WO2023155920A1 - 用于卫星导航系统b1宽带复合信号的无模糊定位方法及其装置 - Google Patents

用于卫星导航系统b1宽带复合信号的无模糊定位方法及其装置 Download PDF

Info

Publication number
WO2023155920A1
WO2023155920A1 PCT/CN2023/077393 CN2023077393W WO2023155920A1 WO 2023155920 A1 WO2023155920 A1 WO 2023155920A1 CN 2023077393 W CN2023077393 W CN 2023077393W WO 2023155920 A1 WO2023155920 A1 WO 2023155920A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
propagation delay
code
ambiguity
phase
Prior art date
Application number
PCT/CN2023/077393
Other languages
English (en)
French (fr)
Inventor
姚铮
漆耘含
陆明泉
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2023155920A1 publication Critical patent/WO2023155920A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • G01S19/43Determining position using carrier phase measurements, e.g. kinematic positioning; using long or short baseline interferometry
    • G01S19/44Carrier phase ambiguity resolution; Floating ambiguity; LAMBDA [Least-squares AMBiguity Decorrelation Adjustment] method

Definitions

  • the embodiments of the present application relate to the field of satellite navigation and positioning. Specifically, a method and device for unambiguous positioning of broadband composite signals of satellite navigation system B1 are provided.
  • GNSS Global Navigation Satellite System
  • GNSS satellite navigation signals generally introduce subcarrier modulation.
  • satellite navigation signals modulated by subcarriers such as BOC modulated signals using square wave subcarriers, MBOC modulated signals using multiplexed subcarriers, and using AltBOC modulation signals with double sideband subcarriers, asymmetric constant envelope ACE-BOC modulation signals and single sideband SCBOC modulation signals, etc., have better frequency domain separation characteristics and wider Gabor bandwidth, so they have higher precision measurement distance potential. While the potential upper limit of ranging accuracy is improved through signal upgrading, corresponding advanced receiving processing algorithms are also required to actually bring out the potential high performance contained in the upgraded signal.
  • BPSK binary phase shift keying
  • the receiving technology needs to be able to track the signal with high precision.
  • the multi-peak ACF of the subcarrier modulation signal introduces the threat of ambiguity to the code tracking, resulting in unreliable positioning results, the receiving technology
  • the technology also needs to be able to eliminate ambiguity threats and enable reliable tracking and location.
  • the third-generation Beidou Navigation Satellite System (BDS3) B1 frequency point broadcasts the broadband composite signal on the BDS3 satellite through CEMIC technology. It is composed of public service signals B1C and B1I. Compatible, BDS3 B1I signal adopts SCBOC(14,2) modulation. Because the SCBOC(14,2) modulated signal is a high-order BOC signal, the BDS3 B1 broadband composite signal has the potential for extremely high-precision ranging.
  • the satellite navigation signal needs to be multiplied by the local carrier to obtain the baseband signal, and then the baseband signal is multiplied by the local code and integrated to obtain the correlation value.
  • the SCBOC(14,2) modulated B1I signal is used Both the subcarrier phase and the carrier phase are in the cos function, which is seriously coupled. It is difficult for the traditional tracking technology to accurately estimate the subcarrier phase and carrier phase at the same time when only tracking the SCBOC(14,2) modulated signal.
  • the existing cross-assisted tracking algorithm uses the BDS3 B1C and BDS3 B1I two signals to assist each other in tracking to solve the problem of severe coupling between the subcarrier phase and carrier phase of SCBOC (14,2), but this technology does not solve the fuzzy tracking problem , its ranging and positioning results are unreliable.
  • the autocorrelation function of the SCBOC(14,2) signal is multi-peaked, which will bring serious fuzzy tracking problems to the signal tracking.
  • technologies to solve the problem of ambiguous tracking are mainly divided into three categories: the first category is one-dimensional unambiguous tracking technology, such as Bump Jump, BPSK-like, PUDLL, which are very effective for low-order BOC, but when BOC signal When the order increases, this type of technology may fail; the second type is two-dimensional unambiguous tracking technology, such as DET and DPE for simple BOC signals, and tracking algorithms for AltBOC with complex structures.
  • two-dimensional unambiguous tracking technology is more general and can provide more reliable tracking results, but when the two-dimensional tracking signal belongs to high-order BOC signal, low carrier-to-noise ratio or is affected by severe
  • This technology still has the problem of ambiguous tracking;
  • the third type is based on parameter estimation technology.
  • This type of method is based on the two-dimensional unambiguous tracking technology, and further corrects the subcarrier observations that have ambiguous problems, so that ranging and positioning The result is more reliable, but the subcarrier ambiguity error solved by this method is relatively large, and it cannot guarantee to repair all subcarrier observations with ambiguity problems.
  • Embodiments of the present application provide an unambiguous positioning method and device for satellite navigation system B1 broadband composite signals that can at least partially solve the above-mentioned problems in the related art, or other problems.
  • This application provides an unambiguous positioning method and device for satellite navigation system B1 broadband composite signal, which can determine the observations of multiple satellites by tracking the B1C signal and B1I signal in the B1 broadband composite signal, and through The observation quantity determines the pseudorange value and code pseudorange value from each satellite to the receiver, and uses the pseudorange value and the code pseudorange value to solve the ambiguity floating-point solution of the propagation delay of the B1 broadband composite signal, and The ambiguity integer solution is obtained by the ambiguity floating-point solution to correct the propagation delay ambiguity of the estimated wrong B1 broadband composite signal, so as to obtain the unambiguous pseudo-range value, and realize the unambiguous and high-precision estimation of the receiver's position positioning.
  • the present application provides an unambiguous positioning method for B1 broadband composite signal of satellite navigation system, including: receiving B1 broadband composite signal of multiple satellites through a receiver, wherein the received B1 broadband composite signal includes B1I signal and B1C signals; obtain the observations of the B1I signals and the B1C signals of the multiple satellites; based on the observations, determine the pseudorange values and code pseudorange values from each of the satellites to the receiver ; Based on the pseudorange value and the code pseudorange value, determine the ambiguity floating-point solution of the propagation delay of the B1 broadband composite signal; correct the propagation delay of the B1 broadband composite signal through the ambiguity integer solution
  • the ambiguity is to obtain the propagation delay of the unambiguous B1 broadband composite signal, and perform unambiguous positioning on the position of the receiver based on the propagation delay of the unambiguous B1 broadband composite signal.
  • the observed quantity includes: the carrier phase of the B1C signal, the code propagation delay of the B1I signal, and the subcarrier propagation delay of the B1I signal.
  • the propagation delay of the B1I signal is determined by combining the code propagation delay and the subcarrier propagation delay, and based on the B1I signal
  • the pseudorange value is determined based on a propagation delay of a code
  • the code pseudorange value is determined based on the code propagation delay.
  • the step of obtaining the observations of the B1I signal and the B1C signal includes: determining the B1C signal based on the B1C signal, the code propagation delay of the B1I signal, and the carrier tracking loop. a carrier frequency of the signal and a carrier phase of the B1C signal; determining a carrier phase of the B1C signal based on the carrier frequency of the B1C signal and a carrier phase of the B1C signal; and a code tracking loop based on the B1I signal A code propagation delay of the B1I signal is determined.
  • the step of obtaining the observations of the B1I signal and the B1C signal includes: a code tracking loop based on the B1I signal, the carrier frequency and phase of the B1C signal, and the B1I signal Way, determine the spreading code frequency and phase of the B1I signal; determine the code propagation delay of the B1I signal based on the spreading code frequency and phase of the B1I signal; a frequency and phase, and subcarrier tracking loop to determine a subcarrier frequency and phase of the B1I signal; and to determine a subcarrier propagation delay of the B1I signal based on the subcarrier frequency and phase of the B1I signal.
  • the step of determining the pseudorange value and code pseudorange value from each of the multiple satellites to the receiver includes: The code pseudorange value is determined by the carrier phase of the B1C signal and the code propagation delay of the B1I signal; and the pseudorange is determined by the subcarrier propagation delay of the B1I signal and the code propagation delay of the B1I signal value.
  • the step of determining the pseudorange value and code pseudorange value from each of the multiple satellites to the receiver includes: Based on the carrier phase of the B1C signal, the code propagation delay is smoothed; based on the propagation delay of the B1I signal and the smoothed code propagation delay, it is determined from each satellite in the plurality of satellites to the receiver The pseudorange value and the code pseudorange value of the machine.
  • the step of determining the ambiguity integer solution based on the ambiguity floating-point solution includes: determining the ambiguity integer solution based on the ambiguity floating-point solution through a LAMBDA algorithm.
  • Another aspect of the present application provides an unambiguous positioning device for satellite navigation system B1 broadband composite signal, including: a memory storing computer-executable instructions; a processor executing the instructions to perform any of the above-mentioned tasks One method.
  • Another aspect of the present application provides a storage medium, which stores computer-executable instructions, and when the instructions are executed by one or more processors, any one of the above-mentioned methods is implemented.
  • Fig. 1 shows the flow chart of the unambiguous positioning method for satellite navigation system B1 broadband composite signal according to an embodiment of the present application
  • FIG. 2 shows a flow chart of obtaining observations of B1C signals according to an embodiment of the present application
