WO2023155094A1 - 基准站、控制中心、干扰源确定方法、检测系统及方法 - Google Patents

基准站、控制中心、干扰源确定方法、检测系统及方法 Download PDF

Info

Publication number
WO2023155094A1
WO2023155094A1 PCT/CN2022/076597 CN2022076597W WO2023155094A1 WO 2023155094 A1 WO2023155094 A1 WO 2023155094A1 CN 2022076597 W CN2022076597 W CN 2022076597W WO 2023155094 A1 WO2023155094 A1 WO 2023155094A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference source
reference station
antenna
interference
noise ratio
Prior art date
Application number
PCT/CN2022/076597
Other languages
English (en)
French (fr)
Inventor
王志鹏
朱衍波
李今琪
方堃
Original Assignee
北京航空航天大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京航空航天大学 filed Critical 北京航空航天大学
Priority to PCT/CN2022/076597 priority Critical patent/WO2023155094A1/zh
Publication of WO2023155094A1 publication Critical patent/WO2023155094A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/21Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service

Definitions

  • the invention relates to the field of satellite navigation, in particular to a reference station, a control center, an interference source determination method, a detection system and a method.
  • GNSS Global Navigation Satellite System
  • PBN Personal Navigation Satellite System
  • GNSS Global Navigation Satellite System
  • the existing research on GNSS interference source detection and positioning technology can be divided into real-time processing and post-processing according to timeliness.
  • Post-processing technology requires a large amount of data at the time of interference, and traces back the overall situation of the interference area when the interference event occurs.
  • the airport area collects the data of the broadcast automatic dependent surveillance system for analysis, roughly judges the location of the interference source, and then dispatches manpower to carry out the analysis. Search and troubleshooting are inefficient and the detection accuracy of interference sources is not accurate enough.
  • the pre-despreading method is to detect the signal before the received signal enters the correlator branch and describe its characteristics. Since the original signal is processed, the characteristics of the original signal are not as obvious as the data after despreading, so the detection efficiency is low and not accurate enough. .
  • the method after despreading is based on the performance degradation of the receiver caused by the interference signal.
  • the carrier-to-noise ratio (C/N 0 ) change of the received signal after the receiver is tracked is analyzed. This method is only applicable to the receiver that can normally track and capture If the interference power is so large that the receiver cannot capture and track it, it is impossible to locate the interference source.
  • the purpose of the present invention is to provide a reference station, control center, interference source determination method, detection system and method, which are not affected by whether the receiver of the reference station can successfully capture and track satellite signals, and improve the detection efficiency and accuracy of airport interference sources. Spend.
  • the present invention provides the following scheme:
  • a kind of reference station, described reference station is arranged in the airport to be detected, and is connected with control center, and described reference station comprises:
  • An antenna rotating part the antenna rotating part is provided with the antenna, which is used to drive the antenna to rotate at a constant speed, and detect the antenna angle in real time; the antenna receives different signal powers for satellite signals at different antenna angles;
  • the receiver is connected with the control center, the antenna and the antenna rotating part, and is used to receive the angles of each pair of antennas and the corresponding received signal power; send the detection data to the control center, and receive the transmission information transmitted by the control center
  • a direction finding control command is sent to the antenna rotating part;
  • the direction finding control command is a start signal for controlling the antenna rotating part to rotate at a constant speed;
  • the detection data includes carrier-to-noise ratio data, or carrier-to-noise ratio data and received signals power;
  • the control part is respectively connected with the receiver and the antenna rotation part, and is used to execute the following procedures according to the angles of each pair of antennas in each rotation and the corresponding received signal power:
  • For the first rotation determine the center point and reduce the rotation range according to the antenna angle corresponding to the maximum received signal power within one rotation of the antenna;
  • nth rotation control the antenna rotation part so that the antenna rotates within the current rotation range of the current center point, update the center point according to the antenna angle corresponding to the maximum received signal power within the current rotation range, and reduce the rotation Range; until the rotation range is less than the range threshold or reaches the maximum number of rotations, the rotation ends; 2 ⁇ n ⁇ N, N is the maximum number of rotations;
  • the angle information of the interference source is determined according to the antenna angle corresponding to the maximum received signal power within the last rotation range.
  • the antenna rotating part includes:
  • a transmission rod connected to the antenna and used to drive the antenna to rotate at a constant speed
  • a reducer connected to the transmission rod, is used to drive the transmission rod to rotate at a uniform speed
  • an angle sensor connected to the antenna and the control component respectively, for detecting the angle of the antenna
  • the motor drive module is respectively connected with the reducer, the receiver and the control component, and is used to control the start and run of the reducer according to the direction finding control instruction, and under the control of the control component, Adjust the rotation angle and speed of the reducer.
  • the present invention also provides the following solutions:
  • control center comprising:
  • the communication unit is connected with a plurality of the above-mentioned reference stations, and is used to receive the detection data transmitted by each reference station and the angle information of the interference source; the plurality of reference stations are arranged at different positions of the airport to be detected;
  • the first interference source determination unit is connected to the communication unit, and is used for any reference station, when the detection data transmitted by the reference station does not include carrier-to-noise ratio data, according to the received signal power transmitted by the reference station, Determine whether there is an interference source at the airport to be tested;
  • the second interference source judging unit is connected with the communication unit and is used for judging the to-be Check whether there is an interference source at the airport;
  • the control unit is connected to the first interference source judging unit, the second interference source judging unit and the reference station respectively, and is used to generate a direction finding control command when there is an interference source in the airport to be measured, and send to said reference station;
  • the interference source position determining unit is connected with each reference station, and is used to determine the position of the interference source according to the position coordinates of the reference station that determines the existence of the interference source and the angle information of the interference source.
  • the present invention also provides the following solutions:
  • a method for determining an interference source includes:
  • the detection data transmitted by the reference station includes carrier-to-noise ratio data, judge whether there is an interference source in the airport to be tested according to the carrier-to-noise ratio data;
  • the position of the interference source is determined according to the position coordinates of the reference station where the interference source is judged to exist and the angle information of the interference source.
  • judging whether there is an interference source in the airport to be tested according to the received signal power transmitted by the reference station specifically includes:
  • the detection data transmitted by the reference station includes carrier-to-noise ratio data
  • judging whether there is an interference source in the airport to be tested according to the carrier-to-noise ratio data specifically includes:
  • any satellite signal obtain the number of carrier-to-noise ratio data whose carrier-to-noise ratio data of the satellite signal in the n sliding windows is greater than the carrier-to-noise ratio threshold; if the number of carrier-to-noise ratio data is greater than the first number threshold, then determine the There is interference with the above-mentioned satellite signal;
  • the number of satellite signals with interference is greater than the second number threshold, and the number of satellite signals whose carrier-to-noise ratio data of each satellite signal in the latest sliding window is greater than the carrier-to-noise ratio threshold is greater than the third number threshold, then it is determined that the airport to be measured A source of interference exists.
  • the acquiring the angle information of the interference source transmitted by the reference station that determines the existence of the interference source, and determining the position of the interference source according to the angle information specifically includes:
  • any reference station that determines that there is an interference source determine a ray according to the position coordinates of the reference station and the angle information of the interference source transmitted by the reference station;
  • the position of the interference source is determined according to the rays corresponding to the reference stations that determine the existence of the interference source.
  • ( xi , y ) is the position coordinate of base station i
  • ⁇ i is the angle information transmitted by base station i
  • (x, y) is a point on the ray.
  • the present invention also provides the following solutions:
  • An interference source detection system includes a plurality of the above reference stations and control centers;
  • Each reference station is set at different positions of the airport to be detected, and each reference station is connected with the control center.
  • the present invention also provides the following solutions:
  • interference source detection method applied to the above-mentioned interference source detection system, the interference source detection method comprising:
  • the detection data transmitted by the reference station does not include carrier-to-noise ratio data, according to the received signal power transmitted by the reference station, it is judged whether there is an interference source at the airport to be measured;
  • the detection data transmitted by the station includes carrier-to-noise ratio data, judge whether there is an interference source at the airport to be tested according to the carrier-to-noise ratio data;
  • the antenna rotating part of the reference station starts to rotate according to the direction finding control command, so as to drive the antenna of the reference station to rotate;
  • the center point is determined, and the rotation range is reduced;
  • nth rotation control the antenna rotation part so that the antenna rotates within the current rotation range of the current center point, update the center point according to the antenna angle corresponding to the maximum received signal power within the current rotation range, and reduce the rotation Range; until the rotation range is less than the range threshold or reaches the maximum number of rotations, the rotation ends; 2 ⁇ n ⁇ N, N is the maximum number of rotations;
  • the position of the interference source is determined by the control center according to the position coordinates of the reference station that determines the existence of the interference source and the angle information of the interference source.
  • the invention discloses the following technical effects:
  • the present invention combines the advantages of the received signal power of the data before despreading and the carrier-to-noise ratio data of the data after despreading, and selects two kinds of observations to comprehensively judge whether there is an interference source in the airport to be measured, and when there is an interference source in the airport to be measured, the interference source is detected by the reference station. Carry out direction finding, and locate the interference source according to the position of each base station and the angle information of the interference source obtained, which is applicable to the interference source detection when the receiver of the base station cannot capture and track, and improves the airport interference Source detection efficiency and accuracy.
  • Fig. 1 is the structural representation of reference station of the present invention
  • FIG. 2 is a schematic structural diagram of the rotating part of the antenna
  • Fig. 3 is a schematic diagram of the module structure of the control center of the present invention.
  • Fig. 4 is a flow chart of the method for determining the interference source of the present invention.
  • Fig. 5 is the flowchart of interference source detection algorithm
  • Fig. 6 is a flow chart of the interference source location algorithm.
  • Base Station-1 Antenna-11, Receiver-12, Antenna Rotating Part-13, Transmission Rod-131, Reducer-132, Angle Sensor-133, Motor Drive Module-134, Control Part-14, Control Center-2 , a communication unit-21, a first interference source determination unit-22, a second interference source determination unit-23, a control unit-24, and an interference source position determination unit-25.
  • the purpose of the present invention is to provide a reference station, a control center, an interference source determination method, a detection system and a method, by combining the advantages of received signal power and carrier-to-noise ratio data, comprehensively judge whether there is an interference source at the airport to be tested.
