WO2023153242A1 - Far-infrared transmission member, far-infrared sensor, automotive sensor, smartphone-mounted sensor, and sensor for wearable terminal - Google Patents

Far-infrared transmission member, far-infrared sensor, automotive sensor, smartphone-mounted sensor, and sensor for wearable terminal Download PDF

Info

Publication number
WO2023153242A1
WO2023153242A1 PCT/JP2023/002679 JP2023002679W WO2023153242A1 WO 2023153242 A1 WO2023153242 A1 WO 2023153242A1 JP 2023002679 W JP2023002679 W JP 2023002679W WO 2023153242 A1 WO2023153242 A1 WO 2023153242A1
Authority
WO
WIPO (PCT)
Prior art keywords
far
transmitting member
infrared
functional film
infrared transmitting
Prior art date
Application number
PCT/JP2023/002679
Other languages
French (fr)
Japanese (ja)
Inventor
容二 安井
眞誠 一色
尚洋 眞下
佑紀 赤間
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Publication of WO2023153242A1 publication Critical patent/WO2023153242A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters

Definitions

  • the present invention relates to a far-infrared transmitting member, a far-infrared sensor, a vehicle-mounted sensor, a smartphone-mounted sensor, and a wearable terminal sensor.
  • Patent Document 1 describes an infrared transmitting film having an extinction coefficient of 0.4 or less in the far infrared region.
  • Patent Literature 2 discloses an antireflection film that simultaneously prevents reflection in two wavelength ranges, the visible range and the infrared range.
  • the antireflection film of Patent Document 2 uses a multilayer film obtained by alternately laminating a high refractive layer and a low refractive index layer, the reflected color changes depending on the incident angle. There was a risk of deterioration.
  • the present invention provides a far-infrared transmitting member, a far-infrared sensor, a vehicle-mounted sensor, a smartphone-mounted sensor, and a wearable terminal sensor, which are capable of appropriately transmitting far-infrared rays while providing good designability regardless of the angle. for the purpose.
  • the far-infrared transmitting member according to the embodiment of the present invention has a regular reflectance of 10% or less for visible light calculated based on JIS R3106 when incident at an incident angle of 5°, and has a wavelength of 8 ⁇ m to 12 ⁇ m.
  • the average transmittance of light is 50% or more, and the value of ⁇ E defined by the following formula (1) is 6.0 or less.
  • L 1 * a 1 * b 1 * Spectral reflectance of visible light measured at an incident angle of 5° and a detection angle of 5° and calculated based on JIS Z 8781-4, using standard illuminant D65 as illumination light Chromaticity coordinates of reflected light in the actual CIE-Lab color system
  • L 2 * a 2 * b 2 * Spectral reflectance of visible light measured at an incident angle of 45° and a detection angle of 45° and JIS Z 8781-4 Chromaticity coordinates of reflected light in the CIE-Lab color system when using standard illuminant D65 for illumination light, calculated based on
  • a far-infrared transmitting member includes a substrate having unevenness that scatters visible light on one main surface, and a first functional film that prevents reflection of light with a wavelength of 8 ⁇ m to 12 ⁇ m on the unevenness. and a second functional film on the other main surface of the substrate, and the arithmetic mean height Sa (ISO 25178) on the surface of the first functional film is 0.030 ⁇ m or more and 1.000 ⁇ m or less. characterized by
  • the present invention it is possible to obtain a far-infrared transmitting member that appropriately transmits far-infrared rays and that provides good designability regardless of the angle.
  • FIG. 1 is a schematic cross-sectional view of a far-infrared transmitting member according to an embodiment
  • FIG. FIG. 3 is a schematic cross-sectional view showing another example of a far-infrared transmitting member
  • FIG. 3 is a schematic cross-sectional view showing another example of a far-infrared transmitting member
  • FIG. 3 is a schematic cross-sectional view showing another example of a far-infrared transmitting member
  • FIG. 3 is a schematic cross-sectional view showing another example of a far-infrared transmitting member
  • FIG. 3 is a schematic cross-sectional view showing another example of a far-infrared transmitting member
  • FIG. 3 is a schematic cross-sectional view showing another example of a far-infrared transmitting member
  • FIG. 3 is a schematic cross-sectional view showing another example of a far-infrared transmitting member
  • FIG. 3 is a schematic cross-sectional view showing another example of a far
  • FIG. 3 is a schematic cross-sectional view showing another example of a far-infrared transmitting member
  • FIG. 3 is a schematic cross-sectional view showing another example of a far-infrared transmitting member
  • It is a graph which shows the measurement result of the regular reflectance of each example.
  • It is a graph which shows the measurement result of the infrared transmittance
  • visible light means light with a wavelength of 380 nm to 780 nm unless otherwise specified.
  • the far-infrared rays are light with a wavelength of 8 ⁇ m to 12 ⁇ m unless otherwise specified, but may be light with a wavelength of 8 ⁇ m to 14 ⁇ m.
  • the far-infrared transmitting member according to this embodiment (hereinafter sometimes referred to as this embodiment) has a regular reflectance of 10 for visible light calculated based on JIS R3106 when incident at an incident angle of 5°. % or less, the average transmittance of light with a wavelength of 8 ⁇ m to 12 ⁇ m is 50% or more, and the value of ⁇ E defined by the following formula (1) is 6.0 or less.
  • L 1 * a 1 * b 1 * is the illumination light calculated based on the spectral reflectance of visible light measured at an incident angle of 5° and a detection angle of 5° and JIS Z 8781-4. is the chromaticity coordinates of the reflected light in the CIE-Lab color system when using the standard illuminant D65 in .
  • L 2 * a 2 * b 2 * is the illumination light calculated based on the spectral reflectance of visible light measured at an incident angle of 45° and a detection angle of 45° and JIS Z 8781-4. is the chromaticity coordinates of the reflected light in the CIE-Lab color system when using the standard illuminant D65 in .
  • the regular reflectance of visible light incident at an incident angle of 5° is 10% or less, more preferably 5% or less, even more preferably 3% or less, and even more preferably 1%. or less, and particularly preferably 0.5% or less.
  • the regular reflectance of visible light falls within this range, glare can be suppressed and an appearance with good design can be obtained.
  • the regular reflectance of visible light is calculated based on JIS R3106.
  • the average transmittance of light with a wavelength of 8 ⁇ m to 12 ⁇ m is 50% or more, more preferably 70% or more, still more preferably 80% or more, and even more preferably 85% or more. , particularly preferably 90% or more.
  • the average transmittance falls within this range, far-infrared rays can be appropriately transmitted.
  • the average transmittance is the average value of the transmittance of light with wavelengths of 8 ⁇ m to 12 ⁇ m.
  • the value of ⁇ E defined by the above formula (1) is 6.0 or less, more preferably 5.0 or less, still more preferably 4.0 or less, and even more preferably 3.0 or less.
  • ⁇ E is a value that serves as an index of change in color tone of the far-infrared transmitting member due to the angle of incident light, and the smaller the value, the less the change in color tone due to the angle.
  • ⁇ E represents the distance of each chromaticity coordinate in the CIE-Lab color system of reflected light when visible light is incident on the far-infrared transmitting member at incident angles of 5 ° and 45 °. value.
  • L 1 * a 1 * b 1 * corresponds to the chromaticity coordinates of reflected light when visible light is incident at an incident angle of 5°
  • L 2 * a 2 * b 2 * is visible. It corresponds to the chromaticity coordinates of the reflected light when the light is incident at an incident angle of 45°.
  • ⁇ E the closer the distance of the chromaticity coordinates of the reflected light when the visible light is incident at the incident angles of 5° and 45°, and the closer color feeling can be obtained regardless of the angle.
  • ⁇ E is within the above preferable range, a far-infrared transmitting member having a constant color tone can be obtained regardless of the angle.
  • the specific configuration of the far-infrared transmitting member according to the present embodiment is not particularly limited as long as it satisfies the above requirements, but a configuration example applicable to the present embodiment will be described below.
  • FIG. 1 is a schematic cross-sectional view of a preferred configuration of the far-infrared transmitting member according to this embodiment.
  • the far-infrared transmitting member 10 preferably has a substrate 20 and a functional film 30a.
  • the substrate 20 has a first main surface 21 and a second main surface 22 facing each other, and the functional film 30a has a surface 31a.
  • the first main surface 21 side of the substrate 20 is the light incident side
  • the second main surface 22 side is the light emitting side.
  • the far-infrared transmitting member 10 has unevenness that scatters visible light on the first main surface 21 of the substrate 20, and a functional film 30a that prevents reflection of light with a wavelength of 8 ⁇ m to 12 ⁇ m on the unevenness. It is preferable to have In the example of FIG. 1, the substrate 20 has unevenness on the first principal surface 21, but as shown in FIG. As shown in FIGS. 3, 6 and 7, the substrate 20 has irregularities on the first main surface 21 and the second main surface 22, and has functional films 30a and 30b on the irregularities on both main surfaces, respectively. may be In addition, the functional film 30b is not limited to being formed on the uneven surface, and as shown in FIGS. It may have a functional film 30b that prevents reflection of light. Note that the functional film 30b has a surface 31b.
  • the far-infrared transmitting member 10 has a base material 20 having unevenness on at least the first main surface 21 and a functional film formed on the unevenness.
  • the substrate 20 is preferably a member capable of transmitting far-infrared rays.
  • the internal transmittance for light with a wavelength of 10 ⁇ m is preferably 50% or more, preferably 60% or more. More preferably, it is 70% or more, and particularly preferably 80% or more.
  • the average internal transmittance of the substrate 20 for light (far infrared rays) having a wavelength of 8 ⁇ m to 12 ⁇ m is preferably 50% or more, more preferably 60% or more, and preferably 70% or more. More preferably, it is particularly preferably 80% or more.
  • the average internal transmittance is the average value of the internal transmittance for light of each wavelength in the wavelength band (here, 8 ⁇ m to 12 ⁇ m).
  • the internal transmittance of the base material 20 is the transmittance excluding the surface reflection loss on the incident side and the exit side, and is well known in the technical field, and its measurement may also be performed by a usual method. Measurement is performed, for example, as follows.
  • T1 is the external transmittance including the surface reflection loss of the first sample
  • T2 is the external transmittance including the surface reflection loss of the second sample
  • Td1 (mm) is the thickness of the first sample
  • Td1 (mm) is the thickness of the second sample.
  • Td2 (mm) is the internal transmittance ⁇ at the thickness Tdx (mm) can be calculated by the following equation (2).
  • the infrared external transmittance can be measured, for example, by a Fourier transform infrared spectrometer (manufactured by ThermoScientific, trade name: Nicolet iS10).
  • the base material 20 preferably has a refractive index of 1.5 or more and 4.0 or less, more preferably 2.0 or more and 4.0 or less, and 2.2 or more and 3.5 for light with a wavelength of 10 ⁇ m. More preferably:
  • the average refractive index of the substrate 20 with respect to light with a wavelength of 8 ⁇ m to 12 ⁇ m is preferably 1.5 or more and 4.0 or less, more preferably 2.0 or more and 4.0 or less. More preferably, it is 2 or more and 3.5 or less.