  • Fig. 3 shows the flow chart of obtaining the observation quantity of B1I signal according to the embodiment of the present application
  • Fig. 4 shows the flow chart of determining the pseudorange value and code pseudorange value from the satellite to the receiver based on the observations of the B1I signal and the B1C signal according to an embodiment of the present application;
  • Fig. 5 shows a schematic diagram of an unambiguous positioning device for a satellite navigation system B1 broadband composite signal according to an embodiment of the present application
  • Fig. 6 shows a schematic diagram of a tracking module and an ambiguity resolution module according to an embodiment of the present application.
  • Fig. 1 shows a flow chart of an unambiguous positioning method for broadband composite signals of a satellite navigation system B1 according to an embodiment of the present application.
  • the method 1000 includes:
  • B1 broadband composite signal includes: B1I signal and B1C signal;
  • the B1 broadband composite signal of multiple satellites is received by the receiver, wherein the B1 broadband composite signal includes: a B1I signal and a B1C signal.
  • the receiver is adapted for satellite navigation signals, such as a GPS receiver or the like.
  • the observations of the B1I signal and B1C signal received in step S110 are acquired.
  • the observed quantities of the B1I signal and the B1C signal may include: the carrier phase of the B1C signal, the code propagation delay of the B1I signal, and the subcarrier propagation delay of the B1I signal; through the carrier phase of the B1C signal and The code propagation delay of the B1I signal determines the code pseudorange value, and the subcarrier propagation delay and the code propagation delay of the B1I signal determine the pseudorange value.
  • Fig. 2 shows a flow chart of obtaining observations of B1C signals according to an embodiment of the present application.
  • the BDS3 B1C signal and the BDS3 B1I signal have the same carrier frequency and Doppler frequency, and the carrier phases of the two are strictly equal, that is, when the carrier information of any signal is determined, the carrier information of the other signal Information can also be determined.
  • the B1C signal in the BDS3 B1 broadband composite signal is a real signal, there is no coupling between the SCBOC (14,2) carrier phase and the subcarrier phase, so the B1C signal can obtain its accurate carrier information through the carrier tracking loop (PLL), thereby Provide help for tracking of BDS3 B1I.
  • PLL carrier tracking loop
  • step S120 may include: S1201, determine the carrier frequency and phase of the B1C signal based on the B1C signal, the code propagation delay of the B1I signal, and the carrier tracking loop; S1202, determine the carrier frequency and phase of the B1C signal based on the B1I signal The code tracking loop of , determines the code propagation delay of the B1I signal.
  • step S120 may further include: S1201', based on the B1I signal, the carrier frequency and phase of the B1C signal, and the B1I signal
  • the code tracking loop of the number determines the spread spectrum code frequency and phase of the B1I signal
  • S1202' based on the spread spectrum code frequency and phase of the B1I signal, determines the code propagation delay of the B1I signal
  • S1203' based on the B1I signal and the B1C signal A carrier frequency and phase, and a subcarrier tracking loop, determining a subcarrier frequency and phase of the B1I signal
  • S1204' determining a subcarrier propagation delay of the B1I signal based on the subcarrier frequency and phase of the B1I signal.
  • step S130 based on the observations of the B1I signal and the B1C signal, the pseudorange value and code pseudorange value from each satellite to the receiver are determined.
  • the code pseudorange value is determined by the carrier phase of the B1C signal and the code propagation delay of the B1I signal; and the pseudorange value is determined by the subcarrier propagation delay of the B1I signal and the code propagation delay of the B1I signal.
  • step S130 may include: S1301, determine the propagation delay of the B1I signal by combining the code propagation delay and the subcarrier propagation delay; S1302, determine the code propagation delay based on the carrier phase of the B1C signal Perform smoothing; S1303, based on the propagation delay of the B1I signal and the smoothed code propagation delay, determine the pseudo-range value and code pseudo-range value from each satellite to the receiver.
  • step S140 based on the pseudorange value and the code pseudorange value, an ambiguity integer solution of the propagation delay of the B1 broadband composite signal is determined.
  • step S140 may include: based on the pseudorange value and code pseudorange value, determining the ambiguity floating-point solution of the propagation delay of the B1 broadband composite signal; and based on the ambiguity floating-point solution, determining its ambiguity integer untie.
  • step S150 the ambiguity of the propagation delay of the B1 broadband composite signal is corrected by the integer solution of the ambiguity, and the propagation delay of the unambiguous B1 broadband composite signal is obtained, so as to unambiguously determine the position of the receiver positioning.
  • the ambiguity integer solution may be determined based on the ambiguity floating-point solution through a LAMBDA algorithm.
  • the ambiguity floating-point solution of the propagation delay of the B1 broadband composite signal is sent into the LAMBDA algorithm, and the ambiguity integer solution is obtained by using the LAMBDA algorithm to search,
  • the obtained propagation delay ambiguity is zero
  • the subcarrier ambiguity estimated by the code phase is wrong
  • the obtained propagation delay ambiguity is a non-zero integer, according to This correction estimates incorrect propagation delay ambiguities.
  • FIG. 5 shows a block diagram of an unambiguous positioning device for a satellite navigation system B1 broadband composite signal according to an embodiment of the present application.
  • the device 500 includes:
  • the receiver 510 is configured to receive the B1 broadband composite signal of multiple satellites, wherein the B1 broadband composite signal includes: B1I signal and B1C signal;
  • a tracking module 520 configured to acquire observations of the B1I signal and the B1C signal of the plurality of satellites
  • the ambiguity resolution module 530 is configured to: determine the pseudorange value and code pseudorange value from each satellite to the receiver based on the observations of the B1I signal and the B1C signal; range value and the code pseudorange value, determine the ambiguity integer solution of the propagation delay of the B1 broadband composite signal; and correct the ambiguity of the propagation delay of the B1 broadband composite signal through the ambiguity integer solution, and obtain no Propagation delay of the ambiguous B1 wideband composite signal for unambiguous localization of where the receiver is located.
  • the receiver 510 is used for receiving B1 broadband composite signals of multiple satellites, wherein the B1 broadband composite signals include: B1I signals and B1C signals.
  • the receiver is adapted for satellite navigation signals, such as a GPS receiver or the like.
  • the tracking module 520 is used to acquire the observations of the B1I signal and the B1C signal received by the receiver 510 .
  • the observed quantities of the B1I signal and the B1C signal may include: the carrier phase of the B1C signal, the code propagation delay of the B1I signal, and the subcarrier propagation delay of the B1I signal;
  • the code propagation delay determines the code pseudo-range value, and the sub-carrier propagation delay and the code propagation delay of the B1I signal determine the pseudo-range value.
  • the tracking module 520 can be configured to: determine the B1C signal based on the B1C signal, the code propagation delay of the B1I signal, and the carrier tracking loop. carrier frequency and phase; and a code tracking loop based on the B1I signal, determining the code propagation delay of the B1I signal.
  • Fig. 6 shows a schematic diagram of a tracking module and an ambiguity resolution module according to an embodiment of the present application.
  • the tracking module 520 is used to track the carrier phase of the B1C signal, the code propagation delay of the B1I signal, and the subcarrier propagation delay of the B1I signal.
  • the signal r(t) received by the receiver is first combined with the carrier wave generated by the carrier NCO (Numerical Controlled Oscillator) 521 Multiply to get the baseband signal g B1C,i (t) of the BDS3 B1C of the i-th satellite whose carrier is stripped off, where is the carrier frequency and phase of the B1C signal of the ith satellite signal estimated by the carrier tracking loop 523 .
  • NCO Numerical Controlled Oscillator
  • the baseband IQ signal I B1C,i ,Q B1C,i is multiplied and integrated with the local real-time B1C baseband signal of the i-th satellite generated by the B1C code-subcarrier NCO 522 to determine the signal IP B1C,i ,QP B1C,i .
  • the phase of B1C code-subcarrier NCO 522 is provided by BDS3 B1I tracking.
  • the baseband IQ signal IP B1C,i , QP B1C,i is phase-detected and filtered by the carrier tracking loop 523, the error of the carrier frequency and phase is obtained to correct the carrier phase of the carrier NCO 523 and the B1C signal
  • the carrier phase of the B1C signal is determined, the carrier phase of the B1I signal is also determined, so it is only necessary to estimate the subcarrier phase of the B1I signal without estimating its carrier phase at the same time, effectively solving the problem of the subcarrier phase and carrier phase of the modulated signal.
  • the tracking module 520 can also be used to determine the spreading code frequency and phase of the B1I signal based on the carrier frequency and phase of the B1I signal, the B1C signal, and the code tracking loop of the B1I signal; Spread spectrum code frequency and phase to determine the code propagation delay of the B1I signal; determine the subcarrier frequency and phase of the B1I signal based on the B1I signal, the carrier frequency and phase of the B1C signal, and the subcarrier tracking loop; and the subcarrier frequency and phase based on the B1I signal The carrier frequency and phase determine the subcarrier propagation delay of the B1I signal.
  • the received signal r(t) is multiplied by the carrier generated by the carrier NCO 521 to obtain the baseband signal g B1I,i (t), which is generated by the B1I subcarrier NCO 524
  • the subcarrier of the B1I signal is multiplied to strip off the subcarrier of the B1I signal After the carrier, it is respectively multiplied and integrated with the local B1I advance code, instant code and delay code generated by the B1I code NCO 525, wherein the signals IP B1I,i , QP B1I,i enter the subcarrier tracking loop 527 for phase discrimination and filtering, to Update the B1I subcarrier NCO 624 and determine the subcarrier propagation delay of the B1I signal
