WO2023155680A1 - 发送功率控制方法、装置、节点设备及存储介质 - Google Patents

发送功率控制方法、装置、节点设备及存储介质 Download PDF

Info

Publication number
WO2023155680A1
WO2023155680A1 PCT/CN2023/073978 CN2023073978W WO2023155680A1 WO 2023155680 A1 WO2023155680 A1 WO 2023155680A1 CN 2023073978 W CN2023073978 W CN 2023073978W WO 2023155680 A1 WO2023155680 A1 WO 2023155680A1
Authority
WO
WIPO (PCT)
Prior art keywords
node device
access point
transmit power
signal detection
limit value
Prior art date
Application number
PCT/CN2023/073978
Other languages
English (en)
French (fr)
Inventor
童娣
吴昌强
Original Assignee
联洲集团有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 联洲集团有限公司 filed Critical 联洲集团有限公司
Publication of WO2023155680A1 publication Critical patent/WO2023155680A1/zh
Priority to US18/412,489 priority Critical patent/US20240155514A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/14Spectrum sharing arrangements between different networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0473Wireless resource allocation based on the type of the allocated resource the resource being transmission power
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the technical field of wireless communication, and in particular to a transmission power control method, device, node device and computer-readable storage medium for node devices.
  • the spatial reuse technology (Spatial Reuse, SR) is introduced in the 802.11ax protocol.
  • the spatial reuse technology mainly has two operation modes: Overlapping Basic Service Set Packet Detect based Spatial Reuse (Overlapping Basic Service Set Packet Detect based Spatial Reuse, OBSS PD-based SR), and spatial reuse based on spatial reuse parameters (Parameterized Spatial Reuse based Spatial Reuse, PSR-based SR).
  • the site of the Basic Service Set receives the Physical Layer Protocol Data Unit (PDU) of the Overlapping Basic Service Set (OBSS), PPDU), ignore the transmission of the PPDU and limit its own transmission power when its signal strength is below the threshold, so as to ensure that the station (Station, STA) or access point (Access Point, AP) causing interference.
  • PDU Physical Layer Protocol Data Unit
  • OBSS Overlapping Basic Service Set
  • AP Access Point
  • STA1 is associated with AP1 in basic service set BSS
  • STA2 is associated with AP2 in basic service set BSS2
  • the distance between STA1 and AP2 is very short.
  • STA1 limits its own transmit power in order not to interfere with the signal transmission of STA2
  • the signal power of STA1's PPDU is transmitted to AP2
  • the signal detection threshold of AP2 is higher than AP2, making it impossible for AP2 to ignore the PPDU from STA1, thus causing a data transmission collision.
  • the present disclosure provides a transmission power control method and device executed by a node device, a node device and a computer-readable storage medium, which can effectively avoid data transmission conflicts between overlapping basic service sets in a spatial multiplexing technology.
  • an embodiment of the present disclosure provides a transmission power control method performed by a node device, including:
  • the spatial multiplexing parameters include a minimum signal detection threshold, a transmit power reference value, and a signal detection level value.
  • the obtaining the path loss value from the access point to the node device includes: according to the physical address of the access point recorded in the first physical layer protocol data unit, from the first mapping relationship Query the path loss value from the access point to the node device in the set; wherein, the first mapping relationship set indicates the relationship between the physical address of at least one communication device including the access point and the path loss value to the node device mapping relationship.
  • the node device before the acquisition of the path loss value from the access point to the node device, via Obtaining the first mapping relationship set by the node device based on the following manner: receiving the second physical layer protocol data unit sent by the at least one communication device, and acquiring the received power for receiving the second physical layer protocol data unit, Obtain the path loss value from the at least one communication device to the node device according to the sending power and the receiving power recorded in the second physical layer protocol data unit, and link the physical address of the at least one communication device with the node device A mapping relationship between path loss values of devices is added to the first mapping relationship set.
  • the obtaining the path loss value from the at least one communication device to the node device according to the sending power and the receiving power recorded in the second physical layer protocol data unit includes: calculating the second The difference between the sending power recorded in the physical layer protocol data unit and the receiving power is used as a path loss value from the at least one communication device to the node device.
  • the obtaining the minimum signal detection threshold of the access point includes: according to the physical address of the access point recorded in the first physical layer protocol data unit, from the second mapping relationship set Querying the minimum signal detection threshold of the access point; wherein, the second mapping relationship set represents a mapping relationship between the physical address of at least one communication device including the access point and the minimum signal detection threshold.
  • the second mapping relation set is obtained via the node device based on the following manner: receiving the third a physical layer protocol data unit, determining the minimum signal detection threshold of the at least one communication device according to the spatial multiplexing parameter set in the third physical layer protocol data unit, and setting the minimum signal detection threshold of the at least one communication device to The mapping relationship between the physical address and the physical address is added to the second mapping relationship set.
  • the determining the minimum signal detection threshold of the at least one communication device according to the spatial multiplexing parameter set in the third physical layer protocol data unit includes: according to the third physical layer protocol data unit parameters in the spatial multiplexing parameter set, and determine whether the at least one communication device and the node device are members of the same spatial multiplexing group; if so, calculate the preset idle channel evaluation threshold and the spatial multiplexing The sum of the signal detection offset values of the same group in the parameter set is used as the minimum signal detection threshold of the at least one communication device; if not, the preset idle channel is evaluated The threshold value is used as the minimum signal detection threshold of the at least one communication device.
  • the calculating the second transmit power limit value according to the path loss value and the minimum signal detection threshold of the access point includes: calculating the path loss value and the minimum signal detection threshold of the access point The sum of the detection thresholds is used as the second transmit power limit value.
  • the adjusting the maximum transmit power of the node device according to the first transmit power limit value and the second transmit power limit value specifically includes: determining the first transmit power limit value and the A smaller value among the second sending power limit values; adjusting the maximum sending power of the node device to the smaller value.
  • An embodiment of the present disclosure also provides a transmission power control device for a node device, including: a multiplexing parameter acquisition module, configured to receive a transmission from a station of an overlapping basic service set to an access point of an overlapping basic service set and When the first physical layer protocol data unit is negligible, obtain the spatial multiplexing parameter of the basic service set where the node device is located; the first power calculation module is configured to calculate the first transmission power limit according to the spatial multiplexing parameter value; the path loss data acquisition module is used to obtain the path loss value from the access point to the node device; the detection threshold acquisition module is used to obtain the minimum signal detection threshold of the access point; the second power calculation module uses Calculate a second transmit power limit value according to the path loss value and the minimum signal detection threshold of the access point; a maximum power adjustment module is configured to calculate the second transmit power limit value according to the first transmit power limit value and the second transmit power Limit value, adjust the maximum transmission power of the node device.
  • a multiplexing parameter acquisition module configured to receive a transmission from
  • An embodiment of the present disclosure also provides a node device, including: a memory; and a processor, which is communicatively coupled to the memory and configured to: when receiving the When the access point and the first physical layer protocol data unit can be ignored, obtain the spatial multiplexing parameter of the basic service set where the node device is located; calculate the first transmission power limit value according to the spatial multiplexing parameter; obtain A path loss value from the access point to the node device; acquiring a minimum signal detection threshold of the access point; calculating a second transmission power limit value according to the path loss value and the minimum signal detection threshold of the access point ; Adjusting the maximum transmit power of the node device according to the first transmit power limit value and the second transmit power limit value.
  • An embodiment of the present disclosure also provides a computer-readable storage medium, wherein the computer-readable storage medium includes a stored computer program, wherein the computer is controlled when the computer program is running.
  • the node device where the computer-readable storage medium is located performs the following steps: when receiving the negligible first physical layer protocol data unit sent by the station of the overlapping basic service set to the access point of the overlapping basic service set, obtaining the The spatial multiplexing parameter of the basic service set where the node device is located; calculate the first transmission power limit value according to the spatial multiplexing parameter; obtain the path loss value from the access point to the node device; obtain the a minimum signal detection threshold; according to the path loss value and the minimum signal detection threshold of the access point, calculate a second transmit power limit value; according to the first transmit power limit value and the second transmit power limit value, Adjust the maximum transmit power of the node device.
  • any one of the above-mentioned invention embodiments of the present disclosure has the following beneficial effects:
  • the station of the overlapping basic service set When receiving the negligible first physical layer protocol data unit sent to the access point by the station of the overlapping basic service set, first obtain the spatial multiplexing parameter of the basic service set where the node device is located; wherein the spatial multiplexing parameter Including a minimum signal detection threshold, a transmission power reference value and a signal detection level value; secondly, according to the spatial multiplexing parameter, calculate the first transmission power limit value; then, obtain the path loss value and the path loss value from the access point to the node device the minimum signal detection threshold of the access point; and calculate a second transmission power limit value according to the path loss value and the minimum signal detection threshold of the access point; finally, according to the first transmission power limit value and the determined
  • the second transmit power limit value is used to adjust the maximum transmit power of the node device.
  • both the impact on the overlapping basic service set sender and the overlapping basic service set receiver are considered when the communication device performs spatial multiplexing, so that the spatial multiplexing technology can effectively avoid Data transmission conflicts between overlapping basic
  • FIG. 1 is a schematic flowchart of a transmission power control method performed by a node device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a scenario where two basic service sets are spatially multiplexed according to an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of the Common Info field format of the trigger frame provided by an embodiment of the present disclosure
  • Fig. 4 is a schematic diagram of a field format of a spatial multiplexing parameter set provided by an embodiment of the present disclosure
  • Fig. 5 is a schematic structural diagram of an apparatus for controlling transmission power of a communication device according to an embodiment of the present disclosure
  • Fig. 6 is a structural block diagram of a terminal device provided by an embodiment of the present disclosure.
  • FIG. 1 it is a schematic flowchart of a transmission power control method performed by a node device according to an embodiment of the present disclosure.
  • the foregoing node device may be any access point AP or station STA in the basic service set capable of spatial multiplexing.
  • step S11 if the PPDU received by the node device is HE single-user PPDU (HE SU PPDU), HE extended range single-user PPDU (HE ER SU PPDU) or HE multi-user PPDU (HE MU PPDU), it can be based on the physical The uplink/downlink (UL/DL) field judgment carried by the layer header Whether the sender is an overlapping basic service set station OBSS STA or an overlapping basic service set access point OBSS AP; if the PPDU received by the node device is an HE trigger response frame (HE TB PPDU), it can be judged that the PPDU is from OBSS STA sends to OBSS AP.