  • use the base station to find the direction of the interference source, and locate the interference source according to the position of the base station and the angle information of the interference source obtained, which is applicable to the interference where the receiver cannot capture and track Source detection improves the efficiency and accuracy of airport interference source detection.
  • the reference station 1 of the present invention is set in the airport to be detected and connected to the control center 2 .
  • the reference station 1 includes: an antenna 11 , a receiver 12 , an antenna rotating part 13 and a control part 14 .
  • the antenna 11 is used to capture and track the carrier-to-noise ratio data of each satellite signal.
  • the antenna 11 is disposed on the antenna rotating part 13, and the antenna rotating part 13 is used to drive the antenna to rotate at a constant speed and detect the angle of the antenna in real time.
  • the antenna receives different signal powers for satellite signals under different antenna angles.
  • the receiver 12 is connected with the control center 2, the antenna 11 and the antenna rotating part 13, and the receiver 12 is used to receive each pair of antenna angles and corresponding received signal power; the detection data is sent to the
  • the control center 2 receives the direction-finding control command transmitted by the control center 2 and sends it to the antenna rotating part 13; the direction-finding control command is a start signal for controlling the antenna rotating part 13 to rotate at a constant speed.
  • a data interface is designed on the receiver 12, so that the receiver 12 can output detection data in real time.
  • the control unit 14 is respectively connected with the receiver 12 and the antenna rotation unit 13, and the control unit 14 is used to perform the following procedures according to each pair of antenna angles and corresponding received signal power in each rotation:
  • the center point is determined according to the antenna angle corresponding to the maximum received signal power within one rotation of the antenna, and the rotation range is reduced.
  • nth rotation control the antenna rotation part so that the antenna rotates within the current rotation range of the current center point, update the center point according to the antenna angle corresponding to the maximum received signal power within the current rotation range, and reduce the rotation Range; the rotation ends when the rotation range is less than the range threshold or the maximum number of rotations is reached; 2 ⁇ n ⁇ N, where N is the maximum number of rotations.
  • the angle information of the interference source is determined according to the antenna angle corresponding to the maximum received signal power within the last rotation range.
  • the antenna rotates at a constant speed of 360°, and the angle of the antenna and the received signal power are detected in real time during the rotation.
  • the directivity of the antenna is used to judge the direction of the interference source relative to the antenna.
  • the angle corresponding to the moment when the received signal power is maximum is taken as the new center point.
  • Rotate the antenna within the range of ⁇ 60° from the center point determine the direction with the maximum received power, and reduce the rotation angle until the rotation range is controlled at ⁇ 0.88°, and take the angle with the maximum received signal power as the incoming wave direction, that is, the angle of the interference source information.
  • the standard rotational speed of the antenna is 6rpm.
  • the pitch angle of the antenna can be adjusted by turning the screw to adapt to the situation where the base station is placed at different heights.
  • the receiver 12 is a single-antenna receiver.
  • the direction of the interference source relative to the antenna 11 is measured by rotating the antenna 11, and then the position of the interference source is calculated according to the positions of multiple receivers 12 and the direction finding results.
  • the direction finding of the interference source is realized, and the direction finding results of multiple single-antenna software receivers realize the location of the interference source, avoiding the use of array antennas to cause high-cost and high-complexity equipment, and improving flexibility.
  • the antenna rotating part 13 includes: a transmission rod 131 , a reducer 132 , an angle sensor 133 and a motor driving module 134 .
  • the transmission rod 131 is connected with the antenna 11, and the transmission rod 131 is used to drive the antenna 11 to rotate at a constant speed.
  • the speed reducer 132 is connected with the transmission rod 131, and the speed reducer 132 is used to drive the transmission rod 131 to rotate at a constant speed.
  • the angle sensor 133 is respectively connected to the antenna 11 and the control unit 14 , and the angle sensor 133 is used to detect the antenna angle and send it to the control unit 14 .
  • an angle sensor 133 is respectively provided in the horizontal and vertical directions of the antenna 11 .
  • the motor drive module 134 is respectively connected to the reducer 132, the receiver 12 and the control component 14, and the motor drive module 134 is used to control the start of the reducer 132 according to the direction finding control instruction. run, and under the control of the control component 14, adjust the rotation angle and speed of the reducer 132.
  • the reference station 1 also includes a radio frequency front end.
  • the RF front-end uses hackRF One.
  • the present invention also provides a control center 2 including: a communication unit 21 , a first interference source determination unit 22 , a second interference source determination unit 23 , a control unit 24 and an interference source location determination unit 25 .
  • the communication unit 21 is connected with a plurality of above-mentioned reference stations 1, and the communication unit 21 is used to receive the detection data and the angle information of the interference source transmitted by each reference station 1; a plurality of reference stations 1 are arranged at the airport to be detected different locations.
  • the first interference source determination unit 22 is connected to the communication unit 21, and the first interference source determination unit 22 is used for any reference station 1, and the detection data transmitted at the reference station 1 does not include a carrier-to-noise ratio When data, according to the received signal power transmitted by the reference station 1, it is judged whether there is an interference source in the airport to be measured.
  • the second interference source determination unit 23 is connected to the communication unit 21, and the second interference source determination unit 23 is used for any reference station 1, and the detection data transmitted at the reference station 1 includes carrier-to-noise ratio data , according to the carrier-to-noise ratio data, it is judged whether there is an interference source in the airport to be tested.
  • the control unit 24 is respectively connected with the first interference source determination unit 22, the second interference source determination unit 23 and the reference station 1, and the control unit 24 is used for interference sources at the airport to be measured When , a direction finding control instruction is generated and sent to the reference station 1 .
  • the interference source position determination unit 25 is connected to each reference station 1, and the interference source position determination unit 25 is used to determine the position of the interference source according to the position coordinates of the reference station 1 determined to have an interference source and the angle information of the interference source.
  • the first interference source judging unit 22 includes: a frequency acquisition module and a judging module.
  • the frequency obtaining module is connected with the communication unit 21, and the frequency obtaining module is used to obtain the frequency at which the power of the received signal transmitted by the reference station exceeds a power threshold within a continuous period of time.
  • the first determination module is connected to the frequency acquisition module, and the first determination module is used to determine that there is an interference source in the airport to be measured when the frequency is greater than a frequency threshold, otherwise it is determined that the airport to be measured does not exist source of interference.
  • the second interference source judging unit 23 includes: a carrier-to-noise ratio determination module, a second judging module and a third judging module.
  • the carrier-to-noise ratio quantity determination module is connected with the communication unit 21, and the carrier-to-noise ratio quantity determination module is used for obtaining the carrier-to-noise ratio data of the satellite signal in n sliding windows greater than or equal to any satellite signal.
  • the amount of CNR data for the CNR threshold is not limited to any satellite signal.
  • the second judging module is connected to the carrier-to-noise ratio number determining module, and the second judging module is configured to judge that there is interference in the satellite signal when the number of carrier-to-noise ratio data is greater than a first number threshold.
  • the third judging module is connected to the second judging module, and the third judging module is used when the number of satellite signals with interference is greater than the second number threshold, and the carrier-to-noise ratio of each satellite signal in the latest sliding window If the number of satellite signals whose data is greater than the threshold value of the carrier-to-noise ratio is greater than the third threshold value, it is determined that there is an interference source in the airport to be tested.
  • the interference source position determination unit 25 includes: a ray determination module and a position determination module.
  • the ray determination module is connected with each reference station 1, and the ray determination module is used for any reference station that determines that there is an interference source, according to the position coordinates of the reference station and the information of the interference source transmitted by the reference station. Angle information, determine a ray.
  • the position determination module is connected to the ray determination module, and the position determination module is used to determine the position of the interference source based on the objective function and the rays corresponding to the reference stations that determine the existence of the interference source by using the least square method.
  • the present invention combines the advantages of data before despreading (received signal power) and data after despreading (carrier-to-noise ratio data), solves the problem that the existing algorithm detection rate and application range cannot be balanced, and makes the interference
  • the detection algorithm is no longer affected by the state of the GNSS receiver, which improves the usability of the interference detection algorithm.
  • the present invention also provides a method for determining an interference source, the method for determining an interference source includes:
  • the threshold value of the received signal power is determined, and the Gaussian distribution is used to fit the distribution of the received signal power value to obtain the mathematical characteristics of the received power, and the The mean and variance correspond to the tolerable interference power stipulated by the International Civil Aviation Organization (ICAO), and determine the detection threshold (power threshold).
  • IAO International Civil Aviation Organization
  • the first quantity threshold is 7.
  • the second quantity threshold is 2.
  • the third number threshold is 6.
  • S5 Obtain the angle information of the interference source transmitted by the reference station that determines the existence of the interference source, and determine the position of the interference source according to the angle information.
  • a ray is determined according to the position coordinates of the reference station and the angle information of the interference source transmitted by the reference station.
  • the ray corresponding to the reference station i is determined according to the following formula:
  • ( xi , y ) is the position coordinate of base station i
  • ⁇ i is the angle information transmitted by base station i
  • (x, y) is a point on the ray.
  • the position of the interference source is determined according to the rays corresponding to the reference stations that determine the existence of the interference source.
  • the optimal solution of the intersection of multiple rays is obtained by the least square method, and the optimal solution is the position of the interference source.
  • the objective function is:
  • J(x, y) is the objective function value
  • n is the total number of reference stations that determine the presence of interference sources
  • ⁇ i is the angle information transmitted by reference station i
  • ( xi , y i ) is the position of reference station i Coordinates
  • (x, y) are points on the ray.
  • the multi-channel serial multiple detection (Serial Multiple Detection, SMD) algorithm and parallel multiple detection (Parallel Multiple Detection, PMD) Algorithms are combined to determine whether there is an interference source.
  • SMD Serial Multiple Detection
  • PMD Parallel Multiple Detection
  • the SMD algorithm determines that there is interference.
  • the PMD algorithm determines that there is interference.
  • the present invention integrates a multi-channel serial multiple detection (SMD) algorithm and a parallel multiple detection (PMD) algorithm, and respectively detects the interference situation of a single satellite within a period of time and the interference situation of multiple satellites at the latest moment, and guarantees the detection Under the premise of optimal detection rate and low false alarm rate, the false alarm rate is reduced as much as possible to meet the demand for interference detection in the airport area.
  • SMD serial multiple detection
  • PMD parallel multiple detection
  • an interference source may be generated to simulate test conditions before step S1.
  • baseband signals of three common interference signals, Gaussian white noise, narrowband continuous wave, and frequency sweep wave, and binary messages of GPS spoofing signals are generated.
  • the sampling rate of Gaussian white noise is 21MHz
  • the narrow-band Gaussian white noise with a bandwidth of 10MHz is generated through an 8th-order 10MHz Butterworth low-pass filter
