WO2023073930A1 - Terminal, radio communication method, and base station - Google Patents

Terminal, radio communication method, and base station Download PDF

Info

Publication number
WO2023073930A1
WO2023073930A1 PCT/JP2021/040038 JP2021040038W WO2023073930A1 WO 2023073930 A1 WO2023073930 A1 WO 2023073930A1 JP 2021040038 W JP2021040038 W JP 2021040038W WO 2023073930 A1 WO2023073930 A1 WO 2023073930A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci
information
tci state
state
tci states
Prior art date
Application number
PCT/JP2021/040038
Other languages
French (fr)
Japanese (ja)
Inventor
祐輝 松村
聡 永田
ジン ワン
ラン チン
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2021/040038 priority Critical patent/WO2023073930A1/en
Publication of WO2023073930A1 publication Critical patent/WO2023073930A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices

Definitions

  • the present disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • LTE successor systems for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later
  • 5G 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • NR future wireless communication systems
  • user terminals terminals, user terminals, user equipment (UE)
  • TCI transmission configuration indication
  • the UE considers that the same TCI state (joint TCI state) is applied for UL and DL, or a different state (separate TCI state) is applied for each of UL and DL. It is
  • one object of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can activate an appropriate TCI state.
  • TCI Transmission Configuration Indication
  • DL downlink
  • UL uplink
  • the appropriate TCI state can be activated.
  • FIG. 1A and 1B are diagrams illustrating examples of TCI state settings.
  • FIG. 2 is a diagram of Rel. 16 shows RRC configuration of TCI state and QCL information in V.16.
  • FIG. 3 is a diagram of Rel. 16 shows CSI reporting in X.16;
  • FIG. 4 is a diagram illustrating an example of updating the TCI status in the second embodiment.
  • FIG. 5 is a diagram showing an example of updating the TCI status in the third embodiment.
  • 6A and 6B are diagrams showing an example of updating the TCI state in the ninth embodiment.
  • 7A and 7B are diagrams showing an example of updating the TCI state in the tenth embodiment.
  • FIG. 8 is a diagram illustrating an example of a schematic configuration of a radio communication system according to an embodiment.
  • FIG. 8 is a diagram illustrating an example of a schematic configuration of a radio communication system according to an embodiment.
  • FIG. 9 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • FIG. 10 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
  • FIG. 11 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to one embodiment.
  • FIG. 12 is a diagram illustrating an example of a vehicle according to one embodiment;
  • the UE measures the channel state using a predetermined reference signal (or resource for the reference signal), and feeds back (reports) channel state information (Channel State Information: CSI) to the base station. )do.
  • CSI Channel State Information
  • channel state information reference signal Channel State Information-Reference Signal: CSI-RS
  • CSI-RS Channel State Information-Reference Signal
  • SS Physical Broadcast Channel
  • SS synchronization signal
  • DMRS DeModulation Reference Signal
  • the CSI-RS resource may include at least one of Non Zero Power (NZP) CSI-RS and CSI-Interference Management (IM).
  • the SS/PBCH block is a block containing synchronization signals (e.g., Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS)) and PBCH (and corresponding DMRS), and the SS block ( SSB) or the like.
  • An SSB index may be given for the temporal position of the SSB within the half-frame.
  • CSI includes Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), CSI-RS Resource Indicator (CRI), SS/PBCH block resource indicator ( SS/PBCH Block Indicator: SSBRI), Layer Indicator: LI, Rank Indicator: RI, Layer 1 (L1) - Reference Signal Received Power (RSRP) (reference signal received power in Layer 1), At least one of L1-Reference Signal Received Quality (RSRQ), L1-Signal to Interference plus Noise Ratio (SINR), L1-Signal to Noise Ratio (SNR), etc. may be included.
  • CQI Channel Quality Indicator
  • PMI Precoding Matrix Indicator
  • CRI CSI-RS Resource Indicator
  • SS/PBCH Block Indicator SSBRI
  • Layer Indicator: LI Layer Indicator: LI
  • Rank Indicator: RI Layer 1 (L1) - Reference Signal Received Power (RSRP) (reference signal
  • CSI may have multiple parts.
  • a first part of CSI may contain information with a relatively small number of bits (eg, RI).
  • a second part of CSI (CSI part 2) may include information with a relatively large number of bits (eg, CQI), such as information determined based on CSI part 1.
  • Period CSI Period CSI: P-CSI
  • Aperiodic CSI A (AP)-CSI
  • semi-permanent Targeted Semi-persistent, semi-persistent CSI: SP-CSI
  • the UE notifies information on CSI reporting (may be called CSI report configuration information) using higher layer signaling, physical layer signaling (for example, downlink control information (DCI)) or a combination thereof.
  • CSI report configuration information may be configured using, for example, the RRC information element "CSI-ReportConfig".
  • the higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE MAC Control Element
  • MAC PDU MAC Protocol Data Unit
  • Broadcast information includes, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), Other System Information : OSI).
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI OSI
  • the CSI report configuration information may include, for example, information on the reporting period, offset, etc., and these may be expressed in predetermined time units (slot units, subframe units, symbol units, etc.).
  • the CSI report configuration information may include a configuration ID (CSI-ReportConfigId). Parameters such as the type of CSI reporting method (SP-CSI or not, etc.) and reporting cycle may be specified by the configuration ID.
  • the CSI reporting configuration information may include information (CSI-ResourceConfigId) indicating which signal (or resource for which signal) is used to report the measured CSI.
  • BM beam management
  • Changing (switching) the beam of a signal/channel may correspond to changing the Transmission Configuration Indication state (TCI state) of that signal/channel.
  • TCI state Transmission Configuration Indication state
  • the beam selected by beam selection may be a transmission beam (Tx beam) or a reception beam (Rx beam). Also, the beam selected by beam selection may be a UE beam or a base station beam.
  • the UE may report (transmit) measurement results for beam management using PUCCH or PUSCH.
  • the measurement result may be, for example, CSI including at least one of L1-RSRP, L1-RSRQ, L1-SINR, L1-SNR, and the like.
  • the measurement result may be called a beam measurement, a beam measurement result, a beam report, a beam measurement report, or the like.
  • CSI measurements for beam reporting may include interferometric measurements.
  • the UE may use resources for CSI measurement to measure channel quality, interference, etc. and derive beam reports.
  • the resource for CSI measurement may be, for example, at least one of SS/PBCH block resources, CSI-RS resources, other reference signal resources, and the like.
  • the CSI measurement report configuration information may be configured in the UE using higher layer signaling.
  • a beam report may include the result of at least one of channel quality measurement and interference measurement.
  • the results of channel quality measurements may include, for example, L1-RSRP.
  • the results of the interference measurements may include L1-SINR, L1-SNR, L1-RSRQ, other indicators of interference (eg, any indicator that is not L1-RSRP), and the like.
  • the CSI measurement resource for beam management may be called a beam measurement resource.
  • the CSI measurement target signal/channel may be referred to as a beam measurement signal.
  • CSI measurement/report may be read as at least one of measurement/report for beam management, beam measurement/report, radio link quality measurement/report, and the like.
  • the CSI report configuration information that considers the current NR beam management is included in the RRC information element "CSI-ReportConfig".
  • the information in the RRC information element "CSI-ReportConfig" will be explained.
  • the CSI report configuration information may include report amount information ("report amount”, which may be represented by the RRC parameter "reportQuantity”), which is information on parameters to report.
  • the reporting volume information is the ASN. 1 object type. Therefore, one of the parameters (cri-RSRP, ssb-Index-RSRP, etc.) defined as the report amount information is set.
  • a UE in which a higher layer parameter (eg, RRC parameter "groupBasedBeamReporting") included in the CSI reporting configuration information is set to enabled has multiple beam measurement resource IDs (eg, SSBRI, CRI) for each reporting configuration. , and their corresponding measurements (eg, L1-RSRP) may be included in the beam report.
  • a higher layer parameter eg, RRC parameter "groupBasedBeamReporting”
  • RRC parameter "groupBasedBeamReporting” included in the CSI reporting configuration information has multiple beam measurement resource IDs (eg, SSBRI, CRI) for each reporting configuration. , and their corresponding measurements (eg, L1-RSRP) may be included in the beam report.
  • a UE for which the number of RS resources to be reported is set to one or more by a higher layer parameter (for example, the RRC parameter "nrofReportedRS") included in the CSI report configuration information is one or more beam measurement resources for each report configuration.
  • the IDs and their corresponding one or more measurements may be included in the beam report.
  • the reception processing e.g., reception, demapping, demodulation, decoding
  • transmission processing e.g, at least one of transmission, mapping, precoding, modulation, encoding
  • the TCI state may represent those that apply to downlink signals/channels.
  • the equivalent of TCI conditions applied to uplink signals/channels may be expressed as spatial relations.
  • the TCI state is information about the pseudo-colocation (QCL) of signals/channels, and may be called spatial reception parameters, spatial relation information, or the like.
  • the TCI state may be set in the UE on a channel-by-channel or signal-by-signal basis.
  • QCL is an index that indicates the statistical properties of a signal/channel. For example, when one signal/channel and another signal/channel have a QCL relationship, Doppler shift, Doppler spread, average delay ), delay spread, spatial parameters (e.g., spatial Rx parameter) are identical (QCL with respect to at least one of these). You may
  • the spatial reception parameters may correspond to the reception beams of the UE (eg, reception analog beams), and the beams may be specified based on the spatial QCL.
  • QCL or at least one element of QCL in the present disclosure may be read as sQCL (spatial QCL).
  • QCL types may be defined for the QCL.
  • QCL types AD may be provided with different parameters (or parameter sets) that can be assumed to be the same, and the parameters (which may be called QCL parameters) are shown below: QCL type A (QCL-A): Doppler shift, Doppler spread, mean delay and delay spread, QCL type B (QCL-B): Doppler shift and Doppler spread, QCL type C (QCL-C): Doppler shift and mean delay; • QCL Type D (QCL-D): Spatial reception parameters.
  • CORESET Control Resource Set
  • QCL QCL type D
  • a UE may determine at least one of a transmit beam (Tx beam) and a receive beam (Rx beam) for a signal/channel based on the TCI conditions or QCL assumptions of that signal/channel.
  • Tx beam transmit beam
  • Rx beam receive beam
  • the TCI state may be, for example, information about the QCL between the channel of interest (in other words, the reference signal (RS) for the channel) and another signal (for example, another RS). .
  • the TCI state may be set (indicated) by higher layer signaling, physical layer signaling or a combination thereof.
  • Physical layer signaling may be, for example, downlink control information (DCI).
  • DCI downlink control information
  • Channels for which TCI states or spatial relationships are set are, for example, Physical Downlink Shared Channel (PDSCH), Physical Downlink Control Channel (PDCCH), Physical Uplink Shared Channel It may be at least one of a channel (PUSCH)) and an uplink control channel (Physical Uplink Control Channel (PUCCH)).
  • PDSCH Physical Downlink Shared Channel
  • PDCCH Physical Uplink Control Channel
  • RSs that have a QCL relationship with the channel are, for example, a synchronization signal block (SSB), a channel state information reference signal (CSI-RS), a measurement reference signal (Sounding It may be at least one of a reference signal (SRS)), a tracking CSI-RS (also called a tracking reference signal (TRS)), and a QCL detection reference signal (also called a QRS).
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • Sounding It may be at least one of a reference signal (SRS)), a tracking CSI-RS (also called a tracking reference signal (TRS)), and a QCL detection reference signal (also called a QRS).
  • SRS reference signal
  • TRS tracking reference signal
  • QRS QCL detection reference signal
  • An SSB is a signal block that includes at least one of a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • PBCH Physical Broadcast Channel
  • An SSB may also be called an SS/PBCH block.
  • a QCL type X RS in a TCI state may mean an RS that has a QCL type X relationship with (the DMRS of) a certain channel/signal, and this RS is called a QCL type X QCL source in that TCI state.
  • QCL type A RS is always set for PDCCH and PDSCH, and QCL type D RS may be additionally set. Since it is difficult to estimate Doppler shift, delay, etc. by receiving DMRS one-shot, QCL type A RS is used to improve channel estimation accuracy. QCL type D RS is used for receive beam determination during DMRS reception.
  • TRS 1-1, 1-2, 1-3, 1-4 are transmitted, and TRS 1-1 is notified as QCL type C/D RS depending on the TCI status of PDSCH.
  • the UE can use the information obtained from the past periodic TRS1-1 reception/measurement results for PDSCH DMRS reception/channel estimation.
  • the PDSCH QCL source is TRS1-1 and the QCL target is the PDSCH DMRS.
  • Multi-TRP In NR, one or more transmission/reception points (Transmission/Reception Points (TRP)) (multi TRP (multi TRP (MTRP))) uses one or more panels (multi-panel) to the UE DL transmission is under consideration. It is also being considered that the UE uses one or more panels to perform UL transmissions for one or more TRPs.
  • TRP Transmission/Reception Points
  • MTRP multi TRP
  • a plurality of TRPs may correspond to the same cell identifier (cell identifier (ID)) or may correspond to different cell IDs.
  • the cell ID may be a physical cell ID or a virtual cell ID.
  • Multi-TRPs may be connected by ideal/non-ideal backhauls to exchange information, data, and the like.
  • Different codewords (CW) and different layers may be transmitted from each TRP of the multi-TRP.
  • Non-Coherent Joint Transmission NCJT may be used as one form of multi-TRP transmission.
  • TRP#1 modulate-maps a first codeword and layer-maps a first number of layers (e.g., two layers) with a first precoding to transmit a first PDSCH.
  • TRP#2 also modulates and layer-maps a second codeword to transmit a second PDSCH with a second number of layers (eg, 2 layers) with a second precoding.
  • multiple PDSCHs to be NCJTed may be defined as partially or completely overlapping in at least one of the time and frequency domains. That is, the first PDSCH from the first TRP and the second PDSCH from the second TRP may overlap at least one of time and frequency resources.
  • first PDSCH and second PDSCH are not quasi-co-located (QCL).
  • Reception of multiple PDSCHs may be translated as simultaneous reception of PDSCHs that are not of a certain QCL type (eg, QCL type D).
  • Multiple PDSCHs from multiple TRPs may be scheduled using one DCI (single DCI, single PDCCH) (single master mode, based on single DCI Multi-TRP (single-DCI based multi-TRP)).
  • Multiple PDSCHs from multi-TRP may be scheduled using multiple DCIs (multi-DCI, multiple PDCCH) (multi-master mode, multi-DCI based multi-TRP (multiple PDCCH)). TRP)).
  • PDSCH transport block (TB) or codeword (CW) repetition across multi-TRPs.
  • repetition schemes URLLC schemes, eg schemes 1, 2a, 2b, 3, 4
  • SDM space division multiplexed
  • FDM frequency division multiplexed
  • RV redundancy version
  • the RVs may be the same or different for the multi-TRPs.
  • multiple PDSCHs from multiple TRPs are time division multiplexed (TDM).
  • TDM time division multiplexed
  • multiple PDSCHs from multiple TRPs are transmitted within one slot.
  • multiple PDSCHs from multiple TRPs are transmitted in different slots.
  • one control resource set (CORESET) in PDCCH configuration information (PDCCH-Config) may correspond to one TRP.
  • the UE may determine multi-TRP based on multi-DCI if at least one of the following conditions 1 and 2 is met: In this case, TRP may be read as a CORESET pool index.
  • TRP may be read as a CORESET pool index.
  • a CORESET pool index of 1 is set.
  • Two different values (eg, 0 and 1) of the CORESET pool index are set.
  • the UE may determine multi-TRP based on single DCI if the following conditions are met: In this case, two TRPs may be translated into two TCI states indicated by MAC CE/DCI. [conditions] "Enhanced TCI States Activation/Deactivation for UE- specific PDSCH MAC CE)” is used.
  • DCI for common beam indication may be a UE-specific DCI format (e.g., DL DCI format (e.g., 1_1, 1_2), UL DCI format (e.g., 0_1, 0_2)), or a UE group common (UE-group common) DCI format.
  • DL DCI format e.g., 1_1, 1_2
  • UL DCI format e.g., 0_1, 0_2
  • UE group common UE-group common
  • the unified TCI framework allows UL and DL channels to be controlled by a common framework.
  • the unified TCI framework is Rel. Instead of defining TCI conditions or spatial relationships per channel as in 15, a common beam (common TCI condition) may be indicated and applied to all channels in the UL and DL, or for the UL A common beam may be applied to all channels in the UL and a common beam for the DL may be applied to all channels in the DL.
  • One common beam for both DL and UL, or a common beam for DL and a common beam for UL (two common beams in total) are being considered.
  • the UE may assume the same TCI state (joint TCI state, joint TCI pool, joint common TCI pool, joint TCI state set) for UL and DL.
  • the UE has separate TCI states for each of UL and DL (separate TCI state, separate TCI pool, UL separate TCI pool and DL separate TCI pool, separate common TCI pool, UL common TCI pool and DL common TCI pool). can be assumed.
  • the UL and DL default beams may be aligned by MAC CE-based beam management (MAC CE level beam designation).
  • the PDSCH default TCI state may be updated to match the default UL beam (spatial relationship).
  • DCI-based beam management may indicate common beam/unified TCI state from the same TCI pool for both UL and DL (joint common TCI pool, joint TCI pool, set).
  • X (>1) TCI states may be activated by MAC CE.
  • the UL/DL DCI may select 1 out of X active TCI states.
  • the selected TCI state may apply to both UL and DL channels/RS.
  • the TCI pool (set) may be a plurality of TCI states set by RRC parameters, or a plurality of TCI states activated by MAC CE (active TCI state, active TCI pool, set).
  • Each TCI state may be a QCL type A/D RS.
  • SSB, CSI-RS, or SRS may be set as QCL type A/D RS.
  • the number of TCI states corresponding to each of one or more TRPs may be defined. For example, the number N ( ⁇ 1) of TCI states (UL TCI states) applied to UL channels/RSs and the number M ( ⁇ 1) of TCI states (DL TCI states) applied to DL channels/RSs and may be defined. At least one of N and M may be signaled/configured/indicated to the UE via higher layer signaling/physical layer signaling.
  • the UE has X UL and DL common TCI states (corresponding to X TRPs) (joint TCI status) is signaled/set/indicated.
  • N X (X is an arbitrary integer)
  • X (X TRPs) and Y DL TCI states are signaled/set/indicated.
  • the UL TCI state and the DL TCI state may mean a TCI state common to UL and DL (i.e., joint TCI state), or may mean a TCI state for each of UL and DL (i.e., separate TCI state).
  • the UE is notified/configured/instructed of a TCI state common to multiple (two) UL and DL for multiple (two) TRPs (joint TCI state for multiple TRPs).
  • multiple (two) UL TCI states and multiple (two) DL TCI states for multiple (two) TRPs State may mean signaled/set/indicated (separate TCI state for multiple TRPs).
  • the UE may use the two configured/indicated TCI states as the UL TCI state, and use one of the two configured/indicated TCI states as the DL TCI state.
  • N and M are 1 or 2
  • N and M may be 3 or more, and N and M may be different.
  • the case of M>1/N>1 may indicate at least one of TCI status indications for multiple TRPs and multiple TCI status indications for inter-band CA.
  • RRC parameters configure multiple TCI states for both DL and UL.
  • the MAC CE may activate multiple TCI states out of multiple configured TCI states.
  • a DCI may indicate one of multiple TCI states that have been activated.
  • DCI may be UL/DL DCI.
  • the indicated TCI conditions may apply to at least one (or all) of the UL/DL channels/RSs.
  • One DCI may indicate both UL TCI and DL TCI.
  • one point may be one TCI state that applies to both UL and DL, or two TCI states that apply to UL and DL respectively.
  • At least one of the multiple TCI states set by the RRC parameters and the multiple TCI states activated by the MAC CE may be called a TCI pool (common TCI pool, joint TCI pool, TCI state pool). good.
  • Multiple TCI states activated by a MAC CE may be called an active TCI pool (active common TCI pool).
  • RRC parameters higher layer parameters that configure multiple TCI states
  • configuration information that configures multiple TCI states, or simply "configuration information.”
  • to indicate one of the plurality of TCI states using the DCI may be receiving indication information indicating one of the plurality of TCI states included in the DCI. , it may simply be to receive "instruction information”.
  • the RRC parameters configure multiple TCI states (joint common TCI pools) for both DL and UL.
  • the MAC CE may activate multiple TCI states (active TCI pool) out of multiple configured TCI states. Separate active TCI pools for each of the UL and DL may be configured/activated.
  • a DL DCI or a new DCI format may select (indicate) one or more (eg, one) TCI states.
  • the selected TCI state may be applied to one or more (or all) DL channels/RS.
  • the DL channel may be PDCCH/PDSCH/CSI-RS.
  • the UE uses Rel.
  • a 16 TCI state operation (TCI framework) may be used to determine the TCI state for each channel/RS in the DL.
  • a UL DCI or new DCI format may select (indicate) one or more (eg, one) TCI states.
  • the selected TCI state may be applied to one or more (or all) UL channels/RS.
  • the UL channel may be PUSCH/SRS/PUCCH.
  • different DCIs may indicate UL TCI and DL DCI separately.
  • the existing DCI format 1_1/1_2 may be used to indicate common TCI status.
  • a common TCI framework may have separate TCI states for DL and UL.
  • FIG. 2 is a diagram of Rel. 16 shows RRC configuration of TCI state and QCL information in V.16.
  • FIG. 1 As the TCI state, a TCI state ID (tci-StateId) and QCL types 1 and 2 (qcl-Type1,2) are set.
  • QCL information (QCL-Info) corresponds to QCL types 1 and 2, respectively.
  • the QCL information includes cell, BWP ID (bwp-Id), reference signal (csi-rs, ssb), and QCL type.
  • TCI states may correspond to different PCI SSBs.
  • FIG. 3 is a diagram of Rel. 16 shows CSI reporting in X.16; FIG. As shown in FIG. 3, the CSI report includes CRI or SSBRI, L1-RSRP/L1-SINR value, Differential L1-RSRP/L1-SINR/value.
  • L1 beam reporting/measurement enhancements to CSI (L1 beam) reporting/measurement are being considered.
  • L1 beam reporting/measurement for cells with different PCIs is being considered for enhancement of DL L1 beam reporting in inter-cell beam management.
  • Rel. For enhancement of DL group-based L1 beam reporting in 17 multi-TRP beam management, the UE can receive up to 4 beam groups (2 beams in each group) and receive beams within a group simultaneously. good too. Also, in order to deal with the UL Maximum Permitted Exposure (MPE) problem, Rel. Power Management Maximum Power Reduction (P-MPR) value added in Power Headroom Report (PHR) MAC CE SSBRI/CRI for enhancement of UL L1 beam reporting in 17 good.
  • P-MPR Power Management Maximum Power Reduction
  • PHR Power Headroom Report
  • the DL/UL active beam/TCI states need to be updated separately.
  • a detailed design has not been clarified for activation of the TCI state when at least one of assumption 1 (joint TCI state) or assumption 2 (separate TCI state) is applied. For example, configuration from the base station or reporting by the UE is not clear. This may result in poor communication throughput due to the proper TCI state not being activated.
  • the inventors have conceived a method by which the appropriate TCI state can be activated.
  • A/B and “at least one of A and B” may be read interchangeably. Also, in the present disclosure, “A/B/C” may mean “at least one of A, B and C.”
  • activate, deactivate, indicate (or indicate), select, configure, update, determine, report, etc. may be read interchangeably.
  • supporting, controlling, controllable, operating, capable of operating, etc. may be read interchangeably.
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages higher layer parameters
  • information elements IEs
  • settings etc.
  • MAC Control Element CE
  • update command activation/deactivation command, etc.
  • higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC signaling may use, for example, MAC Control Element (MAC CE), MAC Protocol Data Unit (PDU), and the like.
  • Broadcast information includes, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), and other system information ( It may be Other System Information (OSI).
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Remaining Minimum System Information
  • OSI System Information
  • the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), or the like.
  • DCI downlink control information
  • UCI uplink control information
  • indices, identifiers (ID), indicators, resource IDs, etc. may be read interchangeably.
  • sequences, lists, sets, groups, groups, clusters, subsets, etc. may be read interchangeably.
  • DMRS Demodulation reference signal
  • DMRS port group e.g., spatial relationship group, Code Division Multiplexing (CDM) group, reference signal group, CORESET group, Physical Uplink Control Channel (PUCCH) group, PUCCH resource group), resource (e.g., reference signal resource, SRS resource), resource set (for example, reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), unified TCI State (unified TCI state), common TCI state (common TCI state), Quasi-Co-Location (QCL), QCL assumption, etc. may be read interchangeably.
  • TCI state downlink Transmission Configuration Indication state
  • DL TCI state uplink TCI state
  • UL TCI state uplink TCI state
  • unified TCI State unified TCI state
  • common TCI state common TCI state
  • QCL Quasi-Co-Location
  • beams, spatial domain filters, spatial settings, TCI states, UL TCI states, unified TCI states, unified beams, common TCI states, common beams, TCI assumptions, QCL assumptions, QCL parameters, spatial Domain Receive Filter, UE Spatial Domain Receive Filter, UE Receive Beam, DL Beam, DL Receive Beam, DL Precoding, DL Precoder, DL-RS, TCI State/QCL Assumed QCL Type D RS, TCI State/QCL Assumed QCL type A RS, spatial relationship, spatial domain transmit filter, UE spatial domain transmit filter, UE transmit beam, UL beam, UL transmit beam, UL precoding, UL precoder, PL-RS may be read interchangeably.
  • QCL type X-RS, DL-RS associated with QCL type X, DL-RS with QCL type X, source of DL-RS, SSB, CSI-RS, SRS may be read interchangeably. good.
  • multi-TRP channels with multi-TRP, channels with multiple TCI state/spatial relationships, multi-TRP enabled by RRC/DCI, multiple TCI state/spatial relationships enabled by RRC/DCI and at least one of multi-TRP based on a single DCI and multi-TRP based on multiple DCIs
  • multi-TRPs based on multi-DCI setting a CORESET pool index (CORESETPoolIndex) value of 1 for a CORESET, may be read interchangeably.
  • multiple TRPs based on a single DCI, where at least one codepoint of a TCI field is mapped to two TCI states may be read interchangeably.
  • single DCI sDCI
  • single PDCCH multi-TRP system based on single DCI
  • sDCI-based MTRP activating two TCI states on at least one TCI codepoint
  • multi-DCI multi-PDCI
  • multi-PDCCH multi-PDCCH
  • multi-TRP system based on multi-DCI
  • Rel.XX indicates the release number of 3GPP.
  • the number “XX” is an example and may be replaced with another number.
  • the L1 beam report, beam report, and CSI report may be read interchangeably.
  • Reports, measurements, and instructions may be read interchangeably.
  • Activating/deactivating the TCI state and updating the TCI state may be read interchangeably.
  • the UE shall indicate that activation/deactivation of the TCI state is initiated by the UE by means of RRC/MAC CE/DCI if the same TCI state (joint DL/UL TCI state) is applied for DL and UL.
  • a specific setting may be received from the base station to enable/disable the .
  • the specific setting may be a setting for each case (combination of M and N), or one setting may correspond to a plurality of cases.
  • the UE may initiate TCI state activation.
  • the function of UE-initiated TCI state activation/deactivation may be referred to as a specific function.
  • Activating/deactivating a TCI state may indicate updating an active TCI state.
  • the events (conditions) for activating/reporting beam/TCI status may be predefined in the specification or may be set/directed by higher layer/physical layer signaling.
  • An event is, for example, that the current beam intensity becomes worse than the intensity of another beam.
  • RACH Random Access Channel
  • CBRA Contention-based Random Access
  • CFRA Contention-Free Random Access
  • SR Scheduling Request
  • the UE may send the specific report separately from other information.
  • the UE may, for example, send a new MAC CE indicating that certain features are enabled/disabled.
  • the UE may send the specific report along with information indicating recommended beams.
  • the recommended beam may be, for example, the best (most intense) beam determined based on beam strength (eg, RSRP, SINR).
  • the UE may, for example, add a specific report (indication, indication, field) to the existing L1 beam report to indicate whether the reported L1 beam is for active TCI state update (active TCI state used for updating/directing).
  • the UE may send the specific report with information indicating the recommended TCI state.
  • the UE may, for example, send a new report containing specific reports and recommended TCI states.
  • the new report may indicate whether the recommended TCI status is for updating the active TCI status (whether it is used to update/indicate the active TCI status).
  • the recommended TCI state may correspond to the recommended beams described above. Therefore, the method for determining the recommended TCI state may be similar to the method for determining the recommended beam.
  • the UE may not send specific reports as explicit information, but may send implicit information corresponding to specific reports.
  • the UE may, for example, transmit only the recommended TCI states.
  • the reported recommended TCI state may be meant for (used to update) the active TCI state.
  • the UE may, for example, only transmit L1 beam reports. It may be implied that the reported L1 beam reports are for active TCI state updates (used for active TCI state updates).
  • the UE can activate the appropriate TCI state by initiating activation/deactivation of the TCI state.
  • ⁇ Second embodiment> The UE updates the i (first number) active TCI states to the new p (second number) active TCI states based on the DL L1 beam reports (CSI reports) (e.g., j beam reports). It may update to the TCI status.
  • FIG. 4 is a diagram showing an example of TCI state update in the second embodiment.
  • i TCI states are updated to p active TCI states by j beam reports.
  • the first TCI state (1st TCI state) is, for example, the best TCI state (eg, the TCI state corresponding to the largest L1-RSRP/SINR value). Note that the best TCI conditions may be the same as the recommended TCI conditions described above.
  • the UE may update the i active TCI states to associate with each i beam.
  • the UE updates, for example, to associate the 1st/last TCI state with the 1st beam (SSB/CSI-RS) and the 2nd/penultimate TCI state with the 2nd beam (SSB/CSI-RS).
  • ⁇ RS) and the kth/i ⁇ k+1th TCI state may be updated to associate with the kth beam (SSB/CSI-RS).
  • SSB and SSBRI may be read interchangeably.
  • CSI-RS and CRI may be read interchangeably.
  • RS Reference Signal
  • SSB SSB/CSI-RS
  • the UE may update RSs in both QCL type 1 and QCL type 2 in TCI state (if both RSs are present).
  • the UE may update the RS in either QCL type 1 and QCL type 2 of the TCI state.
  • This RS may be accompanied by a specific QCL type.
  • the specific QCL type may be QCL type D or any other QCL type.
  • the UE does not update the RS corresponding to the i TCI states, but may seek (determine/identify) the TCI states from the RRC-configured TCI pool.
  • the UE may for example find (determine/identify) up to j TCI states that are QCL related to the reported beams from the RRC configured TCI pool.
  • the UE can appropriately update the active TCI states regardless of the number of active TCI states.
  • the UE may update the i (first number) active TCI states to the new p (second number) active TCI states based on the new report of the recommended TCI states.
  • the TCI states may be j TCI states, for example, the TCI states in options 1-3 and 1-4 of the first embodiment.
  • FIG. 5 is a diagram showing an example of updating the TCI status in the third embodiment.
  • i TCI states are updated to p active TCI states by reported j TCI states.
  • the first TCI state (1st TCI state) is, for example, the best TCI state (eg, the TCI state corresponding to the largest L1-RSRP/SINR value).
  • the UE may make the new report via the RRC IE/MAC CE/UCI.
  • the configuration of MAC CE may be similar to the configuration of existing MAC CE regarding activation/deactivation of the TCI state of PDSCH.
  • the new report may be a P/SP/AP-CSI report (eg L1 beam) or an event-triggered beam report.
  • event-based beam reporting, event occurrence-based beam reporting, event-triggered beam reporting, and event triggered beam reporting may be read interchangeably.
  • the UE may transmit (report) the new report separately from the existing (other) reports, or transmit (report) it together with the existing (other) reports.
  • Either of the following options 3-1 and 3-2 may be applied to updating the state of the TCI in this embodiment.
  • the UE may, for example, update the first reported TCI state as the first active TCI state.
  • the UE can appropriately update the active TCI states regardless of the number of active TCI states.
  • At least one of the following options 4-1 to 4-3 may be applied for the timing (timeline) at which the UE applies the updated P active TCI states.
  • a specific period of time eg, x slots/minislots/symbols
  • the timing is a specific period (e.g., x slots /minislot/symbol).
  • x may be, for example, the number of symbols from the last symbol of PDCCH reception with a particular DCI format.
  • a particular DCI format schedules PUSCH transmissions corresponding to the same HARQ process number as the HARQ process number for the first PUSCH transmission that carries the beam/TCI status report, and has toggled NDI field values.
  • the timing may be a certain time period (eg, x slots/minislots/symbols) after the timing at which the UE receives the response from the base station for confirmation.