  • HE SU PPDU HE single-user PPDU
  • HE ER SU PPDU HE extended range single-user PPDU
  • HE MU PPDU HE multi-user PPDU
  • the address information can be recorded, and it can be determined whether the sender of the subsequently received frame is the OBSS STA or the OBSS AP according to the recorded address information.
  • the negligible first physical layer protocol data unit refers to the first physical layer protocol data unit whose signal strength received by the node device is below the signal detection level threshold and thus can be ignored by it.
  • station STA1 in one BSS is associated with access point AP1
  • station STA2 in the other BSS is associated with access point AP2.
  • STA1 is sending a physical layer protocol data unit PPDU to AP2.
  • STA1 also receives the PPDU, it is assumed that the signal strength of the received PPDU is within the signal detection level value OBSS_PD level , STA1 may ignore the transmission of the PPDU.
  • STA1 If STA1 ignores the transmission of the PPDU, in order not to interfere with the signal transmission between STA2 and AP2, STA1 needs to limit its own transmission power: On the one hand, based on the 802.11ax protocol, STA1 records the data in the spatial multiplexing parameters transmitted by AP1 The minimum signal detection threshold OBSS_PD min of AP1, the signal detection level value OBSS_PD level and the transmit power reference value TX_PWR ref of STA1, the first transmit power limit value calculated can ensure that the signal sent by STA1 can be detected by AP1 and It can prevent STA1 from affecting STA2; on the other hand, when the distance between STA1 and AP2 is too short, even if STA1 limits its own transmission power according to the first transmission power limit value, the signal power of the PPDU sent by STA1 is still transmitted to AP2.
  • the path loss value reflects the distance between AP2 and STA1, it can reflect the time when STA1 performs spatial multiplexing.
  • the second transmission power limit value calculated in this embodiment can ensure that the signal power transmitted by STA1 reaches AP2 after a certain path loss is less than the minimum signal detection threshold of AP2, so as not to be detected by AP2, so as to avoid the impact of STA1 on AP2; thus, the first transmit power limit value and the second transmit power limit value are combined to limit the transmit power of STA1, not only considering STA1 interferes with STA2, and Considering its interference to AP2, data transmission conflicts between overlapping basic service sets can be effectively avoided in spatial multiplexing technology.
  • the spatial multiplexing parameters may include a minimum signal detection threshold, a transmit power reference value, and a signal detection level value
  • the first transmit power limit value TX_PWR max1 may be calculated according to the following formula:
  • TX_PWR ref is the transmit power reference value of the basic service set where the node device is located
  • OBSS_PD level is the signal detection level value of the basic service set where the node device is located
  • OBSS_PD min is the minimum signal detection threshold of the basic service set where the node device is located
  • OBSS_PD max is The maximum signal detection threshold of the basic service set where the node device belongs to.
  • the step S13 specifically includes:
  • the path loss value from the access point to the node device is queried from the first mapping relationship set; wherein, the first mapping relationship set indicates that the access point includes A mapping relationship between the physical address of at least one communication device and its path loss value to the node device.
  • the foregoing first set of mapping relationships may be previously recorded by the node device by receiving and measuring frames from at least one communication device including an access point.
  • the first mapping relationship set can be obtained via the node device based on the following method: receiving the second physical link sent by at least one communication device layer protocol data unit, and obtain the receiving power of receiving the second physical layer protocol data unit, and obtain the path loss value from at least one communication device to the node device according to the sending power and receiving power recorded in the second physical layer protocol data unit, and The mapping relationship between the physical address of at least one communication device and the path loss value to the node device is added to the first mapping relationship set.
  • the node device can calculate the path loss by receiving the trigger frame sent by at least one communication device, and obtaining the power for sending the trigger frame according to the field in the trigger frame value.
  • FIG. 3 shows a schematic diagram of a format of a Common Info field of a trigger frame provided by an embodiment of the present disclosure.
  • the second physical layer protocol data unit sent by at least one communication device may contain a trigger frame, so that the node device may know at least the AP Tx Power subfield in the Common Info field in the received trigger frame
  • a communication device sends the sending power of the trigger frame, and then obtains the path loss value from the access point to the node device according to the receiving power when the node device receives the trigger frame. It can be understood that the greater the path loss value from the at least one communication device to the node device, the longer the distance from the at least one communication device to the node device.
  • the node device when the node device is a station (STA), since the trigger frame will only be sent by the access point, if the node device receives the physical layer protocol data unit containing the trigger frame, and the sending address is not associated with the node device The physical address of the access point, then it can determine that the physical layer protocol data unit comes from the access point of the overlapping basic service set; when the node device is an access point (AP), the received physical address containing the trigger frame Layer PDUs can only be from access points of overlapping basic service sets.
  • STA station
  • AP access point
  • the path loss value from at least one communication device to the node device is obtained according to the sending power and the receiving power recorded in the second physical layer protocol data unit, specifically:
  • step S14 specifically includes:
  • the second mapping relationship set Indicates a mapping relationship between the physical address of at least one communication device including the access point and its minimum signal detection threshold.
  • the above-mentioned second set of mapping relationships may be previously recorded by the node device by receiving frames from at least one communication device including the access point.
  • the second mapping relationship set can be obtained via the node device based on the following method: receiving the third physical layer protocol sent by at least one communication device
  • the data unit determines at least one channel according to the spatial multiplexing parameter set in the third physical layer protocol data unit
  • the minimum signal detection threshold of the communication device, and the mapping relationship between the minimum signal detection threshold of at least one communication device and its physical address is added to the second mapping relationship set.
  • the determining the minimum signal detection threshold of at least one communication device according to the spatial multiplexing parameter set in the third physical layer protocol data unit includes:
  • the parameters in the spatial multiplexing parameter set in the third physical layer protocol data unit determine whether at least one communication device and the node device are members of the same spatial multiplexing group; if so, calculate a preset idle channel evaluation gate The sum of the limit value and the signal detection offset value of the same group in the spatial multiplexing parameter set as the minimum signal detection threshold of at least one communication device; if not, the preset idle channel evaluation threshold value As a minimum signal detection threshold for at least one communication device.
  • the method for determining the minimum signal detection threshold of the basic service set where the node device is located is the same as the method for determining the minimum signal detection threshold of the at least one communication device, and will not be repeated here.
  • the spatial multiplexing parameter set is usually located in the Beacon frame, Probe Response frame and (Re)Association Response frame of the physical layer protocol data unit.
  • OBSS PD-based spatial multiplexing operations mainly include two types: the first type is OBSS PD-based spatial multiplexing operations based on non-SRG group members; the second type is based on spatial multiplexing groups (Spatial Reuse Group, SRG) OBSS PD-based spatial reuse operation of group members.
  • SRG spatial Reuse Group
  • different minimum signal detection thresholds can be obtained according to different OBSS PD-based spatial multiplexing operation types, and then different second transmit power limit values can be calculated accordingly. Specifically, referring to FIG.
  • the SRG OBSS PD Min Offset field does not always exist, it is mainly indicated by the SRG Information Present subfield in the SR Control field in the spatial multiplexing parameter set, 1 indicates existence, and 0 indicates no existence.
  • the preset idle channel evaluation threshold is used as the minimum value of at least one communication device. Signal detection threshold.
  • the SRG Information The Present subfield is also used to indicate whether the SRG BSS Color Bitmap field and the SRG Partial BSSID Bitmap field exist, and the SRG BSS Color Bitmap field and the SRG Partial BSSID Bitmap field are used to indicate which BSSs are members of the spatial multiplexing group.
  • the value of the SRG Information Present subfield is 1, it can be further determined whether at least one communication device and the node device are members of the same spatial multiplexing group according to the indication of the SRG BSS Color Bitmap field or the SRG Partial BSSID Bitmap field, And in the case of yes, calculate the preset free channel assessment threshold and the sum of the signal detection offset value obtained from the SRG OBSS PD Min Offset field of the same group as the minimum signal detection threshold of at least one communication device .
  • the preset idle channel assessment threshold may be -82dBm.
  • step S15 is specifically:
  • the step S16 specifically includes:
  • the path loss value can not only reflect the distance between the access point OBSS AP of the overlapping basic service set and the node device, but also reflect the impact of the spatial multiplexing of the node device on the OBSS AP.
  • the PD-based spatial multiplexing technology receives the OBSS PPDU sent by the OBSS STA to the OBSS AP, in addition to limiting the sending power of the node device according to the first sending power limit value, it can also use the pre-recorded OBSS AP to send the node device
  • the path loss value of the OBSS AP and the minimum signal detection threshold of the OBSS AP are used to obtain the second transmit power limit value.
  • the node device is further restricted by the second transmit power limit value.
  • the transmission power of the node device can make the node device neither affect the transmitting end of the overlapping basic service set nor the receiving end in the OBSS PD-based spatial multiplexing operation, thus effectively avoiding the overlap between the overlapping basic service sets Data transfer conflict.
  • the transmission power control performed by the node device in the present disclosure is described below through a specific implementation manner. system method.
  • Step 1 When the node device (STA or AP) receives the physical layer protocol data unit PPDU containing the trigger frame sent from the access point OBSS AP of the overlapping basic service set, according to the AP TX Power in the Common Info field in the trigger frame
  • the subfield knows the transmission power TX_PWR of the trigger frame sent by the OBSS AP; then according to the received power RX_PWR when the trigger frame is received, the path loss value PL from the OBSS AP to the node device is obtained; the calculation formula of the path loss value PL is as follows :
  • Step 2 After obtaining the path loss value from the OBSS AP to the node device through step 1, refer to Table 1 to record the mapping relationship between the OBSS AP MAC addresses of different OBSS APs and their path loss values:
  • Step 3 add a column of minimum signal detection threshold OBSS PD Min on the basis of Table 1.
  • OBSS PD Min When the node device does not receive the PPDU carrying the spatial multiplexing parameter set sent by the OBSS AP, record the OBSS PD Min item as -82;
  • the node device When the node device receives the PPDU carrying the spatial multiplexing parameter set sent by the OBSS AP, check the SRG Information Present value according to the SR Control field in the spatial multiplexing parameter set. If the SRG Information Present value is 0, Then record the OBSS PDMin item as -82;
  • the node device is not an SRG member of the OBSS AP, then record the OBSS PD Min item as -82;
  • the node device is an SRG member of the OBSS AP, then record the OBSS PD Min item as -82+SRG OBSS PD Min Offset.
  • Step 4 When the node device receives an OBSS PPDU, and its receiving address is the same as an OBSS AP MAC address recorded in Table 2, then ignore the OBSS PPDU according to the OBSS PD-based spatial multiplexing technology, and obtain the first A transmit power limit value TX_PWR max1 , on this basis, according to the MAC address recorded in the received OBSS PPDU, find the path loss value PL corresponding to the address and the minimum signal detection threshold OBSS PD Min, and calculate the first Two transmit power limit TX_PWR max2 :