  • the average refractive index here is the average value of the refractive index for light of each wavelength in the wavelength band (here, 8 ⁇ m to 12 ⁇ m).
  • the refractive index is determined, for example, using polarization information obtained by an infrared spectroscopic ellipsometer (JA Woollam IR-VASE-UT) and a spectral transmission spectrum obtained by a Fourier transform infrared spectrometer. It can be determined by fitting the model.
  • the material of the base material 20 is not particularly limited, but examples thereof include Si, Ge, ZnS, chalcogenide glass, and the like. It can be said that the substrate 20 preferably contains at least one material selected from the group consisting of Si, Ge, ZnS, and chalcogenide glass. By using such a material for the base material 20, far-infrared rays can be transmitted appropriately.
  • a preferable composition of the chalcogenide glass is as follows.
  • Ge+Ga In atomic percent, Ge+Ga; 7% to 25%, Sb: 0% to 35%, Bi; 0% to 20%, Zn; 0% to 20%, Sn; 0% to 20%, Si; 0% to 20%, La; 0% to 20%, S + Se + Te; 55% to 80%, Ti; 0.005% to 0.3%, Li + Na + K + Cs; 0% to 20%, F+Cl+Br+I; composition containing 0% to 20%.
  • This glass preferably has a glass transition point (Tg) of 140°C to 550°C.
  • the material of the base material 20 it is more preferable to use Si, ZnS, or chalcogenide glass from the viewpoint of easily forming unevenness on the base material.
  • the thickness of the base material 20 is arbitrary, it is preferably 0.2 mm or more and 5 mm or less, more preferably 0.5 mm or more and 2 mm or less, and further preferably 0.5 mm or more and 1 mm or less. . By having the thickness within this range, it is possible to properly transmit far-infrared rays while ensuring strength.
  • the substrate 20 is preferably provided with unevenness that scatters visible light on at least the first major surface 21 .
  • the surface shape of the base material 20 specifically, the shape of the unevenness formed on the surface of the base material 20 (the first main surface 21 in FIGS. 1 to 7 and the (corresponding to the second main surface 22), the arithmetic mean height Sa, the mean length RSm of the roughness curve element, and the root-mean-square slope R ⁇ q are used.
  • the arithmetic mean height Sa can be measured according to ISO 25178, and the mean length RSm and the root mean square slope R ⁇ q of the curve element can be measured according to JISB 0601.
  • Sa on the uneven surface of the substrate 20 is preferably 0.030 ⁇ m or more and 1.000 ⁇ m or less, more preferably 0.1 ⁇ m or more and 0.5 ⁇ m or less, and more preferably 0.15 ⁇ m or more and 0.15 ⁇ m or more. It is more preferably 4 ⁇ m or less.
  • the RSm on the uneven surface of the substrate 20 is preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 8 ⁇ m or less.
  • R ⁇ q on the uneven surface of the substrate 20 is preferably 20° or less, more preferably 15° or less, and even more preferably 10° or less.
  • the method for forming unevenness on the surface of the substrate 20 is not particularly limited, but for example, a chemical treatment method involving etching, a physical treatment method such as wet blasting and sandblasting, or a mold having a desired uneven structure. can be used. From the viewpoint of facilitating control of the unevenness structure, a chemical treatment method accompanied by an etching treatment is particularly preferable as a method for forming unevenness on Si, and a press molding method is a method for forming unevenness on ZnS or chalcogenide glass. Especially preferred.
  • the surface of the base material 20 is etched with an alkaline etchant containing potassium hydroxide (KOH) at a concentration of 2 to 10% by mass, an organic solvent, and a surfactant.
  • KOH potassium hydroxide
  • unevenness can be formed on the surface.
  • the uneven shape can be controlled by changing the composition and concentration of the alkaline etchant used in the etching process, as well as the processing time and processing temperature. Thereby, Sa, RSm, and R ⁇ q of the uneven surface can be controlled.
  • a chemical solution in which an Si compound is mixed with an alkaline etching solution may be used.
  • the functional films 30a and 30b are preferably formed on the substrate 20 and have an effect of preventing reflection of far infrared rays (wavelength 8 ⁇ m to 12 ⁇ m here).
  • the functional film may be formed on the unevenness provided on the surface of the substrate 20 like the functional film 30a in FIGS. It may be formed on the surface of the substrate 20 that is not coated. Further, the functional films 30a and 30b may have different specific configurations as long as they have the effect of preventing the reflection of far infrared rays.
  • the functional films 30a and 30b are formed to be uneven like the functional films 30a in FIGS. 1 to 7 and the functional films 30b in FIGS. becomes a structure having When the surface shape of the functional film formed on the uneven surface satisfies the preferable conditions described later, it is possible to appropriately transmit far-infrared rays and scatter visible light on the surface of the functional film. That is, in the case where the functional films 30a and 30b are formed as uneven surfaces, the functional films 30a and 30b have an effect of preventing reflection of far-infrared rays and an effect of scattering visible light. By scattering visible light on the surface of the functional film formed on the irregularities, glare can be suppressed and a good design property can be obtained regardless of the angle.
  • a preferable surface shape of the functional film formed on the uneven surface will be described below.
  • the surface shape of the surface 31a in FIGS. 1 to 7 and the surface 31b in FIGS. Sa and the mean length RSm of the roughness curve element are used as an index of the surface shape of the functional film formed on the uneven surface.
  • the arithmetic mean height Sa can be measured according to ISO 25178, and the mean length RSm and the root mean square slope R ⁇ q of the roughness curve element can be measured according to JISB 0601.
  • Sa on the surface of the functional film formed on the unevenness is preferably 0.030 ⁇ m or more, and is 0.1 ⁇ m or more from the viewpoint of scattering visible light and obtaining good design properties regardless of the angle. is more preferable, and 0.15 ⁇ m or more is even more preferable. From the viewpoint of suppressing scattering of far-infrared rays and transmitting them appropriately, the thickness is preferably 1.000 ⁇ m or less, more preferably 0.5 ⁇ m or less, and even more preferably 0.4 ⁇ m or less.
  • the effects obtained by setting Sa within the above-mentioned preferable range include improvement in antifouling properties due to a reduction in the area where dirt adheres, improvement in water repellency due to an increase in the water contact angle, and improvement in tactile sensation due to a reduction in the finger contact area. can be expected.
  • RSm is preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 8 ⁇ m or less, from the viewpoint of suppressing scattering of far-infrared rays and properly transmitting them.
  • R ⁇ q is preferably 20° or less, more preferably 15° or less, and even more preferably 10° or less from the viewpoint of suppressing scattering of far-infrared rays and properly transmitting them.
  • the surface shape of the functional film formed on the unevenness is such that Sa satisfies the above preferable range and at least one of RSm and R ⁇ q satisfies the above preferable range. is preferred.
  • the surface of the functional film formed on the uneven surface satisfies such conditions, far-infrared rays can be properly transmitted, and a good design property can be obtained regardless of the angle.
  • the functional films 30a and 30b include at least one far-infrared ray antireflection layer.
  • a configuration may be adopted in which a visible light antireflection layer is further provided outside the far infrared ray antireflection layer 32 (on the side away from the substrate 20).
  • the structure which further has an adhesion layer in the inner side (side which touches the base material 20) of the far-infrared ray antireflection layer 32 may be sufficient.
  • a film including at least one far-infrared antireflection layer 32 is referred to as a functional film. That is, the functional films 30a and 30b may be single layer films or multilayer films.
  • the material used for the far-infrared antireflection layer 32 preferably has an extinction coefficient of 0.05 or less, more preferably 0.03 or less, and preferably 0.025 or less for light with a wavelength of 10 ⁇ m. It is more preferably 0.02 or less, and particularly preferably 0.01 or less. When the far-infrared light extinction coefficient of the far-infrared antireflection layer 32 falls within this numerical range, the far-infrared reflectance can be reduced and the far-infrared light can be appropriately transmitted.
  • the extinction coefficient for light with a wavelength of 10 ⁇ m is obtained by, for example, polarization information obtained by an infrared spectroscopic ellipsometer (IR-VASE-UT manufactured by JA Woollam), Fourier transform infrared spectrometer (manufactured by ThermoScientific, It can be determined by fitting an optical model using a spectral transmission spectrum obtained by Nicolet iS10).
  • IR-VASE-UT manufactured by JA Woollam
  • Fourier transform infrared spectrometer manufactured by ThermoScientific, It can be determined by fitting an optical model using a spectral transmission spectrum obtained by Nicolet iS10).
  • the material used for the far-infrared antireflection layer 32 preferably has an extinction coefficient of 0.04 or more, more preferably 0.05 or more, and more preferably 0.06 or more for light with a wavelength of 550 nm. It is more preferably 0.07 or more, particularly preferably 0.08 or more, and still more preferably 0.10 or more.
  • the far-infrared antireflection layer 32 preferably has an average extinction coefficient of 0.04 or more, more preferably 0.05 or more, and more preferably 0.06 or more for light with a wavelength of 380 nm to 780 nm. is more preferably 0.07 or more, particularly preferably 0.08 or more, and even more preferably 0.10 or more.
  • the average extinction coefficient is the average value of the extinction coefficients of light of each wavelength in the wavelength band (here, 380 nm to 780 nm).
  • the extinction coefficient of light with a wavelength of 550 nm can be determined, for example, by fitting an optical model using polarization information obtained by a spectroscopic ellipsometer and spectral transmittance measured based on JIS R3106.
  • the specific material of the far-infrared antireflection layer 32 is arbitrary, it is preferably composed mainly of a metal oxide.
  • the main component here means that the content of the far-infrared antireflection layer 32 as a whole is 50% by mass or more.
  • At least one of NiO, Al 2 O 3 , CuO, ZnO, ZrO 2 , Bi 2 O 3 , Y 2 O 3 and MgO is preferable as the metal oxide used for the far-infrared antireflection layer 32 .
  • the far-infrared antireflection layer 32 preferably contains at least one material selected from the group consisting of NiO, CuO, ZnO, ZrO 2 , Bi 2 O 3 , Y 2 O 3 and MgO as a main component.
  • the material of the far-infrared antireflection layer 32 is not limited to them, and may be, for example, Si, Ge, ZnS, YF 3 , or diamond-like carbon.
  • Far-infrared antireflection layer 32 preferably contains at least one material selected from the group of NiO, diamond-like carbon, ZrO 2 , ZnS, Ge, Si, MgO, and ZnO.
  • the far-infrared antireflection layer 32 may be a single layer or multiple layers.
  • the far-infrared antireflection layer 32 is multi-layered, it is preferable to alternately laminate a high refractive material and a low refractive material, and the materials can be selected from the above materials.
  • the visible light antireflection layer 33 is a layer for further suppressing reflection of visible light on the far-infrared transmitting member 10 .
  • the visible light antireflection layer 33 is preferably the outermost surface of the functional films 30a and 30b.
  • the functional films 30a and 30b have a water-repellent layer 35, which will be described later, the visible light antireflection layer 33 may not be the outermost surface of the functional films 30a and 30b.