  • the response may be, for example, a new MAC CE, a new DCI (e.g. DCI with new fields, a DCI with a specific DCI format, or a DCI with a specific RNTI, etc.), or a new beam indication (TCI state activation/indication etc.).
  • the updated active TCI state can be applied at appropriate timing.
  • the i active TCI states before update corresponding to PDSCH/PUSCH are i sets of TCI states activated by MAC CE, each set with one Or it may contain two TCI states.
  • the UE may use the two beams of each group in group-based beam reporting to update the two TCI states of each set.
  • the UE may update one TCI state for each set using beams for non-group based beam reporting.
  • the UE may use two separate non-group based beam reports.
  • the UE may update the first TCI state of each set based on the first beam report and update the second TCI state of each set based on the second beam report.
  • the UE may report p sets of TCI states via RRC/MAC CE/UCI. There may be one or two TCI states in each set.
  • the i active TCI states corresponding to PDSCH/PUSCH are updated/configured per CORESET pool index. For example, in all TRPs, up to 2i active TCI states are updated/set.
  • the UE may use the two beams of each group from the group-based beam report to update the TCI state corresponding to each CORESET pool index.
  • two separate non-group based beam reports may be used.
  • the UE may update the TCI state corresponding to the CORESET pool index based on each beam report.
  • the UE may report p TCI states corresponding to each CORESET pool index by RRC/MAC CE/UCI. For example, up to 2p TCI states are reported for all TRPs.
  • the 2p TCI states may be included in one report or may be included in separate reports corresponding to different TRPs.
  • the active TCI state can be indicated appropriately even when multi-TRP is applied.
  • the UE may activate/deactivate DL/UL TCI state by RRC/MAC CE/DCI if different TCI states are applied for DL and UL respectively (separate DL/UL TCI state).
  • a specific setting may be received from the base station to enable/disable UE-initiated. Initiation may be translated into determination/reporting.
  • the UE may initiate TCI state activation.
  • the UE reports specific reporting via RRC IE/MAC CE/UCI/RACH (CBRA/CFRA)/SR indicating whether to enable/disable UE initiated activation of UL/DL TCI states. You may send. Differences between the processing of the present embodiment to which Assumption 2 is applied and the processing of the first embodiment will be mainly described below.
  • the UE may be configured/indicated by the base station and reported by the UE for DL/UL TCI state activation separately for DL/UL.
  • the setting/instruction by the base station is, for example, the specific setting of the first embodiment.
  • the reporting by the UE may be, for example, the specific reporting in the first embodiment, the reporting in the second/third embodiments.
  • the UE may send different reports, or in different formats/signaling designs, for DL beam/TCI status and UL beam/TCI status.
  • the second/third embodiment may be used for DL beam/TCI status reporting.
  • the seventh/eighth embodiments which will be described later, may be applied to the reporting of the UL beam/TCI status.
  • Option 6-2 There may be one configuration/indication by the base station, reporting by the UE for activation of DL/UL (both) TCI states.
  • the UE may send both the DL beam/TCI status and the UL beam/TCI status in one report.
  • the ninth/tenth embodiments described later may be applied.
  • the UE can activate the appropriate TCI state by initiating activation/deactivation of the TCI state.
  • the UE reports i (first number) UL active TCI states based on at least one of UL L1 beam reports (CSI reports), PHR, MPE reports (for example, corresponding to j UL beams). It may update to the new p (second number) UL active TCI states.
  • the UE may update the TCI state corresponding to the beam with the highest PH value to the active TCI state.
  • the UE may update the TCI state corresponding to the beam satisfying the MPE requirements to the active TCI state.
  • the UE may, for example, transmit UL L1 beam reports using the CSI reporting framework, or may transmit using MAC CE together with PHR/MPE.
  • the UE may report (transmit) MAC CE, etc. information indicating beams that satisfy the MPE requirements (MPE safe beams). The UE may then select a beam to use from beams that satisfy the MPE requirements.
  • MPE-safe beams may be referred to as MPE-compatible beams.
  • Measurements/reports on MPE safe beams may be referred to as MPE safe beam measurements/reports, novel beam measurements/reports.
  • the UE determines beams that do not work for MPE (has MPE problems, does not meet MPE requirements), and the selected beam (e.g., the beam indicated by the instructions from the base station) is determined not to meet MPE requirements. If so, the beam to use may be re-selected (re-determined) based on values based on the MPE requirements.
  • the UL beam reporting setting and the DL beam reporting setting may be separated.
  • the UE may receive a first information element containing the UL beam report configuration and a second CSI information element containing the DL beam report configuration and different from the first information element via higher layer signaling.
  • Information elements are, for example, CSI reporting settings.
  • the UE may receive DL beam reporting configuration (joint beam measurement/reporting configuration for UL and DL) along with UL beam reporting configuration.
  • DL beam reporting configuration joint beam measurement/reporting configuration for UL and DL
  • the UE may receive one information element containing both UL beam reporting configuration and DL beam reporting configuration via higher layer signaling.
  • UL beam reporting may be supported in addition to DL beam reporting (eg L1-RSRP or L1-SINR). That is, UL beam reporting may be configured only if DL beam reporting is configured.
  • the second embodiment may be reused for the update method from i TCI states to p TCI states based on j UL beams.
  • an appropriate TCI state can be activated by considering L1 beam reports (CSI reports), PHR, and MPE reports.
  • CSI reports L1 beam reports
  • PHR PHR
  • MPE reports MPE reports
  • the UE replaces the i (first number) active UL TCI states with the new p (second number) active UL TCI states based on the new report of the UL recommended TCI states (eg, j). status may be updated.
  • the UE may make the new report via the RRC IE/MAC CE/UCI.
  • the configuration of MAC CE may be similar to the configuration of existing MAC CE regarding activation/deactivation of the TCI state of PDSCH.
  • the new report may be a P/SP/AP-CSI report (eg L1 beam) or an event-triggered beam report.
  • event-based beam reporting, event-occurrence-based beam reporting, event-triggered beam reporting, and event-triggered beam reporting may be read interchangeably.
  • the UE may transmit (report) the new report separately from the existing (other) reports, or transmit (report) it together with the existing (other) reports.
  • the processing of this embodiment may reuse the processing of the third embodiment on the premise of Assumption 2 above. According to this embodiment, the UE can properly update the active TCI states regardless of the number of active TCI states.
  • UE updates i1 active DL TCI states to new p1 based on DL L1 beam report (corresponding to j1 beams) and UL L1 beam report (corresponding to j2 beams) sent as one report active DL TCI states (see FIG. 6A), and the i2 active UL TCI states may be updated to the new p2 active UL TCI states (see FIG. 6B).
  • the second embodiment may be reused on the premise of Assumption 2 above.
  • the TCI state of the second embodiment may be read as at least one of the DL TCI state and the UL TCI state.
  • the UE can appropriately update the active TCI states regardless of the number of active TCI states.
  • ⁇ Tenth Embodiment> Based on the DL TCI status report (corresponding to j1 TCI states) and the UL TCI status report (corresponding to j2 TCI states) sent by the UE as one RRC IE/MAC CE/UCI report, Even if i1 active DL TCI states are updated to new p1 active DL TCI states (see FIG. 7A) and i2 active UL TCI states are updated to new p2 active UL TCI states. Good (see Figure 7B).
  • the reported DL TCI status, UL TCI status may be the recommended DL TCI status, recommended UL TCI status.
  • the processing of this embodiment may reuse the processing of the third embodiment on the premise of Assumption 2 above.
  • the TCI state of the third embodiment may be read as at least one of the DL TCI state and the UL TCI state.
  • the UE may report a TCI state corresponding to both DL and UL, a TCI state corresponding to DL only, and a TCI state corresponding to UL only, respectively. good.
  • the UE can appropriately update the active TCI states regardless of the number of active TCI states.
  • the fourth embodiment may be applied to DL TCI state and UL TCI state respectively. If DL/UL beam/TCI status is reported in one report, the fourth embodiment may be applied to DL beam/TCI status and UL beam/TCI status simultaneously.
  • the updated active TCI state can be applied at appropriate timing.
  • the i1 active DL TCI states before update are the i1 sets of DL TCI states activated by the MAC CE, each set corresponding to one or two TCI states. You may have
  • the i2 active UL TCI states before update are the i2 sets of active UL TCI states by the MAC CE, each set corresponding to one or two TCI states.
  • i1 active DL TCI states or i2 active UL TCI states corresponding to PDSCH/PUSCH are updated/configured per CORESET pool index. For example, up to 2i1 active DL TCI states or up to 2i2 active UL TCI states are updated/set in all TRPs.
  • the fifth embodiment may be reused.
  • the TCI state of the fifth embodiment may be at least one of the UL TCI state and the DL TCI state.
  • the active TCI state can be indicated appropriately even when multi-TRP is applied.
  • the UE may send (report) UE capability information to the network (base station) indicating whether it supports at least one of the examples in this disclosure. At least one of the examples in this disclosure may only apply to UEs that have sent specific UE capability information or support the specific UE capability. Also, the UE may receive information via higher layer/physical layer signaling indicating at least one of the examples in this disclosure. The information may correspond to UE capability information sent by the UE.
  • the UE capability information may be, for example, at least one of (1) to (5) below.
  • the base station eg, gNB
  • RRC/MAC CE/DCI e.g. configuration by RRC/MAC CE/DCI.
  • the report is a P/SP/AP CSI report or an event-triggered beam report. For separate DL/UL TCI, one report for DL/UL or separate reports?
  • Restrictions on i, p, j for joint DL/UL TCI), i1, p1, j1, i2, p2, j2 (for separate DL/UL TCI).
  • i, p, j for joint DL/UL TCI
  • i1, p1, j1, i2, p2, j2 for separate DL/UL TCI.
  • wireless communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the radio communication methods according to the above embodiments of the present disclosure or a combination thereof.
  • FIG. 8 is a diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
  • LTE Long Term Evolution
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • LTE Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB) )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB)
  • gNB NR base stations
  • a wireless communication system 1 includes a base station 11 forming a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) arranged in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. You may prepare.
  • a user terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminals 20 are not limited to the embodiment shown in the figure.
  • the base stations 11 and 12 are collectively referred to as the base station 10 when not distinguished.
  • the user terminal 20 may connect to at least one of the multiple base stations 10 .
  • the user terminal 20 may utilize at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)).
  • Macrocell C1 may be included in FR1, and small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a plurality of base stations 10 may be connected by wire (for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is an IAB Also called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 directly or via another base station 10 .
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication schemes such as LTE, LTE-A, and 5G.
  • a radio access scheme based on orthogonal frequency division multiplexing may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a radio access method may be called a waveform.
  • other radio access schemes for example, other single-carrier transmission schemes and other multi-carrier transmission schemes
  • the UL and DL radio access schemes may be used as the UL and DL radio access schemes.
  • a downlink shared channel Physical Downlink Shared Channel (PDSCH)
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • an uplink shared channel (PUSCH) shared by each user terminal 20 an uplink control channel (PUCCH), a random access channel (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, higher layer control information, and the like may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) including scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CControl Resource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource searching for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates.
  • a CORESET may be associated with one or more search spaces. The UE may monitor CORESETs associated with certain search spaces based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • PUCCH channel state information
  • acknowledgment information for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • SR scheduling request
  • a random access preamble for connection establishment with a cell may be transmitted by the PRACH.
  • downlink, uplink, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical" to the head.
  • synchronization signals SS
  • downlink reference signals DL-RS
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS)), Phase Tracking Reference Signal (PTRS)), etc.
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • DMRS Demodulation reference signal
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS Block (SSB), and so on.
  • SS, SSB, etc. may also be referred to as reference signals.
  • DMRS may also be called a user terminal-specific reference signal (UE-specific reference signal).
  • FIG. 9 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • the base station 10 comprises a control section 110 , a transmission/reception section 120 , a transmission/reception antenna 130 and a transmission line interface 140 .
  • One or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission line interface 140 may be provided.
  • this example mainly shows the functional blocks that characterize the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the base station 10 as a whole.
  • the control unit 110 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (eg, resource allocation, mapping), and the like.
  • the control unit 110 may control transmission/reception, measurement, etc. using the transmission/reception unit 120 , the transmission/reception antenna 130 and the transmission line interface 140 .
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer them to the transmission/reception unit 120 .
  • the control unit 110 may perform call processing (setup, release, etc.) of communication channels, state management of the base station 10, management of radio resources, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121 , a radio frequency (RF) section 122 and a measuring section 123 .
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212 .
  • the transmitting/receiving unit 120 is configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
  • the transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of the transmission processing section 1211 and the RF section 122 .
  • the receiving section may be composed of a reception processing section 1212 , an RF section 122 and a measurement section 123 .
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (DFT) on the bit string to be transmitted. Processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-to-analog conversion may be performed, and the baseband signal may be output.
  • channel coding which may include error correction coding
  • modulation modulation
  • mapping mapping
  • filtering filtering
  • DFT discrete Fourier transform
  • DFT discrete Fourier transform
  • the transmitting/receiving unit 120 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 130. .
  • the transmitting/receiving unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmission/reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, Fast Fourier transform (FFT) processing, and Inverse Discrete Fourier transform (IDFT) processing on the acquired baseband signal. )) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing. User data and the like may be acquired.
  • FFT Fast Fourier transform
  • IDFT Inverse Discrete Fourier transform
  • the transmitting/receiving unit 120 may measure the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)) , signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), and the like may be measured.
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • RSSI Received Signal Strength Indicator
  • channel information for example, CSI
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, etc., and user data (user plane data) for the user terminal 20, control plane data, and the like. Data and the like may be obtained, transmitted, and the like.
  • the transmitter and receiver of the base station 10 in the present disclosure may be configured by at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission line interface 140.
  • the transmitter/receiver 120 enables activation of the TCI state to be initiated by the UE when the same Transmission Configuration Indication (TCI) state is applied for the downlink (DL) and uplink (UL). Or you may send specific settings to disable.
  • the control unit 110 may control transmission and reception based on the TCI state activated by the terminal.
  • Transceiver 120 may receive a specific report indicating whether to enable or disable UE-initiated activation of the TCI state.
  • Transmitter/receiver 120 activates at least one of the UL and DL TCI states when different Transmission Configuration Indication (TCI) states apply to each of the downlink (DL) and uplink (UL).
  • TCI Transmission Configuration Indication
  • a specific setting may be sent to enable or disable UE-initiated activation.
  • the control unit 110 may control transmission and reception based on the TCI state activated by the terminal.
  • FIG. 10 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment.
  • the user terminal 20 includes a control section 210 , a transmission/reception section 220 and a transmission/reception antenna 230 .
  • One or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the user terminal 20 as a whole.
  • the control unit 210 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230 .
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transmission/reception unit 220 .
  • the transmitting/receiving section 220 may include a baseband section 221 , an RF section 222 and a measurement section 223 .
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212 .
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure.
  • the transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of a transmission processing section 2211 and an RF section 222 .
  • the receiving section may include a reception processing section 2212 , an RF section 222 and a measurement section 223 .
  • the transmitting/receiving antenna 230 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
  • the transmitter/receiver 220 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), MAC layer processing (for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing on a bit string to be transmitted. , precoding, digital-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
  • Whether or not to apply DFT processing may be based on transform precoding settings. Transmitting/receiving unit 220 (transmission processing unit 2211), for a certain channel (for example, PUSCH), if transform precoding is enabled, the above to transmit the channel using the DFT-s-OFDM waveform
  • the DFT process may be performed as the transmission process, or otherwise the DFT process may not be performed as the transmission process.
  • the transmitting/receiving unit 220 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (error correction) on the acquired baseband signal. decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmitting/receiving section 220 may measure the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measuring unit 223 may measure received power (eg, RSRP), received quality (eg, RSRQ, SINR, SNR), signal strength (eg, RSSI), channel information (eg, CSI), and the like.
  • the measurement result may be output to control section 210 .
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be configured by at least one of the transmitter/receiver 220 and the transmitter/receiver antenna 230 .
  • the transceiver 220 enables activation of the TCI state to be initiated by the UE. Or it may receive specific settings to override. Controller 210 may initiate activation of the TCI state. Transceiver 220 may transmit a specific report indicating whether to enable or disable UE-initiated activation of the TCI state.
  • TCI Transmission Configuration Indication
  • the controller 210 may update the first number of active TCI states to the new second number of active TCI states based on the channel state information (CSI) report.
  • CSI channel state information
  • the control unit 210 may update the first number of active TCI states to a new second number of active TCI states based on the TCI state report.
  • Transmitter/receiver 220 activates at least one of the TCI states of UL and DL when different Transmission Configuration Indication (TCI) states apply to each of downlink (DL) and uplink (UL).
  • TCI Transmission Configuration Indication
  • Controller 210 may initiate activation of the TCI state.
  • the transceiver 220 may transmit a specific report indicating whether to enable or disable UE initiated activation of at least one of the UL and DL TCI states.
  • the control unit 210 determines the first number of active UL TCI states based on at least one of a UL channel state information (CSI) report, a Power Headroom Report (PHR), and a Maximum Permitted Exposure (MPE) report, It may update to a second number of new active UL TCI states.
  • CSI UL channel state information
  • PHR Power Headroom Report
  • MPE Maximum Permitted Exposure
  • the control unit 210 may update the first number of active UL TCI states to a new second number of active UL TCI states based on the reporting of the UL TCI states.
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • function includes judgment, decision, determination, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deem , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (component) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 11 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to one embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • processor 1001 may be implemented by one or more chips.
  • predetermined software program
  • the processor 1001 performs calculations, communication via the communication device 1004 and at least one of reading and writing data in the memory 1002 and the storage 1003 .
  • the processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission/reception unit 120 220
  • FIG. 10 FIG. 10
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 (210) may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
  • the memory 1002 is a computer-readable recording medium, such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), or at least any other suitable storage medium. may be configured by one.
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD), for example. may be configured to include
  • the transmitting/receiving unit 120 (220), the transmitting/receiving antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a signal may also be a message.
  • a reference signal may be abbreviated as RS, and may also be called a pilot, a pilot signal, etc., depending on the applicable standard.
  • a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may consist of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that make up a radio frame may be called a subframe.
  • a subframe may consist of one or more slots in the time domain.
  • a subframe may be of a fixed length of time (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration , a particular filtering process performed by the transceiver in the frequency domain, a particular windowing process performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may also be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (PUSCH) Mapping Type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • an RB may contain one or more symbols in the time domain and may be 1 slot, 1 minislot, 1 subframe or 1 TTI long.
  • One TTI, one subframe, etc. may each be configured with one or more resource blocks.
  • One or more RBs are Physical Resource Block (PRB), Sub-Carrier Group (SCG), Resource Element Group (REG), PRB pair, RB Also called a pair.
  • PRB Physical Resource Block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair RB Also called a pair.
  • a resource block may be composed of one or more resource elements (Resource Element (RE)).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP for UL
  • BWP for DL DL BWP
  • One or multiple BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • information, signals, etc. can be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
  • Information, signals, etc. may be input and output through multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Input and output information, signals, etc. may be overwritten, updated or appended. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to other devices.
  • Uplink Control Information (UCI) Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of predetermined information is not limited to explicit notification, but implicit notification (for example, by not notifying the predetermined information or by providing another information by notice of
  • the determination may be made by a value (0 or 1) represented by 1 bit, or by a boolean value represented by true or false. , may be performed by numerical comparison (eg, comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) , a server, or other remote source, these wired and/or wireless technologies are included within the definition of transmission media.
  • a “network” may refer to devices (eg, base stations) included in a network.
  • precoding "precoding weight”
  • QCL Quality of Co-Location
  • TCI state Transmission Configuration Indication state
  • spatialal patial relation
  • spatialal domain filter "transmission power”
  • phase rotation "antenna port
  • antenna port group "layer”
  • number of layers Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are interchangeable. can be used as intended.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is assigned to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head (RRH))) may also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)). Head (RRH)
  • RRH Head
  • the terms "cell” or “sector” refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , a handset, a user agent, a mobile client, a client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a moving object, the mobile itself, or the like.
  • the moving body refers to a movable object, the speed of movement is arbitrary, and it naturally includes cases where the moving body is stationary.
  • Examples of such moving bodies include vehicles, transportation vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , airplanes, rockets, satellites, drones, multi-copters, quad-copters, balloons and objects mounted on them.
  • the mobile body may be a mobile body that autonomously travels based on an operation command.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • a vehicle e.g., car, airplane, etc.
  • an unmanned mobile object e.g., drone, self-driving car, etc.
  • a robot manned or unmanned .
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • FIG. 12 is a diagram showing an example of a vehicle according to one embodiment.
  • the vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, revolution sensor 51, air pressure sensor 52, vehicle speed sensor 53, acceleration sensor 54, accelerator pedal sensor 55, brake pedal sensor 56, shift lever sensor 57, and object detection sensor 58), information service unit 59 and communication module 60.
  • various sensors current sensor 50, revolution sensor 51, air pressure sensor 52, vehicle speed sensor 53, acceleration sensor 54, accelerator pedal sensor 55, brake pedal sensor 56, shift lever sensor 57, and object detection sensor 58
  • information service unit 59 and communication module 60.
  • the driving unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor.
  • the steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
  • the electronic control unit 49 is composed of a microprocessor 61, a memory (ROM, RAM) 62, and a communication port (eg, input/output (IO) port) 63. Signals from various sensors 50 to 58 provided in the vehicle are input to the electronic control unit 49 .
  • the electronic control unit 49 may be called an Electronic Control Unit (ECU).
  • ECU Electronic Control Unit
  • the signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheels 46/rear wheels 47 obtained by the rotation speed sensor 51, and an air pressure sensor 52.
  • air pressure signal of front wheels 46/rear wheels 47 vehicle speed signal obtained by vehicle speed sensor 53, acceleration signal obtained by acceleration sensor 54, depression amount signal of accelerator pedal 43 obtained by accelerator pedal sensor 55, brake pedal sensor
  • the information service unit 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios for providing (outputting) various information such as driving information, traffic information, and entertainment information, and these devices. and one or more ECUs that control The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
  • various information/services for example, multimedia information/multimedia services
  • the information service unit 59 may include an input device (e.g., keyboard, mouse, microphone, switch, button, sensor, touch panel, etc.) that receives input from the outside, and an output device that outputs to the outside (e.g., display, speaker, LED lamp, touch panel, etc.).
  • an input device e.g., keyboard, mouse, microphone, switch, button, sensor, touch panel, etc.
  • an output device e.g., display, speaker, LED lamp, touch panel, etc.
  • the driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), camera, positioning locator (eg, Global Navigation Satellite System (GNSS), etc.), map information (eg, High Definition (HD)) maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMU), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving load, and one or more devices that control these devices ECU.
  • the driving support system unit 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
  • the communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63 .
  • the communication module 60 communicates with the vehicle 40 through a communication port 63 such as a driving unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
  • the communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from an external device via wireless communication.
  • Communication module 60 may be internal or external to electronic control 49 .
  • the external device may be, for example, the above-described base station 10, user terminal 20, or the like.
  • the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (and may function as at least one of the base station 10 and the user terminal 20).
  • the communication module 60 receives signals from the various sensors 50 to 58 described above input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. may be transmitted to the external device via wireless communication.
  • the electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be called an input unit that receives input.
  • the PUSCH transmitted by communication module 60 may include information based on the above inputs.
  • the communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device and displays it on the information service unit 59 provided in the vehicle.
  • the information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as displays and speakers based on the PDSCH received by the communication module 60 (or data/information decoded from the PDSCH)). may be called
  • the communication module 60 stores various information received from an external device in a memory 62 that can be used by the microprocessor 61 . Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, the steering unit 42, the accelerator pedal 43, the brake pedal 44, the shift lever 45, the left and right front wheels 46, and the left and right rear wheels provided in the vehicle 40. 47, axle 48, and various sensors 50-58 may be controlled.
  • the base station in the present disclosure may be read as a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the user terminal 20 may have the functions of the base station 10 described above.
  • words such as "uplink” and “downlink” may be replaced with words corresponding to communication between terminals (for example, "sidelink”).
  • uplink channels, downlink channels, etc. may be read as sidelink channels.
  • user terminals in the present disclosure may be read as base stations.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • operations that are assumed to be performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may involve the base station, one or more network nodes other than the base station (e.g., Clearly, this can be done by a Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Also, the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG x is, for example, an integer or a decimal number
  • Future Radio Access FAA
  • RAT New-Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802 .11 Wi-Fi®
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, or any other suitable wireless communication method. It may be applied to a system to be used, a next-generation system extended, modified, created or defined based on these.
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining includes judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry ( For example, looking up in a table, database, or another data structure), ascertaining, etc. may be considered to be “determining.”
  • determining (deciding) includes receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access ( accessing (e.g., accessing data in memory), etc.
  • determining is considered to be “determining” resolving, selecting, choosing, establishing, comparing, etc. good too. That is, “determining (determining)” may be regarded as “determining (determining)” some action.
  • connection refers to any connection or coupling, direct or indirect, between two or more elements. and can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • radio frequency domain when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, radio frequency domain, microwave They can be considered to be “connected” or “coupled” together using the domain, electromagnetic energy having wavelengths in the optical (both visible and invisible) domain, and the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal according to an aspect of this disclosure is characterized by comprising: a reception unit that when the same transmission configuration indication (TCI) state is applied to both downlink (DL) and uplink (UL), receives a specific setting that enables or disables the starting of the activation of the TCI state by UE; and a control unit that starts the activation of the TCI state. An aspect of this disclosure makes it possible to activate an appropriate TCI state.