  • TX_PWR max2 OBSS PD Min + PL;
  • the second transmit power limit value TX_PWR max2 can ensure that the The signal power is below the OBSS PD Min, so as to ensure that the node device will not affect the OBSS AP.
  • Step 5 Determine the maximum transmit power TX_PWR max that the node device can use next according to the following formula:
  • TX_PWR max min(TX_PWR max1 , TX_PWR max2 ).
  • an embodiment of the present disclosure further provides a transmission power control apparatus for a node device, capable of implementing all procedures of the above-mentioned transmission power control method for a communication device.
  • FIG. 5 it is a schematic structural diagram of an apparatus for controlling transmission power of a node device provided by an embodiment of the present disclosure.
  • the multiplexing parameter acquisition module 21 is configured to obtain the basic service set where the node device is located when receiving the negligible first physical layer protocol data unit sent by the station of the overlapping basic service set to the access point of the overlapping basic service set
  • the first power calculation module 22 is configured to calculate a first transmit power limit value according to the spatial multiplexing parameter
  • a path loss data acquisition module 23 configured to acquire a path loss value from the access point to the node device
  • a detection threshold acquisition module 24 configured to acquire the minimum signal detection threshold of the access point
  • the second power calculation module 25 is configured to calculate a second transmit power limit value according to the path loss value and the minimum signal detection threshold of the access point;
  • the maximum power adjustment module 26 is configured to adjust the maximum transmission power of the node device according to the first transmission power limit value and the second transmission power limit value.
  • the spatial multiplexing parameters may include a minimum signal detection threshold, a transmit power reference value, and a signal detection level value.
  • the path loss data acquisition module 23 specifically includes:
  • a path loss query unit configured to query the path loss value from the access point to the node device from the first mapping relationship set according to the physical address of the access point recorded in the first physical layer protocol data unit;
  • the first mapping relationship set represents the mapping relationship between the physical address of at least one communication device including the access point and the path loss value to the node device;
  • a path loss updating unit configured to obtain the first mapping relationship set based on the following method before acquiring the path loss value from the access point to the node device: receiving the second physical layer sent by the at least one communication device protocol data unit, and obtain the receiving power for receiving the second physical layer protocol data unit, and obtain the at least one communication device to node according to the sending power recorded in the second physical layer protocol data unit and the receiving power
  • the path loss value of the device, and the mapping relationship between the physical address of the at least one communication device and the path loss value of the node device is added to the first mapping relationship set.
  • the path loss updating unit is configured to obtain a path loss value from at least one communication device to a node device according to the sending power recorded in the second physical layer protocol data unit and the receiving power, specifically:
  • the detection threshold acquisition module 24 specifically includes:
  • a threshold query unit configured to query the minimum signal detection threshold of the access point from the second set of mapping relationships according to the physical address of the access point recorded in the first physical layer protocol data unit; wherein, the The second mapping relationship set represents the mapping relationship between the physical address of at least one communication device including the access point and its minimum signal detection threshold;
  • a threshold updating unit configured to obtain the second mapping relation set based on the following manner before acquiring the minimum signal detection threshold of the access point: receiving a third physical layer protocol data unit sent by the at least one communication device , according to the spatial multiplexing parameter set in the third physical layer protocol data unit, determine the minimum signal detection threshold of the at least one communication device, and set the minimum signal detection threshold of the at least one communication device to its physical address The mapping relationship of is added to the second mapping relationship set.
  • the threshold updating unit is configured to determine the minimum signal detection threshold of the at least one communication device according to the spatial multiplexing parameter set in the third physical layer protocol data unit, including:
  • the parameters in the spatial multiplexing parameter set in the third physical layer protocol data unit determine the Whether the at least one communication device and the node device are members of the same spatial multiplexing group; if so, calculate the preset idle channel assessment threshold value and the sum of the same group signal detection offset value in the spatial multiplexing parameter set value, as the minimum signal detection threshold of the at least one communication device; if not, use the preset idle channel evaluation threshold as the minimum signal detection threshold of the at least one communication device.
  • the threshold updating unit is configured to calculate a second transmit power limit value according to the path loss value and the minimum signal detection threshold of the access point, specifically:
  • the second power calculation module 25 is specifically used for:
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physically separated.
  • a unit can be located in one place, or it can be distributed to multiple network units. Part or all of the modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the connection relationship between modules indicates that they have communication connections, which may be implemented as one or more communication buses or signal lines. It can be understood and implemented by those skilled in the art without creative effort.
  • An embodiment of the present disclosure also provides a node device.
  • FIG. 6 it is a schematic diagram of a node device provided by an embodiment of the present disclosure.
  • a node device provided by an embodiment of the present disclosure includes a processor 10 and a memory 20, the processor 10 is communicatively coupled to the memory 20, and is configured to: when receiving the When the access point of the service set and the first physical layer protocol data unit are negligible, the Get the spatial multiplexing parameter of the basic service set where the node device is located; calculate the first transmission power limit value according to the spatial multiplexing parameter; obtain the path loss value from the access point to the node device; obtain the access point The minimum signal detection threshold of the access point; calculate a second transmit power limit value according to the path loss value and the minimum signal detection threshold of the access point; calculate the second transmit power limit value according to the first transmit power limit value and the second transmit power Limit value, adjust the maximum transmission power of the node device.
  • the processor 10 can also implement the steps in the above embodiments of the transmission power control method, for example, all the steps of the transmission power control method performed by the node device shown in FIG. 1 .
  • the processor 10 may also implement the functions of the modules/units in the embodiment of the transmission power control apparatus for node equipment, for example, the functions of the modules of the transmission power control apparatus for communication equipment shown in FIG. 5 .
  • the node device may be a station (STA) or an access point (AP).
  • the terminal device may include, but not limited to, a processor 10 and a memory 20 .
  • the schematic diagram is only an example of a terminal device, and does not constitute a limitation to a node device, and may include more or less components than those shown in the figure, or combine certain components, or different components,
  • the node device may also include an input and output device, a network access device, a bus, and the like.
  • the so-called processor 10 can be a central processing unit (Central Processing Unit, CPU), and can also be other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), Field-Programmable Gate Array (Field-Programmable Gate Array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or any conventional processor, etc.
  • the processor 10 is the control center of the terminal device, connecting various parts of the entire terminal device with various interfaces and lines.
  • the memory 20 can be used to store the computer programs and/or modules, and the processor 10 runs or executes the computer programs and/or modules stored in the memory 20, and calls the data stored in the memory 20, Various functions of the terminal device are realized.
  • the memory 20 may mainly include a program storage area and a data storage area, wherein the program storage area may store an operating system, an application program required by at least one function, etc.; the data storage area may store data created according to the use of the terminal device, etc. .
  • the memory can include high-speed random access memory, and can also include non-volatile memory, such as Such as hard disk, internal memory, plug-in hard disk, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD) card, flash memory card (Flash Card), at least one disk storage device, flash memory device, or other easy Volatile solid-state memory devices.
  • non-volatile memory such as hard disk, internal memory, plug-in hard disk, smart memory card (Smart Media Card, SMC), secure digital (Secure Digital, SD) card, flash memory card (Flash Card), at least one disk storage device, flash memory device, or other easy Volatile solid-state memory devices.
  • the integrated module/unit of the node device may be stored in a computer-readable storage medium.
  • all or part of the processes in the methods of the above-mentioned embodiments in the present disclosure can also be completed by instructing related hardware through computer programs.
  • the computer programs can be stored in a computer-readable storage medium, and the computer When the program is executed by the processor, the steps in the above-mentioned various method embodiments can be realized.
  • the computer program includes computer program code, and the computer program code may be in the form of source code, object code, executable file or some intermediate form.
  • the computer-readable medium may include: any entity or device capable of carrying the computer program code, a recording medium, a USB flash drive, a removable hard disk, a magnetic disk, an optical disk, a computer memory, and a read-only memory (ROM, Read-Only Memory) , Random Access Memory (RAM, Random Access Memory), electrical carrier signal, telecommunication signal and software distribution medium, etc.
  • an embodiment of the present disclosure also provides a computer-readable storage medium, where the computer-readable storage medium includes a stored computer program; wherein the computer program controls the The node device performs the following steps: when receiving the negligible first physical layer protocol data unit sent by the station of the overlapping basic service set to the access point of the overlapping basic service set, obtain the information of the basic service set where the node device is located Spatial multiplexing parameters; according to the spatial multiplexing parameters, calculate the first transmission power limit value; obtain the path loss value from the access point to the node device; obtain the minimum signal detection threshold of the access point; according to the The path loss value and the minimum signal detection threshold of the access point are used to calculate a second transmit power limit value; and the maximum transmit power of the node device is adjusted according to the first transmit power limit value and the second transmit power limit value.
  • the embodiments of the present disclosure provide a transmission power control method, device, node device, and computer-readable storage medium performed by a node device.
  • access point and negligible first physical layer protocol data unit first Obtain the spatial multiplexing parameter of the basic service set where the node device is located; secondly, calculate the first transmission power limit value according to the spatial multiplexing parameter; then, obtain the path loss value from the access point to the node device and the access The minimum signal detection threshold of the access point; and calculate the second transmission power limit value according to the path loss value and the minimum signal detection threshold of the access point; finally, according to the first transmission power limit value and the second Send power limit value, adjust the maximum send power of the node device.
  • both the impact on the overlapping basic service set sender and the overlapping basic service set receiver are considered when the communication device performs spatial multiplexing, so that the spatial multiplexing technology can effectively avoid Data transmission conflicts between overlapping basic service sets.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开涉及一种用于节点设备的发送功率控制方法、装置、节点设备及存储介质,该方法包括:当接收到由重叠基本服务集的站点发送至接入点且可忽略的第一物理层协议数据单元时,获取节点设备所在基本服务集的空间复用参数;根据所述空间复用参数,计算第一发送功率限制值;获取所述接入点到节点设备的路损值;获取所述接入点的最小信号检测阈值;根据所述路损值和所述接入点的最小信号检测阈值,计算第二发送功率限制值;根据所述第一发送功率限制值和所述第二发送功率限制值,调整节点设备的最大发送功率。本公开能够在空间复用技术中有效避免重叠的基本服务集之间的数据传输冲突。