  • the signal IE B1I,i ,QE B1I,i ,IL B1I,i ,QL B1I,i enters the code tracking loop 526 for phase detection and filtering to update the B1I code NCO 525
  • the propagation delay of the B1I signal obtained by tracking the B1I signal can be directly transmitted to the B1C signal, so that the B1C code-subcarrier NCO 522 can accurately generate the local real-time code of the B1C signal, and alleviate the serious technical problem of fuzzy tracking of the SCBOC (14,2) modulated signal.
  • the ambiguity resolution module 530 can be configured to: determine the propagation delay of the B1I signal by combining the code propagation delay and the subcarrier propagation delay, and the combination method is: where the round() function returns the pair As a result of rounding, the propagation delay ambiguity of the B1I signal is: code propagation delay is the subcarrier propagation delay When the correct subcarrier propagation delay ambiguity is provided, the propagation delay ambiguity of the B1I signal is 0, when the code propagation delay Cannot propagate delay for subcarriers When the correct subcarrier propagation delay ambiguity is provided, the propagation delay ambiguity of the B1I signal is not 0; based on the carrier phase of the B1C signal, the code propagation delay is smoothed; based on the propagation delay of the B1I signal and the smoothed code propagation delay, A pseudorange value and a code pseudorange value from each of the plurality of satellites to the receiver are determined.
  • the ambiguity resolution module 530 may be configured to: determine the ambiguity floating-point solution of the propagation delay of the B1 broadband composite signal based on the pseudorange value and the code pseudorange value; and based on the ambiguity floating-point solution, Determine its ambiguity integer solution.
  • the subcarrier propagation delay ambiguity corrected by the code propagation delay has an integer nature, and the code pseudo-range observation value involved in the position calculation is low-precision, and the positioning result has a large error, which will spread to the sub-carrier Carrier ambiguity solution value.
  • the ambiguity resolution module 530 shown in FIG. 6 can be used to correct the ambiguity of the propagation delay of the B1I signal.
  • the ambiguity resolution module 530 delays the code propagation of the B1I signal and its subcarrier propagation delay Merge and combine to generate the propagation delay of the B1I signal
  • X s,i is the satellite coordinate of the i-th satellite
  • Xu is the receiver coordinate
  • C is the speed of light
  • ⁇ T is the clock error of the receiver
  • I i is the i-th satellite
  • T i is the tropospheric delay of the i-th satellite
  • I i-th satellite is the code pseudorange noise of the i-th satellite calculated from the code propagation delay of the B1I signal.
  • the calculated pseudorange value of the i-th satellite is the pseudorange noise of the i-th satellite calculated from the propagation delay of the B1I signal, is the distance corresponding to the subcarrier chip of a BDS3 B1I signal, and ⁇ N i is the ambiguity of the propagation delay of the B1 broadband composite signal of the i-th satellite.
  • d i is the geometric distance between the i-th satellite and the receiver
  • e i is the unit vector pointing from the receiver to the i-th satellite
  • ( ⁇ x, ⁇ y, ⁇ z) T is the error of the receiver coordinates.
  • the ambiguity resolution module 530 uses the carrier smoothing module 533 to improve the accuracy of code pseudorange observations by means of carrier smoothing pseudorange.
  • the specific method of carrier smoothing code pseudo-range is as follows:
  • the ambiguity resolution module 530 is based on the code pseudorange value after carrier smoothing of each satellite and pseudorange values calculated from the propagation delay of the B1I signal Obtain the ambiguity ⁇ N i of the propagation delay of the B1 broadband composite signal.
  • the ambiguity resolution module 530 can solve the ambiguity of the propagation delay of the B1 broadband composite signal accordingly. It is defined as follows:
  • Th is a set threshold, which can be set by the user according to the actual situation, for example, Th can be set to 1E-4.
  • the ambiguity floating-point solution and its covariance matrix Enter the LAMBDA module 535 to solve the ambiguity integer solution
  • the unambiguous pseudorange value is obtained by determining the pseudorange value module 536 It can be expressed as:
  • the positioning result of the receiver can be obtained when solving the ambiguity floating-point solution, because the problem of incorrect subcarrier ambiguity estimation is not eliminated, Therefore, the positioning result is biased, and is only used to assist in solving the ambiguity of the propagation delay of the B1 broadband composite signal, not as the final receiver positioning result.
  • the unambiguous pseudorange values will be Input positioning module 537, so as to realize the unambiguous positioning of the receiver.
  • Code propagation delay of unambiguous B1I signal based on satellite signals in the same epoch and the propagation delay of the ambiguous B1I signal Set up the pseudorange equation based on the code propagation delay of the B1I signal and its propagation delay through the pseudorange calculation module 532; and utilize the carrier phase of the B1C signal to smooth the code propagation delay of the B1I signal to improve the resolution of the subcarrier ambiguity Correctness; then the ambiguity ⁇ N i of the propagation delay of the B1 broadband composite signal of each satellite is used as the parameter to be estimated, and it is solved together with the receiver position and the clock error to obtain the floating-point solution of the propagation delay ambiguity; it is obtained by searching through the LAMBDA algorithm Propagation delay ambiguity integer solution, when the subcarrier ambiguity estimated by the code propagation delay of the B1I signal is correct, the ambiguity of the propagation delay of the B1 broadband composite signal obtained is zero, and when the code propagation delay estimated by the B1I signal When
  • a processor may mean a single processor or multiple processors including a single processor core or multiple processor cores.
  • a processor may represent one or more general-purpose processors, such as microprocessors, central processing units (CPUs), and the like. More specifically, the processor may be a Complex Instruction Set Computing (CISC) microprocessor, a Reduced Instruction Set Computing (RISC) microprocessor, a Very Long Instruction Word (VLIW) microprocessor, or a processor implementing other instruction sets, Or a processor that implements an instruction set combination.
  • CISC Complex Instruction Set Computing
  • RISC Reduced Instruction Set Computing
  • VLIW Very Long Instruction Word
  • the processor can also be one or more special-purpose processors, such as application-specific integrated circuits (ASICs), cellular or baseband processors, field-programmable gate arrays (FPGAs), digital signal processors (DSPs), network processors, graphics processor, communications processor, cryptographic processor, coprocessor, embedded processor, or any other type of logic capable of processing instructions.
  • ASICs application-specific integrated circuits
  • FPGAs field-programmable gate arrays
  • DSPs digital signal processors
  • network processors graphics processor
  • communications processor cryptographic processor
  • coprocessor coprocessor
  • embedded processor or any other type of logic capable of processing instructions.
  • a processor (which may be a low-power multi-core processor socket, such as an ultra-low voltage processor) may serve as the main processing unit and central hub. Such a processor may be implemented as a system on chip (SoC). The processor is configured to execute instructions for performing the methods discussed herein.
  • SoC system on chip
  • the processor may be in communication with memory, which in one embodiment may be implemented via multiple memory devices to provide a given amount of system storage.
  • the memory may include one or more volatile storage (or memory) devices, such as random access memory (RAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), static RAM (SRAM), or other types of storage devices .
  • RAM random access memory
  • DRAM dynamic RAM
  • SDRAM synchronous DRAM
  • SRAM static RAM
  • Memory may store information including sequences of instructions for execution by a processor or any other device. For example, executable code and/or data for various operating systems, device drivers, firmware (eg, Basic Input Output System or BIOS), and/or applications may be loaded into memory and executed by the processor.
  • BIOS Basic Input Output System
  • the operating system can be any type of operating system, for example Robot Operating System (ROS), from company's Operating system, Mac from Apple from company's LINUX, UNIX, or other real-time or embedded operating systems.
  • ROS Robot Operating System
  • a mass storage device may also be coupled to the processor in order to provide persistent storage of information such as data, applications, one or more operating systems, and so on.
  • mass storage may be implemented via a solid state device (SSD) in order to enable thinner and lighter system designs and improve system responsiveness.
  • SSD solid state device
  • the mass storage device may be implemented primarily using hard disk drives (HDDs), with a smaller amount of SSD storage acting as an SSD cache for context state and other such information during a power outage event.
  • Non-volatile storage enabling fast power-on when system activity restarts.
  • the flash memory device may be coupled to the processor, eg, via a serial peripheral interface (SPI).
  • SPI serial peripheral interface
  • Such a flash memory device may provide non-volatile storage of system software, including the system's BIOS and other firmware.
  • FIG. 1 Another aspect of the present application provides a computer-readable medium, and the computer-readable storage medium can also be used to permanently store the method described above.
  • the computer-readable storage medium is illustrated in the exemplary embodiments as a single medium, the term “computer-readable storage medium” shall be taken to include a single medium or a plurality of media (such as , a centralized or distributed database and/or associated cache and server).
  • the term “computer-readable storage medium” shall also be taken to include any medium capable of storing or encoding a set of instructions for execution by a machine and causing the machine to perform any one or more methods of the present disclosure. Accordingly, the term “computer-readable storage medium” shall be taken to include, but not be limited to, solid-state memory, as well as optical and magnetic media, or any other non-transitory machine-readable medium.

