WO2023155954A1 - Method for producing a welding cap and welding cap - Google Patents

Method for producing a welding cap and welding cap Download PDF

Info

Publication number
WO2023155954A1
WO2023155954A1 PCT/DE2023/100127 DE2023100127W WO2023155954A1 WO 2023155954 A1 WO2023155954 A1 WO 2023155954A1 DE 2023100127 W DE2023100127 W DE 2023100127W WO 2023155954 A1 WO2023155954 A1 WO 2023155954A1
Authority
WO
WIPO (PCT)
Prior art keywords
welding cap
base body
welding
produced
weight
Prior art date
Application number
PCT/DE2023/100127
Other languages
German (de)
French (fr)
Inventor
Hans-Günter Wobker
Peter Böhlke
Hark Schulze
Frank Böert
Original Assignee
Cunova Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cunova Gmbh filed Critical Cunova Gmbh
Publication of WO2023155954A1 publication Critical patent/WO2023155954A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0205Non-consumable electrodes; C-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/30Features relating to electrodes
    • B23K11/3009Pressure electrodes
    • B23K11/3018Cooled pressure electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0093Working by laser beam, e.g. welding, cutting or boring combined with mechanical machining or metal-working covered by other subclasses than B23K
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/222Non-consumable electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • B23K35/402Non-consumable electrodes; C-electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • B33Y70/10Composites of different types of material, e.g. mixtures of ceramics and polymers or mixtures of metals and biomaterials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0425Copper-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/001Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides
    • C22C32/0015Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
    • C22C32/0021Matrix based on noble metals, Cu or alloys thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0052Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides
    • C22C32/0063Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only carbides based on SiC
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C32/00Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ
    • C22C32/0047Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents
    • C22C32/0068Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides, whether added as such or formed in situ with carbides, nitrides, borides or silicides as the main non-metallic constituents only nitrides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/10Formation of a green body
    • B22F10/14Formation of a green body by jetting of binder onto a bed of metal powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/08Non-ferrous metals or alloys
    • B23K2103/12Copper or alloys thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics

Definitions

  • the invention relates to a method for producing a welding cap according to the features of patent claim 1.
  • a welding cap produced according to the method according to the invention is the subject of patent claim 14.
  • Resistance spot welding is a process that is often used in vehicle construction and general mechanical engineering. It is used to weld sheet metal components that are joined to form assemblies. Uncoated sheets and the galvanized steel sheets often used in vehicle construction can be welded, as can sheets with protective layers containing silicon or made of aluminum alloys.
  • the metal sheets are mechanically pressed against one another using welding tongs.
  • a welding current flows over the contact point and heats it up due to the ohmic resistance, so that the metal sheets are locally be welded. After welding there is a firm connection.
  • the welding electrodes that come into contact with the sheets are subject to high thermal and mechanical as well as chemical stresses and, as a result, severe wear. For this reason, the welding caps are reworked after a number of spot welds and can be replaced when certain wear limits are reached.
  • the service life of the welding cap before reworking can be between 50 and 70 or even several 100 spot welds.
  • Weld caps can be made from CuCrZr materials.
  • corresponding blocks are cast, processed into bars by extrusion, drawing and annealing and then formed into welding caps using a cold extrusion process. This is where they get their geometry and mechanical properties.
  • the disadvantage of this manufacturing process is that there is no way of adapting the welding caps or the cap material to the local requirement profile.
  • a high abrasion resistance and diffusion resistance in contact areas of the cap that come into contact with the metal sheets would be particularly favorable.
  • high strength and ductility are required, as well as good electrical conductivity.
  • a method for producing a welding electrode is known from EP 3 205 441 B1, in which a hollow bar is filled with a compacted copper alloy powder.
  • the billet is extruded and formed into a composite metal wire having a core with a sheath.
  • the wire is shaped into a composite welding electrode.
  • the core has a dispersion-reinforced copper.
  • the invention is based on the object of demonstrating a method for producing welding caps which locally have different technological properties without being restricted by the process limits of impact extrusion processes. This problem is solved in a method with the features of patent claim 1 . A corresponding welding cap as a result of this method is the subject of patent claim 14.
  • the method according to the invention is used to produce a welding cap made of copper or a copper alloy and is characterized in that the welding cap is produced at least partially additively using a 3D printing process.
  • a 3D printing process can be used to produce welding caps with material properties that can have a gradient over the cross section or the height of the welding cap or have a different material composition.
  • 3D printing by supplying powder with the appropriate properties via the height and, if necessary, via the diameter (cross-section), locally different areas can be created that have properties ideally adapted to the requirement profile of the welding cap.
  • copper alloy covers alloys with copper as the main component, where the proportion of copper is at least 50% by weight.
  • the copper alloys within the meaning of the invention are not copper-containing alloys in which copper is not the main component and in particular not refractory metals, as which the high-melting base metals of the 4th subgroup (titanium, zirconium and hafnium), 5th Subgroup (vanadium, niobium and tantalum) and the 6th subgroup (chromium, molybdenum and tungsten).
  • the copper alloy can contain small amounts of one or more of the refractory metals mentioned.
  • a base body is preferably produced from a semi-finished product, in particular by means of an extrusion process.
  • the base body is made of copper or a copper alloy.
  • the base body can be brought into the desired shape in combination with machining and/or a forming process. It serves as a substrate or carrier in order to attach a functional layer to the base body.
  • the functional layer is produced using the 3D printing process.
  • the functional layer is arranged in particular on an upper side of the welding cap. This means the area of the welding cap that comes into contact with the metal sheet via a functional surface, ie a contact surface, during resistance spot welding.
  • the combination of a base body with a functional layer makes it possible to use the cost advantages of extrusion processes, especially cold extrusion processes, with the metallurgical and geometric advantages of the 3D printing process for a particularly economical and requirement-based design of welding caps with a long service life.
  • the result is a hybrid welding cap that partially consists of the prefabricated, extruded semi-finished product and whose functional layer or the functional surface formed on the functional layer is produced using a 3D printing process.
  • the welding cap consists at least partially of a powder mixture of CuCrZr, CuAg, CuZr or CuZrAg.
  • the powder mixture can additionally contain at least one admixture of a ceramic material.
  • a ceramic material is understood to be a solid material made from inorganic compounds with non-metallic properties.
  • the ceramic material is oxidic, nitridic or carbide. It is in particular at least one ceramic material from the following group: Al2O3, ZrÜ2, CrO2, BN, WC, BC, SiC.
  • Other metallic or non-metallic powders or intermetallic phases can also be added.
  • the mass fraction of the sum of the admixtures is, in particular in some areas, i.e.
  • the ceramic material Even with high mass fractions of the ceramic material, it is always a welding cap made of copper or a copper alloy, because the copper or the copper alloy itself forms the supporting matrix for the embedded ceramic materials. Rather, they are copper-based metal-matrix composites.
  • the mass fraction of the ceramic material preferably increases in the direction of the functional surface in order to increase the wear resistance there. The invention does not rule out the use of a single powder mixture with a composition that is uniform over the entire spatial area for the functional layer.
  • the powder mixture is preferably varied and adapted to the requirements in the respective functional area of the welding cap, in particular in order to form a functional gradient.
  • the functional layers can themselves have different gradients in their composition.
  • An increase in the proportion by weight of the at least one ceramic material in the functional layer can take place essentially continuously if the additively manufactured layers have a sufficiently small layer thickness. In the case of several layers with the same composition or individual thicker layers, larger gradations can be implemented as required.
  • the proportion of the ceramic material adjacent to the base body can be set to an initial value below 10% by weight, preferably 0.05 to 10% by weight, in particular 0.05 to 5% by weight, of the weight of the functional layer . In the direction of the functional surface, the proportion by weight of the ceramic material can increase to a final value that is at least 1.0% by weight greater than the initial value.
  • the absolute final value is preferably greater than 5% by weight and preferably less than 80% by weight/50% by weight/20% by weight, in particular less than 15% by weight.
  • the specific gravity of ceramic materials is much lower than that of a copper alloy and therefore the volume fraction of the ceramic material is much larger than its weight fraction.
  • the proportion of copper in the matrix decreases sharply and with it the conductivity. Therefore, the average weight fraction should preferably not exceed 20% by weight even if the final value of the weight fraction of the ceramic material is 50% by weight or more.
  • the base body is produced without cutting by hot forming, in particular extrusion, of a CuCrZr material.
  • Cold forming preferably follows.
  • a base area is formed on the base body, onto which the functional layer is printed using the 3D printing process.
  • the base is basically flat.
  • the base area is uneven or is preferably arched, ie in particular convex or also concave, with the aim of optimizing the pressure distribution in the functional layer.
  • Electron beam-based processes (electron beam powder bed fusion - EBPBF) and laser beam melting (laser powder bed fusion - LPBF) are particularly suitable as 3D printing processes.
  • Laser beam sintering processes, electron beam sintering processes or binder jetting processes are also suitable for producing the welding cap.
  • 3D printing processes are additive manufacturing processes based on the principle of using a digital model from a CAD file as the basis for additive, layered material construction.
  • Additive manufacturing makes it possible to form complex structures.
  • the welding cap has a surface structure on the outside, which is set up to enlarge the surface of the outside in order to improve the heat dissipation to the environment.
  • the addition of certain particles makes it possible to increase the oxidation resistance and high-temperature corrosion stability of the welding caps, especially the functional layer, at the same time.
  • Admixtures such as Al2O3, ZrÜ2, CrO2, BN, WC, BC, SiC increase the abrasion resistance of the functional surface.
  • the geometry of the welding cap produced according to the invention can be more complex than it can be produced using a pure extrusion process.
  • one or more cooling channels for conducting a cooling liquid are formed in a wall of the welding cap.
  • One or more cooling grooves can be formed on the inside of the surface of the welding cap.
  • At least one cooling fin may be formed on an outside surface of the welding cap.
  • the welding cap is by no means limited to a rotationally symmetrical geometry, regardless of the cooling channels, cooling grooves or cooling ribs. It can also have a polygonal, elliptical or substantially rectangular shape. Such a design is possible achieved in particular by combining different cost-effective production processes, such as in particular the provision of a semi-finished product produced using the impact extrusion process in combination with a further non-material-removing forming step and/or in combination with machining.
  • the welding cap according to the invention produced by this method, therefore has a base body and a functional layer, in particular made of a different material than the base body, so that due to the locally different material properties, the requirements for welding caps can be economically realized in terms of production technology.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Ceramic Engineering (AREA)
  • Civil Engineering (AREA)
  • Composite Materials (AREA)
  • Structural Engineering (AREA)
  • Powder Metallurgy (AREA)

Abstract

The invention relates to a method for producing a welding cap from copper or a copper alloy, wherein the welding cap is at least partially produced additively by a 3D printing method.