Description

端末、無線通信方法及び基地局Terminal, wireless communication method and base station
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。 The present disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of further high data rate, low delay, etc. (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 LTE successor systems (for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later) are also being considered. .
 将来の無線通信システム(例えば、NR)において、ユーザ端末(端末、user terminal、User Equipment(UE))は、Transmission Configuration Indication(TCI)状態に基づいて、送受信処理を制御することが検討されている。 In future wireless communication systems (for example, NR), user terminals (terminals, user terminals, user equipment (UE)) are being studied to control transmission and reception processing based on the transmission configuration indication (TCI) state. .
 また、UEは、UL及びDLに対して同じTCI状態(ジョイントTCI状態)が適用されること、又は、UL及びDLのそれぞれに対して別の状態(セパレートTCI状態)が適用されることが検討されている。 Also, the UE considers that the same TCI state (joint TCI state) is applied for UL and DL, or a different state (separate TCI state) is applied for each of UL and DL. It is
 しかしながら、ジョイントTCI状態又はセパレートTCI状態の少なくとも1つが適用された場合におけるTCI状態のアクティブ化について、詳細な設計が明らかになっていない。これにより、適切なTCI状態がアクティブ化されずに通信スループットが低下するおそれがある。 However, no detailed design has been revealed for the activation of the TCI state when at least one of the joint TCI state or the separate TCI state is applied. This may result in poor communication throughput due to the proper TCI state not being activated.
 そこで、本開示は、適切なTCI状態をアクティブ化することができる端末、無線通信方法及び基地局を提供することを目的の1つとする。 Therefore, one object of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can activate an appropriate TCI state.
 本開示の一態様に係る端末は、下りリンク(DL)及び上りリンク(UL)に対して同じTransmission Configuration Indication(TCI)状態が適用される場合、前記TCI状態のアクティブ化がUEにより開始されることを有効又は無効にする特定の設定を受信する受信部と、前記TCI状態のアクティブ化を開始する制御部と、を有することを特徴とする。 In a terminal according to an aspect of the present disclosure, when the same Transmission Configuration Indication (TCI) state is applied to downlink (DL) and uplink (UL), activation of the TCI state is initiated by the UE and a control unit for initiating activation of said TCI state.
 本開示の一態様によれば、適切なTCI状態をアクティブ化することができる。 According to one aspect of the present disclosure, the appropriate TCI state can be activated.
図1A及び図1Bは、TCI状態の設定の例を示す図である。1A and 1B are diagrams illustrating examples of TCI state settings. 図2は、Rel.16におけるTCI状態及びQCL情報のRRC設定を示す図である。FIG. 2 is a diagram of Rel. 16 shows RRC configuration of TCI state and QCL information in V.16. FIG. 図3は、Rel.16におけるCSI報告を示す図である。FIG. 3 is a diagram of Rel. 16 shows CSI reporting in X.16; FIG. 図4は、第2の実施形態におけるTCI状態の更新の例を示す図である。FIG. 4 is a diagram illustrating an example of updating the TCI status in the second embodiment. 図5は、第3の実施形態におけるTCI状態の更新の例を示す図である。FIG. 5 is a diagram showing an example of updating the TCI status in the third embodiment. 図6A及び図6Bは、第9の実施形態におけるTCI状態の更新の例を示す図である。6A and 6B are diagrams showing an example of updating the TCI state in the ninth embodiment. 図7A及び図7Bは、第10の実施形態におけるTCI状態の更新の例を示す図である。7A and 7B are diagrams showing an example of updating the TCI state in the tenth embodiment. 図8は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 8 is a diagram illustrating an example of a schematic configuration of a radio communication system according to an embodiment. 図9は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 9 is a diagram illustrating an example of the configuration of a base station according to one embodiment. 図10は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 10 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment. 図11は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to one embodiment. 図12は、一実施形態に係る車両の一例を示す図である。FIG. 12 is a diagram illustrating an example of a vehicle according to one embodiment;
(CSI報告)
 Rel.15/16 NRにおいては、UEは、所定の参照信号(又は、当該参照信号用のリソース)を用いてチャネル状態を測定し、チャネル状態情報(Channel State Information:CSI)を基地局にフィードバック(報告)する。
(CSI Report)
Rel. In 15/16 NR, the UE measures the channel state using a predetermined reference signal (or resource for the reference signal), and feeds back (reports) channel state information (Channel State Information: CSI) to the base station. )do.
 UEは、チャネル状態情報参照信号(Channel State Information-Reference Signal:CSI-RS)、同期信号/ブロードキャストチャネル(Synchronization Signal/Physical Broadcast Channel:SS/PBCH)ブロック、同期信号(Synchronization Signal:SS)、復調用参照信号(DeModulation Reference Signal:DMRS)などを用いて、チャネル状態を測定してもよい。 UE, channel state information reference signal (Channel State Information-Reference Signal: CSI-RS), synchronization signal / broadcast channel (Synchronization Signal / Physical Broadcast Channel: SS / PBCH) block, synchronization signal (Synchronization Signal: SS), demodulation The channel state may be measured using a reference signal (DeModulation Reference Signal: DMRS) or the like.
 CSI-RSリソースは、ノンゼロパワー(Non Zero Power:NZP)CSI-RS及びCSI-Interference Management(IM)の少なくとも1つを含んでもよい。SS/PBCHブロックは、同期信号(例えば、プライマリ同期信号(Primary Synchronization Signal:PSS)、セカンダリ同期信号(Secondary Synchronization Signal:SSS))及びPBCH(及び対応するDMRS)を含むブロックであり、SSブロック(SSB)などと呼ばれてもよい。ハーフフレーム内のSSBの時間位置に対してSSBインデックスが与えられてもよい。 The CSI-RS resource may include at least one of Non Zero Power (NZP) CSI-RS and CSI-Interference Management (IM). The SS/PBCH block is a block containing synchronization signals (e.g., Primary Synchronization Signal (PSS), Secondary Synchronization Signal (SSS)) and PBCH (and corresponding DMRS), and the SS block ( SSB) or the like. An SSB index may be given for the temporal position of the SSB within the half-frame.
 なお、CSIは、チャネル品質指標(Channel Quality Indicator:CQI)、プリコーディング行列指標(Precoding Matrix Indicator:PMI)、CSI-RSリソース指標(CSI-RS Resource Indicator:CRI)、SS/PBCHブロックリソース指標(SS/PBCH Block Indicator:SSBRI)、レイヤ指標(Layer Indicator:LI)、ランク指標(Rank Indicator:RI)、Layer 1(L1)-Reference Signal Received Power(RSRP)(レイヤ1における参照信号受信電力)、L1-Reference Signal Received Quality(RSRQ)、L1-Signal to Interference plus Noise Ratio(SINR)、L1-Signal to Noise Ratio(SNR)などの少なくとも1つを含んでもよい。 In addition, CSI includes Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), CSI-RS Resource Indicator (CRI), SS/PBCH block resource indicator ( SS/PBCH Block Indicator: SSBRI), Layer Indicator: LI, Rank Indicator: RI, Layer 1 (L1) - Reference Signal Received Power (RSRP) (reference signal received power in Layer 1), At least one of L1-Reference Signal Received Quality (RSRQ), L1-Signal to Interference plus Noise Ratio (SINR), L1-Signal to Noise Ratio (SNR), etc. may be included.
 CSIは、複数のパートを有してもよい。CSIの第1パート(CSIパート1)は、相対的にビット数の少ない情報(例えば、RI)を含んでもよい。CSIの第2パート(CSIパート2)は、CSIパート1に基づいて定まる情報などの、相対的にビット数の多い情報(例えば、CQI)を含んでもよい。 CSI may have multiple parts. A first part of CSI (CSI part 1) may contain information with a relatively small number of bits (eg, RI). A second part of CSI (CSI part 2) may include information with a relatively large number of bits (eg, CQI), such as information determined based on CSI part 1.
 CSIのフィードバック方法としては、(1)周期的なCSI(Periodic CSI:P-CSI)報告、(2)非周期的なCSI(Aperiodic CSI:A(AP)-CSI)報告、(3)半永続的(半持続的、セミパーシステント(Semi-Persistent))なCSI報告(Semi-Persistent CSI:SP-CSI)報告などが検討されている。 As CSI feedback methods, (1) periodic CSI (Periodic CSI: P-CSI) reporting, (2) aperiodic CSI (Aperiodic CSI: A (AP)-CSI) reporting, (3) semi-permanent Targeted (semi-persistent, semi-persistent) CSI reporting (Semi-Persistent CSI: SP-CSI) reports, etc. are being considered.
 UEは、CSI報告に関する情報(CSI報告設定情報とよばれてもよい)を、上位レイヤシグナリング、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information:DCI))又はこれらの組み合わせを用いて通知されてもよい。CSI報告設定情報は、例えば、RRC情報要素「CSI-ReportConfig」を用いて設定されてもよい。 The UE notifies information on CSI reporting (may be called CSI report configuration information) using higher layer signaling, physical layer signaling (for example, downlink control information (DCI)) or a combination thereof. may be The CSI report configuration information may be configured using, for example, the RRC information element "CSI-ReportConfig".
 ここで、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 Here, the higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element:MAC CE)、MAC Protocol Data Unit(MAC PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block:MIB)、システム情報ブロック(System Information Block:SIB)、最低限のシステム情報(Remaining Minimum System Information:RMSI)、その他のシステム情報(Other System Information:OSI)などであってもよい。 For MAC signaling, for example, MAC Control Element (MAC CE), MAC Protocol Data Unit (MAC PDU), etc. may be used. Broadcast information includes, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), Other System Information : OSI).
 CSI報告設定情報は、例えば、報告周期、オフセットなどに関する情報を含んでもよく、これらは所定の時間単位(スロット単位、サブフレーム単位、シンボル単位など)で表現されてもよい。CSI報告設定情報は、設定ID(CSI-ReportConfigId)を含んでもよい。当該設定IDによってCSI報告方法の種類(SP-CSIか否か、など)、報告周期などのパラメータが特定されてもよい。CSI報告設定情報は、どの信号(又は、どの信号用のリソース)を用いて測定されたCSIを報告するかを示す情報(CSI-ResourceConfigId)を含んでもよい。 The CSI report configuration information may include, for example, information on the reporting period, offset, etc., and these may be expressed in predetermined time units (slot units, subframe units, symbol units, etc.). The CSI report configuration information may include a configuration ID (CSI-ReportConfigId). Parameters such as the type of CSI reporting method (SP-CSI or not, etc.) and reporting cycle may be specified by the configuration ID. The CSI reporting configuration information may include information (CSI-ResourceConfigId) indicating which signal (or resource for which signal) is used to report the measured CSI.
(ビーム管理)
 これまでRel.15 NRにおいては、ビーム管理(Beam Management:BM)の方法が検討されてきた。当該ビーム管理においては、UEが報告したL1-RSRPをベースに、ビーム選択(beam selection)を行うことが検討されている。ある信号/チャネルのビームを変更する(切り替える)ことは、当該信号/チャネルの送信設定指示状態(Transmission Configuration Indication state(TCI状態))を変更することに相当してもよい。
(beam management)
Until now, Rel. In 15 NR, methods of beam management (BM) have been considered. In the beam management, it is considered to perform beam selection based on the L1-RSRP reported by the UE. Changing (switching) the beam of a signal/channel may correspond to changing the Transmission Configuration Indication state (TCI state) of that signal/channel.
 なお、ビーム選択によって選択されるビームは、送信ビーム(Txビーム)であってもよいし、受信ビーム(Rxビーム)であってもよい。また、ビーム選択によって選択されるビームは、UEのビームであってもよいし、基地局のビームであってもよい。 The beam selected by beam selection may be a transmission beam (Tx beam) or a reception beam (Rx beam). Also, the beam selected by beam selection may be a UE beam or a base station beam.
 UEは、ビーム管理のための測定結果を、PUCCH又はPUSCHを用いて報告(送信)してもよい。当該測定結果は、例えば、L1-RSRP、L1-RSRQ、L1-SINR、L1-SNRなどの少なくとも1つを含むCSIであってもよい。また、当該測定結果は、ビーム測定(beam measurement)、ビーム測定結果、ビーム報告、ビーム測定報告(beam measurement report)などと呼ばれてもよい。 The UE may report (transmit) measurement results for beam management using PUCCH or PUSCH. The measurement result may be, for example, CSI including at least one of L1-RSRP, L1-RSRQ, L1-SINR, L1-SNR, and the like. Also, the measurement result may be called a beam measurement, a beam measurement result, a beam report, a beam measurement report, or the like.
 ビーム報告のためのCSI測定は、干渉測定を含んでもよい。UEは、CSI測定用のリソースを用いてチャネル品質、干渉などを測定し、ビーム報告を導出してもよい。CSI測定用のリソースは、例えば、SS/PBCHブロックのリソース、CSI-RSのリソース、その他の参照信号リソースなどの少なくとも1つであってもよい。CSI測定報告の設定情報は、上位レイヤシグナリングを用いてUEに設定されてもよい。 CSI measurements for beam reporting may include interferometric measurements. The UE may use resources for CSI measurement to measure channel quality, interference, etc. and derive beam reports. The resource for CSI measurement may be, for example, at least one of SS/PBCH block resources, CSI-RS resources, other reference signal resources, and the like. The CSI measurement report configuration information may be configured in the UE using higher layer signaling.
 ビーム報告には、チャネル品質測定及び干渉測定の少なくとも一方の結果が含まれてもよい。チャネル品質測定の結果は、例えばL1-RSRPを含んでもよい。干渉測定の結果は、L1-SINR、L1-SNR、L1-RSRQ、その他の干渉に関する指標(例えば、L1-RSRPでない任意の指標)などを含んでもよい。 A beam report may include the result of at least one of channel quality measurement and interference measurement. The results of channel quality measurements may include, for example, L1-RSRP. The results of the interference measurements may include L1-SINR, L1-SNR, L1-RSRQ, other indicators of interference (eg, any indicator that is not L1-RSRP), and the like.
 なお、ビーム管理のためのCSI測定用のリソースは、ビーム測定用リソースと呼ばれてもよい。また、当該CSI測定対象の信号/チャネルは、ビーム測定用信号と呼ばれてもよい。また、CSI測定/報告は、ビーム管理のための測定/報告、ビーム測定/報告、無線リンク品質測定/報告などの少なくとも1つで読み替えられてもよい。 It should be noted that the CSI measurement resource for beam management may be called a beam measurement resource. In addition, the CSI measurement target signal/channel may be referred to as a beam measurement signal. Also, CSI measurement/report may be read as at least one of measurement/report for beam management, beam measurement/report, radio link quality measurement/report, and the like.
 現状のNRのビーム管理を考慮したCSI報告設定情報について、RRC情報要素「CSI-ReportConfig」に含まれている。RRC情報要素「CSI-ReportConfig」内の情報について説明する。  The CSI report configuration information that considers the current NR beam management is included in the RRC information element "CSI-ReportConfig". The information in the RRC information element "CSI-ReportConfig" will be explained.
 CSI報告設定情報(CSI-ReportConfig)は、報告するパラメータの情報である報告量情報(「報告量」、RRCパラメータ「reportQuantity」で表されてもよい)を含んでもよい。報告量情報は、「選択型(choice)」というASN.1オブジェクトの型で定義されている。このため、報告量情報として規定されるパラメータ(cri-RSRP、ssb-Index-RSRPなど)のうち1つが設定される。 The CSI report configuration information (CSI-ReportConfig) may include report amount information ("report amount", which may be represented by the RRC parameter "reportQuantity"), which is information on parameters to report. The reporting volume information is the ASN. 1 object type. Therefore, one of the parameters (cri-RSRP, ssb-Index-RSRP, etc.) defined as the report amount information is set.
 CSI報告設定情報に含まれる上位レイヤパラメータ(例えば、RRCパラメータ「groupBasedBeamReporting」)が有効(enabled)に設定されたUEは、各報告設定について、複数のビーム測定用リソースID(例えば、SSBRI、CRI)と、これらに対応する複数の測定結果(例えばL1-RSRP)と、をビーム報告に含めてもよい。 A UE in which a higher layer parameter (eg, RRC parameter "groupBasedBeamReporting") included in the CSI reporting configuration information is set to enabled has multiple beam measurement resource IDs (eg, SSBRI, CRI) for each reporting configuration. , and their corresponding measurements (eg, L1-RSRP) may be included in the beam report.
 CSI報告設定情報に含まれる上位レイヤパラメータ(例えば、RRCパラメータ「nrofReportedRS」)によって、1つ以上の報告対象RSリソース数を設定されたUEは、各報告設定について、1つ以上のビーム測定用リソースIDと、これらに対応する1つ以上の測定結果(例えばL1-RSRP)と、をビーム報告に含めてもよい。 A UE for which the number of RS resources to be reported is set to one or more by a higher layer parameter (for example, the RRC parameter "nrofReportedRS") included in the CSI report configuration information is one or more beam measurement resources for each report configuration. The IDs and their corresponding one or more measurements (eg, L1-RSRP) may be included in the beam report.
(TCI、空間関係、QCL)
 NRでは、送信設定指示状態(Transmission Configuration Indication state(TCI状態))に基づいて、信号及びチャネルの少なくとも一方(信号/チャネルと表現する)のUEにおける受信処理(例えば、受信、デマッピング、復調、復号の少なくとも1つ)、送信処理(例えば、送信、マッピング、プリコーディング、変調、符号化の少なくとも1つ)を制御することが検討されている。
(TCI, spatial relations, QCL)
In NR, the reception processing (e.g., reception, demapping, demodulation, decoding), transmission processing (eg, at least one of transmission, mapping, precoding, modulation, encoding).
 TCI状態は下りリンクの信号/チャネルに適用されるものを表してもよい。上りリンクの信号/チャネルに適用されるTCI状態に相当するものは、空間関係(spatial relation)と表現されてもよい。 The TCI state may represent those that apply to downlink signals/channels. The equivalent of TCI conditions applied to uplink signals/channels may be expressed as spatial relations.
 TCI状態とは、信号/チャネルの疑似コロケーション(Quasi-Co-Location(QCL))に関する情報であり、空間受信パラメータ、空間関係情報(Spatial Relation Information)などと呼ばれてもよい。TCI状態は、チャネルごと又は信号ごとにUEに設定されてもよい。 The TCI state is information about the pseudo-colocation (QCL) of signals/channels, and may be called spatial reception parameters, spatial relation information, or the like. The TCI state may be set in the UE on a channel-by-channel or signal-by-signal basis.
 QCLとは、信号/チャネルの統計的性質を示す指標である。例えば、ある信号/チャネルと他の信号/チャネルがQCLの関係である場合、これらの異なる複数の信号/チャネル間において、ドップラーシフト(Doppler shift)、ドップラースプレッド(Doppler spread)、平均遅延(average delay)、遅延スプレッド(delay spread)、空間パラメータ(spatial parameter)(例えば、空間受信パラメータ(spatial Rx parameter))の少なくとも1つが同一である(これらの少なくとも1つに関してQCLである)と仮定できることを意味してもよい。  QCL is an index that indicates the statistical properties of a signal/channel. For example, when one signal/channel and another signal/channel have a QCL relationship, Doppler shift, Doppler spread, average delay ), delay spread, spatial parameters (e.g., spatial Rx parameter) are identical (QCL with respect to at least one of these). You may
 なお、空間受信パラメータは、UEの受信ビーム(例えば、受信アナログビーム)に対応してもよく、空間的QCLに基づいてビームが特定されてもよい。本開示におけるQCL(又はQCLの少なくとも1つの要素)は、sQCL(spatial QCL)で読み替えられてもよい。 Note that the spatial reception parameters may correspond to the reception beams of the UE (eg, reception analog beams), and the beams may be specified based on the spatial QCL. QCL (or at least one element of QCL) in the present disclosure may be read as sQCL (spatial QCL).
 QCLは、複数のタイプ(QCLタイプ)が規定されてもよい。例えば、同一であると仮定できるパラメータ(又はパラメータセット)が異なる4つのQCLタイプA-Dが設けられてもよく、以下に当該パラメータ(QCLパラメータと呼ばれてもよい)について示す:
 ・QCLタイプA(QCL-A):ドップラーシフト、ドップラースプレッド、平均遅延及び遅延スプレッド、
 ・QCLタイプB(QCL-B):ドップラーシフト及びドップラースプレッド、
 ・QCLタイプC(QCL-C):ドップラーシフト及び平均遅延、
 ・QCLタイプD(QCL-D):空間受信パラメータ。
A plurality of types (QCL types) may be defined for the QCL. For example, four QCL types AD may be provided with different parameters (or parameter sets) that can be assumed to be the same, and the parameters (which may be called QCL parameters) are shown below:
QCL type A (QCL-A): Doppler shift, Doppler spread, mean delay and delay spread,
QCL type B (QCL-B): Doppler shift and Doppler spread,
QCL type C (QCL-C): Doppler shift and mean delay;
• QCL Type D (QCL-D): Spatial reception parameters.
 ある制御リソースセット(Control Resource Set(CORESET))、チャネル又は参照信号が、別のCORESET、チャネル又は参照信号と特定のQCL(例えば、QCLタイプD)の関係にあるとUEが想定することは、QCL想定(QCL assumption)と呼ばれてもよい。 The UE's assumption that one Control Resource Set (CORESET), channel, or reference signal is in a specific QCL (e.g., QCL type D) relationship with another CORESET, channel, or reference signal is It may be called the QCL assumption.
 UEは、信号/チャネルのTCI状態又はQCL想定に基づいて、当該信号/チャネルの送信ビーム(Txビーム)及び受信ビーム(Rxビーム)の少なくとも1つを決定してもよい。 A UE may determine at least one of a transmit beam (Tx beam) and a receive beam (Rx beam) for a signal/channel based on the TCI conditions or QCL assumptions of that signal/channel.
 TCI状態は、例えば、対象となるチャネル(言い換えると、当該チャネル用の参照信号(Reference Signal(RS)))と、別の信号(例えば、別のRS)とのQCLに関する情報であってもよい。TCI状態は、上位レイヤシグナリング、物理レイヤシグナリング又はこれらの組み合わせによって設定(指示)されてもよい。 The TCI state may be, for example, information about the QCL between the channel of interest (in other words, the reference signal (RS) for the channel) and another signal (for example, another RS). . The TCI state may be set (indicated) by higher layer signaling, physical layer signaling or a combination thereof.
 物理レイヤシグナリングは、例えば、下り制御情報(Downlink Control Information(DCI))であってもよい。 Physical layer signaling may be, for example, downlink control information (DCI).
 TCI状態又は空間関係が設定(指定)されるチャネルは、例えば、下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))の少なくとも1つであってもよい。 Channels for which TCI states or spatial relationships are set (specified) are, for example, Physical Downlink Shared Channel (PDSCH), Physical Downlink Control Channel (PDCCH), Physical Uplink Shared Channel It may be at least one of a channel (PUSCH)) and an uplink control channel (Physical Uplink Control Channel (PUCCH)).
 また、当該チャネルとQCL関係となるRSは、例えば、同期信号ブロック(Synchronization Signal Block(SSB))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、測定用参照信号(Sounding Reference Signal(SRS))、トラッキング用CSI-RS(Tracking Reference Signal(TRS)とも呼ぶ)、QCL検出用参照信号(QRSとも呼ぶ)の少なくとも1つであってもよい。 In addition, RSs that have a QCL relationship with the channel are, for example, a synchronization signal block (SSB), a channel state information reference signal (CSI-RS), a measurement reference signal (Sounding It may be at least one of a reference signal (SRS)), a tracking CSI-RS (also called a tracking reference signal (TRS)), and a QCL detection reference signal (also called a QRS).
 SSBは、プライマリ同期信号(Primary Synchronization Signal(PSS))、セカンダリ同期信号(Secondary Synchronization Signal(SSS))及びブロードキャストチャネル(Physical Broadcast Channel(PBCH))の少なくとも1つを含む信号ブロックである。SSBは、SS/PBCHブロックと呼ばれてもよい。 An SSB is a signal block that includes at least one of a Primary Synchronization Signal (PSS), a Secondary Synchronization Signal (SSS), and a Physical Broadcast Channel (PBCH). An SSB may also be called an SS/PBCH block.
 TCI状態のQCLタイプXのRSは、あるチャネル/信号(のDMRS)とQCLタイプXの関係にあるRSを意味してもよく、このRSは当該TCI状態のQCLタイプXのQCLソースと呼ばれてもよい。 A QCL type X RS in a TCI state may mean an RS that has a QCL type X relationship with (the DMRS of) a certain channel/signal, and this RS is called a QCL type X QCL source in that TCI state. may
 PDCCH及びPDSCHに対してQCLタイプA RSは必ず設定され、QCLタイプD RSは追加で設定されてもよい。DMRSのワンショットの受信によってドップラーシフト、遅延などを推定することが難しいため、チャネル推定精度の向上にQCLタイプA RSが使用される。QCLタイプD RSは、DMRS受信時の受信ビーム決定に使用される。 QCL type A RS is always set for PDCCH and PDSCH, and QCL type D RS may be additionally set. Since it is difficult to estimate Doppler shift, delay, etc. by receiving DMRS one-shot, QCL type A RS is used to improve channel estimation accuracy. QCL type D RS is used for receive beam determination during DMRS reception.
 例えば、TRS1-1、1-2、1-3、1-4が送信され、PDSCHのTCI状態によってQCLタイプC/D RSとしてTRS1-1が通知される。TCI状態が通知されることによって、UEは、過去の周期的なTRS1-1の受信/測定の結果から得た情報を、PDSCH用DMRSの受信/チャネル推定に利用できる。この場合、PDSCHのQCLソースはTRS1-1であり、QCLターゲットはPDSCH用DMRSである。 For example, TRS 1-1, 1-2, 1-3, 1-4 are transmitted, and TRS 1-1 is notified as QCL type C/D RS depending on the TCI status of PDSCH. By being notified of the TCI state, the UE can use the information obtained from the past periodic TRS1-1 reception/measurement results for PDSCH DMRS reception/channel estimation. In this case, the PDSCH QCL source is TRS1-1 and the QCL target is the PDSCH DMRS.
(マルチTRP)
 NRでは、1つ又は複数の送受信ポイント(Transmission/Reception Point(TRP))(マルチTRP(multi TRP(MTRP)))が、1つ又は複数のパネル(マルチパネル)を用いて、UEに対してDL送信を行うことが検討されている。また、UEが、1つ又は複数のTRPに対して、1つ又は複数のパネルを用いて、UL送信を行うことが検討されている。
(Multi-TRP)
In NR, one or more transmission/reception points (Transmission/Reception Points (TRP)) (multi TRP (multi TRP (MTRP))) uses one or more panels (multi-panel) to the UE DL transmission is under consideration. It is also being considered that the UE uses one or more panels to perform UL transmissions for one or more TRPs.
 なお、複数のTRPは、同じセル識別子(セルIdentifier(ID))に対応してもよいし、異なるセルIDに対応してもよい。当該セルIDは、物理セルIDでもよいし、仮想セルIDでもよい。 A plurality of TRPs may correspond to the same cell identifier (cell identifier (ID)) or may correspond to different cell IDs. The cell ID may be a physical cell ID or a virtual cell ID.
 マルチTRP(例えば、TRP#1、#2)は、理想的(ideal)/非理想的(non-ideal)のバックホール(backhaul)によって接続され、情報、データなどがやり取りされてもよい。マルチTRPの各TRPからは、それぞれ異なるコードワード(Code Word(CW))及び異なるレイヤが送信されてもよい。マルチTRP送信の一形態として、ノンコヒーレントジョイント送信(Non-Coherent Joint Transmission(NCJT))が用いられてもよい。 Multi-TRPs (eg, TRP #1, #2) may be connected by ideal/non-ideal backhauls to exchange information, data, and the like. Different codewords (CW) and different layers may be transmitted from each TRP of the multi-TRP. Non-Coherent Joint Transmission (NCJT) may be used as one form of multi-TRP transmission.
 NCJTにおいて、例えば、TRP#1は、第1のコードワードを変調マッピングし、レイヤマッピングして第1の数のレイヤ(例えば2レイヤ)を第1のプリコーディングを用いて第1のPDSCHを送信する。また、TRP#2は、第2のコードワードを変調マッピングし、レイヤマッピングして第2の数のレイヤ(例えば2レイヤ)を第2のプリコーディングを用いて第2のPDSCHを送信する。 In NCJT, for example, TRP#1 modulate-maps a first codeword and layer-maps a first number of layers (e.g., two layers) with a first precoding to transmit a first PDSCH. do. TRP#2 also modulates and layer-maps a second codeword to transmit a second PDSCH with a second number of layers (eg, 2 layers) with a second precoding.
 なお、NCJTされる複数のPDSCH(マルチPDSCH)は、時間及び周波数ドメインの少なくとも一方に関して部分的に又は完全に重複すると定義されてもよい。つまり、第1のTRPからの第1のPDSCHと、第2のTRPからの第2のPDSCHと、は時間及び周波数リソースの少なくとも一方が重複してもよい。 It should be noted that multiple PDSCHs to be NCJTed (multi-PDSCH) may be defined as partially or completely overlapping in at least one of the time and frequency domains. That is, the first PDSCH from the first TRP and the second PDSCH from the second TRP may overlap at least one of time and frequency resources.
 これらの第1のPDSCH及び第2のPDSCHは、疑似コロケーション(Quasi-Co-Location(QCL))関係にない(not quasi-co-located)と想定されてもよい。マルチPDSCHの受信は、あるQCLタイプ(例えば、QCLタイプD)でないPDSCHの同時受信で読み替えられてもよい。 It may be assumed that these first PDSCH and second PDSCH are not quasi-co-located (QCL). Reception of multiple PDSCHs may be translated as simultaneous reception of PDSCHs that are not of a certain QCL type (eg, QCL type D).
 マルチTRPからの複数のPDSCH(マルチPDSCH(multiple PDSCH)と呼ばれてもよい)が、1つのDCI(シングルDCI、シングルPDCCH)を用いてスケジュールされてもよい(シングルマスタモード、シングルDCIに基づくマルチTRP(single-DCI based multi-TRP))。マルチTRPからの複数のPDSCHが、複数のDCI(マルチDCI、マルチPDCCH(multiple PDCCH))を用いてそれぞれスケジュールされてもよい(マルチマスタモード、マルチDCIに基づくマルチTRP(multi-DCI based multi-TRP))。 Multiple PDSCHs from multiple TRPs (which may be referred to as multiple PDSCHs) may be scheduled using one DCI (single DCI, single PDCCH) (single master mode, based on single DCI Multi-TRP (single-DCI based multi-TRP)). Multiple PDSCHs from multi-TRP may be scheduled using multiple DCIs (multi-DCI, multiple PDCCH) (multi-master mode, multi-DCI based multi-TRP (multiple PDCCH)). TRP)).
