WO2023156141A1 - Système et trajet de traitement pour la surveillance du profil d'écoulement au niveau de l'entrée d'un capteur d'écoulement - Google Patents

Système et trajet de traitement pour la surveillance du profil d'écoulement au niveau de l'entrée d'un capteur d'écoulement Download PDF

Info

Publication number
WO2023156141A1
WO2023156141A1 PCT/EP2023/051483 EP2023051483W WO2023156141A1 WO 2023156141 A1 WO2023156141 A1 WO 2023156141A1 EP 2023051483 W EP2023051483 W EP 2023051483W WO 2023156141 A1 WO2023156141 A1 WO 2023156141A1
Authority
WO
WIPO (PCT)
Prior art keywords
manipulation section
flow
flow sensor
manipulation
inlet
Prior art date
Application number
PCT/EP2023/051483
Other languages
German (de)
English (en)
Inventor
Ralf Emanuel BERNHARDSGRÜTTER
Christof Huber
Florian Krogmann
Original Assignee
Innovative Sensor Technology Ist Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Innovative Sensor Technology Ist Ag filed Critical Innovative Sensor Technology Ist Ag
Publication of WO2023156141A1 publication Critical patent/WO2023156141A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/68Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using thermal effects
    • G01F1/684Structural arrangements; Mounting of elements, e.g. in relation to fluid flow
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15DFLUID DYNAMICS, i.e. METHODS OR MEANS FOR INFLUENCING THE FLOW OF GASES OR LIQUIDS
    • F15D1/00Influencing flow of fluids
    • F15D1/02Influencing flow of fluids in pipes or conduits