Description

Verfahren zur Herstellung einer Schweißkappe und Schweißkappe Method of making a welding cap and welding cap
Die Erfindung betrifft ein Verfahren zur Herstellung einer Schweißkappe gemäß den Merkmalen des Patentanspruches 1. Eine nach dem erfindungsgemäßen Verfahren hergestellte Schweißkappe ist Gegenstand des Patentanspruches 14. The invention relates to a method for producing a welding cap according to the features of patent claim 1. A welding cap produced according to the method according to the invention is the subject of patent claim 14.
Das Widerstandspunktschweißen ist ein Verfahren, das im Fahrzeugbau sowie im allgemeinen Maschinenbau häufig zum Einsatz kommt. Es dient zum Verschweißen von Bauteilen aus Blechen, die zu Baugruppen gefügt werden. Es können unbeschichtete Bleche, und die häufig im Fahrzeugbau verwendeten verzinkten Stahlbleche verschweißt werden ebenso wie Bleche mit siliziumhaltigen Schutzschichten oder aus Aluminiumlegierungen. Resistance spot welding is a process that is often used in vehicle construction and general mechanical engineering. It is used to weld sheet metal components that are joined to form assemblies. Uncoated sheets and the galvanized steel sheets often used in vehicle construction can be welded, as can sheets with protective layers containing silicon or made of aluminum alloys.
Die Bleche werden zum Widerstandspunktschweißen über eine Schweißzange mechanisch gegeneinander gedrückt. Ein Schweißstrom fließt über die Kontaktstelle und erhitzt diese aufgrund des ohmschen Widerstandes, so dass die Bleche lokal verschweißt werden. Nach der Schweißung liegt eine feste Verbindung vor. Die Schweißelektroden, die mit den Blechen in Kontakt kommen, unterliegen hohen thermischen und mechanischen sowie auch chemischen Beanspruchungen und dadurch einem starken Verschleiß. Aus diesem Grund werden die Schweißkappen nach einer Anzahl von Schweißpunkten nachgearbeitet und können beim Erreichen bestimmter Verschleißgrenzen ausgetauscht werden. Die Standzeit der Schweißkappe bis zum Nacharbeiten kann je nach den Eigenschaften der zu fügenden Bleche zwischen 50 bis 70 oder auch mehrere 100 Schweißpunkte betragen. For resistance spot welding, the metal sheets are mechanically pressed against one another using welding tongs. A welding current flows over the contact point and heats it up due to the ohmic resistance, so that the metal sheets are locally be welded. After welding there is a firm connection. The welding electrodes that come into contact with the sheets are subject to high thermal and mechanical as well as chemical stresses and, as a result, severe wear. For this reason, the welding caps are reworked after a number of spot welds and can be replaced when certain wear limits are reached. Depending on the properties of the metal sheets to be joined, the service life of the welding cap before reworking can be between 50 and 70 or even several 100 spot welds.
Schweißkappen können aus CuCrZr-Werkstoffen hergestellt werden. Hierzu werden entsprechende Blöcke gegossen, über Strangpressen, Ziehen und Glühen zu Stangen verarbeitet und dann über einen Kaltfließprozess zu Schweißkappen umgeformt. Hierbei erhalten sie ihre Geometrie und mechanischen Eigenschaften. Nachteilig bei diesem Herstellungsverfahren ist es, dass es keine Möglichkeiten gibt, die Schweißkappen bzw. den Kappenwerkstoff dem lokalen Anforderungsprofil anzupassen. Besonders günstig wäre eine hohe Abriebbeständigkeit und Diffusionsbeständigkeit in Kontaktbereichen der Kappe, die mit den Blechen in Kontakt kommen. Im Unterschied dazu ist im Bereich des Schaftes einer Schweißkappe eher eine hohe Festigkeit und Duktilität erforderlich sowie eine gute elektrische Leitfähigkeit. Weld caps can be made from CuCrZr materials. For this purpose, corresponding blocks are cast, processed into bars by extrusion, drawing and annealing and then formed into welding caps using a cold extrusion process. This is where they get their geometry and mechanical properties. The disadvantage of this manufacturing process is that there is no way of adapting the welding caps or the cap material to the local requirement profile. A high abrasion resistance and diffusion resistance in contact areas of the cap that come into contact with the metal sheets would be particularly favorable. In contrast, in the area of the shank of a welding cap, high strength and ductility are required, as well as good electrical conductivity.
Durch die EP 3 205 441 B1 ist ein Verfahren zum Herstellen einer Schweißelektrode bekannt, bei welchem ein hohler Barren mit einem verdichteten Kupferlegierungspulver gefüllt wird. Der Barren wird extrudiert und zu einem Verbundmetalldraht geformt, der einen Kem mit einer Ummantelung aufweist. Der Draht wird in die Form einer Verbundschweißelektrode gebracht. Dabei weist der Kern ein dispersionsverstärktes Kupfer auf. A method for producing a welding electrode is known from EP 3 205 441 B1, in which a hollow bar is filled with a compacted copper alloy powder. The billet is extruded and formed into a composite metal wire having a core with a sheath. The wire is shaped into a composite welding electrode. In this case, the core has a dispersion-reinforced copper.
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung von Schweißkappen aufzuzeigen, die lokal über unterschiedliche technologische Eigenschaften verfügen, ohne durch die Verfahrensgrenzen von Fließpressverfahren eingeschränkt zu sein. Diese Aufgabe ist bei einem Verfahren mit den Merkmalen des Patentanspruches 1 gelöst. Eine entsprechende Schweißkappe als Ergebnis dieses Verfahrens ist Gegenstand des Patentanspruches 14. The invention is based on the object of demonstrating a method for producing welding caps which locally have different technological properties without being restricted by the process limits of impact extrusion processes. This problem is solved in a method with the features of patent claim 1 . A corresponding welding cap as a result of this method is the subject of patent claim 14.
