状態の設定パラメータ(「TCI-State」)に、QCL情報のパラメータ(「QCL-Info」)が含まれ、当該QCL情報のパラメータ(「QCL-Info」)にビーム(TCI状態)の適用時刻に関するRRCパラメータ(例えば、「beamApptime」)が含まれる。ビーム(TCI状態)の適用時刻に関するRRCパラメータ(例えば、「beamApptime」)は、複数の値(図11の例では、n1、n2、n4、n8又はn16)かの中から1つの値を示してもよい。なお、図中に示される複数の値はあくまで一例であり、これに限られない。 FIG. 11 is a diagram showing an example of application of the TCI state according to Modification 1 of Option 1-1-4. In the example shown in FIG. 11 , the TCI state setting parameter (“TCI-State”) includes the QCL information parameter (“QCL-Info”), and the QCL information parameter (“QCL-Info”) includes beam An RRC parameter (eg, "beamApptime") for application time of (TCI state) is included. The RRC parameter (e.g., "beamApptime") for beam (TCI state) application time indicates one of multiple values (n1, n2, n4, n8 or n16 in the example of FIG. 11). good too. It should be noted that the multiple values shown in the drawing are merely examples, and the present invention is not limited to this.
 この変形例によれば、異なるQCLタイプ(例えば、QCLタイプA/B/C/D)に依存した、独立した(異なる)BATを設定することが可能になり、BATの設定を柔軟に行うことができる。 According to this modification, it is possible to set independent (different) BATs depending on different QCL types (e.g., QCL types A/B/C/D), and to flexibly set BATs. can be done.
[オプション1-1-4の変形例2]
 上記オプション1-1-4及び上記変形例1の少なくとも1つにおいて、UEは、TCI状態IDとBATのIDとの対応関係(マッピング)に関する情報を設定/通知されてもよい。
[Modification 2 of Option 1-1-4]
In at least one of Option 1-1-4 and Modification 1 above, the UE may be configured/notified with information on the correspondence relationship (mapping) between the TCI state ID and the BAT ID.
 BATのIDは、BATの値を特定するためのパラメータであってもよい。BATのIDとBATの値との対応関係が、予め仕様で規定されてもよいし、上位レイヤシグナリング(RRC/MAC CE)/DCIを用いてUEに設定/指示されてもよいし、報告するUE能力情報に基づいて決定されてもよい。 The BAT ID may be a parameter for specifying the BAT value. The correspondence relationship between the BAT ID and the BAT value may be defined in advance in the specifications, may be set/instructed to the UE using higher layer signaling (RRC/MAC CE)/DCI, or may be reported. It may be determined based on UE capability information.
 TCI状態IDとBATのIDとの対応関係(マッピング)に関する情報は、TCI状態IDとBATのIDとを関連付ける情報であってもよい。当該情報は上位レイヤシグナリング(RRC/MAC CE)を用いてUEに通知されてもよい。 The information about the correspondence (mapping) between the TCI state ID and the BAT ID may be information that associates the TCI state ID and the BAT ID. The information may be notified to the UE using higher layer signaling (RRC/MAC CE).
 図12は、オプション1-1-4の変形例2に係るTCI状態の適用の一例を示す図である。図12に示す例では、N個のTCI状態IDに関する関連付けと、M個のBATに関する関連付けと、が記載されている。UEに対して、それぞれの関連付けと、TCI状態IDとBATのIDとの対応関係(マッピング)に関する情報が設定される。このとき、UEは、これら対応関係と、指示されるTCI状態(ID)とに基づいて、TCI状態の適用に関するBATを判断する。 FIG. 12 is a diagram showing an example of application of the TCI state according to Modification 2 of Option 1-1-4. In the example shown in FIG. 12, associations for N TCI state IDs and associations for M BATs are described. Information about each association and the correspondence (mapping) between the TCI state ID and the BAT ID is configured for the UE. The UE then determines the BAT for applying the TCI state based on these correspondences and the indicated TCI state (ID).
 この変形例によれば、TCI状態に関連するBATを都度指示する必要がなく、また、各TCI状態IDにおけるBATの値の候補値を限定できるため、オーバヘッドの削減ができる。 According to this modification, there is no need to indicate the BAT associated with the TCI state each time, and the candidate values for the BAT value in each TCI state ID can be limited, so overhead can be reduced.
《オプション1-1-5》
 特定の期間は、MAC CEで指示されるパラメータ/フィールドに基づいて決定/設定/指示されてもよい。
《Option 1-1-5》
The specific time period may be determined/set/indicated based on parameters/fields indicated in the MAC CE.
 当該MAC CEは、例えば、下記オプション1-1-5-1及び1-1-5-2の少なくとも一方のMAC CEであってもよい。 The MAC CE may be, for example, MAC CE of at least one of options 1-1-5-1 and 1-1-5-2 below.
[オプション1-1-5-1]
 当該MAC CEは、(Rel.17以降に規定される)新規MAC CEであってもよい。
[Option 1-1-5-1]
The MAC CE may be a new MAC CE (defined after Rel.17).
 当該MAC CEのサブヘッダにおいて、新たなLogical Channel ID(LCID)が含まれてもよい。 A new Logical Channel ID (LCID) may be included in the MAC CE subheader.
 当該MAC CEに、TCI状態のアクティベーションを示すフィールドが含まれてもよい。 The MAC CE may include a field indicating activation of the TCI state.
 図13は、オプション1-1-5-1に係るMAC CEの構成の一例を示す図である。図13に示すMAC CEにおいて、CORESETプールIDを示すフィールド、サービングセルのIDを示すフィールド、BWP IDを示すフィールド、及び、TCI状態iのアクティベーション/ディアクティベーションを示すフィールド(Tと記載)が含まれる。 FIG. 13 is a diagram showing an example of a MAC CE configuration according to Option 1-1-5-1. In the MAC CE shown in FIG. 13, a field indicating a CORESET pool ID, a field indicating a serving cell ID, a field indicating a BWP ID, and a field indicating activation/deactivation of TCI state i (denoted as T i ) are included.
 図13に示すMAC CEには、さらに、それぞれのアクティベートされるTCIコードポイントに対応するBATを示すフィールドが含まれる。UEは、当該BATを示すフィールドに基づいて、指示されるTCI状態に対応するBATを判断する。 The MAC CE shown in FIG. 13 further includes a field indicating the BAT corresponding to each activated TCI codepoint. The UE determines the BAT corresponding to the indicated TCI state based on the BAT indication field.
[オプション1-1-5-2]
 当該MAC CEは、既存の(例えば、Rel.15/16までに規定される)MAC CEであってもよい。
[Option 1-1-5-2]
The MAC CE may be an existing MAC CE (for example, defined by Rel.15/16).
 当該MAC CEについて、既存の(例えば、Rel.15/16までに規定される)MAC CEに含まれるリザーブドビットが、BAT(時間オフセット)を有するTCI状態のリストのアクティベート用フィールドを有するMAC CEと解釈するかを示すフィールドとして用いられてもよい。 For this MAC CE, the reserved bit included in the existing (for example, defined by Rel. 15/16) MAC CE has a field for activating a list of TCI states with BAT (time offset) It may be used as a field indicating whether to interpret as
 当該MAC CEは、既存の(例えば、Rel.15/16までに規定される)MAC CEに、新たなフィールド/オクテットが追加されるMAC CEであってもよい。 This MAC CE may be a MAC CE in which new fields/octets are added to the existing (for example, defined by Rel. 15/16) MAC CE.
 既存の(例えば、Rel.15/16までに規定される)MAC CEは、例えば、UE固有(UE-specific)のPDSCHのTCI状態のアクティベーション/ディアクティベーション用のMAC CE(Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)であってもよい。 The existing (for example, defined by Rel. 15/16) MAC CE, for example, MAC CE (Enhanced TCI States Activation /Deactivation for UE-specific PDSCH MAC CE).
 図14は、オプション1-1-5-2に係るMAC CEの構成の一例を示す図である。図14に示すMAC CEにおいて、サービングセルID(Serving Cell ID)フィールド、BWP IDフィールド、TCI-StateIDで識別されるTCI状態を示すためのフィールド(TCI state IDi,j(iは0からNの整数、jは1又は2))、対応するオクテットにTCI state IDi,2が存在するか否かを示すフィールド(C)、及び、リザーブドビットフィールド(R、0にセットされる)が含まれてもよい。 FIG. 14 is a diagram showing an example of a MAC CE configuration according to option 1-1-5-2. In the MAC CE shown in FIG. 14, a serving cell ID (Serving Cell ID) field, a BWP ID field, a field for indicating the TCI state identified by TCI-StateID (TCI state IDi,j (i is an integer from 0 to N, j is 1 or 2)), a field (C i ) indicating whether or not TCI state IDi,2 exists in the corresponding octet, and a reserved bit field (R, set to 0). good too.
 「i」は、DCIによって指示されるTCIフィールドのコードポイントのインデックスに対応してもよい。「TCI state IDi,j」は、i番目のTCIフィールドのコードポイントの、j番目のTCI状態を示してもよい。 "i" may correspond to the codepoint index of the TCI field indicated by the DCI. "TCI state IDi,j" may indicate the j-th TCI state of the i-th TCI field codepoint.
 図14に示すMAC CEには、さらに、i番目のTCI状態ID(に対応する1番目のTCI状態フィールド(つまり、TCI state IDi,1))に対応するBATのオクテットの存在を示すフィールド(Dと記載)と、i番目のTCI状態IDに対応する2番目のTCI状態フィールド(つまり、TCI state IDi,2)に対応するBATのオクテットの存在を示すフィールド(Eと記載)と、が含まれる。 The MAC CE shown in FIG. 14 further includes a field (D i ) and a field indicating the presence of an octet in the BAT corresponding to the second TCI state field corresponding to the i-th TCI state ID (i.e., TCI state IDi,2) (labeled Ei ). included.
 上記Dフィールドが、第1の値(例えば、0(又は、1))を示すとき、UEは、TCI state IDi,1に対応するBATを示すフィールドが含まれると判断してもよい。上記Dフィールドが、第2の値(例えば、1(又は、0))を示すとき、UEは、TCI state IDi,1に対応するBATを示すフィールドが含まれないと判断してもよい。 When the D i field indicates a first value (eg, 0 (or 1)), the UE may determine that a field indicating BAT corresponding to TCI state IDi,1 is included. When the D i field indicates a second value (eg, 1 (or 0)), the UE may determine that the field indicating BAT corresponding to TCI state IDi,1 is not included.
 上記Eフィールドが、第1の値(例えば、0(又は、1))を示すとき、UEは、TCI state IDi,2に対応するBATを示すフィールドが含まれると判断してもよい。上記Eフィールドが、第2の値(例えば、1(又は、0))を示すとき、UEは、TCI state IDi,2に対応するBATを示すフィールドが含まれないと判断してもよい。 When the E i field indicates a first value (eg, 0 (or 1)), the UE may determine that a field indicating BAT corresponding to TCI state IDi,2 is included. When the E i field indicates a second value (eg, 1 (or 0)), the UE may determine that the field indicating BAT corresponding to TCI state IDi,2 is not included.
 図14に示す例において、UEは、当該BATを示すフィールドに基づいて、指示されるTCI状態に対応するBATを判断する。 In the example shown in FIG. 14, the UE determines the BAT corresponding to the indicated TCI state based on the field indicating the BAT.
《オプション1-1-6》
 特定の期間は、DCIに含まれる特定のフィールドに基づいて決定/指示されてもよい。
《Option 1-1-6》
The specific time period may be determined/indicated based on specific fields included in the DCI.
 当該DCIについて、以下に記載するオプション1-1-6-1から1-1-6-4の少なくとも1つに従ってもよい。 For the DCI, at least one of options 1-1-6-1 to 1-1-6-4 described below may be followed.
[オプション1-1-6-1]
 当該DCIは既存のDCI(フォーマットA_B(A及びBは任意の正の数))であってもよい。
[Option 1-1-6-1]
The DCI may be an existing DCI (format A_B (A and B are arbitrary positive numbers)).
 当該DCIについて、当該DCIの巡回冗長検査(CRC)は、既存の無線ネットワーク一時識別子(radio network temporary identifier(RNTI))によってスクランブルされてもよい。 For the DCI, the cyclic redundancy check (CRC) of the DCI may be scrambled with an existing radio network temporary identifier (RNTI).
 当該DCIについて、新規DCIフィールドが含まれてもよい。当該新規DCIフィールドは、BATを指示するフィールドであってもよい。 A new DCI field may be included for this DCI. The new DCI field may be a field that indicates BAT.
 また、当該DCIについて、特定の条件においては、既存のフィールドがBATを指示するためのフィールドとして利用/解釈されてもよい。 Also, with regard to the DCI, under certain conditions, existing fields may be used/interpreted as fields for indicating BAT.
 当該特定の条件は、例えば、特定のフィールド(例えば、FDRAフィールド、TDRAフィールド、MCSフィールド、RVフィールド、及び、NDIフィールドの少なくとも1つ)が(全て)特定の値(例えば、0(又は1))にセットされる条件であってもよい。 The specific condition is, for example, that a specific field (for example, at least one of the FDRA field, the TDRA field, the MCS field, the RV field, and the NDI field) is (all) a specific value (for example, 0 (or 1) ) may be set.
[オプション1-1-6-2]
 当該DCIは既存のDCI(フォーマットA_B(A及びBは任意の正の数))であってもよい。
[Option 1-1-6-2]
The DCI may be an existing DCI (format A_B (A and B are arbitrary positive numbers)).
 当該DCIについて、当該DCIのCRCは、Rel.17以降に規定される新規RNTIによってスクランブルされてもよい。 For the DCI, the CRC of the DCI is Rel. It may be scrambled by the new RNTI defined in V.17 and later.
 当該DCIについて、新規DCIフィールドが含まれてもよい。当該新規DCIフィールドは、BATを指示するフィールドであってもよい。 A new DCI field may be included for this DCI. The new DCI field may be a field that indicates BAT.
 また、当該DCIについて、特定の条件においては、既存のフィールドがBATを指示するためのフィールドとして利用/解釈されてもよい。 Also, with regard to the DCI, under certain conditions, existing fields may be used/interpreted as fields for indicating BAT.
 当該特定の条件は、例えば、特定のフィールド(例えば、FDRAフィールド、TDRAフィールド、MCSフィールド、RVフィールド、及び、NDIフィールドの少なくとも1つ)が(全て)特定の値(例えば、0(又は1))にセットされる条件であってもよい。 The specific condition is, for example, that a specific field (for example, at least one of the FDRA field, the TDRA field, the MCS field, the RV field, and the NDI field) is (all) a specific value (for example, 0 (or 1) ) may be set.
[オプション1-1-6-3]
 当該DCIはRel.17以降に規定される新規DCI(フォーマットA_B(A及びBは任意の正の数))であってもよい。
[Option 1-1-6-3]
The DCI is Rel. 17 or later (format A_B (A and B are arbitrary positive numbers)).
 当該DCIについて、当該DCIにアタッチされるCRCは、既存のRNTIによってスクランブルされてもよい。 For that DCI, the CRC attached to that DCI may be scrambled with an existing RNTI.
[オプション1-1-6-4]
 当該DCIはRel.17以降に規定される新規DCI(フォーマットA_B(A及びBは任意の正の数))であってもよい。
[Option 1-1-6-4]
The DCI is Rel. 17 or later (format A_B (A and B are arbitrary positive numbers)).
 当該DCIについて、当該DCIにアタッチされるCRCは、Rel.17以降に規定される新規RNTIによってスクランブルされてもよい。 For the DCI, the CRC attached to the DCI is Rel. It may be scrambled by the new RNTI defined in V.17 and later.
《オプション1-1-7》
 UEは、上記オプション1-1-1から1-1-6の少なくとも2を組み合わせて適用してもよい。
《Option 1-1-7》
The UE may apply at least two of the above options 1-1-1 to 1-1-6 in combination.
 例えば、上記オプション1-1-3/1-1-4に示すようにTCIフィールドのコードポイントがBATとマッピングされない場合、上記オプション1-1-1/1-1-2が用いられてもよい。 For example, if the codepoints of the TCI field are not mapped with BAT as shown in options 1-1-3/1-1-4 above, options 1-1-1/1-1-2 above may be used. .
 以上オプション1-1-1から1-1-7によれば、BATの長さ(期間)を適切に決定することができる。 According to options 1-1-1 to 1-1-7 above, the length (period) of BAT can be determined appropriately.
 また、例えば、UEに対し、複数の(例えば、全ての)TCIコードポイントに共通のBATと、当該複数のTCIコードポイントのうちの一部のコードポイントのための差分(differential)BATと、が設定/指示されてもよい。UEは、当該差分BATに元すいてBATを決定してもよい。この例については、以下のオプション1-2-1及び1-2-2の少なくとも1つに従ってもよい。 Also, for example, for the UE, a BAT common to multiple (eg, all) TCI codepoints and a differential BAT for some codepoints of the multiple TCI codepoints are provided. May be set/indicated. The UE may determine the BAT based on the differential BAT. For this example, at least one of options 1-2-1 and 1-2-2 below may be followed.
《オプション1-2-1》
 UEは、特定数(例えば、N(Nは1以上の整数))のTCIコードポイントごとに関連付けられた差分値(差分BAT)と、共通BATと、に基づいて、BATを計算/導出/決定してもよい。
《Option 1-2-1》
The UE calculates/derives/determines the BAT based on a specific number (eg, N (N is an integer equal to or greater than 1)) associated difference value (differential BAT) for each TCI codepoint and the common BAT. You may
 共通BATは、特定の上位レイヤシグナリング(RRCパラメータ)で設定されてもよいし、仕様で予め規定されてもよいし、MAC CE/DCIを用いて指示されてもよい。当該特定のRRCパラメータは、例えば、ビーム(TCI状態)の適用時刻に関するRRCパラメータ(例えば、「BeamAppTime」)であってもよい。 A common BAT may be set by specific higher layer signaling (RRC parameters), may be predefined in specifications, or may be indicated using MAC CE/DCI. The particular RRC parameter may, for example, be an RRC parameter relating to beam (TCI state) application time (eg, “BeamAppTime”).
