WO2023155428A1 - 基于电力线的多设备组网方法及系统 - Google Patents

基于电力线的多设备组网方法及系统 Download PDF

Info

Publication number
WO2023155428A1
WO2023155428A1 PCT/CN2022/119455 CN2022119455W WO2023155428A1 WO 2023155428 A1 WO2023155428 A1 WO 2023155428A1 CN 2022119455 W CN2022119455 W CN 2022119455W WO 2023155428 A1 WO2023155428 A1 WO 2023155428A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
converter
terminal devices
output
control
Prior art date
Application number
PCT/CN2022/119455
Other languages
English (en)
French (fr)
Inventor
张彦忠
修双
Original Assignee
华为数字能源技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为数字能源技术有限公司 filed Critical 华为数字能源技术有限公司
Publication of WO2023155428A1 publication Critical patent/WO2023155428A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/542Systems for transmission via power distribution lines the information being in digital form
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/544Setting up communications; Call and signalling arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/548Systems for transmission via power distribution lines the power on the line being DC
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B3/00Line transmission systems
    • H04B3/54Systems for transmission via power distribution lines
    • H04B3/56Circuits for coupling, blocking, or by-passing of signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/28Data switching networks characterised by path configuration, e.g. LAN [Local Area Networks] or WAN [Wide Area Networks]
    • H04L12/2803Home automation networks