  • the visible light antireflection layer 33 serves as the surface 31a of the functional film 30a, and while the visible light is scattered by the uneven structure of the surface 31a, the visible light reflection is further prevented by the visible light antireflection layer 33. It can be suppressed and the design can be improved.
  • the visible light antireflection layer 33 preferably has a refractive index of 2.0 or less, more preferably 1.3 or more and 1.8 or less, and 1.4 or more and 1.7 or less for light with a wavelength of 550 nm. is more preferable.
  • the visible light antireflection layer 33 preferably has an average refractive index of 2.0 or less, more preferably 1.3 or more and 1.8 or less, and 1.4 for light with a wavelength of 380 nm to 780 nm. It is more preferable that it is not less than 1.7 and not more than 1.7.
  • the refractive index and average refractive index for visible light of the visible light antireflection layer 33 are in this numerical range, so that the combination with the far infrared ray antireflection layer 32 suppresses the reflection of visible light, and the design of the far infrared ray transmitting member 10 can improve sexuality.
  • the refractive index of the visible light antireflection layer 33 for light with a wavelength of 550 nm is preferably equal to or less than the refractive index of the far-infrared antireflection layer 32 for light with a wavelength of 550 nm. is preferably equal to or lower than the average refractive index of the far-infrared antireflection layer 32 for light with a wavelength of 380 nm to 780 nm.
  • the material of the visible light antireflection layer 33 is arbitrary, and for example, at least one selected from the group consisting of ZrO 2 , Al 2 O 3 , TiO 2 , Si 3 N 4 , AlN, SiO 2 , MgO and diamond-like carbon. It may contain materials. Moreover, the visible light antireflection layer 33 preferably contains at least one material selected from the group consisting of Al 2 O 3 , SiO 2 and MgO.
  • the adhesion layer 34 is preferably formed on the inner side (the side in contact with the substrate 20) of the far-infrared antireflection layer 32 in the functional films 30a and 30b.
  • the adhesion layer 34 is a layer that improves the adhesion of the functional films 30 a and 30 b to the substrate 20 .
  • the adhesion layer 34 preferably has a refractive index of 1.0 or more and 4.3 or less, more preferably 1.5 or more and 4.3 or less, and 1.5 or more and 3.8 for light with a wavelength of 10 ⁇ m. More preferably: In addition, the adhesion layer 34 preferably has an average refractive index of 1.0 to 4.3, more preferably 1.5 to 4.3, for light with a wavelength of 8 ⁇ m to 12 ⁇ m. More preferably, it is 5 or more and 3.8 or less.
  • the adhesion layer 34 can transmit far infrared rays.
  • the adhesion layer 34 preferably has an extinction coefficient of 0.4 or less, more preferably 0.2 or less, and even more preferably 0.1 or less for light with a wavelength of 10 ⁇ m.
  • the adhesion layer 34 preferably has an average extinction coefficient of 0.4 or less, more preferably 0.2 or less, and even more preferably 0.1 or less for light with a wavelength of 8 ⁇ m to 12 ⁇ m. When the extinction coefficient and the average extinction coefficient fall within this range, far-infrared rays can be properly transmitted.
  • the material of the adhesion layer 34 is arbitrary, for example, it is selected from the group of Si, Ge, MgO, NiOx, CuOx, ZnS, Al2O3 , ZrO2 , SiO2 , TiO2 , ZnO , and Bi2O3 . It preferably contains at least one material that is
  • the water repellent layer 35 is a layer for improving the water repellency of the far-infrared transmitting member 10 .
  • the water-repellent layer 35 is preferably the outermost surface of the functional films 30a and 30b.
  • the water-repellent layer 35 serves as the surface 31a of the functional film 30a, and the water-repellent layer 35 can improve the water repellency of the surface 31a.
  • the method for forming the water-repellent layer 35 is arbitrary, it can be formed by vapor deposition, for example. Any material can be used for the water-repellent layer as long as it can transmit far infrared rays.
  • AFS-R2 manufactured by Syncron Co., Ltd.
  • Syncron Co., Ltd. can be used.
  • the functional films 30a and 30b are preferably formed on the surface of the substrate 20 by sputtering.
  • the adhesion of the films can be improved.
  • the method of forming the functional films 30a and 30b is not limited to sputtering, and may be formed by vapor deposition, for example.
  • the total reflectance of visible light is preferably 15% or less, more preferably 12% or less, even more preferably 8% or less, even more preferably 5% or less, and particularly preferably 2%. % or less.
  • the total reflectance of visible light falls within this range, a black appearance with good design can be obtained.
  • the total reflectance of visible light is measured under the geometric condition d (8°: di) specified in JIS-Z8722:2009 and calculated based on JIS R3106.
  • the far-infrared transmitting member according to the present embodiment appropriately transmits far-infrared rays and provides a good design regardless of the angle, so that it is suitable as a member used for a far-infrared sensor. Further, the far-infrared sensor using the far-infrared transmitting member according to the present embodiment exhibits good designability, and is particularly suitable for an environment in which the sensor is exposed to the outside. Specific applications include sensors for vehicles, sensors for drones, sensors for surveillance cameras, sensors for smartphones, sensors for wearable terminals, and motion sensors.
  • the "roughness treatment” column in Tables 1, 2, and 3 shows the method of forming the irregularities on the base material. It is shown for each of the surfaces on the light incident side and the light emitting side, and “none" means that the surface has not been processed to form unevenness.
  • the “functional film” column in Tables 1, 2, and 3 shows the material of the functional film formed on the substrate. It is shown for each surface on the light incident side and the light emitting side, and "none" means that no functional film is formed on the surface.
  • specular reflection spectrum in the visible light region was measured using U4100 (manufactured by Hitachi, Ltd.) at an incident angle of 5°, and calculated based on JIS R3106.
  • total reflectance The total reflection spectrum in the visible light region was measured using U4100 (manufactured by Hitachi) under the geometric condition d (8°: di) defined in JIS-Z8722:2009, and calculated based on JIS R3106.
  • ( ⁇ E) ⁇ E can be measured by the following method. Visible light at an incident angle of 5 ° detection angle of 5 ° and an incident angle of 45 ° detection angle of 45 ° using a V-770 type ultraviolet-visible near-infrared spectrophotometer, ARMN-920 type (manufactured by JASCO Corporation) The spectral reflectance of each was measured.
  • Tables 1, 2, and 3 show the results of measuring Sa, RSm, R ⁇ q, specular reflectance, total reflectance, and ⁇ E on the light incident surface of each sample.
  • the average transmittance is the average value of the transmittance of light with wavelengths of 8 ⁇ m to 12 ⁇ m.
  • the water contact angle was also measured to evaluate water repellency. The method for measuring the water contact angle is described below.
  • the average transmittance of light with a wavelength of 8 ⁇ m to 12 ⁇ m was used.
  • An average transmittance of 80% or more is indicated by a double circle, an average transmittance of 50% or more and less than 80% is indicated by a circle, and an average transmittance of less than 50% is indicated by a cross.
  • the samples of Examples 13 to 16 were further evaluated for water repellency.
  • the water contact angle of the sample was used.
  • a sample with a water contact angle of 120° or more was evaluated as a circle, and a sample with a water contact angle of less than 120° was evaluated as a cross, and a circle was evaluated as a pass.
  • Examples 1 to 4 are examples of the far-infrared transmitting member 10 shown in FIG.
  • both sides of the substrate 20 were chemically etched to form unevenness.
  • KOH, an organic solvent, and a surfactant as the chemical liquid, the composition was appropriately adjusted, and four types of substrates having different surface shapes were prepared.
  • functional films 30a and 30b were formed on both sides of the base material by sputtering to obtain a far-infrared transmitting member.
  • a Si substrate having a thickness of 0.5 mm was used as the base material, and the functional films 30a and 30b were single-layer films of NiO, which are far-infrared antireflection layers.
  • the first main surface 21 of the substrate 20 corresponds to the light incident side.
  • the functional film was formed on the main surface of the base material by a post-oxidation sputtering method using a load-lock type sputtering apparatus (RAS-1100BII, manufactured by Synchron Co., Ltd.) to a film thickness of about A 1.2 ⁇ m NiO film was formed.
  • the conditions for forming the NiO film are as follows.
  • Example 5 the functional films were formed on both sides of the base material 20 by sputtering without forming unevenness on the surface of the base material 20 .
  • a Si substrate having a thickness of 0.5 mm was used as the base material 20
  • the functional films 30a and 30b were single-layer films of NiO for the anti-reflection layers of far-infrared rays.
  • the method of forming the NiO film is the same as in Examples 1-4.
  • Table 1 shows the evaluation results of the samples of Examples 1-5. It can be seen that Examples 1 to 4, which have functional films formed on the uneven surface on the light incident side, have better design properties than Example 5. From this, by forming a functional film on the uneven surface and scattering visible light on the surface of the functional film, the regular reflectance and total reflectance of visible light are reduced, and a constant color tone is obtained regardless of the angle. It can be seen that a far-infrared transmitting member with good design can be obtained.
  • FIG. 9 shows the measurement results of the specular reflectance of the samples of Examples 1 and 5. Comparing Example 1 and Example 5, it can be seen that Example 1 has a lower regular reflectance over the entire visible light range. From this, it can be seen that by forming a functional film on the unevenness to scatter visible light, the specular reflectance can be lowered and the design can be improved.
  • Examples 1 and 2 have lower far-infrared transmission performance than Examples 1 and 2. This is probably due to the scattering of far-infrared rays on the surface of the functional film on the light incident side of Examples 3 and 4, since Sa and RSm are larger than those of Examples 1 and 2. . Therefore, as in Examples 1 and 2, by setting Sa and RSm on the surface of the functional film on the light incident side to the above-mentioned preferred ranges, far-infrared rays can be properly transmitted, and good designability can be achieved regardless of the angle. It is considered possible to obtain a far-infrared transmitting member with
  • Fig. 10 shows the measurement results of the far-infrared transmittance of the samples of Examples 1, 3, and 5. It can be seen that the sample of Example 3 has a good design property, but the transmittance of far infrared rays is lower than those of Examples 1 and 5. This is presumably due to the scattering of far-infrared rays on the surface of the functional film on the light incident side, as described above. On the other hand, in Example 1, far-infrared rays can be appropriately transmitted by setting Sa and RSm on the surface of the functional film on the light incident side to the above-mentioned preferred ranges. In Example 5, since the functional film was not formed on the uneven surface, the far-infrared rays were not scattered on the surface of the functional film and could be properly transmitted, but the sample had poor design.
  • Examples 6 to 8 are examples of the far-infrared transmitting member 10 shown in FIG. In Examples 6 to 8, unevenness was formed using a wet blasting device (Jr. Type II, manufactured by Maco Co., Ltd.) on the first main surface 21 of the substrate, which is the light incident side.
  • Wet blasting is a technique for imparting irregularities to the surface of a workpiece by injecting slurry, which is a mixture of a liquid and an abrasive, onto the workpiece using compressed air.
  • White alumina WA#6000, WA#4000, and WA#2500 manufactured by Fujimi Incorporated were used as abrasives.