  • the narrow-band continuous wave frequency is 1000Hz, and the sampling rate is 2.6MHz
  • the baseband signal is from 20Hz to 20KHz, and the sampling rate is 2.6MHz
  • the sampling rate of the spoofing interference source is 2.6MHz.
  • the sampling rate and bandwidth settings of various interference sources are matched with the RF front-end of the base station, and the interference sources are modulated to the GPS L1 band (1575.42MHz) and transmitted through the RF front-end to simulate GNSS suppressive interference sources and deceptive interference source.
  • the present invention also provides an interference source detection system, which includes multiple reference stations 1 and a control center 2 .
  • Each reference station 1 is set at different positions of the airport to be detected, and each reference station 1 is connected to the control center 2 .
  • each interfered reference station measures the direction of the interference source, and transmits the direction finding results to the control center.
  • the direction determines where the source of interference is located.
  • the present invention also provides an interference source detection method to realize the interaction between multiple reference stations and the control center.
  • the interference source detection method includes:
  • the carrier-to-noise ratio data of each satellite signal is captured and tracked separately by multiple reference stations.
  • the detection data transmitted by the reference station does not include carrier-to-noise ratio data, according to the received signal power transmitted by the reference station, it is judged whether there is an interference source at the airport to be measured;
  • the detection data transmitted by the station includes carrier-to-noise ratio data, it is judged whether there is an interference source in the airport to be tested according to the carrier-to-noise ratio data.
  • a direction finding control instruction is generated and sent to the reference station.
  • the antenna rotating part of the reference station is started to rotate according to the direction finding control command, so as to drive the antenna of the reference station to rotate.
  • the control part of the reference station determines the center point and narrows the rotation range according to the antenna angle corresponding to the maximum received signal power within one rotation of the antenna.
  • nth rotation control the antenna rotation part so that the antenna rotates within the current rotation range of the current center point, update the center point according to the antenna angle corresponding to the maximum received signal power within the current rotation range, and reduce the rotation Range; the rotation ends when the rotation range is less than the range threshold or the maximum number of rotations is reached; 2 ⁇ n ⁇ N, where N is the maximum number of rotations.
  • the angle information of the interference source is determined according to the antenna angle corresponding to the maximum received signal power within the last rotation range.
  • the position of the interference source is determined by the control center according to the position coordinates of the reference station that determines the existence of the interference source and the angle information of the interference source.
  • the interference source detection method is packaged in the Raspberry Pi.
  • the binary message of the GPS spoofing signal is generated, and the hackrf_transfer command of the hackRF One radio frequency front end is modulated to 1575.42MHz for transmission, so as to realize the simulated spoofing interference source in the test.
  • the receiving power threshold measure the receiving power distribution under normal working conditions of the receiver for a period of time, use Gaussian distribution for fitting, obtain the mathematical characteristics of the receiving signal power, and compare its mean and variance with the International Civil Aviation Organization (ICAO) regulations Corresponding to the tolerable interference power, the detection threshold (power threshold) is determined.
  • IAO International Civil Aviation Organization
  • the carrier-to-noise ratio data C/N 0 of the reference station is first normalized to obtain the normalized value
  • ⁇ k represents different satellite elevation angles
  • N ⁇ represents the observation sliding window length
  • PRN indicates the "pseudo-random noise code" of the satellite.
  • the distribution and the 3 ⁇ principle determine the threshold of the carrier-to-noise ratio. Specifically, a Gaussian distribution is used to fit the feature quantity According to the distribution of the feature quantity, according to the mean value, variance and 3 ⁇ principle of the feature quantity, the larger one of the critical points whose confidence probability is less than 99.74% is set as the CNR threshold.
  • Interference detection based on received signal power and carrier-to-noise ratio data Considering that it is necessary to detect whether there is interference under the condition that the receiver cannot capture and track, the data before despreading of the receiver must be selected as the observation quantity, but not The tracked data is usually not clear enough, and the detection ability is not as good as the program that uses the tracked data as the observation quantity. In order to improve the interference detection capability most of the time and meet the requirements of interference detection under different working conditions of the receiver, the present invention selects two observations of received signal power and carrier-to-noise ratio data to cover the two types of receivers that can be tracked and those that cannot be tracked. Condition.
  • Figure 5 is a flow chart of the interference source detection algorithm.
  • the receiver cannot capture and track, because the GNSS frequency band is strictly controlled, the received signal power will not change greatly when there is no interference, so it can be considered that the receiver is interfered when the data changes significantly.
  • the carrier-to-noise ratio of the intermediate frequency data of the receiver will increase significantly. If it is stable beyond the threshold, it can be considered that there is interference.
  • the multi-satellite single detection is used as the main criterion, and the single-satellite multiple detection is used as the auxiliary criterion for interference detection at this time.
  • the impact of PMD algorithm on false alarm rate is greater than that of SMD algorithm.
  • the false alarm rate required by the user can be met by taking the interference detected by three satellites as the detection criterion of PMD.
  • using SMD for assistance can also meet the requirements. Increasing the number of detections of a single satellite in the SMD algorithm and the sum of the number of interferences in the detections will increase the false alarm rate.
  • represents the number of satellites that detect interference signals in the PMD algorithm
  • N and M represent the number of carrier-to-noise ratios and the number of thresholds observed in the SMD algorithm, respectively.
  • Table 2 The possible conditions and judgment results of the interference source detection results are shown in Table 2.
  • Interference source location There are three main methods for interference location: direction finding of interference signal (AOA), time difference of arrival (TDOA) and received signal strength measurement (RSS).
  • AOA direction finding of interference signal
  • TDOA time difference of arrival
  • RSS received signal strength measurement
  • the two methods of AOA and TDOA have complex infrastructures and have relatively large limitations in practical applications, so the RSS method is widely used.
  • the RSS method is divided into two types based on radio frequency front end (RFFE) and based on carrier-to-noise ratio (CNR).
  • RFFE radio frequency front end
  • CNR carrier-to-noise ratio
  • AGC Automatic Gain Control
  • JNR Interference-to-Noise Ratio
  • CNR carrier-to-noise ratio
  • SRS single-receiver synthesis
  • CC multi-source geometric center
  • CC/N0F multi-source carrier-to-noise ratio data fusion
  • the positioning algorithm must select the data before despreading by the receiver as the observation quantity. At the same time, it needs to be easy to deploy and control the cost within a reasonable range.
  • the required antenna structure is relatively complex, and the observation point is single, and the positioning accuracy and range are limited.
  • the present invention does not use an array antenna with a relatively complex structure, but selects a single-antenna receiver as the main device, and multiple single-antenna receivers perform direction finding on the interference source, and then The direction finding results are fused to increase the data source and improve the positioning accuracy.
  • the complexity of each receiver antenna can be reduced. By deploying multiple receivers in different locations, the area range of interference source positioning is improved.
  • the present invention invokes the interference positioning algorithm only after the interference is detected, and the interference positioning observations may be different from the interference detection observations.
  • the system modularizes the interference detection algorithm and the interference location algorithm. When the interference is detected, the interference location module is invoked. At the same time, when the interference location algorithm is started, it is known that there is suppressive interference, so it can be directly considered that the direction with the strongest receiving power of the antenna is For the direction of the interference source relative to the receiver, the complexity of the algorithm is reduced.
  • Figure 6 is a flow chart of the interference source location algorithm.
  • Interference source direction finding based on antenna directionality The airport environment is characterized by open terrain and easy to lock the target. Therefore, it is only necessary to determine the approximate position on the two-dimensional plane to lock the interference source.
  • the antenna directivity characteristics determine the direction with the strongest receiving ability of the antenna, and take it as the "forward direction", rotate the antenna, and when the "forward direction” is facing the interference incoming wave direction, the antenna received signal power Maximum, from which the direction of the source of interference relative to the reference station can be determined.
  • time synchronization detection is performed, and the interference source location is started.
  • the antenna rotates 360°, and at the same time outputs the current angle and the signal power received by the antenna in real time. After one rotation, the angle corresponding to the moment with the maximum received signal power As the center point, rotate ⁇ 60°, further lock the incoming wave direction, further reduce the rotation angle, and so on, until the incoming wave direction range is controlled at ⁇ 0.88°. After obtaining the incoming wave direction, transmit the coordinates of the base station and the angle of the incoming wave direction to the control center.
  • Interference source positioning based on direction finding results After each reference station returns the site coordinates and incoming wave direction, the optimal solution of the interference source coordinates and the 95% confidence interval (uncertainty) are obtained by the least square method.
  • Calculation of the position of the interference source by the least square method when the coordinates of multiple reference stations and the incoming interference direction measured by each station are known, four rays can be obtained, and the intersection point of the four rays can be obtained by the least square method.
  • the optimal solution coordinates are the position of the interference source with the greatest probability on the two-dimensional plane. At the same time, the uncertainty in two directions of the interference source position solution can be obtained.
  • the ray equation can be obtained from the position and direction of the fixed point, since the straight line and the ray do not affect the intersection point solution,
  • the ray is represented by the equation of a straight line:
  • ⁇ i is the angle information transmitted by base station i
  • (xi , y i ) is the position coordinates of base station i
  • xx i can be transformed into:
  • the optimal solution (x, y) of the equation system is the optimal solution of the location of the interference source.
  • the above equations can be transformed into matrix form:
  • the optimal solution (x p , y p ) of the position coordinates of the interference source is obtained iteratively.
  • the positioning error of the interference source is represented by uncertainty, and the uncertainty of the position of the interference source is only related to the angle measurement uncertainty.
  • the direction finding results ⁇ i of each reference station are known
  • ⁇ x is the uncertainty of the x-axis of the position of the interference source
  • ⁇ y is the uncertainty of the y-axis of the position of the interference source
  • represents uncertainty
  • k tan ⁇
  • b yx ⁇ tan ⁇
  • is the angle information transmitted by the reference station.
  • Uncertainty represents an approximate range, that is, an ellipse with the positioning result as the center and the horizontal axis and vertical axis respectively ⁇ x and ⁇ y, and the positioning result falls within this range with a probability of 95%.
  • the present invention performs GNSS interference detection and interference source positioning in units of airports, and focuses on areas where interference occurs frequently. Compared with the existing method of interference detection in units of air routes, the amount of required data is greatly reduced, and the timeliness of detection and positioning is improved. Compared with the existing interference source positioning methods in the aviation field, the scope of investigation is greatly reduced, the positioning accuracy is improved, and the intensity of staff investigation work is greatly reduced.
  • each embodiment in this specification is described in a progressive manner, each embodiment focuses on the difference from other embodiments, and the same and similar parts of each embodiment can be referred to each other.
  • the description is relatively simple, and for the related information, please refer to the description of the method part.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radio Relay Systems (AREA)