Description

发送功率控制方法、装置、节点设备及存储介质
本申请要求于2022年2月16日递交的中国专利申请第202210143379.6号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开涉及无线通信技术领域,尤其涉及一种用于节点设备的发送功率控制方法、装置、节点设备及计算机可读存储介质。
背景技术
在802.11ax协议中引入了空间复用技术(Spatial Reuse,SR),空间复用技术主要有两种操作模式:基于重叠基本服务集的信号检测的空间复用(Overlapping Basic Service Set Packet Detect based Spatial Reuse,OBSS PD-based SR),以及基于空间复用参数的空间复用(Parameterized Spatial Reuse based Spatial Reuse,PSR-based SR)。在OBSS PD-based空间复用操作中,基本服务集(Basic Service Set,BSS)的站点接收到重叠基本服务集(Overlapping Basic Service Set,OBSS)的物理层协议数据单元(Physical Layer Protocol Data Unit,PPDU)后,在其信号强度处于阈值之下时忽略该PPDU的传输并且对自身的发送功率进行限制,以保证不对正在发送此OBSS PPDU的站点(Station,STA)或接入点(Access Point,AP)造成干扰。然而,不仅发送此OBSS PPDU的发送方可能受到来自该BSS站点的干扰的影响,接收此OBSS PPDU的接收方也可能受到来自该BSS站点的干扰的影响。
例如,假设有两个重叠的基本服务集BSS,在基本服务集BSS1中STA1与AP1关联,在基本服务集BSS2中STA2与AP2关联,且STA1与AP2之间的距离很近。当STA1为了不干扰STA2的信号传输而限制了自身的发送功率时,由于STA1与AP2的距离太短,导致STA1的PPDU的信号功率传输至AP2时 仍然存在高于AP2的信号检测阈值的风险,使得AP2无法忽略来自STA1的PPDU,从而造成数据传输冲突。
发明内容
本公开提供一种由节点设备执行的发送功率控制方法、装置、节点设备及计算机可读存储介质,能够在空间复用技术中有效避免重叠的基本服务集之间的数据传输冲突。
为实现上述目的,本公开实施例提供了一种由节点设备执行的发送功率控制方法,包括:
当接收到由重叠基本服务集的站点发送至重叠基本服务集的接入点且可忽略的第一物理层协议数据单元时,获取节点设备所在的基本服务集的空间复用参数;
根据所述空间复用参数,计算第一发送功率限制值;
获取所述接入点到节点设备的路损值;
获取所述接入点的最小信号检测阈值;
根据所述路损值和所述接入点的最小信号检测阈值,计算第二发送功率限制值;
根据所述第一发送功率限制值和所述第二发送功率限制值,调整节点设备的最大发送功率。
根据本公开的示例,所述空间复用参数包括最小信号检测阈值、发送功率参考值和信号检测水平值。
根据本公开的示例,所述获取所述接入点到节点设备的路损值包括:根据所述第一物理层协议数据单元中记录的所述接入点的物理地址,从第一映射关系集合中查询所述接入点到节点设备的路损值;其中,所述第一映射关系集合表示包括所述接入点的至少一个通信设备的物理地址与其到节点设备的路损值之间的映射关系。
根据本公开的示例,在所述获取所述接入点到节点设备的路损值之前,经 由所述节点设备基于以下方式获得所述第一映射关系集合:接收所述至少一个通信设备发送的第二物理层协议数据单元,并获取接收所述第二物理层协议数据单元的接收功率,根据所述第二物理层协议数据单元中记录的发送功率和所述接收功率,得到所述至少一个通信设备到节点设备的路损值,并将所述至少一个通信设备的物理地址与其到节点设备的路损值之间的映射关系添加至所述第一映射关系集合。
根据本公开的示例,所述根据所述第二物理层协议数据单元中记录的发送功率和所述接收功率,得到所述至少一个通信设备到节点设备的路损值包括:计算所述第二物理层协议数据单元中记录的发送功率和所述接收功率的差值,以作为所述至少一个通信设备到节点设备的路损值。
根据本公开的示例,所述获取所述接入点的最小信号检测阈值包括:根据所述第一物理层协议数据单元中记录的所述接入点的物理地址,从第二映射关系集合中查询所述接入点的最小信号检测阈值;其中,所述第二映射关系集合表示包括所述接入点的至少一个通信设备的物理地址与其最小信号检测阈值之间的映射关系。
根据本公开的示例,在所述获取所述接入点的最小信号检测阈值之前,经由所述节点设备基于以下方式获得所述第二映射关系集合:接收所述至少一个通信设备发送的第三物理层协议数据单元,根据所述第三物理层协议数据单元中的空间复用参数集,确定所述至少一个通信设备的最小信号检测阈值,并将所述至少一个通信设备的最小信号检测阈值与其物理地址之间的映射关系添加至所述第二映射关系集合。
根据本公开的示例,所述根据所述第三物理层协议数据单元中的空间复用参数集,确定所述至少一个通信设备的最小信号检测阈值包括:根据所述第三物理层协议数据单元中的空间复用参数集中的参数,判断所述至少一个通信设备与节点设备是否为同个空间复用组的成员;若是,则计算预设的空闲信道评估门限值和所述空间复用参数集中的同组信号检测偏移值的和值,以作为所述至少一个通信设备的最小信号检测阈值;若否,则将所述预设的空闲信道评估 门限值作为所述至少一个通信设备的最小信号检测阈值。
根据本公开的示例,所述根据所述路损值和所述接入点的最小信号检测阈值,计算第二发送功率限制值包括:计算所述路损值和所述接入点的最小信号检测阈值的和值,以作为第二发送功率限制值。
根据本公开的示例,所述根据所述第一发送功率限制值和所述第二发送功率限制值,调整节点设备的最大发送功率,具体包括:确定所述第一发送功率限制值和所述第二发送功率限制值中的较小值;将节点设备的最大发送功率调整为所述较小值。
本公开实施例还提供了一种用于节点设备的发送功率控制装置,包括:复用参数获取模块,用于当接收到由重叠基本服务集的站点发送至重叠基本服务集的接入点且可忽略的第一物理层协议数据单元时,获取所述节点设备所在的基本服务集的空间复用参数;第一功率计算模块,用于根据所述空间复用参数,计算第一发送功率限制值;路损数据获取模块,用于获取所述接入点到节点设备的路损值;检测阈值获取模块,用于获取所述接入点的最小信号检测阈值;第二功率计算模块,用于根据所述路损值和所述接入点的最小信号检测阈值,计算第二发送功率限制值;最大功率调节模块,用于根据所述第一发送功率限制值和所述第二发送功率限制值,调整节点设备的最大发送功率。
本公开实施例还提供了一种节点设备,包括:存储器;以及处理器,其通信地耦合到所述存储器,并被配置为:当接收到由重叠基本服务集的站点发送至重叠基本服务集的接入点且可忽略的第一物理层协议数据单元时,获取所述节点设备所在的基本服务集的空间复用参数;根据所述空间复用参数,计算第一发送功率限制值;获取所述接入点到节点设备的路损值;获取所述接入点的最小信号检测阈值;根据所述路损值和所述接入点的最小信号检测阈值,计算第二发送功率限制值;根据所述第一发送功率限制值和所述第二发送功率限制值,调整节点设备的最大发送功率。