Definitions

  • the present application relates to the field of communication technologies, and in particular to a power line-based multi-device networking method and system.
  • a wired networking scheme or a wireless networking scheme is generally adopted to implement intelligent control of these devices.
  • lamps, air conditioners, and TVs are generally powered by the mains
  • other intelligent terminals such as sensors, control panels, lamp controllers, curtain controllers, etc.
  • the bus power supply which can be powered by the mains.
  • the voltage conversion is obtained, and the sensors, control panels, lamp controllers, curtain controllers, etc. are networked using wired protocols (such as KNX protocol).
  • lamps, air conditioners, and TVs are generally powered by mains power
  • other smart terminals are generally powered by batteries or adapters
  • sensors, control panels, lamp controllers, and curtain controllers use wireless protocols (such as WI-FI protocol, zigbee protocol, LoRa protocol, etc.) for networking.
  • the wired networking solution requires double wiring of signal lines and power lines, which has the problems of high cost and difficulty in implementation.
  • the wiring of the wireless networking solution is relatively simple, the wireless protocol has poor wall-penetrating ability and the channel is easily blocked. The reliability of the network is poor, and communication delays are more likely to occur.
  • the first aspect of the embodiment of the present application discloses a power line-based multi-device networking method, which is applied to a multi-device networking system.
  • the multi-device networking system includes a voltage converter and a plurality of terminal devices.
  • the voltage converter controls the input voltage performing voltage conversion, and outputting a direct current signal to supply power to multiple terminal devices
  • the method includes: the control device in the multiple terminal devices adjusts the output voltage of the voltage converter based on the control command, so that the voltage converter outputs voltage fluctuations corresponding to the control command Sequence; the remaining terminal devices among the multiple terminal devices detect the voltage fluctuation sequence, analyze the voltage fluctuation sequence to obtain a control instruction corresponding to the voltage fluctuation sequence, and execute corresponding control operations based on the control instruction.
  • the DC voltage is obtained based on the voltage converter to supply power for each terminal device.
  • each terminal device can be connected to the DC bus in parallel, which can improve the power supply efficiency of the system, and can communicate with each terminal device through the DC bus.
  • the network converts the control command into a voltage fluctuation sequence, and the terminal equipment can detect and analyze the voltage fluctuation sequence on the DC bus to perform the control operation corresponding to the control command.
  • the voltage converter includes a sampling resistor for sampling the feedback voltage
  • the control device adjusts the output voltage of the voltage converter based on the control instruction, including: the control device adjusts the resistance value of the sampling resistor based on the control instruction, to adjust the output voltage of the voltage converter.
  • the control device can adjust the resistance value of the sampling resistor based on the control command to adjust the output voltage of the voltage converter.
  • the voltage converter is a closed-loop voltage conversion structure. By adjusting the resistance value of the sampling resistor, the feedback voltage can be changed. Furthermore, the output voltage of the voltage converter can be adjusted.
  • making the voltage converter output a voltage fluctuation sequence corresponding to the control command includes: setting the binary data " The voltage waveform of 0" and the voltage waveform of binary data "1", wherein the first voltage is the voltage for powering multiple terminal devices, and the second voltage is greater or less than the first voltage; obtain the binary data sequence corresponding to the control command , and control the voltage converter to output a voltage fluctuation sequence corresponding to the binary data sequence.
  • the voltage waveforms of the binary data "0" and “1” can be set based on the first voltage and the second voltage output by the voltage converter, and then the control device can control the voltage based on the binary data sequence corresponding to the control command.
  • the converter outputs a sequence of voltage fluctuations corresponding to the sequence of binary data.
  • the data frame corresponding to the control instruction includes a start bit, a data bit, a parity bit and a stop bit, so that the voltage converter outputs a voltage fluctuation sequence corresponding to the control instruction, including: The voltage duration and the first voltage and the second voltage output by the voltage converter set the voltage waveform of the start bit, the voltage waveform of the stop bit, the voltage waveform of the binary data "0" and the voltage waveform of the binary data "1", Wherein the first voltage is the voltage for supplying power to multiple terminal devices, the second voltage is greater than or lower than the first voltage, the data bit is composed of binary data "0" and binary data "1", and the parity bit is composed of binary data "" 0" and/or binary data "1"; the voltage converter is controlled to output a voltage fluctuation sequence corresponding to the data frame.
  • the voltage waveforms of the start bit, data bit, parity bit, and stop bit can be set based on the first voltage and the second voltage output by the voltage converter, and the data bit and parity bit can be represented by the binary data "0 ", "1" voltage waveform combination, and then the control device can control the voltage converter to output the voltage fluctuation sequence corresponding to the data frame based on the data frame corresponding to the control command.
  • the voltage waveform of the start bit is the same as the voltage waveform of the stop bit, and the voltage waveform of the start bit is: from the first voltage to the second voltage and maintained for a time T1 ; the binary data "0 The voltage waveform of "is: the first voltage is maintained for the first T 1 /2 time, and the second voltage is maintained for the subsequent T 1 /2 time; the voltage waveform of the binary data "1" is: the first voltage is maintained for T 1 time.
  • the control device can control the output of the voltage converter to correspond to the data frame based on the data frame corresponding to the control command. voltage fluctuation sequence.
  • the embodiment of the present application provides a power line-based multi-device networking method, which is applied to a multi-device networking system.
  • the multi-device networking system includes a voltage converter and a plurality of terminal devices.
  • the voltage converter controls the input voltage performing voltage conversion, outputting a DC signal to supply power to multiple terminal devices, each of the multiple terminal devices includes a power line communication (PLC) module, and the method includes: controlling in the multiple terminal devices
  • the device adjusts the output voltage of the voltage converter so that the output voltage of the voltage converter changes from the first voltage to the second voltage and maintains it for a preset time, wherein the first voltage is the voltage that supplies power to multiple terminal devices, and the second voltage greater than or less than the first voltage; any two terminal devices among the multiple terminal devices communicate through the PLC module within a preset time.
  • the DC voltage is obtained based on the voltage converter to supply power for each terminal device.
  • each terminal device can be connected to the DC bus in parallel, which can improve the power supply efficiency of the system, and can communicate with each terminal device through the DC bus.
  • Network based on the combination of dynamic DC bus voltage and PLC communication, can improve the reliability of PLC communication.
  • the voltage converter includes a sampling resistor for sampling the feedback voltage
  • the control device adjusts the output voltage of the voltage converter, including: the control device adjusts the resistance value of the sampling resistor to adjust the output voltage of the voltage converter. The output voltage.
  • the control device can adjust the output voltage of the voltage converter by adjusting the resistance value of the sampling resistor.
  • the voltage converter is a closed-loop voltage conversion structure. By adjusting the resistance value of the sampling resistor, the feedback voltage can be changed. The output voltage of the voltage converter is adjusted.
  • any two end devices include a first end device and a second end device, the first end device includes a first PLC module, the second end device includes a second PLC module, and any two end devices Communication through the PLC module within the preset time, including: the first terminal device couples the PLC signal to the DC signal through the first PLC module within the preset time; the second terminal device extracts from the DC signal through the second PLC module PLC signal.
  • the PLC module is used to couple the PLC signal to the DC signal, or to extract the PLC signal from the DC signal, so that the terminal devices can communicate.
  • the multi-device networking system further includes at least one sub-converter, the sub-converter is electrically connected to at least one terminal device among the multiple terminal devices, and the sub-converter is used to convert the direct current output from the voltage converter
  • the signal is subjected to voltage conversion to provide a rated operating voltage for at least one terminal device
  • the method further includes: the control device controls a pulse width modulation (pulse width modulation, PWM) chip of the sub-converter to stop outputting the PWM signal within a preset time, or Adjust the frequency of the PWM signal.
  • PWM pulse width modulation
  • the word converter of the terminal device can be temporarily switched to a working state that will not interfere with PLC communication or cause interference to PLC communication
  • a lower working state such as temporarily stopping PWM transmission or changing the frequency of PWM transmission, creates a better communication environment for PLC communication. PLC communication during this period can improve the reliability of PLC communication.
  • the embodiment of the present application provides a power line-based multi-device networking system, including: a plurality of terminal devices; Transformation, to output DC signals to supply power to multiple terminal devices; wherein, the control device in the multiple terminal devices is used to adjust the output voltage of the voltage converter, so that the control device communicates with the remaining terminal devices based on the power line.
  • the DC voltage obtained based on the voltage converter can supply power to each terminal device through the power line, which can improve the power supply efficiency of the system, and can communicate with each terminal device through the power line, and the control device in the terminal device can adjust the voltage.
  • the output voltage of the converter so that the control device can communicate with the rest of the terminal equipment based on the power line. Detect and analyze the voltage fluctuation sequence on the power line to receive control commands.
  • the control equipment can also communicate with other terminal equipment through the combination of dynamic DC voltage and PLC communication to improve the reliability of PLC communication.
  • control device is used to adjust the output voltage of the voltage converter based on the control command, so that the voltage converter outputs a voltage fluctuation sequence corresponding to the control command; the remaining terminal devices are used to detect the voltage fluctuations transmitted by the power line Sequence, analyze the voltage fluctuation sequence to obtain the control instruction corresponding to the voltage fluctuation sequence, and execute the corresponding control operation based on the control instruction.
  • the terminal device can detect and analyze the voltage fluctuation sequence on the power line to perform a control operation corresponding to the control command.
  • the voltage converter includes a sampling resistor for sampling the feedback voltage
  • the control device is configured to adjust the resistance value of the sampling resistor based on a control instruction, so as to adjust the output voltage of the voltage converter.
  • the control device can adjust the resistance value of the sampling resistor based on the control command to adjust the output voltage of the voltage converter.
  • the voltage converter is a closed-loop voltage conversion structure. By adjusting the resistance value of the sampling resistor, the feedback voltage can be changed. Furthermore, the output voltage of the voltage converter can be adjusted.
  • control device is used to obtain a binary data sequence corresponding to the control command, and control the voltage converter to output a voltage fluctuation sequence corresponding to the binary data sequence, wherein the voltage waveform of the binary data "0" is the same as
  • the voltage waveform of the binary data "1” is set based on the preset voltage duration and the first voltage and the second voltage output by the voltage converter.
  • the first voltage is the voltage for powering multiple terminal devices, and the second voltage is greater or less than first voltage.
  • the voltage waveforms of the binary data "0" and “1” can be set based on the first voltage and the second voltage output by the voltage converter, and then the control device can control the voltage based on the binary data sequence corresponding to the control command.
  • the converter outputs a sequence of voltage fluctuations corresponding to the sequence of binary data.
  • each of the multiple terminal devices includes a PLC module
  • the control device converts the output voltage of the voltage converter from the first voltage to the second voltage for a preset time, and controls The device communicates with other terminal devices through the PLC module within a preset time, wherein the first voltage is a voltage for supplying power to multiple terminal devices, and the second voltage is greater than or lower than the first voltage.
  • each end device is connected to a communication network through the power line, and the reliability of the PLC communication can be improved based on a communication method combining dynamic power line voltage and PLC communication.
  • the power line-based multi-device networking system further includes at least one sub-converter, the sub-converter is electrically connected to at least one terminal device among the plurality of terminal devices, and the sub-converter is used to connect the voltage converter
  • the output DC signal is subjected to voltage conversion to provide a rated working voltage for at least one terminal device, and the control device is also used to control the PWM chip of the sub-converter to stop outputting the PWM signal within a preset time, or to adjust the frequency of the PWM signal.