Abstract

一种干扰源确定方法包括:获取待检测机场中各基准站(1)传输的检测数据(S1);针对每一基准站(1),在基准站(1)传输的检测数据不包含载噪比数据时,根据接收信号功率,判断待测机场是否存在干扰源(S2);在基准站(1)传输的检测数据包含载噪比数据时,根据载噪比数据,判断待测机场是否存在干扰源(S3);若待测机场存在干扰源,则生成测向控制指令,并发送至基准站(1)(S4);获取判定存在干扰源的基准站(1)传输的干扰源的角度信息,并根据角度信息,确定干扰源的位置(S5)。可以适用于接收机无法捕获、跟踪情况下的干扰源检测,提高了机场干扰源的检测效率及准确度。此外,还提出了一种基准站(1)、控制中心(2)、干扰源检测系统及方法。

Description

基准站、控制中心、干扰源确定方法、检测系统及方法 技术领域
本发明涉及卫星导航领域,特别是涉及一种基准站、控制中心、干扰源确定方法、检测系统及方法。
背景技术
GNSS(Global Navigation Satellite System,全球卫星导航系统)是航空导航中PBN(Performance Based Navigation,基于性能导航)的主要导航源,在全球范围内广泛应用于航路、终端区的PBN运行,是航空导航的重要组成部分。但由于到达地面的GNSS信号十分微弱,且民用卫星信号格式公开,GNSS接收机容易受到射频干扰影响。尤其是近些年来,在全球范围内,机场区域GNSS干扰事件频繁发生,严重影响了航空安全。
现有对GNSS干扰源检测与定位技术的研究,按照时效可以分为实时处理和后处理。后处理技术需要大量受干扰时的数据,回溯干扰事件发生时整体受干扰区域的情况,机场区域一般收集广播式自动相关监视系统的数据进行分析,对干扰源位置进行大致判断,随后派出人力进行搜索排查,效率低且干扰源检测精度也不够准确。
实时处理技术大多基于GNSS接收机数据处理过程中计算的载噪比等数据,对干扰源进行实时定位。以观测量化分,按照接收机数据处理流程可分为预解扩和解扩后两种。预解扩方法是在接收信号进入相关器分支前检测出信号并对其进行特征描述,由于是对原始信号进行处理,由于原始信号的特征不如解扩后数据明显,因此检测效率低且不够准确。解扩后方法是基于干扰信号引起的接收机性能退化,通常分析接收机在跟踪过后的接收信号的载噪比(C/N 0)变化,这种方法只可用于接收机可以正常跟踪、捕获的情况,对于干扰功率过大以至于接收机无法捕获、跟踪的情况,则无法实现干扰源定位。
另外,为了提高干扰检测与定位性能,大多数研究采用阵列天线,系统 复杂度及制造成本较高,在实际应用中局限性较大。
因此,结合机场实际需求,亟需一种在保证检测能力的前提下,不受接收机能否成功捕获、跟踪卫星信号影响的干扰源检测方法。
发明内容
本发明的目的是提供一种基准站、控制中心、干扰源确定方法、检测系统及方法,不受基准站的接收机能否成功捕获、跟踪卫星信号的影响,提高机场干扰源的检测效率及准确度。
为实现上述目的,本发明提供了如下方案:
一种基准站,所述基准站设置在待检测机场中,且与控制中心连接,所述基准站包括:
天线,用于捕获并追踪各卫星信号的载噪比数据;
天线旋转部件,所述天线旋转部件上设置有所述天线,用于带动所述天线匀速旋转,并实时检测天线角度;所述天线在不同天线角度下,对卫星信号的接收信号功率不同;
接收机,与所述控制中心、所述天线及所述天线旋转部件连接,用于接收各对天线角度及对应的接收信号功率;将检测数据发送至所述控制中心,以及接收控制中心传输的测向控制指令,并发送至所述天线旋转部件;所述测向控制指令为控制天线旋转部件进行匀速旋转的启动信号;所述检测数据包括载噪比数据,或者载噪比数据和接收信号功率;
控制部件,分别与所述接收机及所述天线旋转部件连接,用于根据每次旋转中的各对天线角度及对应的接收信号功率,执行以下程序:
针对第一次旋转,根据天线旋转一周内接收信号功率最大时对应的天线角度,确定中心点,并缩小旋转范围;
针对第n次旋转,控制所述天线旋转部件,使所述天线在当前中心点的当前旋转范围内旋转,根据当前旋转范围内接收信号功率最大时对应的天线角度,更新中心点,并缩小旋转范围;直至旋转范围小于范围阈值或达到最大旋转次数时结束旋转;2≤n≤N,N为最大旋转次数;
根据最后一次旋转范围内接收信号功率最大时对应的天线角度,确定干扰源的角度信息。
可选地,所述天线旋转部件包括:
传动杆,与所述天线连接,用于带动所述天线匀速旋转;
减速机,与所述传动杆连接,用于带动传动杆匀速旋转;
角度传感器,分别与所述天线及所述控制部件连接,用于检测天线角度;
电机驱动模块,分别与所述减速机、所述接收机及所述控制部件连接,用于根据所述测向控制指令,控制所述减速机启动运行,并在所述控制部件的控制下,调整所述减速机的旋转角度及转速。
为实现上述目的,本发明还提供了如下方案:
一种控制中心,所述控制中心包括:
通讯单元,与多个上述的基准站连接,用于接收各基准站传输的检测数据及干扰源的角度信息;多个基准站设置在待检测机场的不同位置;
第一干扰源判定单元,与所述通讯单元连接,用于针对任一基准站,在所述基准站传输的检测数据不包含载噪比数据时,根据所述基准站传输的接收信号功率,判断待测机场是否存在干扰源;
第二干扰源判定单元,与所述通讯单元连接,用于针对任一基准站,在所述基准站传输的检测数据包含载噪比数据时,根据所述载噪比数据,判断所述待测机场是否存在干扰源;
控制单元,分别与所述第一干扰源判定单元、所述第二干扰源判定单元及所述基准站连接,用于在所述待测机场存在干扰源时,生成测向控制指令,并发送至所述基准站;
干扰源位置确定单元,与各基准站连接,用于根据判定存在干扰源的基准站的位置坐标及干扰源的角度信息,确定干扰源的位置。
为实现上述目的,本发明还提供了如下方案:
一种干扰源确定方法,所述干扰源确定方法包括:
获取待检测机场中各基准站传输的检测数据;
针对每一基准站,在所述基准站传输的检测数据不包含载噪比数据时,根据所述基准站传输的接收信号功率,判断所述待测机场是否存在干扰源;
在所述基准站传输的检测数据包含载噪比数据时,根据所述载噪比数据,判断所述待测机场是否存在干扰源;
若所述待测机场存在干扰源,则生成测向控制指令,并发送至所述基准站;
根据判定存在干扰源的基准站的位置坐标及干扰源的角度信息,确定干扰源的位置。
可选地,所述在所述基准站传输的检测数据不包含载噪比数据时,根据所述基准站传输的接收信号功率,判断所述待测机场是否存在干扰源,具体包括:
获取所述基准站传输的接收信号功率在持续时间段内超出功率阈值的频率;若频率大于频率阈值,则判定所述待测机场存在干扰源,否则判定所述待测机场不存在干扰源。
可选地,所述在所述基准站传输的检测数据包含载噪比数据时,根据所述载噪比数据,判断所述待测机场是否存在干扰源,具体包括:
针对任一卫星信号,获取n个滑窗内所述卫星信号的载噪比数据大于载噪比阈值的载噪比数据数量;若所述载噪比数据数量大于第一数量阈值,则判定所述卫星信号存在干扰;
若存在干扰的卫星信号的数量大于第二数量阈值,且最近一个滑窗内各卫星信号的载噪比数据大于载噪比阈值的卫星信号数量大于第三数量阈值,则判定所述待测机场存在干扰源。
可选地,所述获取判定存在干扰源的基准站传输的干扰源的角度信息,并根据所述角度信息,确定干扰源的位置,具体包括:
针对任一判定存在干扰源的基准站,根据所述基准站的位置坐标及所述基准站传输的干扰源的角度信息,确定一条射线;
采用最小二乘法,基于目标函数,根据判定存在干扰源的各基准站对应的射线,确定干扰源的位置。
可选地,根据以下公式,确定基准站i对应的射线:
Figure PCTCN2022076597-appb-000001
其中,(x i,y i)为基准站i的位置坐标,α i为基准站i传输的角度信息,(x,y)为射线上的点。
为实现上述目的,本发明还提供了如下方案:
一种干扰源检测系统,所述干扰源检测系统包括多个上述的基准站及控制中心;
各基准站设置在待检测机场的不同位置,且各基准站均与所述控制中心连接。
为实现上述目的,本发明还提供了如下方案:
一种干扰源检测方法,应用于上述的干扰源检测系统,所述干扰源检测方法包括:
通过多个基准站分别捕获并追踪各卫星信号的载噪比数据;
通过控制中心针对任一基准站,在所述基准站传输的检测数据不包含载噪比数据时,根据所述基准站传输的接收信号功率,判断待测机场是否存在干扰源;在所述基准站传输的检测数据包含载噪比数据时,根据所述载噪比数据,判断所述待测机场是否存在干扰源;
在所述待测机场存在干扰源时,生成测向控制指令,并发送至所述基准站;
通过所述基准站的天线旋转部件根据所述测向控制指令启动旋转,以带动所述基准站的天线旋转;
通过所述基准站的控制部件针对天线的第一次旋转,根据天线旋转一周内接收信号功率最大时对应的天线角度,确定中心点,并缩小旋转范围;
针对第n次旋转,控制所述天线旋转部件,使所述天线在当前中心点的 当前旋转范围内旋转,根据当前旋转范围内接收信号功率最大时对应的天线角度,更新中心点,并缩小旋转范围;直至旋转范围小于范围阈值或达到最大旋转次数时结束旋转;2≤n≤N,N为最大旋转次数;
根据最后一次旋转范围内接收信号功率最大时对应的天线角度,确定干扰源的角度信息;
通过所述控制中心根据判定存在干扰源的基准站的位置坐标及干扰源的角度信息,确定干扰源的位置。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本发明结合了解扩前数据接收信号功率和解扩后数据载噪比数据的优点,选择两种观测量综合判断待测机场是否存在干扰源,在待测机场存在干扰源时通过基准站对干扰源进行测向,并根据各基准站的位置及其得到的干扰源的角度信息,对干扰源进行定位,可适用于基准站的接收机无法捕获、跟踪情况下的干扰源检测,提高了机场干扰源的检测效率及准确度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明基准站的结构示意图;
图2为天线旋转部件的结构示意图;
图3为本发明控制中心的模块结构示意图;
图4为本发明干扰源确定方法的流程图;
图5为干扰源检测算法的流程图;
图6为干扰源定位算法的流程图。
符号说明:
基准站-1,天线-11,接收机-12,天线旋转部件-13,传动杆-131,减速机 -132,角度传感器-133,电机驱动模块-134,控制部件-14,控制中心-2,通讯单元-21,第一干扰源判定单元-22,第二干扰源判定单元-23,控制单元-24,干扰源位置确定单元-25。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种基准站、控制中心、干扰源确定方法、检测系统及方法,通过结合接收信号功率和载噪比数据的优点,综合判断待测机场是否存在干扰源,在待测机场存在干扰源时通过基准站对干扰源进行测向,并根据基准站的位置及其得到的干扰源的角度信息,对干扰源进行定位,可适用于接收机无法捕获、跟踪情况下的干扰源检测,提高了机场干扰源的检测效率及准确度。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1所示,本发明的基准站1设置在待检测机场中,且与控制中心2连接。所述基准站1包括:天线11、接收机12、天线旋转部件13及控制部件14。
