WO2023155065A1 - 电驱压裂系统 - Google Patents

电驱压裂系统 Download PDF

Info

Publication number
WO2023155065A1
WO2023155065A1 PCT/CN2022/076452 CN2022076452W WO2023155065A1 WO 2023155065 A1 WO2023155065 A1 WO 2023155065A1 CN 2022076452 W CN2022076452 W CN 2022076452W WO 2023155065 A1 WO2023155065 A1 WO 2023155065A1
Authority
WO
WIPO (PCT)
Prior art keywords
fracturing
power generation
auxiliary
switch group
electric drive
Prior art date
Application number
PCT/CN2022/076452
Other languages
English (en)
French (fr)
Inventor
仲跻风
王吉华
吕亮
李守哲
吴义朋
李心成
Original Assignee
烟台杰瑞石油装备技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 烟台杰瑞石油装备技术有限公司 filed Critical 烟台杰瑞石油装备技术有限公司
Priority to PCT/CN2022/076452 priority Critical patent/WO2023155065A1/zh
Priority to CN202280000733.8A priority patent/CN115087792B/zh
Priority to CA3159026A priority patent/CA3159026A1/en
Priority to US17/774,795 priority patent/US20240159132A1/en
Publication of WO2023155065A1 publication Critical patent/WO2023155065A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2607Surface equipment specially adapted for fracturing operations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B17/00Pumps characterised by combination with, or adaptation to, specific driving engines or motors
    • F04B17/03Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • H02J3/46Controlling of the sharing of output between the generators, converters, or transformers
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2300/00Systems for supplying or distributing electric power characterised by decentralized, dispersed, or local generation
    • H02J2300/20The dispersed energy generation being of renewable origin
    • H02J2300/22The renewable source being solar energy
    • H02J2300/24The renewable source being solar energy of photovoltaic origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier

Definitions

  • Embodiments of the present disclosure relate to an electrically driven fracturing system.
  • Electric drive devices With the continuous development of oil and gas extraction technology, due to the advantages of high power, energy saving and environmental protection, light weight, and small size, electric drive devices are more and more widely used in the field of oil and gas extraction.
  • Electric drive devices usually use electric power to drive motors, and then use the motors to drive various functional components to achieve various functions.
  • the motor can drive the fracturing pump to pressurize the low-pressure fracturing fluid into high-pressure fracturing fluid; another example, the motor can drive the lubricating pump to drive the lubricating fluid to lubricate the plunger pump and other devices that need to be lubricated.
  • Electric drive devices in the field of oil and gas extraction include electric drive cementing devices, electric drive acid fracturing devices, electric drive fracturing devices, electric drive sand mixing devices, instrumentation devices, electric drive mixing devices, and electric drive liquid supply devices And electric drive sand supply device, etc. These devices are usually powered by the grid, or by power generation.
  • An embodiment of the present disclosure provides an electric drive system powered by multiple power sources. By setting up two or more power generating devices, the system avoids system downtime due to power failure or failure of the power generating devices, improves power supply safety, and reduces damage to equipment.
  • At least one embodiment of the present disclosure provides an electric-driven fracturing system, which includes: a main power generation device; a first auxiliary power generation device; a switchgear, including a low-voltage switch group and a high-voltage switch group; an electric-driven fracturing device, including a fracturing motor and a fracturing auxiliary device; the rated generating power of the main generating device is greater than the rated generating power of the first auxiliary generating device, the rated output voltage of the main generating device is greater than the rated output voltage of the first auxiliary generating device,
  • the high-voltage switch group includes an input end and an output end
  • the low-voltage switch group includes an input end and an output end
  • the input end of the high-voltage switch group is connected to the main power generation device
  • the output end of the high-voltage switch group is connected to the The fracturing motor is connected, the input end of the low-voltage switch group is connected with the first auxiliary power generation device, and
  • the main power generation device includes a generator and an auxiliary power generation device; the auxiliary power generation device is also connected to the output end of the low-voltage switch group.
  • the electric drive fracturing system further includes: a sand mixing device, an instrument device, a mixing device, a liquid supply device, and a sand supply device; the sand mixing device, the instrument device, the mixing At least one of the distribution device, the liquid supply device and the sand supply device is connected to the output end of the low-voltage switch group.
  • the electric-driven fracturing device further includes a fracturing pump and a transmission mechanism, and the power output shaft of the fracturing motor communicates with the fracturing mechanism through the transmission mechanism.
  • a power input shaft of the fracturing pump is connected and configured to drive the fracturing pump to pressurize the low pressure fluid into high pressure fluid.
  • the ratio of the rated generating power of the main generating device to the rated generating power of the first auxiliary generating device is greater than 10
  • the rated generating power of the main generating device is The ratio of the output voltage to the rated output voltage of the first auxiliary power generation device is greater than 10.
  • the rated generating power of the generator is greater than 30MW
  • the rated generating power of the first auxiliary generating device is less than 1MW
  • the rated output of the main generating device is The voltage is greater than 10kV
  • the rated output voltage of the first auxiliary power generation device is less than 1kV.
  • the electric drive fracturing system provided by an embodiment of the present disclosure further includes: an energy storage unit, the energy storage unit includes an input end and an output end, and the output end of the energy storage unit is connected to the fracturing auxiliary device.
  • the electric drive fracturing system provided in an embodiment of the present disclosure further includes: a second auxiliary power generation device connected to the input end of the energy storage unit.
  • the second auxiliary power generation device includes a solar power generation panel.
  • the input end of the energy storage unit is connected to the output end of the low-voltage switch group.
  • the energy storage unit includes at least one of a sodium ion battery, a lithium ion battery, a supercapacitor, and a hydrogen fuel cell.
  • the electric-driven fracturing device further includes a fracturing frequency converter, one end of the fracturing frequency converter is connected to the output end of the high-voltage switch group, The other end of the fracturing frequency converter is connected with the fracturing motor.
  • the electric drive fracturing device further includes: a fracturing transformer, the fracturing transformer includes an input end, a first output end and a second output end, The input end of the fracturing transformer is connected to the output end of the high voltage switch group, the first output end of the fracturing transformer is connected to the fracturing motor, and the second output end of the fracturing transformer is connected to the Fracturing auxiliary equipment is connected.
  • a fracturing transformer the fracturing transformer includes an input end, a first output end and a second output end, The input end of the fracturing transformer is connected to the output end of the high voltage switch group, the first output end of the fracturing transformer is connected to the fracturing motor, and the second output end of the fracturing transformer is connected to the Fracturing auxiliary equipment is connected.
  • the auxiliary fracturing device includes: a fan motor configured to drive the fan in the electric-driven fracturing device to rotate; configured to drive the radiator impeller in the electrically driven fracturing device to rotate; and a first lubricating motor configured to drive a lubricating pump in the electrically driven fracturing device.
  • the fracturing auxiliary device includes: a first frequency converter, a second frequency converter and a third frequency converter; one end of the first frequency converter is connected to the The output end of the low-voltage switch group is connected, the other end of the first frequency converter is connected with the fan motor; one end of the second frequency converter is connected with the output end of the low-voltage switch group, and the second frequency converter The other end of the third frequency converter is connected with the first cooling motor; one end of the third frequency converter is connected with the output end of the low-voltage switch group, and the other end of the third frequency converter is connected with the first lubricating motor.
  • the fracturing auxiliary device further includes: an electric conversion component, including a transformer and an inverter; and a fracturing control device, one end of the electric conversion component Connected to the output end of the low-voltage switch group, the other end of the electrical conversion component is connected to the fracturing control device, and the transformer is configured to convert the first voltage output by the output end of the low-voltage switch group to For a second voltage, the inverter is configured to convert the alternating current output from the output terminal of the low-voltage switch group into direct current.
  • an electric conversion component including a transformer and an inverter
  • a fracturing control device one end of the electric conversion component Connected to the output end of the low-voltage switch group, the other end of the electrical conversion component is connected to the fracturing control device, and the transformer is configured to convert the first voltage output by the output end of the low-voltage switch group to For a second voltage, the inverter is configured to convert the alternating current output from the output terminal of the low
  • the power generation auxiliary device includes: a second cooling motor configured to drive the radiator impeller in the main power generation device to rotate; and a second lubricating motor , configured to drive a lubrication pump in the main power generation unit.
  • the power generation auxiliary device further includes: a cranking start system, and the cranking start system is connected to the output end of the low-voltage switch group.
  • the main power generation device is a gas turbine generator
  • the first auxiliary power generation device is a piston generator
  • the auxiliary fracturing device further includes: a lighting system configured to provide light for the electric-driven fracturing device.
  • Fig. 1 is a schematic diagram of an electric drive fracturing system provided by an embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of another electric drive fracturing system provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic diagram of another electric drive fracturing system provided by an embodiment of the present disclosure.
  • Fig. 4 is a schematic diagram of another electric drive fracturing system provided by an embodiment of the present disclosure.
  • Fig. 5 is a schematic diagram of an electric drive fracturing system including a transformer provided by an embodiment of the present disclosure.
  • Fig. 6 is a schematic diagram of another electrically driven fracturing system provided by an embodiment of the present disclosure.
  • the power generation device when the power generation device is used to supply power to the electric drive device at the well site, since the power generation device needs to meet the maximum power demand of the electric drive device at the entire well site, the rated power of the power generation device needs to be configured larger (for example).
  • many electric drive devices such as electric drive fracturing devices
  • the power demand of the well site fluctuates greatly, and the power generation device will often be in an idle state.
  • the power generating device is in an idling state, a large amount of fuel will still be consumed, and the fuel efficiency at this time is low, and the fuel economy is relatively poor.
  • the power generation device fails and causes a power outage, all electric drive devices in the entire well site will be powered off, resulting in various accidents.
  • the high-power generating device only needs to provide 1000KW of electric output, so it will be in an idle state, resulting in low fuel efficiency and poor fuel economy of the generating device.
  • the cooling device and lubricating device when the power generation device suddenly loses power, the cooling device and lubricating device also stop running, but the fracturing motor or fracturing pump and other devices still keep running due to inertia, and cannot dissipate heat and lubricate through the cooling device and lubricating device, resulting in The occurrence of high temperature and abnormal wear and other phenomena will reduce the life of the equipment and even cause equipment damage.