  • Example 6 (Evaluation results of Examples 6 to 8) Table 2 shows the evaluation results of the samples of Examples 6-8. Comparing Example 6 with Examples 7 and 8, it can be seen that Examples 7 and 8 are inferior to Example 6 in designability. This is probably because the surface Sa of the functional film formed on the uneven surface of Examples 7 and 8 is smaller than that of Example 6, and visible light is not sufficiently scattered on the surface. . Therefore, it is believed that by setting Sa within the above-mentioned preferable range as in Example 6, it is possible to obtain a far-infrared transmitting member that appropriately scatters visible light and has a good design regardless of the angle. .
  • Example 9 is an example of the far-infrared transmitting member 10 shown in FIG . This is a configuration in which a single layer film is further formed.
  • Example 9 under the same conditions as in Example 1, both sides of the substrate 20 were subjected to chemical etching treatment to form unevenness.
  • the functional film 30a on the first main surface 21, which is the light incident side, as the functional film 30a, a single layer of NiO as a far-infrared antireflection layer and a single layer of Al 2 O 3 as a visible light antireflection layer are formed.
  • a single-layer film of NiO was formed as the functional film 30b on the second main surface 22, which is the light emitting side, on which the unevenness is not formed on the substrate.
  • the method of forming the NiO film is the same as in Examples 1-8.
  • Example 9 when forming Al 2 O 3 , an Al 2 O 3 film having a thickness of about 0.1 ⁇ m was formed on the NiO single layer film by reactive sputtering using a transport type sputtering apparatus. formed.
  • the deposition conditions for the Al 2 O 3 film are as follows.
  • Example 10 has a structure in which a single-layer film of Al 2 O 3 as a visible light antireflection layer is further formed on the surface of the functional film, which is the light incident side, of the sample of Example 5. Specifically, it was produced as follows. Under the same conditions as in Example 5, without forming unevenness on the surface of the substrate, a single layer film of NiO, which is a far-infrared antireflection layer, was formed as a functional film on the light incident side of the substrate, A monolayer film of Al 2 O 3 as a visible light antireflection layer was laminated in this order, and a monolayer film of NiO was formed as a functional film on the surface of the substrate from which light was emitted. The method for forming the NiO film is the same as in Examples 1 to 9, and the method for forming the Al 2 O 3 film is the same as in Example 9.
  • Example 9 (Evaluation result of Example 9) Table 2 shows the evaluation results of the samples of Example 9. From Table 2, it can be seen that the sample of Example 9 exhibits good results in terms of both designability and far-infrared transmission performance. Compared to the sample of Example 1, which was produced under the same conditions except that an Al 2 O 3 film, which is a visible light antireflection layer, was formed on the functional film, Example 9 has a lower total reflectance, and is more designable. is improved.
  • Example 10 (Evaluation result of Example 10) Table 2 shows the evaluation results of the samples of Example 10. Compared to the sample of Example 5, which was produced under the same conditions except that the Al 2 O 3 film, which is a visible light antireflection layer, was formed on the functional film, Example 10 had lower regular reflectance and total reflectance. , it can be seen that the designability is improved. On the other hand, compared with the sample of Example 9, ⁇ E was increased, confirming a change in color tone depending on the angle. From this, it can be seen that the change in color tone depending on the angle can be suppressed by scattering visible light with the unevenness of the surface of the functional film.
  • Example 11 is an example of the far-infrared transmitting member 10 shown in FIG. A sample was produced under the same conditions as in Example 1, except that the functional film 30b was not formed.
  • Example 11 shows the evaluation results of the samples of Example 11. Since the functional film is formed only on the light incident side, compared with Example 1, Example 11 shows a decrease in far-infrared transmittance, but sufficient transmittance is obtained as a far-infrared transmitting member. It is understood that In addition, it was confirmed that good design properties were exhibited as in Example 1.
  • Example 12 is an example of the far-infrared transmitting member 10 shown in FIG. In Example 12, both sides of substrate 20 were chemically etched to form irregularities. Samples were prepared under the same conditions as in Examples 1 to 4, except that the composition of the chemical solution was adjusted and the surface shape of the substrate after unevenness formation was different from those of Examples 1 to 4.
  • Example 12 (Evaluation result of Example 12) Table 3 shows the evaluation results of the samples of Example 12. From Table 3, it can be seen that the sample of Example 12 exhibits good results in terms of both design and far-infrared transmission performance.
  • the Sa and RSm of the functional film surface on the light incident side are within the above-described preferred ranges, so far-infrared rays are appropriately transmitted, and good design is achieved regardless of the angle. It is considered to have sexuality.
  • Example 13 is an example of the far-infrared transmitting member 10 shown in FIG. 8, and has a configuration in which a water-repellent layer is further formed on the surface of the functional film in addition to the sample of Example 1.
  • FIG. 13 under the same conditions as in Example 1, both sides of the substrate 20 were subjected to chemical etching to form unevenness. After that, on the first main surface 21, which is the light incident side, as the functional film 30a, a single layer film of NiO, which is a far-infrared antireflection layer, and a water-repellent layer are laminated in this order to emit light.
  • the functional film 30b As the functional film 30b, a single layer film of NiO, which is a far-infrared antireflection layer, and a water-repellent layer were laminated in this order on the second main surface 22, which is the side.
  • the method of forming the NiO film is the same as in Examples 1-12.
  • Example 13 when the water-repellent layer was formed, it was formed on the NiO single-layer film by vapor deposition using a load-lock type sputtering apparatus (RAS-1100BII, manufactured by Synchron Co., Ltd.).
  • the deposition conditions for the water-repellent layer are as follows.
  • Vapor deposition temperature 300 degrees
  • Vapor deposition time 5 minutes
  • Vapor deposition material AFS-R2 (manufactured by Syncron)
  • Table 3 shows the evaluation results of the samples of Example 13. From Table 3, it can be seen that the sample of Example 13 exhibits good water repellency. This is probably because Sa on the functional film surface on the light incident side of Example 13 was within the preferred range described above.
  • Example 13 exhibits good results in terms of both designability and far-infrared transmission performance.
  • Example 13 has a configuration in which a water-repellent layer is formed on the surface of the functional film in comparison with the sample of Example 1, which is an embodiment. However, it can be seen that good design and far-infrared transmission performance can be maintained.
  • Examples 14 and 15 are examples of the far-infrared transmitting member 10 shown in FIG. It is a structure in which a water-repellent layer is further formed.
  • the method for forming the NiO film is the same as in Examples 1 to 13, and the method for forming the water-repellent layer is the same as in Example 13.
  • Table 3 shows the evaluation results of the samples of Examples 14 and 15. From Table 3, it can be seen that the samples of Examples 14 and 15 exhibit good water repellency. It is considered that this is because the Sa on the functional film surface on the light incident side in Examples 14 and 15 was within the preferred range described above.
  • Example 14 is a sample of Example 12
  • Example 15 is a sample of Example 2, in which a water-repellent layer is formed on the surface of the functional film. From this result, it can be seen that, as in Example 13, good design and far-infrared transmission performance can be maintained even when a water-repellent layer is formed on the outermost surface of the functional film.
  • Example 16 has a structure in which a water-repellent layer is further formed on the surface of the functional film in addition to the sample of Example 5.
  • the method of forming the NiO film is the same as in Examples 1-15, and the method of forming the water-repellent layer is the same as in Examples 13-15.
  • Example 16 has lower water repellency than the samples of Examples 13-15.
  • the Sa of the functional film surface on the light incident side of Example 16 was outside the above-mentioned preferred range. For this reason, compared with Examples 13-15, it is considered that the water repellency was lowered.
  • the embodiment of the present invention has been described above, the embodiment is not limited by the content of this embodiment.
  • the components described above include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those within the so-called equivalent range.
  • the components described above can be combined as appropriate.
  • various omissions, replacements, or modifications of components can be made without departing from the gist of the above-described embodiments.
  • the present invention can be suitably used for various devices that use far infrared rays.
  • INDUSTRIAL APPLICABILITY The present invention is particularly suitable for installation exposed to the outside, since good design properties can be obtained regardless of the angle.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Laminated Bodies (AREA)

Abstract

Through the present invention, far infrared rays are suitably transmitted, and good designability is obtained. In the present invention, the regular reflectance of visible light calculated on the basis of JIS R3106 when the light is incident at an incidence angle of 5° is 10% or less, the average transmittance of light having a wavelength of 8-12 µm is 50% or greater, and the value of ∆E as defined by expression (1) is 6.0 or less.

Description

遠赤外線透過部材、遠赤外線センサ、車載用センサ、スマートフォン搭載用センサ、及びウェアラブル端末用センサFar-infrared transmission materials, far-infrared sensors, automotive sensors, smartphone-mounted sensors, and wearable device sensors
 本発明は、遠赤外線透過部材、遠赤外線センサ、車載用センサ、スマートフォン搭載用センサ、及びウェアラブル端末用センサに関する。 The present invention relates to a far-infrared transmitting member, a far-infrared sensor, a vehicle-mounted sensor, a smartphone-mounted sensor, and a wearable terminal sensor.
 遠赤外線センサを取り付ける際に、遠赤外線センサに遠赤外線が適切に入射するように、遠赤外線の反射を抑制して透過光量を増大させるための反射防止膜を形成した遠赤外線透過部材を設ける場合がある。特許文献1には、遠赤外域における消衰係数が0.4以下の赤外線透過膜についての記載がされている。 When installing a far-infrared sensor, when providing a far-infrared transmitting member with an antireflection film for suppressing the reflection of far-infrared rays and increasing the amount of transmitted light so that the far-infrared rays are properly incident on the far-infrared sensor There is Patent Document 1 describes an infrared transmitting film having an extinction coefficient of 0.4 or less in the far infrared region.
 このような遠赤外線透過部材は、例えば外部に露出して設けられる場合などにおいて、意匠性の観点から、目立たないことが好ましい。従って、遠赤外線を適切に透過しつつ、良好な意匠性が得られる遠赤外線透過部材が求められている。 For example, when such a far-infrared transmitting member is exposed to the outside, it is preferable that it is inconspicuous from the viewpoint of design. Therefore, there is a demand for a far-infrared transmitting member that can appropriately transmit far-infrared rays while providing good design.
 遠赤外線透過部材の意匠性を向上するには、遠赤外線透過部材における可視光の反射を抑制することが必要である。特許文献2には、可視域と赤外域の2つの波長域について同時に反射を防止する反射防止膜が開示されている。しかしながら、特許文献2の反射防止膜は、高屈折層と低屈折率層を交互に積層して得られる多層膜を用いているため、入射角によって、反射色が変化するため、角度によって、意匠性が低下するおそれがあった。  In order to improve the design of the far-infrared transmitting member, it is necessary to suppress the reflection of visible light in the far-infrared transmitting member. Patent Literature 2 discloses an antireflection film that simultaneously prevents reflection in two wavelength ranges, the visible range and the infrared range. However, since the antireflection film of Patent Document 2 uses a multilayer film obtained by alternately laminating a high refractive layer and a low refractive index layer, the reflected color changes depending on the incident angle. There was a risk of deterioration.