《オプション1-2-2》
 UEは、特定数(例えば、N(Nは1以上の整数))のTCIコードポイントごとに関連付けられた差分値と、特定のTCIコードポイントに関連付けられたBATと、に基づいて、BATを計算/導出/決定してもよい。
《Option 1-2-2》
The UE calculates the BAT based on the difference values associated with every specific number (e.g., N, where N is an integer greater than or equal to 1) of TCI codepoints and the BAT associated with the specific TCI codepoints. / derived / determined.
 例えば、UEは、BATを、特定のTCIコードポイントに関連付けられるBAT値と、それ以外のTCIコードポイントに関連付けられる差分値と、に基づいて計算/導出/決定してもよい。 For example, the UE may calculate/derive/determine the BAT based on the BAT value associated with a specific TCI codepoint and the difference value associated with other TCI codepoints.
 例えば、各TCIコードポイントに対応するBATは、特定のTCIコードポイントに関連付けられるBAT値と、各TCIコードポイントに関連付けられるBATと、(共通BATと、)の合計から計算/導出/決定されてもよい。 For example, the BAT corresponding to each TCI codepoint is calculated/derived/determined from the sum of the BAT value associated with the particular TCI codepoint and the BAT associated with each TCI codepoint (common BAT). good too.
 当該特定のTCIコードポイントは、例えば、異なる値に関連付けられたより低い(又は、より高い)コードポイントのインデックスの中で、最高(又は最低)のコードポイントのインデックスに対応するTCIコードポイントであってもよい。 The particular TCI codepoint is, for example, the TCI codepoint corresponding to the highest (or lowest) codepoint index among the lower (or higher) codepoint indices associated with different values, and good too.
 なお、差分BATの値は、第1の実施形態に記載される少なくとも1つの方法(オプション)に基づいて決定されてもよい。また、差分BATの値は、正及び負の値がサポートされてもよい。 Note that the value of the difference BAT may be determined based on at least one method (optional) described in the first embodiment. Also, positive and negative values may be supported for the value of the difference BAT.
 オプション1-2-2によれば、オプション1-2-1と比較してビット幅が小さい差分値を設定すれば足りるため、BATの設定にかかるオーバヘッドを削減することができる。 According to option 1-2-2, it is sufficient to set a difference value with a smaller bit width compared to option 1-2-1, so the overhead required for setting BAT can be reduced.
 図15A及び図15Bは、オプション1-2-1に係るTCI状態の適用の一例を示す図である。図15A及び図15Bに示す例において、UEは、ビーム指示DCIを受信し、当該DCIで指示されるTCI状態を適用する。  Figs. 15A and 15B are diagrams showing an example of application of the TCI state according to Option 1-2-1. In the example shown in Figures 15A and 15B, the UE receives the beam indication DCI and applies the TCI state indicated in the DCI.
 図15Aに示す例において、UEに対し、TCIコードポイントと、TCI状態(図15Aの例ではジョイントDL/UL TCI状態が示されるが、セパレートTCI状態であってもよい)と、BAT(差分BAT)との対応関係が設定される。また、UEに対し、共通BATが設定/規定される。 In the example shown in FIG. 15A, for the UE, a TCI codepoint, a TCI state (a joint DL/UL TCI state is shown in the example of FIG. 15A, but may be a separate TCI state), and a BAT (differential BAT ) is set. Also, a common BAT is set/defined for the UE.
 図15Bに示す例では、UEに対し、TCIコードポイントとして000/001/010が指示される場合、UEは、共通BATがBATであると判断する。また、UEに対し、TCIコードポイントとして011/100が指示される場合、UEは、共通BATにBAT#1(に対応する値)を合計した値がBATであると判断する。また、UEに対し、TCIコードポイントとして101/110/111が指示される場合、UEは、共通BATにBAT#2(に対応する値)を合計した値がBATであると判断する。 In the example shown in FIG. 15B, when 000/001/010 is indicated to the UE as the TCI codepoint, the UE determines that the common BAT is BAT. Also, when 011/100 is indicated as the TCI codepoint to the UE, the UE determines that the value obtained by adding (the value corresponding to) BAT#1 to the common BAT is the BAT. Also, when 101/110/111 is indicated to the UE as the TCI codepoint, the UE determines that the value obtained by adding (the value corresponding to) BAT#2 to the common BAT is the BAT.
 図16は、オプション1-2-2に係るTCI状態の適用の一例を示す図である。図16に示す例において、UEは、ビーム指示DCIを受信し、当該DCIで指示されるTCI状態を適用する。なお、図16に示す例では、オプション1-2-2に加え、上記オプション1-2-1についても適用される例を示している。 FIG. 16 is a diagram showing an example of application of the TCI state according to Option 1-2-2. In the example shown in FIG. 16, the UE receives the beam indication DCI and applies the TCI state indicated in the DCI. Note that the example shown in FIG. 16 shows an example in which option 1-2-1 is also applied in addition to option 1-2-2.
 図16に示す例において、UEに対し、共通BATが設定/規定される。また、UEに対し、TCIコードポイントと、TCI状態と、BATとの対応関係が設定される。 In the example shown in FIG. 16, a common BAT is set/defined for the UE. Also, the correspondence between TCI codepoints, TCI states, and BATs is set for the UE.
 図16に示す例において、UEに対し、当該対応関係内のBATのうち、最大のBAT(に対応するTCIコードポイント)が指示される場合、UEは、当該最大のBAT(図16の例では、BAT#1)と共通BATとを合計した値がBATであると判断する。また、UEに対し、当該最大のBAT以外のBAT(に対応するTCIコードポイント)が指示される場合、UEは、共通BATに、当該最大のBATの値(BAT#1)と、当該最大のBAT以外のBAT(図16の例では、BAT#2)とを合計した値がBATであると判断する。 In the example shown in FIG. 16, when the maximum BAT (TCI codepoint corresponding to) of the BATs in the corresponding relationship is indicated to the UE, the maximum BAT (in the example of FIG. 16 , BAT#1) and the common BAT is determined to be the BAT. Also, when a BAT other than the maximum BAT (the corresponding TCI codepoint) is indicated to the UE, the UE uses the maximum BAT value (BAT # 1) and the maximum BAT is determined to be the sum of BAT other than BAT (BAT#2 in the example of FIG. 16).
 以上オプション1-2-1及び1-2-2によれば、オーバヘッドを削減したBATの設定/指示を行うことができる。 According to Options 1-2-1 and 1-2-2 above, it is possible to set/instruct BAT with reduced overhead.
 以下では、BATに関するフィールドの量子化について説明する。 Below, the quantization of fields related to BAT will be explained.
 UEは、量子化されたビットによるBAT(ビットフィールド)に基づいて、時間オフセット(BAT)の値を判断してもよい。この例については、以下のオプション1-3-1及び1-3-2の少なくとも1つに従ってもよい。 The UE may determine the value of the time offset (BAT) based on the BAT (bit field) with quantized bits. For this example, at least one of options 1-3-1 and 1-3-2 below may be followed.
《オプション1-3-1》
 BATのビットフィールド/BAT IDと、BATの値の関連付けが、上位レイヤシグナリング(RRCシグナリング)を用いてUEに設定されてもよい。
《Option 1-3-1》
The association between the BAT bitfield/BAT ID and the BAT value may be configured in the UE using higher layer signaling (RRC signaling).
 例えば、UEは、RRCシグナリングを用いて複数のBAT値(を含む関連付け)を設定されてもよい。次いで、UEは、当該複数のBAT値の中から1つ(又は、1つ以上)のBAT値を決定してもよい。 For example, a UE may be configured with multiple BAT values (associations including) using RRC signaling. The UE may then determine one (or more than one) BAT value from among the multiple BAT values.
 もしUEに対し、RRCシグナリングを用いて1つのみのBAT値含む関連付けが設定される場合、UEは、BAT値を示す量子化されたビット(BATを示すビットフィールド)を受信しなくてもよい。 If the UE is configured with an association containing only one BAT value using RRC signaling, the UE may not receive the quantized bits indicating the BAT value (bit field indicating BAT). .
 図17Aは、オプション1-3-1に係るBAT値の関連付けの一例を示す図である。UEは、図17Aに示すようなビットフィールド(又はBATのID)とBAT値との関連付けが設定され、指示される量子化されたビット(BATを示すビットフィールド)に基づいてBATを決定してもよい。 FIG. 17A is a diagram showing an example of BAT value association according to option 1-3-1. The UE is associated with the bit field (or ID of BAT) and the BAT value as shown in FIG. good too.
 なお、図17Aに示す対応関係内の値及びフィールドの名称はあくまで一例であり、これに限られない。 Note that the values and field names in the correspondence shown in FIG. 17A are merely examples, and are not limited to these.
《オプション1-3-2》
 特定のルールに基づいて、BATのビットフィールド/BAT IDと、BATの値の関連付けが決定/規定されてもよい。
《Option 1-3-2》
Based on certain rules, the association between BAT bitfields/BAT IDs and BAT values may be determined/defined.
 当該特定のルール/関連付けは、例えば、予め仕様で規定されてもよい。 Such specific rules/associations may be defined in advance in specifications, for example.
 UEは、当該特定のルールに基づくBAT値を示す量子化されたビット(BATを示すビットフィールド)を受信してもよい。 The UE may receive quantized bits (bit field indicating BAT) that indicate the BAT value based on that particular rule.
 図17Bは、オプション1-3-2に係るBAT値の関連付けの一例を示す図である。図17Bに示すようなビットフィールド(又はBATのID)とBAT値との関連付けが予め規定/決定される。UEは、当該関連付けと、指示される量子化されたビット(BATを示すビットフィールド)と、に基づいてBATを決定してもよい。 FIG. 17B is a diagram showing an example of BAT value association according to Option 1-3-2. The association between bit fields (or BAT IDs) and BAT values as shown in FIG. 17B is defined/determined in advance. The UE may determine the BAT based on the association and the indicated quantized bits (bit field indicating BAT).
 なお、図17Bに示す対応関係内の値及びフィールドの名称はあくまで一例であり、これに限られない。 Note that the values and field names in the correspondence shown in FIG. 17B are merely examples, and are not limited to these.
 以上オプション1-3-1及び1-3-2によれば、BATの通知を適切に行うことができる。 According to Options 1-3-1 and 1-3-2 above, it is possible to appropriately notify BAT.
《第1の実施形態の変形例》
 例えば、本実施形態の少なくとも1つのオプションは、少なくとも1つのTCIフィールドのコードポイントに対し、BATが関連付けられていないケースにおいて適用されてもよい。なお、本変形例は、下記第2の実施形態に対しても適用可能である。
<<Modified example of the first embodiment>>
For example, at least one option of this embodiment may be applied in cases where no BAT is associated with the codepoints of at least one TCI field. This modified example is also applicable to the second embodiment described below.
 例えば、UEが、マルチパネル/マルチTRP/マルチセルを利用する動作を行う場合にも、本実施形態の少なくとも1つのオプション(例えば、オプション1-2-1/1-2-2)を適用し、BATを決定してもよい。 For example, the UE applies at least one option of the present embodiment (eg, option 1-2-1/1-2-2) even when performing operations that utilize multi-panel / multi-TRP / multi-cell, BAT may be determined.
 例えば、UEに対し、共通BATが設定されてもよい。共通BATは、特定の上位レイヤシグナリング(RRCパラメータ)で設定されてもよいし、仕様で予め規定されてもよいし、MAC CE/DCIを用いて指示されてもよい。当該特定のRRCパラメータは、例えば、ビーム(TCI状態)の適用時刻に関するRRCパラメータ(例えば、「BeamAppTime」)であってもよい。 For example, a common BAT may be set for the UE. Common BAT may be set by specific higher layer signaling (RRC parameters), may be predefined in specifications, or may be indicated using MAC CE/DCI. The particular RRC parameter may, for example, be an RRC parameter relating to beam (TCI state) application time (eg, “BeamAppTime”).
 また、UEに対し、特定の情報に関連する情報に応じた差分BATが設定/指示されてもよい。 Also, a differential BAT according to information related to specific information may be set/instructed to the UE.
 当該特定の情報は、例えば、物理セルID(PCI)、用いられるパネルに関する情報、シングルパネル及びマルチパネルのいずれを用いるかに関する情報、TRPに関する情報、の少なくとも1つであってもよい。TRPに関する情報は、例えば、CORESETプールインデックスに関する情報(RRCパラメータ「coresetPoolIndex」)、CORESETに対し複数(2つ)のTCI状態が指示されるときのどちらのTCI状態を参照するかに関する情報、及び、PUCCHリソースごとに複数(2つ)の空間関係が設定されるときのどちらの空間関係を参照するかに関する情報、の少なくとも1つであってもよい。当該特定の情報に応じた差分BATを設定/指示することで、UEは、共通のBATと差分BATとを用いて当該特定の情報を適用/設定している場合のBATを導出/計算してもよい。 The specific information may be, for example, at least one of physical cell ID (PCI), information about the panel to be used, information about whether to use a single panel or multi-panel, and information about TRP. The information on the TRP is, for example, information on the CORESET pool index (RRC parameter "coresetPoolIndex"), information on which TCI state to refer to when multiple (two) TCI states are indicated for the CORESET, and information regarding which spatial relationship to refer to when multiple (two) spatial relationships are configured for each PUCCH resource. By setting / instructing the difference BAT according to the specific information, the UE uses the common BAT and the difference BAT to apply / set the specific information. good too.
 以上第1の実施形態によれば、BATの決定/設定/指示を適切に行うことができる。 According to the first embodiment, BAT can be determined/set/instructed appropriately.
<第2の実施形態>
 第2の実施形態は、BATとTCI状態とのマッピングに関する。
<Second embodiment>
A second embodiment relates to mapping between BAT and TCI states.
 UEは、ビーム指示DCIの受信から特定の時間リソース後から特定の期間の経過後の最初のシンボル/スロットにおいて、当該ビーム指示のTCIフィールドのコードポイントで指示される複数のRSを参照してもよい。 The UE may refer to a plurality of RSs indicated by the codepoints of the TCI field of the beam indication DCI in the first symbol/slot after a specific time resource and a specific time period after receiving the beam indication DCI. good.
 UEは、ビーム指示DCIの受信から特定の時間リソース後から特定の期間の経過後の最初のシンボル/スロットにおいて、当該ビーム指示のTCIフィールドのコードポイントで指示される1つ以上のTCI状態を適用してもよい。 The UE shall apply one or more TCI states indicated by the codepoints of the TCI field of the beam indication in the first symbol/slot after a particular time resource and a particular time period after receiving the beam indication DCI. You may
 本実施形態は、上記第1の実施形態に記載される少なくとも1つの方法と組み合わせて適用されてもよい。 This embodiment may be applied in combination with at least one method described in the first embodiment.
 当該特定の時間リソースは、上記オプション1-0-1から1-0-3の少なくとも1つに従ってもよい。 The specific time resource may follow at least one of options 1-0-1 to 1-0-3 above.
 当該特定の期間は、上記第1の実施形態におけるBAT/時間オフセットであってもよい。 The specific period may be the BAT/time offset in the first embodiment.
 1つのTCI状態(共通TCI状態/ジョイント(DL/UL)TCI状態/セパレート(DL/UL)TCI状態)が1つのBATとマッピングされてもよい。つまり、1つのTCIコードポイントが複数のTCI状態を指示する場合、そのTCI状態のそれぞれにBATがマッピングされてもよい。 One TCI state (common TCI state/joint (DL/UL) TCI state/separate (DL/UL) TCI state) may be mapped with one BAT. That is, if one TCI codepoint indicates multiple TCI states, a BAT may be mapped to each of the TCI states.
 このように構成することで、1つのDCI(TCIコードポイント)を用いて複数の時間領域にわたるビーム(TCI状態)のパターン及びBATを指示することができる。 With this configuration, one DCI (TCI codepoint) can be used to indicate the pattern and BAT of beams (TCI states) over multiple time domains.
 なお、本開示において、TCI状態について、第1のTCI状態と第2のTCI状態の2つのTCI状態に関する適用方法を主に説明するが、TCI状態の数は2つに限られず、3つ以上であってもよい。 In addition, in the present disclosure, the TCI state will mainly be described as an application method for two TCI states, a first TCI state and a second TCI state, but the number of TCI states is not limited to two, and may be three or more. may be
 また、本開示において、ビームパターン、TCI状態パターン、TCI状態の系列、複数のTCI状態に関する対応関係、複数のTCI状態及びBATに関する対応関係、は互いに読み替えられてもよい。また、本開示において、ビームパターンは、1つのTCIコードポイントを用いて複数の時間領域にわたる複数のTCI状態を指示するための対応関係を意味してもよい。 Also, in the present disclosure, the beam pattern, the TCI state pattern, the series of TCI states, the correspondence regarding a plurality of TCI states, and the correspondence regarding a plurality of TCI states and BAT may be read interchangeably. Also, in this disclosure, a beam pattern may refer to a correspondence for indicating multiple TCI states over multiple time domains using one TCI codepoint.