  • the fracturing auxiliary devices such as the lubricating device, cooling device and ventilation device used to assist the operation of the fracturing motor and the fracturing pump also need power supply. .
  • other fracturing auxiliary devices also need to be powered; otherwise, the electrically driven fracturing device will not be able to operate normally, or even be damaged.
  • the fracturing motor and the fracturing pump are working, if the cooling device does not operate, the fracturing motor, fracturing pump, and electrical components will be damaged due to high temperature.
  • an embodiment of the present disclosure provides an electrically driven fracturing system.
  • the electric drive fracturing system includes a main power generation device, a first auxiliary power generation device, a switch device, and an electric drive fracturing device.
  • the switchgear includes a low-voltage switch group and a high-voltage switch group;
  • the electric drive fracturing device includes a fracturing motor and a fracturing auxiliary device;
  • the rated generating power of the main generating device is greater than the rated generating power of the first auxiliary generating device, and the rated output of the main generating device
  • the voltage is greater than the rated output voltage of the first auxiliary power generation device;
  • the high-voltage switch group includes an input end and an output end, and the low-voltage switch group includes an input end and an output end;
  • the input end of the high-voltage switch group is connected to the main power generation device, and the output end of the high-voltage switch group It is connected with the fract
  • the electric drive fracturing system can switch the working status of the main power generation device and the auxiliary power generation device according to the power consumption of the electric drive fracturing system. On the one hand, it can prevent the main power generation device from being in an idle state frequently, and improve fuel efficiency and fuel economy. On the other hand, it can avoid the shutdown of the entire electric drive fracturing system caused by the sudden power failure of the main power generation device.
  • FIG. 1 is a schematic diagram of an electric drive fracturing system provided by an embodiment of the present disclosure.
  • the electric-driven fracturing system 001 includes a main power generation device 100 , a first auxiliary power generation device 200 , a switch device 300 and an electric-driven fracturing device 400 .
  • the switchgear includes a low-voltage switch group 310 and a high-voltage switch group 320
  • the electrically driven fracturing device 400 includes a fracturing motor 420 and a fracturing auxiliary device 410 .
  • the rated generating power of the main generating device 100 is greater than the rated generating power of the first auxiliary generating device 200, the rated output voltage of the main generating device 100 is greater than the rated output voltage of the first auxiliary generating device 200, and the high-voltage switch group 320 includes an input terminal and an output terminal , the low-voltage switch group 310 includes an input terminal and an output terminal.
  • the input end of the high-voltage switch group 320 is connected to the main power generation device 100, the output end of the high-voltage switch group 320 is connected to the fracturing motor 420, the input end of the low-voltage switch group 310 is connected to the first auxiliary power generation device 200, and the output of the low-voltage switch group 310 The end is connected to the fracturing auxiliary device 410.
  • the connection between the above-mentioned high-voltage switch group and the fracturing motor includes direct connection and indirect connection through other electrical devices or electrical components; similarly, the connection between the low-voltage switch group and the auxiliary fracturing device includes direct connection It also includes the situation of indirect connection through other electrical devices or electrical components.
  • the fracturing motor when the fracturing motor needs to run, start the main power generation device and supply power to the fracturing motor through the high-voltage switch group; when the fracturing motor does not need to run, the main The power generation device supplies power to the fracturing auxiliary device only through the first auxiliary power generation device through the low-voltage switch group.
  • the first auxiliary power generation device can ensure the normal operation of the auxiliary fracturing device and avoid equipment damage caused by the power failure of the auxiliary fracturing device.
  • the electric drive fracturing system can switch between the main power generation device and the auxiliary power generation device according to the power consumption of the electric drive fracturing system.
  • the working state of the power generation device can, on the one hand, ensure the normal operation of the fracturing auxiliary device and avoid the main power generation device from being in an idle state frequently, thereby improving fuel efficiency and fuel economy;
  • the entire electric drive fracturing system is powered off and shut down, so as to ensure the safety of power supply and avoid the reduction of equipment life and equipment damage.
  • the switchgear includes a low-voltage switchgear and a high-voltage switchgear
  • the electric drive fracturing system can use the switchgear to uniformly deploy various electrical devices requiring different voltage levels, which has high flexibility , and reduce the difficulty of operation.
  • the main power generation device can use energy-saving and environmentally friendly gas turbine power generation devices, which can use low-carbon fuels such as natural gas, hydrogen, mixtures containing hydrogen, mixtures of gaseous and liquid fuels, etc. At the same time, reduce carbon emissions.
  • the above working modes of the electric drive fracturing system only illustrate that the electric drive fracturing system provided by the embodiments of the present disclosure can improve fuel efficiency and fuel economy, ensure power supply security, and avoid equipment life reduction and An example of equipment damage; however, the working modes of the electric drive fracturing system in the embodiments of the present disclosure include but are not limited to this.
  • the ratio of the rated generating power of the main generating device 100 to the rated generating power of the first auxiliary generating device 200 is greater than 10, and the ratio of the rated output voltage of the main generating device 100 to the rated output voltage of the first auxiliary generating device 200 greater than 10.
  • the rated generating power of the main generating device 100 is greater than 30MW, the rated generating power of the first auxiliary generating device 200 is less than 1MW, the rated output voltage of the main generating device 100 is greater than 10kV, and the rated output voltage of the first auxiliary generating device 200 is Less than 1kV.
  • the rated output voltage of the main generating device 100 may be 13.9kV; the rated output voltage of the first auxiliary generating device 200 may be 480V.
  • the main power generation device 100 may use a gas turbine power generation device or a gas turbine generator set with a rated power generation greater than 30MW
  • the first auxiliary power generation device 200 may use a piston type power generation device or a piston type generator set with a rated power generation power less than 1MW.
  • the embodiments of the present disclosure include but are not limited thereto, and other types of power generation devices may also be used for the main power generation device and the first auxiliary power generation device.
  • the main power generation device 100 includes a generator 120 and an auxiliary power generation device 110 , and the auxiliary power generation device 110 is also connected to an output terminal of a low-voltage switch group 310 . Since the rated generating power of the main generating device is relatively large, in addition to the generator, the main generating device also needs to be equipped with generating auxiliary devices that provide auxiliary functions such as lubrication and heat dissipation for the generator.
  • the electric drive fracturing system can ensure the normal operation of the power generation auxiliary device through the first auxiliary power generation device when the main power generation device is shut down, so that a On the one hand, it can avoid equipment damage caused by the power failure of the power generation auxiliary device, and on the other hand, it can also realize the rapid start of the main power generation device.
  • the generator 120 supplies power to the fracturing motor 420 through the high-voltage switch group 320
  • the first auxiliary power generation device 200 supplies power to the fracturing auxiliary device 410 and the power generation auxiliary device 110 through the low-voltage switch group 310 respectively. powered by.
  • the fracturing auxiliary device 410 and the power generation auxiliary device 110 can still work normally, ensuring that the electric drive fracturing device and the main power generation device can obtain corresponding lubrication and heat dissipation, thereby avoiding the electric drive pressure.
  • Abnormal wear and damage of the fracturing device and the main power generation device and also ensure the normal operation of the control devices in the electric fracturing device and the main power generation device, thereby preventing the electric fracturing device and the main power generation device from being out of control.
  • the electric drive fracturing device 400 further includes a fracturing pump 421 and a transmission mechanism 422 , and the power output shaft of the fracturing motor 420 is connected to the power input shaft of the fracturing pump 421 through the transmission mechanism 422 , and configured to drive the fracturing pump 421 to pressurize the low-pressure fluid into high-pressure fluid.
  • the fracturing auxiliary device 410 includes a first fan motor 411 , a first cooling motor 412 and a first lubricating motor 413 ;
  • the first fan motor 411 is configured to drive the electrically driven fracturing device 400
  • the fan in the electric drive fracturing device rotates, so as to provide ventilation air for the electric drive fracturing device 400;
  • the first heat dissipation motor 412 is configured to drive the radiator impeller in the electric drive fracturing device 400 to rotate to realize the heat dissipation function;
  • the first lubricating motor 413 It is configured to drive the lubricating pump in the electrically driven fracturing device 400 to realize the lubricating function.
  • the fracturing auxiliary device can realize multiple functions such as ventilation, heat dissipation, and lubrication.
  • the generating auxiliary device 110 includes a second cooling motor 111 and a second lubricating motor 113; the second cooling motor 111 is configured to drive the radiator impeller in the main generating device 100 to rotate; the second The lubrication motor 113 is configured to drive a lubrication pump in the main power generator 100 .
  • the power generation auxiliary device can realize various functions such as heat dissipation and lubrication.
  • the power generation auxiliary device 110 further includes a power generation control device 114 .