本公开实施例还提供了一种计算机可读存储介质,其中,所述计算机可读存储介质包括存储的计算机程序,其中,在所述计算机程序运行时控制所述计 算机可读存储介质所在的节点设备执行以下步骤:当接收到由重叠基本服务集的站点发送至重叠基本服务集的接入点且可忽略的第一物理层协议数据单元时,获取所述节点设备所在的基本服务集的空间复用参数;根据所述空间复用参数,计算第一发送功率限制值;获取所述接入点到节点设备的路损值;获取所述接入点的最小信号检测阈值;根据所述路损值和所述接入点的最小信号检测阈值,计算第二发送功率限制值;根据所述第一发送功率限制值和所述第二发送功率限制值,调整节点设备的最大发送功率。
与现有技术相比,本公开上述发明实施例中的任意一个实施例具有如下有益效果:
当接收到由重叠基本服务集的站点发送至接入点且可忽略的第一物理层协议数据单元时,首先获取节点设备所在基本服务集的空间复用参数;其中,所述空间复用参数包括最小信号检测阈值、发送功率参考值和信号检测水平值;其次,根据所述空间复用参数,计算第一发送功率限制值;然后,获取所述接入点到节点设备的路损值和所述接入点的最小信号检测阈值;并根据所述路损值和所述接入点的最小信号检测阈值,计算第二发送功率限制值;最后根据所述第一发送功率限制值和所述第二发送功率限制值,调整节点设备的最大发送功率。在本公开的实施例中,既考虑到通信设备进行空间复用时对重叠基本服务集发送端的影响,又考虑到其对重叠基本服务集接收端的影响,从而能够在空间复用技术中有效避免重叠的基本服务集之间的数据传输冲突。
附图说明
图1是本公开一实施例提供的一种由节点设备执行的发送功率控制方法的流程示意图;
图2是本公开一实施例提供的一种两个基本服务集进行空间复用的场景示意图;
图3是本公开一实施例提供的触发帧的Common Info字段格式的示意图;
图4是本公开一实施例提供的空间复用参数集的字段格式的示意图;
图5是本公开一实施例提供的一种通信设备的发送功率控制装置的结构示意图;
图6是本公开一实施例提供的一种终端设备的结构框图。
具体实施方式
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
参见图1,是本公开一实施例提供的一种由节点设备执行的发送功率控制方法的流程示意图。
本公开实施例提供的由节点设备执行的发送功率控制方法,包括步骤:
S11、当接收到由重叠基本服务集的站点发送至重叠基本服务集的接入点且可忽略的第一物理层协议数据单元时,获取节点设备所在的基本服务集的空间复用参数;
S12、根据所述空间复用参数,计算第一发送功率限制值;
S13、获取所述接入点到节点设备的路损值;
S14、获取所述接入点的最小信号检测阈值;
S15、根据所述路损值和所述接入点的最小信号检测阈值,计算第二发送功率限制值;
S16、根据所述第一发送功率限制值和所述第二发送功率限制值,调整节点设备的最大发送功率。
需要说明的是,上述节点设备可以是任一能够进行空间复用的基本服务集中的接入点AP或站点STA。
在步骤S11中,若节点设备接收到的PPDU为HE单用户PPDU(HE SU PPDU)、HE拓展范围单用户PPDU(HE ER SU PPDU)或HE多用户PPDU(HE MU PPDU),则能够根据物理层头部携带的上行/下行(UL/DL)字段判 断出发送端为重叠基本服务集的站点OBSS STA还是重叠基本服务集的接入点OBSS AP;若节点设备接收到的PPDU为HE触发回应帧(HE TB PPDU),则能够判断该PPDU是由OBSS STA发送给OBSS AP。此外,在判断出OBSS AP MAC地址的情况下,可以记录下该地址信息,根据所记录的地址信息判断后续接收到的帧的发送端为OBSS STA还是OBSS AP。其中,可忽略的第一物理层协议数据单元指的是节点设备接收到信号强度在信号检测水平阈值之下并由此可以被其忽略的第一物理层协议数据单元。
参见图2,示例性地,假设有两个基本服务集BSS进行空间复用,其中一个BSS中站点STA1与接入点AP1关联,另一个BSS中站点STA2与接入点AP2关联。以节点设备为STA1作为举例,由图2所示,STA2正在向AP2发送物理层协议数据单元PPDU,当STA1也接收到该PPDU时,假设接收到的PPDU信号强度在信号检测水平值OBSS_PDlevel之下,则STA1有可能忽略该PPDU的传输。若STA1忽略了该PPDU的传输,则为了不干扰STA2和AP2之间的信号传输,STA1需要限制自身的发送功率:一方面,基于802.11ax协议,STA1根据AP1传输的空间复用参数中所记录的AP1的最小信号检测阈值OBSS_PDmin、信号检测水平值OBSS_PDlevel和STA1的发送功率参考值TX_PWRref,计算得到的第一发送功率限制值,能够保证STA1发送的信号既能够被AP1检测到,又能够避免STA1对STA2造成影响;另一方面,当STA1与AP2的距离过近时,即使STA1根据第一发送功率限制值限制了自身的发送功率,STA1发送的PPDU的信号功率传输至AP2时仍然存在高于AP2的最小信号检测阈值的风险,使得AP2无法忽略来自STA1的PPDU,从而造成数据传输冲突,由于路损值反映了AP2与STA1的距离的远近,能够侧面反映STA1进行空间复用时会对AP2造成的影响,本实施例根据获取到的AP2的路损值和最小信号检测阈值,计算得到的第二发送功率限制值,能够保证STA1发送的信号功率经过一定的路损到达AP2时小于AP2的最小信号检测阈值,从而不被AP2所检测,以避免STA1对AP2造成影响;从而,综合第一发送功率限制值和第二发送功率限制值对STA1的发送功率进行限制,不仅考虑到STA1对STA2的干扰,还 考虑到其对AP2的干扰,能够在空间复用技术中有效避免重叠的基本服务集之间的数据传输冲突。
具体地,在所述步骤S12中,空间复用参数可以包括最小信号检测阈值、发送功率参考值和信号检测水平值,并且可以根据以下公式计算第一发送功率限制值TX_PWRmax1
其中,TX_PWRref为节点设备所在基本服务集的发送功率参考值,OBSS_PDlevel为节点设备所在基本服务集的信号检测水平值,OBSS_PDmin为节点设备所在基本服务集的最小信号检测阈值,OBSS_PDmax为节点设备所在基本服务集的最大信号检测阈值。
在一些更优的实施例中,所述步骤S13,具体包括:
根据第一物理层协议数据单元中记录的接入点的物理地址,从第一映射关系集合中查询接入点到节点设备的路损值;其中,第一映射关系集合表示包括接入点的至少一个通信设备的物理地址与其到节点设备的路损值之间的映射关系。
其中,上述第一映射关系集合可以是先前由节点设备通过对来自包括接入点的至少一个通信设备的帧进行接收和测量而记录的。具体地,在获取接入点到节点设备的路损值之前(即,在上述步骤S13之前),可以经由节点设备基于以下方式获得第一映射关系集合:接收至少一个通信设备发送的第二物理层协议数据单元,并获取接收第二物理层协议数据单元的接收功率,根据第二物理层协议数据单元中记录的发送功率和接收功率,得到至少一个通信设备到节点设备的路损值,并将至少一个通信设备的物理地址与其到节点设备的路损值之间的映射关系添加至第一映射关系集合。
在一个具体的示例中,节点设备可以通过接收至少一个通信设备发送的触发帧,并根据触发帧中的字段获得发送此触发帧的功率,从而相应地计算路损 值。例如,参见图3,其示出了本公开一实施例提供的触发帧的Common Info字段格式的示意图。在此实施例中,至少一个通信设备发送的第二物理层协议数据单元中可以包含触发帧,节点设备由此可以根据接收到的触发帧中的Common Info字段中的AP Tx Power子字段知道至少一个通信设备发送此触发帧的发送功率,再根据节点设备接收到触发帧时的接收功率,得到所述接入点到节点设备的路损值。可以理解,至少一个通信设备到节点设备的路损值越大,则该至少一个通信设备到节点设备的距离越远。