 マルチTRPに対するURLLCにおいて、マルチTRPにまたがるPDSCH(トランスポートブロック(TB)又はコードワード(CW))繰り返し(repetition)がサポートされることが検討されている。周波数ドメイン又はレイヤ(空間)ドメイン又は時間ドメイン上でマルチTRPにまたがる繰り返し方式(URLLCスキーム、例えば、スキーム1、2a、2b、3、4)がサポートされることが検討されている。スキーム1において、マルチTRPからのマルチPDSCHは、空間分割多重(space division multiplexing(SDM))される。スキーム2a、2bにおいて、マルチTRPからのPDSCHは、周波数分割多重(frequency division multiplexing(FDM))される。スキーム2aにおいては、マルチTRPに対して冗長バージョン(redundancy version(RV))は同じである。スキーム2bにおいては、マルチTRPに対してRVは同じであってもよいし、異なってもよい。スキーム3、4において、マルチTRPからのマルチPDSCHは、時間分割多重(time division multiplexing(TDM))される。スキーム3において、マルチTRPからのマルチPDSCHは、1つのスロット内で送信される。スキーム4において、マルチTRPからのマルチPDSCHは、異なるスロット内で送信される。  In URLLC for multi-TRPs, it is being considered to support PDSCH (transport block (TB) or codeword (CW)) repetition across multi-TRPs. It is contemplated that repetition schemes (URLLC schemes, eg schemes 1, 2a, 2b, 3, 4) spanning multiple TRPs on the frequency domain or layer (spatial) domain or time domain will be supported. In Scheme 1, multiple PDSCHs from multiple TRPs are space division multiplexed (SDM). In schemes 2a, 2b, the PDSCH from multiple TRPs is frequency division multiplexed (FDM). In scheme 2a, the redundancy version (RV) is the same for multiple TRPs. In scheme 2b, the RVs may be the same or different for the multi-TRPs. In schemes 3 and 4, multiple PDSCHs from multiple TRPs are time division multiplexed (TDM). In Scheme 3, multiple PDSCHs from multiple TRPs are transmitted within one slot. In Scheme 4, multiple PDSCHs from multiple TRPs are transmitted in different slots.
 このようなマルチTRPシナリオによれば、品質の良いチャネルを用いたより柔軟な送信制御が可能である。 According to such a multi-TRP scenario, more flexible transmission control using channels with good quality is possible.
 複数PDCCHに基づくセル内の(intra-cell、同じセルIDを有する)及びセル間の(inter-cell、異なるセルIDを有する)マルチTRP送信をサポートするために、複数TRPを有するPDCCH及びPDSCHの複数のペアをリンクするためのRRC設定情報において、PDCCH設定情報(PDCCH-Config)内の1つのcontrol resource set(CORESET)が1つのTRPに対応してもよい。 In order to support intra-cell (with same cell ID) and inter-cell (with different cell ID) multi-TRP transmissions based on multiple PDCCHs, PDCCH and PDSCH with multiple TRPs In RRC configuration information for linking multiple pairs, one control resource set (CORESET) in PDCCH configuration information (PDCCH-Config) may correspond to one TRP.
 次の条件1及び2の少なくとも1つが満たされた場合、UEは、マルチDCIに基づくマルチTRPと判定してもよい。この場合、TRPは、CORESETプールインデックスに読み替えられてもよい。
[条件1]
 1のCORESETプールインデックスが設定される。
[条件2]
 CORESETプールインデックスの2つの異なる値(例えば、0及び1)が設定される。
The UE may determine multi-TRP based on multi-DCI if at least one of the following conditions 1 and 2 is met: In this case, TRP may be read as a CORESET pool index.
[Condition 1]
A CORESET pool index of 1 is set.
[Condition 2]
Two different values (eg, 0 and 1) of the CORESET pool index are set.
 次の条件が満たされた場合、UEは、シングルDCIに基づくマルチTRPと判定してもよい。この場合、2つのTRPは、MAC CE/DCIによって指示される2つのTCI状態に読み替えられてもよい。
[条件]
 DCI内のTCIフィールドの1つのコードポイントに対する1つ又は2つのTCI状態を指示するために、「UE固有PDSCH用拡張TCI状態アクティベーション/ディアクティベーションMAC CE(Enhanced TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)」が用いられる。
The UE may determine multi-TRP based on single DCI if the following conditions are met: In this case, two TRPs may be translated into two TCI states indicated by MAC CE/DCI.
[conditions]
"Enhanced TCI States Activation/Deactivation for UE- specific PDSCH MAC CE)” is used.
 共通ビーム指示用DCIは、UE固有DCIフォーマット(例えば、DL DCIフォーマット(例えば、1_1、1_2)、UL DCIフォーマット(例えば、0_1、0_2))であってもよいし、UEグループ共通(UE-group common)DCIフォーマットであってもよい。 DCI for common beam indication may be a UE-specific DCI format (e.g., DL DCI format (e.g., 1_1, 1_2), UL DCI format (e.g., 0_1, 0_2)), or a UE group common (UE-group common) DCI format.
(統一(unified)/共通(common)TCIフレームワーク)
 統一TCIフレームワークによれば、UL及びDLのチャネルを共通のフレームワークによって制御できる。統一TCIフレームワークは、Rel.15のようにTCI状態又は空間関係をチャネルごとに規定するのではなく、共通ビーム(共通TCI状態)を指示し、それをUL及びDLの全てのチャネルへ適用してもよいし、UL用の共通ビームをULの全てのチャネルに適用し、DL用の共通ビームをDLの全てのチャネルに適用してもよい。
(Unified/Common TCI Framework)
The unified TCI framework allows UL and DL channels to be controlled by a common framework. The unified TCI framework is Rel. Instead of defining TCI conditions or spatial relationships per channel as in 15, a common beam (common TCI condition) may be indicated and applied to all channels in the UL and DL, or for the UL A common beam may be applied to all channels in the UL and a common beam for the DL may be applied to all channels in the DL.
 DL及びULの両方のための1つの共通ビーム、又は、DL用の共通ビームとUL用の共通ビーム(全体で2つの共通ビーム)が検討されている。 One common beam for both DL and UL, or a common beam for DL and a common beam for UL (two common beams in total) are being considered.
 UEは、UL及びDLに対して同じTCI状態(ジョイントTCI状態、ジョイントTCIプール、ジョイント共通TCIプール、ジョイントTCI状態セット)を想定してもよい。UEは、UL及びDLのそれぞれに対して別々のTCI状態(セパレートTCI状態、セパレートTCIプール、ULセパレートTCIプール及びDLセパレートTCIプール、セパレート共通TCIプール、UL共通TCIプール及びDL共通TCIプール)を想定してもよい。 The UE may assume the same TCI state (joint TCI state, joint TCI pool, joint common TCI pool, joint TCI state set) for UL and DL. The UE has separate TCI states for each of UL and DL (separate TCI state, separate TCI pool, UL separate TCI pool and DL separate TCI pool, separate common TCI pool, UL common TCI pool and DL common TCI pool). can be assumed.
 MAC CEに基づくビーム管理(MAC CEレベルビーム指示)によって、UL及びDLのデフォルトビームを揃えてもよい。PDSCHのデフォルトTCI状態を更新し、デフォルトULビーム(空間関係)に合わせてもよい。 The UL and DL default beams may be aligned by MAC CE-based beam management (MAC CE level beam designation). The PDSCH default TCI state may be updated to match the default UL beam (spatial relationship).
 DCIに基づくビーム管理(DCIレベルビーム指示)によって、UL及びDLの両方用の同じTCIプール(ジョイント共通TCIプール、ジョイントTCIプール、セット)から共通ビーム/統一TCI状態が指示されてもよい。X(>1)個のTCI状態がMAC CEによってアクティベートされてもよい。UL/DL DCIは、X個のアクティブTCI状態から1つを選択してもよい。選択されたTCI状態は、UL及びDLの両方のチャネル/RSに適用されてもよい。 DCI-based beam management (DCI level beam indication) may indicate common beam/unified TCI state from the same TCI pool for both UL and DL (joint common TCI pool, joint TCI pool, set). X (>1) TCI states may be activated by MAC CE. The UL/DL DCI may select 1 out of X active TCI states. The selected TCI state may apply to both UL and DL channels/RS.
 TCIプール(セット)は、RRCパラメータによって設定された複数のTCI状態であってもよいし、RRCパラメータによって設定された複数のTCI状態のうち、MAC CEによってアクティベートされた複数のTCI状態(アクティブTCI状態、アクティブTCIプール、セット)であってもよい。各TCI状態は、QCLタイプA/D RSであってもよい。QCLタイプA/D RSとしてSSB、CSI-RS、又はSRSが設定されてもよい。 The TCI pool (set) may be a plurality of TCI states set by RRC parameters, or a plurality of TCI states activated by MAC CE (active TCI state, active TCI pool, set). Each TCI state may be a QCL type A/D RS. SSB, CSI-RS, or SRS may be set as QCL type A/D RS.
 1以上のTRPのそれぞれに対応するTCI状態の個数が規定されてもよい。例えば、ULのチャネル/RSに適用されるTCI状態(UL TCI状態)の個数N(≧1)と、DLのチャネル/RSに適用されるTCI状態(DL TCI状態)の個数M(≧1)と、が規定されてもよい。N及びMの少なくとも一方は、上位レイヤシグナリング/物理レイヤシグナリングを介して、UEに通知/設定/指示されてもよい。 The number of TCI states corresponding to each of one or more TRPs may be defined. For example, the number N (≧1) of TCI states (UL TCI states) applied to UL channels/RSs and the number M (≧1) of TCI states (DL TCI states) applied to DL channels/RSs and may be defined. At least one of N and M may be signaled/configured/indicated to the UE via higher layer signaling/physical layer signaling.
 本開示において、N=M=X(Xは任意の整数)と記載される場合は、UEに対して、X個の(X個のTRPに対応する)UL及びDLに共通のTCI状態(ジョイントTCI状態)が通知/設定/指示されることを意味してもよい。 In this disclosure, when N = M = X (where X is any integer), the UE has X UL and DL common TCI states (corresponding to X TRPs) (joint TCI status) is signaled/set/indicated.
 また、N=X(Xは任意の整数)、M=Y(Yは任意の整数、Y=Xであってもよい)と記載される場合は、UEに対して、X個の(X個のTRPに対応する)UL TCI状態及びY個の(Y個のTRPに対応する)DL TCI状態が通知/設定/指示されることを意味してもよい。当該UL TCI状態及び当該DL TCI状態は、UL及びDLに共通のTCI状態(すなわち、ジョイントTCI状態)を意味してもよいし、UL及びDLそれぞれのTCI状態(すなわち、セパレートTCI状態)を意味してもよい。 Also, when N = X (X is an arbitrary integer), M = Y (Y is an arbitrary integer, Y = X may be), X (X TRPs) and Y DL TCI states (corresponding to Y TRPs) are signaled/set/indicated. The UL TCI state and the DL TCI state may mean a TCI state common to UL and DL (i.e., joint TCI state), or may mean a TCI state for each of UL and DL (i.e., separate TCI state). You may
 例えば、N=M=1と記載される場合は、UEに対し、単一のTRPに対する、1つのUL及びDLに共通のTCI状態が通知/設定/指示されることを意味してもよい(単一TRPのためのジョイントTCI状態)。 For example, if N = M = 1, it may mean that the UE is notified/configured/indicated of one UL and DL common TCI state for a single TRP ( joint TCI state for a single TRP).
 また、例えば、N=1、M=1と記載される場合は、UEに対し、単一のTRPに対する、1つのUL TCI状態と、1つのDL TCI状態と、が別々に通知/設定/指示されることを意味してもよい(単一TRPのためのセパレートTCI状態)。 Also, for example, when N = 1 and M = 1, the UE is separately notified/set/instructed of one UL TCI state and one DL TCI state for a single TRP (separate TCI state for single TRP).
 また、例えば、N=M=2と記載される場合は、UEに対し、複数の(2つの)TRPに対する、複数の(2つの)のUL及びDLに共通のTCI状態が通知/設定/指示されることを意味してもよい(複数TRPのためのジョイントTCI状態)。 Also, for example, if N = M = 2, the UE is notified/configured/instructed of a TCI state common to multiple (two) UL and DL for multiple (two) TRPs (joint TCI state for multiple TRPs).
 また、例えば、N=2、M=2と記載される場合は、UEに対し、複数(2つ)のTRPに対する、複数の(2つの)UL TCI状態と、複数の(2つの)DL TCI状態と、が通知/設定/指示されることを意味してもよい(複数TRPのためのセパレートTCI状態)。 Also, for example, when N = 2 and M = 2, for the UE, multiple (two) UL TCI states and multiple (two) DL TCI states for multiple (two) TRPs State may mean signaled/set/indicated (separate TCI state for multiple TRPs).
 また、例えば、N=2、M=1と記載される場合は、UEに対し、2つのUL及びDLに共通のTCI状態が通知/設定/指示されることを意味してもよい。このときUEは、設定/指示される2つのTCI状態をUL TCI状態として用い、設定/指示される2つのTCI状態のうちの1つのTCI状態をDL TCI状態として用いてもよい。 Also, for example, when N = 2 and M = 1, it may mean that the TCI state common to the two UL and DL is notified/configured/indicated to the UE. At this time, the UE may use the two configured/indicated TCI states as the UL TCI state, and use one of the two configured/indicated TCI states as the DL TCI state.
 また、例えば、N=2、M=1と記載される場合は、UEに対し、セパレートTCI状態として、2つのUL TCI状態と、1つのDL TCI状態とが通知/設定/指示されることを意味してもよい。 Also, for example, when N = 2 and M = 1, it means that two UL TCI states and one DL TCI state are notified/set/instructed to the UE as separate TCI states. may mean.
 なお、上記例においては、N及びMの値が1又は2のケースを説明したが、N及びMの値は3以上であってもよいし、N及びMは異なってもよい。 In the above example, the case where the values of N and M are 1 or 2 has been explained, but the values of N and M may be 3 or more, and N and M may be different.
 M>1/N>1のケースは、複数TRPのためのTCI状態指示、及び、バンド間(inter band)CAのための複数のTCI状態指示、の少なくとも一方を示してもよい。 The case of M>1/N>1 may indicate at least one of TCI status indications for multiple TRPs and multiple TCI status indications for inter-band CA.
 図1Aの例において、RRCパラメータ(情報要素)は、DL及びULの両方用の複数のTCI状態を設定する。MAC CEは、設定された複数のTCI状態のうちの複数のTCI状態をアクティベートしてもよい。DCIは、アクティベートされた複数のTCI状態の1つを指示してもよい。DCIは、UL/DL DCIであってもよい。指示されたTCI状態は、UL/DLのチャネル/RSの少なくとも1つ(又は全て)に適用されてもよい。1つのDCIがUL TCI及びDL TCIの両方を指示してもよい。 In the example of FIG. 1A, RRC parameters (information elements) configure multiple TCI states for both DL and UL. The MAC CE may activate multiple TCI states out of multiple configured TCI states. A DCI may indicate one of multiple TCI states that have been activated. DCI may be UL/DL DCI. The indicated TCI conditions may apply to at least one (or all) of the UL/DL channels/RSs. One DCI may indicate both UL TCI and DL TCI.
 図1Aの例において、1つの点は、UL及びDLの両方に適用される1つのTCI状態であってもよいし、UL及びDLにそれぞれ適用される2つのTCI状態であってもよい。 In the example of FIG. 1A, one point may be one TCI state that applies to both UL and DL, or two TCI states that apply to UL and DL respectively.
 RRCパラメータによって設定された複数のTCI状態と、MAC CEによってアクティベートされた複数のTCI状態と、の少なくとも1つは、TCIプール(共通TCIプール、ジョイントTCIプール、TCI状態プール)と呼ばれてもよい。MAC CEによってアクティベートされた複数のTCI状態は、アクティブTCIプール(アクティブ共通TCIプール)と呼ばれてもよい。 At least one of the multiple TCI states set by the RRC parameters and the multiple TCI states activated by the MAC CE may be called a TCI pool (common TCI pool, joint TCI pool, TCI state pool). good. Multiple TCI states activated by a MAC CE may be called an active TCI pool (active common TCI pool).
 なお、本開示において、複数のTCI状態を設定する上位レイヤパラメータ(RRCパラメータ)は、複数のTCI状態を設定する設定情報、単に「設定情報」と呼ばれてもよい。また、本開示において、DCIを用いて複数のTCI状態の1つを指示されることは、DCIに含まれる複数のTCI状態の1つを指示する指示情報を受信することであってもよいし、単に「指示情報」を受信することであってもよい。 In addition, in the present disclosure, higher layer parameters (RRC parameters) that configure multiple TCI states may be referred to as configuration information that configures multiple TCI states, or simply "configuration information." In addition, in the present disclosure, to indicate one of the plurality of TCI states using the DCI may be receiving indication information indicating one of the plurality of TCI states included in the DCI. , it may simply be to receive "instruction information".
 図1Bの例において、RRCパラメータは、DL及びULの両方用の複数のTCI状態(ジョイント共通TCIプール)を設定する。MAC CEは、設定された複数のTCI状態のうちの複数のTCI状態(アクティブTCIプール)をアクティベートしてもよい。UL及びDLのそれぞれに対する(別々の、separate)アクティブTCIプールが、設定/アクティベートされてもよい。 In the example of FIG. 1B, the RRC parameters configure multiple TCI states (joint common TCI pools) for both DL and UL. The MAC CE may activate multiple TCI states (active TCI pool) out of multiple configured TCI states. Separate active TCI pools for each of the UL and DL may be configured/activated.
 DL DCI、又は新規DCIフォーマットが、1以上(例えば、1つ)のTCI状態を選択(指示)してもよい。その選択されたTCI状態は、1以上(又は全て)のDLのチャネル/RSに適用されてもよい。DLチャネルは、PDCCH/PDSCH/CSI-RSであってもよい。UEは、Rel.16のTCI状態の動作(TCIフレームワーク)を用いて、DLの各チャネル/RSのTCI状態を決定してもよい。UL DCI、又は新規DCIフォーマットが、1以上(例えば、1つ)のTCI状態を選択(指示)してもよい。その選択されたTCI状態は、1以上(又は全て)のULチャネル/RSに適用されてもよい。ULチャネルは、PUSCH/SRS/PUCCHであってもよい。このように、異なるDCIが、UL TCI及びDL DCIを別々に指示してもよい。 A DL DCI or a new DCI format may select (indicate) one or more (eg, one) TCI states. The selected TCI state may be applied to one or more (or all) DL channels/RS. The DL channel may be PDCCH/PDSCH/CSI-RS. The UE uses Rel. A 16 TCI state operation (TCI framework) may be used to determine the TCI state for each channel/RS in the DL. A UL DCI or new DCI format may select (indicate) one or more (eg, one) TCI states. The selected TCI state may be applied to one or more (or all) UL channels/RS. The UL channel may be PUSCH/SRS/PUCCH. Thus, different DCIs may indicate UL TCI and DL DCI separately.
 既存のDCIフォーマット1_1/1_2が、共通TCI状態の指示に用いられてもよい。 The existing DCI format 1_1/1_2 may be used to indicate common TCI status.
 共通TCIフレームワークは、DL及びULに対して別々のTCI状態を有してもよい。 A common TCI framework may have separate TCI states for DL and UL.
(分析)
<Rel.16におけるTCI状態及びQCL情報>
 図2は、Rel.16におけるTCI状態及びQCL情報のRRC設定を示す図である。TCI状態として、TCI状態ID(tci-StateId)、QCLタイプ1,2(qcl-Type1,2)が設定される。QCLタイプ1,2には、それぞれQCL情報(QCL-Info)が対応する。QCL情報は、セル(cell)、BWP ID(bwp-Id)、参照信号(referenceSignal)(csi-rs、ssb)、QCLタイプを含む。
(analysis)
<Rel. 16 TCI status and QCL information>
FIG. 2 is a diagram of Rel. 16 shows RRC configuration of TCI state and QCL information in V.16. FIG. As the TCI state, a TCI state ID (tci-StateId) and QCL types 1 and 2 (qcl-Type1,2) are set. QCL information (QCL-Info) corresponds to QCL types 1 and 2, respectively. The QCL information includes cell, BWP ID (bwp-Id), reference signal (csi-rs, ssb), and QCL type.
 Rel.17の統一TCI状態設定において、MAC CE/DCIによるジョイント/セパレートのDL/UL TCI状態指示がM=N=1のケースをサポートすることが検討されている。また、セル間ビーム管理はRel.17でもサポートされることが検討されている。例えばTCI状態は、異なるPCIのSSBに対応していてもよい。  Rel. In 17 unified TCI state settings, joint/separate DL/UL TCI state indication by MAC CE/DCI is considered to support the case of M=N=1. Also, inter-cell beam management is described in Rel. 17 is also being considered for support. For example, TCI states may correspond to different PCI SSBs.
<Rel.16におけるCSI報告>
 図3は、Rel.16におけるCSI報告を示す図である。図3に示すように、CSI報告は、CRI or SSBRI、L1-RSRP/L1-SINR value、Differential L1-RSRP/L1-SINR/valueを含む。
<Rel. CSI report in 16>
FIG. 3 is a diagram of Rel. 16 shows CSI reporting in X.16; FIG. As shown in FIG. 3, the CSI report includes CRI or SSBRI, L1-RSRP/L1-SINR value, Differential L1-RSRP/L1-SINR/value.
 Rel.17では、CSI(L1ビーム)報告/測定が強化されることが検討されている。例えば、セル間ビーム管理におけるDLのL1ビーム報告の機能強化のために、異なるPCIを備えたセル用のL1ビームの報告/測定が検討されている。また、Rel.17のマルチTRPビーム管理におけるDLグループベースのL1ビーム報告の機能強化のために、UEは、最大4つのビームグループ(各グループに2つのビーム)を受信し、グループ内のビームを同時に受信してもよい。また、ULの最大許容曝露(Maximum Permitted Exposure(MPE))問題に対応するための、Rel.17のUL L1ビーム報告の機能強化のために、Power Headroom Report(PHR) MAC CEのSSBRI/CRIにおいて、電力管理最大電力低減(Power Management Maximum Power Reduction(P-MPR))値が追加されてもよい。  Rel. 17, enhancements to CSI (L1 beam) reporting/measurement are being considered. For example, L1 beam reporting/measurement for cells with different PCIs is being considered for enhancement of DL L1 beam reporting in inter-cell beam management. Also, Rel. For enhancement of DL group-based L1 beam reporting in 17 multi-TRP beam management, the UE can receive up to 4 beam groups (2 beams in each group) and receive beams within a group simultaneously. good too. Also, in order to deal with the UL Maximum Permitted Exposure (MPE) problem, Rel. Power Management Maximum Power Reduction (P-MPR) value added in Power Headroom Report (PHR) MAC CE SSBRI/CRI for enhancement of UL L1 beam reporting in 17 good.
<想定1>
 想定1では、ジョイントDL/UL TCI状態を適用し、M,Nの数は、M=N=1と,M=2かつN=1と,M=1かつN=2と,M=2かつN=1と、のいずれかであるとする。
<Assumption 1>
Assumption 1 applies the joint DL/UL TCI state and the numbers of M,N are M=N=1, M=2 and N=1, M=1 and N=2, M=2 and Assume that either N=1 or
 ジョイントDL/UL TCI状態を適用する場合、DL L1ビーム報告を再利用して、UEによって推奨される、アクティブ化されたジョイントDL/UL TCI状態を示すことが考えられる。 When applying the joint DL/UL TCI state, it is possible to reuse the DL L1 beam report to indicate the activated joint DL/UL TCI state recommended by the UE.
<想定2>
 想定2では、セパレートDL/UL TCI状態を適用し、M,Nの数は、M=N=1と,M=2かつN=1と,M=1かつN=2と,M=2かつN=1と、のいずれかであるとする。
<Assumption 2>
In assumption 2, separate DL/UL TCI states are applied and the numbers of M, N are M=N=1, M=2 and N=1, M=1 and N=2, M=2 and Assume that either N=1 or
 セパレートDL/UL TCI状態の場合、DL/ULのアクティブなビーム/TCI状態を個別に更新する必要がある。 In the case of separate DL/UL TCI states, the DL/UL active beam/TCI states need to be updated separately.
 想定1(ジョイントTCI状態)又は想定2(セパレートTCI状態)の少なくとも1つを適用した場合における、TCI状態のアクティブ化について、詳細な設計が明らかになっていない。例えば、基地局からの設定又はUEによる報告などについて、明らかになっていない。これにより、適切なTCI状態がアクティブ化されずに通信スループットが低下するおそれがある。 A detailed design has not been clarified for activation of the TCI state when at least one of assumption 1 (joint TCI state) or assumption 2 (separate TCI state) is applied. For example, configuration from the base station or reporting by the UE is not clear. This may result in poor communication throughput due to the proper TCI state not being activated.
 そこで、本発明者らは、適切なTCI状態をアクティブ化することができる方法を着想した。 Therefore, the inventors have conceived a method by which the appropriate TCI state can be activated.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication method according to each embodiment may be applied independently, or may be applied in combination.
 本開示において、「A/B」及び「A及びBの少なくとも一方」は、互いに読み替えられてもよい。また、本開示において、「A/B/C」は、「A、B及びCの少なくとも1つ」を意味してもよい。 In the present disclosure, "A/B" and "at least one of A and B" may be read interchangeably. Also, in the present disclosure, "A/B/C" may mean "at least one of A, B and C."
 本開示において、アクティベート(アクティブ化)、ディアクティベート(非アクティブ化)、指示(又は指定(indicate))、選択(select)、設定(configure)、更新(update)、決定(determine)、報告などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できるなどは、互いに読み替えられてもよい。 In this disclosure, activate, deactivate, indicate (or indicate), select, configure, update, determine, report, etc. , may be read interchangeably. In the present disclosure, supporting, controlling, controllable, operating, capable of operating, etc. may be read interchangeably.
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、情報要素(IE)、設定などは、互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンドなどは、互いに読み替えられてもよい。 In the present disclosure, Radio Resource Control (RRC), RRC parameters, RRC messages, higher layer parameters, information elements (IEs), settings, etc. may be read interchangeably. In the present disclosure, Medium Access Control control element (MAC Control Element (CE)), update command, activation/deactivation command, etc. may be read interchangeably.
 本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 In the present disclosure, higher layer signaling may be, for example, Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
 本開示において、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。 In the present disclosure, MAC signaling may use, for example, MAC Control Element (MAC CE), MAC Protocol Data Unit (PDU), and the like. Broadcast information includes, for example, Master Information Block (MIB), System Information Block (SIB), Remaining Minimum System Information (RMSI), and other system information ( It may be Other System Information (OSI).
 本開示において、物理レイヤシグナリングは、例えば、下りリンク制御情報(Downlink Control Information(DCI))、上りリンク制御情報(Uplink Control Information(UCI))などであってもよい。 In the present disclosure, the physical layer signaling may be, for example, downlink control information (DCI), uplink control information (UCI), or the like.
 本開示において、インデックス、識別子(Identifier(ID))、インディケーター、リソースIDなどは、互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。 In the present disclosure, indices, identifiers (ID), indicators, resource IDs, etc. may be read interchangeably. In the present disclosure, sequences, lists, sets, groups, groups, clusters, subsets, etc. may be read interchangeably.
 本開示において、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、基地局、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソースインディケーター(SRS Resource Indicator(SRI))、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード(Codeword(CW))、トランスポートブロック(Transport Block(TB))、参照信号(Reference Signal(RS))、アンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、アンテナポートグループ(例えば、DMRSポートグループ)、グループ(例えば、空間関係グループ、符号分割多重(Code Division Multiplexing(CDM))グループ、参照信号グループ、CORESETグループ、Physical Uplink Control Channel(PUCCH)グループ、PUCCHリソースグループ)、リソース(例えば、参照信号リソース、SRSリソース)、リソースセット(例えば、参照信号リソースセット)、CORESETプール、下りリンクのTransmission Configuration Indication state(TCI状態)(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。 In the present disclosure, a panel, a UE panel, a panel group, a beam, a beam group, a precoder, an Uplink (UL) transmitting entity, a transmission/reception point (TRP), a base station, a spatial relation information (SRI )), spatial relationship, SRS resource indicator (SRI), control resource set (COntrol REsource SET (CORESET)), physical downlink shared channel (PDSCH), codeword (CW), transport Block (Transport Block (TB)), reference signal (Reference Signal (RS)), antenna port (e.g. demodulation reference signal (DeModulation Reference Signal (DMRS)) port), antenna port group (e.g. DMRS port group), Group (e.g., spatial relationship group, Code Division Multiplexing (CDM) group, reference signal group, CORESET group, Physical Uplink Control Channel (PUCCH) group, PUCCH resource group), resource (e.g., reference signal resource, SRS resource), resource set (for example, reference signal resource set), CORESET pool, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), unified TCI State (unified TCI state), common TCI state (common TCI state), Quasi-Co-Location (QCL), QCL assumption, etc. may be read interchangeably.
 本開示において、ビーム、空間ドメインフィルタ、空間セッティング、TCI状態、UL TCI状態、統一(unified)TCI状態、統一ビーム、共通(common)TCI状態、共通ビーム、TCI想定、QCL想定、QCLパラメータ、空間ドメイン受信フィルタ、UE空間ドメイン受信フィルタ、UE受信ビーム、DLビーム、DL受信ビーム、DLプリコーディング、DLプリコーダ、DL-RS、TCI状態/QCL想定のQCLタイプDのRS、TCI状態/QCL想定のQCLタイプAのRS、空間関係、空間ドメイン送信フィルタ、UE空間ドメイン送信フィルタ、UE送信ビーム、ULビーム、UL送信ビーム、ULプリコーディング、ULプリコーダ、PL-RS、は互いに読み替えられてもよい。本開示において、QCLタイプX-RS、QCLタイプXに関連付けられたDL-RS、QCLタイプXを有するDL-RS、DL-RSのソース、SSB、CSI-RS、SRS、は互いに読み替えられてもよい。 In the present disclosure, beams, spatial domain filters, spatial settings, TCI states, UL TCI states, unified TCI states, unified beams, common TCI states, common beams, TCI assumptions, QCL assumptions, QCL parameters, spatial Domain Receive Filter, UE Spatial Domain Receive Filter, UE Receive Beam, DL Beam, DL Receive Beam, DL Precoding, DL Precoder, DL-RS, TCI State/QCL Assumed QCL Type D RS, TCI State/QCL Assumed QCL type A RS, spatial relationship, spatial domain transmit filter, UE spatial domain transmit filter, UE transmit beam, UL beam, UL transmit beam, UL precoding, UL precoder, PL-RS may be read interchangeably. In this disclosure, QCL type X-RS, DL-RS associated with QCL type X, DL-RS with QCL type X, source of DL-RS, SSB, CSI-RS, SRS, may be read interchangeably. good.
 本開示において、マルチTRP、マルチTRPを用いるチャネル、複数のTCI状態/空間関係を用いるチャネル、マルチTRPがRRC/DCIによって有効化されること、複数のTCI状態/空間関係がRRC/DCIによって有効化されること、シングルDCIに基づくマルチTRPとマルチDCIに基づくマルチTRPとの少なくとも1つ、は互いに読み替えられてもよい。本開示において、マルチDCIに基づくマルチTRP、CORESETに対して1のCORESETプールインデックス(CORESETPoolIndex)値が設定されること、は互いに読み替えられてもよい。本開示において、シングルDCIに基づくマルチTRP、TCIフィールドの少なくとも1つのコードポイントが2つのTCI状態にマップされること、は互いに読み替えられてもよい。 In this disclosure, multi-TRP, channels with multi-TRP, channels with multiple TCI state/spatial relationships, multi-TRP enabled by RRC/DCI, multiple TCI state/spatial relationships enabled by RRC/DCI and at least one of multi-TRP based on a single DCI and multi-TRP based on multiple DCIs may be read interchangeably. In this disclosure, multi-TRPs based on multi-DCI, setting a CORESET pool index (CORESETPoolIndex) value of 1 for a CORESET, may be read interchangeably. In this disclosure, multiple TRPs based on a single DCI, where at least one codepoint of a TCI field is mapped to two TCI states, may be read interchangeably.
 本開示において、シングルDCI(sDCI)、シングルPDCCH、シングルDCIに基づくマルチTRPシステム、sDCIベースMTRP、少なくとも1つのTCIコードポイント上の2つのTCI状態をアクティベートされること、は互いに読み替えられてもよい。 In this disclosure, single DCI (sDCI), single PDCCH, multi-TRP system based on single DCI, sDCI-based MTRP, activating two TCI states on at least one TCI codepoint may be read interchangeably. .
 本開示において、マルチDCI(mDCI)、マルチPDCCH、マルチDCIに基づくマルチTRPシステム、mDCIベースMTRP、2つのCORESETプールインデックス又はCORESETプールインデックス=1(又は1以上の値)が設定されること、は互いに読み替えられてもよい。 In the present disclosure, multi-DCI (mDCI), multi-PDCCH, multi-TRP system based on multi-DCI, mDCI-based MTRP, two CORESET pool indices or CORESET pool index = 1 (or a value of 1 or more) is set You may read each other.
 本開示において、「Rel.XX」という記載は、3GPPのリリース番号を示す。ただし、番号「XX」は、一例であり、他の番号に置き換えられてもよい。 In this disclosure, the description "Rel.XX" indicates the release number of 3GPP. However, the number "XX" is an example and may be replaced with another number.
 本開示において、L1ビーム報告、ビーム報告、CSI報告は、互いに読み替えられてもよい。報告、測定、指示は、互いに読み替えられてもよい。TCI状態をアクティブ化/非アクティブ化することと、TCI状態を更新することとは、互いに読み替えられてもよい。 In the present disclosure, the L1 beam report, beam report, and CSI report may be read interchangeably. Reports, measurements, and instructions may be read interchangeably. Activating/deactivating the TCI state and updating the TCI state may be read interchangeably.