  • the power generation control device can realize functions such as detection, feedback and control of the main power generation device.
  • the generator auxiliary device 110 also includes a crank start system 112 configured to provide uniform heating of the main generator unit 100 at start-up and uniform heating of the main generator unit 100 at shutdown. cool down.
  • a crank start system 112 configured to provide uniform heating of the main generator unit 100 at start-up and uniform heating of the main generator unit 100 at shutdown. cool down.
  • Fig. 2 is a schematic diagram of another electrically driven fracturing system provided by an embodiment of the present disclosure.
  • the electric drive fracturing system 001 can also include a sand mixing device 501, an instrument device 502, a mixing device 503, a liquid supply device 504, and a sand supply device 505; the sand mixing device 501, the instrument device 502, the mixing device At least one of the device 503 , the liquid supply device 504 and the sand supply device 505 is connected to the output end of the low-voltage switch group 310 .
  • the electric drive fracturing system can realize various types of auxiliary functions, such as sand supply function, sand mixing function and the like.
  • Fig. 3 is a schematic diagram of another electrically driven fracturing system provided by an embodiment of the present disclosure.
  • the power generation auxiliary device 110 may further include: a second fan motor 115 configured to drive the fan in the main power generation device 100 to rotate.
  • the power generation auxiliary device can realize the ventilation function.
  • the electrically driven fracturing system 001 further includes an energy storage unit 430 .
  • the energy storage unit 430 includes an input end and an output end, and the output end of the energy storage unit 430 is connected to the fracturing auxiliary device 410 for supplying power to the fracturing auxiliary device 410 .
  • the energy storage unit can provide emergency power supply, further improving the power supply safety of the entire electric drive fracturing system.
  • the energy storage unit 430 includes at least one of a sodium ion battery, a lithium ion battery, a supercapacitor, and a hydrogen fuel cell. Therefore, the above-mentioned energy storage unit has a faster charge and discharge capability and a relatively larger energy density.
  • the embodiments of the present disclosure include but are not limited thereto, and the above-mentioned energy storage unit may also adopt other energy storage methods.
  • the input end of the energy storage unit 430 is connected to the output end of the low-voltage switch group 310 , so that the electrically driven fracturing equipment can charge the energy storage unit through the first auxiliary power generation device.
  • the electric drive fracturing device further includes a fracturing frequency converter 4200, one end of the fracturing frequency converter 4200 is connected to the output end of the high-voltage switch group 320, and the fracturing frequency converter The other end of 4200 is connected with fracturing motor 420 . Therefore, through the above-mentioned fracturing frequency converter, the above-mentioned fracturing motor can realize stepless speed regulation, continuously change the rotation speed, and improve the transmission efficiency.
  • the fracturing auxiliary device 410 includes a first fan motor 411 , a first cooling motor 412 and a first lubricating motor 413 ;
  • the first fan motor 411 is configured to drive the electrically driven fracturing device 400
  • the fan in the electric drive fracturing device rotates, so as to provide ventilation air for the electric drive fracturing device 400;
  • the first heat dissipation motor 412 is configured to drive the radiator impeller in the electric drive fracturing device 400 to rotate to realize the heat dissipation function;
  • the first lubricating motor 413 It is configured to drive the lubricating pump in the electrically driven fracturing device 400 to realize the lubricating function.
  • the fracturing auxiliary device can realize multiple functions such as ventilation, heat dissipation, and lubrication.
  • the fracturing auxiliary device 410 further includes: a first frequency converter 4110 , a second frequency converter 4120 and a third frequency converter 4130 .
  • One end of the first frequency converter 4110 is connected to the output end of the low-voltage switch group 310 , and the other end is connected to the first fan motor 411 .
  • One end of the second frequency converter 4120 is connected to the output end of the low-voltage switch group 310 , and the other end is connected to the first cooling motor 412 .
  • One end of the third frequency converter 4130 is connected to the output end of the low-voltage switch group 310 , and the other end is connected to the first lubricating motor 413 . Therefore, the fracturing auxiliary device can realize stepless speed regulation, continuously change the speed, and improve transmission efficiency.
  • Fig. 4 is a schematic diagram of another electrically driven fracturing system provided by an embodiment of the present disclosure.
  • the electric fracturing device 001 further includes a second auxiliary power generation device 431 .
  • the second auxiliary power generation device 431 is connected to the input end of the energy storage unit 430 .
  • the energy storage unit can be charged by the second auxiliary power generation device. Therefore, the electrically driven fracturing system shown in FIG. 4 provides another way to charge the energy storage unit.
  • the second auxiliary power generation device 431 includes a solar power generation panel.
  • the embodiments of the present disclosure include but are not limited thereto, and the second auxiliary power generation device may also be other types of power generation devices.
  • the intelligence of the electric drive fracturing system can only be updated through external power generation or the power grid to update and check the equipment status, update the control program, etc.
  • the electric drive fracturing system includes energy storage units and solar panels
  • the electric drive Part or all of the control devices of the fracturing system can be online in real time, and the control devices can be woken up through wireless or wired methods, so as to obtain more functions of the control devices, such as updating the control program, reading the stored data of the control device, obtaining surrounding environment images, obtaining The real-time location of the equipment, etc., make the maintenance and inspection of the equipment more convenient, and no longer rely solely on external power supply.
  • the fracturing auxiliary device 410 further includes: a lighting system 414 configured to provide light for the electrically driven fracturing device.
  • the fracturing assistance device 410 further includes: a fracturing control device 415 .
  • the fracturing control device can realize functions such as detection, feedback and control of the electric drive fracturing device.
  • Fig. 5 is another electrically driven fracturing system provided by an embodiment of the present disclosure.
  • the electric drive fracturing system 001 also includes a fracturing transformer 440; the fracturing transformer 440 includes an input end, a first output end and a second output end; the input end of the fracturing transformer 440 and the high voltage switch group 320 The output ends are connected; the first output end of the fracturing transformer 440 is connected with the fracturing motor 420 ; the second output end of the fracturing transformer 440 is connected with the fracturing frequency converter 4200 .
  • the electric drive fracturing system can flexibly increase the voltage by setting the above-mentioned fracturing transformer to meet the voltage conditions required for the operation of various electrical devices, and can also reduce the voltage to supply power for fracturing auxiliary devices. Therefore, when the first auxiliary power generation device fails, the power supply safety of the fracturing auxiliary device can be maintained through the main power generation device and the fracturing transformer.
  • the fracturing auxiliary device 410 further includes: an electrical conversion unit 4150 and a fracturing control device 415; the electrical conversion unit includes a transformer 4151 and an inverter 4152; one end of the electrical conversion unit 4150 is connected to the low-voltage The output end of the switch group 310 is connected, and the other end of the electric conversion component 4150 is connected with the fracturing control device 415; the transformer 4151 is configured to convert the first voltage output by the output end of the low-voltage switch group 310 into a second voltage, and the inverter The 4152 is configured to convert the alternating current output from the output terminal of the low voltage switch group 310 into direct current.
  • the electrical conversion component 4150 can convert the AC power output by the fracturing transformer 440 into a DC power, so as to drive the control device 415 that requires DC power.
  • the second voltage is lower than the first voltage, the second voltage is 24V, and the first voltage is 480V.
  • the fracturing control device 415 includes modules such as input, output, logic control, communication, storage, and sensor detection; the fracturing control device 415 can also communicate with a remote control system.
  • the remote control system can obtain the operating parameters of the above-mentioned various devices through the fracturing control device, and remotely operate and control the corresponding devices according to these operating parameters.
  • embodiments of the present disclosure include but are not limited thereto.
  • the aforementioned communication connection includes communication connection through wired connection (such as wire, optical fiber, etc.), and also includes communication connection through wireless connection (such as WiFi, mobile network).
  • wired connection such as wire, optical fiber, etc.
  • wireless connection such as WiFi, mobile network
  • the above-mentioned fracturing control device and power generation control device may include a storage medium and a processor; the storage medium is used to store computer programs; and the processor is used to execute the computer programs in the storage medium to achieve various control operations.
  • the above-mentioned storage medium may be a volatile memory and/or a non-volatile memory.
  • the volatile memory may include random access memory (RAM) and/or cache memory (cache), etc., for example.
  • Non-volatile memory may include, for example, read-only memory (ROM), hard disk, flash memory, and the like.
  • the aforementioned processor may be a central processing unit (CPU) or other forms of processing devices with data processing capabilities and/or instruction execution capabilities, such as microprocessors, programmable logic controllers (PLCs), and the like.
  • CPU central processing unit
  • PLCs programmable logic controllers
  • Fig. 6 is a schematic diagram of another electrically driven fracturing system provided by an embodiment of the present disclosure.
  • the electric-driven pumping device 001 can be provided with a plurality of electric-driven fracturing devices 400 , and each electric-driven fracturing device 400 is respectively supplied with high-voltage power and low-voltage power through the switch device 300 . Therefore, the electric drive fracturing system can achieve a larger displacement.