Das erfindungsgemäße Verfahren dient zur Herstellung einer Schweißkappe aus Kupfer oder einer Kupferlegierung und ist dadurch gekennzeichnet, dass die Schweißkappe zumindest teilweise additiv durch ein 3D-Druckverfahren hergestellt wird. Durch ein 3D-Druckverfahren können Schweißkappen mit Werkstoffeigenschaften hergestellt werden, die über den Querschnitt oder die Höhe der Schweißkappe einen Gradienten aufweisen können bzw. eine stofflich unterschiedliche Zusammensetzung aufweisen. Im 3D-Druck lassen sich durch die Zuführung von Pulver mit entsprechenden Eigenschaften über die Höhe und ggf. über den Durchmesser (Querschnitt) lokal unterschiedliche Bereiche erzeugen, die dem Anforderungsprofil der Schweißkappe ideal angepasste Eigenschaften aufweisen. The method according to the invention is used to produce a welding cap made of copper or a copper alloy and is characterized in that the welding cap is produced at least partially additively using a 3D printing process. A 3D printing process can be used to produce welding caps with material properties that can have a gradient over the cross section or the height of the welding cap or have a different material composition. In 3D printing, by supplying powder with the appropriate properties via the height and, if necessary, via the diameter (cross-section), locally different areas can be created that have properties ideally adapted to the requirement profile of the welding cap.
Der Ausdruck „Kupferlegierung“ erfasst Legierungen mit Kupfer als Hauptbestandteil, wobei der Gewichtsanteil von Kupfer mindestens 50% beträgt. Es handelt sich bei den Kupferlegierungen im Sinne der Erfindung nicht um kupferhaltige Legierungen, bei denen Kupfer nicht der Hauptbestandteil ist und insbesondere nicht um Refraktärmetalle, als welche die hochschmelzenden, unedlen Metalle, der 4. Nebengruppe (Titan, Zirconium und Hafnium), 5. Nebengruppe (Vanadium, Niob und Tantal) sowie der 6. Nebengruppe (Chrom, Molybdän und Wolfram) bezeichnet werden. Die Kupferlegierung kann geringe Anteile einer oder mehrerer der genannten Refraktärmetalle enthalten. The term "copper alloy" covers alloys with copper as the main component, where the proportion of copper is at least 50% by weight. The copper alloys within the meaning of the invention are not copper-containing alloys in which copper is not the main component and in particular not refractory metals, as which the high-melting base metals of the 4th subgroup (titanium, zirconium and hafnium), 5th Subgroup (vanadium, niobium and tantalum) and the 6th subgroup (chromium, molybdenum and tungsten). The copper alloy can contain small amounts of one or more of the refractory metals mentioned.
In besonders vorteilhafter Weise wird nicht die gesamte Schweißkappe durch ein 3D- Druckverfahren hergestellt, sondern nur ein Teil der Schweißkappe. Bevorzugt wird ein Grundkörper aus einem Halbzeug hergestellt, insbesondere durch ein Fließpressverfahren. Der Grundkörper besteht aus Kupfer oder einer Kupferlegierung. In Kombination mit einer spanabhebenden Bearbeitung und/oder einem Umformprozess kann der Grundkörper in die gewünschte Form gebracht werden. Er dient als Substrat bzw. Träger, um eine Funktionsschicht an dem Grundkörper anzubringen. Die Funktionsschicht wird durch das 3D-Druckverfahren hergestellt. Die Funktionsschicht ist insbesondere an einer Oberseite der Schweißkappe angeordnet. Damit ist der Bereich der Schweißkappe gemeint, der beim Widerstandspunktschweißen über eine Funktionsfläche, d.h. eine Kontaktfläche, mit dem Blech in Kontakt kommt. Die Kombination eines Grundkörpers mit einer Funktionsschicht ermöglicht es, die Kostenvorteile von Fließpressverfahren, insbesondere von Kaltfließpressverfahren, mit den metallurgischen und geometrischen Vorteilen des 3D-Druckverfahrens für eine besonders wirtschaftliche und anforderungsgerechte Gestaltung von Schweißkappen mit großer Standzeit zu nutzen. In a particularly advantageous manner, not the entire welding cap is produced using a 3D printing process, but only part of the welding cap. A base body is preferably produced from a semi-finished product, in particular by means of an extrusion process. The base body is made of copper or a copper alloy. The base body can be brought into the desired shape in combination with machining and/or a forming process. It serves as a substrate or carrier in order to attach a functional layer to the base body. The functional layer is produced using the 3D printing process. The functional layer is arranged in particular on an upper side of the welding cap. This means the area of the welding cap that comes into contact with the metal sheet via a functional surface, ie a contact surface, during resistance spot welding. The combination of a base body with a functional layer makes it possible to use the cost advantages of extrusion processes, especially cold extrusion processes, with the metallurgical and geometric advantages of the 3D printing process for a particularly economical and requirement-based design of welding caps with a long service life.
Das Ergebnis ist eine Hybrid-Schweißkappe, die teilweise aus dem vorgefertigten, fließgepressten Halbzeug besteht und deren Funktionsschicht bzw. die an der Funktionsschicht ausgebildete Funktionsfläche durch ein 3D-Druckverfahren erzeugt wird. The result is a hybrid welding cap that partially consists of the prefabricated, extruded semi-finished product and whose functional layer or the functional surface formed on the functional layer is produced using a 3D printing process.