其中,所述天线11用于捕获并追踪各卫星信号的载噪比数据。
所述天线旋转部件13上设置有所述天线11,所述天线旋转部件13用于带动所述天线匀速旋转,并实时检测天线角度。所述天线在不同天线角度下,对卫星信号的接收信号功率不同。
所述接收机12与所述控制中心2、所述天线11及所述天线旋转部件13连接,所述接收机12用于接收各对天线角度及对应的接收信号功率;将检测数据发送至所述控制中心2,以及接收控制中心2传输的测向控制指令,并发送至所述天线旋转部件13;所述测向控制指令为控制天线旋转部件13 进行匀速旋转的启动信号。接收机12上设计了数据接口,使得接收机12可实时输出检测数据。
所述控制部件14分别与所述接收机12及所述天线旋转部件13连接,所述控制部件14用于根据每次旋转中的各对天线角度及对应的接收信号功率,执行以下程序:
针对第一次旋转,根据天线旋转一周内接收信号功率最大时对应的天线角度,确定中心点,并缩小旋转范围。
针对第n次旋转,控制所述天线旋转部件,使所述天线在当前中心点的当前旋转范围内旋转,根据当前旋转范围内接收信号功率最大时对应的天线角度,更新中心点,并缩小旋转范围;直至旋转范围小于范围阈值或达到最大旋转次数时结束旋转;2≤n≤N,N为最大旋转次数。
根据最后一次旋转范围内接收信号功率最大时对应的天线角度,确定干扰源的角度信息。
具体地,在第一次旋转时,天线360°匀速旋转,在旋转过程中实时检测天线的角度及接收信号功率。根据天线的角度及接收信号功率,利用天线的方向性判断干扰源相对于天线的方向。当天线旋转一周后,将接收信号功率最大时刻对应的角度作为新的中心点。使天线在中心点±60°范围内旋转,确定接收功率最大的方向,并缩小旋转角度,直至旋转范围控制在±0.88°,将接收信号功率最大的角度作为来波方向,即干扰源的角度信息。天线的标准转速为6rpm。天线的俯仰角度可通过拧动螺丝调节,以适应基准站放置于不同高度的情况。
进一步地,所述接收机12为单天线接收机。根据天线的方向性,通过天线11旋转测得干扰源相对于天线11的方向,再根据多个接收机12位置及测向结果解算干扰源位置。基于单天线软件接收机实现干扰源测向,多个单天线软件接收机测向结果实现干扰源定位,避免使用阵列天线导致高成本、高复杂度的设备,提高了灵活性。
进一步地,如图2所示,所述天线旋转部件13包括:传动杆131、减速机132、角度传感器133及电机驱动模块134。
其中,所述传动杆131与所述天线11连接,所述传动杆131用于带动所述天线11匀速旋转。
所述减速机132与所述传动杆131连接,所述减速机132用于带动传动杆131匀速旋转。
所述角度传感器133分别与所述天线11及所述控制部件14连接,所述角度传感器133用于检测天线角度,并发送至所述控制部件14。在本实施例中,在天线11的水平与俯仰方向各设置一个角度传感器133。
所述电机驱动模块134分别与所述减速机132、所述接收机12及所述控制部件14连接,所述电机驱动模块134用于根据所述测向控制指令,控制所述减速机132启动运行,并在所述控制部件14的控制下,调整所述减速机132的旋转角度及转速。
进一步地,所述基准站1还包括射频前端。所述射频前端采用HackRF One。
如图3所示,本发明还提供一种控制中心2,包括:通讯单元21、第一干扰源判定单元22、第二干扰源判定单元23、控制单元24及干扰源位置确定单元25。
其中,所述通讯单元21与多个上述的基准站1连接,所述通讯单元21用于接收各基准站1传输的检测数据及干扰源的角度信息;多个基准站1设置在待检测机场的不同位置。
所述第一干扰源判定单元22与所述通讯单元21连接,所述第一干扰源判定单元22用于针对任一基准站1,在所述基准站1传输的检测数据不包含载噪比数据时,根据所述基准站1传输的接收信号功率,判断待测机场是否存在干扰源。
所述第二干扰源判定单元23与所述通讯单元21连接,所述第二干扰源判定单元23用于针对任一基准站1,在所述基准站1传输的检测数据包含载噪比数据时,根据所述载噪比数据,判断所述待测机场是否存在干扰源。
所述控制单元24分别与所述第一干扰源判定单元22、所述第二干扰源 判定单元23及所述基准站1连接,所述控制单元24用于在所述待测机场存在干扰源时,生成测向控制指令,并发送至所述基准站1。
所述干扰源位置确定单元25与各基准站1连接,所述干扰源位置确定单元25用于根据判定存在干扰源的基准站1的位置坐标及干扰源的角度信息,确定干扰源的位置。
进一步地,所述第一干扰源判定单元22包括:频率获取模块及判定模块。
其中,所述频率获取模块与所述通讯单元21连接,所述频率获取模块用于获取所述基准站传输的接收信号功率在持续时间段内超出功率阈值的频率。
所述第一判定模块与所述频率获取模块连接,所述第一判定模块用于在所述频率大于频率阈值时,判定所述待测机场存在干扰源,否则判定所述待测机场不存在干扰源。
更进一步地,所述第二干扰源判定单元23包括:载噪比数量确定模块、第二判定模块及第三判定模块。
其中,所述载噪比数量确定模块与所述通讯单元21连接,所述载噪比数量确定模块用于针对任一卫星信号,获取n个滑窗内所述卫星信号的载噪比数据大于载噪比阈值的载噪比数据数量。
所述第二判定模块与所述载噪比数量确定模块连接,所述第二判定模块用于在所述载噪比数据数量大于第一数量阈值,判定所述卫星信号存在干扰。
所述第三判定模块与所述第二判定模块连接,所述第三判定模块用于在存在干扰的卫星信号的数量大于第二数量阈值,且最近一个滑窗内各卫星信号的载噪比数据大于载噪比阈值的卫星信号数量大于第三数量阈值,则判定所述待测机场存在干扰源。
更进一步地,所述干扰源位置确定单元25包括:射线确定模块及位置确定模块。
其中,所述射线确定模块与各基准站1连接,所述射线确定模块用于针 对任一判定存在干扰源的基准站,根据所述基准站的位置坐标及所述基准站传输的干扰源的角度信息,确定一条射线。
所述位置确定模块与所述射线确定模块连接,所述位置确定模块用于采用最小二乘法,基于目标函数,根据判定存在干扰源的各基准站对应的射线,确定干扰源的位置。
本发明结合解扩前数据(接收信号功率)和解扩后数据(载噪比数据)的优点,解决了现有算法检测率与应用范围无法兼顾的问题,在保证检测能力的基础上,使干扰检测算法不再受GNSS接收机状态影响,提高了干扰检测算法可用性。
如图4所示,本发明还提供一种干扰源确定方法,所述干扰源确定方法包括:
S1:获取待检测机场中各基准站传输的检测数据。
S2:针对每一基准站,在所述基准站传输的检测数据不包含载噪比数据时,根据所述基准站传输的接收信号功率,判断所述待测机场是否存在干扰源。
具体地,获取所述基准站传输的接收信号功率在持续时间段内超出功率阈值的频率;若频率大于频率阈值,则判定所述待测机场存在干扰源,否则判定所述待测机场不存在干扰源。在本实施例中,通过对接收机实际接收数据的分布情况进行分析,确定接收信号功率的门限值,采用高斯分布对接收信号功率值分布进行拟合,得到接收功率数学特征,并将其均值、方差与国际民航组织(ICAO)规定的可容忍干扰功率相对应,确定检测门限(功率阈值)。
S3:在所述基准站传输的检测数据包含载噪比数据时,根据所述载噪比数据,判断所述待测机场是否存在干扰源。
具体地,针对任一卫星信号,获取n个滑窗内所述卫星信号的载噪比数据大于载噪比阈值的载噪比数据数量;若所述载噪比数据数量大于第一数量阈值,则判定所述卫星信号存在干扰。在本实施例中,所述第一数量阈值为7。
若存在干扰的卫星信号的数量大于第二数量阈值,且最近一个滑窗内各卫星信号的载噪比数据大于载噪比阈值的卫星信号数量大于第三数量阈值,则判定所述待测机场存在干扰源。在本实施例中,所述第二数量阈值为2。所述第三数量阈值为6。
S4:若所述待测机场存在干扰源,则生成测向控制指令,并发送至所述基准站。
S5:获取判定存在干扰源的基准站传输的干扰源的角度信息,并根据所述角度信息,确定干扰源的位置。
具体地,针对任一判定存在干扰源的基准站,根据所述基准站的位置坐标及所述基准站传输的干扰源的角度信息,确定一条射线。在本实施例中,根据以下公式,确定基准站i对应的射线:
Figure PCTCN2022076597-appb-000002
其中,(x i,y i)为基准站i的位置坐标,α i为基准站i传输的角度信息,(x,y)为射线上的点。
采用最小二乘法,基于目标函数,根据判定存在干扰源的各基准站对应的射线,确定干扰源的位置。在本实施例中,通过最小二乘法得到多条射线交点最优解,该最优解即为干扰源的位置。
所述目标函数为:
Figure PCTCN2022076597-appb-000003
其中,J(x,y)为目标函数值,n为判定存在干扰源的基准站的总数量,α i为基准站i传输的角度信息,(x i,y i)为基准站i的位置坐标,(x,y)为射线上的点。
作为一种具体的实施方式,当基准站传输的检测数据中包含载噪比数据时,通过多通道串行多次检测(Serial Multiple Detection,SMD)算法和并行多重检测(Parallel Multiple Detection,PMD)算法相结合判断是否存在干扰 源。选择Ω=2,N=7,M=6,Ω为PMD算法中检测到干扰信号的卫星颗数,N为SMD算法中观测的载噪比时间段个数,M为SMD算法中超过载噪比阈值的时间段个数。若对于单颗卫星的信号,最近7个滑窗内,有不少于6个载噪比数据超出设定的阈值,则判定为该卫星信号存在干扰源;若对于所有接收到的卫星信号,有不少于2颗卫星信号存在干扰,则SMD算法判定为存在干扰。
若对于所有接收到的卫星信号,在最近一个滑窗内,有不少于2颗卫星信号载噪比数据超出阈值,则PMD算法判定为存在干扰。
若SMD算法和PMD算法同时判断存在干扰,则认为存在对导航造成影响的干扰信号。
本发明融合了多通道串行多次检测(SMD)算法和并行多重检测(PMD)算法,分别对单颗卫星一段时间内受干扰情况和多颗卫星最近时刻受干扰情况进行检测,在保证检测率最优、漏警率较低的前提下,尽可能降低了虚警率,满足机场区域对于干扰检测的需求。