Definitions

  • the invention relates to a manipulation track for checking the flow profile at the inlet of a flow sensor. Furthermore, the invention relates to two different variants of a system, each comprising a flow sensor and the manipulation path according to the invention.
  • Flow sensors are used to determine a flow rate or the flow rate of a measurement medium or a fluid, for example a gas, gas mixture or a liquid.
  • a measurement medium or a fluid for example a gas, gas mixture or a liquid.
  • flow sensors for example thermal flow sensors, Coriolis flow sensors, ultrasonic flow sensors, microwave flow sensors, etc.
  • Thermal flow sensors make use of the fact that a (flowing) measurement medium transports heat away from a heated surface.
  • Thermal flow sensors typically consist of several functional elements, usually at least a low-impedance heating element and a high-impedance resistance element, which serves as a temperature sensor.
  • thermal flow sensors are constructed with several low-impedance heating elements as heaters and temperature sensors.
  • the performance of flow sensors can depend on the inlet conditions of the measurement medium. For example, it makes a difference whether the measuring medium flows straight into the flow sensor or at a 90° angle. Depending on the run-in condition, this can lead to a significant change in the measurement signal, which can result in great inaccuracy in the application.
  • the inlet of the flow sensor, or to the flow sensor is designed as a long section. This allows the flow profile to fully develop over the course of the route. However, this requires a lot of space.
  • the inlet section e.g. designed as an inlet pipe, can have "dents” on the walls, which ensure that the flow profile becomes turbulent.
  • This solution is used, for example, in the OmniFIN HFK35 from GMH Group - Honsberg.
  • the disadvantage of this method is that the signal noise increases significantly.
  • the invention is based on the object of minimizing the intake dependency of a flow sensor.
  • the object is achieved by a manipulation section according to claim 1, by a system according to claim 5 and by a system according to claim 7.
  • this serves to control the flow profile at the inlet of a flow sensor, the manipulation section being designed for guiding a fluid measurement medium, the
  • the manipulation section has a first end area and a second end area, with a manipulation section being located between the first end area and a second end area of the manipulation section, which manipulation section is designed in such a way that secondary flows are formed in the measurement medium by flowing through the section with the measurement medium.
  • the manipulation section is designed in such a way that it forms secondary flows at least in the region of the manipulation section. Secondary flow is an additional flow in the plane transverse to the main flow direction at low speed. This means that the flow profile is calmed down and is largely developed independently of the flow speed. This increases the performance of the flow sensor and its dynamic range. Furthermore, the inlet dependency of the flow sensor is drastic reduced. The other disadvantages listed in the introductory part of the description are reduced or completely eliminated.
  • the manipulation section is tubular, ie in the form of a tube.
  • any material can be used for this purpose, for example a plastic or a metal.
  • a particularly advantageous embodiment of the manipulation section according to the invention provides that the manipulation section is helically curved with at least one full revolution in the manipulation section. It has been found that the helical shape offers an ideal balance between low space requirements and high effectiveness in generating the secondary currents.
  • An advantageous embodiment of the manipulation section according to the invention provides that the manipulation section has a tube diameter and a helical diameter, the ratio of the tube diameter to the helical diameter being greater than 0.01. Such a ratio increases the critical Reynolds number by a factor of two.
  • a tube insert such as a helical configuration, may be inserted into the tubular manipulation portion.
  • this includes in a first variant:
  • a flow sensor for detecting at least one parameter relating to the flow rate of a fluid measurement medium
  • this further comprises a primary pipeline through which the measurement medium flows, the manipulation section being connected to the pipeline at the first end region, with an output of the flow sensor being connected to the pipeline.
  • this includes in a first variant:
  • a flow sensor for detecting at least one parameter relating to the flow rate of a fluid measurement medium
  • the flow sensor is located in the manipulation section.
  • this further comprises a primary pipeline through which the measurement medium flows, the manipulation section being connected to the pipeline at the first end area, and the manipulation section being connected to the pipeline at the second end area.
  • the flow sensor forms a bypass to the primary pipeline together with the manipulation section. This means that the medium flow through the primary pipeline is not interrupted and that the measuring medium flows parallel to the primary pipeline through the manipulation section and the flow sensor.
  • the primary pipeline is connected at the first end area of the manipulation path and at the second end area of the manipulation path, or ends at the outlet of the flow sensor (depending on the system variant), so that there is no parallel medium flow and the measured medium flows exclusively through the manipulation section and the flow sensor.
  • the flow sensor is a thermal flow sensor.
  • thermal flow sensors with different types of action and structures are known from the prior art:
  • Calorimetric thermal flow sensors determine the flow or the flow rate of the fluid in a channel via a temperature difference between two temperature sensors, which are arranged downstream and upstream of a heating element. For this purpose, use is made of the fact that the temperature difference is linear to the flow or the flow rate up to a certain point. This process or method is extensively described in the relevant literature.
  • Anemometric thermal flow sensors consist of at least one heating element, which is heated while measuring the flow. As the measuring medium flows around the heating element, heat is transported into the measuring medium, which changes with the flow rate. By measuring the electrical variables of the heating element, conclusions can be drawn about the flow rate of the measuring medium.
  • Such an anemometric thermal flow sensor is typically operated in one of the following two control modes:
  • CCA Constant-Current Anemometry
  • CTA Constant-Temperature Anemometry
  • the system according to the invention can also be operated with other types of thermal flow sensors for which a flow profile that is stable over the flow velocity is advantageous.
  • other types of flow sensors can also be used, for example Coriolis flow sensors, ultrasonic flow sensors or microwave flow sensors.
  • a manipulation section 1 shows a structure which is intended to improve the flow dependency of the inlet of a flow sensor 2 .
  • a manipulation section 1 is used. This has a manipulation section 130, which manipulates a measuring medium flowing through in such a way that the dependence of the Flow profile of the measured medium at the inlet of the flow sensor 2 is essentially decoupled from the flow velocity over a large range of values.
  • the flow sensor 2 is a thermal flow sensor.
  • other types of flow sensors can also be used to advantage.
  • the flow sensor 2 is connected to the manipulation section 1 for this purpose.
  • Either the inlet of the thermal flow sensor 2 is connected to a second end area 120 of the manipulation path 1 .
  • the thermal flow sensor 2 is part of the manipulation path 1 or is integrated into it. This combination of manipulation sections and flow sensors is now connected to a primary pipeline 3 through which the measurement medium flows.
  • the combination of manipulation section and flow sensor forms a bypass to the primary pipeline 3 . This means that the medium flow through the primary pipeline 3 is not interrupted and that the measurement medium flows parallel to the primary pipeline through the manipulation section 1 and the flow sensor 2 .
  • the primary pipeline 3 ends at the first end area of the manipulation section and at the second end area of the manipulation section, or at the outlet of the flow sensor (depending on the variant of the system), so that there is no parallel medium flow and the measured medium flows exclusively through the Manipulation route 1 and the flow sensor 2 flows.
  • a solution for a design of the manipulation section 130 is a helical curvature, as shown in FIG. 1 .
  • Experimental investigations have shown that the inlet dependency of a flow sensor 2 with such an upstream manipulation section as the inlet section is massively reduced in comparison to conventional flow sensors.
  • FIG. 2 depicts experimental data collected for this purpose.
  • the diagrams (a) and (b) represent a course of the current measured values of the flow sensor 2 (in mW, y-axis) over time (in seconds, x-axis).
  • the flow value of the measuring medium is kept constant.
  • the inlet condition of the measurement medium in the flow sensor 2 is changed several times over the course of time.
  • the end area of the pipeline is changed, which is connected directly to the flow sensor (diagram (a)) or to the manipulation section (according to FIG. 1, diagram (b)).
  • a lateral, "S"-shaped inlet is used in the two time intervals "2".
  • an angled inlet with a 90” curve is used.
  • time interval "4" an "S" shaped inlet from below is used.
  • the inlet is constantly changed manually.
  • Diagram (a) shows the measured values of a flow sensor which is operated conventionally, ie is connected to the primary pipeline 3 without a manipulation section 1 according to the invention. It can be seen that the course of the end portion of the primary pipeline 3 has a great influence on the measured values of the flow sensor 2, even if the magnitude of the flow speed is not changed.
  • the manipulation path 1 is located between the variable end portion of the primary pipeline 3 and the flow sensor 2 as shown in FIG. A dependency between the design of the end area of the primary pipeline 3 and the measured values of the flow sensor is no longer evident.
  • the measured values of the flow sensor 2 are independent of the inlet conditions.
  • the critical Reynolds number is at a classical one Pipe flow at about 230°.
  • ek denotes the critical Reynolds number at which a transition from laminar to turbulent flow occurs.
  • D w denotes the helix diameter, d the tube diameter and h the distance between the tubes.
  • the formula results in a critical Reynolds number of 10,300.
  • the laminar area is four times higher than with a conventional (straight) inlet section.
  • the measuring range can be increased by this factor.
  • the ratio of the pipe diameter d to the helix diameter Dw is greater than 0.01 - the factor is therefore at least 2.
  • a transition from laminar to turbulent flow can be seen at a mass flow rate of approx. 25 kg/h.
  • the lower curve (in the sense of lower measured values) shows this dependency with the manipulation path 1 connected in between, in the sense of the structure as depicted in FIG. 1 .
  • the entire measuring range up to 80 kg/h
  • Helix can be used.
  • the helix instead of the
  • Manipulation section 130 is helically curved, a tube insert, for example designed helically, are inserted into the tubular manipulation section 130 .