特開2017-151408号公報JP 2017-151408 A 特開平4-357134号公報JP-A-4-357134
 本発明は、遠赤外線を適切に透過しつつ、角度によらず良好な意匠性が得られる遠赤外線透過部材、遠赤外線センサ、車載用センサ、スマートフォン搭載用センサ、及びウェアラブル端末用センサを提供することを目的とする。 The present invention provides a far-infrared transmitting member, a far-infrared sensor, a vehicle-mounted sensor, a smartphone-mounted sensor, and a wearable terminal sensor, which are capable of appropriately transmitting far-infrared rays while providing good designability regardless of the angle. for the purpose.
 本発明の実施形態に係る遠赤外線透過部材は、入射角5°で入射させた際の、JIS R3106に基づいて算出される可視光の正反射率が10%以下であり、波長8μm~12μmの光の平均透過率が50%以上であり、以下の式(1)で定義されるΔEの値が6.0以下であることを特徴とする。 The far-infrared transmitting member according to the embodiment of the present invention has a regular reflectance of 10% or less for visible light calculated based on JIS R3106 when incident at an incident angle of 5°, and has a wavelength of 8 μm to 12 μm. The average transmittance of light is 50% or more, and the value of ΔE defined by the following formula (1) is 6.0 or less.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 L :入射角5°、検出角5°で測定した可視光の分光反射率とJIS Z 8781―4に基づいて算出される、照明光に標準イルミナントD65を用いた際のCIE-Lab表色系における反射光の色度座標
 L :入射角45°、検出角45°で測定した可視光の分光反射率とJIS Z 8781―4に基づいて算出される、照明光に標準イルミナントD65を用いた際のCIE-Lab表色系における反射光の色度座標
L 1 * a 1 * b 1 * : Spectral reflectance of visible light measured at an incident angle of 5° and a detection angle of 5° and calculated based on JIS Z 8781-4, using standard illuminant D65 as illumination light Chromaticity coordinates of reflected light in the actual CIE-Lab color system L 2 * a 2 * b 2 * : Spectral reflectance of visible light measured at an incident angle of 45° and a detection angle of 45° and JIS Z 8781-4 Chromaticity coordinates of reflected light in the CIE-Lab color system when using standard illuminant D65 for illumination light, calculated based on
 本発明の実施形態に係る遠赤外線透過部材は、一方の主面に可視光を散乱させる凹凸を備えた基材と、凹凸上に波長8μm~12μmの光の反射を防止する第一の機能膜と、基材のもう一方の主面に第二の機能膜を有し、第一の機能膜の表面における算術平均高さSa(ISO 25178)が0.030μm以上、1.000μm以下であることを特徴とする。 A far-infrared transmitting member according to an embodiment of the present invention includes a substrate having unevenness that scatters visible light on one main surface, and a first functional film that prevents reflection of light with a wavelength of 8 μm to 12 μm on the unevenness. and a second functional film on the other main surface of the substrate, and the arithmetic mean height Sa (ISO 25178) on the surface of the first functional film is 0.030 μm or more and 1.000 μm or less. characterized by
 本発明によれば、遠赤外線を適切に透過し、かつ、角度によらず良好な意匠性が得られる遠赤外線透過部材を得ることができる。 According to the present invention, it is possible to obtain a far-infrared transmitting member that appropriately transmits far-infrared rays and that provides good designability regardless of the angle.
実施形態に係る遠赤外線透過部材の模式的な断面図である。1 is a schematic cross-sectional view of a far-infrared transmitting member according to an embodiment; FIG. 遠赤外線透過部材の他の例を示す模式的な断面図である。FIG. 3 is a schematic cross-sectional view showing another example of a far-infrared transmitting member; 遠赤外線透過部材の他の例を示す模式的な断面図である。FIG. 3 is a schematic cross-sectional view showing another example of a far-infrared transmitting member; 遠赤外線透過部材の他の例を示す模式的な断面図である。FIG. 3 is a schematic cross-sectional view showing another example of a far-infrared transmitting member; 遠赤外線透過部材の他の例を示す模式的な断面図である。FIG. 3 is a schematic cross-sectional view showing another example of a far-infrared transmitting member; 遠赤外線透過部材の他の例を示す模式的な断面図である。FIG. 3 is a schematic cross-sectional view showing another example of a far-infrared transmitting member; 遠赤外線透過部材の他の例を示す模式的な断面図である。FIG. 3 is a schematic cross-sectional view showing another example of a far-infrared transmitting member; 遠赤外線透過部材の他の例を示す模式的な断面図である。FIG. 3 is a schematic cross-sectional view showing another example of a far-infrared transmitting member; 各例の正反射率の測定結果を示すグラフである。It is a graph which shows the measurement result of the regular reflectance of each example. 各例の赤外線透過率の測定結果を示すグラフである。It is a graph which shows the measurement result of the infrared transmittance|permeability of each example.
 本明細書において数値範囲を示す「~」とは、特段の定めがない限り、その前後に記載された数値を下限値及び上限値として含む意味で使用される。 In this specification, the term "~" used to indicate a numerical range is used to include the numerical values before and after it as lower and upper limits unless otherwise specified.
 本明細書において、可視光とは、特段の定めが無い限り、波長380nm~780nm光とする。また、遠赤外線とは、特段の定めが無い限り、波長8μm~12μmの光とするが、波長8μm~14μmの光であってもよい。 In this specification, visible light means light with a wavelength of 380 nm to 780 nm unless otherwise specified. Further, the far-infrared rays are light with a wavelength of 8 μm to 12 μm unless otherwise specified, but may be light with a wavelength of 8 μm to 14 μm.
 本実施形態に係る遠赤外線透過部材(以下、本実施形態と称することがある)は、入射角5°で入射させた際の、JIS R3106に基づいて算出される可視光の正反射率が10%以下であり、波長8μm~12μmの光の平均透過率が50%以上であり、以下の式(1)で定義されるΔEの値が6.0以下である。 The far-infrared transmitting member according to this embodiment (hereinafter sometimes referred to as this embodiment) has a regular reflectance of 10 for visible light calculated based on JIS R3106 when incident at an incident angle of 5°. % or less, the average transmittance of light with a wavelength of 8 μm to 12 μm is 50% or more, and the value of ΔE defined by the following formula (1) is 6.0 or less.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 式(1)において、L は、入射角5°、検出角5°で測定した可視光の分光反射率とJIS Z 8781―4に基づいて算出される、照明光に標準イルミナントD65を用いた際のCIE-Lab表色系における反射光の色度座標である。
 式(1)において、L は、入射角45°、検出角45°で測定した可視光の分光反射率とJIS Z 8781―4に基づいて算出される、照明光に標準イルミナントD65を用いた際のCIE-Lab表色系における反射光の色度座標である。
In formula (1), L 1 * a 1 * b 1 * is the illumination light calculated based on the spectral reflectance of visible light measured at an incident angle of 5° and a detection angle of 5° and JIS Z 8781-4. is the chromaticity coordinates of the reflected light in the CIE-Lab color system when using the standard illuminant D65 in .
In formula (1), L 2 * a 2 * b 2 * is the illumination light calculated based on the spectral reflectance of visible light measured at an incident angle of 45° and a detection angle of 45° and JIS Z 8781-4. is the chromaticity coordinates of the reflected light in the CIE-Lab color system when using the standard illuminant D65 in .
 このような光学特性を備えることによって、遠赤外線を適切に透過しつつ、角度によらず良好な意匠性を得ることができる。以下、各光学特性の詳細を説明する。 By providing such optical characteristics, it is possible to obtain a good design regardless of the angle while properly transmitting far infrared rays. The details of each optical characteristic will be described below.
 本実施形態において、入射角5°で入射させた可視光の正反射率は10%以下であり、より好ましくは5%以下であり、さらに好ましくは3%以下であり、よりさらに好ましくは1%以下であり、特に好ましくは0.5%以下である。可視光の正反射率がこの範囲となることで、グレアが抑制されて、意匠性の良い外観を得ることができる。ここで、可視光の正反射率は、JIS R3106に基づいて算出される。 In the present embodiment, the regular reflectance of visible light incident at an incident angle of 5° is 10% or less, more preferably 5% or less, even more preferably 3% or less, and even more preferably 1%. or less, and particularly preferably 0.5% or less. When the regular reflectance of visible light falls within this range, glare can be suppressed and an appearance with good design can be obtained. Here, the regular reflectance of visible light is calculated based on JIS R3106.
 本実施形態において、波長8μm~12μmの光の平均透過率は、50%以上であり、より好ましくは70%以上であり、さらに好ましくは80%以上であり、よりさらに好ましくは85%以上であり、特に好ましくは90%以上である。平均透過率がこの範囲となることで、遠赤外線を適切に透過することができる。なお、平均透過率とは8μm~12μmのそれぞれの波長の光の透過率の平均値である。 In the present embodiment, the average transmittance of light with a wavelength of 8 μm to 12 μm is 50% or more, more preferably 70% or more, still more preferably 80% or more, and even more preferably 85% or more. , particularly preferably 90% or more. When the average transmittance falls within this range, far-infrared rays can be appropriately transmitted. Note that the average transmittance is the average value of the transmittance of light with wavelengths of 8 μm to 12 μm.
 本実施形態において、上記の式(1)で定義されるΔEの値が6.0以下であり、より好ましくは5.0以下であり、さらに好ましくは4.0以下であり、よりさらに好ましくは3.0以下である。ΔEは、入射光の角度による遠赤外線透過部材の色調の変化の指標となる値であり、この数値が小さいほど、角度による色調の変化が少ないことを意味する。 In the present embodiment, the value of ΔE defined by the above formula (1) is 6.0 or less, more preferably 5.0 or less, still more preferably 4.0 or less, and even more preferably 3.0 or less. ΔE is a value that serves as an index of change in color tone of the far-infrared transmitting member due to the angle of incident light, and the smaller the value, the less the change in color tone due to the angle.
 より具体的には、ΔEは、遠赤外線透過部材に、可視光を入射角5°及び45°で入射させたときの反射光のCIE-Lab表色系におけるそれぞれの色度座標の距離を表す値である。式(1)における、L が可視光を入射角5°で入射させたときの反射光の色度座標に相当し、L が可視光を入射角45°で入射させたときの反射光の色度座標に相当する。 More specifically, ΔE represents the distance of each chromaticity coordinate in the CIE-Lab color system of reflected light when visible light is incident on the far-infrared transmitting member at incident angles of 5 ° and 45 °. value. In formula (1), L 1 * a 1 * b 1 * corresponds to the chromaticity coordinates of reflected light when visible light is incident at an incident angle of 5°, and L 2 * a 2 * b 2 * is visible. It corresponds to the chromaticity coordinates of the reflected light when the light is incident at an incident angle of 45°.
 従って、ΔEが小さいほど、可視光を入射角5°及び45°で入射させたときの反射光の色度座標の距離が近く、角度によらず近い色感を得ることができる。ΔEが上記の好ましい範囲にあることによって、角度によらず、一定の色調を持った遠赤外透過部材を得ることができる。 Therefore, the smaller ΔE is, the closer the distance of the chromaticity coordinates of the reflected light when the visible light is incident at the incident angles of 5° and 45°, and the closer color feeling can be obtained regardless of the angle. When ΔE is within the above preferable range, a far-infrared transmitting member having a constant color tone can be obtained regardless of the angle.