此外,为了对干扰源确定方法进行测试,在步骤S1之前,可以生成干扰源来模拟测试条件。具体地,生成高斯白噪声、窄带连续波、扫频波三种常见干扰信号的基带信号及GPS欺骗信号的二进制报文。其中,高斯白噪声采样率为21MHz,经8阶10MHz的巴特沃斯低通滤波器,生成带宽为10MHz的窄带高斯白噪声;窄带连续波频率为1000Hz,采样率为2.6MHz;正弦扫频波基带信号从20Hz到20KHz,采样率为2.6MHz;欺骗干扰源采样率为2.6MHz。各种干扰源的采样率、带宽的设置均与基准站的射频前端相匹配,通过射频前端将干扰源调制到GPS L1波段(1575.42MHz)并发射,以模拟GNSS压制式干扰源和欺骗式干扰源。
本发明还提供一种干扰源检测系统,包括多个基准站1及一个控制中心2。各基准站1设置在待检测机场的不同位置,且各基准站1均与所述控制中心2连接。
具体地,当检测到存在干扰源时,各个受到干扰的基准站分别对干扰源进行测向,并将测向结果传送至控制中心,控制中心根据不同基准站的坐标 和该站点相对干扰源的方向确定干扰源所在位置。
对应上述的干扰源检测系统,本发明还提供一种干扰源检测方法,实现多个基准站与控制中心的交互,所述干扰源检测方法包括:
通过多个基准站分别捕获并追踪各卫星信号的载噪比数据。
通过控制中心针对任一基准站,在所述基准站传输的检测数据不包含载噪比数据时,根据所述基准站传输的接收信号功率,判断待测机场是否存在干扰源;在所述基准站传输的检测数据包含载噪比数据时,根据所述载噪比数据,判断所述待测机场是否存在干扰源。
在所述待测机场存在干扰源时,生成测向控制指令,并发送至所述基准站。
通过所述基准站的天线旋转部件根据所述测向控制指令启动旋转,以带动所述基准站的天线旋转。
通过所述基准站的控制部件针对天线的第一次旋转,根据天线旋转一周内接收信号功率最大时对应的天线角度,确定中心点,并缩小旋转范围。
针对第n次旋转,控制所述天线旋转部件,使所述天线在当前中心点的当前旋转范围内旋转,根据当前旋转范围内接收信号功率最大时对应的天线角度,更新中心点,并缩小旋转范围;直至旋转范围小于范围阈值或达到最大旋转次数时结束旋转;2≤n≤N,N为最大旋转次数。
根据最后一次旋转范围内接收信号功率最大时对应的天线角度,确定干扰源的角度信息。
通过所述控制中心根据判定存在干扰源的基准站的位置坐标及干扰源的角度信息,确定干扰源的位置。
为了更好的理解本发明的方案,下面结合具体应用场景进一步进行说明。
(1)在待检测机场搭建多个基准站。干扰源检测方法封装于树莓派。
(2)利用MATLAB、Python等工具生成高斯白噪声、窄带连续波(CW)、扫频波三种干扰相应的基带信号,通过HackRF One射频前端调制到GPS L1波段(1575.42MHz)并发射,实现测试中的模拟压制式干扰源。
基于开源项目GPS-SDR-SIM生成GPS欺骗信号的二进制报文,通过HackRF One射频前端的hackrf_transfer命令调制到1575.42MHz进行发射,实现测试中的模拟欺骗式干扰源。
(3)设置接收功率门限:测量一段时间内接收机正常工作情况下接收功率分布,采用高斯分布进行拟合,得到接收信号功率的数学特征,将其均值、方差与国际民航组织(ICAO)规定的可容忍干扰功率相对应,确定检测门限(功率阈值)。
(4)确定载噪比阈值:由于真实的载噪比受卫星高度等影响因素较大,故而直接对载噪比数据设置阈值性能较差。为统一设置标准,本发明使用归一化的载噪比数据作为特征量。
对于给定仰角和给定卫星分布情况下,先对基准站的载噪比数据C/N 0进行归一化,得到归一化值
Figure PCTCN2022076597-appb-000004
Figure PCTCN2022076597-appb-000005
其中,θ k表示不同的卫星仰角,N θ表示观测滑窗长度,
Figure PCTCN2022076597-appb-000006
表示在卫星仰角为θ k情况下接收到信号的卫星总数,
Figure PCTCN2022076597-appb-000007
表示在θ k仰角下接收到的卫星k的载噪比值,为直接测量量,PRN表示卫星的“伪随机噪声码”。
Figure PCTCN2022076597-appb-000008
对不同仰角和卫星进行归一化,得到特征量
Figure PCTCN2022076597-appb-000009
Figure PCTCN2022076597-appb-000010
Figure PCTCN2022076597-appb-000011
其中,
Figure PCTCN2022076597-appb-000012
为均方根,表示偏离平均水平的程度,M为地面参考接收机数量,m为第m个接收机,θ k,m为第m个接收机对应的仰角,a 0、a 1、a 2、θ 0为预先选取的参数,如表1所示。取RMS最大值带入特征量计算公式中,确定特征量。
根据特征量
Figure PCTCN2022076597-appb-000013
的分布及3σ原则确定载噪比阈值。具体地,采用高斯分布拟合特征量
Figure PCTCN2022076597-appb-000014
的分布情况,根据特征量的均值、方差以及3σ原则,将置信概率小于99.74%的临界点中较大的一个设置为载噪比阈值。
表1
Figure PCTCN2022076597-appb-000015
(5)根据接收信号功率及载噪比数据进行干扰检测:考虑到需要在接收机无法捕获、跟踪的情况下检测是否存在干扰,所以必须选用接收机解扩前的数据作为观测量,但未经过跟踪的数据通常特征不够鲜明,检测能力不如选用跟踪后数据作为观测量的方案。为了提高大部分时间的干扰检测能力,同时满足在接收机不同工作状况下进行干扰检测的需求,本发明选用接收信号功率和载噪比数据两种观测量覆盖接收机可以跟踪和无法跟踪两种情况。如图5所示为干扰源检测算法的流程图。
当接收机无法捕获、跟踪时,由于GNSS频段受到严格管制,无干扰时接收信号功率不会产生较大变化,因而可以认为当此数据发生明显变化时接收机受到了干扰。
当接收机可以正常捕获、跟踪时,若存在干扰信号,接收机中频数据载噪比会明显增大,如果多颗卫星信号载噪比同时超出阈值,或一段时间内单颗卫星信号载噪比稳定超出阈值,则可认为存在干扰。根据载噪比的这种变化特点,将多星单次检测作为主要判据,将单星多次检测作为辅助判据,用于此时的干扰检测。
对于接收机可以正常捕获、跟踪载噪比数据时的情况,有以下结论:PMD算法对虚警率的影响大于SMD算法。在不使用SMD算法的情况下,将3颗卫星同时检测到干扰作为PMD的检测判据即可满足用户需求的虚警率。当降低PMD判断标准,用2颗卫星同时检测到干扰作为判据时,采用SMD进行辅助也可以达到要求。增加SMD算法中单颗卫星检测次数和检测次数中有干扰的次数总和都会增加虚警率。
为了得到更好的检测能力,同时使虚警率较低,选择Ω=2、N=7、M=6的PMD与SMD融合算法。其中,Ω表示PMD算法中检测到干扰信号的卫星颗数,N和M分别表示SMD算法中观测的载噪比个数以及阈值个数。干扰源检测结果的可能情况及判断结果如表2。
表2
Figure PCTCN2022076597-appb-000016
Figure PCTCN2022076597-appb-000017
(6)干扰源定位:现有干扰定位主要方法有干扰信号测向方法(AOA)、信号到达时间差方法(TDOA)和接收信号强度测量方法(RSS)三种。AOA和TDOA两种方法基础设施复杂,在实际应用中局限性较大,因而广泛应用的是RSS方法。RSS方法分为基于射频前端(RFFE)和基于载噪比(CNR)两中类型。基于射频前端的方法中,主要观测量有自动增益控制(AGC)和干噪比(JNR)。基于载噪比的方法中主要有单接收机合成(SRS)、多源几何中心(CC)以及多源载噪比数据融合(CC/N0F)三种方法。同样由于解扩后的数据更加稳定,当前最常用的GNSS干扰定位观测量也是载噪比。
考虑到机场实际需求:无论接收机工作状态如何,都需要对干扰源进行定位,从而快速排查驱逐。因此,定位算法必须选用接收机解扩前的数据作为观测量。同时,需要部署方便、成本控制在合理范围。
单个接收机在定位过程中,所需天线结构较为复杂,且观测点单一,定位精度和范围有限。基于对简便、低成本、高灵活性的需求,本发明没有使用结构较为复杂的阵列天线,而是选用单天线接收机作为主要设备,多个单天线接收机分别对干扰源进行测向,再对测向结果进行融合,增加数据源,提高定位精度,同时能够降低每个接收机天线的复杂度,通过将多个接收机部署于不同地点,提高了干扰源定位的区域范围。
不同于现有的干扰检测后直接使用检测观测量进行定位,本发明在检测到干扰后才会调用干扰定位算法,干扰定位观测量可不同于干扰检测观测量。系统将干扰检测算法和干扰定位算法模块化,当检测到干扰存在时调用干扰定位模块,同时由于启动干扰定位算法时,已知存在压制式干扰,则可直接认为天线接收功率最强的方向即为干扰源相对于接收机的方向,降低算法的复杂度。如图6所示为干扰源定位算法的流程图。
根据天线方向性进行干扰源测向:机场环境的特点是地形开阔、较易锁定目标,因此只需在二维平面上确定大致位置,即可锁定干扰源。
对于单个基准站来说,根据天线方向性特点,确定天线接收能力最强的方向,将其作为“正向”,旋转天线,当“正向”正对干扰来波方向时,天线接收信号功率最大,由此可确定干扰源相对于该基准站的方向。
当接收到控制中心启动信号后,进行时间同步检测,并开始进行干扰源定位,天线360°旋转,同时实时输出当前时刻角度及天线接收信号功率,旋转一周后,以接收信号功率最大时刻对应角度为中心点,±60°旋转,进一步锁定来波方向,进一步缩小旋转角度,以此类推,直至来波方向范围控制在±0.88°。得到来波方向后向控制中心传输基准站坐标及来波方向角度。
根据测向结果进行干扰源定位:各个基准站返回站点坐标及来波方向后,通过最小二乘法得到干扰源坐标最优解及置信概率95%区间(不确定度)。
通过最小二乘法进行干扰源位置解算:当已知多个基准站的坐标,以及每个站点测得的干扰来波方向时,则可得到四条射线,通过最小二乘法可以得到四条射线交点的最优解,该最优解坐标即为二维平面上最大概率的干扰源位置。同时,可以得到干扰源位置解两个方向上的不确定度。
设基准站i的二维位置坐标为(x i,y i),该基准站传输的角度信息为α i,则由该定点位置及方向可得射线方程,由于直线与射线不影响交点求解,为方便表示,用直线方程代指该射线:
Figure PCTCN2022076597-appb-000018
其中,α i为基准站i传输的角度信息,(x i,y i)为基准站i的位置坐标,x-x i可以转化为:
x-x i=tan α i(y-y i)
当判定存在干扰源的基准站的总数量为n时,可列出以下方程组:
Figure PCTCN2022076597-appb-000019