Abstract

提供了一种用于卫星导航系统B1宽带复合信号的无模糊定位方法及其装置,能够通过对B1宽带复合信号中B1C信号和B1I信号进行跟踪,确定多颗卫星的观测量,并通过所述观测量确定各颗卫星到接收机的伪距值和码伪距值,利用所述伪距值和所述码伪距值求解B1宽带复合信号的传播延迟的模糊度浮点解,并通过模糊度浮点解得到模糊度整数解,以修正被估计错误的B1宽带复合信号的传播延迟模糊度,从而得到无模糊的伪距值,实现对接收机所处位置的无模糊且高精度的定位。

Description

用于卫星导航系统B1宽带复合信号的无模糊定位方法及其装置
交叉引用
本申请要求于2022年02月21日向中国专利局提交的、发明名称为“用于卫星导航系统B1宽带复合信号的无模糊定位方法及其装置”的第202210156560.0号发明专利申请的优先权,上述专利申请的全部内容通过引用并入本文。
技术领域
本申请实施方式涉及卫星导航定位领域。具体地,提供了一种用于卫星导航系统B1宽带复合信号的无模糊定位方法及其装置。
背景技术
目前,基于位置信息的服务产业的发展对全球导航卫星系统(GNSS)定位的精度要求越来越高。为了满足不断出现的新应用对高精度定位的需求,新一代的卫星导航信号被设计,以提高测距精度的潜在能力上限。
新一代GNSS卫星导航信号普遍引入了副载波调制。与传统GNSS中的二进制相移键控(BPSK)信号相比,副载波调制的卫星导航信号,比如使用了方波副载波的BOC调制信号、使用了复用副载波的MBOC调制信号、使用了双边带副载波的AltBOC调制信号、非对称恒包络ACE-BOC调制信号以及单边带SCBOC调制信号等,具有更好的频域分离特性和更宽的Gabor带宽,从而拥有更高精度的测距潜力。在通过信号升级提升了测距精度的潜在能力上限的同时,还需要相应的先进的接收处理算法将升级后的信号中蕴含的潜在高性能实际发挥出来。一方面,接收技术需要能够高精度地跟踪信号,另一方面,由于副载波调制信号多峰的ACF为码跟踪引入了模糊度威胁,导致定位结果的不可靠,因此接收技 术还需要能消除模糊威胁,实现可靠的跟踪和定位。
第三代北斗导航卫星系统(BDS3)B1频点通过CEMIC技术在BDS3卫星上播发的宽带复合信号由公开服务信号B1C和B1I组成,其中,为了与第二代北斗导航卫星系统(BDS2)B1I信号兼容,BDS3 B1I信号采用了SCBOC(14,2)调制的方式。因为SCBOC(14,2)调制信号属于高阶BOC信号,所以BDS3 B1宽带复合信号具有极高精度的测距潜力。
目前,在对信号跟踪的过程中,卫星导航信号需要与本地载波相乘得到基带信号,基带信号再与本地码相乘并积分从而得到相关值,采用了SCBOC(14,2)调制的B1I信号的副载波相位与载波相位都在cos函数中,是严重耦合的,传统的跟踪技术难以在只对SCBOC(14,2)调制信号跟踪的情况下同时准确估计副载波相位和载波相位。现有的交叉辅助跟踪算法利用了BDS3 B1C和BDS3 B1I两个信号互相辅助跟踪的方式解开了SCBOC(14,2)副载波相位和载波相位严重耦合的问题,但该技术没有解决模糊跟踪问题,其测距和定位结果是不可靠的。
此外,SCBOC(14,2)信号的自相关函数是多峰的,这会为信号的跟踪带来严重的模糊跟踪问题。目前,解决模糊跟踪问题的技术主要分为三大类:第一类是一维无模糊跟踪技术,比如Bump Jump、BPSK-like、PUDLL,该类技术对低阶BOC非常有效,但当BOC信号阶数升高时,这类技术可能会失效;第二类是二维无模糊跟踪技术,比如针对简单BOC信号通用的DET、DPE、以及针对具有复杂结构的AltBOC的跟踪算法,与一维无模糊跟踪技术相比,二维无模糊跟踪技术更具有一般性并且能提供更可靠的跟踪结果,但当二维跟踪的信号属于高阶BOC信号、低载噪比或受到严重多径影响时,该技术仍然会发生模糊跟踪问题;第三类是基于参数估计的技术,该类方法是在二维无模糊跟踪技术的基础上,进一步修正出现模糊问题的副载波观测量,使得测距和定位结果更加可靠,但该方法求解的副载波模糊度误差较大,无法保证修复所有出现模糊问题的副载波观测量。
目前尚没有一种处理技术能够保证SCBOC(14,2)的无模糊测距和定位。
发明内容
本申请的实施方式提供了可至少部分解决相关技术中存在的上述问题、或其他问题的用于卫星导航系统B1宽带复合信号的无模糊定位方法及其装置。
本申请提供了一种用于卫星导航系统B1宽带复合信号的无模糊定位方法及其装置,能够通过对B1宽带复合信号中B1C信号和B1I信号进行跟踪,确定多颗卫星的观测量,并通过所述观测量确定各颗卫星到接收机的伪距值和码伪距值,利用所述伪距值和所述码伪距值求解B1宽带复合信号的传播延迟的模糊度浮点解,并通过模糊度浮点解得到模糊度整数解,以修正被估计错误的B1宽带复合信号的传播延迟模糊度,从而得到无模糊的伪距值,实现对接收机所处位置的无模糊且高精度的定位。
本申请一方面提供了一种用于卫星导航系统B1宽带复合信号的无模糊定位方法,包括:通过接收机接收多颗卫星的B1宽带复合信号,其中,所接收的B1宽带复合信号包括B1I信号和B1C信号;获取所述多颗卫星的所述B1I信号和所述B1C信号的观测量;基于所述观测量,确定各颗所述卫星到所述接收机的伪距值和码伪距值;基于所述伪距值和所述码伪距值,确定所述B1宽带复合信号的传播延迟的模糊度浮点解;通过所述模糊度整数解更正所述B1宽带复合信号的传播延迟的模糊度,获取无模糊的B1宽带复合信号的传播延迟,并基于所述无模糊的B1宽带复合信号的传播延迟,对所述接收机所处位置进行无模糊的定位。
在本申请一实施方式中,所述观测量包括:所述B1C信号的载波相位、B1I信号的码传播延迟、以及B1I信号的副载波传播延迟。
在本申请一实施方式中,通过合并所述码传播延迟和所述副载波传播延迟,确定所述B1I信号的传播延迟,基于所述B1I信 号的传播延迟确定所述伪距值,以及基于所述码传播延迟确定所述码伪距值。
在本申请一实施方式中,获取所述B1I信号和所述B1C信号的观测量的步骤包括:基于所述B1C信号、所述B1I信号的码传播延迟、以及载波跟踪环路,确定所述B1C信号的载波频率和所述B1C信号的载波相位;基于所述B1C信号的载波频率和所述B1C信号的载波相位,确定所述B1C信号的载波相位;以及基于所述B1I信号的码跟踪环路确定所述B1I信号的码传播延迟。
在本申请一实施方式中,获取所述B1I信号和所述B1C信号的观测量的步骤包括:基于所述B1I信号、所述B1C信号的载波频率和相位、以及所述B1I信号的码跟踪环路,确定所述B1I信号的扩频码频率和相位;基于所述B1I信号的扩频码频率和相位,确定所述B1I信号的码传播延迟;基于所述B1I信号、所述B1C信号的载波频率和相位、以及副载波跟踪环路,确定所述B1I信号的副载波频率和相位;以及基于所述B1I信号的副载波频率和相位,确定所述B1I信号的副载波传播延迟。
在本申请一实施方式中,基于所述B1I信号和所述B1C信号的观测量,确定所述多颗卫星中各颗卫星到所述接收机的伪距值和码伪距值的步骤包括:通过所述B1C信号的载波相位和所述B1I信号的码传播延迟确定所述码伪距值;以及通过所述B1I信号的副载波传播延迟和所述B1I信号的码传播延迟确定所述伪距值。
在本申请一实施方式中,基于所述B1I信号和所述B1C信号的观测量,确定所述多颗卫星中各颗卫星到所述接收机的伪距值和码伪距值的步骤包括:基于所述B1C信号的载波相位,对所述码传播延迟进行平滑;基于所述B1I信号的传播延迟和平滑后的所述码传播延迟,确定所述多颗卫星中各颗卫星到所述接收机的所述伪距值和所述码伪距值。
在本申请一实施方式中,基于所述模糊度浮点解确定所述模糊度整数解的步骤包括:通过LAMBDA算法,基于所述模糊度浮点解确定所述模糊度整数解。
本申请另一方面提供了一种用于卫星导航系统B1宽带复合信号的无模糊定位装置,包括:存储器,存储有计算机可执行的指令;处理器,执行所述指令以执行如上所述的任一方法。
本申请另一方面提供了一种存储介质,存储有计算机可执行的指令,所述指令被一个或多个处理器执行时实现如上所述的任一方法。
附图说明
为了更全面地理解本发明及其优点,现在结合附图参考以下描述,其中相同的附图标记表示相同的部分:
图1示出了根据本申请实施例的用于卫星导航系统B1宽带复合信号的无模糊定位方法的流程图;
图2示出了根据本申请实施例的获取B1C信号的观测量的流程图;
图3示出了根据本申请实施例的获取B1I信号的观测量的流程图;
图4示出了根据本申请实施例的基于B1I信号和B1C信号的观测量确定卫星到接收机的伪距值和码伪距值的流程图;
图5示出了根据本申请实施例的用于卫星导航系统B1宽带复合信号的无模糊定位装置的示意图;
图6示出了根据本申请实施例的跟踪模块和模糊度解算模块的示意图。
具体实施方式
为了更好地理解本申请,将参考附图对本申请的各个方面做出更详细的说明。应理解,这些详细说明只是对本申请的示例性实施方式的描述,而非以任何方式限制本申请的范围。在说明书全文中,相同的附图标号指代相同的元件。表述“和/或”包括相关联的所列项目中的一个或多个的任何和全部组合。
还应理解的是,诸如“包括”、“包括有”、“具有”、“包含”和/或“包含有”等表述在本说明书中是开放性而非封闭性的表述,其表示存在所陈述的特征、元件和/或部件,但不排除一个或多个其它特征、元件、部件和/或它们的组合的存在。此外,当诸如“...中的至少一个”的表述出现在所列特征的列表之后时,其修饰整列特征,而非仅仅修饰列表中的单独元件。此外,当描述本申请的实施方式时,使用“可”表示“本申请的一个或多个实施方式”。并且,用语“示例性的”旨在指代示例或举例说明。
除非另外限定,否则本文中使用的所有措辞(包括工程术语和科技术语)均具有与本申请所属领域普通技术人员的通常理解相同的含义。还应理解的是,除非本申请中有明确的说明,否则在常用词典中定义的词语应被解释为具有与它们在相关技术的上下文中的含义一致的含义,而不应以理想化或过于形式化的意义解释。
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。另外,除非明确限定或与上下文相矛盾,否则本申请所记载的方法中包含的具体步骤不必限于所记载的顺序,而可以任意顺序执行或并行地执行。下面将参考附图并结合实施例来详细说明本申请。
本申请一方面提供了一种用于卫星导航系统B1宽带复合信号的无模糊定位方法。图1示出了根据本申请实施例的用于卫星导航系统B1宽带复合信号的无模糊定位方法的流程图。如图1所示,所述方法1000包括:
S110,通过接收机接收多颗卫星的B1宽带复合信号,其中,B1宽带复合信号包括:B1I信号和B1C信号;
S120,获取所述多颗卫星的所述B1I信号和所述B1C信号的观测量;