 本実施形態に係る遠赤外線透過部材は、上記要件を満足することが出来れば、具体的な構成は特に限定されるものではないが、本実施形態に適用可能な構成例を以下で説明する。 The specific configuration of the far-infrared transmitting member according to the present embodiment is not particularly limited as long as it satisfies the above requirements, but a configuration example applicable to the present embodiment will be described below.
 以下、本実施形態における好ましい構成を図面に基づいて説明するが、それらの図面は図解のために提供されるものであり、本発明はそれらの図面に何ら限定されない。各図において、共通する部分には同一符号を付している。 Preferred configurations of the present embodiment will be described below based on the drawings, but these drawings are provided for illustration and the present invention is not limited to these drawings. In each figure, the same reference numerals are given to common parts.
 図1は本実施形態に係る遠赤外線透過部材の好ましい構成の模式的な断面図である。 FIG. 1 is a schematic cross-sectional view of a preferred configuration of the far-infrared transmitting member according to this embodiment.
 図1に示すように、本実施形態に係る遠赤外線透過部材10は、基材20と機能膜30aとを有することが好ましい。 As shown in FIG. 1, the far-infrared transmitting member 10 according to this embodiment preferably has a substrate 20 and a functional film 30a.
 基材20は、相互に対向する第一の主面21及び第二の主面22を有し、機能膜30aは、表面31aを有している。なお、本明細書においては、特段の定めが無い限り、基材20の第一の主面21側を光の入射側とし、第二の主面22側を光の出射側とする。 The substrate 20 has a first main surface 21 and a second main surface 22 facing each other, and the functional film 30a has a surface 31a. In this specification, unless otherwise specified, the first main surface 21 side of the substrate 20 is the light incident side, and the second main surface 22 side is the light emitting side.
 本実施形態に係る遠赤外線透過部材10は、基材20の第一の主面21に可視光を散乱させる凹凸を備え、凹凸上に波長8μm~12μmの光の反射を防止する機能膜30aを有していることが好ましい。図1の例では、基材20は第一の主面21に凹凸を備えているが、図2に示すように、基材20の第二の主面22にさらに凹凸を備えてもよいし、図3、6、7に示すように、基材20の第一の主面21及び第二の主面22に凹凸を備え、両主面の凹凸上に機能膜30a、30bをそれぞれ有していてもよい。また、機能膜30bはそれぞれ凹凸上に形成されることに限られず、図4、5に示すように、凹凸を備えていない基材20の第二の主面22上に、波長8μm~12μmの光の反射を防止する機能膜30bを有していてもよい。なお、機能膜30bは表面31bを有する。 The far-infrared transmitting member 10 according to the present embodiment has unevenness that scatters visible light on the first main surface 21 of the substrate 20, and a functional film 30a that prevents reflection of light with a wavelength of 8 μm to 12 μm on the unevenness. It is preferable to have In the example of FIG. 1, the substrate 20 has unevenness on the first principal surface 21, but as shown in FIG. As shown in FIGS. 3, 6 and 7, the substrate 20 has irregularities on the first main surface 21 and the second main surface 22, and has functional films 30a and 30b on the irregularities on both main surfaces, respectively. may be In addition, the functional film 30b is not limited to being formed on the uneven surface, and as shown in FIGS. It may have a functional film 30b that prevents reflection of light. Note that the functional film 30b has a surface 31b.
 すなわち、本実施形態に係る遠赤外線透過部材10は、少なくとも第一の主面21に凹凸が備えられた基材20と、凹凸上に形成された機能膜とを有する構成であることが好ましい。 That is, it is preferable that the far-infrared transmitting member 10 according to the present embodiment has a base material 20 having unevenness on at least the first main surface 21 and a functional film formed on the unevenness.
(基材)
 基材20は、遠赤外線を透過可能な部材であることが好ましく、例えば、波長10μmの光(遠赤外線)に対する内部透過率が、50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがさらに好ましく、80%以上であることが特に好ましい。また、基材20は、波長8μm~12μmの光(遠赤外線)に対する平均内部透過率が、50%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることがさらに好ましく、80%以上であることが特に好ましい。基材20の10μmでの内部透過率や8μm~12μmでの平均内部透過率がこの数値範囲となることで、遠赤外線を適切に透過することができる。なお、ここでの平均内部透過率とは、その波長帯域(ここでは8μmから12μm)の、それぞれの波長の光に対する内部透過率の平均値である。
(Base material)
The substrate 20 is preferably a member capable of transmitting far-infrared rays. For example, the internal transmittance for light with a wavelength of 10 μm (far-infrared rays) is preferably 50% or more, preferably 60% or more. More preferably, it is 70% or more, and particularly preferably 80% or more. In addition, the average internal transmittance of the substrate 20 for light (far infrared rays) having a wavelength of 8 μm to 12 μm is preferably 50% or more, more preferably 60% or more, and preferably 70% or more. More preferably, it is particularly preferably 80% or more. When the internal transmittance at 10 μm and the average internal transmittance at 8 μm to 12 μm of the base material 20 are within this numerical range, far infrared rays can be properly transmitted. The average internal transmittance here is the average value of the internal transmittance for light of each wavelength in the wavelength band (here, 8 μm to 12 μm).
 基材20の内部透過率は、入射側および出射側における表面反射損失を除いた透過率であり、当該技術分野において周知のものであり、その測定も通常行われる方法でよい。測定は、例えば、以下のように行う。 The internal transmittance of the base material 20 is the transmittance excluding the surface reflection loss on the incident side and the exit side, and is well known in the technical field, and its measurement may also be performed by a usual method. Measurement is performed, for example, as follows.
 同一組成の基材からなり、厚さの異なる一対の平板状試料(第1の試料および第2の試料)を用意する。平板状試料の両面は互いに平行かつ光学研磨された平面とする。第1の試料の表面反射損失を含む外部透過率をT1、第2の試料の表面反射損失を含む外部透過率をT2、第1の試料の厚みをTd1(mm)、第2の試料の厚みをTd2(mm)、ただしTd1<Td2とすると、厚さTdx(mm)での内部透過率τは次式(2)により算出することができる。 Prepare a pair of plate-shaped samples (first sample and second sample) made of base materials of the same composition and having different thicknesses. Both surfaces of the flat sample are parallel to each other and optically polished. T1 is the external transmittance including the surface reflection loss of the first sample, T2 is the external transmittance including the surface reflection loss of the second sample, Td1 (mm) is the thickness of the first sample, and Td1 (mm) is the thickness of the second sample. is Td2 (mm), where Td1<Td2, the internal transmittance τ at the thickness Tdx (mm) can be calculated by the following equation (2).
 τ = exp[-Tdx×(lnT1-lnT2)/ΔTd] ・・・(2) τ = exp [-Tdx x (lnT1-lnT2)/ΔTd] (2)
 なお、赤外線の外部透過率は、例えばフーリエ変換型赤外分光装置(ThermoScientific社製、商品名:Nicolet iS10)により測定することが出来る。 The infrared external transmittance can be measured, for example, by a Fourier transform infrared spectrometer (manufactured by ThermoScientific, trade name: Nicolet iS10).
 基材20は、波長10μmの光に対する屈折率が、1.5以上4.0以下であることが好ましく、2.0以上4.0以下であることがより好ましく、2.2以上3.5以下であることがさらに好ましい。また、基材20は、波長8μm~12μmの光に対する平均屈折率が、1.5以上4.0以下であることが好ましく、2.0以上4.0以下であることがより好ましく、2.2以上3.5以下であることがさらに好ましい。基材20の屈折率や平均屈折率がこの数値範囲となることで、遠赤外線を適切に透過することができる。なお、ここでの平均屈折率とは、その波長帯域(ここでは8μmから12μm)の、それぞれの波長の光に対する屈折率の平均値である。屈折率は、例えば赤外分光エリプソメーター(J.A.ウーラム社製・IR-VASE-UT)により得られる偏光情報、およびフーリエ変換型赤外分光装置により得られる分光透過スペクトルを用いて、光学モデルのフィッティングを行うことで、決定することが出来る。 The base material 20 preferably has a refractive index of 1.5 or more and 4.0 or less, more preferably 2.0 or more and 4.0 or less, and 2.2 or more and 3.5 for light with a wavelength of 10 μm. More preferably: In addition, the average refractive index of the substrate 20 with respect to light with a wavelength of 8 μm to 12 μm is preferably 1.5 or more and 4.0 or less, more preferably 2.0 or more and 4.0 or less. More preferably, it is 2 or more and 3.5 or less. By setting the refractive index and average refractive index of the substrate 20 within this numerical range, far-infrared rays can be appropriately transmitted. Note that the average refractive index here is the average value of the refractive index for light of each wavelength in the wavelength band (here, 8 μm to 12 μm). The refractive index is determined, for example, using polarization information obtained by an infrared spectroscopic ellipsometer (JA Woollam IR-VASE-UT) and a spectral transmission spectrum obtained by a Fourier transform infrared spectrometer. It can be determined by fitting the model.
 基材20の材料は、特に限定はされないが、例えばSi、Ge、ZnS、及びカルコゲナイドガラス等が挙げられる。基材20は、Si、Ge、ZnS、及びカルコゲナイドガラスの群より選ばれる少なくとも1種の材料を含むことが好ましいといえる。基材20にこのような材料を用いることで、遠赤外線を適切に透過できる。
 カルコゲナイドガラスの好ましい組成としては、
 原子%表示で、
 Ge+Ga;7%~25%、
 Sb;0%~35%、
 Bi;0%~20%、
 Zn;0%~20%、
 Sn;0%~20%、
 Si;0%~20%、
 La;0%~20%、
 S+Se+Te;55%~80%、
 Ti;0.005%~0.3%、
 Li+Na+K+Cs;0%~20%、
 F+Cl+Br+I;0%~20%含有する組成である。そして、このガラスは、140℃~550℃のガラス転移点(Tg)を有することが好ましい。
The material of the base material 20 is not particularly limited, but examples thereof include Si, Ge, ZnS, chalcogenide glass, and the like. It can be said that the substrate 20 preferably contains at least one material selected from the group consisting of Si, Ge, ZnS, and chalcogenide glass. By using such a material for the base material 20, far-infrared rays can be transmitted appropriately.
A preferable composition of the chalcogenide glass is as follows.
In atomic percent,
Ge+Ga; 7% to 25%,
Sb: 0% to 35%,
Bi; 0% to 20%,
Zn; 0% to 20%,
Sn; 0% to 20%,
Si; 0% to 20%,
La; 0% to 20%,
S + Se + Te; 55% to 80%,
Ti; 0.005% to 0.3%,
Li + Na + K + Cs; 0% to 20%,
F+Cl+Br+I; composition containing 0% to 20%. This glass preferably has a glass transition point (Tg) of 140°C to 550°C.
 なお、基材20の材料としては、基材上に容易に凹凸を形成できる観点から、SiやZnSやカルコゲナイドガラスを用いることがより好ましい。 As the material of the base material 20, it is more preferable to use Si, ZnS, or chalcogenide glass from the viewpoint of easily forming unevenness on the base material.