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Measuring Volume Flow (AREA)

Abstract

L'invention concerne un trajet de traitement (1) pour la surveillance du profil d'écoulement au niveau de l'entrée d'un capteur d'écoulement. Le trajet de traitement (1) est conçu pour acheminer un milieu de mesure de fluide, et le trajet de traitement (1) comporte une première région d'extrémité (110) et une seconde région d'extrémité (120), entre lesquelles est située une section de traitement (130) qui est conçue de telle sorte que des écoulements secondaires sont formés dans le milieu de mesure en conséquence de l'écoulement du milieu de mesure à travers la section de traitement (130). L'invention concerne également deux variantes différentes d'un système, chaque variante comprenant un capteur d'écoulement (2) et le trajet de traitement (3) selon l'invention.
PCT/EP2023/051483 2022-02-18 2023-01-23 Système et trajet de traitement pour la surveillance du profil d'écoulement au niveau de l'entrée d'un capteur d'écoulement WO2023156141A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022103952.8 2022-02-18
DE102022103952.8A DE102022103952A1 (de) 2022-02-18 2022-02-18 System und Manipulationsstrecke zum Kontrollieren des Strömungsprofils am Einlauf eines Strömungssensors

Publications (1)

Publication Number Publication Date
WO2023156141A1 true WO2023156141A1 (fr) 2023-08-24

Family

ID=85076136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/051483 WO2023156141A1 (fr) 2022-02-18 2023-01-23 Système et trajet de traitement pour la surveillance du profil d'écoulement au niveau de l'entrée d'un capteur d'écoulement