S130,基于所述B1I信号和所述B1C信号的观测量,确定所述多颗卫星中各颗卫星到所述接收机的伪距值和码伪距值;
S140,基于所述伪距值和所述码伪距值,确定所述B1宽带复 合信号的传播延迟的模糊度整数解;
S150,通过所述模糊度整数解更正所述B1宽带复合信号的传播延迟的模糊度,获取无模糊的B1宽带复合信号的传播延迟,并基于所述无模糊的B1宽带复合信号的传播延迟,对所述接收机所处位置进行无模糊的定位。
下面将进一步对上述各个步骤进一步描述。
在步骤S110中,通过接收机接收多颗卫星的B1宽带复合信号,其中,B1宽带复合信号包括:B1I信号和B1C信号。在一个实施方式中,接收机适用于卫星导航信号,如GPS接收机等。
在步骤是S120中,获取步骤S110接收的B1I信号和B1C信号的观测量。在一个实施方式中,所述B1I信号和所述B1C信号的观测量可以包括:B1C信号的载波相位、B1I信号的码传播延迟、以及B1I信号的副载波传播延迟;通过B1C信号的载波相位和B1I信号的码传播延迟确定码伪距值,以及通过B1I信号的副载波传播延迟和码传播延迟确定伪距值。
图2示出了根据本申请实施例的获取B1C信号的观测量的流程图。对于同一颗卫星来说,BDS3 B1C信号和BDS3 B1I信号拥有相同的载波频率、多普勒频率,两者的载波相位严格相等,也即当确定任一信号的载波信息时,另一信号的载波信息也可以被确定。由于BDS3 B1宽带复合信号中B1C信号是实信号,没有SCBOC(14,2)载波相位与副载波相位的耦合情况,所以B1C信号可以通过载波跟踪环路(PLL)获取其准确的载波信息,从而为BDS3 B1I的跟踪提供帮助。
在一个实施方式中,如图2所示,步骤S120可以包括:S1201,基于B1C信号、B1I信号的码传播延迟、以及载波跟踪环路,确定B1C信号的载波频率和相位;S1202,基于B1I信号的码跟踪环路,确定B1I信号的码传播延迟。
图3示出了根据本申请实施例的获取B1I信号的观测量的流程图。在一个实施方式中,如图3所示,步骤S120还可以包括:S1201’,基于B1I信号、B1C信号的载波频率和相位、以及B1I信 号的码跟踪环路,确定B1I信号的扩频码频率和相位;S1202’,基于B1I信号的扩频码频率和相位,确定B1I信号的码传播延迟;S1203’,基于B1I信号、B1C信号的载波频率和相位、以及副载波跟踪环路,确定B1I信号的副载波频率和相位;以及S1204’,基于B1I信号的副载波频率和相位,确定B1I信号的副载波传播延迟。
在步骤S130中,基于所述B1I信号和所述B1C信号的观测量,确定各颗所述卫星到所述接收机的伪距值和码伪距值。在一个实施方式中,通过B1C信号的载波相位和B1I信号的码传播延迟确定码伪距值;以及通过B1I信号的副载波传播延迟和B1I信号的码传播延迟确定伪距值。
图4示出了根据本申请实施例的基于所述B1I信号和所述B1C信号的观测量确定卫星到接收机的伪距值和码伪距值的流程图。在一个实施方式中,如图4所示,步骤S130可以包括:S1301,通过合并码传播延迟和副载波传播延迟,确定B1I信号的传播延迟;S1302,基于B1C信号的载波相位,对码传播延迟进行平滑;S1303,基于B1I信号的传播延迟和平滑后的码传播延迟,确定各颗卫星到接收机的伪距值和码伪距值。
在步骤S140中,基于所述伪距值和所述码伪距值,确定所述B1宽带复合信号的传播延迟的模糊度整数解。在一个实施方式中,步骤S140可以包括:基于伪距值和码伪距值,确定B1宽带复合信号的传播延迟的模糊度浮点解;以及基于该模糊度浮点解,确定其模糊度整数解。
在步骤S150中,通过所述模糊度整数解更正所述B1宽带复合信号的传播延迟的模糊度,获取无模糊的B1宽带复合信号的传播延迟,以对所述接收机所处位置进行无模糊的定位。在一个实施方式中,可以通过LAMBDA算法,基于模糊度浮点解确定模糊度整数解。
具体地,将B1宽带复合信号的传播延迟的模糊度浮点解送入LAMBDA算法,利用LAMBDA算法搜索得到所述模糊度整数解, 当由码相位估计的副载波模糊度无误时,求解出的传播延迟模糊度为零,而当由码相位估计的副载波模糊度错误时,求解出的传播延迟模糊度为非零整数,据此更正估计错误的传播延迟模糊度。
本申请另一方面提供了一种用于卫星导航系统B1宽带复合信号的无模糊定位装置。图5示出了根据本申请实施例的用于卫星导航系统B1宽带复合信号的无模糊定位装置的框图。如图5所示,该装置500包括:
接收机510,用于接收多颗卫星的B1宽带复合信号,其中,B1宽带复合信号包括:B1I信号和B1C信号;
跟踪模块520,用于获取所述多颗卫星的所述B1I信号和所述B1C信号的观测量;以及
模糊度解算模块530,其配置为:基于所述B1I信号和所述B1C信号的观测量,确定各颗所述卫星到所述接收机的伪距值和码伪距值;基于所述伪距值和所述码伪距值,确定所述B1宽带复合信号的传播延迟的模糊度整数解;以及通过所述模糊度整数解更正所述B1宽带复合信号的传播延迟的模糊度,获取无模糊的B1宽带复合信号的传播延迟,以对所述接收机所处位置进行无模糊的定位。
对于接收机510,用于接收多颗卫星的B1宽带复合信号,其中,B1宽带复合信号包括:B1I信号和B1C信号。在一个实施方式中,接收机适用于卫星导航信号,如GPS接收机等。
对于跟踪模块520,用于获取接收机510接收的B1I信号和B1C信号的观测量。在一个实施方式中,B1I信号和B1C信号的观测量可以包括:B1C信号的载波相位、B1I信号的码传播延迟、以及B1I信号的副载波传播延迟;并通过B1C信号的载波相位和B1I信号的码传播延迟确定码伪距值,以及通过B1I信号的副载波传播延迟和码传播延迟确定伪距值。
在一个实施方式中,跟踪模块520可以配置为:基于B1C信号、B1I信号的码传播延迟、以及载波跟踪环路,确定B1C信号的 载波频率和相位;以及基于B1I信号的码跟踪环路,确定B1I信号的码传播延迟。
图6示出了根据本申请实施例的跟踪模块和模糊度解算模块的示意图。其中,跟踪模块520用于跟踪B1C信号的载波相位、B1I信号的码传播延迟、以及B1I信号的副载波传播延迟。
在一个实施方式中,如图6所示,当跟踪第i颗卫星信号时,对于BDS3 B1C信号来说,接收机接收的信号r(t)首先与载波NCO(数控振荡器)521产生的载波相乘,得到剥离掉载波的第i颗卫星的BDS3 B1C的基带信号gB1C,i(t),其中是载波跟踪环路523估计出的第i颗卫星信号的B1C信号的载波频率和相位。对gB1C,i(t)取实部和虚部得到基带IQ信号IB1C,i,QB1C,i
基带IQ信号IB1C,i,QB1C,i与B1C码-副载波NCO 522生成的第i颗卫星的本地即时B1C基带信号相乘并积分,确定信号IPB1C,i,QPB1C,i。其中,B1C码-副载波NCO 522的相位是由BDS3 B1I跟踪提供的。
基带IQ信号IPB1C,i,QPB1C,i经过载波跟踪环路523鉴相及滤波后,得到载波频率和相位的误差,以更正载波NCO 523以及B1C信号的载波相位当B1C信号的载波相位确定后,B1I信号的载波相位也被确定,由此只需要估计B1I信号的副载波相位,而无需同时估计其载波相位,有效地解决了调制信号的副载波相位与载波相位耦合的技术问题。
在一个实施方式中,跟踪模块520还可以用于,基于B1I信号、B1C信号的载波频率和相位、以及B1I信号的码跟踪环路,确定B1I信号的扩频码频率和相位;基于B1I信号的扩频码频率和相位,确定B1I信号的码传播延迟;基于B1I信号、B1C信号的载波频率和相位、以及副载波跟踪环路,确定B1I信号的副载波频率和相位;以及基于B1I信号的副载波频率和相位,确定B1I信号的副载波传播延迟。
在一个实施方式中,如图6所示,接收信号r(t)与载波NCO 521产生的载波相乘,得到基带信号gB1I,i(t),该信号通过与B1I副载波NCO 524生成的B1I信号的副载波相乘剥离掉B1I信号的副 载波后,分别与B1I码NCO 525生成的本地B1I提前码、即时码以及延迟码相乘并积分,其中信号IPB1I,i,QPB1I,i进入副载波跟踪环路527鉴相并滤波,以更新B1I副载波NCO 624,并确定B1I信号的副载波传播延迟信号IEB1I,i,QEB1I,i,ILB1I,i,QLB1I,i进入码跟踪环路526鉴相并滤波,以更新B1I码NCO 525,确定B1I信号的码传播延迟并基于获取B1I信号的传播延迟。
由于B1C信号与B1I信号具有相同的传播延迟,因此,跟踪B1I信号得到的B1I信号的传播延迟可以直接传递给B1C信号,使B1C码-副载波NCO 522可以准确地生成B1C信号的本地即时码,缓解了SCBOC(14,2)调制信号严重的模糊跟踪的技术问题。
对于模糊度解算模块530,在一个实施方式中,模糊度解算模块530可以配置为:通过合并码传播延迟和副载波传播延迟,确定B1I信号的传播延迟,合并方式为:其中round()函数返回对进行四舍五入的结果,B1I信号的传播延迟模糊度为:当码传播延迟为副载波传播延迟提供正确的副载波传播延迟模糊度时,B1I信号的传播延迟模糊度为0,当码传播延迟不能为副载波传播延迟提供正确的副载波传播延迟模糊度时,B1I信号的传播延迟模糊度不为0;基于B1C信号的载波相位,对码传播延迟进行平滑;基于B1I信号的传播延迟和平滑后的码传播延迟,确定多颗卫星中各颗卫星到接收机的伪距值和码伪距值。
在一个实施方式中,模糊度解算模块530可以配置为:基于伪距值和码伪距值,确定B1宽带复合信号的传播延迟的模糊度浮点解;以及基于该模糊度浮点解,确定其模糊度整数解。
在一个实施方式中,经由码传播延迟修正的副载波传播延迟模糊度具有整数性,同时参与位置解算的码伪距观测值是低精度的,其定位结果有较大误差,会扩散到副载波模糊度求解值中。如图6所示的模糊度解算模块530可以用于修正B1I信号的传播延迟的模糊度。
如图6所示,模糊度解算模块530通过组合模块531,对B1I信号的码传播延迟和其副载波传播延迟进行合并组合,生成B1I信号的传播延迟
通过伪距计算模块532,基于码跟踪环路526获取的B1I信号的码传播延迟建立如下无模糊的伪距方程:
其中,为根据计算得到的第i颗卫星的码伪距值,Xs,i为第i颗卫星的卫星坐标,Xu为接收机坐标,C为光速,δT为接收机钟差,Ii为第i颗卫星的电离层延迟,Ti为第i颗卫星的对流层延迟,为根据B1I信号的码传播延迟计算的第i颗卫星的码伪距噪声。
通过伪距计算模块532,基于B1I信号的传播延迟建立如下的有模糊的伪距方程:
其中,为根据计算得到的第i颗卫星的伪距值,为第i颗卫星的由B1I信号的传播延迟计算的伪距噪声,为一个BDS3 B1I信号的副载波码片对应的距离,ΔNi为第i颗卫星的B1宽带复合信号的传播延迟的模糊度。将上述两个伪距方程一阶展开,可以得到:

其中,di为第i颗卫星与接收机的几何距离,ei为从接收机指向第i颗卫星的单位向量,(δx,δy,δz)T为接收机坐标的误差。
根据本申请一实施方式,为了提高副载波模糊度求解的正确性,模糊度解算模块530通过载波平滑模块533,采用载波平滑伪距的方式提高码伪距观测量的精度。载波平滑码伪距的具体方式为:
其中,M代表平滑窗长度,k代表当前时刻,k-1代表上一时刻,为由载波NCO 521估计出的第i颗卫星的载波相位。因此,模糊度解算模块530基于各颗卫星的经过载波平滑后的码伪距值和由B1I信号的传播延迟计算的伪距值获取B1宽带复合信号的传播延迟的模糊度ΔNi
根据本申请一实施方式,对具有m颗卫星的系统,得到其伪距方程组如下:
从上式来看,方程待估计参数一共有(m+4)个,为了保证该方程是秩满的,卫星个数m需要大于等于4,与伪距直接定位需要的最少卫星数一致,这表明只要卫星数能达到定位的要求,模糊度解算模块530就能据此解算出B1宽带复合信号的传播延迟的模糊度。其定义如下:
由此,伪距方程组可以整理为:
Y=Hα+v                         8)
定义v的协方差矩阵为Q,求解上式等价于求解:
采用加权最小二乘求解,得到:
α=(HTQH)-1HTQY         10)
因为接收机位置未知,所以加权最小二乘算法需要经过迭代可收敛,迭代公式为:
βk=βk-1+δβk                      11)
其中,βk=(x,y,z,δT)T为第k次迭代的接收机坐标及钟差。当||δβ||<Th时,该算法收敛,得到B1宽带复合信号的传播延迟的模糊度浮点解其中,Th为设定阈值,用户可以根据实际情况进行设定,例如Th可以设置为1E-4。
根据本申请的一种实施方式,将该模糊度浮点解及其协方差矩阵输入LAMBDA模块535,解算出模糊度整数解
根据LAMBDA算法解算出的B1宽带复合信号的传播延迟的模糊度整数解,通过确定伪距值模块536得到无模糊的伪距值其可以表示为:
需要指出的是,虽然在解算模糊度浮点解的时候会得到接收机的定位结果,但因为没有消除副载波模糊度估计不正确的问题, 所以该定位结果是有偏的,只用于辅助求解B1宽带复合信号的传播延迟的模糊度,而不作为最终的接收机定位结果。最终将无模糊的伪距值输入定位模块537,从而实现对接收机的无模糊定位。
基于同一历元中各颗卫星信号的无模糊的B1I信号的码传播延迟以及有模糊的B1I信号的传播延迟通过伪距计算模块532建立基于B1I信号的码传播延迟和其传播延迟的伪距方程;并利用B1C信号的载波相位,通过对B1I信号的码传播延迟进行平滑,以提高副载波模糊度求解的正确性;然后将各颗卫星的B1宽带复合信号的传播延迟的模糊度ΔNi作为待估计参数,与接收机位置以及钟差一同求解,得到传播延迟模糊度浮点解;通过LAMBDA算法搜索得到传播延迟模糊度整数解,当由B1I信号的码传播延迟估计的副载波模糊度无误时,求解出的B1宽带复合信号的传播延迟的模糊度为零,而当由B1I信号的码传播延迟估计的B1I信号的副载波的模糊度错误时,求解出的B1宽带复合信号的传播延迟模糊度为非零整数,据此更正估计错误的传播延迟模糊度,对接收机进行无模糊的定位。
本申请另一方面提供了一种用于卫星导航系统B1宽带复合信号的无模糊定位装置,所述装置包括通过总线或互连件连接的处理器、存储器。处理器可以表示其中包括单个处理器内核或多个处理器内核的单个处理器或多个处理器。处理器可以表示一个或多个通用处理器,诸如,微处理器、中央处理单元(CPU)等。更具体地,处理器可以是复杂指令集计算(CISC)微处理器、精简指令集计算(RISC)微处理器、超长指令字(VLIW)微处理器、或实施其它指令集的处理器、或实施指令集组合的处理器。处理器还可以是一个或多个专用处理器,诸如,专用集成电路(ASIC)、蜂窝或基带处理器、现场可编程门阵列(FPGA)、数字信号处理器(DSP)、网络处理器、图形处理器、通信处理器、加密处理器、协处理器、嵌入式处理器、或者能够处理指令的任何其它类型的逻辑。
处理器(其可以是低功率多核处理器套接口,诸如超低电压处理器)可以充当用于与所述系统的各种部件通信的主处理单元和 中央集线器。这种处理器可以实施为片上系统(SoC)。处理器被配置成执行用于执行本申请所讨论的方法的指令。
处理器可以与存储器通信,存储器在一个实施方式中可以经由多个存储器装置实施以提供给定量的系统存储。存储器可以包括一个或多个易失性存储(或存储器)装置,诸如,随机存取存储器(RAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、静态RAM(SRAM)或者其它类型的存储装置。存储器可以存储包括由处理器或任何其它装置执行的指令序列的信息。例如,各种操作系统、装置驱动程序、固件(例如,输入输出基本系统或BIOS)和/或应用的可执行代码和/或数据可以加载到存储器中并由处理器执行。操作系统可以是任何类型的操作系统,例如,机器人操作系统(ROS)、来自公司的操作系统、来自苹果公司的Mac来自公司的LINUX、UNIX,或者其它实时或嵌入式操作系统。
为了提供对诸如数据、应用、一个或多个操作系统等信息的永久性存储,大容量存储设备也可以联接到处理器。在各种实施方式中,为了实现更薄且更轻的系统设计并且改进系统响应性,这种大容量存储设备可以经由固态装置(SSD)来实施。然而,在其它实施方式中,大容量存储设备可以主要使用硬盘驱动器(HDD)来实施,其中较小量的SSD存储设备充当SSD高速缓存以在断电事件期间实现上下文状态以及其它此类信息的非易失性存储,从而使得在系统活动重新启动时能够实现快速通电。另外,闪存装置可以例如经由串行外围接口(SPI)联接到处理器。这种闪存装置可以提供系统软件的非易失性存储,所述系统软件包括所述系统的BIOS以及其它固件。
本申请另一方面提供了一种计算机可读介质,计算机可读存储介质也可以用来永久性地存储以上描述的方法。虽然,计算机可读存储介质在示例性实施方式中被示为单个介质,但是术语“计算机可读存储介质”应当被认为包括存储所述一个或多个指令集的单个介质或多个介质(例如,集中式或分布式数据库和/或相关联 的高速缓存和服务器)。术语“计算机可读存储介质”还应当被认为包括能够存储或编码指令集的任何介质,所述指令集用于由机器执行并且使得所述机器执行本公开的任何一种或多种方法。因此,术语“计算机可读存储介质”应当被认为包括但不限于固态存储器以及光学介质和磁性介质,或者任何其它非暂时性机器可读介质。
以上描述仅为本申请的较佳实施方式以及对所运用技术原理的说明。本领域技术人员应当理解,本申请中所涉及的保护范围,并不限于上述技术特征的特定组合而成的技术方案,同时也应涵盖在不脱离技术构思的情况下,由上述技术特征或其等同特征进行任意组合而形成的其它技术方案。例如上述特征与本申请中公开的(但不限于)具有类似功能的技术特征进行互相替换而形成的技术方案。