需要说明,当节点设备为站点(STA)时,由于触发帧只会由接入点发送,所以如果节点设备接收到包含触发帧的物理层协议数据单元,并且发送地址不是该节点设备所关联的接入点的物理地址,则其能够判断该物理层协议数据单元来自重叠基本服务集的接入点;当节点设备为接入点(AP)时,则其所接收到的包含触发帧的物理层协议数据单元只能是来自重叠基本服务集的接入点的。
在一些更优的实施例中,所述根据所述第二物理层协议数据单元中记录的发送功率和所述接收功率,得到至少一个通信设备到节点设备的路损值,具体为:
计算所述第二物理层协议数据单元中记录的发送功率和所述接收功率的差值,以作为所述至少一个通信设备到节点设备的路损值。
在一个具体的实施方式中,所述步骤S14,具体包括:
根据所述第一物理层协议数据单元中记录的所述接入点的物理地址,从第二映射关系集合中查询所述接入点的最小信号检测阈值;其中,所述第二映射关系集合表示包括所述接入点的至少一个通信设备的物理地址与其最小信号检测阈值之间的映射关系。
其中,上述第二映射关系集合可以是先前由节点设备通过对来自包括接入点的至少一个通信设备的帧进行接收而记录的。具体地,在获取接入点的最小信号检测阈值之前(即,在上述步骤S14之前),可以经由节点设备基于以下方式获得第二映射关系集合:接收至少一个通信设备发送的第三物理层协议数据单元,根据第三物理层协议数据单元中的空间复用参数集,确定至少一个通 信设备的最小信号检测阈值,并将至少一个通信设备的最小信号检测阈值与其物理地址之间的映射关系添加至第二映射关系集合。
进一步地,所述根据第三物理层协议数据单元中的空间复用参数集,确定至少一个通信设备的最小信号检测阈值包括:
根据所述第三物理层协议数据单元中的空间复用参数集中的参数,判断至少一个通信设备与节点设备是否为同个空间复用组的成员;若是,则计算预设的空闲信道评估门限值和所述空间复用参数集中的同组信号检测偏移值的和值,以作为至少一个通信设备的最小信号检测阈值;若否,则将所述预设的空闲信道评估门限值作为至少一个通信设备的最小信号检测阈值。
需要说明,节点设备所在基本服务集的最小信号检测阈值的确定方法与所述至少一个通信设备的最小信号检测阈值的确定方法相同,在此不再过多赘述。
值得说明的是,所述空间复用参数集通常位于物理层协议数据单元的Beacon帧、Probe Response帧和(Re)Association Response帧中。OBSS PD-based空间复用操作主要包括两种类型:第一类为基于非空间复用组(non-SRG)分组成员的OBSS PD-based空间复用操作;第二类为基于空间复用组(Spatial Reuse Group,SRG)分组成员的OBSS PD-based空间复用操作。根据本公开的实施例可以根据不同的OBSS PD-based空间复用操作类型来取得不同的最小信号检测阈值,进而相应地计算不同的第二发送功率限制值。具体地,参见图4,在一示例中,可以根据空间复用参数集中的SR Control字段、SRG BSS Color Bitmap字段和SRG Partial BSSID Bitmap字段中的至少一个来判断至少一个通信设备与节点设备是否为同个空间复用组的成员,并且可以从所述空间复用参数集的SRG OBSS PD Min Offset字段中获取同组信号检测偏移值。需要说明的是,SRG OBSS PD Min Offset字段并不总是存在的,其主要由空间复用参数集中的SR Control字段里面的SRG Information Present子字段来指示,1指示存在,0指示不存在。若SRG Information Present子字段的值为0,则可以判断至少一个通信设备与节点设备并非为同个空间复用组的成员,并且将预设的空闲信道评估门限值作为至少一个通信设备的最小信号检测阈值。另外,该SRG Information  Present子字段也同样用于指示是否存在SRG BSS Color Bitmap字段和SRG Partial BSSID Bitmap字段,而SRG BSS Color Bitmap字段和SRG Partial BSSID Bitmap字段则用于指示哪些BSS是空间复用组成员。因此,若SRG Information Present子字段的值为1,则可以进一步根据SRG BSS Color Bitmap字段或SRG Partial BSSID Bitmap字段的指示来判断至少一个通信设备与节点设备是否为同个空间复用组的成员,并且在是的情况下,计算预设的空闲信道评估门限值和从SRG OBSS PD Min Offset字段中获取的同组信号检测偏移值的和值,以作为至少一个通信设备的最小信号检测阈值。
优选地,所述预设的空闲信道评估门限值可以为-82dBm。
具体地,所述步骤S15,具体为:
计算所述路损值和所述接入点的最小信号检测阈值的和值,以作为第二发送功率限制值。
在一些更优的实施例中,所述步骤S16,具体包括:
确定所述第一发送功率限制值和所述第二发送功率限制值中的较小值;
将节点设备的最大发送功率调整为所述较小值。
可以理解地,路损值不仅能够反映重叠基本服务集的接入点OBSS AP与节点设备距离的远近,还能够侧面反映节点设备进行空间复用会对OBSS AP造成的影响,当节点设备根据OBSS PD-based空间复用技术接收到由OBSS STA发送给OBSS AP的OBSS PPDU时,除了可以根据第一发送功率限制值对节点设备的发送功率进行限制,还可以利用预先记录的OBSS AP到节点设备的路损值和OBSS AP的最小信号检测阈值,得到第二发送功率限制值,若第二发送功率限制值小于第一发送功率限制值,则以所述第二发送功率限制值进一步限制节点设备的发送功率,能够使节点设备在OBSS PD-based空间复用操作中,既不对重叠基本服务集的发送端造成影响,也不对其接收端造成影响,从而有效避免重叠的基本服务集之间的数据传输冲突。
下面通过一个具体实施方式来描述本公开的由节点设备执行的发送功率控 制方法。
步骤1、当节点设备(STA或AP)接收到来自重叠基本服务集的接入点OBSS AP发送的包含触发帧的物理层协议数据单元PPDU,根据触发帧中的Common Info字段里面的AP TX Power子字段知道该OBSS AP发送此触发帧的发送功率TX_PWR;再根据接收到该触发帧时的接收功率RX_PWR,得到OBSS AP到节点设备的路损值PL;其中,路损值PL的计算公式如下:
PL=TX_PWR-RX_PWR;
步骤2、通过步骤1得到OBSS AP到节点设备的路损值后,参考表1的方式记录不同OBSS AP的OBSS AP MAC地址与其路损值之间的映射关系:
表1
步骤3、参见表2,在表1的基础上添加一栏最小信号检测阈值OBSS PD Min。当节点设备没有接收到来自OBSS AP发送的携带空间复用参数集的PPDU时,将OBSS PD Min项记录为-82;
表2
参见表3,当节点设备接收到来自OBSS AP发送的携带空间复用参数集的PPDU时,则根据空间复用参数集中的SR Control字段,查看SRG Information Present值,如果SRG Information Present值为0,则将OBSS PD Min项记录为-82;
表3