Die Schweißkappe besteht zumindest teilweise aus einem Pulvergemisch aus CuCrZr, CuAg, CuZr oder CuZrAg. Das Pulvergemisch kann zusätzlich mindestens eine Beigmengung aus einem keramischen Werkstoff aufweisen. Unter einem keramischen Werkstoff wird ein fester Werkstoff aus anorganischen Verbindungen mit nichtmetallischen Eigenschaften verstanden. Der keramische Werkstoff ist oxidisch, nitiridisch oder carbidisch. Es handelt sich insbesondere um wenigstens einen keramischen Werkstoff aus folgender Gruppe: AI2O3, ZrÜ2, CrO2, BN, WC, BC, SiC. Es können auch andere metallische oder nicht metallische Pulver oder auch intermetallische Phasen beigemengt werden. Der Massenanteil der Summe der Beimengungen ist insbesondere bereichsweise, d.h. in wenigstens einer Zone, einem Abschnitt, einer Schicht, einen Quadranten oder Segment, kleiner als der Massenanteil der Summe der Grundkomponente oder der Grundkomponenten (CuCrZr, CuAg, CuZr oder CuZrAg) des Pulvergemisches. Auch bei hohen Massenanteilen des keramischen Werkstoffes handelt es sich stets um eine Schweißkappe aus Kupfer oder aus einer Kupferlegierung, weil das Kupfer oder die Kupferlegierung selbst die tragende Matrix für die eingebetteten keramischen Werkstoffe bildet. Es handelt sich eher um Metall-Matrix-Verbundwerkstoffe auf Kupferbasis. Bevorzugt nimmt der Massenanteil des keramischen Werkstoffs in Richtung zu Funktionsfläche zu, um dort die Verschleißfestigkeit zu erhöhen. Die Erfindung schließt nicht aus, dass ein einziges Pulvergemisch mit einer über den gesamten räumlichen Bereich gleichmäßig Zusammensetzung für die Funktionsschicht verwendet werden wird. Das Pulvergemisch wird allerdings bevorzugt variiert und an die Anforderungen in dem jeweiligen Funktionsbereich der Schweißkappe angepasst, insbesondere um einen funktionalen Gradienten auszubilden. Insbesondere ist es möglich, auf einen einheitlichen Grundkörper unterschiedliche Funktionsschichten aufzubringen, sowohl, was die Geometrie als auch die Materialeigenschaften betrifft. Die Funktionsschichten können selbst wieder unterschiedliche Gradienten in ihrer Zusammensetzung aufweisen. The welding cap consists at least partially of a powder mixture of CuCrZr, CuAg, CuZr or CuZrAg. The powder mixture can additionally contain at least one admixture of a ceramic material. A ceramic material is understood to be a solid material made from inorganic compounds with non-metallic properties. The ceramic material is oxidic, nitridic or carbide. It is in particular at least one ceramic material from the following group: Al2O3, ZrÜ2, CrO2, BN, WC, BC, SiC. Other metallic or non-metallic powders or intermetallic phases can also be added. The mass fraction of the sum of the admixtures is, in particular in some areas, i.e. in at least one zone, section, layer, quadrant or segment, smaller than the mass fraction of the sum of the basic component or components (CuCrZr, CuAg, CuZr or CuZrAg) of the powder mixture. Even with high mass fractions of the ceramic material, it is always a welding cap made of copper or a copper alloy, because the copper or the copper alloy itself forms the supporting matrix for the embedded ceramic materials. Rather, they are copper-based metal-matrix composites. The mass fraction of the ceramic material preferably increases in the direction of the functional surface in order to increase the wear resistance there. The invention does not rule out the use of a single powder mixture with a composition that is uniform over the entire spatial area for the functional layer. However, the powder mixture is preferably varied and adapted to the requirements in the respective functional area of the welding cap, in particular in order to form a functional gradient. In particular, it is possible to apply different functional layers to a uniform base body, both in terms of geometry and material properties. The functional layers can themselves have different gradients in their composition.
Eine Zunahme des Gewichtsanteils des wenigstens einen keramischen Werkstoffs in der Funktionsschicht kann im Wesentlichen stufenlos erfolgen, wenn die additiv gefertigten Schichten eine hinreichend geringe Schichtdicke haben. Bei mehreren Schichten mit der gleichen Zusammensetzung ober einzelnen dickeren Schichten können größer Abstufungen bedarfsgerecht realisiert werden. Der Anteil des keramischen Werkstoffs angrenzend an den Grundkörper kann auf einen Anfangswert unter 10 Gew-.%, vorzugsweise auf 0,05 bis 10 Gew.-%, insbesondere auf 0,05 bis 5 Gew.-%, des Gewichts der Funktionsschicht eingestellt werden. In Richtung zur Funktionsfläche kann der Gewichtsanteil des keramischen Werkstoffs auf einen Endwert steigen, der mindestens 1 ,0 Gew.-% größer ist das der Anfangswert. Der absolute Endwert ist bevorzugt größer als 5 Gew.-% und bevorzugt niedriger als 80 Gew.-% / 50 Gew.-% / 20 Gew.-%, insbesondere geringer als 15 Gew.-%. Es ist zu berücksichtigen, dass das spezifische Gewicht keramischer Werkstoffe wesentlich niedriger ist als das einer Kupferlegierung und daher der Volumenanteil des keramischen Werkstoffs wesentlich größer ist als sein Gewichtsanteil. Die Folge ist, dass der Kupferanteil in der Matrix stark abnimmt und damit auch die Leitfähigkeit. Daher sollte der mittlere Gewichtsanteil bevorzugt 20 Gew.-% nicht überschreiten, selbst wenn der Endwert des Gewichtsanteils des keramischen Werkstoffs 50 Gew- .% oder mehr beträgt. An increase in the proportion by weight of the at least one ceramic material in the functional layer can take place essentially continuously if the additively manufactured layers have a sufficiently small layer thickness. In the case of several layers with the same composition or individual thicker layers, larger gradations can be implemented as required. The proportion of the ceramic material adjacent to the base body can be set to an initial value below 10% by weight, preferably 0.05 to 10% by weight, in particular 0.05 to 5% by weight, of the weight of the functional layer . In the direction of the functional surface, the proportion by weight of the ceramic material can increase to a final value that is at least 1.0% by weight greater than the initial value. The absolute final value is preferably greater than 5% by weight and preferably less than 80% by weight/50% by weight/20% by weight, in particular less than 15% by weight. It should be noted that the specific gravity of ceramic materials is much lower than that of a copper alloy and therefore the volume fraction of the ceramic material is much larger than its weight fraction. The result is that the proportion of copper in the matrix decreases sharply and with it the conductivity. Therefore, the average weight fraction should preferably not exceed 20% by weight even if the final value of the weight fraction of the ceramic material is 50% by weight or more.