Claims (16)

  1. 一种用于卫星导航系统B1宽带复合信号的无模糊定位方法,包括:
    接收多颗卫星的B1宽带复合信号,其中,所述B1宽带复合信号包括B1I信号和B1C信号;
    获取所述B1I信号和所述B1C信号的观测量;
    基于所述B1I信号和所述B1C信号的观测量,确定各颗所述卫星到所述接收机的伪距值和码伪距值;
    基于所述伪距值和所述码伪距值,确定所述B1宽带复合信号的传播延迟的模糊度整数解;以及
    通过所述模糊度整数解更正所述B1宽带复合信号的传播延迟的模糊度,获取无模糊的B1宽带复合信号的传播延迟,以对所述接收机所处位置进行无模糊的定位。
  2. 如权利要求1所述的方法,其中,基于所述伪距值和所述码伪距值,确定所述B1宽带复合信号的传播延迟的模糊度整数解的步骤包括:
    基于所述伪距值和所述码伪距值,确定所述B1宽带复合信号的传播延迟的模糊度浮点解;以及
    基于所述模糊度浮点解确定所述模糊度整数解。
  3. 如权利要求2所述的方法,其中,所述观测量包括:所述B1C信号的载波相位、所述B1I信号的码传播延迟、以及所述B1I信号的副载波传播延迟,
    其中,确定各颗所述卫星到所述接收机的伪距值和码伪距值的步骤包括:
    通过所述B1C信号的载波相位和所述B1I信号的码传播延迟确定所述码伪距值;以及
    通过所述B1I信号的副载波传播延迟和所述B1I信号的码传 播延迟确定所述伪距值。
  4. 如权利要求2所述的方法,其中,所述观测量包括:所述B1C信号的载波相位、所述B1I信号的码传播延迟、以及所述B1I信号的副载波传播延迟,
    其中,获取所述B1I信号和所述B1C信号的观测量的步骤包括:
    基于所述B1C信号、所述B1I信号的码传播延迟、以及载波跟踪环路,确定所述B1C信号的载波频率和所述B1C信号的载波相位;以及
    基于所述B1I信号的码跟踪环路,确定所述B1I信号的码传播延迟。
  5. 如权利要求4所述的方法,其中,获取所述B1I信号和所述B1C信号的观测量的步骤包括:
    基于所述B1I信号、所述B1C信号的载波频率和相位、以及所述B1I信号的码跟踪环路,确定所述B1I信号的扩频码频率和相位;
    基于所述B1I信号的扩频码频率和相位,确定所述B1I信号的码传播延迟;
    基于所述B1I信号、所述B1C信号的载波频率和相位、以及副载波跟踪环路,确定所述B1I信号的副载波频率和相位;以及
    基于所述B1I信号的副载波频率和相位,确定所述B1I信号的副载波传播延迟。
  6. 如权利要求5所述的方法,其中,基于所述观测量,确定各颗所述卫星到所述接收机的伪距值和码伪距值的步骤包括:
    通过合并所述码传播延迟和所述副载波传播延迟,确定所述B1I信号的传播延迟;
    基于所述B1C信号的载波相位,对所述码传播延迟进行平滑; 以及
    基于所述B1I信号的传播延迟和平滑后的所述码传播延迟,确定各颗所述卫星到所述接收机的所述伪距值和所述码伪距值。
  7. 如权利要求2所述的方法,其中,基于所述模糊度浮点解确定所述模糊度整数解的步骤包括:
    通过LAMBDA算法,基于所述模糊度浮点解确定所述模糊度整数解。
  8. 一种用于卫星导航系统B1宽带复合信号的无模糊定位装置,包括:
    接收机,用于接收多颗卫星的B1宽带复合信号,其中,所述B1宽带复合信号包括B1I信号和B1C信号;
    跟踪模块,用于获取所述B1I信号和所述B1C信号的观测量;
    模糊度解算模块,其配置为:
    基于所述B1I信号和所述B1C信号的观测量,确定各颗所述卫星到所述接收机的伪距值和码伪距值;
    基于所述伪距值和所述码伪距值,确定所述B1宽带复合信号的传播延迟的模糊度整数解;以及
    通过所述模糊度整数解更正所述B1宽带复合信号的传播延迟的模糊度,获取无模糊的B1宽带复合信号的传播延迟,以对所述接收机所处位置进行无模糊的定位。
  9. 如权利要求8所述的装置,其中,所述模糊度解算模块被配置为:
    基于所述伪距值和所述码伪距值,确定所述B1宽带复合信号的传播延迟的模糊度浮点解;以及
    基于所述模糊度浮点解确定所述模糊度整数解。
  10. 如权利要求9所述的装置,其中,所述观测量包括:所述 B1C信号的载波相位、所述B1I信号的码传播延迟、以及所述B1I信号的副载波传播延迟,
    所述模糊度解算模块被配置为:确定所述B1宽带复合信号的传播延迟的模糊度整数解的步骤包括:
    通过所述B1C信号的载波相位和所述B1I信号的码传播延迟确定所述码伪距值,以及
    通过所述B1I信号的副载波传播延迟和所述B1I信号的码传播延迟确定所述伪距值。
  11. 如权利要求9所述的装置,其中,所述观测量包括:所述B1C信号的载波相位、所述B1I信号的码传播延迟、以及所述B1I信号的副载波传播延迟,
    所述模糊度解算模块被配置为:
    基于所述B1C信号、所述B1I信号的码传播延迟、以及载波跟踪环路,确定所述B1C信号的载波频率和所述B1C信号的载波相位;以及
    基于所述B1I信号的码跟踪环路,确定所述B1I信号的码传播延迟。
  12. 如权利要求11所述的装置,其中,所述模糊度解算模块被配置为:
    基于所述B1I信号、所述B1C信号的载波频率和相位、以及所述B1I信号的码跟踪环路,确定所述B1I信号的扩频码频率和相位;
    基于所述B1I信号的扩频码频率和相位,确定所述B1I信号的码传播延迟;
    基于所述B1I信号、所述B1C信号的载波频率和相位、以及副载波跟踪环路,确定所述B1I信号的副载波频率和相位;以及
    基于所述B1I信号的副载波频率和相位,确定所述B1I信号的副载波传播延迟。
  13. 如权利要求12所述的装置,其中,所述模糊度解算模块被配置为:
    通过合并所述码传播延迟和所述副载波传播延迟,确定所述B1I信号的传播延迟;
    基于所述B1C信号的载波相位,对所述码传播延迟进行平滑;
    基于所述B1I信号的传播延迟和平滑后的所述码传播延迟,确定各颗所述卫星到所述接收机的所述伪距值和所述码伪距值。
  14. 如权利要求9所述的装置,其中,所述模糊度解算模块被配置为:
    通过LAMBDA算法,基于所述模糊度浮点解确定所述模糊度的所述整数解。
  15. 一种用于卫星导航系统B1宽带复合信号的无模糊定位装置,包括:
    存储器,存储有计算机可执行的指令;
    处理器,执行所述指令以执行如权利要求1-7中任一项所述的方法。
  16. 一种存储介质,存储有计算机可执行的指令,所述指令被一个或多个处理器执行时实现如权利要求1-7中任一项所述的方法。
PCT/CN2023/077393 2022-02-21 2023-02-21 用于卫星导航系统b1宽带复合信号的无模糊定位方法及其装置 WO2023155920A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210156560.0 2022-02-21
CN202210156560.0A CN114527499B (zh) 2022-02-21 2022-02-21 用于卫星导航系统b1宽带复合信号的无模糊定位方法及其装置