 図18A及び図18Bは、第2の実施形態に係るTCI状態の適用の一例を示す図である。図18Aに示す例では、UEに対し、TCIコードポイントと、TCI状態(第1のジョイントDL/UL TCI状態及び第2のジョイントDL/UL TCI状態)と、TCI状態に対応するBATと、の対応関係が設定/規定される。  FIGS. 18A and 18B are diagrams showing an example of application of the TCI state according to the second embodiment. In the example shown in FIG. 18A, for the UE, a TCI codepoint, a TCI state (a first joint DL/UL TCI state and a second joint DL/UL TCI state), and a BAT corresponding to the TCI state. Correspondence is set/defined.
 図18Bに示す例において、UEは、ビーム指示DCIを用いてコードポイントが000を示すTCIフィールドを受信する。UEは、当該TCIフィールドに基づいて、第1のTCI状態(TCI#0)をBAT#1に基づいて適用し、第2のTCI状態(TCI#1)をBAT#2に基づいて適用する。 In the example shown in FIG. 18B, the UE receives a TCI field with a codepoint of 000 using beam pointing DCI. Based on the TCI field, the UE applies a first TCI state (TCI#0) based on BAT#1 and a second TCI state (TCI#1) based on BAT#2.
 図19は、第2の実施形態に係るTCI状態の適用の他の例を示す図である。図19の例に示すように、UEに設定される、TCIコードポイントと、TCI状態と、TCI状態に対応するBATと、の対応関係は、ジョイントDL/UL TCI状態と、セパレートDL/UL TCI状態の少なくとも一方を含んでもよい。セパレートDL/UL TCI状態のうち、DL TCI状態と、UL TCI状態は、同じTCI状態を示してもよいし、異なるTCI状態を示してもよい。このような例においても、上記第1の実施形態の少なくとも1つの方法が適用されてもよい。 FIG. 19 is a diagram showing another example of application of the TCI state according to the second embodiment. As shown in the example of FIG. 19, the correspondence between TCI codepoints, TCI states, and BATs corresponding to the TCI states set in the UE is the joint DL/UL TCI state and the separate DL/UL TCI state. At least one of the states may be included. Of the separate DL/UL TCI states, the DL TCI state and the UL TCI state may indicate the same TCI state or different TCI states. Even in such an example, at least one method of the first embodiment may be applied.
 以下では、BATとTCI状態との対応関係の設定について説明する。 The setting of the correspondence between BAT and TCI status will be described below.
 UEは、以下に記載するオプション2-1-1から2-1-3の少なくとも1つに従って、1つのTCIコードポイントを用いて指示される複数のTCI状態の適用(複数のRSの参照)を行ってもよい。 UE, according to at least one of the options 2-1-1 to 2-1-3 described below, the application of multiple TCI states indicated using one TCI codepoint (reference of multiple RSs) you can go
《オプション2-1-1》
 UEに対し、同じタイプの複数のQCL情報(「QCL-info」)が含まれるTCI状態のパラメータ(「TCI-State」)がRRCを用いて設定されてもよい。
《Option 2-1-1》
For a UE, a TCI state parameter (“TCI-State”) containing multiple QCL information (“QCL-info”) of the same type may be configured using RRC.
 図20は、オプション2-1-1に係るTCI状態のパラメータの一例を示す図である。図20に示す例において、RRCパラメータ(「TCI-State」)に、TCI状態IDと、複数のタイプ1のQCL情報(第1のタイプ1のQCL情報「qcl-Type1」、第2のタイプ1のQCL情報「Secondqcl-Type1」及び第3のタイプ1のQCL情報「Thirdqcl-Type1」)及びタイプ2のQCL情報(第1のタイプ2のQCL情報「qcl-Type2」、第2のタイプ2のQCL情報「Secondqcl-Type2」及び第3のタイプ2のQCL情報「Thirdqcl-Type2」)と、QCL情報に対応するビーム適用時刻を設定するパラメータ(「beamApptime」、「SecondbeamApptime」及び「ThirdbeamApptime」)が含まれる。「beamApptime」は、「qcl-Type1」及び「qcl-Type2」に対応し、「SecondbeamApptime」は、「Secondqcl-Type1」及び「Secondqcl-Type2」に対応し、「ThirdbeamApptime」は、「Thirdqcl-Type1」及び「Thirdqcl-Type2」に対応する。 FIG. 20 is a diagram showing an example of TCI state parameters according to option 2-1-1. In the example shown in FIG. 20, the RRC parameter (“TCI-State”) includes a TCI state ID, a plurality of type 1 QCL information (first type 1 QCL information “qcl-Type1”, second type 1 QCL information “Secondqcl-Type1” and third type 1 QCL information “Thirdqcl-Type1”) and type 2 QCL information (first type 2 QCL information “qcl-Type2”, second type 2 QCL information "Secondqcl-Type2" and third type 2 QCL information "Thirdqcl-Type2") and parameters for setting the beam application time corresponding to the QCL information ("beamApptime", "SecondbeamApptime" and "ThirdbeamApptime") included. "beamApptime" corresponds to "qcl-Type1" and "qcl-Type2", "SecondbeamApptime" corresponds to "Secondqcl-Type1" and "Secondqcl-Type2", and "ThirdbeamApptime" corresponds to "Thirdqcl-Type1". and "Thirdqcl-Type2".
 なお、図20において、QCL情報の数はそれぞれ3つである例を示しているが、数はこの例に限られず、3以上であってもよい。また、各パラメータの名称はあくまで一例であり、この例に限られない。 Although FIG. 20 shows an example in which the number of pieces of QCL information is three, the number is not limited to this example, and may be three or more. Also, the name of each parameter is merely an example, and is not limited to this example.
 図20に示す例において、UEは、1つのTCIコードポイントを用いて指示される複数のTCI状態のうち、第1のTCI状態の適用について、第1のタイプ1/タイプ2のQCL情報に対応するビーム適用時刻を設定するパラメータ(「beamApptime」)に基づいて、指示されるTCI状態の適用タイミングを判断してもよい。 In the example shown in FIG. 20, the UE supports the first type 1/type 2 QCL information for application of the first TCI state among the plurality of TCI states indicated using one TCI codepoint. The application timing of the indicated TCI state may be determined based on a parameter (“beamApptime”) that sets the beam application time to be applied.
 また、UEは、1つのTCIコードポイントを用いて指示される複数のTCI状態のうち、第2のTCI状態の適用について、第2のタイプ1/タイプ2のQCL情報に対応するビーム適用時刻を設定するパラメータ(「SecondbeamApptime」)に基づいて、指示されるTCI状態の適用タイミングを判断してもよい。 In addition, the UE sets the beam application time corresponding to the second type 1/type 2 QCL information for application of the second TCI state among the plurality of TCI states indicated using one TCI codepoint. The application timing of the instructed TCI state may be determined based on the set parameter (“SecondbeamApptime”).
 また、UEは、1つのTCIコードポイントを用いて指示される複数のTCI状態のうち、第3のTCI状態の適用について、第3のタイプ1/タイプ2のQCL情報に対応するビーム適用時刻を設定するパラメータ(「ThirdbeamApptime」)に基づいて、指示されるTCI状態の適用タイミングを判断してもよい。 In addition, the UE sets the beam application time corresponding to the third type 1/type 2 QCL information for application of the third TCI state among the plurality of TCI states indicated using one TCI codepoint. The application timing of the instructed TCI state may be determined based on the set parameter (“ThirdbeamApptime”).
 これら複数のビーム適用時刻を設定するパラメータに基づくBATの決定は、以下の記載するバリエーション2-1-1-1から2-1-1-4の少なくとも1つに従ってもよい。 The determination of BAT based on the parameters that set these multiple beam application times may follow at least one of variations 2-1-1-1 to 2-1-1-4 described below.
[バリエーション2-1-1-1]
 UEは、第1のタイプ1/タイプ2のQCL情報に対応するビーム適用時刻を設定するパラメータ(「beamApptime」)で設定されるBATが、共通BATであると判断してもよい。UEは、共通BATに基づくタイミングにおいて、第1のタイプ1/タイプ2のQCL情報に対応する第1のTCI状態の適用を行ってもよい。
[Variation 2-1-1-1]
The UE may determine that the BAT set in the parameter (“beamApptime”) setting the beam application time corresponding to the first type 1/type 2 QCL information is the common BAT. The UE may apply the first TCI state corresponding to the first Type 1/Type 2 QCL information at the timing based on the common BAT.
 UEは、第n(nは2以上の整数)のタイプ1/タイプ2のQCL情報に対応するビーム適用時刻を設定するパラメータで設定されるBATと、共通BATと、に基づくタイミングにおいて、第nのタイプ1/タイプ2のQCL情報に対応する第1のTCI状態の適用を行ってもよい。 The UE is the n-th (n is an integer of 2 or more) BAT set with parameters for setting the beam application time corresponding to the type 1 / type 2 QCL information, and the common BAT, at the timing based on the n-th A first TCI state application corresponding to type 1/type 2 QCL information may be performed.
 図21Aは、バリエーション2-1-1-1に係るTCI状態の適用の一例を示す図である。図21Aに示す例において、UEは、第1のタイプ1/タイプ2のQCL情報に対応するビーム適用時刻を設定するパラメータ(「beamApptime」)で設定されるBATが共通BATであると判断し、第1のTCI状態を適用する。 FIG. 21A is a diagram showing an example of application of the TCI state according to variation 2-1-1-1. In the example shown in FIG. 21A, the UE determines that the BAT set by the parameter (“beamApptime”) for setting the beam application time corresponding to the first type 1/type 2 QCL information is the common BAT, Apply the first TCI state.
 また、図21Aに示す例において、UEは、第2のタイプ1/タイプ2のQCL情報に対応するビーム適用時刻を設定するパラメータ(「SecondbeamApptime」)で設定されるBAT(図21Aでは、BAT#1)と、共通BATとの合計したタイミングにおいて、第2のTCI状態に適用する。 In addition, in the example shown in FIG. 21A, the UE uses a parameter (“SecondbeamApptime”) for setting the beam application time corresponding to the second type 1/type 2 QCL information. 1) and the common BAT at the combined timing of the second TCI state.
[バリエーション2-1-1-2]
 UEは、第m(mは正の整数)のタイプ1/タイプ2のQCL情報に対応するビーム適用時刻を設定するパラメータで設定されるBATが、第mのTCI状態を適用するためのBATであると判断してもよい。
[Variation 2-1-1-2]
In the UE, the BAT set with the parameter for setting the beam application time corresponding to the mth (m is a positive integer) type 1/type 2 QCL information is the BAT for applying the mth TCI state. You can judge that there is.
 図21Bは、バリエーション2-1-1-2に係るTCI状態の適用の一例を示す図である。図21Bに示す例において、UEは、第1のタイプ1/タイプ2のQCL情報に対応するビーム適用時刻を設定するパラメータ(「beamApptime」)で設定されるBATがBAT#1(共通BATであってもよい)であると判断し、第1のTCI状態を適用する。 FIG. 21B is a diagram showing an example of application of the TCI state according to variation 2-1-1-2. In the example shown in FIG. 21B, the UE determines that the BAT set by the parameter (“beamApptime”) for setting the beam application time corresponding to the first type 1/type 2 QCL information is BAT#1 (common BAT). may) and apply the first TCI state.
 また、図21Bに示す例において、UEは、第2のタイプ1/タイプ2のQCL情報に対応するビーム適用時刻を設定するパラメータ(「SecondbeamApptime」)で設定されるBATがBAT#2であると判断し、第2のTCI状態を適用する。 Also, in the example shown in FIG. 21B, the UE determines that the BAT set by the parameter (“SecondbeamApptime”) for setting the beam application time corresponding to the second type 1/type 2 QCL information is BAT#2. decision and apply the second TCI state.
[バリエーション2-1-1-3]
 UEは、第1のタイプ1/タイプ2のQCL情報に対応するビーム適用時刻を設定するパラメータ(「beamApptime」)で設定されるBATが、共通BATであると判断してもよい。UEは、共通BATに基づくタイミングにおいて、第1のタイプ1/タイプ2のQCL情報に対応する第1のTCI状態の適用を行ってもよい。
[Variation 2-1-1-3]
The UE may determine that the BAT set in the parameter (“beamApptime”) setting the beam application time corresponding to the first type 1/type 2 QCL information is the common BAT. The UE may apply the first TCI state corresponding to the first Type 1/Type 2 QCL information at the timing based on the common BAT.
 UEは、第n(nは2以上の整数)のタイプ1/タイプ2のQCL情報に対応するビーム適用時刻を設定するパラメータで設定されるBATと、第n-1のタイプ1/タイプ2のQCL情報に対応するビーム適用時刻を設定するパラメータで設定されるBATと、に基づくタイミングにおいて、第nのタイプ1/タイプ2のQCL情報に対応する第1のTCI状態の適用を行ってもよい。 UE is set with a parameter for setting the beam application time corresponding to the n-th (n is an integer of 2 or more) type 1 / type 2 QCL information, and the n-1 type 1 / type 2 of The first TCI state corresponding to the n-th type 1/type 2 QCL information may be applied at the timing based on the BAT set by the parameter for setting the beam application time corresponding to the QCL information. .
 このとき、第n-1のTCI状態の適用タイミングから第nのTCI状態の適用タイミングまでの期間が、第nのタイプ1/タイプ2のQCL情報に対応するビーム適用時刻を設定するパラメータを用いて設定されてもよい。 At this time, the period from the application timing of the (n−1)th TCI state to the application timing of the nth TCI state uses a parameter for setting the beam application time corresponding to the nth type 1/type 2 QCL information. may be set as
 あるいは、TCI状態のRRCパラメータ(「TCI-State」)内に、第nのタイプ1/タイプ2のQCL情報に対応するビーム適用時刻を設定するパラメータ(例えば、上記「SecondbeamApptime」、「ThirdbeamApptime」)が含まれず、その代わりに、切り替えのギャップ(スイッチングギャップ)を示すパラメータが含まれてもよい。 Alternatively, parameters for setting the beam application time corresponding to the n-th type 1/type 2 QCL information (for example, the above "SecondbeamApptime" and "ThirdbeamApptime") in the RRC parameter of the TCI state ("TCI-State") is not included, and instead a parameter indicating a switching gap (switching gap) may be included.
 当該スイッチングギャップを示すパラメータは、第n-1のTCI状態の適用タイミングから第nのTCI状態の適用タイミングまでの期間/ギャップを示すパラメータであってもよい。 The parameter indicating the switching gap may be a parameter indicating the period/gap from the application timing of the n-1th TCI state to the application timing of the nth TCI state.
 図22Aは、バリエーション2-1-1-3に係るTCI状態の適用の一例を示す図である。図22Aに示す例において、UEは、第1のタイプ1/タイプ2のQCL情報に対応するビーム適用時刻を設定するパラメータ(「beamApptime」)で設定される共通BATであると判断し、第1のTCI状態を適用する。 FIG. 22A is a diagram showing an example of application of the TCI state according to variation 2-1-1-3. In the example shown in FIG. 22A , the UE determines that the common BAT is set by the parameter (“beamApptime”) for setting the beam application time corresponding to the first type 1/type 2 QCL information, and the first apply the TCI conditions of
 また、図22Aに示す例において、UEに対し、スイッチングギャップを示すパラメータが設定される。UEは、当該スイッチングギャップのパラメータが示すタイミング(図22Aでは、BAT#1)に基づいて、第2のTCI状態及び第3のTCI状態の適用タイミングを判断する。 Also, in the example shown in FIG. 22A, a parameter indicating a switching gap is set for the UE. The UE determines the application timing of the second TCI state and the third TCI state based on the timing (BAT#1 in FIG. 22A) indicated by the parameter of the switching gap.
[バリエーション2-1-1-4]
 UEは、第1のタイプ1/タイプ2のQCL情報に対応するビーム適用時刻を設定するパラメータ(例えば、「beamApptime」)で設定されるBATが、第m-1のTCI状態の適用タイミングから第mのTCI状態の適用タイミングまでのスイッチングギャップを示すパラメータであると判断してもよい。
[Variation 2-1-1-4]
In the UE, the BAT set by the parameter (for example, "beamApptime") for setting the beam application time corresponding to the first type 1/type 2 QCL information is the first from the application timing of the m-1th TCI state. It may be determined to be a parameter indicating the switching gap until the application timing of the TCI state of m.
 バリエーション2-1-1-4において、TCI状態のRRCパラメータ(「TCI-State」)内に、第mのタイプ1/タイプ2のQCL情報に対応するビーム適用時刻を設定するパラメータ(例えば、上記「beamApptime」、「SecondbeamApptime」、「ThirdbeamApptime」)が含まれず、その代わりに、スイッチングギャップを示すパラメータが含まれてもよい。 In variation 2-1-1-4, a parameter for setting the beam application time corresponding to the m-th type 1/type 2 QCL information (for example, the above "beamApptime", "SecondbeamApptime", "ThirdbeamApptime") may not be included and instead a parameter indicating the switching gap may be included.
 図22Bは、バリエーション2-1-1-4に係るTCI状態の適用の一例を示す図である。図22Bに示す例において、UEは、スイッチングギャップを示すパラメータで設定されるBAT(図22Bでは、BAT#1)に基づき、第1/第2/第3のTCI状態の適用タイミングを判断する。 FIG. 22B is a diagram showing an example of application of the TCI state according to variation 2-1-1-4. In the example shown in FIG. 22B, the UE determines the application timing of the first/second/third TCI state based on the BAT (BAT#1 in FIG. 22B) set by the parameter indicating the switching gap.
 オプション2-1-1-4によれば、複数のTCI状態の適用に対するBATを1つに絞ることでオーバヘッドの削減を図ることができる。 According to option 2-1-1-4, it is possible to reduce overhead by narrowing down the BAT for applying multiple TCI states to one.