(無線通信方法)
 以下、第1~第5の実施形態について、DL及びULに対して同じTCI状態(ジョイントDL/UL TCI状態)が適用される上記想定1を前提とする。第6~第12の実施形態について、DL及びULのそれぞれに対して別のTCI状態(セパレートDL/UL TCI状態)が適用される上記想定2を前提とする。
(Wireless communication method)
In the following, for the first to fifth embodiments, it is assumed assumption 1 above that the same TCI state (joint DL/UL TCI state) is applied to the DL and UL. For the sixth to twelfth embodiments, assume assumption 2 above that separate TCI states (separate DL/UL TCI states) are applied for DL and UL respectively.
<第1の実施形態>
 UEは、DL及びULに対して同じTCI状態(ジョイントDL/UL TCI状態)が適用される場合、RRC/MAC CE/DCIにより、TCI状態のアクティブ化/非アクティブ化がUEにより開始されることを有効/無効にする特定の設定を基地局から受信してもよい。当該特定の設定は、ケース(M,Nの組み合わせ)毎の設定であってもよいし、複数のケースに対して1つの設定が対応してもよい。当該設定を受信した場合、UEは、TCI状態のアクティブ化を開始してもよい。UEが開始するTCI状態のアクティブ化/非アクティブ化の機能を特定の機能と称することがある。TCI状態のアクティブ化/非アクティブ化は、アクティブなTCI状態を更新することを示してもよい。
<First embodiment>
The UE shall indicate that activation/deactivation of the TCI state is initiated by the UE by means of RRC/MAC CE/DCI if the same TCI state (joint DL/UL TCI state) is applied for DL and UL. A specific setting may be received from the base station to enable/disable the . The specific setting may be a setting for each case (combination of M and N), or one setting may correspond to a plurality of cases. Upon receiving such configuration, the UE may initiate TCI state activation. The function of UE-initiated TCI state activation/deactivation may be referred to as a specific function. Activating/deactivating a TCI state may indicate updating an active TCI state.
 「開始する」、「制御する」、「決定する」、「報告する」、「イベントによってトリガする」は互いに読み替えられてもよい。ビーム/TCI状態をアクティブ化/報告するためのイベント(条件)は予め仕様で定義されてもよいし、上位レイヤシグナリング/物理レイヤシグナリングにより設定/指示されてもよい。イベントは、例えば、現在のビーム強度が他のビームの強度より悪くなることである。 "Start", "control", "determine", "report", and "triggered by an event" may be read interchangeably. The events (conditions) for activating/reporting beam/TCI status may be predefined in the specification or may be set/directed by higher layer/physical layer signaling. An event is, for example, that the current beam intensity becomes worse than the intensity of another beam.
 UEは、RRC IE/MAC CE/UCI/Random Access Channe(RACH)(Contention based Random Access(CBRA)/Contention-Free Random Access(CFRA))/Scheduling Request(SR)により、TCI状態のアクティブ化がUEにより開始されることを有効/無効にするかどうかを示す特定の報告を送信してもよい。 UE activates the TCI state by RRC IE/MAC CE/UCI/Random Access Channel (RACH) (Contention-based Random Access (CBRA)/Contention-Free Random Access (CFRA))/Scheduling Request (SR). A specific report may be sent indicating whether to enable/disable being initiated by the .
[オプション1-1]
 UEは、上記特定の報告を、他の情報とは別に送信してもよい。UEは、例えば、特定の機能が有効/無効であることを示す新しいMAC CEを送信してもよい。
[Option 1-1]
The UE may send the specific report separately from other information. The UE may, for example, send a new MAC CE indicating that certain features are enabled/disabled.
[オプション1-2]
 UEは、推奨ビームを示す情報とともに上記特定の報告を送信してもよい。推奨ビームは、例えば、ビームの強さ(例えば、RSRP、SINR)などに基づいて決定した、最良な(最も強い)ビームであってもよい。UEは、例えば、既存のL1ビーム報告に特定の報告(表示、indication、フィールド)を追加して、報告されたL1ビームが、アクティブなTCI状態の更新用であるか否か(アクティブTCI状態の更新/指示に用いられるか否か)を示してもよい。
[Option 1-2]
The UE may send the specific report along with information indicating recommended beams. The recommended beam may be, for example, the best (most intense) beam determined based on beam strength (eg, RSRP, SINR). The UE may, for example, add a specific report (indication, indication, field) to the existing L1 beam report to indicate whether the reported L1 beam is for active TCI state update (active TCI state used for updating/directing).
[オプション1-3]
 UEは、推奨TCI状態を示す情報とともに上記特定の報告を送信してもよい。UEは、例えば、特定の報告と推奨TCI状態とを含む新規の報告を送信してもよい。当該新規の報告は、推奨TCI状態がアクティブなTCI状態の更新用であるか否か(アクティブTCI状態の更新/指示に用いられるか否か)を示してもよい。推奨TCI状態は、上記推奨ビームに対応していてもよい。よって、推奨TCI状態の決定方法は、推奨ビームの決定方法と同様であってもよい。
[Option 1-3]
The UE may send the specific report with information indicating the recommended TCI state. The UE may, for example, send a new report containing specific reports and recommended TCI states. The new report may indicate whether the recommended TCI status is for updating the active TCI status (whether it is used to update/indicate the active TCI status). The recommended TCI state may correspond to the recommended beams described above. Therefore, the method for determining the recommended TCI state may be similar to the method for determining the recommended beam.
[オプション1-4]
 UEは、特定の報告を明示的な情報として送信せず、特定の報告に対応する暗黙的な情報を送信してもよい。UEは、例えば、推奨TCI状態のみを送信してもよい。報告された当該推奨TCI状態は、アクティブなTCI状態の更新用である(アクティブなTCI状態の更新に用いられる)ことを意味してもよい。UEは、例えば、L1ビーム報告のみを送信してもよい。報告されたL1ビーム報告は、アクティブなTCI状態の更新用である(アクティブなTCI状態の更新に用いられる)ことを意味してもよい。
[Option 1-4]
The UE may not send specific reports as explicit information, but may send implicit information corresponding to specific reports. The UE may, for example, transmit only the recommended TCI states. The reported recommended TCI state may be meant for (used to update) the active TCI state. The UE may, for example, only transmit L1 beam reports. It may be implied that the reported L1 beam reports are for active TCI state updates (used for active TCI state updates).
 なお、上述した基地局(例えばgNB)による特定の設定と、UEによる特定の報告のどちらか一方のみがサポートされていてもよいし、両方がサポートされていてもよい。両方がサポートされる場合、UEによる特定の報告は、基地局か送信された特定の設定に従ってもよい。 It should be noted that only one of the above-described specific settings by the base station (eg, gNB) and specific reporting by the UE may be supported, or both may be supported. If both are supported, specific reporting by the UE may follow specific settings sent by the base station.
 本実施形態によれば、UEは、TCI状態のアクティブ化/非アクティブ化を開始することにより、適切なTCI状態をアクティブ化することができる。 According to this embodiment, the UE can activate the appropriate TCI state by initiating activation/deactivation of the TCI state.
<第2の実施形態>
 UEは、DL L1ビーム報告(CSI報告)(例えばj個のビームの報告)に基づいて、i個(第1の数)のアクティブなTCI状態を新しいp個(第2の数)のアクティブなTCI状態に更新してもよい。iは、pと同じであってもよいし(例えば、p=i)、異なっていてもよい。例えば、p=jであってもよい。各実施形態におけるi、jは、上記(統一(unified)/共通(common)TCIフレームワーク)で示したM,Nとは別の数値であってもよいし、同じ数値であってもよい。
<Second embodiment>
The UE updates the i (first number) active TCI states to the new p (second number) active TCI states based on the DL L1 beam reports (CSI reports) (e.g., j beam reports). It may update to the TCI status. i may be the same as p (eg, p=i) or may be different. For example, p=j. i and j in each embodiment may be different numerical values from M and N shown in the above (unified/common TCI framework), or may be the same numerical values.
 図4は、第2の実施形態におけるTCI状態の更新の例を示す図である。図4に示すように、i個のTCI状態は、j個のビーム報告により、p個のアクティブなTCI状態に更新される。p=iであってもよいし、p=jであってもよい。1番目のTCI状態(1st TCI state)は、例えば、最良のTCI状態(例えば最も大きいL1-RSRP/SINR値に対応するTCI状態)である。なお、最良のTCI状態は、上述した推奨TCI状態と同じであってもよい。 FIG. 4 is a diagram showing an example of TCI state update in the second embodiment. As shown in FIG. 4, i TCI states are updated to p active TCI states by j beam reports. p=i or p=j. The first TCI state (1st TCI state) is, for example, the best TCI state (eg, the TCI state corresponding to the largest L1-RSRP/SINR value). Note that the best TCI conditions may be the same as the recommended TCI conditions described above.
 UEは、i個のアクティブなTCI状態を、それぞれi個のビームに関連づけるように更新してもよい。UEは、例えば、1番目/最後のTCI状態を1番目のビーム(SSB/CSI-RS)に関連付けるように更新し、2番目/最後から2番目のTCI状態を2番目のビーム(SSB/CSI-RS)に関連付けるように更新し、k番目/i-k+1番目のTCI状態をk番目のビーム(SSB/CSI-RS)に関連付けるように更新してもよい。SSB、SSBRIは、互いに読み替えられてもよい。CSI-RS、CRIは、互いに読み替えられてもよい。 The UE may update the i active TCI states to associate with each i beam. The UE updates, for example, to associate the 1st/last TCI state with the 1st beam (SSB/CSI-RS) and the 2nd/penultimate TCI state with the 2nd beam (SSB/CSI-RS). −RS) and the kth/i−k+1th TCI state may be updated to associate with the kth beam (SSB/CSI-RS). SSB and SSBRI may be read interchangeably. CSI-RS and CRI may be read interchangeably.
 QCLタイプ1(qcl-Type1)/QCLタイプ2(qcl-Type2)において設定された元のi個のTCI状態を更新する方法について、以下のオプション2-1-1~2-1-3の少なくとも1つ適用されてもよい。本開示におけるReference Signal(RS)は、例えば、SSB/CSI-RSであってもよい。 At least the following options 2-1-1 to 2-1-3 for the method of updating the original i TCI states set in QCL type 1 (qcl-Type1) / QCL type 2 (qcl-Type2) One may apply. Reference Signal (RS) in the present disclosure may be SSB/CSI-RS, for example.
[オプション2-1-1]
 UEは、TCI状態のQCLタイプ1とQCLタイプ2の両方においてRSを更新してもよい(もし両方のRSが存在する場合)。
[Option 2-1-1]
The UE may update RSs in both QCL type 1 and QCL type 2 in TCI state (if both RSs are present).
[オプション2-1-2]
 UEは、TCI状態のQCLタイプ1およびQCLタイプ2のいずれかにおいて、RSを更新してもよい。このRSは、特定のQCLタイプを伴ってもよい。特定のQCLタイプは、QCLタイプDであってもよいし、他のQCLタイプであってもよい。
[Option 2-1-2]
The UE may update the RS in either QCL type 1 and QCL type 2 of the TCI state. This RS may be accompanied by a specific QCL type. The specific QCL type may be QCL type D or any other QCL type.
[オプション2-1-3]
 UEは、i個のTCI状態に対応するRSを更新しないが、RRCで設定されたTCIプールからTCI状態を探して見つけ出しても(決定しても/特定しても)よい。UEは、例えば、報告されたビームとQCL関係である最大j個のTCI状態をRRCで設定されたTCIプールから探して見つけ出しても(決定しても/特定しても)よい。
[Option 2-1-3]
The UE does not update the RS corresponding to the i TCI states, but may seek (determine/identify) the TCI states from the RRC-configured TCI pool. The UE may for example find (determine/identify) up to j TCI states that are QCL related to the reported beams from the RRC configured TCI pool.
 次に、i、p、j間の関係毎のTCI状態の更新について説明する(オプション2-1-1/2-1-2の場合)。 Next, the updating of the TCI state for each relationship between i, p, and j will be described (for option 2-1-1/2-1-2).
[i≧j]
 最初/最後のj個のアクティブなTCI状態が新しいRS/ビームに更新され、残りの(i-j個の)TCI状態は、アクティブ化されたまま更新されなくてもよい(p=i)。又は、最初/最後のj個のアクティブなTCI状態が新しいRS/ビームに更新され、残りの(i-j個の)TCI状態は、非アクティブ化されてもよい(p=j)。
[i≧j]
The first/last j active TCI states are updated to the new RS/beam, and the remaining (ij) TCI states may remain activated and not updated (p=i). Alternatively, the first/last j active TCI states may be updated to the new RS/beam and the remaining (ij) TCI states may be deactivated (p=j).
[i<j]
 i個のアクティブなTCI状態が新しいRS/ビームに更新されてもよい(p=i)又は、i個のアクティブなTCI状態が新しいRS/ビームに更新され、追加の(j-i個の)TCI状態もアクティブ化されてもよい(p=j)。
[i<j]
i active TCI states may be updated to new RS/beams (p=i) or i active TCI states may be updated to new RS/beams and additional (ji) A TCI state may also be activated (p=j).
 本実施形態によれば、UEは、アクティブなTCI状態の数に関わらず、アクティブなTCI状態を適切に更新することができる。 According to this embodiment, the UE can appropriately update the active TCI states regardless of the number of active TCI states.
<第3の実施形態>
 UEは、推奨TCI状態の新しい報告に基づいて、i個(第1の数)のアクティブなTCI状態を新しいp個(第2の数)のアクティブなTCI状態に更新してもよい。当該TCI状態は、j個のTCI状態であってもよく、例えば、第1の実施形態のオプション1-3、1-4におけるTCI状態であってもよい。
<Third Embodiment>
The UE may update the i (first number) active TCI states to the new p (second number) active TCI states based on the new report of the recommended TCI states. The TCI states may be j TCI states, for example, the TCI states in options 1-3 and 1-4 of the first embodiment.
 図5は、第3の実施形態におけるTCI状態の更新の例を示す図である。図5に示すように、i個のTCI状態は、報告されたj個のTCI状態により、p個のアクティブなTCI状態に更新される。p=iであってもよいし、p=jであってもよい。1番目のTCI状態(1st TCI state)は、例えば、最良のTCI状態(例えば最も大きいL1-RSRP/SINR値に対応するTCI状態)である。 FIG. 5 is a diagram showing an example of updating the TCI status in the third embodiment. As shown in FIG. 5, i TCI states are updated to p active TCI states by reported j TCI states. p=i or p=j. The first TCI state (1st TCI state) is, for example, the best TCI state (eg, the TCI state corresponding to the largest L1-RSRP/SINR value).
 UEは、当該新しい報告を、RRC IE/MAC CE/UCIにより行ってもよい。MAC CEを用いる場合、MAC CEの構成は、PDSCHのTCI状態のアクティブ化/非アクティブ化に関する既存のMAC CEの構成と同様であってもよい。 The UE may make the new report via the RRC IE/MAC CE/UCI. When MAC CE is used, the configuration of MAC CE may be similar to the configuration of existing MAC CE regarding activation/deactivation of the TCI state of PDSCH.
 新しい報告は、P/SP/AP-CSI報告(例えばL1ビーム)又はイベントトリガビーム報告であってもよい。本開示において、イベントに基づくビーム報告、イベントの発生に基づくビーム報告、イベントによってトリガされるビーム報告、イベントトリガビーム報告(Event triggered beam reporting)、は互いに読み替えられてもよい。 The new report may be a P/SP/AP-CSI report (eg L1 beam) or an event-triggered beam report. In the present disclosure, event-based beam reporting, event occurrence-based beam reporting, event-triggered beam reporting, and event triggered beam reporting may be read interchangeably.
 UEは、新しい報告を、既存の(他の)報告とは別に送信(報告)してもよいし、既存の(他の)報告と一緒に送信(報告)してもよい。 The UE may transmit (report) the new report separately from the existing (other) reports, or transmit (report) it together with the existing (other) reports.
 本実施形態におけるTCIの状態を更新について、以下のオプション3-1、3-2のいずれかが適用されてもよい。 Either of the following options 3-1 and 3-2 may be applied to updating the state of the TCI in this embodiment.
[オプション3-1]
 UEは、報告したj個のTCI状態を、アクティブなTCI状態として更新してもよい(p=j)。UEは、例えば、1番目に報告したTCI状態を1番目のアクティブなTCI状態として更新してもよい。
[Option 3-1]
The UE may update the reported j TCI states as active TCI states (p=j). The UE may, for example, update the first reported TCI state as the first active TCI state.
[オプション3-2]
 UEは、1番目に報告したTCI状態により、i個のTCI状態のうちの1番目のTCI状態/最後のTCI状態を置き換え、2番目に報告されたTCI状態により、i個のTCI状態のうちの2番目のTCI状態/最後から2番目のTCI状態を置き換え、k番目に報告されたTCI状態により、k番目/i-k+1番目のTCI状態を置き換えてもよい(p=i)。例えば、i<jの場合、i個のTCI状態のみが置き換えられる。i≧jの場合、残り(i-j)個のTCI状態は、アクティブな状態のまま更新されなくてよい。
[Option 3-2]
The UE replaces the first TCI state/last TCI state of the i TCI states with the first reported TCI state, and the second reported TCI state with the and the kth reported TCI state may replace the kth/i−k+1th TCI state (p=i). For example, if i<j, then only i TCI states are replaced. If i≧j, the remaining (ij) TCI states may remain active and not be updated.
 本実施形態によれば、UEは、アクティブなTCI状態の数に関わらず、アクティブなTCI状態を適切に更新することができる。 According to this embodiment, the UE can appropriately update the active TCI states regardless of the number of active TCI states.
<第4の実施形態>
 UEが、更新されたP個のアクティブなTCI状態を適用するタイミング(タイムライン)について、以下のオプション4-1~4-3の少なくとも1つが適用されてもよい。
<Fourth Embodiment>
At least one of the following options 4-1 to 4-3 may be applied for the timing (timeline) at which the UE applies the updated P active TCI states.
[オプション4-1]
 当該タイミングは、第2/第3の実施形態のように、UEがビーム報告/TCI状態の報告を送信したタイミングより特定の期間(例えば、x個のスロット/ミニスロット/シンボル)後であってもよい(x=0又はx>0)。
[Option 4-1]
The timing is after a specific period of time (eg, x slots/minislots/symbols) from the timing at which the UE transmits the beam report/TCI status report, as in the second/third embodiments. (x=0 or x>0).
[オプション4-2]
 当該タイミングは、UEが第2/第3の実施形態のようなビーム報告/TCI状態の報告を伝送するPUSCHを送信した場合、当該PUSCHのACKを受信したタイミングより特定の期間(例えば、xスロット/ミニスロット/シンボル)後であってもよい。xは、例えば、特定のDCIフォーマットを有するPDCCH受信の、最後のシンボルからのシンボル数であってもよい。特定のDCIフォーマットは、ビーム/TCI状態報告を伝送する最初のPUSCHの送信に対するHARQプロセス番号と同じHARQプロセス番号に対応するPUSCH送信をスケジュールし、トグルされた(toggled)NDIフィールドフィールド値を有する。
[Option 4-2]
The timing is a specific period (e.g., x slots /minislot/symbol). x may be, for example, the number of symbols from the last symbol of PDCCH reception with a particular DCI format. A particular DCI format schedules PUSCH transmissions corresponding to the same HARQ process number as the HARQ process number for the first PUSCH transmission that carries the beam/TCI status report, and has toggled NDI field values.
[オプション4-3]
 当該タイミングは、UEが確認のために基地局から応答を受信したタイミングより特定の期間(例えば、xスロット/ミニスロット/シンボル)後であってもよい。当該応答は、例えば、新しいMAC CE、新しいDCI(例えば、新しいフィールドを有するDCI、特定のDCIフォーマットのDCI、又は特定のRNTIを有するDCIなど)、又は新しいビーム指示(TCI状態のアクティブ化/指示など)である。
[Option 4-3]
The timing may be a certain time period (eg, x slots/minislots/symbols) after the timing at which the UE receives the response from the base station for confirmation. The response may be, for example, a new MAC CE, a new DCI (e.g. DCI with new fields, a DCI with a specific DCI format, or a DCI with a specific RNTI, etc.), or a new beam indication (TCI state activation/indication etc.).
 本実施形態によれば、更新されたアクティブなTCI状態を適切なタイミングで適用することができる。 According to this embodiment, the updated active TCI state can be applied at appropriate timing.
<第5の実施形態>
 TCI状態を更新した後、アクティブなTCI状態の数Pが複数である(P>1)場合、任意のチャネル(PDCCH/PDSCH/PUCCH/PUSCHなど)のビーム指示用に、P個のアクティブTCI状態のうちの1つのTCI状態を指示する情報をDCIにより受信する。例えばP=1、M=N=1の場合、アクティブなTCI状態は、指示されたTCI状態である。
<Fifth Embodiment>
After updating the TCI states, if the number of active TCI states P is multiple (P>1), P active TCI states for beam pointing of any channel (PDCCH/PDSCH/PUCCH/PUSCH, etc.) information is received by the DCI indicating the TCI state of one of the For example, if P=1, M=N=1, the active TCI state is the indicated TCI state.
 M=N=1以外の場合(例えばM=1かつN=2、M=2かつN=1、M=2かつN=2)について説明する。 A case other than M=N=1 (for example, M=1 and N=2, M=2 and N=1, M=2 and N=2) will be described.
[シングルDCIベースのマルチTRPからのPDSCH/PUSCHについて]
 シングルDCIベースのマルチTRPを適用する場合、PDSCH/PUSCHに対応する更新前のi個のアクティブTCI状態は、MAC CEによってアクティブ化されたTCI状態のi個のセットであり、各セットは1つ又は2つのTCI状態を含んでいてもよい。
[Regarding PDSCH/PUSCH from single DCI-based multi-TRP]
When applying single DCI-based multi-TRP, the i active TCI states before update corresponding to PDSCH/PUSCH are i sets of TCI states activated by MAC CE, each set with one Or it may contain two TCI states.
 第2の実施形態の例を適用する場合、UEは、グループベースのビーム報告における各グループの2つのビームを使用して、各セットの2つのTCI状態を更新してもよい。UEは、非グループベースのビーム報告のビームを使用して、各セットの1つのTCI状態を更新してもよい。 When applying the example of the second embodiment, the UE may use the two beams of each group in group-based beam reporting to update the two TCI states of each set. The UE may update one TCI state for each set using beams for non-group based beam reporting.
 又は、第2の実施形態の例を適用する場合、UEは、2つの個別の非グループベースのビーム報告を使用してもよい。UEは、1番目のビーム報告に基づいて各セットの1番目のTCI状態を更新し、2番目のビーム報告に基づいて、各セットの2番目のTCI状態を更新してもよい。 Alternatively, when applying the example of the second embodiment, the UE may use two separate non-group based beam reports. The UE may update the first TCI state of each set based on the first beam report and update the second TCI state of each set based on the second beam report.
 第3の実施形態の例を適用する場合、UEは、TCI状態のp個のセットをRRC/MAC CE/UCIにより報告してもよい。各セットには1つ又は2つのTCI状態が存在してもよい。 When applying the example of the third embodiment, the UE may report p sets of TCI states via RRC/MAC CE/UCI. There may be one or two TCI states in each set.
[マルチDCIベースのマルチTRPからのPDSCH/PUSCHについて]
 マルチDCIベースのマルチTRPを適用する場合、PDSCH/PUSCHに対応する、i個のアクティブなTCI状態は、CORESETプールインデックス毎に更新/設定される。例えば、全TRPにおいて、最大2i個のアクティブなTCI状態が、更新/設定される。
[Regarding PDSCH/PUSCH from multi-DCI-based multi-TRP]
When applying multi-DCI based multi-TRP, the i active TCI states corresponding to PDSCH/PUSCH are updated/configured per CORESET pool index. For example, in all TRPs, up to 2i active TCI states are updated/set.
 第2の実施形態の例を適用する場合、UEは、グループベースのビーム報告からの各グループの2つのビームを使用して、各CORESETプールインデックスに対応するTCI状態を更新してもよい。 When applying the example of the second embodiment, the UE may use the two beams of each group from the group-based beam report to update the TCI state corresponding to each CORESET pool index.
 又は、第2の実施形態の例を適用する場合、2つの個別の非グループベースのビーム報告を使用してもよい。UEは、各ビーム報告に基づいて、CORESETプールインデックスに対応するTCI状態を更新してもよい。 Alternatively, when applying the example of the second embodiment, two separate non-group based beam reports may be used. The UE may update the TCI state corresponding to the CORESET pool index based on each beam report.
 第3の実施形態の例を適用する場合、UEは、各CORESETプールインデックスに対応するp個のTCI状態をRRC/MAC CE/UCIにより報告してもよい。例えば、全TRPに対して、最大2p個のTCI状態が、報告される。2p個のTCI状態は、1つの報告に含まれてもよいし、異なるTRPに対応する個別の報告に含まれてもよい。 When applying the example of the third embodiment, the UE may report p TCI states corresponding to each CORESET pool index by RRC/MAC CE/UCI. For example, up to 2p TCI states are reported for all TRPs. The 2p TCI states may be included in one report or may be included in separate reports corresponding to different TRPs.
 本実施形態によれば、マルチTRPを適用する場合であっても、アクティブTCI状態を適切に指示することができる。 According to this embodiment, the active TCI state can be indicated appropriately even when multi-TRP is applied.
<第6の実施形態>
 上述の想定2を適用して、第1の実施形態と同様の処理が適用されてもよい。UEは、DL及びULのそれぞれに対して別のTCI状態(セパレートDL/UL TCI状態)が適用される場合、RRC/MAC CE/DCIにより、DL/UL TCI状態のアクティブ化/非アクティブ化がUEにより開始されることを有効/無効にする特定の設定を基地局から受信してもよい。開始は、決定/報告に読み替えられてもよい。当該設定を受信した場合、UEは、TCI状態のアクティブ化を開始してもよい。
<Sixth Embodiment>
Applying Assumption 2 described above, the same processing as in the first embodiment may be applied. The UE may activate/deactivate DL/UL TCI state by RRC/MAC CE/DCI if different TCI states are applied for DL and UL respectively (separate DL/UL TCI state). A specific setting may be received from the base station to enable/disable UE-initiated. Initiation may be translated into determination/reporting. Upon receiving such configuration, the UE may initiate TCI state activation.
 UEは、RRC IE/MAC CE/UCI/RACH(CBRA/CFRA)/SRにより、UL/DL TCI状態のアクティブ化がUEにより開始されることを有効/無効にするかどうかを示す特定の報告を送信してもよい。以下、想定2を適用した本実施形態の処理と、第1の実施形態の処理との違いを主に説明する。 The UE reports specific reporting via RRC IE/MAC CE/UCI/RACH (CBRA/CFRA)/SR indicating whether to enable/disable UE initiated activation of UL/DL TCI states. You may send. Differences between the processing of the present embodiment to which Assumption 2 is applied and the processing of the first embodiment will be mainly described below.
[オプション6-1]
 UEは、DL/UL TCI状態のアクティブ化のために、基地局による設定/指示、UEによる報告が、DL/ULについて個別に(separately)行われてもよい。当該基地局による設定/指示は、例えば、第1の実施形態の特定の設定である。当該UEによる報告は、例えば、第1の実施形態の特定の報告、第2/第3の実施形態における報告であってもよい。UEは、DLビーム/TCI状態と、ULビーム/TCI状態とについて、異なる報告を送信してもよいし、異なるフォーマット/シグナリング設計の報告を送信してもよい。DLビーム/TCI状態の報告には、第2/第3の実施形態を使用してもよい。なお、ULビーム/TCI状態の報告には、後述する第7/第8の実施形態が適用されてもよい。
[Option 6-1]
The UE may be configured/indicated by the base station and reported by the UE for DL/UL TCI state activation separately for DL/UL. The setting/instruction by the base station is, for example, the specific setting of the first embodiment. The reporting by the UE may be, for example, the specific reporting in the first embodiment, the reporting in the second/third embodiments. The UE may send different reports, or in different formats/signaling designs, for DL beam/TCI status and UL beam/TCI status. The second/third embodiment may be used for DL beam/TCI status reporting. In addition, the seventh/eighth embodiments, which will be described later, may be applied to the reporting of the UL beam/TCI status.
[オプション6-2]
 DL/ULの(両方の)TCI状態のアクティブ化に対する、基地局による設定/指示、UEによる報告が、1つであってもよい。UEは、ビーム/TCI状態を報告する場合、UEはDLビーム/TCI状態とULビーム/TCI状態との両方を1つの報告として送信してもよい。例えば、後述する第9/第10の実施形態が適用されてもよい。
[Option 6-2]
There may be one configuration/indication by the base station, reporting by the UE for activation of DL/UL (both) TCI states. When the UE reports the beam/TCI status, the UE may send both the DL beam/TCI status and the UL beam/TCI status in one report. For example, the ninth/tenth embodiments described later may be applied.
 本実施形態によれば、セパレートDL/UL TCI状態が適用される場合でも、UEは、TCI状態のアクティブ化/非アクティブ化を開始することにより、適切なTCI状態をアクティブ化することができる。 According to this embodiment, even if separate DL/UL TCI states are applied, the UE can activate the appropriate TCI state by initiating activation/deactivation of the TCI state.
<第7の実施形態>
 UEは、ULのL1ビーム報告(CSI報告)、PHR、MPE報告(例えばj個のULビームに対応)の少なくとも1つに基づいて、i個(第1の数)のULのアクティブTCI状態を新しいp個(第2の数)のULのアクティブなTCI状態に更新してもよい。
<Seventh embodiment>
The UE reports i (first number) UL active TCI states based on at least one of UL L1 beam reports (CSI reports), PHR, MPE reports (for example, corresponding to j UL beams). It may update to the new p (second number) UL active TCI states.
 「PHR」、「PH」、「PHフィールド」、「PH値」は、互いに読み替えられてもよい。MPE、MPR,P-MPRは、互いに読み替えられてもよい。UEは、PH値が最大のビームに対応するTCI状態をアクティブなTCI状態に更新してもよい。UEは、MPE要件を満たすビームに対応するTCI状態をアクティブなTCI状態に更新してもよい。 "PHR", "PH", "PH field", and "PH value" may be read interchangeably. MPE, MPR, and P-MPR may be read interchangeably. The UE may update the TCI state corresponding to the beam with the highest PH value to the active TCI state. The UE may update the TCI state corresponding to the beam satisfying the MPE requirements to the active TCI state.
 UEは、例えば、UL L1ビーム報告を、CSI報告フレームワークを用いて送信してもよいし、又はPHR/MPEとともに、MAC CEを用いて送信してもよい。 The UE may, for example, transmit UL L1 beam reports using the CSI reporting framework, or may transmit using MAC CE together with PHR/MPE.
 UEは、ビーム測定の設定に基づいて、MPE要件を満たすビーム(MPEセーフビーム)を示す情報をMAC CE等を報告(送信)してもよい。そして、UEは、MPE要件を満たすビームから、使用するビームを選択してもよい。MPEセーフビームは、MPE適合ビームと呼ばれてもよい。MPEセーフビームに関する測定/報告は、MPEセーフビーム測定/報告、新規ビーム測定/報告と呼ばれてもよい。 Based on the beam measurement settings, the UE may report (transmit) MAC CE, etc. information indicating beams that satisfy the MPE requirements (MPE safe beams). The UE may then select a beam to use from beams that satisfy the MPE requirements. MPE-safe beams may be referred to as MPE-compatible beams. Measurements/reports on MPE safe beams may be referred to as MPE safe beam measurements/reports, novel beam measurements/reports.
 UEは、MPEのために機能しない(MPE問題を有する、MPE要件を満たさない)ビームを決定し、選択したビーム(例えば、基地局からの指示が示すビーム)がMPE要件を満たさないと決定された場合、MPE要件に基づく値に基づいて、使用するビームを再選択(再決定)してもよい。 The UE determines beams that do not work for MPE (has MPE problems, does not meet MPE requirements), and the selected beam (e.g., the beam indicated by the instructions from the base station) is determined not to meet MPE requirements. If so, the beam to use may be re-selected (re-determined) based on values based on the MPE requirements.
 ULビーム報告設定とDLビーム報告設定とが分かれて(separate)いてもよい。例えば、UEは、ULビーム報告設定を含む第1の情報要素と、DLビーム報告設定を含む、第1の情報要素とは異なる第2のCSI情報要素とを上位レイヤシグナリングにより受信してもよい。情報要素は、例えばCSI報告設定である。  The UL beam reporting setting and the DL beam reporting setting may be separated. For example, the UE may receive a first information element containing the UL beam report configuration and a second CSI information element containing the DL beam report configuration and different from the first information element via higher layer signaling. . Information elements are, for example, CSI reporting settings.