  • the word converter of the terminal device can be temporarily switched to a working state that will not interfere with PLC communication or cause interference to PLC communication
  • a lower working state such as temporarily stopping PWM transmission or changing the frequency of PWM transmission, creates a better communication environment for PLC communication. PLC communication during this period can improve the reliability of PLC communication.
  • the embodiment of the present application provides a power line-based multi-device networking system, including a voltage converter and multiple terminal devices.
  • the voltage converter is used to perform voltage conversion on the input voltage, and output a DC signal to supply power to multiple terminal devices.
  • Each of the multiple terminal devices includes a PLC module, and any two of the multiple terminal devices communicate through the PLC module.
  • the DC voltage obtained based on the voltage converter can supply power to each end device through the power line, which can improve the power supply efficiency of the system, and each end device can be connected to a communication network through the power line, and any two end devices under the network can be connected. Communication via PLC.
  • FIG. 1 is an application scenario diagram of a power line-based multi-device networking method provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a communication architecture of a multi-device networking system provided by an embodiment of the present application
  • FIG. 3 is a schematic diagram of a communication architecture of a multi-device networking system provided by another embodiment of the present application.
  • FIG. 4 is a timing waveform diagram of a voltage fluctuation sequence corresponding to a control command provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of a communication architecture of a multi-device networking system provided by another embodiment of the present application.
  • FIG. 6 is a timing waveform diagram of a combination of a dynamic DC bus and a PLC provided by an embodiment of the present application
  • FIG. 7 is a schematic flowchart of the steps of a power line-based multi-device networking method provided by an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of the steps of a power line-based multi-device networking method provided by another embodiment of the present application.
  • FIG. 9 is a schematic flowchart of steps of a power line-based multi-device networking method provided by another embodiment of the present application.
  • words such as “exemplary” or “for example” are used as examples, illustrations or illustrations. Any embodiment or design scheme described as “exemplary” or “for example” in the embodiments of the present application shall not be interpreted as being more preferred or more advantageous than other embodiments or design schemes. Rather, the use of words such as “exemplary” or “such as” is intended to present related concepts in a concrete manner.
  • PLC refers to the technology of high-speed transmission of analog or digital signals by means of carrier wave using existing power lines. PLC can realize the advantages of data transmission through power lines without re-establishing communication network.
  • the application scenario diagram of the power line-based multi-device networking method provided by the embodiment of the present invention is exemplarily introduced below with reference to FIG. 1 .
  • This embodiment can be applied to the multi-device networking system 100 .
  • a converter can be used to convert the mains power (such as 220V alternating current) into direct current to form a direct current bus.
  • the multiple terminal devices in the multi-device networking system 100 are powered by the DC bus, for example, the control panels, sensors, device control modules, lamps, etc. in the multi-device networking system 100 are connected to the DC bus in parallel, These terminal devices are powered by the DC bus, and these terminal devices can realize communication networking by means of the DC bus.
  • the terminal device may include a sensor, a gateway, and a control module of each smart device in the multi-device networking system 100 .
  • FIG. 1 takes a multi-device networking system 100 including a voltage converter 10 , a control device 11 , a plurality of sensors 12 , a control panel 13 , a curtain controller 14 , a lamp 15 , and a temperature controller 16 for illustration.
  • the structure shown in this embodiment does not constitute a specific limitation on the multi-device networking system 100 .
  • the multi-device networking system 100 may include more or fewer components than shown in the figure, or combine some components, or split some components, or arrange different components.
  • the multi-device networking system 100 may also include controllers or control panels for ventilation equipment, water heaters, air conditioners, and televisions, which may be connected to commercial power.
  • the DC voltage output by the voltage converter 10 can be used as a control device 11, a plurality of sensors 12, a control panel 13, a curtain controller 14, a lamp 15, a temperature controller 16 and other terminal devices through the DC bus L1. powered by.
  • the lamp 15 corresponds to a lamp controller, the lamp controller can be integrated in the lamp 15 , or the lamp controller can be set independently of the lamp 15 .
  • the control device 11 , multiple sensors 12 , control panel 13 , curtain controller 14 , lamp controller, etc. can also communicate through the DC bus L1 .
  • the power supply for the lamps 15 through the converter alone, or for several terminal equipments, all terminals in the multi-device networking system 100 of this application All the devices are connected to the DC bus L1, the output power of the voltage converter 10 is increased, the loss of the converter is reduced, and the power supply efficiency can be improved.
  • the voltage converter 10 may be an alternating current to direct current (AC-DC) converter, and the magnitude of the DC voltage output by the voltage converter 10 may be set according to actual needs, which is not limited in this application.
  • the voltage converter 10 can convert 220V AC power into 60V DC power.
  • the voltage converter 10 may also be a direct current to direct current (DC-DC) converter.
  • the voltage converter 10 can convert 800V direct current into 60V direct current.
  • the voltage converter 10 is a closed-loop voltage conversion structure
  • the sampling resistor in the voltage converter 10 can be a digital potentiometer
  • the control device 11 can change the resistance of the voltage converter 10 by changing the resistance of the digital potentiometer.
  • the feedback voltage or the reference voltage can further adjust the output voltage of the voltage converter 10 . That is, the control device 11 can adjust the magnitude of the DC voltage output by the voltage converter 10 by changing the resistance of the digital potentiometer.
  • the control device 11 can be a gateway or an edge controller. As the control center of the multi-device networking system 100, the control device 11 can realize functions such as system information collection, information input, information output, centralized control, remote control, and linkage control.
  • the plurality of sensors 12 may include a temperature sensor, a magnetic door sensor, an illumination sensor, a human body sensor, and the like.
  • the control panel 13 can be a touch panel or a panel including a touch screen and physical buttons.
  • the control panel 13 can provide functions such as input of control commands and viewing of device status.
  • the control panel 13 can include an air-conditioning control panel, a lighting control panel wait.
  • the curtain controller 14 can be used to receive the curtain control instruction to control the curtain motor, and then realize the automatic control of the curtain.
  • the lamp 15 may be an LED lamp providing lighting function.
  • the temperature controller 16 may refer to a controller for automatically controlling the temperature of an air conditioner according to a control instruction, or a controller for automatically controlling the temperature of a water heater according to a
  • control device 11 can also communicate with the intelligent management system through, for example, a Fast Ethernet (Fast Ethernet, FE) port or a Gigabit Ethernet (Gigabit Ethernet, GE) port.
  • the intelligent management system is a building management system deployed on a server.
  • the DC voltage required by different end devices may be different, and the DC-DC converter can be set according to actual needs, and the DC power output by the voltage converter 10 can be DC-DC converted again, for example, the 60V The direct current is converted to 12V direct current or 5V direct current.
  • one DC-DC converter can also be shared.
  • FIG. 2 it is a schematic diagram of a communication architecture of a multi-device networking system 100 provided by an embodiment of the present application.
  • FIG. 2 takes a multi-device networking system 100 including a voltage converter 10 , a control device 11 , a plurality of sensors 12 , a control panel 13 , a curtain controller 14 , a lamp 15 , and a temperature controller 16 for illustration.
  • the lamp 15 includes a lamp controller.
  • the control device 11 , a plurality of sensors 12 , the control panel 13 , the curtain controller 14 , the lamp controller, and the temperature controller 16 can communicate through the PLC protocol.
  • the control device 11 , a plurality of sensors 12 , the control panel 13 , the curtain controller 14 , the lamp controller, and the temperature controller 16 can all be integrated with an existing PLC module, and the sending and receiving of signals can be realized through the PLC module.
  • the PLC module may include a PLC modulation and demodulation component
  • the sensor 12 may receive control instructions through the PLC module, and send the sensing information back to the control device 11 through the PLC module.
  • the control panel 13 can send control instructions through the PLC module.
  • the control device 11 can also send control commands through the PLC module.
  • the terminal device when the terminal device joins the multi-device networking system 100, the terminal device can report the device ID, for example, the device ID is a Media Access Control (MAC) address to the control device 11, and the control device 11 can Communicate with the electronic device with the user interface on the upper layer, and the user can assign a logical address to the terminal device through the electronic device.
  • MAC Media Access Control
  • Each terminal device in the multi-device networking system 100 can determine the identity of other terminal devices based on the logical address, and can also determine the terminal device expected to be controlled by the current control command based on the logical address.
  • the control instruction may include the logical address of the terminal device desired to be controlled.
  • FIG. 3 it is a schematic diagram of a communication architecture of a multi-device networking system 100 provided in another embodiment of the present application.
  • FIG. 3 also takes the multi-device networking system 100 including a voltage converter 10 , a control device 11 , a plurality of sensors 12 , a control panel 13 , a curtain controller 14 , a lamp 15 , and a temperature controller 16 as an example for illustration.
  • the lamp 15 includes a lamp controller.
  • control device 11 the multiple sensors 12 , the control panel 13 , the curtain controller 14 , the lamp controller, and the temperature controller 16 are not integrated with a PLC module.
  • the control device 11 can dynamically adjust the voltage of the DC bus to issue control commands to the terminal devices with execution functions, and realize the communication networking of the terminal devices of various buildings without signal wiring, aiming at the renovation of existing buildings Scenarios, it can greatly reduce the difficulty of transformation, and at the same time ensure the reliability of network communication.
  • the control device 11 can issue control instructions to the curtain controller 14, lamp controller, temperature controller 16, etc. by dynamically adjusting the voltage of the DC bus.
  • the control device 11 when the control device 11 needs to control a terminal device, the control device 11 can communicate with the voltage converter 10, and by changing the output voltage of the voltage converter 10, the corresponding control command can be converted into a DC bus.
  • the terminal device can receive the control instruction sent by the control device 11 and execute the control operation corresponding to the control instruction by detecting and analyzing the voltage fluctuation sequence of the DC bus.
  • the control device 11 wants to adjust the brightness of the lamp 15
  • the control device 11 communicates with the voltage converter 10 to change the DC voltage output by the voltage converter 10, and the DC voltage output by the voltage converter 10 can be defined according to the protocol shown in Figure 4
  • the lamp brightness adjustment command is converted into a voltage fluctuation sequence
  • the lamp controller can obtain the lamp brightness adjustment command by detecting and analyzing the voltage fluctuation sequence, and then execute the lamp brightness adjustment command, thereby adjusting the brightness of the lamp 15 .
  • the lamp controller may include an existing voltage fluctuation detection circuit to detect the voltage fluctuation sequence, and the internal chip of the lamp controller may analyze the voltage fluctuation sequence to obtain the brightness adjustment instruction of the lamp.
  • the voltage converter 10 can be a closed-loop voltage conversion structure, the voltage converter 10 can include a digital potentiometer, and the control device 11 can change the feedback voltage of the voltage converter 10 by changing the resistance of the digital potentiometer or The reference voltage is used to adjust the magnitude of the DC voltage output by the voltage converter 10 .
  • control command issued by the control device 11 may also include the logical address of the terminal device to be controlled, so that the terminal device corresponding to the control command can execute the control command.
  • the control device 11 may adjust the voltage of the DC bus from V1 to V2 for a duration of T 1 .
  • the voltage converter 10 is a closed-loop voltage conversion structure based on a PWM chip, and the DC voltage output by the voltage converter 10 does not change instantaneously.
  • control command issued by the control device 11 may include a start bit, several data bits, a parity bit and a stop bit. It can be understood that the data structure corresponding to the control instruction issued by the control device 11 can also be set in other forms according to actual needs, which is not limited in this application.
  • the start bit, stop bit and data "0", “1” can be defined based on voltage magnitudes V1, V2 and time T1 .