《オプション2-1-2》
 UEに対し、複数のソースRSに関する情報を含むQCL情報(「QCL-info」)がRRCを用いて設定されてもよい。
《Option 2-1-2》
For a UE, QCL information ("QCL-info") containing information about multiple source RSs may be configured using RRC.
 オプション2-1-2では、1つのTCI状態のパラメータ内のQCL情報内に、複数のソースRSに関する情報が含まれてもよい。したがって、UEは、1つのTCIコードポイント(TCI状態ID)の指示を受信し、当該指示されるTCI状態が含む複数のソースRSに関する情報に基づいて、複数のTCI状態に適用するBATを判断してもよい。 In option 2-1-2, information about multiple source RSs may be included in the QCL information in the parameters of one TCI state. Therefore, the UE receives an indication of one TCI codepoint (TCI state ID) and determines the BAT to apply to multiple TCI states based on information about multiple source RSs contained in the indicated TCI state. may
 複数のソースRSに関する情報は、例えば、第1の参照信号を示すRRCパラメータ(例えば、「referenceSignal」)、第2の参照信号を示すRRCパラメータ(例えば、「SecondreferenceSignal」)、第3の参照信号を示すRRCパラメータ(例えば、「ThirdreferenceSignal」)、であってもよい。 The information about the multiple source RSs may be, for example, an RRC parameter indicating a first reference signal (eg, "referenceSignal"), an RRC parameter indicating a second reference signal (eg, "SecondreferenceSignal"), a third reference signal. An RRC parameter (eg, "ThirdreferenceSignal") to indicate.
 各参照信号を示すパラメータは、参照先の参照信号(例えば、CSI-RS/SSB)のインデックスを示してもよい。 The parameter indicating each reference signal may indicate the index of the reference signal (eg, CSI-RS/SSB) of the reference destination.
 なお、ソースRSに関する情報の数は、3つに限られず、任意の数であってもよい。また、各パラメータの名称はあくまで一例であり、この例に限られない。 Note that the number of pieces of information about the source RS is not limited to three, and may be any number. Also, the name of each parameter is merely an example, and is not limited to this example.
 図23は、オプション2-1-2に係るTCI状態のパラメータの一例を示す図である。図23に示す例において、RRCパラメータ(「TCI-State」)に、タイプ1のQCL情報(「qcl-Type1」)、及び、タイプ2のQCL情報(「qcl-Type2」)と、ビーム適用時刻を設定するパラメータ(「beamApptime」)とが含まれる。 FIG. 23 is a diagram showing an example of TCI state parameters according to option 2-1-2. In the example shown in FIG. 23 , type 1 QCL information (“qcl-Type1”), type 2 QCL information (“qcl-Type2”), and beam application time are included in the RRC parameter (“TCI-State”). and a parameter ("beamApptime") that sets the
 また、図23に示す例において、タイプ1のQCL情報(「qcl-Type1」)、及び、タイプ2のQCL情報(「qcl-Type2」)が参照するQCL情報のパラメータ(「QCL-Info」)に、第1の参照信号を示すRRCパラメータ(「referenceSignal」)、第2の参照信号を示すRRCパラメータ(「SecondreferenceSignal」)が含まれる。 Further, in the example shown in FIG. 23, the parameter (“QCL-Info”) of the QCL information referred to by the type 1 QCL information (“qcl-Type1”) and the type 2 QCL information (“qcl-Type2”) includes an RRC parameter (“referenceSignal”) indicating the first reference signal and an RRC parameter (“SecondreferenceSignal”) indicating the second reference signal.
 なお、図23において、QCL情報内の参照信号に関するパラメータの数が2つである例を示しているが、数はこの例に限られず、3以上であってもよい。 Although FIG. 23 shows an example in which the number of parameters related to reference signals in the QCL information is two, the number is not limited to this example, and may be three or more.
 図23に示す例において、UEは、1つのTCIコードポイントを用いて指示される複数のTCI状態のうち、第1のTCI状態の適用について、第1のソースRSに関する情報に基づいてTCI状態の適用を判断する。また、UEは、1つのTCIコードポイントを用いて指示される複数のTCI状態のうち、第2のTCI状態の適用について、第2のソースRSに関する情報に基づいてTCI状態の適用を判断する。 In the example shown in FIG. 23 , the UE determines the TCI state based on the information about the first source RS for application of the first TCI state among the multiple TCI states indicated using one TCI codepoint. determine applicability. Also, the UE determines application of a second TCI state among a plurality of TCI states indicated using one TCI codepoint based on information on the second source RS.
 このとき、第1及び第2のTCI状態の適用タイミングは、TCI状態のパラメータ内に含まれるビーム適用時刻を設定するパラメータ(「beamApptime」)に基づいて、決定されてもよい。 At this time, the application timings of the first and second TCI states may be determined based on a parameter ("beamApptime") for setting the beam application time included in the parameters of the TCI state.
 上記図23に示す例では、TCI状態のパラメータ内にビーム適用時刻を設定するパラメータ(「beamApptime」)が含まれる例を示したが、ビーム適用時刻を設定するパラメータ(「beamApptime」)は、QCL情報のパラメータ(「QCL-Info」)内に含まれてもよい。 In the example shown in FIG. 23, the parameter for setting the beam application time (“beamApptime”) is included in the TCI state parameters, but the parameter for setting the beam application time (“beamApptime”) is May be included in the information parameter ("QCL-Info").
 ビーム適用時刻を設定するパラメータがQCL情報のパラメータ(「QCL-Info」)内に含まれる場合、当該ビーム適用時刻を設定するパラメータは複数であってもよい。このときQCL情報のパラメータ(「QCL-Info」)内に含まれる複数のソースRSに関するパラメータのそれぞれと、ビーム適用時刻を設定するパラメータのそれぞれが対応してもよい。UEは、ソースRSに関するパラメータが対応するTCI状態の適用に、当該ソースRSに関するパラメータに対応するBATを適用してもよい。 When the parameter for setting the beam application time is included in the QCL information parameter ("QCL-Info"), there may be a plurality of parameters for setting the beam application time. At this time, each of the parameters related to the plurality of source RSs included in the QCL information parameter (“QCL-Info”) may correspond to each of the parameters for setting the beam application time. The UE may apply the BAT corresponding to the parameters for the source RS to apply the TCI state to which the parameters for the source RS correspond.
 オプション2-1-2におけるビーム適用時刻を設定するパラメータに基づくBATの決定は、上記バリエーション2-1-1-1から2-1-1-4の少なくとも1つが適宜適用されてもよい。 At least one of the above variations 2-1-1-1 to 2-1-1-4 may be appropriately applied to the determination of BAT based on the parameter for setting the beam application time in option 2-1-2.
《オプション2-1-3》
 UEは、複数の(異なる)BATのための複数のTCI状態に関するフィールドを含むMAC CE(アクティベーション/ディアクティベーションコマンドMAC CE)を受信してもよい。
《Option 2-1-3》
The UE may receive a MAC CE (activation/deactivation command MAC CE) containing fields for multiple TCI states for multiple (different) BATs.
 当該複数のBATは、1つのTCIコードポイントに関連付けられる複数のTCI状態のそれぞれの適用に対応するBATであってもよい。 The plurality of BATs may be BATs corresponding to each application of a plurality of TCI states associated with one TCI codepoint.
 当該MAC CEは、以下のオプション2-1-3-1及び2-1-3-2の少なくとも1つに記載されるMAC CEであってもよい。 The MAC CE may be the MAC CE described in at least one of options 2-1-3-1 and 2-1-3-2 below.
[オプション2-1-3-1]
 当該MAC CEは、(Rel.17以降に規定される)新規MAC CEであってもよい。
[Option 2-1-3-1]
The MAC CE may be a new MAC CE (defined after Rel.17).
 当該MAC CEのサブヘッダにおいて、新たなLogical Channel ID(LCID)が含まれてもよい。 A new Logical Channel ID (LCID) may be included in the MAC CE subheader.
 当該MAC CEに、TCI状態のアクティベート示すフィールドが含まれてもよい。 The MAC CE may include a field indicating activation of the TCI state.
 当該MAC CEに含まれるフィールド/オクテット数は、RRCシグナリングをもちいて設定されてもよいし、報告されるUE能力情報に基づいて決定されてもよい。当該UE能力情報は、例えば、1つのコードポイントに関連するBATの最大数で定義されてもよい。 The number of fields/octets included in the MAC CE may be set using RRC signaling, or may be determined based on reported UE capability information. The UE capability information may for example be defined by the maximum number of BATs associated with one codepoint.
 図24は、オプション2-1-3-1に係るMAC CEの構成の一例を示す図である。図24に示すMAC CEにおいて、CORESETプールIDを示すフィールド、サービングセルのIDを示すフィールド、BWP IDを示すフィールド、及び、TCI状態のアクティベート示すフィールド(Tと記載)が含まれる。 FIG. 24 is a diagram showing an example of the configuration of MAC CE according to Option 2-1-3-1. The MAC CE shown in FIG. 24 includes a field indicating the CORESET pool ID, a field indicating the ID of the serving cell, a field indicating the BWP ID, and a field indicating activation of the TCI state (described as TN ).
 図24に示すMAC CEにおいて、TCI状態のアクティベート示すフィールドは、BATに対応してもよい。例えば、当該MAC CEにおいて、1つのTCI状態に対応する複数のTCI状態のうちの第1のTCI状態をアクティベートするフィールドは、第1のBAT(例えば、BAT#1)に対応する。また、当該MAC CEにおいて、1つのTCI状態に対応する複数のTCI状態のうちの第2のTCI状態をアクティベートするフィールドは、第2のBAT(例えば、BAT#2)に対応する。言い換えれば、UEは、第1のBATの適用においては第1のTCI状態に関するフィールドを参照し、第2のBATの適用においては第2のTCI状態に関するフィールドを参照してもよい。 In the MAC CE shown in FIG. 24, the field indicating activation of the TCI state may correspond to BAT. For example, in the MAC CE, the field that activates the first TCI state among multiple TCI states corresponding to one TCI state corresponds to the first BAT (eg, BAT#1). Also, in the MAC CE, the field for activating the second TCI state among the multiple TCI states corresponding to one TCI state corresponds to the second BAT (eg, BAT#2). In other words, the UE may refer to the first TCI state related field in the first BAT application and the second TCI state related field in the second BAT application.
 図24に示すMAC CEには、さらに、それぞれのTCI状態に対応するBAT#1を示すフィールド及びBAT#2を示すフィールドが含まれる。UEは、当該BATを示すフィールドに基づいて、指示されるTCI状態に対応するBATを判断する。 The MAC CE shown in FIG. 24 further includes a field indicating BAT#1 and a field indicating BAT#2 corresponding to each TCI state. The UE determines the BAT corresponding to the indicated TCI state based on the BAT indication field.
 なお、図24に示す例において、BATを示すフィールドは、例えば、LCIDに従って、追加/削除されてもよい。 In the example shown in FIG. 24, the field indicating BAT may be added/deleted according to the LCID, for example.
[オプション2-1-3-2]
 当該MAC CEは、既存の(例えば、Rel.15/16までに規定される)MAC CEであってもよい。
[Option 2-1-3-2]
The MAC CE may be an existing MAC CE (for example, defined by Rel.15/16).
 当該MAC CEについて、既存の(例えば、Rel.15/16までに規定される)MAC CEに含まれるリザーブドビットが、BAT(時間オフセット)を有するTCI状態のリストのアクティベート用フィールドを有するMAC CEと解釈するかを示すフィールドとして用いられてもよい。 For this MAC CE, the reserved bit included in the existing (for example, defined by Rel. 15/16) MAC CE has a field for activating a list of TCI states with BAT (time offset) It may be used as a field indicating whether to interpret as
 当該MAC CEは、既存の(例えば、Rel.15/16までに規定される)MAC CEに、新たなフィールド/オクテットが追加されるMAC CEであってもよい。 This MAC CE may be a MAC CE in which new fields/octets are added to the existing (for example, defined by Rel. 15/16) MAC CE.
 既存の(例えば、Rel.15/16までに規定される)MAC CEは、例えば、UE固有(UE-specific)のPDSCHのTCI状態のアクティベーション/ディアクティベーション用のMAC CE(Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)であってもよい。 The existing (for example, defined by Rel. 15/16) MAC CE, for example, MAC CE (Enhanced TCI States Activation /Deactivation for UE-specific PDSCH MAC CE).
 図25は、オプション2-1-3-2に係るMAC CEの構成の一例を示す図である。図25に示すMAC CEにおいて、サービングセルID(Serving Cell ID)フィールド、BWP IDフィールド、各BAT(BAT#1/#2)に対応するTCI-StateIDで識別されるTCI状態を示すためのフィールド(TCI state IDi,j(iは0からNの整数、jは1又は2))、対応するオクテットにTCI state IDi,2が存在するか否かを示すフィールド(C)、及び、リザーブドビットフィールド(R、0にセットされる)が含まれてもよい。なお、各BATに対応するTCI状態を示すためのフィールドは、各BAT経過後に参照するTCI状態を示すためのフィールドを意味してもよい。 FIG. 25 is a diagram showing an example of a MAC CE configuration according to Option 2-1-3-2. In the MAC CE shown in FIG. 25, a serving cell ID (Serving Cell ID) field, a BWP ID field, a field (TCI state IDi,j (i is an integer from 0 to N, j is 1 or 2), a field indicating whether or not TCI state IDi,2 exists in the corresponding octet (C i ), and a reserved bit field (R, set to 0) may be included. Note that the field for indicating the TCI state corresponding to each BAT may mean a field for indicating the TCI state to be referenced after each BAT has passed.
 「i」は、DCIによって指示されるTCIフィールドのコードポイントのインデックスに対応してもよい。「TCI state IDi,j」は、i番目のTCIフィールドのコードポイントの、j番目のTCI状態を示してもよい。 "i" may correspond to the codepoint index of the TCI field indicated by the DCI. "TCI state IDi,j" may indicate the j-th TCI state of the i-th TCI field codepoint.
 図25に示すMAC CEには、さらに、BAT#Y(Yは任意の整数)に対応するi番目のTCI状態IDの1番目のTCI状態フィールド(つまり、TCI state IDi,1)に対応するオクテットの存在を示すフィールド(DiYと記載)と、BAT#Yに対応するi番目のTCI状態IDの2番目のTCI状態フィールド(つまり、TCI state IDi,2)に対応するオクテットの存在を示すフィールド(EiYと記載)と、が含まれる。 The MAC CE shown in FIG. 25 further includes an octet corresponding to the first TCI state field (that is, TCI state IDi,1) of the i-th TCI state ID corresponding to BAT#Y (Y is an arbitrary integer). and a field indicating the presence of an octet corresponding to the second TCI state field (i.e., TCI state IDi,2) of the i-th TCI state ID corresponding to BAT# Y . (denoted as EiY ) and are included.
 上記DiYフィールドが、第1の値(例えば、0(又は、1))を示すとき、UEは、BAT#Yに対応するTCI state IDi,1に対応するTCI状態を示すためのフィールドが含まれると判断してもよい。上記DiYフィールドが、第2の値(例えば、1(又は、0))を示すとき、UEは、BAT#Yに対応するTCI state IDi,1に対応するTCI状態を示すためのフィールドが含まれないと判断してもよい。 When the DiY field indicates a first value (eg, 0 (or 1)), the UE includes a field for indicating the TCI state corresponding to TCI state IDi,1 corresponding to BAT#Y. You may judge that When the DiY field indicates a second value (eg, 1 (or 0)), the UE includes a field for indicating the TCI state corresponding to TCI state IDi,1 corresponding to BAT#Y. You may decide not to.
 上記EiYフィールドが、第1の値(例えば、0(又は、1))を示すとき、UEは、BAT#Yに対応するTCI state IDi,2に対応するBATを示すフィールドが含まれると判断してもよい。上記EiYフィールドが、第2の値(例えば、1(又は、0))を示すとき、UEは、BAT#Yに対応するTCI state IDi,2に対応するBATを示すフィールドが含まれないと判断してもよい。 When the E iY field indicates a first value (eg, 0 (or 1)), the UE determines that a field indicating BAT corresponding to TCI state IDi,2 corresponding to BAT#Y is included. You may When the E iY field indicates a second value (eg, 1 (or 0)), the UE indicates that the field indicating the BAT corresponding to the TCI state IDi,2 corresponding to BAT#Y is not included. You can judge.
 図25に示す例において、UEは、当該BATを示すフィールドに基づいて、指示されるTCI状態に対応するBATを判断する。 In the example shown in FIG. 25, the UE determines the BAT corresponding to the indicated TCI state based on the field indicating the BAT.
 なお、図25に示す例では、BATの数が2つであるケースを示したが、当該数は3以上であってもよい。また、オプション2-1-3-2におけるMAC CEに、上記第1の実施形態のオプション1-1-5-2に記載されるような、TCI状態IDに対応する各BAT(例えば、図25の例では、BAT#1/#2)を示すフィールドが含まれてもよい。 Although the example shown in FIG. 25 shows a case where the number of BATs is two, the number may be three or more. Also, in the MAC CE in option 2-1-3-2, each BAT corresponding to the TCI state ID as described in option 1-1-5-2 of the first embodiment (for example, FIG. 25 example, a field indicating BAT#1/#2) may be included.
 以上オプション2-1-1から2-1-3によれば、1つのTCIコードポイントに複数のTCI状態が関連付く場合であっても、TCI状態/BATの設定を適切に行うことができる。 According to options 2-1-1 to 2-1-3 above, even if multiple TCI states are associated with one TCI codepoint, the TCI state/BAT can be set appropriately.
 以下では、1つのTCIコードポイントが、複数のBATをもつ複数のTCI状態/ソースRSにマッピングされる場合の、UEによるTCI状態の適用/RSの参照の開始タイミング(シンボル/スロット)について説明する。 The following describes the start timing (symbol/slot) of TCI state application/RS reference by the UE when one TCI codepoint is mapped to multiple TCI states/source RSs with multiple BATs. .