Landscapes

  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mining & Mineral Resources (AREA)
  • Power Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Control Of Eletrric Generators (AREA)

Abstract

一种电驱压裂系统被公开。该系统包括主发电装置(100)、第一辅助发电装置(200)、开关装置(300)以及电驱压裂装置(400);开关装置包括低压开关组(310)和高压开关组(320);电驱压裂装置包括压裂电机(420)和压裂辅助装置(410);主发电装置的额定发电功率大于第一辅助发电装置的额定发电功率,主发电装置的额定输出电压大于第一辅助发电装置的额定输出电压;高压开关组包括输入端与输出端,低压开关组包括输入端与输出端,高压开关组的输入端与主发电装置相连,高压开关组的输出端与压裂电机相连,低压开关组的输入端与第一辅助发电装置相连,低压开关组的输出端与压裂辅助装置相连。该电驱压裂系统可避免由于发电装置断电或故障而导致系统停机,提高供电安全,减少对设备的损坏。

Description

电驱压裂系统 技术领域
本公开的实施例涉及一种电驱压裂系统。
背景技术
随着油气开采技术的不断发展,由于具有功率大、节能环保、重量轻、体积小等优点,电驱装置在油气开采领域的应用也越来越广泛。电驱装置通常采用电力驱动电动机,然后使用电动机驱动各种功能部件以实现各种功能。例如,电动机可驱动压裂泵,以将低压的压裂液加压为高压的压裂液;又例如,电动机可驱动润滑泵,以驱动润滑液对柱塞泵等需要润滑的装置进行润滑。
在油气开采领域常用的电驱装置可包括电驱固井装置、电驱酸化压裂装置、电驱压裂装置、电驱混砂装置、仪表装置、电驱混配装置、电驱供液装置和电驱供砂装置等。这些装置通常由电网、或发电装置供电。
发明内容
本公开实施例提供一种多电源供电的电驱系统。该系统通过设置两个及以上的发电装置,避免由于发电装置断电或故障而导致系统停机,提高供电安全,减少对设备的损坏。
本公开至少一个实施例提供一种电驱压裂系统,其包括:主发电装置;第一辅助发电装置;开关装置,包括低压开关组和高压开关组;电驱压裂装置,包括压裂电机和压裂辅助装置;所述主发电装置的额定发电功率大于所述第一辅助发电装置的额定发电功率,所述主发电装置的额定输出电压大于所述第一辅助发电装置的额定输出电压,所述高压开关组包括输入端与输出端,所述低压开关组包括输入端与输出端,所述高压开关组的输入端与所述主发电装置相连,所述高压开关组的输出端与所述压裂电机相连,所述低压开关组的输入端与所述第一辅助发电装置相连,所述低压开关组的输出端与所述压裂辅助装置相连。
例如,在本公开一实施例提供的电驱压裂系统中,所述主发电装置包括发电机和发电辅助装置;所述发电辅助装置还与所述低压开关组的输出端相连。
例如,本公开一实施例提供的电驱压裂系统还包括:混砂装置、仪表装置、 混配装置、供液装置和供砂装置;所述混砂装置、所述仪表装置、所述混配装置、所述供液装置和所述供砂装置中的至少之一与所述低压开关组的输出端相连。
例如,在本公开一实施例提供的电驱压裂系统中,所述电驱压裂装置还包括压裂泵和传动机构,所述压裂电机的动力输出轴通过所述传动机构与所述压裂泵的动力输入轴相连,并被配置为驱动所述压裂泵将低压流体加压为高压流体。
例如,在本公开一实施例提供的电驱压裂系统中,所述主发电装置的额定发电功率与所述第一辅助发电装置的额定发电功率的比值大于10,所述主发电装置的额定输出电压与所述第一辅助发电装置的额定输出电压的比值大于10。
例如,在本公开一实施例提供的电驱压裂系统中,所述发电机的额定发电功率大于30MW,所述第一辅助发电装置的额定发电功率小于1MW,所述主发电装置的额定输出电压大于10kV,所述第一辅助发电装置的额定输出电压小于1kV。
例如,本公开一实施例提供的电驱压裂系统还包括:储能单元,所述储能单元包括输入端和输出端,所述储能单元的输出端与所述压裂辅助装置相连。
例如,本公开一实施例提供的电驱压裂系统还包括:第二辅助发电装置,所述第二辅助发电装置与所述储能单元的输入端相连。
例如,在本公开一实施例提供的电驱压裂系统中,所述第二辅助发电装置包括太阳能发电板。
例如,在本公开一实施例提供的电驱压裂系统中,所述储能单元的输入端与所述低压开关组的输出端相连。
例如,在本公开一实施例提供的电驱压裂系统中,所述储能单元包括钠离子电池、锂离子电池、超级电容和氢燃料电池中的至少之一。
例如,在本公开一实施例提供的电驱压裂系统中,所述电驱压裂装置还包括压裂变频器,所述压裂变频器的一端与所述高压开关组的输出端相连,所述压裂变频器的另一端与所述压裂电机相连。
例如,在本公开一实施例提供的电驱压裂系统中,所述电驱压裂装置还包括:压裂变压器,所述压裂变压器包括输入端、第一输出端和第二输出端,所述压裂变压器的输入端与所述高压开关组的输出端相连,所述压裂变压器的第一输出端与所述压裂电机相连,所述压裂变压器的第二输出端与所述压裂辅助 装置相连。
例如,在本公开一实施例提供的电驱压裂系统中,所述压裂辅助装置包括:风机电机,被配置为驱动所述电驱压裂装置中的风机转动;第一散热电动机,被配置为驱动所述电驱压裂装置中的散热器叶轮转动;以及第一润滑电动机,被配置为驱动所述电驱压裂装置中的润滑泵。
例如,在本公开一实施例提供的电驱压裂系统中,所述压裂辅助装置包括:第一变频器、第二变频器和第三变频器;所述第一变频器的一端与所述低压开关组的输出端相连,所述第一变频器的另一端与所述风机电机相连;所述第二变频器的一端与所述低压开关组的输出端相连,所述第二变频器的另一端与所述第一散热电动机相连;所述第三变频器的一端与所述低压开关组的输出端相连,所述第三变频器的另一端与所述第一润滑电动机相连。
例如,在本公开一实施例提供的电驱压裂系统中,所述压裂辅助装置还包括:电转换部件,包括变压器和逆变器;以及压裂控制装置,所述电转换部件的一端与所述低压开关组的输出端相连,所述电转换部件的另一端与所述压裂控制装置相连,所述变压器被配置为将所述低压开关组的输出端输出的第一电压转换为第二电压,所述逆变器被配置为将所述低压开关组输出端输出的交流电转换为直流电。
例如,在本公开一实施例提供的电驱压裂系统中,所述发电辅助装置包括:第二散热电动机,被配置为驱动所述主发电装置中的散热器叶轮转动;以及第二润滑电动机,被配置为驱动所述主发电装置中的润滑泵。
例如,在本公开一实施例提供的电驱压裂系统中,所述发电辅助装置还包括:盘车启动系统,所述盘车启动系统与所述低压开关组的输出端相连。
例如,在本公开一实施例提供的电驱压裂系统中,所述主发电装置为燃气轮机发电机,所述第一辅助发电装置为活塞式发电机。
例如,在本公开一实施例提供的电驱压裂系统中,所述压裂辅助装置还包括:照明系统,所述照明系统被配置为所述电驱压裂装置提供灯光。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开一实施例提供的一种电驱压裂系统的示意图;
图2为本公开一实施例提供的另一种电驱压裂系统的示意图;
图3为本公开一实施例提供的另一种电驱压裂系统的示意图;
图4为本公开一实施例提供的另一种电驱压裂系统的示意图;
图5为本公开一实施例提供的包含变压器的电驱压裂系统的示意图;以及
图6为本公开一实施例提供的另一种电驱压裂系统的示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
目前,在油气开采领域,电驱装置的应用越来越广泛;然而,由于油气井场大多处于偏远地区,供电设施薄弱,所以需要配备发电装置对电驱装置进行供电。
然而,在采用发电装置为井场的电驱装置进行供电的情况下,由于发电装置需要满足整个井场的电驱装置的最大用电需求,因此发电装置的额定功率需要配置得较大(例如大于30MW);另一方面,由于井场中的很多电驱装置(例如电驱压裂装置)通常为间歇性作业,导致井场的用电需求波动较大,发电装置会经常处于怠速状态。而发电装置处于怠速状态仍然会消耗大量燃料,并且此时的燃油效率较低,燃油经济性较差。另外,一旦发电装置因故障而导致停电,整个井场所有的电驱装置都会断电,从而导致各种事故发生。
例如,在压裂作业过程中,电驱压裂装置连续大功率(例如5000KW-30 MW)作业2小时左右之后,需要间隔十几分钟到2小时;而在间隔期间,部分电驱装置(例如控制装置、必要的散热装置和润滑装置)仍然需要保持供电,但整个井场的用电需求不足1000KW。此时,大功率的发电装置仅需要提供1000KW的电力输出,因此会处于怠速状态,导致发电装置的燃油效率较低,燃油经济性较差。又例如,当发电装置突然断电,散热装置和润滑装置也停止运行,而压裂电机或压裂泵等装置因惯性仍然保持运转,并且无法通过散热装置和润滑装置进行散热和润滑,从而导致高温和异常磨损等现象的发生,进而降低设备寿命甚至造成设备损坏。
另一方面,在电驱压裂装置之中,除了压裂电机需要供电之外,用于辅助压裂电机和压裂泵工作的润滑装置、散热装置和通风装置等压裂辅助装置也需要供电。并且,当压裂电机和压裂泵进行工作时,其他的压裂辅助装置也需要供电;否则电驱压裂装置会无法正常运转,甚至发生损坏。例如,当压裂电机和压裂泵进行工作时,若散热装置不运转,则会导致压裂电机、压裂泵、电气部件因高温而发生损坏。
对此,本公开实施例提供一种电驱压裂系统。该电驱压裂系统包括主发电装置、第一辅助发电装置、开关装置、电驱压裂装置。开关装置包括低压开关组和高压开关组;电驱压裂装置包括压裂电机和压裂辅助装置;主发电装置的额定发电功率大于第一辅助发电装置的额定发电功率,主发电装置的额定输出电压大于第一辅助发电装置的额定输出电压;高压开关组包括输入端与输出端,低压开关组包括输入端与输出端;高压开关组的输入端与主发电装置相连,高压开关组的输出端与压裂电机相连,低压开关组的输入端与第一辅助发电装置相连,低压开关组的输出端与压裂辅助装置相连。由此,该电驱压裂系统可以根据电驱压裂系统的用电量切换主发电装置和辅助发电装置的工作状态,一方面可避免主发电装置经常处于怠速状态,提高燃油效率和燃油经济性,另一方面可避免主发电装置突然断电而导致的整个电驱压裂系统断电停机的情况。