Country Status (2)

Country Link
DE (1) DE102022103952A1 (fr)
WO (1) WO2023156141A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006032877A1 (fr) * 2004-09-21 2006-03-30 Imperial College Innovations Limited Canalisation
EP1876427A1 (fr) * 2006-07-05 2008-01-09 Landis+Gyr GmbH Débitmètre à ultrasons avec un dispositif déclencant des turbulences dans la zone d'arrivée
CN206248227U (zh) * 2016-11-23 2017-06-13 常州腾兴汽车配件有限公司 一种用于检测汽车尾气的耐高温传感器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006105847A (ja) 2004-10-07 2006-04-20 Mitsubishi Heavy Ind Ltd 熱式流量計
DE102008013224A1 (de) 2008-03-07 2009-09-10 Endress + Hauser Flowtec Ag Messsystem und Verfahren zur Bestimmung und/oder Überwachung eines Durchflusses eines Messmediums durch ein Messrohr
RU2506502C2 (ru) 2008-03-07 2014-02-10 Белимо Холдинг Аг Устройство для измерения и регулирования объемного потока в вентиляционной трубе

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006032877A1 (fr) * 2004-09-21 2006-03-30 Imperial College Innovations Limited Canalisation
EP1876427A1 (fr) * 2006-07-05 2008-01-09 Landis+Gyr GmbH Débitmètre à ultrasons avec un dispositif déclencant des turbulences dans la zone d'arrivée
CN206248227U (zh) * 2016-11-23 2017-06-13 常州腾兴汽车配件有限公司 一种用于检测汽车尾气的耐高温传感器

Also Published As

Publication number Publication date
DE102022103952A1 (de) 2023-08-24

Similar Documents

Publication Publication Date Title
EP3273237B1 (fr) Procédé et dispositif de mesure pour la détermination de propriétés physiques de gaz
EP2324329B1 (fr) Arrangement de détection pour déterminer un paramètre d un milieu fluide
DE102011080415A1 (de) Verfahren zum Detektieren einer Belagsbildung oder einer Abrasion in einem Durchflussmessgerät
EP3234515B1 (fr) Appareil de mesure de débit thermique avec fonction de diagnostic
DE2934137A1 (de) Stroemungsmessanordnung
WO2004092687A1 (fr) Ensemble compteur a gaz a geometrie d'ecoulement amelioree
EP1681549A2 (fr) Procédé et dispositif pour l'humidification de gas et pour la condensation de vapeur aux noyaux à condensation
DE19748853C2 (de) Wärmeempfindlicher Luftmassensensor und Einlaßsystem einer Brennkraftmaschine
DE102009007126A1 (de) Verfahren und Vorrichtung zur Messung der Rußbeladung in Abgassystemen von Dieselmotoren
EP2600119A1 (fr) Débitmètre à induction magnétique
DE2212746B2 (de) Stroemungsrichter
DE102010040285A1 (de) Thermisches Durchflussmessgerät
DE19750594A1 (de) Wärmeempfindlicher Durchflußmesser
EP3237851A1 (fr) Débitmètre thermique
EP2215434B1 (fr) Système de détection pour déterminer un paramètre d'un fluide
DE112018000081B4 (de) Durchflussmesser
WO2023156141A1 (fr) Système et trajet de traitement pour la surveillance du profil d'écoulement au niveau de l'entrée d'un capteur d'écoulement
DE3855311T2 (de) Anordnung zur messung des volumenflusses eines ventilators
DE3002712A1 (de) Vorrichtung zur messung der druckdifferenz und des stroemungsvolumens in einer leitung
DE102010018948B4 (de) Thermischer Massendurchflussmesser mit zusätzlichen Sensormitteln sowie Verfahren zum Betrieb desselben
DE3940474C1 (fr)
DE29622602U1 (de) Durchflußmeßeinrichtung
DE102006015385A1 (de) Sensor zur Detektion von Partikeln in einem Fluid und Verfahren zur Detektion von Partikeln in einem Fluid
AT521524B1 (de) Gasmischvorrichtung zur Kalibrierung von Gasanalysatoren
EP3980729A1 (fr) Débitmètre thermique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23701892

Country of ref document: EP

Kind code of ref document: A1