 又は、UEは、ULビーム報告設定とともにDLビームの報告設定(UL及びDLに対するジョイントビーム測定/報告の設定)を受信してもよい。例えば、UEは、ULビーム報告設定及びDLビームの報告設定の両方を含む1つの情報要素を上位レイヤシグナリングにより受信してもよい。ULビーム報告は、DLビーム報告に加えてサポートされてもよい(例えばL1-RSRP又はL1-SINR)。すなわち、ULビーム報告は、DLビーム報告が設定された場合のみ、設定されてもよい。 Alternatively, the UE may receive DL beam reporting configuration (joint beam measurement/reporting configuration for UL and DL) along with UL beam reporting configuration. For example, the UE may receive one information element containing both UL beam reporting configuration and DL beam reporting configuration via higher layer signaling. UL beam reporting may be supported in addition to DL beam reporting (eg L1-RSRP or L1-SINR). That is, UL beam reporting may be configured only if DL beam reporting is configured.
 j個のULビームに基づく、i個のTCI状態からp個のTCI状態への更新方法については、想定2を前提として、第2の実施形態が再利用されてもよい。 Assuming Assumption 2, the second embodiment may be reused for the update method from i TCI states to p TCI states based on j UL beams.
 本実施形態によれば、L1ビーム報告(CSI報告)、PHR、MPE報告を考慮することにより、適切なTCI状態をアクティブ化することができる。 According to this embodiment, an appropriate TCI state can be activated by considering L1 beam reports (CSI reports), PHR, and MPE reports.
<第8の実施形態>
 UEは、ULの推奨TCI状態(例えば、j個)の新しい報告に基づいて、i個(第1の数)のアクティブなUL TCI状態を新しいp個(第2の数)のアクティブなUL TCI状態に更新してもよい。
<Eighth Embodiment>
The UE replaces the i (first number) active UL TCI states with the new p (second number) active UL TCI states based on the new report of the UL recommended TCI states (eg, j). status may be updated.
 UEは、当該新しい報告を、RRC IE/MAC CE/UCIにより行ってもよい。MAC CEを用いる場合、MAC CEの構成は、PDSCHのTCI状態のアクティブ化/非アクティブ化に関する既存のMAC CEの構成と同様であってもよい。 The UE may make the new report via the RRC IE/MAC CE/UCI. When MAC CE is used, the configuration of MAC CE may be similar to the configuration of existing MAC CE regarding activation/deactivation of the TCI state of PDSCH.
 新しい報告は、P/SP/AP-CSI報告(例えばL1ビーム)又はイベントトリガビーム報告であってもよい。本開示において、イベントに基づくビーム報告、イベントの発生に基づくビーム報告、イベントによってトリガされるビーム報告、イベントトリガビーム報告(Event triggerd beam reporting)、は互いに読み替えられてもよい。 The new report may be a P/SP/AP-CSI report (eg L1 beam) or an event-triggered beam report. In the present disclosure, event-based beam reporting, event-occurrence-based beam reporting, event-triggered beam reporting, and event-triggered beam reporting may be read interchangeably.
 UEは、新しい報告を、既存の(他の)報告とは別に送信(報告)してもよいし、既存の(他の)報告と一緒に送信(報告)してもよい。 The UE may transmit (report) the new report separately from the existing (other) reports, or transmit (report) it together with the existing (other) reports.
 本実施形態の処理は、上記想定2を前提として、第3の実施形態が再利用されてもよい。本実施形態によれば、UEは、アクティブなTCI状態の数に関わらず、アクティブなTCI状態を適切に更新することができる。 The processing of this embodiment may reuse the processing of the third embodiment on the premise of Assumption 2 above. According to this embodiment, the UE can properly update the active TCI states regardless of the number of active TCI states.
<第9の実施形態>
 UEが、1つの報告として送信したDL L1ビーム報告(j1個のビームに対応)及びUL L1ビーム報告(j2個のビームに対応)に基づいて、i1個のアクティブなDL TCI状態を新しいp1個のアクティブなDL TCI状態に更新し(図6A参照)、i2個のアクティブなUL TCI状態を新しいp2個のアクティブなUL TCI状態に更新してもよい(図6B参照)。i1は、p1と同じであってもよいし(p1=i1)、異なっていてもよい(例えば、p1=j1)。i2は、p2と同じであってもよいし(p2=i2)、異なっていてもよい(例えば、p2=j2)。
<Ninth Embodiment>
UE updates i1 active DL TCI states to new p1 based on DL L1 beam report (corresponding to j1 beams) and UL L1 beam report (corresponding to j2 beams) sent as one report active DL TCI states (see FIG. 6A), and the i2 active UL TCI states may be updated to the new p2 active UL TCI states (see FIG. 6B). i1 may be the same as p1 (p1=i1) or different (eg p1=j1). i2 may be the same as p2 (p2=i2) or different (eg p2=j2).
 本実施形態の処理は、上記想定2を前提として、第2の実施形態が再利用されてもよい。この場合、第2の実施形態のTCI状態は、DL TCI状態、UL TCI状態の少なくとも1つに読み替えられてもよい。 For the processing of this embodiment, the second embodiment may be reused on the premise of Assumption 2 above. In this case, the TCI state of the second embodiment may be read as at least one of the DL TCI state and the UL TCI state.
 本実施形態によれば、UEは、アクティブなTCI状態の数に関わらず、アクティブなTCI状態を適切に更新することができる。 According to this embodiment, the UE can appropriately update the active TCI states regardless of the number of active TCI states.
<第10の実施形態>
 UEが、1つのRRC IE/MAC CE/UCIによる報告として送信したDL TCI状態の報告(j1個のTCI状態に対応)及びUL TCI状態の報告(j2個のTCI状態に対応)に基づいて、i1個のアクティブなDL TCI状態を新しいp1個のアクティブなDL TCI状態に更新し(図7A参照)、i2個のアクティブなUL TCI状態を新しいp2個のアクティブなUL TCI状態に更新してもよい(図7B参照)。i1は、p1と同じであってもよいし(p1=i1)、異なっていてもよい(例えば、p1=j1)。i2は、p2と同じであってもよいし(p2=i2)、異なっていてもよい(例えば、p2=j2)。報告されるDL TCI状態、UL TCI状態は、推奨DL TCI状態、推奨UL TCI状態であってもよい。
<Tenth Embodiment>
Based on the DL TCI status report (corresponding to j1 TCI states) and the UL TCI status report (corresponding to j2 TCI states) sent by the UE as one RRC IE/MAC CE/UCI report, Even if i1 active DL TCI states are updated to new p1 active DL TCI states (see FIG. 7A) and i2 active UL TCI states are updated to new p2 active UL TCI states. Good (see Figure 7B). i1 may be the same as p1 (p1=i1) or different (eg p1=j1). i2 may be the same as p2 (p2=i2) or different (eg p2=j2). The reported DL TCI status, UL TCI status may be the recommended DL TCI status, recommended UL TCI status.
 本実施形態の処理は、上記想定2を前提として、第3の実施形態が再利用されてもよい。この場合、第3の実施形態のTCI状態は、DL TCI状態、UL TCI状態の少なくとも1つに読み替えられてもよい。 The processing of this embodiment may reuse the processing of the third embodiment on the premise of Assumption 2 above. In this case, the TCI state of the third embodiment may be read as at least one of the DL TCI state and the UL TCI state.
 j1個のDL TCI状態及びj2個のUL TCI状態について、UEは、DLとULの両方に対応するTCI状態、DLのみに対応するTCI状態、ULのみに対応するTCI状態をそれぞれ報告してもよい。 For j1 DL TCI states and j2 UL TCI states, the UE may report a TCI state corresponding to both DL and UL, a TCI state corresponding to DL only, and a TCI state corresponding to UL only, respectively. good.
 本実施形態によれば、UEは、アクティブなTCI状態の数に関わらず、アクティブなTCI状態を適切に更新することができる。 According to this embodiment, the UE can appropriately update the active TCI states regardless of the number of active TCI states.
<第11の実施形態>
 セパレートDL/UL TCI状態の報告とアクティブ化を適用した場合、第4の実施形態が、DL TCI状態とUL TCI状態のそれぞれに適用されてもよい。1つの報告においてDL/ULのビーム/TCI状態が報告される場合、第4の実施形態が、DLのビーム/TCI状態とULのビーム/TCI状態に同時に適用されてもよい。
<Eleventh Embodiment>
If separate DL/UL TCI state reporting and activation are applied, the fourth embodiment may be applied to DL TCI state and UL TCI state respectively. If DL/UL beam/TCI status is reported in one report, the fourth embodiment may be applied to DL beam/TCI status and UL beam/TCI status simultaneously.
 本実施形態によれば、更新されたアクティブなTCI状態を適切なタイミングで適用することができる。 According to this embodiment, the updated active TCI state can be applied at appropriate timing.
<第12の実施形態>
 セパレートTCI状態を適用し、M=N=1以外の場合(例えばM=1かつN=2、M=2かつN=1、M=2かつN=2)の例について説明する。
<Twelfth Embodiment>
An example in which the separate TCI state is applied and M=N=other than 1 (for example, M=1 and N=2, M=2 and N=1, M=2 and N=2) will be described.
[シングルDCIベースのマルチTRPからのPDSCH/PUSCHについて]
 M=2の場合、更新前のi1個のアクティブなDL TCI状態は、MAC CEによりアクティブ化されたDL TCI状態のi1個のセットであり、各セットには1つ又は2つのTCI状態が対応していてもよい。
[Regarding PDSCH/PUSCH from single DCI-based multi-TRP]
If M=2, the i1 active DL TCI states before update are the i1 sets of DL TCI states activated by the MAC CE, each set corresponding to one or two TCI states. You may have
 N=2の場合、更新前のi2個のアクティブなUL TCI状態は、MAC CEによるアクティブなUL TCI状態のi2個のセットであり、各セットには1つまたは2つのTCI状態が対応していてもよい。 For N=2, the i2 active UL TCI states before update are the i2 sets of active UL TCI states by the MAC CE, each set corresponding to one or two TCI states. may
[マルチDCIベースのマルチTRPからのPDSCH/PUSCHについて]
 マルチDCIベース、マルチTRPの場合、PDSCH/PUSCHに対応する、i1個のアクティブなDL TCI状態又はi2個のアクティブなUL TCI状態は、CORESETプールインデックス毎に更新/設定される。例えば、全TRPにおいて、最大2i1個のアクティブなDL TCI状態又は最大2i2個のアクティブなUL TCI状態が、更新/設定される。
[Regarding PDSCH/PUSCH from multi-DCI-based multi-TRP]
For multi-DCI-based, multi-TRP, i1 active DL TCI states or i2 active UL TCI states corresponding to PDSCH/PUSCH are updated/configured per CORESET pool index. For example, up to 2i1 active DL TCI states or up to 2i2 active UL TCI states are updated/set in all TRPs.
 想定2を前提として、第5の実施形態が再利用されてもよい。その場合、第5の実施形態のTCI状態は、UL TCI状態及びDL TCI状態の少なくとも1つであってもよい。 Assuming Assumption 2, the fifth embodiment may be reused. In that case, the TCI state of the fifth embodiment may be at least one of the UL TCI state and the DL TCI state.
 本実施形態によれば、マルチTRPを適用する場合であっても、アクティブTCI状態を適切に指示することができる。 According to this embodiment, the active TCI state can be indicated appropriately even when multi-TRP is applied.
<UE能力(capability)>
 UEは、本開示における各例の少なくとも1つをサポートするかを示すUE能力情報をネットワーク(基地局)に送信(報告)してもよい。本開示における各例の少なくとも1つは、特定のUE能力情報を送信したUE又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。また、UEは、本開示における各例の少なくとも1つを指示する情報を上位レイヤシグナリング/物理レイヤシグナリングにより受信してもよい。当該情報は、UEが送信したUE能力情報に対応していてもよい。UE能力情報は、例えば、以下の(1)~(5)の少なくとも1つであってもよい。
<UE capability>
The UE may send (report) UE capability information to the network (base station) indicating whether it supports at least one of the examples in this disclosure. At least one of the examples in this disclosure may only apply to UEs that have sent specific UE capability information or support the specific UE capability. Also, the UE may receive information via higher layer/physical layer signaling indicating at least one of the examples in this disclosure. The information may correspond to UE capability information sent by the UE. The UE capability information may be, for example, at least one of (1) to (5) below.
(1)ジョイント/セパレートのDL/UL TCI状態、さまざまなM、Nの値、シングルDCI/マルチDCIのマルチTRPのケースの少なくとも1つを適用した場合において、UEが開始するDL/ULのTCI状態のアクティブ化をサポートするかどうか。
(2)本開示における基地局(例えばgNB)による設定(例えばRRC/MAC CE/DCIによる設定)をサポートするかどうか。
(3)本開示における、UEによる報告/指示の少なくとも1つをサポートするかどうか。
(4)UEが推奨するDL/ULのTCI状態をRRC/MAC CE/UCIにより報告するかどうか。当該報告が、P/SP/AP CSI報告又はイベントトリガビーム報告であるかどうか。セパレートDL/UL TCIの場合、DL/ULについて1つの報告を行うか又は個別の報告を行うか。
(5)i、p、j(ジョイントDL/ULのTCIの場合)、i1、p1、j1、i2、p2、j2(セパレートDL/ULのTCIの場合)の制限。例えば、P≦8、P≦M、P≦N、N≦4又は8など。
(1) UE-initiated DL/UL TCI when applying at least one of joint/separate DL/UL TCI states, various M, N values, single DCI/multi-DCI multi-TRP cases Whether to support state activation.
(2) Whether to support configuration by the base station (eg, gNB) in the present disclosure (eg, configuration by RRC/MAC CE/DCI).
(3) whether to support at least one of reporting/indication by the UE in this disclosure;
(4) Whether to report the UE recommended DL/UL TCI status by RRC/MAC CE/UCI. Whether the report is a P/SP/AP CSI report or an event-triggered beam report. For separate DL/UL TCI, one report for DL/UL or separate reports?
(5) Restrictions on i, p, j (for joint DL/UL TCI), i1, p1, j1, i2, p2, j2 (for separate DL/UL TCI). For example, P≦8, P≦M, P≦N, N≦4 or 8, and the like.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(wireless communication system)
A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below. In this radio communication system, communication is performed using any one of the radio communication methods according to the above embodiments of the present disclosure or a combination thereof.
 図8は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 8 is a diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment. The wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 The wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc. may be included.
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB) )) may be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 A wireless communication system 1 includes a base station 11 forming a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) arranged in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. You may prepare. A user terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminals 20 are not limited to the embodiment shown in the figure. Hereinafter, the base stations 11 and 12 are collectively referred to as the base station 10 when not distinguished.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may connect to at least one of the multiple base stations 10 . The user terminal 20 may utilize at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)). Macrocell C1 may be included in FR1, and small cell C2 may be included in FR2. For example, FR1 may be a frequency band below 6 GHz (sub-6 GHz), and FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Also, the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 A plurality of base stations 10 may be connected by wire (for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is an IAB Also called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 directly or via another base station 10 . The core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal compatible with at least one of communication schemes such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the radio communication system 1, a radio access scheme based on orthogonal frequency division multiplexing (OFDM) may be used. For example, in at least one of Downlink (DL) and Uplink (UL), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 A radio access method may be called a waveform. Note that in the radio communication system 1, other radio access schemes (for example, other single-carrier transmission schemes and other multi-carrier transmission schemes) may be used as the UL and DL radio access schemes.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the radio communication system 1, as downlink channels, a downlink shared channel (Physical Downlink Shared Channel (PDSCH)) shared by each user terminal 20, a broadcast channel (Physical Broadcast Channel (PBCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)) or the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 In the radio communication system 1, as uplink channels, an uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), a random access channel (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH. User data, higher layer control information, and the like may be transmitted by PUSCH. Also, a Master Information Block (MIB) may be transmitted by the PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by the PDCCH. The lower layer control information may include, for example, downlink control information (DCI) including scheduling information for at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 The DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. PDSCH may be replaced with DL data, and PUSCH may be replaced with UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (CControl Resource SET (CORESET)) and a search space (search space) may be used for PDCCH detection. CORESET corresponds to a resource searching for DCI. The search space corresponds to the search area and search method of PDCCH candidates. A CORESET may be associated with one or more search spaces. The UE may monitor CORESETs associated with certain search spaces based on the search space settings.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. Note that "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. in the present disclosure may be read interchangeably.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 By PUCCH, channel state information (CSI), acknowledgment information (for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.) and scheduling request (Scheduling Request ( SR)) may be transmitted. A random access preamble for connection establishment with a cell may be transmitted by the PRACH.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 In addition, in the present disclosure, downlink, uplink, etc. may be expressed without adding "link". Also, various channels may be expressed without adding "Physical" to the head.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, synchronization signals (SS), downlink reference signals (DL-RS), etc. may be transmitted. In the radio communication system 1, the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS)), Phase Tracking Reference Signal (PTRS)), etc. may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS). A signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS Block (SSB), and so on. Note that SS, SSB, etc. may also be referred to as reference signals.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 Also, in the radio communication system 1, even if measurement reference signals (SRS), demodulation reference signals (DMRS), etc. are transmitted as uplink reference signals (UL-RS), good. Note that DMRS may also be called a user terminal-specific reference signal (UE-specific reference signal).
(基地局)
 図9は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 9 is a diagram illustrating an example of the configuration of a base station according to one embodiment. The base station 10 comprises a control section 110 , a transmission/reception section 120 , a transmission/reception antenna 130 and a transmission line interface 140 . One or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission line interface 140 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 It should be noted that this example mainly shows the functional blocks that characterize the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the base station 10 as a whole. The control unit 110 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (eg, resource allocation, mapping), and the like. The control unit 110 may control transmission/reception, measurement, etc. using the transmission/reception unit 120 , the transmission/reception antenna 130 and the transmission line interface 140 . The control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer them to the transmission/reception unit 120 . The control unit 110 may perform call processing (setup, release, etc.) of communication channels, state management of the base station 10, management of radio resources, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 120 may include a baseband section 121 , a radio frequency (RF) section 122 and a measuring section 123 . The baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212 . The transmitting/receiving unit 120 is configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit. The transmission section may be composed of the transmission processing section 1211 and the RF section 122 . The receiving section may be composed of a reception processing section 1212 , an RF section 122 and a measurement section 123 .
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmitting/receiving unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like. The transmitting/receiving unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitting/receiving unit 120 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission/reception unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (DFT) on the bit string to be transmitted. Processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-to-analog conversion may be performed, and the baseband signal may be output.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmitting/receiving unit 120 (RF unit 122) may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 130. .
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission/reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, Fast Fourier transform (FFT) processing, and Inverse Discrete Fourier transform (IDFT) processing on the acquired baseband signal. )) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing. User data and the like may be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmitting/receiving unit 120 (measuring unit 123) may measure the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal. The measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)) , signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), and the like may be measured. The measurement result may be output to control section 110 .
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission path interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, etc., and user data (user plane data) for the user terminal 20, control plane data, and the like. Data and the like may be obtained, transmitted, and the like.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 Note that the transmitter and receiver of the base station 10 in the present disclosure may be configured by at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission line interface 140.
 なお、送受信部120は、下りリンク(DL)及び上りリンク(UL)に対して同じTransmission Configuration Indication(TCI)状態が適用される場合、前記TCI状態のアクティブ化がUEにより開始されることを有効又は無効にする特定の設定を送信してもよい。制御部110は、端末によってアクティブ化が開始された前記TCI状態に基づいて送受信を制御してもよい。送受信部120は、前記TCI状態のアクティブ化がUEにより開始されることを有効又は無効にするかどうかを示す特定の報告を受信してもよい。 Note that the transmitter/receiver 120 enables activation of the TCI state to be initiated by the UE when the same Transmission Configuration Indication (TCI) state is applied for the downlink (DL) and uplink (UL). Or you may send specific settings to disable. The control unit 110 may control transmission and reception based on the TCI state activated by the terminal. Transceiver 120 may receive a specific report indicating whether to enable or disable UE-initiated activation of the TCI state.
 送受信部120は、下りリンク(DL)及び上りリンク(UL)のそれぞれに対して別のTransmission Configuration Indication(TCI)状態が適用される場合、UL及びDLのうちの少なくとも1つの前記TCI状態のアクティブ化がUEにより開始されることを有効又は無効にする特定の設定を送信してもよい。制御部110は、端末によってアクティブ化が開始された前記TCI状態に基づいて送受信を制御してもよい。 Transmitter/receiver 120 activates at least one of the UL and DL TCI states when different Transmission Configuration Indication (TCI) states apply to each of the downlink (DL) and uplink (UL). A specific setting may be sent to enable or disable UE-initiated activation. The control unit 110 may control transmission and reception based on the TCI state activated by the terminal.
(ユーザ端末)
 図10は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(user terminal)
FIG. 10 is a diagram illustrating an example of the configuration of a user terminal according to one embodiment. The user terminal 20 includes a control section 210 , a transmission/reception section 220 and a transmission/reception antenna 230 . One or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 It should be noted that this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the user terminal 20 as a whole. The control unit 210 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, and the like. The control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230 . The control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transmission/reception unit 220 .
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 220 may include a baseband section 221 , an RF section 222 and a measurement section 223 . The baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212 . The transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit. The transmission section may be composed of a transmission processing section 2211 and an RF section 222 . The receiving section may include a reception processing section 2212 , an RF section 222 and a measurement section 223 .
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 230 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmitting/receiving unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like. The transmitting/receiving unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitter/receiver 220 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), MAC layer processing (for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmitting/receiving unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing on a bit string to be transmitted. , precoding, digital-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Whether or not to apply DFT processing may be based on transform precoding settings. Transmitting/receiving unit 220 (transmission processing unit 2211), for a certain channel (for example, PUSCH), if transform precoding is enabled, the above to transmit the channel using the DFT-s-OFDM waveform The DFT process may be performed as the transmission process, or otherwise the DFT process may not be performed as the transmission process.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmitting/receiving unit 220 (RF unit 222) may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 230. .
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving section 220 (RF section 222) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (error correction) on the acquired baseband signal. decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmitting/receiving section 220 (measuring section 223) may measure the received signal. For example, the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal. The measuring unit 223 may measure received power (eg, RSRP), received quality (eg, RSRQ, SINR, SNR), signal strength (eg, RSSI), channel information (eg, CSI), and the like. The measurement result may be output to control section 210 .
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 Note that the transmitter and receiver of the user terminal 20 in the present disclosure may be configured by at least one of the transmitter/receiver 220 and the transmitter/receiver antenna 230 .
 なお、送受信部220は、下りリンク(DL)及び上りリンク(UL)に対して同じTransmission Configuration Indication(TCI)状態が適用される場合、前記TCI状態のアクティブ化がUEにより開始されることを有効又は無効にする特定の設定を受信してもよい。制御部210は、前記TCI状態のアクティブ化を開始してもよい。送受信部220は、前記TCI状態のアクティブ化がUEにより開始されることを有効又は無効にするかどうかを示す特定の報告を送信してもよい。 Note that if the same Transmission Configuration Indication (TCI) state is applied for the downlink (DL) and uplink (UL), the transceiver 220 enables activation of the TCI state to be initiated by the UE. Or it may receive specific settings to override. Controller 210 may initiate activation of the TCI state. Transceiver 220 may transmit a specific report indicating whether to enable or disable UE-initiated activation of the TCI state.
 制御部210は、チャネル状態情報(CSI)報告に基づいて、第1の数のアクティブなTCI状態を、新しい第2の数のアクティブなTCI状態に更新してもよい。 The controller 210 may update the first number of active TCI states to the new second number of active TCI states based on the channel state information (CSI) report.
 制御部210は、前記TCI状態の報告に基づいて、第1の数のアクティブなTCI状態を、新しい第2の数のアクティブなTCI状態に更新してもよい。 The control unit 210 may update the first number of active TCI states to a new second number of active TCI states based on the TCI state report.