  • the start bit and stop bit can be positioned as: the voltage is raised to V2 and maintained for a time T 1 ; data "0” is defined as: the voltage is maintained at V1 for the first T 1/2 time, and after T 1/2 time, The voltage is maintained at V2; the data " 1 " is defined as: within T1 time, the voltage is maintained at V1, and then the characterization control command can be realized by using the voltage fluctuation sequence shown in Figure 4.
  • the start bit, the stop bit, and the data "0" and “1” can also be defined in other forms according to actual needs, but not limited thereto.
  • the data "0” is defined as: the voltage is maintained at V1 in the first T 1/2 time, and the voltage is maintained at V2 in the subsequent T 1/2 time;
  • the data "1" is defined as: the first T 1/4 time , the voltage is maintained at V1, and the voltage is maintained at V1 within the next 3/4*T 1 time.
  • several data bits may consist of several data "0” and “1”, and check digit may consist of data “0” and/or “1". It can be understood that the start bit and the stop bit can also be defined as being composed of data "0” and/or "1".
  • FIG. 5 it is a schematic diagram of a communication architecture of a multi-device networking system 100 provided in another embodiment of the present application.
  • FIG. 5 also takes a multi-device networking system 100 including a voltage converter 10 , a control device 11 , a plurality of sensors 12 , a control panel 13 , a curtain controller 14 , a lamp 15 , and a temperature controller 16 for illustration.
  • the lamp 15 includes a lamp controller.
  • the control device 11 a plurality of sensors 12 , the control panel 13 , the curtain controller 14 , the lamp controller, and the temperature controller 16 are integrated with a PLC module.
  • the multi-device networking system 100 can realize data interaction between multiple terminal devices by dynamically adjusting the voltage of the DC bus and combining PLC communication, and can complete the communication networking of terminal devices in various buildings without signal wiring. , for existing building renovation scenarios, it can greatly reduce the difficulty of renovation, and at the same time ensure the reliability of network communication. For example, when the DC bus voltage is raised to a certain voltage, the terminal equipment can be temporarily switched to a working state that will not interfere with the communication of the PLC module, creating a good communication environment for the PLC module. During this period, PLC communication can improve PLC communication reliability.
  • the end device may be provided with a DC-DC converter that performs DC-DC conversion again on the direct current output by the voltage converter 10, for example, a 60V
  • the direct current is converted to 12V direct current or 5V direct current.
  • the short-term switching of the terminal equipment to the working state that will not interfere with the communication of the PLC module may refer to: controlling the DC-DC converter corresponding to the terminal equipment to temporarily stop outputting pulse width modulation (Pulse Width Modulation, PWM) signal, or changing the PWM signal Frequency of.
  • PWM pulse width modulation
  • the control device 11 when the DC bus voltage is raised to a certain voltage, can control the terminal device to temporarily switch to a working state that will not interfere with the communication of the PLC module. For example, the control device 11 can increase the DC bus voltage to a certain voltage by changing the resistance of the digital potentiometer, and maintain it for a time T 2 .
  • the voltage converter 10 can also be integrated with a PLC module, and the control device 11 can communicate with the voltage converter 10 through PLC communication, so as to increase the DC bus voltage to a certain voltage and maintain it for a time T 2 .
  • the control device 11 may adjust the voltage of the DC bus from V1 to V3 for a duration of T 2 .
  • a communication between end devices through the PLC module can be completed within time T2 . If the communication delay requirement of the multi-device networking system 100 is low, the time interval of each PLC communication can be set as short as possible, that is, the time interval T3 can be set as small as possible.
  • the power line-based multi-device networking method is applied to a multi-device networking system 100 .
  • the multi-device networking system 100 may include a voltage converter 10 and a plurality of terminal devices, and the multiple terminal devices are connected to the voltage converter 10 through a power line, and the voltage converter 10 may be connected to an external input voltage (for example, 220V AC mains) to perform voltage conversion to supply power to multiple terminal devices.
  • the voltage converter 10 can be an AC-DC converter or a DC-DC converter, and multiple terminal devices can include a control device 11, multiple sensors 12, a control panel 13, a curtain controller 14, a lamp 15, a temperature controller 16, etc.
  • Powerline-based multi-device networking methods may include:
  • the terminal device obtains the direct current signal output by the voltage converter 10, so as to enter a power-on state.
  • each end device can be connected to the output terminal of the voltage converter 10 through the power line, and then the DC signal output by the voltage converter 10 can be obtained, and the voltage output by the voltage converter can be used for each end device. Power supply, so that each end device can enter the power-on state.
  • the terminal device extracts a first PLC signal from the direct current signal, and executes a corresponding control operation based on the first PLC signal.
  • the terminal device couples the second PLC signal to the direct current signal, so as to transmit it to other terminal devices.
  • the terminal device may include a PLC module, and the terminal device realizes extracting the first PLC signal from the direct current signal through the PLC module, or coupling the second PLC signal to the direct current signal.
  • the power line-based multi-device networking method is applied to a multi-device networking system 100 .
  • the multi-device networking system 100 may include a voltage converter 10 and a plurality of terminal devices, and the multiple terminal devices are connected to the voltage converter 10 through a power line, and the voltage converter 10 may be connected to an external input voltage (for example, 220V AC mains) to perform voltage conversion to supply power to multiple terminal devices.
  • the voltage converter 10 can be an AC-DC converter or a DC-DC converter, and multiple terminal devices can include a control device 11, multiple sensors 12, a control panel 13, a curtain controller 14, a lamp 15, a temperature controller 16, etc.
  • Powerline-based multi-device networking methods may include:
  • the control device 11 adjusts the output voltage of the voltage converter 10 based on the control command, so that the voltage converter 10 outputs a voltage fluctuation sequence corresponding to the control command.
  • control instruction may be an instruction to be issued by the control device 11.
  • the control device 11 may issue a curtain opening instruction to the curtain controller 14, and the curtain controller 14 Start the curtain motor and pull the curtain open.
  • the voltage converter 10 can be a closed-loop voltage conversion structure, the voltage converter 10 includes a sampling resistor for feedback voltage sampling (for example, the sampling resistor is a digital potentiometer), and the control device 11 can adjust the sampling resistor based on the control command.
  • the resistance value of the resistor is used to adjust the output voltage of the voltage converter 10 .
  • the voltage waveform of the binary data "0" and the voltage waveform of the binary data “1” can be set based on the preset voltage duration T1 and the first voltage and the second voltage output by the voltage converter 10, and then The voltage converter 10 can be controlled to output a voltage fluctuation sequence corresponding to the binary data sequence by acquiring the binary data sequence corresponding to the control command.
  • the first voltage is the voltage for supplying power to multiple terminal devices.
  • the control device 11 adjusts the output voltage of the voltage converter 10
  • the DC voltage output by the voltage converter 10 is the first voltage
  • the second voltage can be greater or less than first voltage. Assuming that the first voltage is the reference voltage V1 of the DC bus, the second voltage is greater than the first voltage.
  • the control device 11 may adjust the voltage of the DC bus from V1 to V2 (the second voltage) for a duration of T 1 .
  • the data frame corresponding to the control command may include a start bit, a data bit, a parity bit and a stop bit. It is also possible to set the voltage waveform of the start bit, the voltage waveform of the stop bit, the voltage waveform of the binary data "0” and the binary data “1” based on the preset voltage duration and the first voltage and the second voltage output by the voltage converter 10. ", and then the voltage converter 10 can be controlled to output a voltage fluctuation sequence corresponding to the data frame.
  • the data bit can be composed of binary data "0” and binary data "1”
  • the check bit can be composed of binary data "0" and/or binary data "1".
  • the voltage waveform of the start bit is the same as the voltage waveform of the stop bit, and the voltage waveform of the start bit may be: from the first voltage to the second voltage for a time T 1 , the binary data "0"
  • the voltage waveform can be: the first voltage is maintained for the first T 1 /2 time, and the second voltage is maintained for the subsequent T 1 /2 time.
  • the voltage waveform of the binary data "1" can be: the first voltage is maintained for the T 1 time.
  • the remaining terminal devices among the multiple terminal devices detect the voltage fluctuation sequence, analyze the voltage fluctuation sequence to obtain a control instruction corresponding to the voltage fluctuation sequence, and execute corresponding control operations based on the control instruction.
  • the other end devices can detect and analyze the voltage fluctuation sequence of the DC bus, In order to realize receiving the control instruction issued by the control device 11, and executing the control operation corresponding to the control instruction. For example, if the control device 11 wants to adjust the brightness of the lamp 15, the control device 11 changes the DC voltage output by the voltage converter 10, and converts the brightness adjustment command of the lamp into a voltage fluctuation sequence.
  • the lamp controller can detect and analyze the voltage fluctuation sequence to obtain The brightness adjustment instruction of the lamp is executed, and then the brightness adjustment instruction of the lamp is executed, and then the brightness of the lamp 15 is adjusted.
  • the power line-based multi-device networking method is applied to a multi-device networking system 100 .
  • the multi-device networking system 100 may include a voltage converter 10 and a plurality of terminal devices, and the multiple terminal devices are connected to the voltage converter 10 through a power line, and the voltage converter 10 may be connected to an external input voltage (for example, 220V AC mains) to perform voltage conversion to supply power to multiple terminal devices.
  • the voltage converter 10 can be an AC-DC converter or a DC-DC converter, each terminal device can include a PLC module, and multiple terminal devices can include a control device 11, a plurality of sensors 12, a control panel 13, and a curtain controller 14. Lamps 15, temperature controller 16, etc.
  • Powerline-based multi-device networking methods may include:
  • the control device 11 adjusts the output voltage of the voltage converter 10 so that the output voltage of the voltage converter 10 changes from the first voltage to the second voltage and maintains it for a preset time.
  • the first voltage may be a voltage that supplies power to multiple terminal devices.
  • the magnitude of the DC voltage output by the voltage converter 10 is the first voltage.
  • the second voltage may be greater or less than the first voltage.
  • the preset time can be set according to actual needs, which is not limited in the present application, for example, the preset time is 1s.
  • the voltage converter 10 can be a closed-loop voltage conversion structure, the voltage converter 10 includes a sampling resistor for feedback voltage sampling (for example, the sampling resistor is a digital potentiometer), and the control device 11 can adjust the sampling resistor based on the control command.
  • the resistance value of the resistor is used to adjust the output voltage of the voltage converter 10 .
  • Any two terminal devices among the multiple terminal devices communicate through the PLC module within a preset time.
  • any two terminal devices can communicate through the PLC module within a preset time, which can improve the reliability of PLC communication.
  • any two end devices include a first end device and a second end device, the first end device includes a first PLC module, and the second end device includes a second PLC module.
  • the first end device couples the PLC signal to the DC signal through the first PLC module within the preset time, and the second end device can extract the PLC signal from the DC signal through the second PLC module, realizing the connection between the first end device and the second end device. devices to communicate.
  • the end device may be provided with a DC-DC converter that performs DC-DC conversion again on the direct current output by the voltage converter 10, for example, a 60V
  • the direct current is converted to 12V direct current or 5V direct current.
  • the control device 11 can control the DC-DC converter corresponding to the terminal device to temporarily stop outputting the PWM signal, or change the frequency of the PWM signal, so that the control device 11 can control the terminal device to temporarily switch to a working state that will not interfere with the communication of the PLC module , can further improve the reliability of PLC communication.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the modules or units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined Or it can be integrated into another device, or some features can be omitted, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the unit described as a separate component may or may not be physically separated, and a component displayed as a unit may be one physical unit or multiple physical units, that is, it may be located in one place, or may be distributed to multiple different places. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a readable storage medium.
  • the technical solution of the embodiment of the present application is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the software product is stored in a storage medium Among them, several instructions are included to make a device (which may be a single-chip microcomputer, a chip, etc.) or a processor (processor) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Automation & Control Theory (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Direct Current Feeding And Distribution (AREA)