其中,方程组最优解(x,y)即为干扰源位置最优解。上述方程组可以转化为矩阵形式:
Figure PCTCN2022076597-appb-000020
Figure PCTCN2022076597-appb-000021
为所求交点坐标;
Figure PCTCN2022076597-appb-000022
可得到:
Figure PCTCN2022076597-appb-000023
可推得:
Figure PCTCN2022076597-appb-000024
但是(x,y)(或者
Figure PCTCN2022076597-appb-000025
),在绝大多数情况下都是无解的,因此需要通过最小二乘法求取最优解。设定目标函数:
Figure PCTCN2022076597-appb-000026
迭代求得干扰源位置坐标最优解(x p,y p)。
(7)确定干扰源定位误差:干扰源的定位误差通过不确定度表示,干扰源位置的不确定度只与测角不确定度有关,当已知每个基准站的测向结果θ i的不确定度Δθ i时,令k i=tan α i,b i=y i-x i·tan α i,则可由α i不确定度Δα i求得x p和y p的不确定度:
Figure PCTCN2022076597-appb-000027
Figure PCTCN2022076597-appb-000028
其中,Δx为干扰源位置x轴的不确定度,Δy为干扰源位置y轴的不确定度,
Figure PCTCN2022076597-appb-000029
σ表示不确定度,k=tan α,b=y-x·tan α,α为基准站传输的角度信息。
如用矩阵表示不确定度,令
Figure PCTCN2022076597-appb-000030
则可得到协方差矩阵(不确定度的矩阵表示),该矩阵即为干扰源位置不确定度在矩阵形式下的表达式:
Figure PCTCN2022076597-appb-000031
Figure PCTCN2022076597-appb-000032
X为
Figure PCTCN2022076597-appb-000033
Figure PCTCN2022076597-appb-000034
的数学期望,
Figure PCTCN2022076597-appb-000035
Figure PCTCN2022076597-appb-000036
的数学期望,C矩阵为X的协方差矩阵,其中c ij=Cov(x i,y j),i,j=1,2,…,n。
不确定度表示一个大致的范围,即以定位结果为中心、横轴纵轴分别Δx、Δy的一个椭圆,定位结果以95%的可能性落在该范围内。
本发明以机场为单位进行GNSS干扰检测及干扰源定位,聚焦干扰高发区域,相比现有以航路为单位进行干扰检测的方法,大幅降低所需数据量, 提高检测及定位时效性。相比现有航空领域干扰源定位方法,大幅缩小排查范围,提高定位精度,大幅降低工作人员排查工作强度。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种基准站,所述基准站设置在待检测机场中,且与控制中心连接,其特征在于,所述基准站包括:
    天线,用于捕获并追踪各卫星信号的载噪比数据;
    天线旋转部件,所述天线旋转部件上设置有所述天线,用于带动所述天线匀速旋转,并实时检测天线角度;所述天线在不同天线角度下,对卫星信号的接收信号功率不同;
    接收机,与所述控制中心、所述天线及所述天线旋转部件连接,用于接收各对天线角度及对应的接收信号功率;将检测数据发送至所述控制中心,以及接收控制中心传输的测向控制指令,并发送至所述天线旋转部件;所述测向控制指令为控制天线旋转部件进行匀速旋转的启动信号;所述检测数据包括载噪比数据,或者载噪比数据和接收信号功率;
    控制部件,分别与所述接收机及所述天线旋转部件连接,用于根据每次旋转中的各对天线角度及对应的接收信号功率,执行以下程序:
    针对第一次旋转,根据天线旋转一周内接收信号功率最大时对应的天线角度,确定中心点,并缩小旋转范围;
    针对第n次旋转,控制所述天线旋转部件,使所述天线在当前中心点的当前旋转范围内旋转,根据当前旋转范围内接收信号功率最大时对应的天线角度,更新中心点,并缩小旋转范围;直至旋转范围小于范围阈值或达到最大旋转次数时结束旋转;2≤n≤N,N为最大旋转次数;
    根据最后一次旋转范围内接收信号功率最大时对应的天线角度,确定干扰源的角度信息。
  2. 根据权利要求1所述的基准站,其特征在于,所述天线旋转部件包括:
    传动杆,与所述天线连接,用于带动所述天线匀速旋转;
    减速机,与所述传动杆连接,用于带动传动杆匀速旋转;
    角度传感器,分别与所述天线及所述控制部件连接,用于检测天线角度;
    电机驱动模块,分别与所述减速机、所述接收机及所述控制部件连接,用于根据所述测向控制指令,控制所述减速机启动运行,并在所述控制部件的控制下,调整所述减速机的旋转角度及转速。
  3. 一种控制中心,其特征在于,所述控制中心包括:
    通讯单元,与多个权利要求1或2所述的基准站连接,用于接收各基准站传输的检测数据及干扰源的角度信息;多个基准站设置在待检测机场的不同位置;
    第一干扰源判定单元,与所述通讯单元连接,用于针对任一基准站,在所述基准站传输的检测数据不包含载噪比数据时,根据所述基准站传输的接收信号功率,判断待测机场是否存在干扰源;
    第二干扰源判定单元,与所述通讯单元连接,用于针对任一基准站,在所述基准站传输的检测数据包含载噪比数据时,根据所述载噪比数据,判断所述待测机场是否存在干扰源;
    控制单元,分别与所述第一干扰源判定单元、所述第二干扰源判定单元及所述基准站连接,用于在所述待测机场存在干扰源时,生成测向控制指令,并发送至所述基准站;
    干扰源位置确定单元,与各基准站连接,用于根据判定存在干扰源的基准站的位置坐标及干扰源的角度信息,确定干扰源的位置。
  4. 一种干扰源确定方法,应用于权利要求3所述的控制中心,其特征在于,所述干扰源确定方法包括:
    获取待检测机场中各基准站传输的检测数据;
    针对每一基准站,在所述基准站传输的检测数据不包含载噪比数据时,根据所述基准站传输的接收信号功率,判断所述待测机场是否存在干扰源;
    在所述基准站传输的检测数据包含载噪比数据时,根据所述载噪比数据,判断所述待测机场是否存在干扰源;
    若所述待测机场存在干扰源,则生成测向控制指令,并发送至所述基准站;
    根据判定存在干扰源的基准站的位置坐标及干扰源的角度信息,确定干扰源的位置。
  5. 根据权利要求4所述的干扰源确定方法,其特征在于,所述在所述基准站传输的检测数据不包含载噪比数据时,根据所述基准站传输的接收信号功率,判断所述待测机场是否存在干扰源,具体包括:
    获取所述基准站传输的接收信号功率在持续时间段内超出功率阈值的频率;若频率大于频率阈值,则判定所述待测机场存在干扰源,否则判定所述待测机场不存在干扰源。
  6. 根据权利要求4所述的干扰源确定方法,其特征在于,所述在所述基准站传输的检测数据包含载噪比数据时,根据所述载噪比数据,判断所述待测机场是否存在干扰源,具体包括:
    针对任一卫星信号,获取n个滑窗内所述卫星信号的载噪比数据大于载噪比阈值的载噪比数据数量;若所述载噪比数据数量大于第一数量阈值,则判定所述卫星信号存在干扰;
    若存在干扰的卫星信号的数量大于第二数量阈值,且最近一个滑窗内各卫星信号的载噪比数据大于载噪比阈值的卫星信号数量大于第三数量阈值,则判定所述待测机场存在干扰源。
  7. 根据权利要求5所述的干扰源确定方法,其特征在于,所述根据判定存在干扰源的基准站的位置坐标及干扰源的角度信息,确定干扰源的位置,具体包括:
    针对任一判定存在干扰源的基准站,根据所述基准站的位置坐标及所述基准站传输的干扰源的角度信息,确定一条射线;
    采用最小二乘法,基于目标函数,根据判定存在干扰源的各基准站对应的射线,确定干扰源的位置。
  8. 根据权利要求7所述的干扰源确定方法,其特征在于,根据以下公式,确定基准站i对应的射线:
    Figure PCTCN2022076597-appb-100001
    其中,(x i,y i)为基准站i的位置坐标,α i为基准站i传输的角度信息,(x,y)为射线上的点。
  9. 一种干扰源检测系统,其特征在于,所述干扰源检测系统包括多个权利要求1-2任一项所述的基准站及权利要求3所述的控制中心;
    各基准站设置在待检测机场的不同位置,且各基准站均与所述控制中心连接。
  10. 一种干扰源检测方法,应用于权利要求8所述的干扰源检测系统,其特征在于,所述干扰源检测方法包括:
    通过多个基准站分别捕获并追踪各卫星信号的载噪比数据;
    通过控制中心针对任一基准站,在所述基准站传输的检测数据不包含载噪比数据时,根据所述基准站传输的接收信号功率,判断待测机场是否存在干扰源;在所述基准站传输的检测数据包含载噪比数据时,根据所述载噪比数据,判断所述待测机场是否存在干扰源;
    在所述待测机场存在干扰源时,生成测向控制指令,并发送至所述基准站;
    通过所述基准站的天线旋转部件根据所述测向控制指令启动旋转,以带动所述基准站的天线旋转;
    通过所述基准站的控制部件针对天线的第一次旋转,根据天线旋转一周内接收信号功率最大时对应的天线角度,确定中心点,并缩小旋转范围;
    针对第n次旋转,控制所述天线旋转部件,使所述天线在当前中心点的当前旋转范围内旋转,根据当前旋转范围内接收信号功率最大时对应的天线角度,更新中心点,并缩小旋转范围;直至旋转范围小于范围阈值或达到最大旋转次数时结束旋转;2≤n≤N,N为最大旋转次数;
    根据最后一次旋转范围内接收信号功率最大时对应的天线角度,确定干扰源的角度信息;
    通过所述控制中心根据判定存在干扰源的基准站的位置坐标及干扰源的角度信息,确定干扰源的位置。
PCT/CN2022/076597 2022-02-17 2022-02-17 基准站、控制中心、干扰源确定方法、检测系统及方法 WO2023155094A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/076597 WO2023155094A1 (zh) 2022-02-17 2022-02-17 基准站、控制中心、干扰源确定方法、检测系统及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/076597 WO2023155094A1 (zh) 2022-02-17 2022-02-17 基准站、控制中心、干扰源确定方法、检测系统及方法