 1つのTCIコードポイントが、複数のBATをもつ複数のTCI状態/ソースRSにマッピングされる場合、UEは、指示されるTCI状態に関するRSを参照する開始タイミング(シンボル/スロット)を、特定の方法に基づいて決定してもよい。 If one TCI codepoint is mapped to multiple TCI states/source RSs with multiple BATs, the UE may set the start timing (symbol/slot) referring to the RS for the indicated TCI state in a specific manner. may be determined based on
 当該特定の方法は、以下の選択肢2-2-1及び2-2-2の少なくとも一方に従ってもよい。 The specific method may follow at least one of options 2-2-1 and 2-2-2 below.
《選択肢2-2-1》
 UEは、上記第1の実施形態において記載した少なくとも1つの方法に基づいて決定した特定の時間リソース後に、設定/指示されたBATに基づいて、指示されるTCI状態に関するRSの参照を開始してもよい。
《Option 2-2-1》
The UE starts referencing the RS for the indicated TCI state based on the configured/indicated BAT after a specific time resource determined based on at least one method described in the first embodiment above. good too.
 言い換えれば、UEは、上記第1の実施形態において記載した少なくとも1つの方法に基づいて決定した特定の時間リソース後に、設定/指示されたBATに基づいて、指示されるTCI状態の適用を開始してもよい。 In other words, the UE starts applying the indicated TCI state based on the configured/indicated BAT after a certain time resource determined based on at least one method described in the first embodiment above. may
 当該設定/指示されるBATは、当該特定の時間リソースからの期間を示してもよい。 The set/indicated BAT may indicate a duration from the specific time resource.
 図26A及び図26Bは、選択肢2-2-1に係るTCI状態の適用の一例を示す図である。図26Aに示す例のように、UEは、TCIコードポイントと、複数のTCI状態(第1のTCI状態/第2のTCI状態)と、各TCI状態に対応するBATと、の関連付けを設定される。 FIGS. 26A and 26B are diagrams showing an example of application of the TCI state according to option 2-2-1. As in the example shown in FIG. 26A , the UE is configured with associations between TCI codepoints, multiple TCI states (first TCI state/second TCI state), and BAT corresponding to each TCI state. be.
 図26Bに示す例では、UEは、TCIコードポイント「000」を指示するビーム指示DCIを受信する。このとき、UEは、第1のTCI状態(TCI#0)の適用の開始を、ビーム指示DCIに関連するHARQ-ACKの送信からBAT#1の経過後のタイミングであると判断する。また、UEは、第2のTCI状態(TCI#1)の適用の開始を、ビーム指示DCIに関連するHARQ-ACKの送信からBAT#2の経過後のタイミングであると判断する。 In the example shown in FIG. 26B, the UE receives a beam pointing DCI that indicates the TCI codepoint "000". The UE then determines the start of application of the first TCI state (TCI#0) to be timing BAT#1 after the transmission of the HARQ-ACK associated with the beam directing DCI. The UE also determines the start of application of the second TCI state (TCI#1) to be timing BAT#2 after the transmission of the HARQ-ACK associated with the beam directed DCI.
《選択肢2-2-2》
 UEは、上記第1の実施形態において記載した少なくとも1つの方法に基づいて決定した特定の時間リソース後に、設定/指示されたBATに基づいて、指示されるTCI状態に関するRSの参照を開始してもよい。
《Option 2-2-2》
The UE starts referencing the RS for the indicated TCI state based on the configured/indicated BAT after a specific time resource determined based on at least one method described in the first embodiment above. good too.
 言い換えれば、UEは、上記第1の実施形態において記載した少なくとも1つの方法に基づいて決定した特定の時間リソース後に、設定/指示されたBATに基づいて、指示されるTCI状態の適用を開始してもよい。 In other words, the UE starts applying the indicated TCI state based on the configured/indicated BAT after a certain time resource determined based on at least one method described in the first embodiment above. may
 当該設定/指示されるBATは、当該特定の時間リソースからの期間、及び、加算される期間(つまり、差分BAT)の少なくとも一方を示してもよい。 The set/instructed BAT may indicate at least one of the period from the specific time resource and the period to be added (that is, differential BAT).
 例えば、UEは、1つのTCIコードポイントに対応する複数のTCI状態及び複数のBATのうち、第1のTCI状態については、上記特定の時間リソース後から、当該第1のTCI状態に対応するBAT(第1のBAT)の経過後に適用を開始すると判断してもよい。このとき、UEは、第2のTCI状態については、上記特定の時間リソース後から、第1のBATの経過後、さらに当該第2のTCI状態に対応するBAT(第2のBAT)経過後に適用を開始すると判断してもよい。このように、第nのTCI状態の適用の開始は、第n-1のTCI状態の適用の開始タイミングと、指示されるBATに基づいて決定/判断されてもよい。 For example, for the first TCI state among a plurality of TCI states and a plurality of BATs corresponding to one TCI codepoint, the UE performs BAT corresponding to the first TCI state after the specific time resource. It may be determined to start the application after (first BAT) has elapsed. At this time, the UE applies the second TCI state after the specific time resource, after the first BAT, and after the BAT corresponding to the second TCI state (second BAT). You may decide to start Thus, the initiation of application of the nth TCI state may be determined/determined based on the initiation timing of application of the n-1th TCI state and the indicated BAT.
 図27A及び図27Bは、選択肢2-2-2に係るTCI状態の適用の一例を示す図である。図27Aに示す例のように、UEは、TCIコードポイントと、複数のTCI状態(第1のTCI状態/第2のTCI状態)と、各TCI状態に対応するBATと、の関連付けを設定される。 FIGS. 27A and 27B are diagrams showing an example of application of the TCI state according to option 2-2-2. As in the example shown in FIG. 27A , the UE is configured with associations between TCI codepoints, multiple TCI states (first TCI state/second TCI state), and BAT corresponding to each TCI state. be.
 図27Bに示す例では、UEは、TCIコードポイント「000」を指示するビーム指示DCIを受信する。このとき、UEは、第1のTCI状態(TCI#0)の適用の開始を、ビーム指示DCIに関連するHARQ-ACKの送信からBAT#1の経過後のタイミングであると判断する。また、UEは、第2のTCI状態(TCI#1)の適用の開始を、第1のTCI状態の適用開始タイミング(ビーム指示DCIに関連するHARQ-ACKの送信からBAT#1の経過後のタイミング)から、さらにBAT#2の経過後のタイミングであると判断する。 In the example shown in FIG. 27B, the UE receives a beam pointing DCI that indicates the TCI codepoint "000". The UE then determines the start of application of the first TCI state (TCI#0) to be timing BAT#1 after the transmission of the HARQ-ACK associated with the beam directing DCI. In addition, the UE starts applying the second TCI state (TCI # 1) at the application start timing of the first TCI state (after BAT # 1 has elapsed from the transmission of HARQ-ACK related to the beam instruction DCI timing), it is determined that the timing is after BAT#2 has elapsed.
 なお、本実施形態において、UEは、第1のTCI状態の適用が、第2のTCI状態の適用以前に開始されると想定してもよい。本実施形態において、UEは、第nのTCI状態の適用が、第n+1のTCI状態の適用以前に開始されると想定してもよい。 Note that in this embodiment, the UE may assume that application of the first TCI state starts before application of the second TCI state. In this embodiment, the UE may assume that the application of the nth TCI state starts before the application of the n+1th TCI state.
 また、本実施形態において、UEは、第1のBATと第2のBATが同じ値であると想定してもよい。この場合、UEに対し、1つのBATの値を示す情報が通知されてもよい。この方法によれば、UEに対するBATの通知のオーバヘッドを削減することができる。 Also, in this embodiment, the UE may assume that the first BAT and the second BAT are the same value. In this case, information indicating one BAT value may be notified to the UE. According to this method, the overhead of BAT notification to the UE can be reduced.
 以上第2の実施形態によれば、1つのTCIコードポイントに複数のTCI状態が対応する場合であっても、適切にTCI状態の適用及び当該適用タイミングの決定を行うことができる。 According to the second embodiment described above, even if a plurality of TCI states correspond to one TCI codepoint, it is possible to appropriately apply the TCI states and determine the application timing.
<第3の実施形態>
 第3の実施形態は、UEに対しアクティベートするTCI状態の数に関する。
<Third Embodiment>
A third embodiment relates to the number of TCI states to activate for the UE.
《態様3-1》
 UEは、特定数(例えば、最大X個)のTCI状態の組み合わせ/ペアに対応するアクティベーションコマンド(MAC CE)を受信してもよい。
<<Mode 3-1>>
The UE may receive activation commands (MAC CE) corresponding to a certain number (eg, up to X) of TCI state combinations/pairs.
 例えば、当該MAC CEは、最大8つのTCI状態の組み合わせ/ペアをアクティベートしてもよい。 For example, the MAC CE may activate up to eight TCI state combinations/pairs.
 本開示において、1つのTCI状態の組み合わせは、1つのTCIコードポイントによって指示されるTCI状態(TCI状態のペア)に対応してもよい。 In the present disclosure, one TCI state combination may correspond to a TCI state (pair of TCI states) indicated by one TCI codepoint.
《態様3-2》
 UEは、合計で特定数(例えば、最大X個)のTCI状態(TCI状態のペア)からなる、TCI状態の組み合わせに対応するアクティベーションコマンド(MAC CE)を受信してもよい。
<<Mode 3-2>>
The UE may receive an activation command (MAC CE) corresponding to a combination of TCI states, consisting of a certain number (eg, up to X) of total TCI states (TCI state pairs).
 例えば、当該MAC CEは、合計で最大8つのTCI状態(TCI状態のペア)をアクティベートしてもよい。このように最大のTCI状態を制限することで、アクティブTCI状態の数を制限することができる。 For example, the MAC CE may activate up to eight TCI states (TCI state pairs) in total. By limiting the maximum TCI state in this manner, the number of active TCI states can be limited.
《態様3-3》
 UEは、合計で特定数(例えば、最大X個)のQCL情報のソースRSからなる、TCI状態の組み合わせ/ペアに対応するアクティベーションコマンド(MAC CE)を受信してもよい。
<<Mode 3-3>>
The UE may receive an activation command (MAC CE) corresponding to a combination/pair of TCI states, consisting of a certain number (eg, up to X) of source RSs of QCL information in total.
 例えば、当該MAC CEは、合計で最大8つソースRSを含むTCI状態(TCI状態のペア)をアクティベートしてもよい。 For example, the MAC CE may activate TCI states (pairs of TCI states) including up to eight source RSs in total.
 当該Xは、QCLタイプごとに決定/設定されてもよい。 The X may be determined/set for each QCL type.
 当該Xは、特定のQCLタイプ(例えば、QCLタイプD)ごとに決定/設定されてもよい。 The X may be determined/set for each specific QCL type (eg, QCL type D).
 当該Xは、特定のQCLタイプ(例えば、QCLタイプA/B/C)のソースRSの合計数に対する最大数を表してもよい。 The X may represent the maximum number relative to the total number of source RSs of a particular QCL type (eg, QCL type A/B/C).
 なお、上記態様3-1から3-3の少なくとも1つにおいて、Xは、予め仕様で規定された値であってもよいし、上位レイヤシグナリング(RRC/MAC CE)/DCIに基づいて決定されてもよいし、報告されるUE能力情報に基づいて決定されてもよい。 In at least one of aspects 3-1 to 3-3 above, X may be a value defined in the specifications in advance, or determined based on higher layer signaling (RRC/MAC CE)/DCI. may be determined based on reported UE capability information.
 なお、上記の例では、Xが8である例を示したが、Xは8より大きい数がサポートされてもよい。 Although the above example shows an example where X is 8, a number greater than 8 may be supported.
 以上第3の実施形態によれば、UEに対しアクティベートするTCI状態の数を適切に決定することができる。 According to the third embodiment, the number of TCI states to activate for the UE can be determined appropriately.
<第4の実施形態>
 第4の実施形態は、BATの最大値/最小値に関する。
<Fourth Embodiment>
A fourth embodiment relates to the maximum/minimum value of BAT.
 UEに対して設定/指示されるBATの最大値/最小値は、予め仕様で規定された値であってもよいし、上位レイヤシグナリング(RRC/MAC CE)/DCIに基づいて決定されてもよいし、報告されるUE能力情報に基づいて決定されてもよい。 The maximum/minimum value of BAT that is set/instructed for the UE may be a value defined in the specifications in advance, or may be determined based on higher layer signaling (RRC/MAC CE)/DCI. Alternatively, it may be determined based on reported UE capability information.
《態様4-1》
 UEは、規定/決定されるBATの最大値より大きい値のBATを含む指示/アクティベーション/設定を受信することを想定/期待しなくてもよい。
<<Aspect 4-1>>
The UE may not expect/expect to receive an indication/activation/configuration that includes a BAT with a value greater than the specified/determined maximum BAT.
 UEは、規定/決定されるBATの最大値より大きい値のBATを含む指示/アクティベーション/設定を受信しないことを想定/期待してもよい。 The UE may assume/expect not to receive an indication/activation/configuration containing a BAT with a value greater than the specified/determined maximum BAT.
 UEに対し、規定/決定されるBATの最大値より大きい値のBATを含む指示/アクティベーション/設定が通知される場合、UEは、規定/決定されるBATの最大値を用いることを判断してもよい。 If the UE is notified of an indication/activation/configuration that includes a BAT value greater than the specified/determined maximum BAT value, the UE determines to use the specified/determined maximum BAT value. may
《態様4-2》
 UEは、規定/決定されるBATの最小値より小さい値のBATを含む指示/アクティベーション/設定を受信することを想定/期待しなくてもよい。
<<Aspect 4-2>>
The UE may not expect/expect to receive an indication/activation/configuration that includes a BAT with a value less than the specified/determined minimum BAT.
 UEは、規定/決定されるBATの最小値より小さい値のBATを含む指示/アクティベーション/設定を受信しないことを想定/期待してもよい。 The UE may assume/expect not to receive an indication/activation/configuration containing a BAT with a value less than the specified/determined minimum BAT.
 UEに対し、規定/決定されるBATの最小値より小さい値のBATを含む指示/アクティベーション/設定が通知される場合、UEは、規定/決定されるBATの最小値を用いることを判断してもよい。 If the UE is notified of an indication/activation/configuration that includes a BAT with a value smaller than the specified/determined minimum BAT, the UE determines to use the specified/determined minimum BAT. may
 以上第4の実施形態によれば、BATの最大値/最小値の決定、及び、最大値/最小値に関連するUEの動作を適切に行うことができる。 According to the fourth embodiment, it is possible to appropriately determine the maximum/minimum value of BAT and perform the UE operation related to the maximum/minimum value.
<第5の実施形態>
 第5の実施形態は、UEが複数のビーム指示DCIを受信する場合の動作に関する。
<Fifth Embodiment>
The fifth embodiment relates to the operation when the UE receives multiple beam indication DCI.
《態様5-1》
 UEは、TCI状態を指示するDCI/MAC CEの受信後、特定のDCI/MAC CEを受信することを想定/期待しなくてもよい。
<<Mode 5-1>>
The UE may not expect/expect to receive a specific DCI/MAC CE after receiving a DCI/MAC CE indicating the TCI status.
 当該特定のDCI/MAC CEは、受信したDCI/MAC CEを用いて指示された最後のBAT(ビームの適用タイミング)より前のタイミングにおけるBATを指示するDCI/MAC CEであってもよい。 The specific DCI/MAC CE may be a DCI/MAC CE that instructs BAT at a timing before the last BAT (beam application timing) instructed using the received DCI/MAC CE.
 図28は、態様5-1に係るTCI状態の適用の一例を示す図である。図28に示す例において、UEは、BAT#0の経過後にRS#0を参照すること、及び、BAT#1の経過後にRS#1を参照すること、を指示するビーム指示DCI#1を受信する。 FIG. 28 is a diagram showing an example of application of the TCI state according to aspect 5-1. In the example shown in FIG. 28 , the UE receives beam indication DCI#1 instructing to refer to RS#0 after BAT#0 and to refer to RS#1 after BAT#1. do.
 なお、本開示において、参照されるRS(referred RS)は、ある時間で利用するTCI状態のソースRS(参照RS)と、互いに読み替えられてもよい。 It should be noted that, in the present disclosure, the referred RS (referred RS) may be read interchangeably with the source RS (reference RS) of the TCI state used at a certain time.
 図28には、BAT#2の経過後にRS#2を参照することを指示するビーム指示DCI#2が記載される。ビーム指示DCI#2は、ビーム指示DCI#1の受信後に存在し、BAT#2は、BAT#1(すなわち、ビーム指示DCI#1が指示する最後のBAT)より前のタイミングを示す。 FIG. 28 describes beam instruction DCI#2 that instructs to refer to RS#2 after BAT#2 has passed. Beam directing DCI#2 exists after receiving beam directing DCI#1, and BAT#2 indicates the timing prior to BAT#1 (ie, the last BAT pointed to by beam directing DCI#1).
 このようなケースにおいて、UEは、ビーム指示DCI#2の受信をすることを想定/期待しない。 In such cases, the UE does not expect/expect to receive beam indication DCI#2.
 図29は、態様5-1係るTCI状態の適用の他の例を示す図である。図29に示す例において、UEは、BAT#0の経過後にRS#0を参照すること、及び、BAT#1の経過後にRS#1を参照すること、を指示するビーム指示DCI#1を受信する。 FIG. 29 is a diagram showing another example of application of the TCI state according to aspect 5-1. In the example shown in FIG. 29, the UE receives beam indication DCI#1 instructing to refer to RS#0 after BAT#0 and to refer to RS#1 after BAT#1. do.