参见表4,如果SRG Information Present值为1,但是根据SRG BSS Color Bitmap字段或SRG Partial BSSID Bitmap字段的指示,节点设备并不是该OBSS AP的SRG成员,则将OBSS PD Min项记录为-82;
表4
参见表5,如果SRG Information Present值为1,且根据SRG BSS Color Bitmap字段或SRG Partial BSSID Bitmap字段的指示,节点设备是该OBSS AP的SRG成员,则将OBSS PD Min项记录为-82+SRG OBSS PD Min Offset。
表5
步骤4、当节点设备接收到某一个OBSS PPDU,且其接收地址与表2中记录的某一个OBSS AP MAC地址相同时,则根据OBSS PD-based空间复用技术忽略该OBSS PPDU,并得到第一发送功率限制值TX_PWRmax1,在此基础上,根据接收到的OBSS PPDU中记录的MAC地址,找到与该地址对应的路损值PL和最小信号检测阈值OBSS PD Min,并根据以下公式计算第二发送功率限制TX_PWRmax2
TX_PWRmax2=OBSS PD Min+PL;
需要说明,第二发送功率限制值TX_PWRmax2能够保证到达该OBSS AP的 信号功率处于OBSS PD Min以下,从而确保节点设备不会对该OBSS AP造成影响。
步骤5、根据以下公式确定节点设备接下来可以使用的最大发送功率TX_PWRmax
TX_PWRmax=min(TX_PWRmax1,TX_PWRmax2)。
相应地,本公开实施例还提供了一种用于节点设备的发送功率控制装置,能够实现上述通信设备的发送功率控制方法的所有流程。
参见图5,是本公开一实施例提供的一种用于节点设备的发送功率控制装置的结构示意图。
本公开实施例提供的用于节点设备的发送功率控制装置,包括:
复用参数获取模块21,用于当接收到由重叠基本服务集的站点发送至重叠基本服务集的接入点且可忽略的第一物理层协议数据单元时,获取节点设备所在的基本服务集的空间复用参数;
第一功率计算模块22,用于根据所述空间复用参数,计算第一发送功率限制值;
路损数据获取模块23,用于获取所述接入点到节点设备的路损值;
检测阈值获取模块24,用于获取所述接入点的最小信号检测阈值;
第二功率计算模块25,用于根据所述路损值和所述接入点的最小信号检测阈值,计算第二发送功率限制值;
最大功率调节模块26,用于根据所述第一发送功率限制值和所述第二发送功率限制值,调整节点设备的最大发送功率。
其中,所述空间复用参数可以包括最小信号检测阈值、发送功率参考值和信号检测水平值。
作为其中一个可选的实施方式,所述路损数据获取模块23,具体包括:
路损查询单元,用于根据所述第一物理层协议数据单元中记录的所述接入点的物理地址,从第一映射关系集合中查询所述接入点到节点设备的路损值; 其中,所述第一映射关系集合表示包括所述接入点的至少一个通信设备的物理地址与其到节点设备的路损值之间的映射关系;
路损更新单元,用于在所述获取所述接入点到节点设备的路损值之前,基于以下方式获得所述第一映射关系集合:接收所述至少一个通信设备发送的第二物理层协议数据单元,并获取接收所述第二物理层协议数据单元的接收功率,根据所述第二物理层协议数据单元中记录的发送功率和所述接收功率,得到所述至少一个通信设备到节点设备的路损值,并将所述至少一个通信设备的物理地址与其到节点设备的路损值之间的映射关系添加至所述第一映射关系集合。
进一步地,所述路损更新单元用于根据所述第二物理层协议数据单元中记录的发送功率和所述接收功率,得到至少一个通信设备到节点设备的路损值,具体为:
计算所述第二物理层协议数据单元中记录的发送功率和所述接收功率的差值,以作为至少一个通信设备到节点设备的路损值。
作为其中一个更优的实施方式,所述检测阈值获取模块24,具体包括:
阈值查询单元,用于根据所述第一物理层协议数据单元中记录的所述接入点的物理地址,从第二映射关系集合中查询所述接入点的最小信号检测阈值;其中,所述第二映射关系集合表示包括所述接入点的至少一个通信设备的物理地址与其最小信号检测阈值之间的映射关系;
阈值更新单元,用于在所述获取所述接入点的最小信号检测阈值之前,基于以下方式获得所述第二映射关系集合:接收所述至少一个通信设备发送的第三物理层协议数据单元,根据所述第三物理层协议数据单元中的空间复用参数集,确定所述至少一个通信设备的最小信号检测阈值,并将所述至少一个通信设备的最小信号检测阈值与其物理地址之间的映射关系添加至所述第二映射关系集合。
优选地,所述阈值更新单元用于根据所述第三物理层协议数据单元中的空间复用参数集,确定所述至少一个通信设备的最小信号检测阈值,包括:
根据所述第三物理层协议数据单元中的空间复用参数集中的参数,判断所 述至少一个通信设备与节点设备是否为同个空间复用组的成员;若是,则计算预设的空闲信道评估门限值和所述空间复用参数集中的同组信号检测偏移值的和值,以作为所述至少一个通信设备的最小信号检测阈值;若否,则将所述预设的空闲信道评估门限值作为所述至少一个通信设备的最小信号检测阈值。
进一步地,所述阈值更新单元用于所述根据所述路损值和所述接入点的最小信号检测阈值,计算第二发送功率限制值,具体为:
计算所述路损值和所述接入点的最小信号检测阈值的和值,以作为第二发送功率限制值。
作为其中一个可选的实施方式,所述第二功率计算模块25,具体用于:
确定所述第一发送功率限制值和所述第二发送功率限制值中的较小值;
将节点设备的最大发送功率调整为所述较小值。
需要说明的是,本实施例的通信设备的发送功率控制装置的各实施例的相关具体描述和有益效果可以参考上述的通信设备的发送功率控制方法的各实施例的相关具体描述和有益效果,在此不再赘述。
需说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。另外,本公开提供的装置实施例附图中,模块之间的连接关系表示它们之间具有通信连接,具体可以实现为一条或多条通信总线或信号线。本领域普通技术人员在不付出创造性劳动的情况下,即可以理解并实施。
本公开实施例还提供了一种节点设备,参见图6,是本公开一实施例提供的一种节点设备的示意图。
本公开实施例提供的一种节点设备,包括处理器10和存储器20,处理器10通信地耦合到所述存储器20,并被配置为:当接收到由重叠基本服务集的站点发送至重叠基本服务集的接入点且可忽略的第一物理层协议数据单元时,获 取所述节点设备所在的基本服务集的空间复用参数;根据所述空间复用参数,计算第一发送功率限制值;获取所述接入点到节点设备的路损值;获取所述接入点的最小信号检测阈值;根据所述路损值和所述接入点的最小信号检测阈值,计算第二发送功率限制值;根据所述第一发送功率限制值和所述第二发送功率限制值,调整节点设备的最大发送功率。
所述处理器10还可以实现上述发送功率控制方法实施例中的步骤,例如图1所示的由节点设备执行的发送功率控制方法的所有步骤。或者,所述处理器10还可以实现上述用于节点设备的发送功率控制装置实施例中各模块/单元的功能,例如图5所示的通信设备的发送功率控制装置的各模块的功能。
所述节点设备可以是站点(STA)或者接入点(AP)。所述终端设备可包括,但不仅限于,处理器10、存储器20。本领域技术人员可以理解,所述示意图仅仅是终端设备的示例,并不构成对节点设备的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如所述节点设备还可以包括输入输出设备、网络接入设备、总线等。
所称处理器10可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等,所述处理器10是所述终端设备的控制中心,利用各种接口和线路连接整个终端设备的各个部分。
所述存储器20可用于存储所述计算机程序和/或模块,所述处理器10通过运行或执行存储在所述存储器20内的计算机程序和/或模块,以及调用存储在存储器20内的数据,实现所述终端设备的各种功能。所述存储器20可主要包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序等;存储数据区可存储根据终端设备的使用所创建的数据等。此外,存储器可以包括高速随机存取存储器,还可以包括非易失性存储器,例 如硬盘、内存、插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)、至少一个磁盘存储器件、闪存器件、或其他易失性固态存储器件。
其中,所述节点设备集成的模块/单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本公开实现上述实施例方法中的全部或部分流程,也可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一计算机可读存储介质中,该计算机程序在被处理器执行时,可实现上述各个方法实施例的步骤。其中,所述计算机程序包括计算机程序代码,所述计算机程序代码可以为源代码形式、对象代码形式、可执行文件或某些中间形式等。所述计算机可读介质可以包括:能够携带所述计算机程序代码的任何实体或装置、记录介质、U盘、移动硬盘、磁碟、光盘、计算机存储器、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、电载波信号、电信信号以及软件分发介质等。
相应地,本公开实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质包括存储的计算机程序;其中,所述计算机程序在运行时控制所述计算机可读存储介质所在的节点设备执行以下步骤:当接收到由重叠基本服务集的站点发送至重叠基本服务集的接入点且可忽略的第一物理层协议数据单元时,获取所述节点设备所在的基本服务集的空间复用参数;根据所述空间复用参数,计算第一发送功率限制值;获取所述接入点到节点设备的路损值;获取所述接入点的最小信号检测阈值;根据所述路损值和所述接入点的最小信号检测阈值,计算第二发送功率限制值;根据所述第一发送功率限制值和所述第二发送功率限制值,调整节点设备的最大发送功率。
综上,本公开实施例所提供的一种由节点设备执行的发送功率控制方法、装置、节点设备及计算机可读存储介质,当接收到由重叠基本服务集的站点发送至由重叠基本服务集的接入点且可忽略的第一物理层协议数据单元时,首先 获取节点设备所在基本服务集的空间复用参数;其次,根据所述空间复用参数,计算第一发送功率限制值;然后,获取所述接入点到节点设备的路损值和所述接入点的最小信号检测阈值;并根据所述路损值和所述接入点的最小信号检测阈值,计算第二发送功率限制值;最后根据所述第一发送功率限制值和所述第二发送功率限制值,调整节点设备的最大发送功率。在本公开的实施例中,既考虑到通信设备进行空间复用时对重叠基本服务集发送端的影响,又考虑到其对重叠基本服务集接收端的影响,从而能够在空间复用技术中有效避免重叠的基本服务集之间的数据传输冲突。
以上所述是本公开的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本公开原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也视为本公开的保护范围。