Publications (1)

Publication Number Publication Date
WO2023155094A1 true WO2023155094A1 (zh) 2023-08-24

Family

ID=87577345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076597 WO2023155094A1 (zh) 2022-02-17 2022-02-17 基准站、控制中心、干扰源确定方法、检测系统及方法

Country Status (1)

Country Link
WO (1) WO2023155094A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117590430A (zh) * 2023-11-27 2024-02-23 湖南跨线桥航天科技有限公司 一种针对打孔码捕获的gps的m码信号灵巧干扰方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1241885A (zh) * 1998-07-01 2000-01-19 三星电子株式会社 确定干扰源位置和测量干扰源的干扰信号的装置和方法
CN102749613A (zh) * 2012-06-20 2012-10-24 暨南大学 基于旋转天线的室内定位方法
CN103837877A (zh) * 2012-11-21 2014-06-04 安凯(广州)微电子技术有限公司 一种卫星识别的方法和装置
WO2015129243A1 (ja) * 2014-02-27 2015-09-03 日本電気株式会社 衛星測位用電波干渉検知機構、衛星測位用電波干渉検知方法および該衛星測位用電波干渉検知機構を備えた補強情報送信システム
CN112596078A (zh) * 2020-12-19 2021-04-02 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种基于载噪比统计的卫星导航欺骗干扰检测方法
CN113406671A (zh) * 2021-06-15 2021-09-17 东南大学 一种基于c/n0-mv的gnss转发式欺骗干扰检测方法
CN113655502A (zh) * 2021-09-27 2021-11-16 北京东方波泰无线电频谱技术研究所 一种用于欺骗式gnss干扰信号测向定位方法及系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1241885A (zh) * 1998-07-01 2000-01-19 三星电子株式会社 确定干扰源位置和测量干扰源的干扰信号的装置和方法
CN102749613A (zh) * 2012-06-20 2012-10-24 暨南大学 基于旋转天线的室内定位方法
CN103837877A (zh) * 2012-11-21 2014-06-04 安凯(广州)微电子技术有限公司 一种卫星识别的方法和装置
WO2015129243A1 (ja) * 2014-02-27 2015-09-03 日本電気株式会社 衛星測位用電波干渉検知機構、衛星測位用電波干渉検知方法および該衛星測位用電波干渉検知機構を備えた補強情報送信システム
CN112596078A (zh) * 2020-12-19 2021-04-02 中国电波传播研究所(中国电子科技集团公司第二十二研究所) 一种基于载噪比统计的卫星导航欺骗干扰检测方法
CN113406671A (zh) * 2021-06-15 2021-09-17 东南大学 一种基于c/n0-mv的gnss转发式欺骗干扰检测方法
CN113655502A (zh) * 2021-09-27 2021-11-16 北京东方波泰无线电频谱技术研究所 一种用于欺骗式gnss干扰信号测向定位方法及系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117590430A (zh) * 2023-11-27 2024-02-23 湖南跨线桥航天科技有限公司 一种针对打孔码捕获的gps的m码信号灵巧干扰方法
CN117590430B (zh) * 2023-11-27 2024-04-19 湖南跨线桥航天科技有限公司 一种针对打孔码捕获的gps的m码信号灵巧干扰方法

Similar Documents

Publication Publication Date Title
CN111366950B (zh) 卫星导航压制式干扰与欺骗干扰的综合检测方法及系统
CN108226852B (zh) 基于空中无线电监测平台的无人机操作者定位系统及方法
EP3096986B1 (en) Vehicle identification
JP2021503605A (ja) スプーフィング検出および阻止
CN108089205B (zh) 一种无人机飞控人员定位系统
US11374668B2 (en) Systems and methods for detecting satellite-based communication interference
JPWO2008139607A1 (ja) 障害物検出装置、無線受信装置、無線送信装置及び無線通信システム
CN113055949B (zh) 定位方法、装置、设备和介质
US20180203127A1 (en) Satellite positioning system receiver capable of detecting failure in rf receiver unit including receiving antenna
CN106405491A (zh) 基于软件无线电的无人机监测系统
WO2023155094A1 (zh) 基准站、控制中心、干扰源确定方法、检测系统及方法
JP2020098201A (ja) 二次レーダーの方位精度及び主アンテナローブのパターンを測定する方法、及びこのような方法を実施するレーダー
CN109633651A (zh) 77g无人机避障雷达
Lee et al. Detection of gnss spoofing using nmea messages
KR20180047038A (ko) 드론의 GPS 수신 신호 이상시 LoRa를 이용한 드론 위치정보 획득 시스템 및 그 방법
CN113009521B (zh) 一种基于gnss前向散射特性的空中目标探测装置
CN105158728A (zh) 一种无线测向定位搜救装置及搜救方法
CN109738873B (zh) 一种ads-b抗干扰防欺骗地面单站系统
Wachtl et al. Global navigation satellite systems in passive surveillance applications
CN114488209A (zh) 基准站、控制中心、干扰源确定方法、检测系统及方法
CN113242097B (zh) 水下定位方法及相关装置
KR102020746B1 (ko) 위성항법 수신기 네트워크를 이용한 비행체 탐지 시스템 및 방법
de Mello et al. SDR-based radar-detectors embedded on tablet devices
KR102068287B1 (ko) 브로드밴드 레이더를 이용한 해적선 탐지 시스템 및 그 방법
KR102447772B1 (ko) 위성항법 기만신호의 방향 탐지 방법 및 방향 탐지 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926428

Country of ref document: EP

Kind code of ref document: A1