In besonders vorteilhafter Weise wird der Grundkörper spanlos durch ein Warmformen, insbesondere Fließpressen, eines CuCrZr-Werkstoffes hergestellt. Bevorzugt schließt sich eine Kaltumformung an. Dabei wird eine Grundfläche am Grundkörper ausgebildet, auf welche die Funktionsschicht mittels des 3D- Druckverfahrens gedruckt wird. Die Grundfläche ist grundsätzlich eben. Gemäß einer Weiterentwicklung ist die Grundfläche uneben, bzw. weist bevorzugt gewölbt, d.h. insbesondere konvex oder auch konkav, mit dem Ziel, die Druckverteilung in der Funktionsschicht zu optimieren. In a particularly advantageous manner, the base body is produced without cutting by hot forming, in particular extrusion, of a CuCrZr material. Cold forming preferably follows. In this case, a base area is formed on the base body, onto which the functional layer is printed using the 3D printing process. The base is basically flat. According to a further development, the base area is uneven or is preferably arched, ie in particular convex or also concave, with the aim of optimizing the pressure distribution in the functional layer.
Als 3D-Druckverfahren kommen insbesondere elektronenstrahlbasierte Verfahren (Electron Beam Powder Bed Fusion - EBPBF), sowie das Laserstrahlschmelzen (Laser Powder Bed Fusion - LPBF) in Frage. Ebenso eignen sich zur Herstellung der Schweißkappe Laserstrahl-Sinterverfahren, Elektronenstrahl-Sinterverfahren oder auch Binder-Jetting-Verfahren. Generell handelt es sich bei den 3D-Druckverfahren um additive Fertigungsverfahren nach dem Prinzip, ein digitales Modell aus einer CAD- Datei als Grundlage zum additiven, schichtweisen Materialaufbau zu nutzen. Electron beam-based processes (electron beam powder bed fusion - EBPBF) and laser beam melting (laser powder bed fusion - LPBF) are particularly suitable as 3D printing processes. Laser beam sintering processes, electron beam sintering processes or binder jetting processes are also suitable for producing the welding cap. In general, 3D printing processes are additive manufacturing processes based on the principle of using a digital model from a CAD file as the basis for additive, layered material construction.
Die additive Fertigung ermöglicht es, komplexe Strukturen auszubilden. Beispielsweise ist in einer bevorzugten Ausführungsform vorgesehen, dass die Schweißkappe außenseitig eine Oberflächenstruktur aufweist, die dazu eingerichtet ist, die Oberfläche der Außenseite zu vergrößern, um die Wärmeableitung an die Umgebung zu verbessern. Das Beimengen von bestimmten Partikeln ermöglicht es, gleichzeitig die Oxidationsbeständigkeit und Hochtemperaturkorrosionsstabilität der Schweißkappen, insbesondere der Funktionsschicht zu erhöhen. Beimengungen, wie AI2O3, ZrÜ2, CrO2, BN, WC, BC, SiC erhöhen die Abriebfestigkeit der Funktionsfläche. Additive manufacturing makes it possible to form complex structures. For example, in a preferred embodiment it is provided that the welding cap has a surface structure on the outside, which is set up to enlarge the surface of the outside in order to improve the heat dissipation to the environment. The addition of certain particles makes it possible to increase the oxidation resistance and high-temperature corrosion stability of the welding caps, especially the functional layer, at the same time. Admixtures such as Al2O3, ZrÜ2, CrO2, BN, WC, BC, SiC increase the abrasion resistance of the functional surface.
Zudem kann die Geometrie der erfindungsgemäß hergestellten Schweißkappe komplexer sein als sie mit einem reinen Fließpressverfahren herstellbar ist. In einer Weiterbildung des Verfahrens werden in einer Wand der Schweißkappe ein oder mehrere Kühlkanäle zur Durchleitung einer Kühlflüssigkeit ausgebildet. Innenseitig der Oberfläche der Schweißkappe können ein oder mehrere Kühlnuten ausgebildet werden. An einer außenseitigen Oberfläche der Schweißkappe kann mindestens eine Kühlrippe ausgebildet werden. Dabei ist die Schweißkappe unabhängig von Kühlkanälen, Kühlnuten oder Kühlrippen keineswegs auf eine rotationssymmetrische Geometrie beschränkt. Sie kann auch eine polygonförmige, elliptische oder im Wesentlichen rechteckige Gestalt besitzen. Eine solche Gestaltung lässt sich insbesondere durch die Kombination verschiedener kostengünstiger Fertigungsverfahren erreichen, wie insbesondere die Bereitstellung eines im Fließpressverfahren hergestellten Halbzeuges in Kombination mit einem weiteren nicht matenalabhebenden Umformschritt und/oder mit in Kombination mit spanabhebender Bearbeitung. In addition, the geometry of the welding cap produced according to the invention can be more complex than it can be produced using a pure extrusion process. In a further development of the method, one or more cooling channels for conducting a cooling liquid are formed in a wall of the welding cap. One or more cooling grooves can be formed on the inside of the surface of the welding cap. At least one cooling fin may be formed on an outside surface of the welding cap. The welding cap is by no means limited to a rotationally symmetrical geometry, regardless of the cooling channels, cooling grooves or cooling ribs. It can also have a polygonal, elliptical or substantially rectangular shape. Such a design is possible achieved in particular by combining different cost-effective production processes, such as in particular the provision of a semi-finished product produced using the impact extrusion process in combination with a further non-material-removing forming step and/or in combination with machining.
Die erfindungsgemäße Schweißkappe, hergestellt nach diesem Verfahren, besitzt mithin einen Grundkörper und eine Funktionsschicht, insbesondere aus einem anderen Werkstoff als der Grundkörper, so dass aufgrund der lokal unterschiedlichen Materialeigenschaften die Anforderungen an Schweißkappen kostengünstig herstellungstechnisch realisierbar sind. The welding cap according to the invention, produced by this method, therefore has a base body and a functional layer, in particular made of a different material than the base body, so that due to the locally different material properties, the requirements for welding caps can be economically realized in terms of production technology.