 送受信部220は、下りリンク(DL)及び上りリンク(UL)のそれぞれに対して別のTransmission Configuration Indication(TCI)状態が適用される場合、UL及びDLのうちの少なくとも1つの前記TCI状態のアクティブ化がUEにより開始されることを有効又は無効にする特定の設定を受信してもよい。制御部210は、前記TCI状態のアクティブ化を開始してもよい。送受信部220は、UL及びDLのうちの少なくとも1つのTCI状態のアクティブ化がUEにより開始されることを有効又は無効にするかどうかを示す特定の報告を送信してもよい。 Transmitter/receiver 220 activates at least one of the TCI states of UL and DL when different Transmission Configuration Indication (TCI) states apply to each of downlink (DL) and uplink (UL). A specific setting may be received that enables or disables UE-initiated activation. Controller 210 may initiate activation of the TCI state. The transceiver 220 may transmit a specific report indicating whether to enable or disable UE initiated activation of at least one of the UL and DL TCI states.
 制御部210は、ULのチャネル状態情報(CSI)報告、Power Headroom Report(PHR)、Maximum Permitted Exposure(MPE)報告の少なくとも1つに基づいて、第1の数のアクティブなULのTCI状態を、第2の数の新しいアクティブなULのTCI状態に更新してもよい。 The control unit 210 determines the first number of active UL TCI states based on at least one of a UL channel state information (CSI) report, a Power Headroom Report (PHR), and a Maximum Permitted Exposure (MPE) report, It may update to a second number of new active UL TCI states.
 制御部210は、ULの前記TCI状態の報告に基づいて、第1の数のアクティブなULのTCI状態を、新しい第2の数のアクティブなULのTCI状態に更新してもよい。 The control unit 210 may update the first number of active UL TCI states to a new second number of active UL TCI states based on the reporting of the UL TCI states.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
It should be noted that the block diagrams used in the description of the above embodiments show blocks in units of functions. These functional blocks (components) are realized by any combination of at least one of hardware and software. Also, the method of implementing each functional block is not particularly limited. That is, each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices. A functional block may be implemented by combining software in the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 where function includes judgment, decision, determination, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deem , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (component) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図11は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 11 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to one embodiment. The base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the present disclosure, terms such as apparatus, circuit, device, section, and unit can be read interchangeably. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be multiple processors. Also, processing may be performed by one processor, or processing may be performed by two or more processors concurrently, serially, or otherwise. Note that processor 1001 may be implemented by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as a processor 1001 and a memory 1002, the processor 1001 performs calculations, communication via the communication device 1004 and at least one of reading and writing data in the memory 1002 and the storage 1003 .
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system and controls the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like. For example, at least part of the above-described control unit 110 (210), transmission/reception unit 120 (220), etc. may be realized by the processor 1001. FIG.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Also, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 110 (210) may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), or at least any other suitable storage medium. may be configured by one. The memory 1002 may also be called a register, cache, main memory (main storage device), or the like. The memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also be called an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD), for example. may be configured to include For example, the transmitting/receiving unit 120 (220), the transmitting/receiving antenna 130 (230), and the like described above may be realized by the communication device 1004. FIG. The transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
The terms explained in this disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, channel, symbol and signal (signal or signaling) may be interchanged. A signal may also be a message. A reference signal may be abbreviated as RS, and may also be called a pilot, a pilot signal, etc., depending on the applicable standard. A component carrier (CC) may also be called a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may consist of one or more periods (frames) in the time domain. Each of the one or more periods (frames) that make up a radio frame may be called a subframe. Furthermore, a subframe may consist of one or more slots in the time domain. A subframe may be of a fixed length of time (eg, 1 ms) independent of numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, a numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration , a particular filtering process performed by the transceiver in the frequency domain, a particular windowing process performed by the transceiver in the time domain, and/or the like.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. A slot may also be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 A slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (PUSCH) Mapping Type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum scheduling time unit in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 A TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like. A TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms, and the short TTI (e.g., shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms A TTI having the above TTI length may be read instead.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain. The number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve. The number of subcarriers included in an RB may be determined based on neumerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Also, an RB may contain one or more symbols in the time domain and may be 1 slot, 1 minislot, 1 subframe or 1 TTI long. One TTI, one subframe, etc. may each be configured with one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are Physical Resource Block (PRB), Sub-Carrier Group (SCG), Resource Element Group (REG), PRB pair, RB Also called a pair.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Also, a resource block may be composed of one or more resource elements (Resource Element (RE)). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP) (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier. good too. Here, the common RB may be identified by an RB index based on the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or multiple BWPs may be configured for a UE within one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be read as "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 It should be noted that the structures of radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples. For example, the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not restrictive names in any respect. Further, the formulas and the like using these parameters may differ from those expressly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable names, the various names assigned to these various channels and information elements are not limiting names in any way. .
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 Also, information, signals, etc. can be output from a higher layer to a lower layer and/or from a lower layer to a higher layer. Information, signals, etc. may be input and output through multiple network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Input and output information, signals, etc. may be overwritten, updated or appended. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 Notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods. For example, the notification of information in the present disclosure includes physical layer signaling (e.g., Downlink Control Information (DCI)), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or combinations thereof may be performed by
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 The physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like. RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like. Also, MAC signaling may be notified using, for example, a MAC Control Element (CE).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, notification of predetermined information (for example, notification of “being X”) is not limited to explicit notification, but implicit notification (for example, by not notifying the predetermined information or by providing another information by notice of
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value (0 or 1) represented by 1 bit, or by a boolean value represented by true or false. , may be performed by numerical comparison (eg, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) , a server, or other remote source, these wired and/or wireless technologies are included within the definition of transmission media.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. A “network” may refer to devices (eg, base stations) included in a network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, "precoding", "precoder", "weight (precoding weight)", "Quasi-Co-Location (QCL)", "Transmission Configuration Indication state (TCI state)", "spatial "spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel" are interchangeable. can be used as intended.
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission Point (TP)", "Reception Point (RP)", "Transmission/Reception Point (TRP)", "Panel" , “cell,” “sector,” “cell group,” “carrier,” “component carrier,” etc. may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is assigned to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head (RRH))) may also provide communication services. The terms "cell" or "sector" refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)", "user terminal", "User Equipment (UE)", and "terminal" are used interchangeably. can be
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , a handset, a user agent, a mobile client, a client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体(moving object)に搭載されたデバイス、移動体自体などであってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a moving object, the mobile itself, or the like.
 当該移動体は、移動可能な物体をいい、移動速度は任意であり、移動体が停止している場合も当然含む。当該移動体は、例えば、車両、輸送車両、自動車、自動二輪車、自転車、コネクテッドカー、ショベルカー、ブルドーザー、ホイールローダー、ダンプトラック、フォークリフト、列車、バス、リヤカー、人力車、船舶(ship and other watercraft)、飛行機、ロケット、人工衛星、ドローン、マルチコプター、クアッドコプター、気球及びこれらに搭載される物を含み、またこれらに限られない。また、当該移動体は、運行指令に基づいて自律走行する移動体であってもよい。 The moving body refers to a movable object, the speed of movement is arbitrary, and it naturally includes cases where the moving body is stationary. Examples of such moving bodies include vehicles, transportation vehicles, automobiles, motorcycles, bicycles, connected cars, excavators, bulldozers, wheel loaders, dump trucks, forklifts, trains, buses, carts, rickshaws, and ships (ships and other watercraft). , airplanes, rockets, satellites, drones, multi-copters, quad-copters, balloons and objects mounted on them. Further, the mobile body may be a mobile body that autonomously travels based on an operation command.
 当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 The mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
 図12は、一実施形態に係る車両の一例を示す図である。車両40は、駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49、各種センサ(電流センサ50、回転数センサ51、空気圧センサ52、車速センサ53、加速度センサ54、アクセルペダルセンサ55、ブレーキペダルセンサ56、シフトレバーセンサ57、及び物体検知センサ58を含む)、情報サービス部59と通信モジュール60を備える。 FIG. 12 is a diagram showing an example of a vehicle according to one embodiment. The vehicle 40 includes a drive unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, an axle 48, an electronic control unit 49, various sensors (current sensor 50, revolution sensor 51, air pressure sensor 52, vehicle speed sensor 53, acceleration sensor 54, accelerator pedal sensor 55, brake pedal sensor 56, shift lever sensor 57, and object detection sensor 58), information service unit 59 and communication module 60. Prepare.
 駆動部41は、例えば、エンジン、モータ、エンジンとモータのハイブリッドの少なくとも1つで構成される。操舵部42は、少なくともステアリングホイール(ハンドルとも呼ぶ)を含み、ユーザによって操作されるステアリングホイールの操作に基づいて前輪46及び後輪47の少なくとも一方を操舵するように構成される。 The driving unit 41 is composed of, for example, at least one of an engine, a motor, and a hybrid of an engine and a motor. The steering unit 42 includes at least a steering wheel (also referred to as a steering wheel), and is configured to steer at least one of the front wheels 46 and the rear wheels 47 based on the operation of the steering wheel operated by the user.
 電子制御部49は、マイクロプロセッサ61、メモリ(ROM、RAM)62、通信ポート(例えば、入出力(Input/Output(IO))ポート)63で構成される。電子制御部49には、車両に備えられた各種センサ50-58からの信号が入力される。電子制御部49は、Electronic Control Unit(ECU)と呼ばれてもよい。 The electronic control unit 49 is composed of a microprocessor 61, a memory (ROM, RAM) 62, and a communication port (eg, input/output (IO) port) 63. Signals from various sensors 50 to 58 provided in the vehicle are input to the electronic control unit 49 . The electronic control unit 49 may be called an Electronic Control Unit (ECU).
 各種センサ50-58からの信号としては、モータの電流をセンシングする電流センサ50からの電流信号、回転数センサ51によって取得された前輪46/後輪47の回転数信号、空気圧センサ52によって取得された前輪46/後輪47の空気圧信号、車速センサ53によって取得された車速信号、加速度センサ54によって取得された加速度信号、アクセルペダルセンサ55によって取得されたアクセルペダル43の踏み込み量信号、ブレーキペダルセンサ56によって取得されたブレーキペダル44の踏み込み量信号、シフトレバーセンサ57によって取得されたシフトレバー45の操作信号、物体検知センサ58によって取得された障害物、車両、歩行者などを検出するための検出信号などがある。 The signals from the various sensors 50 to 58 include a current signal from the current sensor 50 that senses the current of the motor, a rotation speed signal of the front wheels 46/rear wheels 47 obtained by the rotation speed sensor 51, and an air pressure sensor 52. air pressure signal of front wheels 46/rear wheels 47, vehicle speed signal obtained by vehicle speed sensor 53, acceleration signal obtained by acceleration sensor 54, depression amount signal of accelerator pedal 43 obtained by accelerator pedal sensor 55, brake pedal sensor The brake pedal 44 depression amount signal obtained by 56, the operation signal of the shift lever 45 obtained by the shift lever sensor 57, and the detection for detecting obstacles, vehicles, pedestrians, etc. obtained by the object detection sensor 58. There are signals.
 情報サービス部59は、カーナビゲーションシステム、オーディオシステム、スピーカー、ディスプレイ、テレビ、ラジオ、といった、運転情報、交通情報、エンターテイメント情報などの各種情報を提供(出力)するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。情報サービス部59は、外部装置から通信モジュール60などを介して取得した情報を利用して、車両40の乗員に各種情報/サービス(例えば、マルチメディア情報/マルチメディアサービス)を提供する。 The information service unit 59 includes various devices such as car navigation systems, audio systems, speakers, displays, televisions, and radios for providing (outputting) various information such as driving information, traffic information, and entertainment information, and these devices. and one or more ECUs that control The information service unit 59 provides various information/services (for example, multimedia information/multimedia services) to the occupants of the vehicle 40 using information acquired from an external device via the communication module 60 or the like.
 情報サービス部59は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサ、タッチパネルなど)を含んでもよいし、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプ、タッチパネルなど)を含んでもよい。 The information service unit 59 may include an input device (e.g., keyboard, mouse, microphone, switch, button, sensor, touch panel, etc.) that receives input from the outside, and an output device that outputs to the outside (e.g., display, speaker, LED lamp, touch panel, etc.).
 運転支援システム部64は、ミリ波レーダ、Light Detection and Ranging(LiDAR)、カメラ、測位ロケータ(例えば、Global Navigation Satellite System(GNSS)など)、地図情報(例えば、高精細(High Definition(HD))マップ、自動運転車(Autonomous Vehicle(AV))マップなど)、ジャイロシステム(例えば、慣性計測装置(Inertial Measurement Unit(IMU))、慣性航法装置(Inertial Navigation System(INS))など)、人工知能(Artificial Intelligence(AI))チップ、AIプロセッサといった、事故を未然に防止したりドライバの運転負荷を軽減したりするための機能を提供するための各種機器と、これらの機器を制御する1つ以上のECUとから構成される。また、運転支援システム部64は、通信モジュール60を介して各種情報を送受信し、運転支援機能又は自動運転機能を実現する。 The driving support system unit 64 includes millimeter wave radar, Light Detection and Ranging (LiDAR), camera, positioning locator (eg, Global Navigation Satellite System (GNSS), etc.), map information (eg, High Definition (HD)) maps, autonomous vehicle (AV) maps, etc.), gyro systems (e.g., inertial measurement units (IMU), inertial navigation systems (INS), etc.), artificial intelligence ( Artificial intelligence (AI) chips, AI processors, and other devices that provide functions to prevent accidents and reduce the driver's driving load, and one or more devices that control these devices ECU. In addition, the driving support system unit 64 transmits and receives various information via the communication module 60, and realizes a driving support function or an automatic driving function.
 通信モジュール60は、通信ポート63を介して、マイクロプロセッサ61及び車両40の構成要素と通信することができる。例えば、通信モジュール60は通信ポート63を介して、車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、電子制御部49内のマイクロプロセッサ61及びメモリ(ROM、RAM)62、各種センサ50-58との間でデータ(情報)を送受信する。 The communication module 60 can communicate with the microprocessor 61 and components of the vehicle 40 via the communication port 63 . For example, the communication module 60 communicates with the vehicle 40 through a communication port 63 such as a driving unit 41, a steering unit 42, an accelerator pedal 43, a brake pedal 44, a shift lever 45, left and right front wheels 46, left and right rear wheels 47, Data (information) is transmitted and received between the axle 48, the microprocessor 61 and memory (ROM, RAM) 62 in the electronic control unit 49, and various sensors 50-58.
 通信モジュール60は、電子制御部49のマイクロプロセッサ61によって制御可能であり、外部装置と通信を行うことが可能な通信デバイスである。例えば、外部装置との間で無線通信を介して各種情報の送受信を行う。通信モジュール60は、電子制御部49の内部と外部のどちらにあってもよい。外部装置は、例えば、上述の基地局10、ユーザ端末20などであってもよい。また、通信モジュール60は、例えば、上述の基地局10及びユーザ端末20の少なくとも1つであってもよい(基地局10及びユーザ端末20の少なくとも1つとして機能してもよい)。 The communication module 60 is a communication device that can be controlled by the microprocessor 61 of the electronic control unit 49 and can communicate with an external device. For example, it transmits and receives various information to and from an external device via wireless communication. Communication module 60 may be internal or external to electronic control 49 . The external device may be, for example, the above-described base station 10, user terminal 20, or the like. Also, the communication module 60 may be, for example, at least one of the base station 10 and the user terminal 20 described above (and may function as at least one of the base station 10 and the user terminal 20).
 通信モジュール60は、電子制御部49に入力された上述の各種センサ50-58からの信号、当該信号に基づいて得られる情報、及び情報サービス部59を介して得られる外部(ユーザ)からの入力に基づく情報、の少なくとも1つを、無線通信を介して外部装置へ送信してもよい。電子制御部49、各種センサ50-58、情報サービス部59などは、入力を受け付ける入力部と呼ばれてもよい。例えば、通信モジュール60によって送信されるPUSCHは、上記入力に基づく情報を含んでもよい。 The communication module 60 receives signals from the various sensors 50 to 58 described above input to the electronic control unit 49, information obtained based on the signals, and input from the outside (user) obtained via the information service unit 59. may be transmitted to the external device via wireless communication. The electronic control unit 49, the various sensors 50-58, the information service unit 59, etc. may be called an input unit that receives input. For example, the PUSCH transmitted by communication module 60 may include information based on the above inputs.
 通信モジュール60は、外部装置から送信されてきた種々の情報(交通情報、信号情報、車間情報など)を受信し、車両に備えられた情報サービス部59へ表示する。情報サービス部59は、情報を出力する(例えば、通信モジュール60によって受信されるPDSCH(又は当該PDSCHから復号されるデータ/情報)に基づいてディスプレイ、スピーカーなどの機器に情報を出力する)出力部と呼ばれてもよい。 The communication module 60 receives various information (traffic information, signal information, inter-vehicle information, etc.) transmitted from an external device and displays it on the information service unit 59 provided in the vehicle. The information service unit 59 is an output unit that outputs information (for example, outputs information to devices such as displays and speakers based on the PDSCH received by the communication module 60 (or data/information decoded from the PDSCH)). may be called
 また、通信モジュール60は、外部装置から受信した種々の情報をマイクロプロセッサ61によって利用可能なメモリ62へ記憶する。メモリ62に記憶された情報に基づいて、マイクロプロセッサ61が車両40に備えられた駆動部41、操舵部42、アクセルペダル43、ブレーキペダル44、シフトレバー45、左右の前輪46、左右の後輪47、車軸48、各種センサ50-58などの制御を行ってもよい。 Also, the communication module 60 stores various information received from an external device in a memory 62 that can be used by the microprocessor 61 . Based on the information stored in the memory 62, the microprocessor 61 controls the drive unit 41, the steering unit 42, the accelerator pedal 43, the brake pedal 44, the shift lever 45, the left and right front wheels 46, and the left and right rear wheels provided in the vehicle 40. 47, axle 48, and various sensors 50-58 may be controlled.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上りリンク(uplink)」、「下りリンク(downlink)」などの文言は、端末間通信に対応する文言(例えば、「サイドリンク(sidelink)」)で読み替えられてもよい。例えば、上りリンクチャネル、下りリンクチャネルなどは、サイドリンクチャネルで読み替えられてもよい。 Also, the base station in the present disclosure may be read as a user terminal. For example, communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.) Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the user terminal 20 may have the functions of the base station 10 described above. In addition, words such as "uplink" and "downlink" may be replaced with words corresponding to communication between terminals (for example, "sidelink"). For example, uplink channels, downlink channels, etc. may be read as sidelink channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, user terminals in the present disclosure may be read as base stations. In this case, the base station 10 may have the functions of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, operations that are assumed to be performed by the base station may be performed by its upper node in some cases. In a network that includes one or more network nodes with a base station, various operations performed for communication with a terminal may involve the base station, one or more network nodes other than the base station (e.g., Clearly, this can be done by a Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Also, the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張、修正、作成又は規定された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG (x is, for example, an integer or a decimal number)), Future Radio Access (FRA), New-Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802 .11 (Wi-Fi®), IEEE 802.16 (WiMAX®), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth®, or any other suitable wireless communication method. It may be applied to a system to be used, a next-generation system extended, modified, created or defined based on these. Also, multiple systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The term "based on" as used in this disclosure does not mean "based only on" unless otherwise specified. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using the "first," "second," etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "determination" includes judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry ( For example, looking up in a table, database, or another data structure), ascertaining, etc. may be considered to be "determining."
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 Also, "determining (deciding)" includes receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access ( accessing (e.g., accessing data in memory), etc.
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 Also, "determining" is considered to be "determining" resolving, selecting, choosing, establishing, comparing, etc. good too. That is, "determining (determining)" may be regarded as "determining (determining)" some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 Also, "judgment (decision)" may be read as "assuming", "expecting", or "considering".
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 The terms “connected”, “coupled”, or any variation thereof, as used in this disclosure, refer to any connection or coupling, direct or indirect, between two or more elements. and can include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access".
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In this disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, radio frequency domain, microwave They can be considered to be “connected” or “coupled” together using the domain, electromagnetic energy having wavelengths in the optical (both visible and invisible) domain, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean that "A and B are different from C". Terms such as "separate," "coupled," etc. may also be interpreted in the same manner as "different."
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include," "including," and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising." is intended. Furthermore, the term "or" as used in this disclosure is not intended to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, if articles are added by translation, such as a, an, and the in English, the disclosure may include that the nouns following these articles are plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is obvious to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as modifications and changes without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for illustrative purposes and does not impose any limitation on the invention according to the present disclosure.