 図29には、BAT#2の経過後にRS#2を参照することを指示するビーム指示DCI#2が記載される。ビーム指示DCI#2は、ビーム指示DCI#1の受信後に存在し、BAT#2は、BAT#1(すなわち、ビーム指示DCI#1が指示する最後のBAT)より後のタイミングを示す。 FIG. 29 describes beam instruction DCI#2 that instructs to refer to RS#2 after BAT#2 has elapsed. Beam directing DCI#2 exists after receiving beam directing DCI#1, and BAT#2 indicates the timing after BAT#1 (ie, the last BAT pointed to by beam directing DCI#1).
 このようなケースにおいて、UEは、ビーム指示DCI#2の指示に従い、RS#2の参照を行うことを判断する。 In such a case, the UE determines to refer to RS#2 according to the beam instruction DCI#2.
《態様5-2》
 UEは、TCI状態を指示するDCI/MAC CEの受信後、特定のDCI/MAC CEによる指示の一部/全部を無視してもよい。
<<Aspect 5-2>>
After receiving a DCI/MAC CE indicating the TCI state, the UE may ignore some/all of the indications from a particular DCI/MAC CE.
 当該特定のDCI/MAC CEは、受信したDCI/MAC CEを用いて指示された最後のBAT(ビームの適用タイミング)より前のタイミングにおけるBATを指示するDCI/MAC CEであってもよい。 The specific DCI/MAC CE may be a DCI/MAC CE that instructs BAT at a timing before the last BAT (beam application timing) instructed using the received DCI/MAC CE.
 図28に示したようなビーム指示DCI#2による指示について、UEは、当該指示の一部/全部を無視する。 The UE ignores part/all of the instruction by the beam instruction DCI#2 as shown in FIG.
《態様5-3》
 UEは、TCI状態を指示するDCI/MAC CEの受信後、特定のDCI/MAC CEを受信することを想定/期待しなくてもよい。
<<Mode 5-3>>
The UE may not expect/expect to receive a specific DCI/MAC CE after receiving a DCI/MAC CE indicating the TCI status.
 当該特定のDCI/MAC CEは、受信したDCI/MAC CEを用いて指示された最後のBAT(ビームの適用タイミング)より前のタイミングにおけるTCI状態/RSについての指示と異なるTCI状態/RSを指示するDCI/MAC CEであってもよい。 The specific DCI/MAC CE indicates a TCI state/RS that is different from the TCI state/RS indicated at the timing before the last BAT (beam application timing) indicated using the received DCI/MAC CE It may be a DCI/MAC CE that
 図30は、態様5-3に係るTCI状態の適用の一例を示す図である。図30に示す例において、UEは、BAT#0の経過後にRS#0を参照すること、及び、BAT#1の経過後にRS#1を参照すること、を指示するビーム指示DCI#1を受信する。 FIG. 30 is a diagram showing an example of application of the TCI state according to aspect 5-3. In the example shown in FIG. 30, the UE receives beam indication DCI#1 instructing to refer to RS#0 after BAT#0 and to refer to RS#1 after BAT#1. do.
 図30には、BAT#0の経過後からBAT#1の経過前までの特定の期間においてRS#0を参照すること、BAT#1の経過後からBAT#2の経過後までの特定の期間においてRS#1を参照すること、及び、BAT#2の経過後にRS#2を参照することを指示するビーム指示DCI#2が記載される。ビーム指示DCI#2によるRS#0及びRS#1についての指示は、ビーム指示DCI#1の指示と同じ内容の指示を含む。 FIG. 30 shows reference to RS#0 in a specific period from after BAT#0 to before BAT#1, and specific period from after BAT#1 to after BAT#2. Beam indication DCI#2 is described to instruct that reference to RS#1 is made in BAT#2 and that reference to RS#2 is made after BAT#2 has passed. The instructions for RS#0 and RS#1 by beam instruction DCI#2 include the same instructions as those of beam instruction DCI#1.
 このようなケースにおいて、UEは、ビーム指示DCI#2の指示に従い、RS#2(及びRS#0/#1)の参照を行うことを判断する。 In such a case, the UE determines to refer to RS#2 (and RS#0/#1) according to the beam instruction DCI#2.
 一方、上記図28に示したようなビーム指示DCI#2について、UEは、当該ビーム指示DCIを受信することを想定/期待しない。 On the other hand, regarding beam directing DCI #2 as shown in FIG. 28 above, the UE does not assume/expect to receive the beam directing DCI.
《態様5-4》
 UEは、TCI状態を指示するDCI/MAC CEの受信後、特定のDCI/MAC CEによる指示の一部/全部を無視してもよい。
<<Aspect 5-4>>
After receiving a DCI/MAC CE indicating the TCI state, the UE may ignore some/all of the indications from a particular DCI/MAC CE.
 当該特定のDCI/MAC CEは、受信したDCI/MAC CEを用いて指示された最後のBAT(ビームの適用タイミング)より前のタイミングにおけるTCI状態/RSについての指示と異なるTCI状態/RSを指示するDCI/MAC CEであってもよい。 The specific DCI/MAC CE indicates a TCI state/RS that is different from the TCI state/RS indicated at the timing before the last BAT (beam application timing) indicated using the received DCI/MAC CE It may be a DCI/MAC CE that
 上記UEが無視する一部の情報は、予め仕様で規定されてもよいし、上位レイヤシグナリング(RRC/MAC CE)/DCIに基づいて決定されてもよいし、報告されるUE能力情報に基づいて決定されてもよい。 Some information that the UE ignores may be specified in advance, may be determined based on higher layer signaling (RRC/MAC CE)/DCI, or may be based on reported UE capability information. may be determined by
《態様5-5》
 態様5-5では、UEがTCI状態を指示するDCI/MAC CEの受信後、特定のDCI/MAC CEを受信する場合の動作について説明する。
<<Mode 5-5>>
Aspect 5-5 describes the operation when the UE receives a specific DCI/MAC CE after receiving the DCI/MAC CE indicating the TCI state.
 当該特定のDCI/MAC CEは、受信したDCI/MAC CEを用いて指示された最後のBAT(ビームの適用(開始)タイミング)より前のタイミングにおけるTCI状態/RSについての指示と異なるTCI状態/RSを指示するDCI/MAC CEであってもよい。 The specific DCI/MAC CE is a TCI state/different from the instruction for the TCI state/RS at the timing before the last BAT (beam application (start) timing) indicated using the received DCI/MAC CE It may be a DCI/MAC CE that indicates an RS.
 もしUEがTCI状態を指示するDCI/MAC CEの受信後、当該特定のDCI/MAC CEを受信する場合、UEは、後に受信したDCI/MAC CEの指示に基づいて、TCI状態の適用(の変更)を行ってもよい。このとき、UEは、前に受信したDCI/MAC CEによる指示について、特定のタイミング後に適用されるTCI状態/ソースRSを参照しなくてもよい。 If the UE receives the particular DCI/MAC CE after receiving the DCI/MAC CE indicating the TCI state, the UE shall apply (or change) may be made. At this time, the UE may not refer to the TCI state/source RS applied after a certain timing for previously received DCI/MAC CE indications.
 当該特定のタイミングは、以下のオプション5-5-1及び5-5-2の少なくとも1つであってもよい。 The specific timing may be at least one of options 5-5-1 and 5-5-2 below.
[オプション5-5-1]
 当該特定のタイミングは、(後に受信する)DCI/MAC CEの受信後の特定の期間(例えば、Xシンボル/スロット/サブフレーム/Y[ms])経過後のタイミングであってもよい。
[Option 5-5-1]
The specific timing may be timing after a specific period (eg, X symbols/slots/subframes/Y [ms]) after reception of the DCI/MAC CE (received later).
 また、当該特定のタイミングは、(後に受信する)DCI/MAC CEに関連するHARQ-ACKの送信タイミングであってもよい。 Also, the specific timing may be the transmission timing of the HARQ-ACK associated with the (later received) DCI/MAC CE.
 図31は、オプション5-5-1に係るTCI状態の適用の一例を示す図である。図31に示す例において、UEは、BAT#0の経過後にRS#0を参照すること、BAT#1の経過後にRS#1を参照すること、BAT#2の経過後にRS#2を参照すること、を指示するビーム指示DCI#1を受信する。 FIG. 31 is a diagram showing an example of application of the TCI state according to option 5-5-1. In the example shown in FIG. 31, the UE refers to RS#0 after BAT#0, refers to RS#1 after BAT#1, and refers to RS#2 after BAT#2. receive the beam directing DCI#1 instructing that.
 また、図31に示す例において、UEは、BAT#3の経過後にRS#3を参照することを指示するビーム指示DCI#2を受信する。当該BAT#3は、BAT#1及びBAT#2の間に存在する。 Also, in the example shown in FIG. 31, the UE receives beam instruction DCI#2 instructing to refer to RS#3 after BAT#3 has elapsed. The BAT#3 exists between BAT#1 and BAT#2.
 図31に示す例において、UEは、特定のタイミング(例えば、ビーム指示DCI#2に関連するHARQ-ACKの送信後)以降において、ビーム指示DCI#1によるRSの参照(TCI状態の適用)に従わない。つまり、UEは、ビーム指示DCI#2に関連するHARQ-ACKの送信後からBAT#3までにおいては、RS#0を参照すると判断する(RS#1を参照すると判断しない)。UEは、BAT#3の経過後は、RS#3を参照すると判断する。 In the example shown in FIG. 31, the UE refers to the RS by beam directing DCI#1 (applying the TCI state) after a specific timing (eg, after transmission of HARQ-ACK related to beam directing DCI#2). disobey. That is, the UE determines to refer to RS#0 (does not determine to refer to RS#1) from after transmission of HARQ-ACK related to beam instruction DCI#2 to BAT#3. The UE determines to refer to RS#3 after BAT#3 has elapsed.
[オプション5-5-2]
 当該特定のタイミングは、(後に受信する)DCI/MAC CEが指示する、最初のTCI状態/RSの適用/参照のための時間リソース(シンボル)であってもよい。
[Option 5-5-2]
The specific timing may be the time resource (symbol) for the first TCI state/RS application/reference as indicated by the (later received) DCI/MAC CE.
 図32は、オプション5-5-2に係るTCI状態の適用の一例を示す図である。図32に示す例において、UEは、BAT#0の経過後にRS#0を参照すること、BAT#1の経過後にRS#1を参照すること、BAT#2の経過後にRS#2を参照すること、を指示するビーム指示DCI#1を受信する。 FIG. 32 is a diagram showing an example of application of the TCI state according to Option 5-5-2. In the example shown in FIG. 32, the UE refers to RS#0 after BAT#0, refers to RS#1 after BAT#1, and refers to RS#2 after BAT#2. receive the beam directing DCI#1 instructing that.
 また、図32に示す例において、UEは、BAT#3の経過後にRS#3を参照することを指示するビーム指示DCI#2を受信する。当該BAT#3は、BAT#1及びBAT#2の間に存在する。 Also, in the example shown in FIG. 32, the UE receives beam instruction DCI#2 instructing to refer to RS#3 after BAT#3 has elapsed. The BAT#3 exists between BAT#1 and BAT#2.
 図32に示す例において、UEは、特定のタイミング(例えば、ビーム指示DCIが指示する、最初のTCI状態/RSの適用/参照のためのシンボル(すなわち、BAT#3))以降において、ビーム指示DCI#1によるRSの参照(TCI状態の適用)に従わない。つまり、UEは、BAT#3以前においては、ビーム指示DCI#1の指示に基づきRS#0/#1を参照すると判断し、BAT#3の経過後は、RS#3を参照すると判断する。 In the example shown in FIG. 32, the UE, after a specific timing (e.g., the first TCI state/RS application/reference symbol (ie, BAT #3) indicated by the beam indication DCI) Do not follow RS referencing (TCI state application) by DCI#1. That is, before BAT#3, the UE determines to refer to RS#0/#1 based on the beam instruction DCI#1, and determines to refer to RS#3 after BAT#3.
 上記態様5-1から5-5における「最後のBATより前のタイミング」は、「最後のBATの後の特定の期間経過後より前のタイミング」と読み替えられてもよい。 The "timing before the last BAT" in aspects 5-1 to 5-5 above may be read as "timing before the elapse of a specific period after the last BAT".
 当該特定の期間は、予め仕様で規定されてもよいし、特定のルールに基づいて決定されてもよいし、上位レイヤシグナリング(RRC/MAC CE)/DCIに基づいて決定されてもよいし、報告されるUE能力情報(例えば、QCLの適用時間に関する能力情報(「timedurationForQCL」))に基づいて決定されてもよい。当該特定の期間は、Xシンボル/スロット/サブフレーム/Y[ms]で表されてもよい。 The specific period may be specified in advance, may be determined based on a specific rule, may be determined based on higher layer signaling (RRC/MAC CE)/DCI, It may be determined based on reported UE capability information (eg, capability information for application time of QCL (“timedurationForQCL”)). The specific time period may be expressed in X symbols/slot/subframe/Y[ms].
 以上第5の実施形態によれば、複数のビーム指示を受信する場合であっても、適切にTCI状態の適用、及び、ソースRSの参照の動作を制御することができる。 According to the fifth embodiment described above, even when a plurality of beam instructions are received, it is possible to appropriately control the application of the TCI state and the operation of referencing the source RS.
<その他の実施形態>
 上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。
<Other embodiments>
At least one of the embodiments described above may only be applied to UEs that have reported or support a particular UE capability.
 当該特定のUE能力は、以下の少なくとも1つを示してもよい(以下の少なくとも1つで定義されてもよい):
 ・各実施形態/態様に関する動作/情報についての能力。
 ・各オプション/オプションの組み合わせに関する動作/情報についての能力。
 ・各選択肢/選択肢の組み合わせに関する動作/情報についての能力。
 ・(サポートされる)1つのTCIコードポイントに関連付くTCI状態の最大数。
 ・(サポートされる)1つのTCIコードポイントに関連付く同じQCLタイプを有するソースRSの最大数。
 ・(サポートされる)アクティベートされるTCI状態の最大数。
 ・(サポートされる)BATの最大値/最小値。
The specific UE capabilities may indicate at least one of the following (may be defined in at least one of the following):
• Ability to operate/information on each embodiment/aspect.
• Ability to act/information on each option/combination of options.
• Ability to act/information about each option/option combination.
• The maximum number of TCI states associated with one TCI codepoint (supported).
• The maximum number of source RSs with the same QCL type associated with one TCI codepoint (supported).
• Maximum number of activated TCI states (supported).
• Maximum/minimum value of BAT (supported).
 上記UE能力は、例えば、(AI支援ビーム予測のための)BATの決定、BATの設定/指示、ビームパターン(複数のTCI状態)の設定/アクティベート/指示、MAC CEに含まれるTCI状態(の組み合わせ/ペア)の最大数、BATの最大値/最小値、複数のビーム指示の受信に対する動作、の少なくとも1つをサポートするか否かで定義されてもよい。 The UE capabilities are, for example, determining BAT (for AI-assisted beam prediction), setting/indicating BAT, setting/activating/indicating beam pattern (multiple TCI states), TCI state included in MAC CE (of combination/pair), maximum/minimum value of BAT, operation on receipt of multiple beam indications.
 また、上記UE能力は、サポートされる最大のN/M/n/m/X/Yの値(各実施形態において記載)で定義されてもよい。 Also, the UE capability may be defined by the maximum supported N/M/n/m/X/Y values (described in each embodiment).
 上記UE能力は、周波数ごとに報告されてもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、Frequency Range 2(FR2)、FR2-1、FR2-2)ごとに報告されてもよいし、セルごとに報告されてもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとに報告されてもよい。 The UE capabilities may be reported per frequency, or may be reported per frequency range (eg, Frequency Range 1 (FR1), Frequency Range 2 (FR2), FR2-1, FR2-2) , may be reported for each cell, or may be reported for each subcarrier spacing (SCS).
 上記UE能力は、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))に共通に報告されてもよいし、独立に報告されてもよい。 The above UE capabilities may be reported commonly for Time Division Duplex (TDD) and Frequency Division Duplex (FDD), or may be reported independently.
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリングによって上述の実施形態に関連する特定の情報を設定された場合に適用されてもよい。 Also, at least one of the above embodiments may be applied if the UE is configured with specific information related to the above embodiments by higher layer signaling.
 以上その他の実施形態によれば、UEは、既存の仕様との互換性を保ちつつ、上記の機能を実現できる。 According to the above and other embodiments, the UE can implement the above functions while maintaining compatibility with existing specifications.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(wireless communication system)
A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below. In this radio communication system, communication is performed using any one of the radio communication methods according to the above embodiments of the present disclosure or a combination thereof.
 図33は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 33 is a diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment. The wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 The wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc. may be included.