Abstract

本申请实施例提供了一种基于电力线的多设备组网方法,涉及通信技术领域。多个末端设备中的控制设备基于控制指令调节电压变换器的输出电压,使电压变换器输出与控制指令对应的电压波动序列,其中电压变换器通过对输入电压进行电压变换,以输出直流电信号为多个末端设备供电;其余末端设备可检测电压波动序列,对电压波动序列进行解析得到与电压波动序列对应的控制指令,及执行相应的控制操作。本申请实施例还提供了一种基于电力线的多设备组网系统。本申请可基于电力线对多个末端设备进行供电与通信组网,通过将控制指令转化为电压波动序列,末端设备可通过检测并解析电力线上的电压波动序列,以执行相应的控制操作。

Description

基于电力线的多设备组网方法及系统
本申请要求于2022年02月16日提交中国专利局,申请号为202210142327.7、申请名称为“基于电力线的多设备组网方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种基于电力线的多设备组网方法及系统。
背景技术
在智能家居、智能楼宇的概念中,家庭或者办公楼宇中的门锁、灯具、窗帘、空调、电视等设备可以实现智能化控制。
现有技术一般采用有线组网方案或者无线组网方案来实现这些设备的智能化控制。在有线组网方案中,灯具、空调、电视一般采用市电供电,其他智能末端(如传感器、控制面板、灯具控制器、窗帘控制器等)一般由总线电源供电,总线电源可以由市电进行电压变换得到,传感器、控制面板、灯具控制器、窗帘控制器等采用有线协议(例如KNX协议)进行组网。在无线组网方案中,灯具、空调、电视一般采用市电供电,其他智能末端一般采用电池供电或适配器供电,传感器、控制面板、灯具控制器、窗帘控制器等采用无线协议(例如WI-FI协议、zigbee协议、LoRa协议等)进行组网。有线组网方案由于需要信号线与电源线的双重布线,存在成本高,落地难度大的问题,无线组网方案虽然布线相对简单,但是无线协议存在穿墙能力差,信道易阻塞的问题,组网可靠性差,较易发生通信延迟。
发明内容
有鉴于此,有必要提供一种基于电力线的多设备组网方法及系统,其可基于电力线实现多设备通信组网,且通信可靠性高。
本申请实施例第一方面公开了一种基于电力线的多设备组网方法,应用于多设备组网系统,多设备组网系统包括电压变换器及多个末端设备,电压变换器通过对输入电压进行电压变换,输出直流电信号为多个末端设备供电,所述方法包括:多个末端设备中的控制设备基于控制指令调节电压变换器的输出电压,使电压变换器输出与控制指令对应的电压波动序列;多个末端设备中的其余末端设备检测电压波动序列,对电压波动序列进行解析得到与电压波动序列对应的控制指令,及基于控制指令执行相应控制操作。
采用该技术方案,基于电压变换器得到直流电压为各末端设备供电,例如各末端设备可以并列的方式接入至直流母线,可提升系统供电效率,且可通过直流母线将各末端设备进行通信组网,将控制指令转化为电压波动序列,末端设备可通过检测并解析直流母线上的电压波动序列,以执行与控制指令对应的控制操作。
在一种可能的实现方式中,电压变换器包括用于进行反馈电压采样的采样电阻,控制设备基于控制指令调节电压变换器的输出电压,包括:控制设备基于控制指令调节采样电阻的电阻值,以调节电压变换器的输出电压。
采用该技术方案,控制设备可以基于控制指令调节采样电阻的电阻值来实现调节电压变换器的输出电压,例如电压变换器为闭环电压变换结构,通过调节采样电阻的电阻值,可以改变反馈电压,进而可以实现调节电压变换器的输出电压。
在一种可能的实现方式中,使电压变换器输出与控制指令对应的电压波动序列,包括:基于预设电压持续时间及电压变换器输出的第一电压与第二电压,设定二进制数据“0”的电压波形及二进制数据“1”的电压波形,其中,第一电压为对多个末端设备进行供电的电压,第二电压大于或小于第一电压;获取与控制指令对应的二进制数据序列,及控制电压变换器输出与二进制数据序列对应的电压波动序列。
采用该技术方案,可以基于电压变换器输出的第一电压与第二电压设定二进制数据“0”、“1”的电压波形,进而控制设备可以基于与控制指令对应的二进制数据序列,控制电压变换器输出与二进制数据序列对应的电压波动序列。
在一种可能的实现方式中,与控制指令对应的数据帧包括起始位、数据位、校验位及停止位,使电压变换器输出与控制指令对应的电压波动序列,包括:基于预设电压持续时间及电压变换器输出的第一电压与第二电压,设定起始位的电压波形、停止位的电压波形、二进制数据“0”的电压波形及二进制数据“1”的电压波形,其中第一电压为对多个末端设备进行供电的电压,第二电压大于或小于所述第一电压,数据位由二进制数据“0”与二进制数据“1”组成,校验位由二进制数据“0”和/或二进制数据“1”组成;控制电压变换器输出与数据帧对应的电压波动序列。
采用该技术方案,可以基于电压变换器输出的第一电压与第二电压设定起始位、数据位、校验位及停止位的电压波形,数据位与校验位可以由二进制数据“0”、“1”的电压波形组合得到,进而控制设备可以基于与控制指令对应的数据帧,控制电压变换器输出与数据帧对应的电压波动序列。
在一种可能的实现方式中,起始位的电压波形与停止位的电压波形相同,起始位的电压波形为:从第一电压提升至第二电压并维持时间T 1;二进制数据“0”的电压波形为:前T 1/2时间维持第一电压,后T 1/2时间维持第二电压;二进制数据“1”的电压波形为:T 1时间维持第一电压。
采用该技术方案,通过设定起始位、停止位、二进制数据“0”及“1”的电压波形,使得控制设备可以基于与控制指令对应的数据帧,控制电压变换器输出与数据帧对应的电压波动序列。
第二方面,本申请实施例提供一种基于电力线的多设备组网方法,应用于多设备组网系统,多设备组网系统包括电压变换器及多个末端设备,电压变换器通过对输入电压进行电压变换,输出直流电信号为多个末端设备供电,多个末端设备中的每个末端设备均包括电力载波通信(power line communication,PLC)模块,所述方法包括:多个末端设备中的控制设备调节电压变换器的输出电压,使电压变换器的输出电压由第一电压转变为第二电压,且维持预设时间,其中第一电压为对多个末端设备进行供电的电压,第二电压大于或小于第一电压;多个末端设备中的任意两个末端设备在预设时间内通过PLC模块进行通信。
采用该技术方案,基于电压变换器得到直流电压为各末端设备供电,例如各末端设备可以并列的方式接入至直流母线,可提升系统供电效率,且可通过直流母线将各末端设备进行通信组网,基于动态直流母线电压与PLC通信相结合的通信方式,可以提高PLC通信的可靠性。
在一种可能的实现方式中,电压变换器包括用于进行反馈电压采样的采样电阻,控制设备调节电压变换器的输出电压,包括:控制设备调节采样电阻的电阻值,以调节电压变换器的输出电压。
采用该技术方案,控制设备可以通过调节采样电阻的电阻值来实现调节电压变换器的输出电压,例如电压变换器为闭环电压变换结构,通过调节采样电阻的电阻值,可以改变反馈电压,进而可以实现调节电压变换器的输出电压。
在一种可能的实现方式中,任意两个末端设备包括第一末端设备及第二末端设备,第一末端设备包括第一PLC模块,第二末端设备包括第二PLC模块,任意两个末端设备在预设时间内通过PLC模块进行通信,包括:第一末端设备在预设时间内通过第一PLC模块将PLC信号耦合至直流电信号上;第二末端设备通过第二PLC模块从直流电信号中提取PLC信号。
采用该技术方案,通过PLC模块来实现将PLC信号耦合至直流电信号上,或者从直流电信号中提取PLC信号,使得末端设备之间可以进行通信。
在一种可能的实现方式中,多设备组网系统还包括至少一子变换器,子变换器电连接于多个末端设备中的至少一个末端设备,子变换器用于对电压变换器输出的直流电信号进行电压变换,以为至少一个末端设备提供额定工作电压,所述方法还包括:控制设备控制子变换器的脉冲宽度调制(pulse width modulation,PWM)芯片在预设时间内停止输出PWM信号,或者调整PWM信号的频率。
采用该技术方案,当将电压变换器的输出电压由第一电压调整为第二电压期间,末端设备的字变换器可以短暂切换至不会对PLC通信造成干扰的工作状态或者对PLC通信造成干扰较低的工作状态,例如短暂停止PWM发波,或者改变PWM发波频率等,为PLC通信营造较佳的通信环境,在此期间进行PLC通信,可以提高PLC通信可靠性。
第三方面,本申请实施例提供一种基于电力线的多设备组网系统,包括:多个末端设备;电压变换器,通过电力线与多个末端设备电连接,电压变换器用于对输入电压进行电压变换,以输出直流电信号为多个末端设备供电;其中,多个末端设备中的控制设备用于调节电压变换器的输出电压,使控制设备基于电力线与其余末端设备进行通信。
采用该技术方案,基于电压变换器得到直流电压可以通过电力线为各末端设备供电,可提升系统供电效率,且可通过电力线将各末端设备进行通信组网,末端设备中的控制设备可以通过调节电压变换器的输出电压,以使控制设备基于电力线与其余末端设备进行通信,例如,控制设备通过调节电压变换器的输出电压实现将需要下发的控制指令转化为电压波动序列,其余末端设备可通过检测并解析电力线线上的电压波动序列,实现接收控制指令,控制设备也可以通过动态直流电压与PLC通信相结合的通信方式,与其余末端设备进行通信,实现提高PLC通信的可靠性。
在一种可能的实现方式中,控制设备用于基于控制指令调节电压变换器的输出电压,以使电压变换器输出与控制指令对应的电压波动序列;其余末端设备用于检测电力线传输的电压波动序列,对电压波动序列进行解析得到与电压波动序列对应的控制指令,及基于控制指令执行相应控制操作。
采用该技术方案,通过将控制指令转化为电压波动序列,末端设备可通过检测并解析电力线上的电压波动序列,以执行与控制指令对应的控制操作。
在一种可能的实现方式中,电压变换器包括用于进行反馈电压采样的采样电阻,控制 设备用于基于控制指令调节采样电阻的电阻值,以调节电压变换器的输出电压。
采用该技术方案,控制设备可以基于控制指令调节采样电阻的电阻值来实现调节电压变换器的输出电压,例如电压变换器为闭环电压变换结构,通过调节采样电阻的电阻值,可以改变反馈电压,进而可以实现调节电压变换器的输出电压。
在一种可能的实现方式中,控制设备用于获取与控制指令对应的二进制数据序列,及控制电压变换器输出与二进制数据序列对应的电压波动序列,其中,二进制数据“0”的电压波形与二进制数据“1”的电压波形基于预设电压持续时间及电压变换器输出的第一电压与第二电压设定,第一电压为对多个末端设备进行供电的电压,第二电压大于或小于第一电压。
采用该技术方案,可以基于电压变换器输出的第一电压与第二电压设定二进制数据“0”、“1”的电压波形,进而控制设备可以基于与控制指令对应的二进制数据序列,控制电压变换器输出与二进制数据序列对应的电压波动序列。
在一种可能的实现方式中,多个末端设备中的每个末端设备均包括PLC模块,控制设备将电压变换器的输出电压由第一电压转变为第二电压,且维持预设时间,控制设备与其余末端设备在预设时间内通过PLC模块进行通信,其中,第一电压为对多个末端设备进行供电的电压,第二电压大于或小于第一电压。
采用该技术方案,通过电力线将各末端设备进行通信组网,基于动态电力线电压与PLC通信相结合的通信方式,可以提高PLC通信的可靠性。