Claims (6)

  1.  下りリンク(DL)及び上りリンク(UL)に対して同じTransmission Configuration Indication(TCI)状態が適用される場合、前記TCI状態のアクティブ化がUEにより開始されることを有効又は無効にする特定の設定を受信する受信部と、
     前記TCI状態のアクティブ化を開始する制御部と、
     を有する端末。
    If the same Transmission Configuration Indication (TCI) state is applied for downlink (DL) and uplink (UL), a specific setting to enable or disable UE-initiated activation of said TCI state. a receiver for receiving
    a controller that initiates activation of the TCI state;
    terminal with
  2.  前記TCI状態のアクティブ化がUEにより開始されることを有効又は無効にするかどうかを示す特定の報告を送信する送信部をさらに有する
     請求項1に記載の端末。
    2. The terminal of claim 1, further comprising a transmitter for transmitting a specific report indicating whether to enable or disable UE-initiated activation of the TCI state.
  3.  前記制御部は、チャネル状態情報(CSI)報告に基づいて、第1の数のアクティブなTCI状態を、新しい第2の数のアクティブなTCI状態に更新する
     請求項1又は請求項2に記載の端末。
    3. The controller of claim 1 or claim 2, wherein the controller updates the first number of active TCI states to a new second number of active TCI states based on channel state information (CSI) reports. terminal.
  4.  前記制御部は、前記TCI状態の報告に基づいて、第1の数のアクティブなTCI状態を、新しい第2の数のアクティブなTCI状態に更新する
     請求項1又は請求項2に記載の端末。
    The terminal according to claim 1 or 2, wherein the control unit updates a first number of active TCI states to a new second number of active TCI states based on the report of the TCI states.
  5.  下りリンク(DL)及び上りリンク(UL)に対して同じTransmission Configuration Indication(TCI)状態が適用される場合、前記TCI状態のアクティブ化がUEにより開始されることを有効又は無効にする特定の設定を受信する工程と、
     前記TCI状態のアクティブ化を開始する工程と、
     を有する端末の無線通信方法。
    If the same Transmission Configuration Indication (TCI) state is applied for downlink (DL) and uplink (UL), a specific setting to enable or disable UE-initiated activation of said TCI state. a step of receiving
    initiating activation of the TCI state;
    A wireless communication method for a terminal having
  6.  下りリンク(DL)及び上りリンク(UL)に対して同じTransmission Configuration Indication(TCI)状態が適用される場合、前記TCI状態のアクティブ化がUEにより開始されることを有効又は無効にする特定の設定を送信する送信部と、
     端末によってアクティブ化が開始された前記TCI状態に基づいて送受信を制御する制御部と、
     を有する基地局。
    If the same Transmission Configuration Indication (TCI) state is applied for downlink (DL) and uplink (UL), a specific setting to enable or disable UE-initiated activation of said TCI state. a transmitter that transmits
    a control unit that controls transmission and reception based on the TCI state whose activation is initiated by the terminal;
    A base station with
PCT/JP2021/040038 2021-10-29 2021-10-29 Terminal, radio communication method, and base station WO2023073930A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040038 WO2023073930A1 (en) 2021-10-29 2021-10-29 Terminal, radio communication method, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/040038 WO2023073930A1 (en) 2021-10-29 2021-10-29 Terminal, radio communication method, and base station

Publications (1)

Publication Number Publication Date
WO2023073930A1 true WO2023073930A1 (en) 2023-05-04

Family

ID=86157658

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/040038 WO2023073930A1 (en) 2021-10-29 2021-10-29 Terminal, radio communication method, and base station

Country Status (1)

Country Link
WO (1) WO2023073930A1 (en)

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MEDIATEK INC.: "Enhancement on multi-beam operation", 3GPP DRAFT; R1-2109543, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211011 - 20211019, 2 October 2021 (2021-10-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052058488 *
ZTE: "Further details on Multi-beam and Multi-TRP operation", 3GPP DRAFT; R1-2108877, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211011 - 20211019, 1 October 2021 (2021-10-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052057753 *

Similar Documents

Publication Publication Date Title
WO2023073930A1 (en) Terminal, radio communication method, and base station
WO2023073929A1 (en) Terminal, wireless communication method, and base station
WO2023100317A1 (en) Terminal, wireless communication method, and base station
WO2023085355A1 (en) Terminal, wireless communication method, and base station
WO2023136055A1 (en) Terminal, radio communication method, and base station
WO2023090243A1 (en) Terminal, wireless communication method, and base station
WO2023095288A1 (en) Terminal, wireless communication method and base station
WO2023095289A1 (en) Terminal, wireless communication method, and base station
WO2023090343A1 (en) Terminal, wireless communication method, and base station
WO2023085354A1 (en) Terminal, wireless communication method, and base station
WO2023209885A1 (en) Terminal, radio communication method, and base station
WO2023073908A1 (en) Terminal, wireless communication method, and base station
WO2024085128A1 (en) Terminal, wireless communication method, and base station
WO2023152849A1 (en) Terminal, wireless communication method, and base station
WO2024085129A1 (en) Terminal, wireless communication method, and base station
WO2023073939A1 (en) Terminal, wireless communication method, and base station
WO2023162726A1 (en) Terminal, wireless communication method, and base station
WO2023148871A1 (en) Terminal, wireless communication method, and base station
WO2023079704A1 (en) Terminal, wireless communication method, and base station
WO2023152792A1 (en) Terminal, wireless communication method, and base station
WO2023152791A1 (en) Terminal, wireless communication method, and base station
WO2023090340A1 (en) Terminal, wireless communication method, and base station
WO2023167214A1 (en) Terminal, wireless communication method and base station
WO2023053258A1 (en) Terminal, radio communication method, and base station
WO2023053385A1 (en) Terminal, radio communication method, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21962471

Country of ref document: EP

Kind code of ref document: A1