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB) )) may be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 A wireless communication system 1 includes a base station 11 forming a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) arranged in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. You may prepare. A user terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminals 20 are not limited to the embodiment shown in the figure. Hereinafter, the base stations 11 and 12 are collectively referred to as the base station 10 when not distinguished.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may connect to at least one of the multiple base stations 10 . The user terminal 20 may utilize at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)). Macrocell C1 may be included in FR1, and small cell C2 may be included in FR2. For example, FR1 may be a frequency band below 6 GHz (sub-6 GHz), and FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Also, the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 A plurality of base stations 10 may be connected by wire (for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is an IAB Also called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 directly or via another base station 10 . The core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal compatible with at least one of communication schemes such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the radio communication system 1, a radio access scheme based on orthogonal frequency division multiplexing (OFDM) may be used. For example, in at least one of Downlink (DL) and Uplink (UL), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 A radio access method may be called a waveform. Note that in the radio communication system 1, other radio access schemes (for example, other single-carrier transmission schemes and other multi-carrier transmission schemes) may be used as the UL and DL radio access schemes.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the radio communication system 1, as downlink channels, a downlink shared channel (Physical Downlink Shared Channel (PDSCH)) shared by each user terminal 20, a broadcast channel (Physical Broadcast Channel (PBCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)) or the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 In the radio communication system 1, as uplink channels, an uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), a random access channel (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH. User data, higher layer control information, and the like may be transmitted by PUSCH. Also, a Master Information Block (MIB) may be transmitted by the PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by the PDCCH. The lower layer control information may include, for example, downlink control information (DCI) including scheduling information for at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 The DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. PDSCH may be replaced with DL data, and PUSCH may be replaced with UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (CControl Resource SET (CORESET)) and a search space (search space) may be used for PDCCH detection. CORESET corresponds to a resource searching for DCI. The search space corresponds to the search area and search method of PDCCH candidates. A CORESET may be associated with one or more search spaces. The UE may monitor CORESETs associated with certain search spaces based on the search space settings.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. Note that "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. in the present disclosure may be read interchangeably.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 By PUCCH, channel state information (CSI), acknowledgment information (for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.) and scheduling request (Scheduling Request ( SR)) may be transmitted. A random access preamble for connection establishment with a cell may be transmitted by the PRACH.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 In addition, in the present disclosure, downlink, uplink, etc. may be expressed without adding "link". Also, various channels may be expressed without adding "Physical" to the head.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, synchronization signals (SS), downlink reference signals (DL-RS), etc. may be transmitted. In the radio communication system 1, the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS)), Phase Tracking Reference Signal (PTRS)), etc. may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS). A signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS Block (SSB), and so on. Note that SS, SSB, etc. may also be referred to as reference signals.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 Also, in the radio communication system 1, even if measurement reference signals (SRS), demodulation reference signals (DMRS), etc. are transmitted as uplink reference signals (UL-RS), good. Note that DMRS may also be called a user terminal-specific reference signal (UE-specific reference signal).
(基地局)
 図34は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 34 is a diagram illustrating an example of the configuration of a base station according to one embodiment. The base station 10 comprises a control section 110 , a transmission/reception section 120 , a transmission/reception antenna 130 and a transmission line interface 140 . One or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission path interface 140 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 It should be noted that this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the base station 10 as a whole. The control unit 110 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping), and the like. The control unit 110 may control transmission/reception, measurement, etc. using the transmission/reception unit 120 , the transmission/reception antenna 130 and the transmission line interface 140 . The control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer them to the transmission/reception unit 120 . The control unit 110 may perform call processing (setup, release, etc.) of communication channels, state management of the base station 10, management of radio resources, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 120 may include a baseband section 121 , a radio frequency (RF) section 122 and a measuring section 123 . The baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212 . The transmitting/receiving unit 120 is configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit. The transmission section may be composed of the transmission processing section 1211 and the RF section 122 . The receiving section may be composed of a reception processing section 1212 , an RF section 122 and a measurement section 123 .
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmitting/receiving unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like. The transmitting/receiving unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitting/receiving unit 120 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission/reception unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (DFT) on the bit string to be transmitted. Processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-to-analog conversion may be performed, and the baseband signal may be output.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmitting/receiving unit 120 (RF unit 122) may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 130. .
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission/reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, Fast Fourier transform (FFT) processing, and Inverse Discrete Fourier transform (IDFT) processing on the acquired baseband signal. )) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing. User data and the like may be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmitting/receiving unit 120 (measuring unit 123) may measure the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal. The measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)) , signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), and the like may be measured. The measurement result may be output to control section 110 .
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission path interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, etc., and user data (user plane data) for the user terminal 20, control plane data, and the like. Data and the like may be obtained, transmitted, and the like.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 The transmitting unit and receiving unit of the base station 10 in the present disclosure may be configured by at least one of the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission line interface 140.
 送受信部120は、複数種類のチャネルに適用されるtransmission configuration indication(TCI)状態に関する設定を含む設定情報と、前記複数種類のチャネルに適用されるTCI状態の指示と、を送信してもよい。制御部110は、前記設定情報に含まれるTCI状態の適用開始タイミングに関する情報と、前記指示と、を用いて、前記TCI状態の適用開始タイミングを指示してもよい(第1の実施形態)。 The transmitting/receiving unit 120 may transmit configuration information including settings related to transmission configuration indication (TCI) states applied to multiple types of channels, and an indication of the TCI states applied to the multiple types of channels. The control unit 110 may instruct the application start timing of the TCI state using the information about the application start timing of the TCI state included in the setting information and the instruction (first embodiment).
 送受信部120は、複数種類のチャネルに適用されるtransmission configuration indication(TCI)状態に関する設定を含む設定情報と、前記TCI状態の指示と、を送信してもよい。前記指示に含まれるTCIフィールドのコードポイントは、複数の前記TCI状態に関連付けられれてもよい。制御部110は、前記設定情報に含まれるTCI状態の適用開始タイミングに関する情報と、前記指示と、を用いて、前記TCI状態の適用開始タイミングを指示してもよい(第2の実施形態)。 The transmitting/receiving unit 120 may transmit setting information including settings related to transmission configuration indication (TCI) states applied to multiple types of channels, and an indication of the TCI states. A codepoint of a TCI field included in said indication may be associated with multiple said TCI states. The control unit 110 may instruct the application start timing of the TCI state using the information about the application start timing of the TCI state included in the setting information and the instruction (second embodiment).
 送受信部120は、複数種類のチャネルに適用されるtransmission configuration indication(TCI)状態に関する設定を含む設定情報と、前記TCI状態に関する第1の指示と、前記TCI状態に関する第2の指示と、の少なくとも1つを送信してもよい。制御部110は、前記設定情報に含まれるTCI状態の適用開始タイミングに関する情報と、前記第1の指示と、前記第2の指示との少なくとも1つを用いて、前記第1の指示に基づく第1のTCI状態の適用と、前記第2の指示に基づく第2のTCI状態の適用と、を指示してもよい(第5の実施形態)。 Transmitting/receiving section 120 receives at least configuration information including settings regarding transmission configuration indication (TCI) states applied to multiple types of channels, a first instruction regarding the TCI states, and a second instruction regarding the TCI states. You can send one. Control unit 110 uses at least one of the information about the application start timing of the TCI state included in the setting information, the first instruction, and the second instruction to perform the first step based on the first instruction. application of one TCI state and application of a second TCI state based on the second instruction may be instructed (fifth embodiment).
(ユーザ端末)
 図35は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(user terminal)
FIG. 35 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment; The user terminal 20 includes a control section 210 , a transmission/reception section 220 and a transmission/reception antenna 230 . One or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 It should be noted that this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the user terminal 20 as a whole. The control unit 210 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, and the like. The control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230 . The control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals and transfer them to the transmission/reception unit 220 .
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 220 may include a baseband section 221 , an RF section 222 and a measurement section 223 . The baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212 . The transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measuring circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit. The transmission section may be composed of a transmission processing section 2211 and an RF section 222 . The receiving section may include a reception processing section 2212 , an RF section 222 and a measurement section 223 .
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 230 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmitting/receiving unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like. The transmitting/receiving unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitter/receiver 220 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmitting/receiving unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (eg, RLC retransmission control), MAC layer processing (eg, , HARQ retransmission control) and the like may be performed to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission/reception unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing on a bit string to be transmitted. , precoding, digital-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Whether or not to apply DFT processing may be based on transform precoding settings. Transmitting/receiving unit 220 (transmission processing unit 2211), for a certain channel (for example, PUSCH), if transform precoding is enabled, the above to transmit the channel using the DFT-s-OFDM waveform The DFT process may be performed as the transmission process, or otherwise the DFT process may not be performed as the transmission process.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmitting/receiving unit 220 (RF unit 222) may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 230. .
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving section 220 (RF section 222) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (error correction) on the acquired baseband signal. decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmitting/receiving section 220 (measuring section 223) may measure the received signal. For example, the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal. The measuring unit 223 may measure received power (eg, RSRP), received quality (eg, RSRQ, SINR, SNR), signal strength (eg, RSSI), channel information (eg, CSI), and the like. The measurement result may be output to control section 210 .
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 Note that the transmitter and receiver of the user terminal 20 in the present disclosure may be configured by at least one of the transmitter/receiver 220 and the transmitter/receiver antenna 230 .
 送受信部220は、複数種類のチャネルに適用されるtransmission configuration indication(TCI)状態に関する設定を含む設定情報と、前記複数種類のチャネルに適用されるTCI状態の指示と、を受信してもよい。制御部210は、前記設定情報に含まれるTCI状態の適用開始タイミングに関する情報と、前記指示と、に基づいて、前記TCI状態の適用開始タイミングを判断してもよい(第1の実施形態)。 The transmitting/receiving unit 220 may receive configuration information including settings regarding transmission configuration indication (TCI) states applied to multiple types of channels, and indications of the TCI states applied to the multiple types of channels. The control unit 210 may determine the application start timing of the TCI state based on the information about the application start timing of the TCI state included in the setting information and the instruction (first embodiment).
 前記設定情報は、Radio Resource Control(RRC)パラメータであってもよい。前記TCI状態の適用開始タイミングに関する情報は、物理下りリンク共有チャネルの設定パラメータ、TCI状態の設定パラメータ、及び、疑似コロケーションの設定パラメータ、の少なくとも1つに含まれてもよい(第1の実施形態)。 The setting information may be Radio Resource Control (RRC) parameters. The information about the application start timing of the TCI state may be included in at least one of physical downlink shared channel configuration parameters, TCI state configuration parameters, and pseudo collocation configuration parameters (first embodiment ).
 前記設定情報は、Medium Access Control制御要素(MAC Control Element(CE))であってもよい。前記TCI状態の適用開始タイミングに関する情報は、前記MAC CEに含まれる特定のフィールドであってもよい(第1の実施形態)。 The setting information may be a Medium Access Control control element (MAC Control Element (CE)). The information on the TCI state application start timing may be a specific field included in the MAC CE (first embodiment).
 前記設定情報は、前記TCI状態のうちの第1のTCI状態に対応する第1の適用開始タイミングに関する情報と、前記TCI状態のうちの第2のTCI状態に対応する第2の適用開始タイミングに関する情報と、を含んでもよい。前記第1のTCI状態を適用する場合、制御部210は、前記第1の適用開始タイミングに関する情報に基づいて前記第1のTCI状態の適用開始タイミングを判断してもよい。前記第2のTCI状態を適用する場合、制御部210は、前記第1の適用開始タイミングに関する情報と前記第2の適用開始タイミングに関する情報とに基づいて前記第2のTCI状態の適用開始タイミングを判断してもよい。 The setting information includes information about a first application start timing corresponding to a first TCI state among the TCI states and information about a second application start timing corresponding to a second TCI state among the TCI states. may include information; When applying the first TCI state, the control unit 210 may determine the application start timing of the first TCI state based on the information on the first application start timing. When applying the second TCI state, the control unit 210 determines the application start timing of the second TCI state based on the information on the first application start timing and the information on the second application start timing. You can judge.
 送受信部220は、複数種類のチャネルに適用されるtransmission configuration indication(TCI)状態に関する設定を含む設定情報と、前記TCI状態の指示と、を受信してもよい。前記指示に含まれるTCIフィールドのコードポイントは、複数の前記TCI状態に関連付けられてもよい。制御部210は、前記設定情報に含まれるTCI状態の適用開始タイミングに関する情報と、前記指示と、に基づいて、前記TCI状態の適用開始タイミングを判断してもよい(第2の実施形態)。 The transmitting/receiving unit 220 may receive configuration information including settings related to transmission configuration indication (TCI) states applied to multiple types of channels, and the indication of the TCI states. A codepoint of a TCI field included in said indication may be associated with multiple said TCI states. The control unit 210 may determine the application start timing of the TCI state based on the information about the application start timing of the TCI state included in the setting information and the instruction (second embodiment).
 前記設定情報は、前記複数の前記TCI状態のうちの第1のTCI状態に対応する第1の適用開始タイミングに関する情報と、前記複数の前記TCI状態のうちの第2のTCI状態に対応する第2の適用開始タイミングに関する情報と、を含んでもよい。前記第1のTCI状態を適用する場合、制御部210は、前記第1の適用開始タイミングに関する情報に基づいて前記第1のTCI状態の適用開始タイミングを判断してもよい。前記第2のTCI状態を適用する場合、制御部210は、前記第1の適用開始タイミングに関する情報と前記第2の適用開始タイミングに関する情報とに基づいて前記第2のTCI状態の適用開始タイミングを判断してもよい(第2の実施形態)。 The setting information includes information about a first application start timing corresponding to a first TCI state among the plurality of TCI states, and a second TCI state corresponding to a second TCI state among the plurality of TCI states. 2, and information on the application start timing. When applying the first TCI state, the control unit 210 may determine the application start timing of the first TCI state based on the information on the first application start timing. When applying the second TCI state, the control unit 210 determines the application start timing of the second TCI state based on the information on the first application start timing and the information on the second application start timing. You may judge (2nd Embodiment).
 前記設定情報は、Medium Access Control制御要素(MAC Control Element(CE))であってもよい。前記MAC CEは、最大で特定数のTCI状態のペア又は組み合わせに含まれるTCI状態をアクティベートしてもよい(第3の実施形態)。 The setting information may be a Medium Access Control control element (MAC Control Element (CE)). The MAC CE may activate TCI states included in at most a specified number of TCI state pairs or combinations (third embodiment).
 制御部210は、前記適用開始タイミングに関する最大値より大きい適用開始タイミングに関する指示と、前記適用開始タイミングに関する最小値より小さい適用開始タイミングに関する指示と、の少なくとも1つの受信を想定しななくてもよい(第4の実施形態)。 The control unit 210 may not assume reception of at least one of an instruction regarding an application start timing that is greater than the maximum value regarding the application start timing and an instruction regarding an application start timing that is less than the minimum value regarding the application start timing. (Fourth embodiment).
 送受信部220は、複数種類のチャネルに適用されるtransmission configuration indication(TCI)状態に関する設定を含む設定情報と、前記TCI状態に関する第1の指示と、前記TCI状態に関する第2の指示と、の少なくとも1つを受信してもよい。制御部210は、前記設定情報に含まれるTCI状態の適用開始タイミングに関する情報と、前記第1の指示と、前記第2の指示との少なくとも1つに基づいて、前記第1の指示に基づく第1のTCI状態の適用と、前記第2の指示に基づく第2のTCI状態の適用と、を判断してもよい(第5の実施形態)。 The transmitting/receiving unit 220 receives at least configuration information including settings regarding transmission configuration indication (TCI) states applied to a plurality of types of channels, a first instruction regarding the TCI states, and a second instruction regarding the TCI states. You may receive one. Based on at least one of the information about the application start timing of the TCI state included in the setting information, the first instruction, and the second instruction, control unit 210 performs the first instruction based on the first instruction. A decision may be made between applying one TCI state and applying a second TCI state based on the second indication (fifth embodiment).
 制御部210は、前記第1のTCI状態の適用開始タイミングに関する特定のタイミングより早い前記第2のTCI状態の適用開始タイミングを指示する前記第2の指示を受信することを想定しなくてもよいし、また、前記特定のタイミングより早い前記第2のTCI状態の適用開始タイミングを指示する前記第2の指示の少なくとも一部を無視してもよい(第5の実施形態)。 The control unit 210 may not assume that the second instruction instructing the application start timing of the second TCI state earlier than the specific timing regarding the application start timing of the first TCI state is received. Further, at least part of the second instruction instructing the application start timing of the second TCI state earlier than the specific timing may be ignored (fifth embodiment).
 制御部210は、前記第1の指示に基づく前記第1のTCI状態を適用する期間における前記第1のTCI状態以外のTCI状態の適用することを指示する前記第2の指示を受信することを想定しなくてもよいし、また、前記期間における前記第1のTCI状態以外のTCI状態の適用することを指示する前記第2の指示の少なくとも一部を無視してもよい(第5の実施形態)。 Control unit 210 receives the second instruction instructing to apply a TCI state other than the first TCI state during the period of applying the first TCI state based on the first instruction. It may not be assumed, and at least a part of the second instruction instructing application of a TCI state other than the first TCI state during the period may be ignored (fifth implementation form).
 制御部210は、前記第2の指示の受信から特定の期間の経過後に、前記第1の指示に基づく前記第1のTCI状態の適用を変更して、前記第2の指示に基づく前記第2のTCI状態を適用すると判断してもよい(第5の実施形態)。 Control unit 210 changes the application of the first TCI state based on the first instruction after a specific period of time has passed since the reception of the second instruction, and changes the application of the first TCI state based on the second instruction. may be determined to apply the TCI state of (fifth embodiment).
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
It should be noted that the block diagrams used in the description of the above embodiments show blocks in units of functions. These functional blocks (components) are implemented by any combination of at least one of hardware and software. Also, the method of realizing each functional block is not particularly limited. That is, each functional block may be implemented using one device physically or logically coupled, or directly or indirectly using two or more physically or logically separated devices (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices. A functional block may be implemented by combining software in the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 where function includes judgment, decision, determination, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deem , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (component) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図36は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 36 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to an embodiment. The base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the present disclosure, terms such as apparatus, circuit, device, section, and unit can be read interchangeably. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be multiple processors. Also, processing may be performed by one processor, or processing may be performed by two or more processors concurrently, serially, or otherwise. Note that processor 1001 may be implemented by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as a processor 1001 and a memory 1002, the processor 1001 performs calculations, communication via the communication device 1004 and at least one of reading and writing data in the memory 1002 and the storage 1003 .