Claims

Patentansprüche Verfahren zur Herstellung einer Schweißkappe aus Kupfer oder einer Kupferlegierung, dadurch gekennzeichnet, dass die Schweißkappe zumindest teilweise additiv durch ein 3D-Druckverfahren hergestellt wird. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass ein Grundkörper der Schweißkappe aus einem Halbzeug aus Kupfer oder einer Kupferlegierung hergestellt wird, das durch ein Fließpressverfahren und/oder spanabhebende Bearbeitung und/oder einen Umformprozess hergestellt wird, wobei der Grundkörper um eine Funktionsschicht ergänzt wird, die durch das 3D- Druckverfahren hergestellt wird. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Funktionsschicht zumindest teilweise aus einem Pulvergemisch aus CuCrZr, CuAg, CuZr oder CuZrAg hergestellt wird, wobei dem Pulvergemisch wenigstens ein keramischer Werkstoff im Sinne eines festen Werkstoffs aus anorganischen Verbindungen mit nichtmetallischen Eigenschaften beigemengt wird. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass der keramische Werkstoff oxidisch, nitridisch oder carbidisch ist und aus folgender Gruppe mit AI2O3, ZrÜ2, CrO2, BN, WC, BC, SiC ausgewählt wird. Verfahren nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass der Gewichtsanteil des wenigstens einen keramischen Werkstoffs in der Funktionsschicht derart eingestellt wird, dass er ausgehend von dem Grundkörper in Richtung zu einer vom Grundkörper beabstandeten Funktionsfläche der Funktionsschicht zunimmt. Verfahren nach einem der Ansprüche 3 bis 5, dadurch gekennzeichnet, dass der Gewichtsanteil des keramischen Werkstoffs angrenzend an den Grundkörper auf einen Anfangswert unter 10 Gew.-%, vorzugsweise auf 0,05 bis 10 Gew.-%, insbesondere auf 0,05 bis 5 Gew.-%, eingestellt wird, wobei der Gewichtsanteil des wenigstens einen keramischen Werkstoffs in der Funktionsfläche auf einen Endwert größer als 5 Gew-% und kleiner als 80 Gew.-%, vorzugsweise kleiner als 20 Gew.-% eingestellt wird . Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass der Grundkörper durch Warmformen eines CuCrZr-Werkstoffs hergestellt wird, wobei eine Grundfläche am Grundkörper ausgebildet wird, auf welche die Funktionsschicht mittels des 3D-Druckverfahrens gedruckt wird. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Grundfläche uneben, gewölbt oder unregelmäßig geformt ausgebildet wird. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das 3D-Druckverfahren ausgewählt wird aus folgenden Verfahren: Elektronenstrahlschmelzen (EBPBF), Laserstrahlschmelzen (LPBF), Laserstrahl-Sinterverfahren (LS), Elektronenstrahl-Sinterverfahren, Binder- Jetting-Verfahren. Verfahren nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, dass an der Schweißkappe außenseitig einer Oberflächenstruktur ausgebildet wird, die dazu eingerichtet ist, die Oberfläche der Außenseite zu vergrößern, um die Wärmeableitung an die Umgebung zu verbessern. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass in einer Wand der Schweißkappe wenigstens ein innenliegender Kühlkanal zur Durchleitung einer Kühlflüssigkeit ausgebildet wird. Verfahren nach den Ansprüchen 1 bis 11 , dadurch gekennzeichnet, dass an einer außenseitigen Oberfläche einer Wand der Schweißkappe wenigstens eine Kühlrippe ausgebildet wird. Verfahren nach einem der Ansprüche 1 bis 12, dadurch gekennzeichnet, dass an einer innenseitigen Oberfläche der Schweißkappe wenigstens eine Kühlnut ausgebildet wird. Schweißkappe hergestellt nach einem Verfahren gemäß einem der Ansprüche 1 bis 13. Schweißkappe nach Anspruch 14, dadurch gekennzeichnet, dass sie einen Grundkörper mit polygonaler oder mit einer elliptischen Form aufweist. Schweißkappe nach Anspruch 14 oder 15, dadurch gekennzeichnet, dass in einer Wand der Schweißkappe mindestens ein innerer Kühlkanal angeordnet ist. Schweißkappe nach einem der Ansprüche 14 bis 16, dadurch gekennzeichnet, dass an einer Wand der Schweißkappe mindestens eine Kühlnut ausgebildet ist. Claims Method for producing a welding cap made of copper or a copper alloy, characterized in that the welding cap is produced at least partially additively by a 3D printing process. Method according to Claim 1, characterized in that a base body of the welding cap is produced from a semi-finished product made of copper or a copper alloy, which is produced by an extrusion process and/or machining and/or a forming process, the base body being supplemented by a functional layer, manufactured using the 3D printing process. Method according to Claim 2, characterized in that the functional layer is produced at least partially from a powder mixture of CuCrZr, CuAg, CuZr or CuZrAg, at least one ceramic material in the sense of a solid material made of inorganic compounds with non-metallic properties being added to the powder mixture. Method according to Claim 3, characterized in that the ceramic material is oxidic, nitridic or carbide and is selected from the following group with Al2O3, ZrÜ2, CrO2, BN, WC, BC, SiC. Method according to Claim 3 or 4, characterized in that the proportion by weight of the at least one ceramic material in the functional layer is adjusted in such a way that it increases starting from the base body in the direction of a functional surface of the functional layer at a distance from the base body. Method according to one of Claims 3 to 5, characterized in that the proportion by weight of the ceramic material adjoining the base body is reduced to an initial value of less than 10% by weight, preferably 0.05 to 10% by weight, in particular 0.05 to 5 wt .-%, is set, the weight proportion of at least one ceramic material in the functional surface is set to a final value greater than 5 wt .-% and less than 80 wt .-%, preferably less than 20 wt .-%. Method according to one of Claims 1 to 6, characterized in that the base body is produced by hot forming a CuCrZr material, a base area being formed on the base body, on which the functional layer is printed using the 3D printing process. Method according to Claim 7, characterized in that the base surface is uneven, curved or irregularly shaped. Method according to one of Claims 1 to 8, characterized in that the 3D printing method is selected from the following methods: electron beam melting (EBPBF), laser beam melting (LPBF), laser beam sintering method (LS), electron beam sintering method, binder jetting method. Method according to one of Claims 1 to 9, characterized in that a surface structure is formed on the outside of the welding cap, which is set up to enlarge the surface of the outside in order to improve the heat dissipation to the environment. Method according to one of Claims 1 to 10, characterized in that at least one internal cooling channel for the passage of a cooling liquid is formed in a wall of the welding cap. Method according to Claims 1 to 11, characterized in that at least one cooling fin is formed on an outside surface of a wall of the welding cap. Method according to one of Claims 1 to 12, characterized in that at least one cooling groove is formed on an inside surface of the welding cap. Welding cap produced by a method according to one of Claims 1 to 13. Welding cap according to Claim 14, characterized in that it has a base body with a polygonal or elliptical shape. Welding cap according to Claim 14 or 15, characterized in that at least one internal cooling channel is arranged in a wall of the welding cap. Welding cap according to one of Claims 14 to 16, characterized in that at least one cooling groove is formed on a wall of the welding cap.
PCT/DE2023/100127 2022-02-16 2023-02-16 Method for producing a welding cap and welding cap WO2023155954A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022103617.0 2022-02-16
DE102022103617.0A DE102022103617A1 (en) 2022-02-16 2022-02-16 Method of making a welding cap and welding cap