下面,结合附图对本公开实施例提供的电驱压裂系统进行详细的说明。
本公开一实施例提供一种电驱压裂系统。图1为本公开一实施例提供的一种电驱压裂系统的示意图。如图1所示,该电驱压裂系统001包括主发电装置100、第一辅助发电装置200、开关装置300以及电驱压裂装置400。开关装置包括低压开关组310和高压开关组320,电驱压裂装置400包括压裂电机420和压裂辅助装置410。主发电装置100的额定发电功率大于第一辅助发电装置 200的额定发电功率,主发电装置100的额定输出电压大于第一辅助发电装置200的额定输出电压,高压开关组320包括输入端与输出端,低压开关组310包括输入端与输出端。高压开关组320的输入端与主发电装置100相连,高压开关组320的输出端与压裂电机420相连,低压开关组310的输入端与第一辅助发电装置200相连,低压开关组310的输出端与压裂辅助装置410相连。需要说明的是,上述高压开关组与压裂电机相连包括直接相连的情况,也包括通过其他电气装置或电气元件间接相连的情况;同样的,低压开关组与辅助压裂装置相连包括直接相连的情况,也包括通过其他电气装置或电气元件间接相连的情况。
在本公开实施例提供的电驱压裂系统中,当压裂电机需要运行时,启动主发电装置并通过高压开关组为压裂电机进行供电,当压裂电机不需要运行时,可关闭主发电装置,仅通过第一辅助发电装置通过低压开关组为压裂辅助装置进行供电。另外,当主发电装置因各种原因而突然断电时,该第一辅助发电装置可保证压裂辅助装置的正常运行,避免因压裂辅助装置断电而导致的设备损坏。由此,通过设置上述的主发电装置、辅助发电装置和包括高压开关组和低压开关组的开关装置,该电驱压裂系统可根据电驱压裂系统的用电量切换主发电装置和辅助发电装置的工作状态,一方面可在保证压裂辅助装置正常运行的同时避免主发电装置经常处于怠速状态,提高燃油效率和燃油经济性,另一方面可避免主发电装置突然断电而导致的整个电驱压裂系统断电停机,从而可保证供电安全,并避免设备寿命降低和设备损坏。
另一方面,由于开关装置包括低压开关组和高压开关组,由此该电驱压裂系统可通过该开关装置对需要不同电压等级的多种用电装置进行统一调配,具有较高的灵活性,并降低了操作难度。另外,主发电装置可采用节能且环保的燃气轮机发电装置,其可采用天然气、氢气、含氢气的混合物、气态和液态燃料的混合物等低碳燃料作为燃料,从而可在具有较高额定发电功率的同时,降低碳排放。
值得注意的是,上述的电驱压裂系统的工作模式仅为说明本公开实施例提供的电驱压裂系统可实现提高燃油效率和燃油经济性,并且保证供电安全,并避免设备寿命降低和设备损坏的一种示例;但是本公开实施例的电驱压裂系统的工作模式包括但不限于此。
在一些示例中,主发电装置100的额定发电功率与第一辅助发电装置200 的额定发电功率的比值大于10,主发电装置100的额定输出电压与第一辅助发电装置200的额定输出电压的比值大于10。
在一些示例中,主发电装置100的额定发电功率大于30MW,第一辅助发电装置200的额定发电功率小于1MW,主发电装置100的额定输出电压大于10kV,第一辅助发电装置200的额定输出电压小于1kV。
例如,主发电装置100的额定输出电压可为13.9kV;第一辅助发电装置200的额定输出电压可为480V。
在一些示例中,主发电装置100可采用额定发电功率大于30MW的燃气轮机发电装置或者燃气轮机发电机组,第一辅助发电装置200可采用额定发电功率小于1MW的活塞式发电装置或者活塞式发电机组。当然,本公开实施例包括但不限于此,主发电装置和第一辅助发电装置也可采用其他类型的发电装置。
在一些示例中,如图1所示,主发电装置100包括发电机120和发电辅助装置110,发电辅助装置110还与低压开关组310的输出端相连。由于主发电装置的额定发电功率较大,因此除了发电机之外,主发电装置还需设置为发电机提供润滑、散热等辅助功能的发电辅助装置。在这种情况下,通过将发电辅助装置与低压开关组的输出端相连,该电驱压裂系统可在主发电装置关闭时,通过第一辅助发电装置保证发电辅助装置可以正常运行,从而一方面可避免因发电辅助装置断电而导致的设备损坏,另一方面也可实现主发电装置的快速启动。
在一些示例中,如图1所示,发电机120通过高压开关组320为压裂电机420进行供电,第一辅助发电装置200通过低压开关组310分别为压裂辅助装置410和发电辅助装置110供电。此时,即便发电机120出现异常停机,压裂辅助装置410和发电辅助装置110仍然可以正常工作,保障电驱压裂装置和主发电装置可以获得相应的润滑和散热,从而可避免电驱压裂装置和主发电装置的异常磨损和损坏,并且还可保证电驱压裂装置和主发电装置中的控制装置的正常运行,从而可避免电驱压裂装置和主发电装置无法进行控制。
在一些示例中,如图1所示,电驱压裂装置400还包括压裂泵421和传动机构422,压裂电机420的动力输出轴通过传动机构422与压裂泵421的动力输入轴相连,并被配置为驱动压裂泵421将低压流体加压为高压流体。
在一些示例中,如图1所示,压裂辅助装置410包括第一风机电机411、 第一散热电动机412和第一润滑电动机413;第一风机电机411被配置为驱动电驱压裂装置400中的风机转动,从而可为电驱压裂装置400提供通风空气;第一散热电动机412被配置为驱动电驱压裂装置400中的散热器叶轮转动,以实现散热功能;第一润滑电动机413被配置为驱动电驱压裂装置400中的润滑泵,以实现润滑功能。由此,压裂辅助装置可以实现通风、散热、润滑等多种功能。
在一些示例中,如图1所示,发电辅助装置110包括第二散热电动机111和第二润滑电动机113;第二散热电动机111被配置为驱动主发电装置100中的散热器叶轮转动;第二润滑电动机113被配置为驱动主发电装置100中的润滑泵。由此,发电辅助装置可以实现散热、润滑等多种功能。
在一些示例中,如图1所示,发电辅助装置110还包括发电控制装置114。由此,发电控制装置可以实现对主发电装置的检测、反馈和控制等功能。
在一些示例中,如图1所示,发电辅助装置110还包括盘车启动系统112,盘车启动系统112被配置为使主发电装置100在启动时均匀加热和主发电装置100在停机时均匀冷却。
图2为本公开一实施例提供的另一种电驱压裂系统的示意图。如图2所示,电驱压裂系统001还可包括混砂装置501、仪表装置502、混配装置503、供液装置504和供砂装置505;混砂装置501、仪表装置502、混配装置503、供液装置504和供砂装置505中的至少之一与低压开关组310的输出端相连。由此,该电驱压裂系统可实现各种类型的辅助功能,例如供砂功能、混砂功能等。
图3为本公开一实施例提供的另一种电驱压裂系统的示意图。如图3所示,发电辅助装置110还可以包括:第二风机电机115,被配置为驱动主发电装置100中的风机转动。由此,发电辅助装置可以实现通风功能。
在一些示例中,如图3所示,电驱压裂系统001还包括储能单元430。储能单元430包括输入端和输出端,储能单元430的输出端与压裂辅助装置410相连,用于给压裂辅助装置410供电。由此,当主发电装置断电,第一辅助发电装置也断电时,储能单元可提供应急供电,进一步提高整个电驱压裂系统的供电安全。
在一些示例中,储能单元430包括钠离子电池、锂离子电池、超级电容和氢燃料电池中的至少之一。由此,上述的储能单元具有较快的充放电能力和相对较大的能量密度。当然,本公开实施例包括但不限于此,上述的储能单元也 可采用其他储能方式。
在一些示例中,如图3所示,储能单元430输入端与低压开关组310的输出端相连,由此,该电驱压裂设备可以通过第一辅助发电装置为储能单元进行充电。
在一些示例中,如图3所示,在一些示例中,电驱压裂装置还包括压裂变频器4200,压裂变频器4200的一端与高压开关组320的输出端相连,压裂变频器4200的另一端与压裂电机420相连。由此,通过上述的压裂变频器,上述的压裂电机可实现无级调速,连续改变转速,提高传动效率。
在一些示例中,如图3所示,压裂辅助装置410包括第一风机电机411、第一散热电动机412和第一润滑电动机413;第一风机电机411被配置为驱动电驱压裂装置400中的风机转动,从而可为电驱压裂装置400提供通风空气;第一散热电动机412被配置为驱动电驱压裂装置400中的散热器叶轮转动,以实现散热功能;第一润滑电动机413被配置为驱动电驱压裂装置400中的润滑泵,以实现润滑功能。由此,压裂辅助装置可以实现通风、散热、润滑等多种功能。
在一些示例中,如图3所示,压裂辅助装置410还包括:第一变频器4110、第二变频器4120和第三变频器4130。第一变频器4110的一端与低压开关组310的输出端相连,另一端与第一风机电机411相连。第二变频器4120的一端与低压开关组310的输出端相连,另一端与第一散热电动机412相连。第三变频器4130的一端与低压开关组310的输出端相连,另一端与第一润滑电动机413相连。由此,该压裂辅助装置可实现无级调速,连续改变转速,提高传动效率。
图4为本公开一实施例提供的另一种电驱压裂系统的示意图。如图4所示,电驱压裂装置001还包括第二辅助发电装置431。第二辅助发电装置431与储能单元430的输入端相连。由此,可以通过第二辅助发电装置可以对储能单元进行充电。由此,图4所示的电驱压裂系统提供了另一种为储能单元充电的方式。
在一些示例中,第二辅助发电装置431包括太阳能发电板。当然,本公开实施例包括但不限于此,第二辅助发电装置也可为其他类型的发电装置。
值得注意的是,不同于通常的电驱压裂系统智能通过外界发电或者电网才能更新检查设备状态、更新控制程序等,当电驱压裂系统包括储能单元和太阳 能发电板时,该电驱压裂系统可以部分或全部控制装置实时在线,通过无线或有线方式进行控制装置唤醒,进而获得更多的控制装置功能,比如更新控制程序、读取控制装置的存储数据、获取周围环境影像、获得设备实时位置等,使设备的维保、检查更便捷,不再单纯依赖外接电源。