Publications (1)

Publication Number Publication Date
WO2023155920A1 true WO2023155920A1 (zh) 2023-08-24

Family

ID=81624711

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/077393 WO2023155920A1 (zh) 2022-02-21 2023-02-21 用于卫星导航系统b1宽带复合信号的无模糊定位方法及其装置

Country Status (2)

Country Link
CN (1) CN114527499B (zh)
WO (1) WO2023155920A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114527499B (zh) * 2022-02-21 2023-08-01 清华大学 用于卫星导航系统b1宽带复合信号的无模糊定位方法及其装置
CN114675310B (zh) * 2022-05-30 2022-09-30 长沙金维信息技术有限公司 载波半周修复方法及其rtk整周模糊度固定方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120026035A1 (en) * 2010-07-28 2012-02-02 Astrium Gmbh Method for Resolving Sub-Carrier Ambiguities of a Number of Tracking Channels of a Navigation Signal
CN106291625A (zh) * 2015-06-24 2017-01-04 法国国家太空研究中心 具有改进的用于解算子载波跟踪模糊度的能力的gnss接收机
CN106291637A (zh) * 2016-08-05 2017-01-04 清华大学 基于全伪距和部分伪距的定位方法
EP3141931A1 (en) * 2015-09-14 2017-03-15 Airbus DS GmbH Tracking of signals with at least one subcarrier
CN106918822A (zh) * 2015-07-03 2017-07-04 法国国家太空研究中心 计算用于解析副载波跟踪模糊度的非模糊鉴别器的gnss接收器
CN112578422A (zh) * 2019-09-27 2021-03-30 清华大学 复合导航信号接收方法及接收机
CN113703021A (zh) * 2021-07-29 2021-11-26 西安空间无线电技术研究所 一种基于码伪距的秒级实时高精度定位方法与系统
CN114063124A (zh) * 2021-11-08 2022-02-18 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) 一种北斗b1c信号快速捕获方法及存储介质
CN114527499A (zh) * 2022-02-21 2022-05-24 清华大学 用于卫星导航系统b1宽带复合信号的无模糊定位方法及其装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108008422B (zh) * 2016-11-02 2020-06-02 清华大学 伪卫星跳时信号捕获装置和方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120026035A1 (en) * 2010-07-28 2012-02-02 Astrium Gmbh Method for Resolving Sub-Carrier Ambiguities of a Number of Tracking Channels of a Navigation Signal
CN106291625A (zh) * 2015-06-24 2017-01-04 法国国家太空研究中心 具有改进的用于解算子载波跟踪模糊度的能力的gnss接收机
CN106918822A (zh) * 2015-07-03 2017-07-04 法国国家太空研究中心 计算用于解析副载波跟踪模糊度的非模糊鉴别器的gnss接收器
EP3141931A1 (en) * 2015-09-14 2017-03-15 Airbus DS GmbH Tracking of signals with at least one subcarrier
CN106291637A (zh) * 2016-08-05 2017-01-04 清华大学 基于全伪距和部分伪距的定位方法
CN112578422A (zh) * 2019-09-27 2021-03-30 清华大学 复合导航信号接收方法及接收机
CN113703021A (zh) * 2021-07-29 2021-11-26 西安空间无线电技术研究所 一种基于码伪距的秒级实时高精度定位方法与系统
CN114063124A (zh) * 2021-11-08 2022-02-18 北京航空航天大学合肥创新研究院(北京航空航天大学合肥研究生院) 一种北斗b1c信号快速捕获方法及存储介质
CN114527499A (zh) * 2022-02-21 2022-05-24 清华大学 用于卫星导航系统b1宽带复合信号的无模糊定位方法及其装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GAO, YANG; YAO, ZHENG; LU, MINGQUAN: "High-precision unambiguous tracking technique for BDS B1 wideband composite signal", NAVIGATION: JOURNAL OF THE INSTITUTE OF NAVIGATION, INSTITUTE OF NAVIGATION, FAIRFAX, VA., US, vol. 67, no. 3, 1 September 2020 (2020-09-01), US , pages 633 - 650, XP056016069, ISSN: 0028-1522, DOI: https://doi.org/10.1002/navi.377 *
QI YUNHAN; YAO ZHENG; GAO YANG; LU MINGQUAN: "Robust unambiguous ranging technique for BDS-3 B1 wideband composite signals", GPS SOLUTIONS, SPRINGER BERLIN HEIDELBERG, BERLIN/HEIDELBERG, vol. 26, no. 4, 5 August 2022 (2022-08-05), Berlin/Heidelberg, XP037927205, ISSN: 1080-5370, DOI: 10.1007/s10291-022-01296-2 *
WENDEL, J.; SCHUBERT, F. M.; HAGER, S.: "A Robust Technique for Unambiguous BOC Tracking", NAVIGATION: JOURNAL OF THE INSTITUTE OF NAVIGATION, INSTITUTE OF NAVIGATION, FAIRFAX, VA., US, vol. 61, no. 3, 1 September 2014 (2014-09-01), US , pages 179 - 190, XP056007289, ISSN: 0028-1522, DOI: 10.1002/navi.62 *

Also Published As

Publication number Publication date
CN114527499A (zh) 2022-05-24
CN114527499B (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
WO2023155920A1 (zh) 用于卫星导航系统b1宽带复合信号的无模糊定位方法及其装置
Ge et al. A computationally efficient approach for estimating high-rate satellite clock corrections in realtime
EP3258293B1 (en) Navigation signal data pilot frequency combined tracking method and device
BR112020007998A2 (pt) arquitetura de malha de captura de fase baseada em vetor rtk
Faruqi et al. Extended Kalman filter synthesis for integrated global positioning/inertial navigation systems
WO2016050055A1 (zh) 一种信号捕获方法、装置及计算机存储介质
Wendel et al. A robust technique for unambiguous BOC tracking
CN111323796B (zh) 一种gnss接收机高采样钟差解算方法
CN112285749A (zh) 全球导航卫星系统原始观测数据处理方法、装置及存储介质
Liu et al. A distributed GNSS/INS integrated navigation system in a weak signal environment
US20140351306A1 (en) Method of generating correlation function, method of tracking signal and signal tracking system
US20130135144A1 (en) Synchronized measurement sampling in a navigation device
Qi et al. Robust unambiguous ranging technique for BDS-3 B1 wideband composite signals
CN105204050B (zh) 一种惯性辅助的多通道混合型矢量跟踪方法
Lin et al. An open loop with Kalman filter for intermittent GNSS signal tracking
Gao et al. Theoretical analysis of unambiguous 2-D tracking loop performance for band-limited BOC signals
Yao et al. Spreading code phase measurement technique for snapshot GNSS receiver
Won et al. Noniterative filter-based maximum likelihood estimators for GNSS signal tracking
CN114265095A (zh) 一种高阶boc调制导航信号的无模糊跟踪方法
Yao Unambiguous processing techniques of binary offset carrier modulated signals
CN105699997A (zh) 一种使用glonass单频信号进行差分定位的方法
KR20130052142A (ko) 위치 측위 시스템 및 방법
CN106707306A (zh) 一种gnss接收机载波相位测量值错误检测方法
Jing et al. A millisecond integer ambiguity search method based on the inter-satellite distance limit for coarse-time GPS positioning
CN117590446B (zh) 宽带复合导航信号跟踪方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23755920

Country of ref document: EP

Kind code of ref document: A1