Claims (13)

  1. 一种由节点设备执行的发送功率控制方法,其特征在于,包括:
    当接收到由重叠基本服务集的站点发送至重叠基本服务集的接入点且可忽略的第一物理层协议数据单元时,获取所述节点设备所在的基本服务集的空间复用参数;
    根据所述空间复用参数,计算第一发送功率限制值;
    获取所述接入点到节点设备的路损值;
    获取所述接入点的最小信号检测阈值;
    根据所述路损值和所述接入点的最小信号检测阈值,计算第二发送功率限制值;
    根据所述第一发送功率限制值和所述第二发送功率限制值,调整节点设备的最大发送功率。
  2. 如权利要求1所述的方法,其中,所述空间复用参数包括最小信号检测阈值、发送功率参考值和信号检测水平值。
  3. 如权利要求1所述的方法,其中,所述获取所述接入点到节点设备的路损值包括:
    根据所述第一物理层协议数据单元中记录的所述接入点的物理地址,从第一映射关系集合中查询所述接入点到节点设备的路损值;其中,所述第一映射关系集合表示包括所述接入点的至少一个通信设备的物理地址与其到节点设备的路损值之间的映射关系。
  4. 如权利要求3所述的方法,其中,在所述获取所述接入点到节点设备的路损值之前,经由所述节点设备基于以下方式获得所述第一映射关系集合:
    接收所述至少一个通信设备发送的第二物理层协议数据单元,并获取接收所述第二物理层协议数据单元的接收功率,根据所述第二物理层协议数据单元中记录的发送功率和所述接收功率,得到所述至少一个通信设备到节点设备的路损值,并将所述至少一个通信设备的物理地址与其到节点设备的路损值之间的映射关系添加至所述第一映射关系集合。
  5. 如权利要求4所述的方法,其中,所述根据所述第二物理层协议数据单元中记录的发送功率和所述接收功率,得到所述至少一个通信设备到节点设备的路损值包括:
    计算所述第二物理层协议数据单元中记录的发送功率和所述接收功率的差值,以作为所述至少一个通信设备到节点设备的路损值。
  6. 如权利要求1所述的方法,其中,所述获取所述接入点的最小信号检测阈值包括:
    根据所述第一物理层协议数据单元中记录的所述接入点的物理地址,从第二映射关系集合中查询所述接入点的最小信号检测阈值;其中,所述第二映射关系集合表示包括所述接入点的至少一个通信设备的物理地址与其最小信号检测阈值之间的映射关系。
  7. 如权利要求6所述的方法,其中,在所述获取所述接入点的最小信号检测阈值之前,经由所述节点设备基于以下方式获得所述第二映射关系集合:
    接收所述至少一个通信设备发送的第三物理层协议数据单元,根据所述第三物理层协议数据单元中的空间复用参数集,确定所述至少一个通信设备的最小信号检测阈值,并将所述至少一个通信设备的最小信号检测阈值与其物理地址之间的映射关系添加至所述第二映射关系集合。
  8. 如权利要求7所述的方法,其中,所述根据所述第三物理层协议数据单元中的空间复用参数集,确定所述至少一个通信设备的最小信号检测阈值包括:
    根据所述第三物理层协议数据单元中的空间复用参数集中的参数,判断所述至少一个通信设备与节点设备是否为同个空间复用组的成员;若是,则计算预设的空闲信道评估门限值和所述空间复用参数集中的同组信号检测偏移值的和值,以作为所述至少一个通信设备的最小信号检测阈值;若否,则将所述预设的空闲信道评估门限值作为所述至少一个通信设备的最小信号检测阈值。
  9. 如权利要求1所述的方法,其中,所述根据所述路损值和所述接入点的最小信号检测阈值,计算第二发送功率限制值包括:
    计算所述路损值和所述接入点的最小信号检测阈值的和值,以作为第二发送 功率限制值。
  10. 如权利要求1所述的方法,其中,所述根据所述第一发送功率限制值和所述第二发送功率限制值,调整节点设备的最大发送功率包括:
    确定所述第一发送功率限制值和所述第二发送功率限制值中的较小值;
    将节点设备的最大发送功率调整为所述较小值。
  11. 一种用于节点设备的发送功率控制装置,包括:
    复用参数获取模块,用于当接收到由重叠基本服务集的站点发送至重叠基本服务集的接入点且可忽略的第一物理层协议数据单元时,获取所述节点设备所在的基本服务集的空间复用参数;
    第一功率计算模块,用于根据所述空间复用参数,计算第一发送功率限制值;
    路损数据获取模块,用于获取所述接入点到节点设备的路损值;
    检测阈值获取模块,用于获取所述接入点的最小信号检测阈值;
    第二功率计算模块,用于根据所述路损值和所述接入点的最小信号检测阈值,计算第二发送功率限制值;
    最大功率调节模块,用于根据所述第一发送功率限制值和所述第二发送功率限制值,调整节点设备的最大发送功率。
  12. 一种节点设备,包括:
    存储器;以及
    处理器,其通信地耦合到所述存储器,并被配置为:
    当接收到由重叠基本服务集的站点发送至重叠基本服务集的接入点且可忽略的第一物理层协议数据单元时,获取所述节点设备所在的基本服务集的空间复用参数;
    根据所述空间复用参数,计算第一发送功率限制值;
    获取所述接入点到节点设备的路损值;
    获取所述接入点的最小信号检测阈值;
    根据所述路损值和所述接入点的最小信号检测阈值,计算第二发送功率限制值;
    根据所述第一发送功率限制值和所述第二发送功率限制值,调整节点设备的 最大发送功率。
  13. 一种计算机可读存储介质,其中,所述计算机可读存储介质包括存储的计算机程序,其中,在所述计算机程序运行时控制所述计算机可读存储介质所在的节点设备执行以下步骤:
    当接收到由重叠基本服务集的站点发送至重叠基本服务集的接入点且可忽略的第一物理层协议数据单元时,获取所述节点设备所在的基本服务集的空间复用参数;
    根据所述空间复用参数,计算第一发送功率限制值;
    获取所述接入点到节点设备的路损值;
    获取所述接入点的最小信号检测阈值;
    根据所述路损值和所述接入点的最小信号检测阈值,计算第二发送功率限制值;
    根据所述第一发送功率限制值和所述第二发送功率限制值,调整节点设备的最大发送功率。
PCT/CN2023/073978 2022-02-16 2023-01-31 发送功率控制方法、装置、节点设备及存储介质 WO2023155680A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/412,489 US20240155514A1 (en) 2022-02-16 2024-01-13 Transmit power control method and apparatus, node device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210143379.6A CN114585066A (zh) 2022-02-16 2022-02-16 通信设备的发送功率控制方法、装置、设备及存储介质
CN202210143379.6 2022-02-16

Publications (1)

Publication Number Publication Date
WO2023155680A1 true WO2023155680A1 (zh) 2023-08-24

Family

ID=81770253

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/073978 WO2023155680A1 (zh) 2022-02-16 2023-01-31 发送功率控制方法、装置、节点设备及存储介质

Country Status (2)

Country Link
CN (1) CN114585066A (zh)
WO (1) WO2023155680A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114585066A (zh) * 2022-02-16 2022-06-03 上海联虹技术有限公司 通信设备的发送功率控制方法、装置、设备及存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105165100A (zh) * 2013-05-03 2015-12-16 交互数字专利控股公司 用于wlan的分数载波侦听多点接入/冲突避免(csma/ca)的系统和方法
US20170070962A1 (en) * 2015-09-07 2017-03-09 Mediatek Inc. Spatial Reuse Parameters for Opportunistic Adaptive TPC and CCA
US20180263038A1 (en) * 2017-03-10 2018-09-13 Qualcomm Incorporated Transmission power in adaptive cca and tpc based reuse
US20180343096A1 (en) * 2015-04-01 2018-11-29 Lg Electronics Inc. Method and apparatus for transmitting data in wireless communication system
CN112822766A (zh) * 2020-12-31 2021-05-18 乐鑫信息科技(上海)股份有限公司 一种发送应答帧的方法、装置、站点及存储介质
CN114585066A (zh) * 2022-02-16 2022-06-03 上海联虹技术有限公司 通信设备的发送功率控制方法、装置、设备及存储介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10375702B2 (en) * 2015-09-18 2019-08-06 Mediatek Inc. Method and apparatus for guided adaptive spatial reuse in wireless communication
US10091817B2 (en) * 2015-11-06 2018-10-02 Qualcomm Incorporated Backoff mechanism for dynamic clear channel assessment (CCA)
CN106961733B (zh) * 2016-01-11 2020-11-10 华为技术有限公司 传输数据的方法和装置
US10244543B2 (en) * 2016-05-10 2019-03-26 Intel IP Corporation Station (STA), access point (AP) and method of spatial reuse
US10785798B2 (en) * 2017-10-25 2020-09-22 Mediatek Singapore Pte. Ltd. Secondary channel spatial reuse in a wireless network
US10973052B2 (en) * 2017-11-07 2021-04-06 Mediatek Singapore Pte. Ltd. Transmission between basic service sets in wireless networks considering spatial reuse
US11595994B2 (en) * 2020-06-19 2023-02-28 Samsung Electronics Co., Ltd. Apparatus and method for coordinated spatial reuse in wireless communication

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105165100A (zh) * 2013-05-03 2015-12-16 交互数字专利控股公司 用于wlan的分数载波侦听多点接入/冲突避免(csma/ca)的系统和方法
US20180343096A1 (en) * 2015-04-01 2018-11-29 Lg Electronics Inc. Method and apparatus for transmitting data in wireless communication system
US20170070962A1 (en) * 2015-09-07 2017-03-09 Mediatek Inc. Spatial Reuse Parameters for Opportunistic Adaptive TPC and CCA
US20180263038A1 (en) * 2017-03-10 2018-09-13 Qualcomm Incorporated Transmission power in adaptive cca and tpc based reuse
CN112822766A (zh) * 2020-12-31 2021-05-18 乐鑫信息科技(上海)股份有限公司 一种发送应答帧的方法、装置、站点及存储介质
CN114585066A (zh) * 2022-02-16 2022-06-03 上海联虹技术有限公司 通信设备的发送功率控制方法、装置、设备及存储介质

Also Published As

Publication number Publication date
CN114585066A (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
US10694523B2 (en) Spatial reuse transmissions in wireless local area networks (WLANs)
JP6640213B2 (ja) マルチユーザ免許不要ワイヤレスネットワークにおけるアップリンク電力制御のための方法および装置
JP6392338B2 (ja) ワイヤレスネットワークにおいて応答インジケーション延期を動的に設定するためのシステム、方法、及びデバイス
US20050201308A1 (en) Wireless communication system and wireless communication method
EP2993857B1 (en) Method and device for data transmission
JP6488206B2 (ja) 無線通信装置および無線通信方法
US9872298B2 (en) System and method for reducing collisions in wireless networks
US10568134B2 (en) Enhanced clear channel assessment
KR20080074854A (ko) 무선 네트워크 통신에서의 이용을 위한 고속 제어 메시징메카니즘
US8554153B2 (en) Transmit power control in a random access scheme
WO2017038193A1 (ja) 情報処理装置および情報処理方法
WO2023155680A1 (zh) 发送功率控制方法、装置、节点设备及存储介质
WO2016082647A1 (zh) 一种发射功率的确定方法及装置
TWI466564B (zh) 應用在通訊系統之傳輸功率調整方法及其裝置
WO2014176735A1 (zh) 通信控制方法、用户设备、网络服务器和系统
US20220321265A1 (en) Wireless Local Area Network Transmission Method and Device, and Transceiver
CN115413007A (zh) 发射功率调节方法、装置、终端及存储介质
US20240155514A1 (en) Transmit power control method and apparatus, node device, and storage medium
JP2017022479A (ja) 無線通信用集積回路
JP2017022478A (ja) 無線通信用集積回路
JP2019037008A (ja) 無線通信装置および無線通信方法
WO2024027494A1 (zh) 发射功率调整方法
CN115174003B (zh) 块确认控制方法、装置、计算机可读存储介质及终端设备
US20220312546A1 (en) Drx parameter configuration method, processing method, network node, and user equipment
TW201935976A (zh) 分配無線子系統的保護期間的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23755684

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18571206

Country of ref document: US