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system and controls the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like. For example, at least part of the above-described control unit 110 (210), transmission/reception unit 120 (220), etc. may be realized by the processor 1001. FIG.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Also, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 110 (210) may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), or at least any other suitable storage medium. may be configured by one. The memory 1002 may also be called a register, cache, main memory (main storage device), or the like. The memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also be called an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD), for example. may be configured to include For example, the transmitting/receiving unit 120 (220), the transmitting/receiving antenna 130 (230), and the like described above may be realized by the communication device 1004. FIG. The transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
The terms explained in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, channel, symbol and signal (signal or signaling) may be interchanged. A signal may also be a message. A reference signal may be abbreviated as RS, and may also be called a pilot, a pilot signal, etc. according to an applied standard. A component carrier (CC) may also be called a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may consist of one or more periods (frames) in the time domain. Each of the one or more periods (frames) that make up a radio frame may be called a subframe. Furthermore, a subframe may consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, a numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration , a particular filtering process performed by the transceiver in the frequency domain, a particular windowing process performed by the transceiver in the time domain, and/or the like.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. A slot may also be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 A slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (PUSCH) Mapping Type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum scheduling time unit in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 A TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like. A TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms, and the short TTI (e.g., shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms A TTI having the above TTI length may be read instead.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain. The number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve. The number of subcarriers included in an RB may be determined based on neumerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Also, an RB may contain one or more symbols in the time domain and may be 1 slot, 1 minislot, 1 subframe or 1 TTI long. One TTI, one subframe, etc. may each be configured with one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are Physical Resource Block (PRB), Sub-Carrier Group (SCG), Resource Element Group (REG), PRB pair, RB Also called a pair.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Also, a resource block may be composed of one or more resource elements (Resource Element (RE)). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP) (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier. good too. Here, the common RB may be identified by an RB index based on the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or multiple BWPs may be configured for a UE within one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be read as "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 It should be noted that the structures of radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples. For example, the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not restrictive names in any respect. Further, the formulas and the like using these parameters may differ from those expressly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable names, the various names assigned to these various channels and information elements are not limiting names in any way. .
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 Also, information, signals, etc. can be output from a higher layer to a lower layer and/or from a lower layer to a higher layer. Information, signals, etc. may be input and output through multiple network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Input and output information, signals, etc. may be overwritten, updated or appended. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 Notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods. For example, the notification of information in the present disclosure includes physical layer signaling (e.g., Downlink Control Information (DCI)), Uplink Control Information (UCI)), upper layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or combinations thereof may be performed by
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 The physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like. RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like. Also, MAC signaling may be notified using, for example, a MAC Control Element (CE).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, notification of predetermined information (for example, notification of “being X”) is not limited to explicit notification, but implicit notification (for example, by not notifying the predetermined information or by providing another information (by notice of
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value (0 or 1) represented by 1 bit, or by a boolean value represented by true or false. , may be performed by numerical comparison (eg, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) , a server, or other remote source, these wired and/or wireless technologies are included within the definition of transmission media.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. A “network” may refer to devices (eg, base stations) included in a network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, "precoding", "precoder", "weight (precoding weight)", "Quasi-Co-Location (QCL)", "Transmission Configuration Indication state (TCI state)", "spatial "spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel" are interchangeable. can be used as intended.
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission Point (TP)", "Reception Point (RP)", "Transmission/Reception Point (TRP)", "Panel" , “cell,” “sector,” “cell group,” “carrier,” “component carrier,” etc. may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is assigned to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head (RRH))) may also provide communication services. The terms "cell" or "sector" refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)", "user terminal", "User Equipment (UE)", and "terminal" are used interchangeably. can be
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , a handset, a user agent, a mobile client, a client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a moving object, the mobile itself, or the like.
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。 The moving body refers to a movable object, the speed of movement is arbitrary, and it naturally includes cases where the moving body is stationary. Examples of such moving bodies include vehicles, transportation vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , airplanes, rockets, satellites, drones, multi-copters, quad-copters, balloons and objects mounted on them. Further, the mobile body may be a mobile body that autonomously travels based on an operation command.
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 The mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
 図37は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。 FIG. 37 is a diagram showing an example of a vehicle according to one embodiment. The vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, revolution sensor 51, air pressure sensor 52, vehicle speed sensor 53, acceleration sensor 54, accelerator pedal sensor 55, brake pedal sensor 56, shift lever sensor 57, and object detection sensor 58), information service unit 59 and communication module 60. Prepare.
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。 The driving unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor. The steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。 The electronic control unit 49 is composed of a microprocessor 61 , a memory (ROM, RAM) 62 , and a communication port (eg, input/output (IO) port) 63 . Signals from various sensors 50 to 58 provided in the vehicle are input to the electronic control unit 49 . The electronic control unit 49 may be called an Electronic Control Unit (ECU).
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。 The signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheels 46/rear wheels 47 obtained by the rotation speed sensor 51, and an air pressure sensor 52. air pressure signal of front wheels 46/rear wheels 47, vehicle speed signal obtained by vehicle speed sensor 53, acceleration signal obtained by acceleration sensor 54, depression amount signal of accelerator pedal 43 obtained by accelerator pedal sensor 55, brake pedal sensor The brake pedal 44 depression amount signal obtained by 56, the operation signal of the shift lever 45 obtained by the shift lever sensor 57, and the detection for detecting obstacles, vehicles, pedestrians, etc. obtained by the object detection sensor 58. There are signals.
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。 The information service unit 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios for providing (outputting) various information such as driving information, traffic information, and entertainment information, and these devices. and one or more ECUs that control The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service unit 59 may include an input device (e.g., keyboard, mouse, microphone, switch, button, sensor, touch panel, etc.) that receives input from the outside, and an output device that outputs to the outside (e.g., display, speaker, LED lamp, touch panel, etc.).
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving support system unit 64 includes a millimeter wave radar, Light Detection and Ranging (LiDAR), a camera, a positioning locator (e.g., Global Navigation Satellite System (GNSS), etc.), map information (e.g., High Definition (HD)) maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMU), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving load, and one or more devices that control these devices ECU. In addition, the driving support system unit 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。 The communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63 . For example, the communication module 60 communicates with the vehicle 40 through a communication port 63 such as a driving unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。 The communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from an external device via wireless communication. Communication module 60 may be internal or external to electronic control 49 . The external device may be, for example, the above-described base station 10, user terminal 20, or the like. Also, the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (and may function as at least one of the base station 10 and the user terminal 20).
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 60 receives signals from the various sensors 50 to 58 described above input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. may be transmitted to the external device via wireless communication. The electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be called an input unit that receives input. For example, the PUSCH transmitted by communication module 60 may include information based on the above inputs.
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。 The communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device and displays it on the information service unit 59 provided in the vehicle. The information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as displays and speakers based on the PDSCH received by the communication module 60 (or data/information decoded from the PDSCH)). may be called
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。 Also, the communication module 60 stores various information received from an external device in a memory 62 that can be used by the microprocessor 61 . Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, the steering unit 42, the accelerator pedal 43, the brake pedal 44, the shift lever 45, the left and right front wheels 46, and the left and right rear wheels provided in the vehicle 40. 47, axle 48, and various sensors 50-58 may be controlled.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。 Also, the base station in the present disclosure may be read as a user terminal. For example, communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.) Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the user terminal 20 may have the functions of the base station 10 described above. In addition, words such as "uplink" and "downlink" may be replaced with words corresponding to communication between terminals (for example, "sidelink"). For example, uplink channels, downlink channels, etc. may be read as sidelink channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, user terminals in the present disclosure may be read as base stations. In this case, the base station 10 may have the functions of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, operations that are assumed to be performed by the base station may be performed by its upper node in some cases. In a network that includes one or more network nodes with a base station, various operations performed for communication with a terminal may involve the base station, one or more network nodes other than the base station (e.g., Clearly, this can be done by a Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Also, the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG (x is, for example, an integer or a decimal number)), Future Radio Access (FRA), New-Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802 .11 (Wi-Fi®), IEEE 802.16 (WiMAX®), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth®, or any other suitable wireless communication method. It may be applied to a system to be used, a next-generation system extended, modified, created or defined based on these. Also, multiple systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The term "based on" as used in this disclosure does not mean "based only on" unless otherwise specified. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using the "first," "second," etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "determination" includes judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry ( For example, looking up in a table, database, or another data structure), ascertaining, etc. may be considered to be "determining."
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 Also, "determining (deciding)" includes receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access ( accessing (e.g., accessing data in memory), etc.
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 Also, "determining" is considered to be "determining" resolving, selecting, choosing, establishing, comparing, etc. good too. That is, "determining (determining)" may be regarded as "determining (determining)" some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 Also, "judgment (decision)" may be read as "assuming", "expecting", or "considering".
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 "Maximum transmit power" described in this disclosure may mean the maximum value of transmit power, may mean the nominal maximum transmit power (the nominal UE maximum transmit power), or may mean the rated maximum transmit power (the rated UE maximum transmit power).
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 The terms “connected”, “coupled”, or any variation thereof, as used in this disclosure, refer to any connection or coupling, direct or indirect, between two or more elements. and can include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access".
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In this disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, radio frequency domain, microwave They can be considered to be “connected” or “coupled” together using the domain, electromagnetic energy having wavelengths in the optical (both visible and invisible) domain, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean that "A and B are different from C". Terms such as "separate," "coupled," etc. may also be interpreted in the same manner as "different."
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include," "including," and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising." is intended. Furthermore, the term "or" as used in this disclosure is not intended to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, when articles are added by translation, such as a, an, and the in English, the disclosure may include that nouns following these articles are plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is obvious to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as modifications and changes without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for illustrative purposes and does not impose any limitation on the invention according to the present disclosure.

Claims (6)

  1.  複数種類のチャネルに適用されるtransmission configuration indication(TCI)状態に関する設定を含む設定情報と、前記TCI状態に関する第1の指示と、前記TCI状態に関する第2の指示と、の少なくとも1つを受信する受信部と、
     前記設定情報に含まれるTCI状態の適用開始タイミングに関する情報と、前記第1の指示と、前記第2の指示との少なくとも1つに基づいて、前記第1の指示に基づく第1のTCI状態の適用と、前記第2の指示に基づく第2のTCI状態の適用と、を判断する制御部と、を有する端末。
    receive at least one of: configuration information including settings for transmission configuration indication (TCI) states to apply to multiple types of channels; a first indication for the TCI states; and a second indication for the TCI states. a receiver;
    Based on at least one of the information about the application start timing of the TCI state included in the configuration information, the first instruction, and the second instruction, the first TCI state based on the first instruction and a control unit that determines to apply a second TCI state based on the second indication.
  2.  前記制御部は、前記第1のTCI状態の適用開始タイミングに関する特定のタイミングより早い前記第2のTCI状態の適用開始タイミングを指示する前記第2の指示を受信することを想定しない、又は、前記特定のタイミングより早い前記第2のTCI状態の適用開始タイミングを指示する前記第2の指示の少なくとも一部を無視する、請求項1に記載の端末。 The control unit is not assumed to receive the second instruction instructing the application start timing of the second TCI state earlier than a specific timing regarding the application start timing of the first TCI state, or The terminal according to claim 1, disregarding at least a part of the second instruction instructing start timing of application of the second TCI state earlier than a specific timing.
  3.  前記制御部は、前記第1の指示に基づく前記第1のTCI状態を適用する期間における前記第1のTCI状態以外のTCI状態の適用することを指示する前記第2の指示を受信することを想定しない、又は、前記期間における前記第1のTCI状態以外のTCI状態の適用することを指示する前記第2の指示の少なくとも一部を無視する、請求項1に記載の端末。 The control unit receives the second instruction instructing application of a TCI state other than the first TCI state during a period of applying the first TCI state based on the first instruction. 2. The terminal of claim 1, disregarding at least a portion of the second indication indicating not to assume or apply a TCI state other than the first TCI state during the period.
  4.  前記制御部は、前記第2の指示の受信から特定の期間の経過後に、前記第1の指示に基づく前記第1のTCI状態の適用を変更して、前記第2の指示に基づく前記第2のTCI状態を適用すると判断する、請求項1に記載の端末。 The control unit changes application of the first TCI state based on the first instruction after a specific period of time has elapsed since receiving the second instruction, and changes the application of the first TCI state based on the second instruction. 2. The terminal of claim 1, wherein the terminal determines to apply the TCI conditions of .
  5.  複数種類のチャネルに適用されるtransmission configuration indication(TCI)状態に関する設定を含む設定情報と、前記TCI状態に関する第1の指示と、前記TCI状態に関する第2の指示と、の少なくとも1つを受信するステップと、
     前記設定情報に含まれるTCI状態の適用開始タイミングに関する情報と、前記第1の指示と、前記第2の指示との少なくとも1つに基づいて、前記第1の指示に基づく第1のTCI状態の適用と、前記第2の指示に基づく第2のTCI状態の適用と、を判断するステップと、を有する端末の無線通信方法。
    receive at least one of: configuration information including settings for transmission configuration indication (TCI) states to apply to multiple types of channels; a first indication for the TCI states; and a second indication for the TCI states. a step;
    Based on at least one of the information about the application start timing of the TCI state included in the configuration information, the first instruction, and the second instruction, the first TCI state based on the first instruction and determining to apply a second TCI state based on said second indication.
  6.  複数種類のチャネルに適用されるtransmission configuration indication(TCI)状態に関する設定を含む設定情報と、前記TCI状態に関する第1の指示と、前記TCI状態に関する第2の指示と、の少なくとも1つを送信する送信部と、
     前記設定情報に含まれるTCI状態の適用開始タイミングに関する情報と、前記第1の指示と、前記第2の指示との少なくとも1つを用いて、前記第1の指示に基づく第1のTCI状態の適用と、前記第2の指示に基づく第2のTCI状態の適用と、を指示する制御部と、を有する基地局。
    transmitting at least one of: configuration information including settings for a transmission configuration indication (TCI) state that applies to multiple types of channels; a first indication for the TCI state; and a second indication for the TCI state. a transmitter;
    Using at least one of the information about the application start timing of the TCI state included in the configuration information, the first instruction, and the second instruction, determining the first TCI state based on the first instruction and a controller that instructs to apply a second TCI state based on the second instruction.
PCT/JP2022/006719 2022-02-18 2022-02-18 Terminal, wireless communication method, and base station WO2023157252A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/006719 WO2023157252A1 (en) 2022-02-18 2022-02-18 Terminal, wireless communication method, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/006719 WO2023157252A1 (en) 2022-02-18 2022-02-18 Terminal, wireless communication method, and base station

Publications (1)

Publication Number Publication Date
WO2023157252A1 true WO2023157252A1 (en) 2023-08-24

Family

ID=87578029

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006719 WO2023157252A1 (en) 2022-02-18 2022-02-18 Terminal, wireless communication method, and base station

Country Status (1)

Country Link
WO (1) WO2023157252A1 (en)

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CATT: "Beam management for new SCSs for up to 71GHz operation", 3GPP DRAFT; R1-2109211, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211011 - 20211019, 1 October 2021 (2021-10-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052058168 *
LENOVO, MOTOROLA MOBILITY: "Beam-management enhancements for NR from 52.6 GHz to 71GHz", 3GPP DRAFT; R1-2109899, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-meeting; 20211011 - 20211019, 1 October 2021 (2021-10-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052058827 *
LG ELECTRONICS: "Enhancements on multi-TRP/panel transmission", 3GPP DRAFT; R1-1912269, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20191118 - 20191122, 9 November 2019 (2019-11-09), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051823334 *
SPREADTRUM COMMUNICATIONS: "Discussion on beam management for above 52.6GHz", 3GPP DRAFT; R1-2108903, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211011 - 20211019, 1 October 2021 (2021-10-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052057915 *

Similar Documents

Publication Publication Date Title
WO2023157252A1 (en) Terminal, wireless communication method, and base station
WO2023157254A1 (en) Terminal, wireless communication method, and base station
WO2023157253A1 (en) Terminal, wireless communication method, and base station
WO2023167214A1 (en) Terminal, wireless communication method and base station
WO2023136055A1 (en) Terminal, radio communication method, and base station
WO2023152990A1 (en) Terminal, wireless communication method, and base station
WO2024095478A1 (en) Terminal, wireless communication method, and base station
WO2024095477A1 (en) Terminal, wireless communication method, and base station
WO2023152991A1 (en) Terminal, wireless communication method, and base station
WO2023132073A1 (en) Terminal, wireless communication method, and base station
WO2023132071A1 (en) Terminal, wireless communication method, and base station
WO2024034141A1 (en) Terminal, wireless communication method, and base station
WO2024034142A1 (en) Terminal, wireless communication method, and base station
WO2023132074A1 (en) Terminal, wireless communication method and base station
WO2024069968A1 (en) Terminal, wireless communication method, and base station
WO2023132072A1 (en) Terminal, wireless communication method, and base station
WO2023073930A1 (en) Terminal, radio communication method, and base station
WO2023067763A1 (en) Terminal, wireless communication method, and base station
WO2023067764A1 (en) Terminal, wireless communication method, and base station
WO2023067766A1 (en) Terminal, radio communication method, and base station
WO2023079633A1 (en) Terminal, wireless communication method, and base station
WO2023073929A1 (en) Terminal, wireless communication method, and base station
WO2023053291A1 (en) Terminal, wireless communication method, and base station
WO2023067765A1 (en) Terminal, wireless communication method, and base station
WO2023135758A1 (en) Terminal, wireless communication method, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22927153

Country of ref document: EP

Kind code of ref document: A1