在一种可能的实现方式中,基于电力线的多设备组网系统还包括至少一子变换器,子变换器电连接于多个末端设备中的至少一个末端设备,子变换器用于对电压变换器输出的直流电信号进行电压变换,以为至少一个末端设备提供额定工作电压,控制设备还用于控制子变换器的PWM芯片在预设时间内停止输出PWM信号,或者调整PWM信号的频率。
采用该技术方案,当将电压变换器的输出电压由第一电压调整为第二电压期间,末端设备的字变换器可以短暂切换至不会对PLC通信造成干扰的工作状态或者对PLC通信造成干扰较低的工作状态,例如短暂停止PWM发波,或者改变PWM发波频率等,为PLC通信营造较佳的通信环境,在此期间进行PLC通信,可以提高PLC通信可靠性。
第四方面,本申请实施例提供一种基于电力线的多设备组网系统,包括电压变换器及多个末端设备。电压变换器用于对输入电压进行电压变换,及输出直流电信号为多个末端设备供电。多个末端设备中的每个末端设备均包括PLC模块,多个末端设备中的任意两个末端设备通过PLC模块进行通信。
采用该技术方案,基于电压变换器得到直流电压可以通过电力线为各末端设备供电,可提升系统供电效率,且可通过电力线将各末端设备进行通信组网,组网下的任意两个末端设备可以通过PLC进行通信。
附图说明
图1为本申请一实施例提供的基于电力线的多设备组网方法的应用场景图;
图2为本申请一实施例提供的多设备组网系统的通信架构示意图;
图3为本申请另一实施例提供的多设备组网系统的通信架构示意图;
图4为本申请一实施例提供的与控制指令对应的电压波动序列的时序波形图;
图5为本申请又一实施例提供的多设备组网系统的通信架构示意图;
图6为本申请一实施例提供的动态直流母线与PLC相结合的时序波形图;
图7为本申请一实施例提供的基于电力线的多设备组网方法的步骤流程示意图;
图8为本申请另一实施例提供的基于电力线的多设备组网方法的步骤流程示意图;
图9为本申请又一实施例提供的基于电力线的多设备组网方法的步骤流程示意图。
具体实施方式
需要说明的是,本申请中“至少一个”是指一个或者多个,“多个”是指两个或多于两个。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。本申请的说明书和权利要求书及附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不是用于描述特定的顺序或先后次序。
在本申请实施例中,“示例性的”或者“例如”等词用于表示作例子、例证或说明。本申请实施例中被描述为“示例性的”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性的”或者“例如”等词旨在以具体方式呈现相关概念。
为了便于理解,示例的给出了部分与本申请实施例相关的概念说明以供参考。
PLC是指利用现有电力线,通过载波方式将模拟或数字信号进行高速传输的技术。PLC可实现不需要重新架设通信网络,通过电力线即可进行数据传递的优点。
下面结合图1示例性的介绍本发明实施例提供的基于电力线的多设备组网方法的应用场景图。
该实施例可应用于多设备组网系统100。在多设备组网系统100,可以使用变换器将市电(例如220V的交流电)转换为直流电,形成直流母线。由直流母线为多设备组网系统100中的多个末端设备进行供电,例如将多设备组网系统100中的控制面板、传感器、设备控制模块、灯具等以并列的方式接入至直流母线,由直流母线对这些末端设备进行供电,同时这些末端设备可以借助直流母线实现通信组网。
在一些实施例中,末端设备可以包括传感器、网关及多设备组网系统100中各个智能设备的控制模块等。
图1以多设备组网系统100包括电压变换器10、控制设备11、多个传感器12、控制面板13、窗帘控制器14、灯具15、温度控制器16为例进行说明。可以理解的是,本实施例示意的结构并不构成对多设备组网系统100的具体限定。在另一些实施例中,多设备组网系统100可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。例如,多设备组网系统100还可以包括通风设备、热水器、空调、电视等设备的控制器或者控制面板,通风设备、热水器、空调、电视等可以接入市电。
如图1所示,电压变换器10输出的直流电压可以通过直流母线L1为控制设备11、多个传感器12、控制面板13、窗帘控制器14、灯具15、温度控制器16等多个末端设备供电。灯具15对应有灯具控制器,灯具控制器可以集成在灯具15内,灯具控制器也可以独立于灯具15设置。控制设备11、多个传感器12、控制面板13、窗帘控制器14、灯具控制器等之间还可以通过直流母线L1进行通信。由于末端设备的电力均来源于电压变换器10输出的直流电,相比现有技术通过变换器单独为灯具15供电,或者为几个末端设备供电,本申请多设备组网系统100中的所有末端设备均接入直流母线L1,电压变换 器10输出功率变大,变换器损耗降低,进而可以提高供电效率。
电压变换器10可以是交流转直流(AC-DC)变换器,电压变换器10输出的直流电压大小可以根据实际需求进行设定,本申请对此不作限定。例如,电压变换器10可以将220V的交流电转换为60V的直流电。在其他实施例中,电压变换器10还可以是直流转直流(DC-DC)变换器。例如,电压变换器10可以将800V的直流电转换为60V的直流电。
在一些实施例中,电压变换器10为闭环电压变换结构,电压变换器10中的采样电阻可以是数字电位器,控制设备11可以通过改变数字电位器的电阻,来实现改变电压变换器10的反馈电压或者参考电压,进而可以调节电压变换器10的输出电压。即控制设备11可以通过改变数字电位器的电阻,来调节电压变换器10输出的直流电压大小。
控制设备11可以是网关或者边缘控制器,控制设备11作为多设备组网系统100的控制中心,可实现系统信息的采集、信息输入、信息输出、集中控制、远程控制、联动控制等功能。多个传感器12可以包括温度传感器、门磁传感器、照度传感器、人体传感器等。控制面板13可以是触控面板或者包含有触控屏与实体按键的面板,控制面板13可提供控制指令的输入、设备状态的查看等功能,例如控制面板13可以包括空调控制面板、照明控制面板等。窗帘控制器14可用于接收窗帘控制指令控制窗帘电机,进而实现窗帘的自动控制。灯具15可以是提供照明功能的LED灯。温度控制器16可以是指用于根据控制指令自动控制空调温度的控制器,或者用于根据控制指令自动控制热水器温度的控制器等。
在一些实施例中,控制设备11还可以通过诸如快速以太网(Fast Ethernet,FE)端口或者千兆以太网(Gigabit Ethernet,GE)端口与智能管理系统通信。例如,智能管理系统为布设在服务器上的楼宇管理系统。
在一些实施例中,不同的末端设备所需的直流电压大小可能不同,可以根据实际需求设置DC-DC变换器,对电压变换器10输出的直流电可以再次进行DC-DC变换,例如将60V的直流电转换为12V的直流电或者5V的直流电。对于所需的直流电压大小相同的多个末端设备,也可以共用一个DC-DC变换器。
如图2所示,为本申请一实施例提供的多设备组网系统100的通信架构示意图。
图2以多设备组网系统100包括电压变换器10、控制设备11、多个传感器12、控制面板13、窗帘控制器14、灯具15、温度控制器16为例进行说明。灯具15包括灯具控制器。
控制设备11、多个传感器12、控制面板13、窗帘控制器14、灯具控制器、温度控制器16之间可以通过PLC协议进行通信。控制设备11、多个传感器12、控制面板13、窗帘控制器14、灯具控制器、温度控制器16均可以集成有现有的PLC模块,通过PLC模块来实现信号的发送、接收。例如,PLC模块可以包括PLC调制解调组件,传感器12可以通过PLC模块接收控制指令,通过PLC模块将感测信息回传给控制设备11。控制面板13可以通过PLC模块发送控制指令。控制设备11亦可以通过PLC模块发送控制指令。
在一些实施例中,当末端设备加入多设备组网系统100时,末端设备可以上报设备ID,例如设备ID为媒体存取控制(Media Access Control,MAC)地址至控制设备11,控制设备11可以与上层具有用户交互界面的电子设备进行通信,用户通过电子设备可以 为该末端设备分配逻辑地址。多设备组网系统100中的各个末端设备可以基于逻辑地址确定其余末端设备的身份,也可以基于逻辑地址确定当前控制指令所期望控制的末端设备。例如,控制指令可以包括所期望控制的末端设备的逻辑地址。
如图3所示,为本申请另一实施例提供的多设备组网系统100的通信架构示意图。
图3同样以多设备组网系统100包括电压变换器10、控制设备11、多个传感器12、控制面板13、窗帘控制器14、灯具15、温度控制器16为例进行说明。灯具15包括灯具控制器。
该实施例中,控制设备11、多个传感器12、控制面板13、窗帘控制器14、灯具控制器、温度控制器16未集成有PLC模块。控制设备11可以通过动态调整直流母线的电压大小来实现将控制指令下发至各具有执行功能的末端设备,实现无需信号布线完成各类楼宇的末端设备的通信组网,针对现有的楼宇改造场景,可极大降低改造难度,同时可保障组网通信的可靠性。例如,控制设备11可以通过动态调整直流母线的电压大小来实现将控制指令下发给窗帘控制器14、灯具控制器、温度控制器16等。
在一些实施例中,当控制设备11需要控制某个末端设备时,控制设备11可以与电压变换器10通信,通过改变电压变换器10的输出电压,来实现将相应控制指令转化为直流母线的电压波动序列,末端设备可以通过检测并解析直流母线的电压波动序列,来实现接收控制设备11发送的控制指令,及执行控制指令对应的控制操作。例如,控制设备11想要调节灯具15的亮度,控制设备11与电压变换器10通信,改变电压变换器10输出的直流电压,电压变换器10输出的直流电压可以按照图4所示的协议定义方式,将灯具亮度调节指令转化为电压波动序列,灯具控制器可以通过检测并解析电压波动序列,得到灯具亮度调节指令,然后执行灯具亮度调节指令,进而实现调节灯具15的亮度。灯具控制器可以包括现有的电压波动检测电路来实现检测电压波动序列,灯具控制器内部的芯片可以对电压波动序列进行解析,得到灯具亮度调节指令。
在一些实施例中,电压变换器10可以为闭环电压变换结构,电压变换器10可以包括数字电位器,控制设备11可以通过改变数字电位器的电阻,来实现改变电压变换器10的反馈电压或者参考电压,进而实现调节电压变换器10输出的直流电压大小。
在一些实施例中,控制设备11下发的控制指令同样可以包括所期望控制的末端设备的逻辑地址,使得与该控制指令对应的末端设备可以执行该控制指令。
如图4所示,假设直流母线的基准电压为V1,即控制设备11未调整直流母线的电压时,电压变换器10输出的直流电压大小为V1。在某一时刻,控制设备11可以将直流母线的电压由V1调整为V2,持续时间为T 1。V2与V1的关系可以是:V2=V1+V1*a,T 1=b,其中参数a、b的值可以实际需求进行设定,本申请对此不作限定。举例而言,a为5%,b为1s,或者a为10%,b为1s等。电压变换器10为基于PWM芯片的闭环电压变换结构,电压变换器10输出的直流电压不会瞬时发生变化。
在一些实施例中,控制设备11下发的控制指令可以包括起始位、若干数据位、校验位及停止位。可以理解的,也可以根据实际需求设定控制设备11下发的控制指令所对应的数据结构为其他形式,本申请对此不作限定。