 基材20の厚さは、任意であるが、0.2mm以上5mm以下であることが好ましく、0.5mm以上2mm以下であることがより好ましく、0.5mm以上1mm以下であることがさらに好ましい。厚さがこの範囲にあることで、強度を確保しつつ、遠赤外線を適切に透過できる。 Although the thickness of the base material 20 is arbitrary, it is preferably 0.2 mm or more and 5 mm or less, more preferably 0.5 mm or more and 2 mm or less, and further preferably 0.5 mm or more and 1 mm or less. . By having the thickness within this range, it is possible to properly transmit far-infrared rays while ensuring strength.
(基材の表面形状)
 基材20は、図1~7に示すように、少なくとも第一の主面21上に可視光を散乱させる凹凸が備えられていることが好ましい。本明細書では、基材20の表面形状、具体的には、基材20の表面上に形成された凹凸の形状(図1~7の第一の主面21及び図3、6、7の第二の主面22に相当する)の指標として、算術平均高さSa及び粗さ曲線要素の平均長さRSm二乗平均平方根傾斜RΔqを用いる。なお、算術平均高さSaはISO 25178、曲線要素の平均長さRSm及び二乗平均平方根傾斜RΔqは、JISB 0601に準拠する方法にて測定することができる。
(Surface shape of base material)
As shown in FIGS. 1 to 7, the substrate 20 is preferably provided with unevenness that scatters visible light on at least the first major surface 21 . In this specification, the surface shape of the base material 20, specifically, the shape of the unevenness formed on the surface of the base material 20 (the first main surface 21 in FIGS. 1 to 7 and the (corresponding to the second main surface 22), the arithmetic mean height Sa, the mean length RSm of the roughness curve element, and the root-mean-square slope RΔq are used. The arithmetic mean height Sa can be measured according to ISO 25178, and the mean length RSm and the root mean square slope RΔq of the curve element can be measured according to JISB 0601.
 基材20の凹凸が備えられた表面上のSaは、0.030μm以上1.000μm以下であることが好ましく、0.1μm以上0.5μm以下であることがより好ましく、0.15μm以上0.4μm以下であることがさらに好ましい。これらの好ましい表面形状を満たす凹凸上に、機能膜が形成されることによって、可視光の反射を抑制し、遠赤外線を適切に透過するのに好ましい機能膜の表面形状を得ることができる。機能膜の好ましい表面形状については、後述する。 Sa on the uneven surface of the substrate 20 is preferably 0.030 μm or more and 1.000 μm or less, more preferably 0.1 μm or more and 0.5 μm or less, and more preferably 0.15 μm or more and 0.15 μm or more. It is more preferably 4 μm or less. By forming the functional film on the unevenness that satisfies these preferable surface shapes, it is possible to obtain a surface shape of the functional film that is preferable for suppressing reflection of visible light and appropriately transmitting far-infrared rays. A preferred surface shape of the functional membrane will be described later.
 基材20の凹凸が備えられた表面上のRSmは、15μm以下であることが好ましく、10μm以下であることがより好ましく、8μm以下であることがさらに好ましい。これらの好ましい表面形状を満たす凹凸上に、機能膜が形成されることによって、遠赤外線を適切に透過するのに好ましい機能膜の表面形状を得ることができる。機能膜の好ましい表面形状については、後述する。 The RSm on the uneven surface of the substrate 20 is preferably 15 μm or less, more preferably 10 μm or less, and even more preferably 8 μm or less. By forming the functional film on the unevenness satisfying these preferable surface shapes, it is possible to obtain a surface shape of the functional film that is preferable for properly transmitting far-infrared rays. A preferred surface shape of the functional membrane will be described later.
 基材20の凹凸が備えられた表面上のRΔqは、20°以下であることが好ましく、15°以下であることがより好ましく、10°以下であることがさらに好ましい。これらの好ましい表面形状を満たす凹凸上に、機能膜が形成されることによって、遠赤外線を適切に透過するのに好ましい機能膜の表面形状を得ることができる。機能膜の好ましい表面形状については、後述する。 RΔq on the uneven surface of the substrate 20 is preferably 20° or less, more preferably 15° or less, and even more preferably 10° or less. By forming the functional film on the unevenness satisfying these preferable surface shapes, it is possible to obtain a surface shape of the functional film that is preferable for properly transmitting far-infrared rays. A preferred surface shape of the functional membrane will be described later.
 基材20の表面上に凹凸を形成する方法は、特に限定されないが、例えば、エッチング処理を伴う化学的処理方法やウェットブラスト及びサンドブラスト処理のような物理的処理方法や所望の凹凸構造を有するモールドを利用したプレス成型法を用いることができる。凹凸の構造制御を容易にする観点から、Siへ凹凸を形成する方法としては、エッチング処理を伴う化学的処理方法が特に好ましく、ZnSやカルコゲナイドガラスへ凹凸を形成する方法としては、プレス成型法が特に好ましい。 The method for forming unevenness on the surface of the substrate 20 is not particularly limited, but for example, a chemical treatment method involving etching, a physical treatment method such as wet blasting and sandblasting, or a mold having a desired uneven structure. can be used. From the viewpoint of facilitating control of the unevenness structure, a chemical treatment method accompanied by an etching treatment is particularly preferable as a method for forming unevenness on Si, and a press molding method is a method for forming unevenness on ZnS or chalcogenide glass. Especially preferred.
 エッチング処理を伴う化学的処理方法を用いる場合、たとえば、基材20の表面を、濃度2~10質量%の水酸化カリウム(KOH)と有機溶剤と界面活性剤を有するアルカリエッチング液でエッチング処理することにより、表面に凹凸を形成できる。エッチング処理に使用するアルカリエッチング液の組成や濃度や処理時間や処理温度を変え、凹凸形状を制御できる。これにより、凹凸が形成された表面のSaやRSmやRΔqを制御できる。エッチング処理には、アルカリエッチング液にSi化合物を混合した薬液を使用してもよい。  When using a chemical treatment method that accompanies an etching treatment, for example, the surface of the base material 20 is etched with an alkaline etchant containing potassium hydroxide (KOH) at a concentration of 2 to 10% by mass, an organic solvent, and a surfactant. As a result, unevenness can be formed on the surface. The uneven shape can be controlled by changing the composition and concentration of the alkaline etchant used in the etching process, as well as the processing time and processing temperature. Thereby, Sa, RSm, and RΔq of the uneven surface can be controlled. For the etching treatment, a chemical solution in which an Si compound is mixed with an alkaline etching solution may be used. 
(機能膜)
 機能膜30a及び30bは、基材20上に形成され、遠赤外線(ここでは、波長8μm~12μm)の反射を防止する効果を有することが好ましい。機能膜は、図1~7の機能膜30aのように、基材20の表面に備えられた凹凸上に形成されていてもよく、図4、5の機能膜30bのように、凹凸が備えられていない基材20の表面上に形成されていてもよい。また、機能膜30a及び30bは上記の遠赤外線の反射を防止する効果を有していれば、具体的な構成は異なっていてもよい。
(Functional membrane)
The functional films 30a and 30b are preferably formed on the substrate 20 and have an effect of preventing reflection of far infrared rays (wavelength 8 μm to 12 μm here). The functional film may be formed on the unevenness provided on the surface of the substrate 20 like the functional film 30a in FIGS. It may be formed on the surface of the substrate 20 that is not coated. Further, the functional films 30a and 30b may have different specific configurations as long as they have the effect of preventing the reflection of far infrared rays.
 図1~7の機能膜30a及び図3、6、7の機能膜30bのように、機能膜30a及び30bが凹凸上に形成される場合、機能膜30a及び30bの表面31a及び31bは、凹凸を有する構造となる。凹凸上に形成された機能膜の表面形状が、後述する好ましい条件を満たすことによって、遠赤外線を適切に透過しつつ、機能膜表面において可視光を散乱させることができる。すなわち、機能膜30a及び30bが凹凸上に形成されている場合は、機能膜30a及び30bは遠赤外線の反射を防止する効果に加えて、可視光を散乱させる効果を有する。凹凸上に形成された機能膜の表面において、可視光を散乱させることによって、グレアを抑制し、角度によらず良好な意匠性を得ることができる。 When the functional films 30a and 30b are formed to be uneven like the functional films 30a in FIGS. 1 to 7 and the functional films 30b in FIGS. becomes a structure having When the surface shape of the functional film formed on the uneven surface satisfies the preferable conditions described later, it is possible to appropriately transmit far-infrared rays and scatter visible light on the surface of the functional film. That is, in the case where the functional films 30a and 30b are formed as uneven surfaces, the functional films 30a and 30b have an effect of preventing reflection of far-infrared rays and an effect of scattering visible light. By scattering visible light on the surface of the functional film formed on the irregularities, glare can be suppressed and a good design property can be obtained regardless of the angle.
(機能膜の表面形状)
 以下、凹凸上に形成された機能膜の好ましい表面形状について説明する。本明細書では、凹凸上に形成された機能膜の表面形状、具体的には、図1~7の表面31a及び図3、6、7の表面31bの表面形状の指標として、算術平均高さSa及び粗さ曲線要素の平均長さRSmを用いる。なお、算術平均高さSaはISO 25178、粗さ曲線要素の平均長さRSm及び二乗平均平方根傾斜RΔqは、JISB 0601に準拠する方法にて測定することができる。
(Surface shape of functional membrane)
A preferable surface shape of the functional film formed on the uneven surface will be described below. In this specification, as an index of the surface shape of the functional film formed on the uneven surface, specifically, the surface shape of the surface 31a in FIGS. 1 to 7 and the surface 31b in FIGS. Sa and the mean length RSm of the roughness curve element are used. The arithmetic mean height Sa can be measured according to ISO 25178, and the mean length RSm and the root mean square slope RΔq of the roughness curve element can be measured according to JISB 0601.
 凹凸上に形成された機能膜の表面におけるSaは、可視光を散乱させ、角度によらず、良好な意匠性を得る観点から、0.030μm以上であることが好ましく、0.1μm以上であることがより好ましく、0.15μm以上であることがさらに好ましい。また、遠赤外線の散乱を抑制し、適切に透過させる観点から、1.000μm以下であることが好ましく、0.5μm以下であることがより好ましく、0.4μm以下であることがさらに好ましい。 Sa on the surface of the functional film formed on the unevenness is preferably 0.030 μm or more, and is 0.1 μm or more from the viewpoint of scattering visible light and obtaining good design properties regardless of the angle. is more preferable, and 0.15 μm or more is even more preferable. From the viewpoint of suppressing scattering of far-infrared rays and transmitting them appropriately, the thickness is preferably 1.000 μm or less, more preferably 0.5 μm or less, and even more preferably 0.4 μm or less.
 さらに、Saを上述の好ましい範囲にすることによって得られる効果として、汚れの付着面積の低減による防汚性の向上、水接触角の増加による撥水性の向上、指接触面積の低減による触感の向上を期待することができる。 Furthermore, the effects obtained by setting Sa within the above-mentioned preferable range include improvement in antifouling properties due to a reduction in the area where dirt adheres, improvement in water repellency due to an increase in the water contact angle, and improvement in tactile sensation due to a reduction in the finger contact area. can be expected.