Publications (1)

Publication Number Publication Date
WO2023155954A1 true WO2023155954A1 (en) 2023-08-24

Family

ID=85415206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2023/100127 WO2023155954A1 (en) 2022-02-16 2023-02-16 Method for producing a welding cap and welding cap

Country Status (2)

Country Link
DE (1) DE102022103617A1 (en)
WO (1) WO2023155954A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050092728A1 (en) * 2003-09-10 2005-05-05 Fabrice Barbeau Resistance welding electrode and associated manufacturing method
WO2006122410A1 (en) * 2005-05-17 2006-11-23 Huys Industries Limited Welding electrode and method
EP3205429A1 (en) * 2016-02-10 2017-08-16 Luvata Ohio, Inc. Methods of manufacturing composite materials, composite wires, and welding electrodes
KR101974590B1 (en) * 2017-12-11 2019-05-02 한국생산기술연구원 Resistance spot welding electrode for welding aluminum plate
EP3205441B1 (en) 2016-02-10 2021-06-30 Luvata Ohio, Inc. Welding electrodes and methods of manufacturing same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004024979B3 (en) 2004-05-21 2006-01-12 Alexander Binzel Schweisstechnik Gmbh & Co. Kg Method and device for cleaning an electrode or cap used in resistance spot welding and device for resistance spot welding
DE102019134727A1 (en) 2019-06-12 2020-12-17 Friedrich-Alexander-Universität Erlangen-Nürnberg Welding electrode and use of the welding electrode
DE102019128076B4 (en) 2019-10-17 2023-03-23 GM Global Technology Operations LLC IMPROVED RESISTANCE WELDING CAP

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050092728A1 (en) * 2003-09-10 2005-05-05 Fabrice Barbeau Resistance welding electrode and associated manufacturing method
WO2006122410A1 (en) * 2005-05-17 2006-11-23 Huys Industries Limited Welding electrode and method
EP3205429A1 (en) * 2016-02-10 2017-08-16 Luvata Ohio, Inc. Methods of manufacturing composite materials, composite wires, and welding electrodes
EP3205441B1 (en) 2016-02-10 2021-06-30 Luvata Ohio, Inc. Welding electrodes and methods of manufacturing same
KR101974590B1 (en) * 2017-12-11 2019-05-02 한국생산기술연구원 Resistance spot welding electrode for welding aluminum plate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BROOKE RENEE DYER: "Additive Manufacturing of Copper Electrodes and Bus Work for Resistance Welding", May 2017 (2017-05-01), XP002809262, Retrieved from the Internet <URL:https://etd.ohiolink.edu/apexprod/rws_olink/r/1501/10?clear=10&p10_accession_num=ysu1495803338676301> [retrieved on 20230508] *

Also Published As

Publication number Publication date
DE102022103617A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
EP3691815B1 (en) Additive manufactured component and method of manufacturing thereof
DE69837619T2 (en) ELECTRODE BAR FOR SPARKLING, METHOD FOR THE PRODUCTION THEREOF, AND METHOD FOR COATING WITH SUPRASED GRINDING-CONTAINING LAYER
DE10237763B4 (en) Process for the preparation of insoluble cohesive bonds of components made of oxide-dispersed (ODS) metallic materials by welding and components produced by the process
EP0300993A1 (en) Heavy duty bearing
EP0168868A1 (en) Process for the deposition of a corrosion-inhibiting layer, comprising protective oxide-forming elements at the base of a gas turbine blade, and a corrosion-inhibiting layer
EP1888798B1 (en) Aluminium plain bearing alloy
DE102016114549B4 (en) ABRASION-RESISTANT COPPER-BASED ALLOY, CLADDING LAYER, AND VALVE SYSTEM ELEMENT AND SLIDING ELEMENT FOR AN COMBUSTION ENGINE
DE1775322A1 (en) Plain bearings with finely divided aluminum as the basic material and process and for its production
EP3409801B1 (en) Solid particles prepared by means of powder metallurgy, hard particle containing composite material, use of a composite material and method for manufacturing a component from a composite material
CH667412A5 (en) METHOD FOR PRODUCING A CHOCOLATE FOR STEEL CONTINUOUS CASTING PLANTS.
DE3519114A1 (en) TOOL FOR SEMI-WARM AND HOT FORGING AND METHOD FOR PRODUCING SUCH A TOOL
DE102015116665A1 (en) Spot welding electrode
WO1995007869A1 (en) Heavily thermally stressable component
EP3074166B1 (en) Method for producing a precursor material for a cutting tool and corresponding precursor material
WO2023155954A1 (en) Method for producing a welding cap and welding cap
EP2343143A2 (en) Method for producing components from refractory metals
EP3074167B1 (en) Methods for producing a precursor material for a cutting tool
EP0497944B1 (en) Bearing material and process for making it
DE19534047C1 (en) Anode current collector for molten carbonate fuel cell
DE2400717C3 (en) X-ray tube rotating anode and process for their manufacture
DE102019134727A1 (en) Welding electrode and use of the welding electrode
EP0816525A1 (en) Screen plate
EP3733340B1 (en) Casting tool for metal die casting
CH695210A5 (en) Mold for the continuous casting of molten steel.
DE10334704A1 (en) Self-supporting, three-dimensional components deposited by a thermal spraying process

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23708150

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)