在一些示例中,如图4所示,压裂辅助装置410还包括:照明系统414,照明系统414被配置为电驱压裂装置提供灯光。
在一些示例中,如图4所示,压裂辅助装置410还包括:压裂控制装置415。由此,压裂控制装置可以实现对电驱压裂装置的检测、反馈和控制等功能。
图5为本公开一实施例提供的另一种电驱压裂系统。如图5所示,电驱压裂系统001还包括压裂变压器440;压裂变压器440包括输入端、第一输出端和第二输出端;压裂变压器440的输入端与高压开关组320的输出端相连;压裂变压器440的第一输出端与压裂电机420相连;压裂变压器440的第二输出端与压裂变频器4200相连。由此,电驱压裂系统可以通过设置上述的压裂变压器将电压灵活升高,满足各种不同用电装置运行所需的电压条件,也可将电压降低,为压裂辅助装置供电。由此,当第一辅助发电装置发生故障时,可通过主发电装置和压裂变压器来维持压裂辅助装置的供电安全。
在一些示例中,如图5所示,压裂辅助装置410还包括:电转换部件4150和压裂控制装置415;电转换部件包括变压器4151和逆变器4152;电转换部件4150的一端与低压开关组310的输出端相连,电转换部件4150的另一端与压裂控制装置415相连;变压器4151被配置为将低压开关组310的输出端输出的第一电压转换为第二电压,逆变器4152被配置为将低压开关组310输出端输出的交流电转换为直流电。由此,电转换部件4150可将压裂变压器440输出的交流电转换为直流电,从而驱动需要直流电驱动的控制装置415。
在一些示例中,第二电压小于第一电压,第二电压为24V,第一电压为480V。
例如,压裂控制装置415包括输入、输出、逻辑控制、通讯、存储、传感检测等模块;通过压裂控制装置415还可与远程控制系统相通讯。由此,远程控制系统可通过压裂控制装置获取上述各种装置的运行参数,并根据这些运行参数远程对相应的装置进行操作和控制。当然,本公开实施例包括但不限于此。
在一些示例中,上述的通信相连包括通过有线连接(例如导线、光纤等)的方式进行通信连接,也包括通过无线连接(例如WiFi、移动网络)的方式进 行通信连接。
在一些示例中,上述的压裂控制装置和发电控制装置可包括存储介质和处理器;存储介质,用于存储计算机程序;处理器,用于执行存储介质中计算机程序以实现各种控制操作。
例如,上述的存储介质可为易失性存储器和/或非易失性存储器。易失性存储器例如可以包括随机存取存储器(RAM)和/或高速缓冲存储器(cache)等。非易失性存储器例如可以包括只读存储器(ROM)、硬盘、闪存等。
例如,上述的处理器可以是中央处理单元(CPU)或者具有数据处理能力和/或指令执行能力的其它形式的处理装置,例如可以包括微处理器、可编程逻辑控制器(PLC)等。
图6为本公开一实施例提供的另一种电驱压裂系统的示意图。该电驱泵送装置001可设置多个电驱压裂装置400,通过开关装置300分别为每个电驱压裂装置400输送高压电和低压电。由此,该电驱压裂系统可实现较大的排量。
有以下几点需要说明:
(1)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开同一实施例及不同实施例中的特征可以相互组合。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种电驱压裂系统,包括:
    主发电装置;
    第一辅助发电装置;
    开关装置,包括低压开关组和高压开关组;
    电驱压裂装置,包括压裂电机和压裂辅助装置;
    其中,所述主发电装置的额定发电功率大于所述第一辅助发电装置的额定发电功率,所述主发电装置的额定输出电压大于所述第一辅助发电装置的额定输出电压,所述高压开关组包括输入端与输出端,所述低压开关组包括输入端与输出端,
    所述高压开关组的输入端与所述主发电装置相连,所述高压开关组的输出端与所述压裂电机相连,所述低压开关组的输入端与所述第一辅助发电装置相连,所述低压开关组的输出端与所述压裂辅助装置相连。
  2. 根据权利要求1所述的电驱压裂系统,其中,所述主发电装置包括发电机和发电辅助装置;所述发电辅助装置还与所述低压开关组的输出端相连。
  3. 根据权利要求1所述的电驱压裂系统,还包括:
    混砂装置、仪表装置、混配装置、供液装置和供砂装置;
    其中,所述混砂装置、所述仪表装置、所述混配装置、所述供液装置和所述供砂装置中的至少之一与所述低压开关组的输出端相连。
  4. 根据权利要求1-3中任一项所述的电驱压裂系统,其中,所述电驱压裂装置还包括压裂泵和传动机构,所述压裂电机的动力输出轴通过所述传动机构与所述压裂泵的动力输入轴相连,并被配置为驱动所述压裂泵将低压流体加压为高压流体。
  5. 根据权利要求1-4中任一项所述的电驱压裂系统,其中,所述主发电装置的额定发电功率与所述第一辅助发电装置的额定发电功率的比值大于10,所述主发电装置的额定输出电压与所述第一辅助发电装置的额定输出电压的比值大于10。
  6. 根据权利要求1-5中任一项所述的电驱压裂系统,其中,所述发电机的额定发电功率大于30MW,所述第一辅助发电装置的额定发电功率小于1MW,所述主发电装置的额定输出电压大于10kV,所述第一辅助发电装置的 额定输出电压小于1kV。
  7. 根据权利要求1-6中任一项所述的电驱压裂系统,还包括:
    储能单元,
    其中,所述储能单元包括输入端和输出端,所述储能单元的输出端与所述压裂辅助装置相连。
  8. 根据权利要求7所述的电驱压裂系统,还包括:
    第二辅助发电装置,
    其中,所述第二辅助发电装置与所述储能单元的输入端相连。
  9. 根据权利要求8所述的电驱压裂系统,其中,所述第二辅助发电装置包括太阳能发电板。
  10. 根据权利要求7所述的电驱压裂系统,其中,所述储能单元的输入端与所述低压开关组的输出端相连。
  11. 根据权利要求7所述的电驱压裂系统,其中,所述储能单元包括钠离子电池、锂离子电池、超级电容和氢燃料电池中的至少之一。
  12. 根据权利要求1-11中任一项所述的电驱压裂系统,其中,所述电驱压裂装置还包括压裂变频器,所述压裂变频器的一端与所述高压开关组的输出端相连,所述压裂变频器的另一端与所述压裂电机相连。
  13. 根据权利要求12所述的电驱压裂系统,其中,所述电驱压裂装置还包括:
    压裂变压器,
    其中,所述压裂变压器包括输入端、第一输出端和第二输出端,所述压裂变压器的输入端与所述高压开关组的输出端相连,所述压裂变压器的第一输出端与所述压裂电机相连,所述压裂变压器的第二输出端与所述压裂辅助装置相连。
  14. 根据权利要求1-13中任一项所述的电驱压裂系统,其中,所述压裂辅助装置包括:
    风机电机,被配置为驱动所述电驱压裂装置中的风机转动;
    第一散热电动机,被配置为驱动所述电驱压裂装置中的散热器叶轮转动;以及
    第一润滑电动机,被配置为驱动所述电驱压裂装置中的润滑泵。
  15. 根据权利要求14所述的电驱压裂系统,其中,所述压裂辅助装置包 括:
    第一变频器、第二变频器和第三变频器;
    所述第一变频器的一端与所述低压开关组的输出端相连,所述第一变频器的另一端与所述风机电机相连;所述第二变频器的一端与所述低压开关组的输出端相连,所述第二变频器的另一端与所述第一散热电动机相连;所述第三变频器的一端与所述低压开关组的输出端相连,所述第三变频器的另一端与所述第一润滑电动机相连。
  16. 根据权利要求1-15中任一项所述的电驱压裂系统,其中,所述压裂辅助装置还包括:
    电转换部件,包括变压器和逆变器;以及
    压裂控制装置,
    其中,所述电转换部件的一端与所述低压开关组的输出端相连,所述电转换部件的另一端与所述压裂控制装置相连,
    所述变压器被配置为将所述低压开关组的输出端输出的第一电压转换为第二电压,所述逆变器被配置为将所述低压开关组输出端输出的交流电转换为直流电。
  17. 根据权利要求2所述的电驱压裂系统,其中,所述发电辅助装置包括:
    第二散热电动机,被配置为驱动所述主发电装置中的散热器叶轮转动;以及
    第二润滑电动机,被配置为驱动所述主发电装置中的润滑泵。
  18. 根据权利要求17所述的电驱压裂系统,其中,所述发电辅助装置还包括:
    盘车启动系统,所述盘车启动系统与所述低压开关组的输出端相连。
  19. 根据权利要求1-18中任一项所述的电驱压裂系统,其中,所述主发电装置为燃气轮机发电机,所述第一辅助发电装置为活塞式发电机。
  20. 根据权利要求1-19中任一项所述的电驱压裂系统,其中,所述压裂辅助装置还包括:照明系统,所述照明系统被配置为所述电驱压裂装置提供灯光。
PCT/CN2022/076452 2022-02-16 2022-02-16 电驱压裂系统 WO2023155065A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2022/076452 WO2023155065A1 (zh) 2022-02-16 2022-02-16 电驱压裂系统
CN202280000733.8A CN115087792B (zh) 2022-02-16 2022-02-16 电驱压裂系统
CA3159026A CA3159026A1 (en) 2022-02-16 2022-02-16 Electric drive fracturing system
US17/774,795 US20240159132A1 (en) 2022-02-16 2022-02-16 Electrically-driven fracturing system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/076452 WO2023155065A1 (zh) 2022-02-16 2022-02-16 电驱压裂系统