在一些实施例中,可以基于电压大小V1、V2及时间T 1来定义起始位、停止位及数据“0”、“1”。例如,起始位与停止位可以定位为:电压提升至V2并维持时间T 1;数据“0”定义为:前T 1/2时间内,电压维持在V1,后T 1/2时间内,电压维持在V2;数据“1”定义 为:T 1时间内,电压维持在V1,进而可以通过采用图4所示的电压波动序列实现表征控制指令。可以理解的,起始位、停止位及数据“0”、“1”也可以根据实际需求定义为其他形式,并不此为限。例如,将数据“0”定义为:前T 1/2时间内,电压维持在V1,后T 1/2时间内,电压维持在V2;数据“1”定义为:前T 1/4时间内,电压维持在V1,后3/4*T 1时间内,电压维持在V1。
在一些实施例中,若干数据位可以由若干个数据“0”、“1”组成,校验位可以由数据“0”和/或“1”组成。可以理解的,也可以将起始位、停止位定义为由数据“0”和/或“1”组成。
如图5所示,为本申请另一实施例提供的多设备组网系统100的通信架构示意图。
图5同样以多设备组网系统100包括电压变换器10、控制设备11、多个传感器12、控制面板13、窗帘控制器14、灯具15、温度控制器16为例进行说明。灯具15包括灯具控制器。
该实施例中,控制设备11、多个传感器12、控制面板13、窗帘控制器14、灯具控制器、温度控制器16集成有PLC模块。多设备组网系统100可以通过动态调整直流母线的电压大小及PLC通信相结合的方式,来实现多个末端设备之间的数据交互,可无需信号布线完成各类楼宇的末端设备的通信组网,针对现有的楼宇改造场景,可极大降低改造难度,同时可保障组网通信的可靠性。例如,当将直流母线电压提升至某一电压期间,末端设备可以短暂切换至不会对PLC模块通信造成干扰的工作状态,为PLC模块营造良好的通信环境,在此期间进行PLC通信,可以提高PLC通信可靠性。
在一些实施例中,由于不同的末端设备所需的直流电压大小可能不同,末端设备可能设置有对电压变换器10输出的直流电进行再次DC-DC变换的DC-DC变换器,例如将60V的直流电转换为12V的直流电或者5V的直流电。末端设备短暂切换至不会对PLC模块通信造成干扰的工作状态可以是指:控制末端设备所对应的DC-DC变换器短暂停止输出脉冲宽度调制(pulse width modulation,PWM)信号,或者改变PMW信号的频率。
在一些实施例中,当将直流母线电压提升至某一电压期间,可以由控制设备11控制末端设备短暂切换至不会对PLC模块通信造成干扰的工作状态。例如,控制设备11可以通过改变数字电位器的电阻,来实现将直流母线电压提升至某一电压,且维持时间T 2
在一些实施例中,电压变换器10也可以集成有PLC模块,控制设备11可以通过PLC通信方式与电压变换器10通信,实现将直流母线电压提升至某一电压,且维持时间T 2
如图6所示,假设直流母线的基准电压为V1,即控制设备11未调整直流母线的电压时,电压变换器10输出的直流电压大小为V1。在某一时刻,控制设备11可以将直流母线的电压由V1调整为V3,持续时间为T 2。V3与V1的关系可以是:V3=V1+V1*c,T 2=d,其中参数c、d的值可以实际需求进行设定,本申请对此不作限定。举例而言,c为5%,d为2s,或者c为8%,d为1s等。末端设备之间的通过PLC模块进行一次通信可以在时间T 2内完成。若多设备组网系统100的通信时延要求低的,每次PLC通信时间间隔可以设置尽可能的短,即时间间隔T 3可以设置为尽可能的小。
如图7所示,为本申请实施例提供的基于电力线的多设备组网方法,应用于多设备组网系统100。本实施例中,多设备组网系统100可以包括电压变换器10及多个末端设备,多个末端设备通过电力线连接至电压变换器10,电压变换器10可以对外部输入电压(例如220V的交流市电)进行电压变换,以对多个末端设备供电。电压变换器10可以是AC-DC变换器或者DC-DC变换器,多个末端设备可以包括控制设备11、多个传感器 12、控制面板13、窗帘控制器14、灯具15、温度控制器16等。基于电力线的多设备组网方法可以包括:
70、末端设备获取电压变换器10输出的直流电信号,以进入上电状态。
在一些实施例中,每个末端设备均可以通过电力线接入至电压变换器10的输出端,进而可以获取电压变换器10输出的直流电信号,实现由电压变换器输出的电压为每个末端设备供电,使得每个末端设备可以进入上电状态。
71、末端设备从直流电信号中提取第一PLC信号,及基于第一PLC信号执行相应控制操作。
72、末端设备将第二PLC信号耦合到直流电信号上,以传输给其余末端设备。
在一些实施例中,末端设备可以包括PLC模块,末端设备通过PLC模块来实现从直流电信号中提取第一PLC信号,或者将第二PLC信号耦合到直流电信号上。
如图8所示,为本申请实施例提供的基于电力线的多设备组网方法,应用于多设备组网系统100。本实施例中,多设备组网系统100可以包括电压变换器10及多个末端设备,多个末端设备通过电力线连接至电压变换器10,电压变换器10可以对外部输入电压(例如220V的交流市电)进行电压变换,以对多个末端设备供电。电压变换器10可以是AC-DC变换器或者DC-DC变换器,多个末端设备可以包括控制设备11、多个传感器12、控制面板13、窗帘控制器14、灯具15、温度控制器16等。基于电力线的多设备组网方法可以包括:
80、控制设备11基于控制指令调节电压变换器10的输出电压,使电压变换器10输出与控制指令对应的电压波动序列。
在一些实施例中,控制指令可以是控制设备11待下发的指令,例如当控制设备11需控制窗帘拉开时,控制设备可以下发窗帘拉开指令至窗帘控制器14,由窗帘控制器14启动窗帘电机,将窗帘拉开。
在一些实施例中,电压变换器10可以为闭环电压变换结构,电压变换器10包括用于进行反馈电压采样的采样电阻(例如采样电阻为数字电位器),控制设备11可以基于控制指令调节采样电阻的电阻值,以实现调节电压变换器10的输出电压。
在一些实施例中,可以基于预设电压持续时间T 1及电压变换器10输出的第一电压与第二电压设定二进制数据“0”的电压波形及二进制数据“1”的电压波形,进而可以通过获取与控制指令对应的二进制数据序列,控制电压变换器10输出与二进制数据序列对应的电压波动序列。第一电压为对多个末端设备进行供电的电压,例如控制设备11未调整电压变换器10的输出电压前,电压变换器10输出的直流电压大小为第一电压,第二电压可大于或小于第一电压。假设第一电压为直流母线的基准电压V1,第二电压大于第一电压。在某一时刻,控制设备11可以将直流母线的电压由V1调整为V2(第二电压),持续时间为T 1。V2与V1的关系可以是:V2=V1+V1*a,T 1=b,其中参数a、b的值可以实际需求进行设定,本申请对此不作限定。举例而言,a为5%,b为1s。
在一些实施例中,与控制指令对应的数据帧可以包括起始位、数据位、校验位及停止位。还可以基于预设电压持续时间及电压变换器10输出的第一电压与第二电压设定起始位的电压波形、停止位的电压波形、二进制数据“0”的电压波形及二进制数据“1”的电压波形,进而可以控制电压变换器10输出与数据帧对应的电压波动序列。数据位可由二进制数据“0”与二进制数据“1”组成,校验位可由二进制数据“0”和/或二进制数据“1”组成。
在一些实施例中,起始位的电压波形与停止位的电压波形相同,起始位的电压波形可以为:从第一电压提升至第二电压并维持时间T 1,二进制数据“0”的电压波形可以为:前T 1/2时间维持第一电压,后T 1/2时间维持第二电压,二进制数据“1”的电压波形可以为:T 1时间维持第一电压。
81、多个末端设备中的其余末端设备检测电压波动序列,对电压波动序列进行解析得到与电压波动序列对应的控制指令,及基于控制指令执行相应控制操作。
在一些实施例中,当控制设备11通过改变电压变换器10的输出电压,实现将相应控制指令转化为直流母线的电压波动序列时,其余末端设备可以通过检测并解析直流母线的电压波动序列,来实现接收控制设备11下发的控制指令,及执行控制指令对应的控制操作。例如,控制设备11想要调节灯具15的亮度,控制设备11改变电压变换器10输出的直流电压,将灯具亮度调节指令转化为电压波动序列,灯具控制器可以通过检测并解析电压波动序列,得到灯具亮度调节指令,然后执行灯具亮度调节指令,进而实现调节灯具15的亮度。
如图9所示,为本申请实施例提供的基于电力线的多设备组网方法,应用于多设备组网系统100。本实施例中,多设备组网系统100可以包括电压变换器10及多个末端设备,多个末端设备通过电力线连接至电压变换器10,电压变换器10可以对外部输入电压(例如220V的交流市电)进行电压变换,以对多个末端设备供电。电压变换器10可以是AC-DC变换器或者DC-DC变换器,每个末端设备均可以包括PLC模块,多个末端设备可以包括控制设备11、多个传感器12、控制面板13、窗帘控制器14、灯具15、温度控制器16等。基于电力线的多设备组网方法可以包括:
90、控制设备11调节电压变换器10的输出电压,使电压变换器10的输出电压由第一电压转变为第二电压,且维持预设时间。
在一些实施例中,第一电压可以为对多个末端设备进行供电的电压,例如控制设备11未调整电压变换器10的输出电压前,电压变换器10输出的直流电压大小为第一电压,第二电压可大于或小于第一电压。预设时间可以根据实际需求进行设定,本申请对此不作限定,例如预设时间为1s。
在一些实施例中,电压变换器10可以为闭环电压变换结构,电压变换器10包括用于进行反馈电压采样的采样电阻(例如采样电阻为数字电位器),控制设备11可以基于控制指令调节采样电阻的电阻值,以实现调节电压变换器10的输出电压。
91、多个末端设备中的任意两个末端设备在预设时间内通过PLC模块进行通信。
在一些实施例中,任意两个末端设备可以在预设时间内通过PLC模块进行通信,可以提高PLC通信的可靠性。例如,任意两个末端设备包括第一末端设备及第二末端设备,第一末端设备包括第一PLC模块,第二末端设备包括第二PLC模块。第一末端设备在预设时间内通过第一PLC模块将PLC信号耦合至直流电信号上,第二末端设备可通过第二PLC模块从直流电信号中提取PLC信号,实现第一末端设备与第二末端设备进行通信。
在一些实施例中,由于不同的末端设备所需的直流电压大小可能不同,末端设备可能设置有对电压变换器10输出的直流电进行再次DC-DC变换的DC-DC变换器,例如将60V的直流电转换为12V的直流电或者5V的直流电。控制设备11可以控制末端设备所对应的DC-DC变换器短暂停止输出PWM信号,或者改变PMW信号的频率,实现由控制设备11控制末端设备短暂切换至不会对PLC模块通信造成干扰的工作状态,可进一步 提升PLC通信的可靠性。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,该模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
该作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
该集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。