Publications (1)

Publication Number Publication Date
WO2023155065A1 true WO2023155065A1 (zh) 2023-08-24

Family

ID=83244397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/076452 WO2023155065A1 (zh) 2022-02-16 2022-02-16 电驱压裂系统

Country Status (4)

Country Link
US (1) US20240159132A1 (zh)
CN (1) CN115087792B (zh)
CA (1) CA3159026A1 (zh)
WO (1) WO2023155065A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11955782B1 (en) 2022-11-01 2024-04-09 Typhon Technology Solutions (U.S.), Llc System and method for fracturing of underground formations using electric grid power

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101639040A (zh) * 2009-09-04 2010-02-03 湘电风能有限公司 一种风力发电机组低电压运行的控制方法及装置
CN101728860A (zh) * 2010-01-28 2010-06-09 郑恩花 组合电源
US20160105022A1 (en) * 2012-11-16 2016-04-14 Us Well Services Llc System and method for parallel power and blackout protection for electric powered hydraulic fracturing
CN107231000A (zh) * 2017-07-17 2017-10-03 国电科学技术研究院 大型燃煤发电系统与新能源发电系统集成互补方法与系统
US20200040705A1 (en) * 2018-08-01 2020-02-06 Typhon Technology Solutions, Llc Switch gear transport that distributes electric power for fracturing operations
CN110821464A (zh) * 2019-12-03 2020-02-21 烟台杰瑞石油装备技术有限公司 一种压裂的井场布局系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102602322B (zh) * 2012-03-19 2014-04-30 西安邦普工业自动化有限公司 电驱动压裂泵车
CA2908276C (en) * 2014-10-14 2022-11-01 Us Well Services Llc Parallel power and blackout protection for electric hydraulic fracturing
CN110107490B (zh) * 2019-05-30 2021-03-02 宝鸡石油机械有限责任公司 一体式变频压裂泵送设备控制系统及控制方法
CN214741266U (zh) * 2020-12-04 2021-11-16 烟台杰瑞石油装备技术有限公司 压裂设备及压裂系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101639040A (zh) * 2009-09-04 2010-02-03 湘电风能有限公司 一种风力发电机组低电压运行的控制方法及装置
CN101728860A (zh) * 2010-01-28 2010-06-09 郑恩花 组合电源
US20160105022A1 (en) * 2012-11-16 2016-04-14 Us Well Services Llc System and method for parallel power and blackout protection for electric powered hydraulic fracturing
CN107231000A (zh) * 2017-07-17 2017-10-03 国电科学技术研究院 大型燃煤发电系统与新能源发电系统集成互补方法与系统
US20200040705A1 (en) * 2018-08-01 2020-02-06 Typhon Technology Solutions, Llc Switch gear transport that distributes electric power for fracturing operations
CN110821464A (zh) * 2019-12-03 2020-02-21 烟台杰瑞石油装备技术有限公司 一种压裂的井场布局系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11955782B1 (en) 2022-11-01 2024-04-09 Typhon Technology Solutions (U.S.), Llc System and method for fracturing of underground formations using electric grid power

Also Published As

Publication number Publication date
CN115087792B (zh) 2023-06-13
US20240159132A1 (en) 2024-05-16
CA3159026A1 (en) 2023-08-16
CN115087792A (zh) 2022-09-20

Similar Documents

Publication Publication Date Title
WO2022110379A1 (zh) 压裂系统
US11680472B2 (en) Fracturing system
US20220389804A1 (en) Fracturing system
EP2166225A1 (en) A turbine farm having an auxiliary power supply
KR102249662B1 (ko) 선박용 통합전력제어관리시스템
WO2023155065A1 (zh) 电驱压裂系统
JP2013013176A (ja) 自立電源装置
CN102287963A (zh) 储能式风能发电制冷制热系统
KR102053840B1 (ko) 스마트그리드 환경에서의 마이크로 caes 기반 비상발전시스템 및 그 가동방법
CN105978008A (zh) 一种具有风场黑启动功能的液流电池储能系统及其工作方法
WO2016086872A1 (zh) 一种轮胎式龙门起重机双动力节能系统
CN219611404U (zh) 风力发电机组的备用电源系统及风力发电机组
CN203580675U (zh) 车载液压传动混合能源变频自发电系统
CN105972579A (zh) 一种火电发电机组给水系统的节能运行方式
CN214660493U (zh) 一种基于飞轮储能的拖挂式油田动力电站
WO2023155038A1 (zh) 电驱泵送系统及其驱动方法
CN209709750U (zh) 一种集成箱式电站
CN210112351U (zh) 一种节能环保的照明系统
CN209386645U (zh) 适用于空气源热泵机组断电状态下水系统防冻的装置
CN207989140U (zh) 一种脉冲式电辅助涡轮增压发电装置
CN206807007U (zh) 一种高压柴油发电机远置散热器电源系统
CN214506566U (zh) 黑启动电源系统
CN205523720U (zh) 一种基于辅助引擎的充电系统
CN219833828U (zh) 一种风力发电机组后备电源户外储能柜电气系统
CN203809233U (zh) 一种柴油机驱动的空压机系统

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 17774795

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22926403

Country of ref document: EP

Kind code of ref document: A1