Claims (16)

  1. 一种基于电力线的多设备组网方法,应用于多设备组网系统,其特征在于,所述多设备组网系统包括电压变换器及多个末端设备,所述电压变换器通过对输入电压进行电压变换,输出直流电信号为所述多个末端设备供电,所述方法包括:
    所述多个末端设备中的控制设备基于控制指令调节所述电压变换器的输出电压,使所述电压变换器输出与所述控制指令对应的电压波动序列;
    所述多个末端设备中的其余末端设备检测所述电压波动序列,对所述电压波动序列进行解析得到与所述电压波动序列对应的控制指令,及基于所述控制指令执行相应控制操作。
  2. 如权利要求1所述的基于电力线的多设备组网方法,其特征在于,所述电压变换器包括用于进行反馈电压采样的采样电阻,所述控制设备基于控制指令调节所述电压变换器的输出电压,包括:
    所述控制设备基于所述控制指令调节所述采样电阻的电阻值,以调节所述电压变换器的输出电压。
  3. 如权利要求1或2所述的基于电力线的多设备组网方法,其特征在于,所述使所述电压变换器输出与所述控制指令对应的电压波动序列,包括:
    基于预设电压持续时间及所述电压变换器输出的第一电压与第二电压,设定二进制数据“0”的电压波形及二进制数据“1”的电压波形,其中,所述第一电压为对所述多个末端设备进行供电的电压,所述第二电压大于或小于所述第一电压;
    获取与所述控制指令对应的二进制数据序列,及控制所述电压变换器输出与所述二进制数据序列对应的电压波动序列。
  4. 如权利要求1或2所述的基于电力线的多设备组网方法,其特征在于,与所述控制指令对应的数据帧包括起始位、数据位、校验位及停止位,所述使所述电压变换器输出与所述控制指令对应的电压波动序列,包括:
    基于预设电压持续时间及所述电压变换器输出的第一电压与第二电压,设定所述起始位的电压波形、所述停止位的电压波形、二进制数据“0”的电压波形及二进制数据“1”的电压波形,其中所述第一电压为对所述多个末端设备进行供电的电压,所述第二电压大于或小于所述第一电压,所述数据位由所述二进制数据“0”与所述二进制数据“1”组成,所述校验位由所述二进制数据“0”和/或所述二进制数据“1”组成;
    控制所述电压变换器输出与所述数据帧对应的电压波动序列。
  5. 如权利要求4所述的基于电力线的多设备组网方法,其特征在于,所述起始位的电压波形与所述停止位的电压波形相同,所述起始位的电压波形为:从所述第一电压提升至所述第二电压并维持时间T 1;所述二进制数据“0”的电压波形为:前T 1/2时间维持所述第一电压,后T 1/2时间维持所述第二电压;所述二进制数据“1”的电压波形为:T 1时间维持所述第一电压。
  6. 一种基于电力线的多设备组网方法,应用于多设备组网系统,其特征在于,所述多设备组网系统包括电压变换器及多个末端设备,所述电压变换器通过对输入电压进行电压变换,输出直流电信号为所述多个末端设备供电,所述多个末端设备中的每个末端设备均包括电力载波通信PLC模块,所述方法包括:
    所述多个末端设备中的控制设备调节所述电压变换器的输出电压,使所述电压变换器的输出电压由第一电压转变为第二电压,且维持预设时间,其中所述第一电压为对所述多个末端设备进行供电的电压,所述第二电压大于或小于所述第一电压;
    所述多个末端设备中的任意两个末端设备在所述预设时间内通过所述PLC模块进行通信。
  7. 如权利要求6所述的基于电力线的多设备组网方法,其特征在于,所述电压变换器包括用于进行反馈电压采样的采样电阻,所述控制设备调节所述电压变换器的输出电压,包括:
    所述控制设备调节所述采样电阻的电阻值,以调节所述电压变换器的输出电压。
  8. 如权利要求6或7所述的基于电力线的多设备组网方法,其特征在于,所述任意两个末端设备包括第一末端设备及第二末端设备,所述第一末端设备包括第一PLC模块,所述第二末端设备包括第二PLC模块,所述任意两个末端设备在所述预设时间内通过所述PLC模块进行通信,包括:
    所述第一末端设备在所述预设时间内通过所述第一PLC模块将PLC信号耦合至所述直流电信号上;
    所述第二末端设备通过所述第二PLC模块从所述直流电信号中提取所述PLC信号。
  9. 如权利要求6至8中任意一项所述的基于电力线的多设备组网方法,其特征在于,所述多设备组网系统还包括至少一子变换器,所述子变换器电连接于所述多个末端设备中的至少一个末端设备,所述子变换器用于对所述电压变换器输出的直流电信号进行电压变换,以为所述至少一个末端设备提供额定工作电压,所述方法还包括:
    所述控制设备控制所述子变换器的脉冲宽度调制PWM芯片在所述预设时间内停止输出PWM信号,或者调整所述PWM信号的频率。
  10. 一种基于电力线的多设备组网系统,其特征在于,包括:
    多个末端设备;
    电压变换器,通过电力线与所述多个末端设备电连接,所述电压变换器用于对输入电压进行电压变换,以输出直流电信号为所述多个末端设备供电;
    其中,所述多个末端设备中的控制设备用于调节所述电压变换器的输出电压,使所述控制设备基于所述电力线与其余末端设备进行通信。
  11. 如权利要求10所述的基于电力线的多设备组网系统,其特征在于,所述控制设备用于基于控制指令调节所述电压变换器的输出电压,以使所述电压变换器输出与所述控制指令对应的电压波动序列;所述其余末端设备用于检测所述电力线传输的电压波动序列,对所述电压波动序列进行解析得到与所述电压波动序列对应的控制指令,及基于所述控制指令执行相应控制操作。
  12. 如权利要求10或11所述的基于电力线的多设备组网系统,其特征在于,所述电压变换器包括用于进行反馈电压采样的采样电阻,所述控制设备用于基于所述控制指令调节所述采样电阻的电阻值,以调节所述电压变换器的输出电压。
  13. 如权利要求10或11所述的基于电力线的多设备组网系统,其特征在于,所述控制设备用于获取与所述控制指令对应的二进制数据序列,及控制所述电压变换器输出与所述二进制数据序列对应的电压波动序列,其中,二进制数据“0”的电压波形与二进制数据“1”的电压波形基于预设电压持续时间及所述电压变换器输出的第一电压与第二电压设定,所述第一电压为对所述多个末端设备进行供电的电压,所述第二电压大于或小于所述第一电压。
  14. 如权利要求10所述的基于电力线的多设备组网系统,其特征在于,所述多个末端设备中的每个末端设备均包括电力载波通信PLC模块,所述控制设备将所述电压变换器的输出电压由第一电压转变为第二电压,且维持预设时间,所述控制设备与所述其余末端设备在所述预设时间内通过所述PLC模块进行通信,其中,所述第一电压为对所述多个末端设备进行供电的电压,所述第二电压大于或小于所述第一电压。
  15. 如权利要求14所述的基于电力线的多设备组网系统,其特征在于,还包括至少一子变换器,所述子变换器电连接于所述多个末端设备中的至少一个末端设备,所述子变换器用于对所述电压变换器输出的直流电信号进行电压变换,以为所述至少一个末端设备提供额定工作电压,所述控制设备还用于控制所述子变换器的脉冲宽度调制PWM芯片在所述预设时间内停止输出PWM信号,或者调整所述PWM信号的频率。
  16. 一种基于电力线的多设备组网系统,其特征在于,包括电压变换器及多个末端设备,所述电压变换器用于对输入电压进行电压变换,及输出直流电信号为所述多个末端设备供电,所述多个末端设备中的每个末端设备均包括电力载波通信PLC模块,所述多个末端设备中的任意两个末端设备通过所述PLC模块进行通信。
PCT/CN2022/119455 2022-02-16 2022-09-16 基于电力线的多设备组网方法及系统 WO2023155428A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210142327.7A CN116647256A (zh) 2022-02-16 2022-02-16 基于电力线的多设备组网方法及系统
CN202210142327.7 2022-02-16

Publications (1)

Publication Number Publication Date
WO2023155428A1 true WO2023155428A1 (zh) 2023-08-24

Family

ID=87577419

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/119455 WO2023155428A1 (zh) 2022-02-16 2022-09-16 基于电力线的多设备组网方法及系统

Country Status (2)

Country Link
CN (1) CN116647256A (zh)
WO (1) WO2023155428A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117240412B (zh) * 2023-11-10 2024-02-23 深圳市明微电子股份有限公司 数据传输方法、装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007174518A (ja) * 2005-12-26 2007-07-05 Fuji Electric Fa Components & Systems Co Ltd 電力システム
US20080018465A1 (en) * 2006-05-10 2008-01-24 Denso Corporation Communication system
CN104955224A (zh) * 2015-06-07 2015-09-30 中达电通股份有限公司 供电控制系统及方法
CN105122661A (zh) * 2013-01-09 2015-12-02 金炳勋 在电力线通信中利用常用电源的振幅变化的调光控制装置及方法
CN106325084A (zh) * 2015-06-25 2017-01-11 中兴通讯股份有限公司 智能家居中央控制器、终端、系统及控制方法
CN111585616A (zh) * 2020-04-28 2020-08-25 南京工程学院 一种低压用户侧泛在电力物联网的组网方案

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007174518A (ja) * 2005-12-26 2007-07-05 Fuji Electric Fa Components & Systems Co Ltd 電力システム
US20080018465A1 (en) * 2006-05-10 2008-01-24 Denso Corporation Communication system
CN105122661A (zh) * 2013-01-09 2015-12-02 金炳勋 在电力线通信中利用常用电源的振幅变化的调光控制装置及方法
CN104955224A (zh) * 2015-06-07 2015-09-30 中达电通股份有限公司 供电控制系统及方法
CN106325084A (zh) * 2015-06-25 2017-01-11 中兴通讯股份有限公司 智能家居中央控制器、终端、系统及控制方法
CN111585616A (zh) * 2020-04-28 2020-08-25 南京工程学院 一种低压用户侧泛在电力物联网的组网方案

Also Published As

Publication number Publication date
CN116647256A (zh) 2023-08-25

Similar Documents

Publication Publication Date Title
US9596727B2 (en) Power over ethernet lighting system
EP3139710B1 (en) Management of power-over-ehternet installation
US9578711B2 (en) LED driver, lighting device and LED based lighting application
CN108901101B (zh) 一种云中控系统的控制方法
CN203537606U (zh) 一种基于wifi与plc的led照明控制系统
CN101977478A (zh) 一种采用两线式荧光灯数字调光控制方法和系统
DK3210273T3 (en) CONTROL OF POWER CONSUMPTION IN APPLIANCES
WO2023155428A1 (zh) 基于电力线的多设备组网方法及系统
CN104837262A (zh) 无线控制照明系统
CN105703618A (zh) 一种采用常规poe 实现大功率供电的电路及实现方法
US20180287665A1 (en) Power line-based communication method and device
CN112752382B (zh) 一种dali电力暂波照明控制设备
CN212135173U (zh) 基于调制交流电波形的多装置联控电路
JP2016522607A (ja) 電力波形を利用した信号の伝送方法
KR20090006140U (ko) 무선제어 멀티탭과 상태 모니터링 시스템
CN217087578U (zh) 一种电源
CN112460748B (zh) 一种内外机通讯装置、方法和直流供电变频空调
CN111293783B (zh) 一种智能开关及控制方法
CN218526469U (zh) 一种基于PoE技术和ESP32主控芯片的智能开关
CN215601078U (zh) 一种智能电源及充电器
CN111182681B (zh) 基于调制交流电波形的多装置联控电路
US11506414B2 (en) Intelligent low-voltage power delivery system and method
CN212544110U (zh) 一种复合灯具
JP6488053B1 (ja) スイッチ装置およびコントロールシステム
CN108337794B (zh) 照明灯具和照明灯具控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926733

Country of ref document: EP

Kind code of ref document: A1