 RSmは、遠赤外線の散乱を抑制し、適切に透過させる観点から、15μm以下であることが好ましく、10μm以下であることがより好ましく、8μm以下であることがさらに好ましい。RΔqは、遠赤外線の散乱を抑制し、適切に透過させる観点から、20°以下であることが好ましく、15°以下であることがより好ましく、10°以下であることがさらに好ましい。 RSm is preferably 15 μm or less, more preferably 10 μm or less, and even more preferably 8 μm or less, from the viewpoint of suppressing scattering of far-infrared rays and properly transmitting them. RΔq is preferably 20° or less, more preferably 15° or less, and even more preferably 10° or less from the viewpoint of suppressing scattering of far-infrared rays and properly transmitting them.
 なお、本実施形態において、凹凸上に形成された機能膜の表面形状は、Saが上記の好ましい範囲を満たしたうえで、RSm及びRΔqの少なくともどちらか一方が上記の好ましい範囲を満たしていることが、好ましい。凹凸上に形成された機能膜の表面がこのような条件を満たすことによって、遠赤外線を適切に透過しつつ、角度によらず、良好な意匠性を得ることができる。 In the present embodiment, the surface shape of the functional film formed on the unevenness is such that Sa satisfies the above preferable range and at least one of RSm and RΔq satisfies the above preferable range. is preferred. When the surface of the functional film formed on the uneven surface satisfies such conditions, far-infrared rays can be properly transmitted, and a good design property can be obtained regardless of the angle.
(機能膜の構成)
 以下、機能膜30a及び30bの具体的な好ましい構成について説明する。本実施形態に係る機能膜30a及び30bは、少なくとも1層以上の遠赤外線反射防止層を含む構成であることが好ましい。また、図5、6に示すように、遠赤外線反射防止層32の外側(基材20から離れる側)に可視光反射防止層をさらに有する構成であってもよい。また、図7に示すように、遠赤外線反射防止層32の内側(基材20と接している側)に密着層をさらに有する構成であっても良い。本明細書においては、少なくとも1層以上の遠赤外線反射防止層32を含む膜を機能膜と称する。すなわち、機能膜30a及び30bは単層膜であっても、多層膜であってもよい。
(Structure of functional membrane)
Specific preferred configurations of the functional films 30a and 30b will be described below. It is preferable that the functional films 30a and 30b according to the present embodiment include at least one far-infrared ray antireflection layer. Moreover, as shown in FIGS. 5 and 6, a configuration may be adopted in which a visible light antireflection layer is further provided outside the far infrared ray antireflection layer 32 (on the side away from the substrate 20). Moreover, as shown in FIG. 7, the structure which further has an adhesion layer in the inner side (side which touches the base material 20) of the far-infrared ray antireflection layer 32 may be sufficient. In this specification, a film including at least one far-infrared antireflection layer 32 is referred to as a functional film. That is, the functional films 30a and 30b may be single layer films or multilayer films.
(遠赤外線反射防止層)
 遠赤外線反射防止層32に用いる材料は、波長10μmの光に対する消衰係数が、0.05以下であることが好ましく、0.03以下であることがより好ましく、0.025以下であることがさらに好ましく、0.02以下であることがよりさらに好ましく、0.01以下であることが特に好ましい。遠赤外線反射防止層32の遠赤外光に対する消衰係数がこの数値範囲となることで、遠赤外線の反射率を低減し、適切に遠赤外線を透過することが出来る。10μmの波長の光に対する消衰係数は、例えば赤外分光エリプソメーター(J.A.ウーラム社製、IR-VASE-UT)により得られる偏光情報、フーリエ変換型赤外分光装置(ThermoScientific社製、Nicolet iS10)により得られる分光透過スペクトルを用いて、光学モデルのフィッティングを行うことで、決定できる。
(Far-infrared antireflection layer)
The material used for the far-infrared antireflection layer 32 preferably has an extinction coefficient of 0.05 or less, more preferably 0.03 or less, and preferably 0.025 or less for light with a wavelength of 10 μm. It is more preferably 0.02 or less, and particularly preferably 0.01 or less. When the far-infrared light extinction coefficient of the far-infrared antireflection layer 32 falls within this numerical range, the far-infrared reflectance can be reduced and the far-infrared light can be appropriately transmitted. The extinction coefficient for light with a wavelength of 10 μm is obtained by, for example, polarization information obtained by an infrared spectroscopic ellipsometer (IR-VASE-UT manufactured by JA Woollam), Fourier transform infrared spectrometer (manufactured by ThermoScientific, It can be determined by fitting an optical model using a spectral transmission spectrum obtained by Nicolet iS10).
 遠赤外線反射防止層32に用いる材料は、波長550nmの光の消衰係数が、0.04以上であることが好ましく、0.05以上であることがより好ましく、0.06以上であることがさらに好ましく、0.07以上であることがよりさらに好ましく、0.08以上であることが特に好ましく、0.10以上であることが一層好ましい。また、遠赤外線反射防止層32は、波長380nm~780nmの光に対する平均消衰係数が、0.04以上であることが好ましく、0.05以上であることがより好ましく、0.06以上であることがさらに好ましく、0.07以上であることがよりさらに好ましく、0.08以上であることが特に好ましく、0.10以上であることが一層好ましい。消衰係数や平均消衰係数がこの範囲となることで、可視光の反射を抑制し、良好な意匠性を得ることができる。なお、平均消衰係数とは、その波長帯域(ここでは380nmから780nm)の、それぞれの波長の光の消衰係数の平均値である。波長550nmの光の消衰係数は、例えば分光エリプソメーターにより得られる偏光情報、JIS R3106に基づき測定される分光透過率を用いて、光学モデルのフィッティングを行うことで、決定できる。 The material used for the far-infrared antireflection layer 32 preferably has an extinction coefficient of 0.04 or more, more preferably 0.05 or more, and more preferably 0.06 or more for light with a wavelength of 550 nm. It is more preferably 0.07 or more, particularly preferably 0.08 or more, and still more preferably 0.10 or more. The far-infrared antireflection layer 32 preferably has an average extinction coefficient of 0.04 or more, more preferably 0.05 or more, and more preferably 0.06 or more for light with a wavelength of 380 nm to 780 nm. is more preferably 0.07 or more, particularly preferably 0.08 or more, and even more preferably 0.10 or more. When the extinction coefficient and the average extinction coefficient fall within this range, it is possible to suppress the reflection of visible light and obtain good design. Note that the average extinction coefficient is the average value of the extinction coefficients of light of each wavelength in the wavelength band (here, 380 nm to 780 nm). The extinction coefficient of light with a wavelength of 550 nm can be determined, for example, by fitting an optical model using polarization information obtained by a spectroscopic ellipsometer and spectral transmittance measured based on JIS R3106.
 遠赤外線反射防止層32の具体的な材料は任意であるが、金属酸化物を主成分とすることが好ましい。ここでの主成分とは、遠赤外線反射防止層32の全体に対する含有率が、50質量%以上であることを指す。遠赤外線反射防止層32に用いられる金属酸化物としては、NiO、Al、CuO、ZnO、ZrO、Bi、Y及びMgOの少なくともいずれかが好ましい。遠赤外線反射防止層32は、NiO、CuO、ZnO、ZrO、Bi、Y及びMgOの群より選ばれる少なくとも1種の材料を主成分とすることが好ましい。ただし、遠赤外線反射防止層32の材料はそれらに限られず任意であり、例えば、Si、Ge、ZnS、YF、ダイヤモンドライクカーボンであってもよい。遠赤外線反射防止層32は、NiO、ダイヤモンドライクカーボン、ZrO、ZnS、Ge、Si、MgO、ZnO群より選ばれる少なくとも1種の材料を含むことが好ましい。 Although the specific material of the far-infrared antireflection layer 32 is arbitrary, it is preferably composed mainly of a metal oxide. The main component here means that the content of the far-infrared antireflection layer 32 as a whole is 50% by mass or more. At least one of NiO, Al 2 O 3 , CuO, ZnO, ZrO 2 , Bi 2 O 3 , Y 2 O 3 and MgO is preferable as the metal oxide used for the far-infrared antireflection layer 32 . The far-infrared antireflection layer 32 preferably contains at least one material selected from the group consisting of NiO, CuO, ZnO, ZrO 2 , Bi 2 O 3 , Y 2 O 3 and MgO as a main component. However, the material of the far-infrared antireflection layer 32 is not limited to them, and may be, for example, Si, Ge, ZnS, YF 3 , or diamond-like carbon. Far-infrared antireflection layer 32 preferably contains at least one material selected from the group of NiO, diamond-like carbon, ZrO 2 , ZnS, Ge, Si, MgO, and ZnO.
 また、遠赤外線反射防止層32は単層であっても、多層であってもよい。遠赤外線反射防止層32が多層の場合は、高屈折材料と低屈折材料を交互に積層する構成が好ましく、上述の材料から選択することができる。 Further, the far-infrared antireflection layer 32 may be a single layer or multiple layers. When the far-infrared antireflection layer 32 is multi-layered, it is preferable to alternately laminate a high refractive material and a low refractive material, and the materials can be selected from the above materials.
(可視光反射防止層)
 可視光反射防止層33は、遠赤外線透過部材10における可視光の反射をさらに抑制するための層である。機能膜30aおよび30bが可視光反射防止層33を有している場合は、可視光反射防止層33が機能膜30aおよび30bの最表面であることがあることが好ましい。ただし、機能膜30aおよび30bが後述の撥水層35を有している場合は、可視光反射防止層33が機能膜30aおよび30bの最表面でなくともよい。図5、6の例の場合、可視光反射防止層33が機能膜30aの表面31aとなり、表面31aの凹凸構造によって可視光を散乱させつつ、可視光反射防止層33によって可視光の反射をさらに抑制し、意匠性を向上することができる。
(Visible light antireflection layer)
The visible light antireflection layer 33 is a layer for further suppressing reflection of visible light on the far-infrared transmitting member 10 . When the functional films 30a and 30b have the visible light antireflection layer 33, the visible light antireflection layer 33 is preferably the outermost surface of the functional films 30a and 30b. However, when the functional films 30a and 30b have a water-repellent layer 35, which will be described later, the visible light antireflection layer 33 may not be the outermost surface of the functional films 30a and 30b. 5 and 6, the visible light antireflection layer 33 serves as the surface 31a of the functional film 30a, and while the visible light is scattered by the uneven structure of the surface 31a, the visible light reflection is further prevented by the visible light antireflection layer 33. It can be suppressed and the design can be improved.
 可視光反射防止層33は、波長550nmの光に対する屈折率が、2.0以下であることが好ましく、1.3以上1.8以下であることがより好ましく、1.4以上1.7以下であることが更に好ましい。また、可視光反射防止層33は、波長380nm~780nmの光に対する平均屈折率が、2.0以下であることが好ましく、1.3以上1.8以下であることがより好ましく、1.4以上1.7以下であることがさらに好ましい。可視光反射防止層33の可視光に対する屈折率や平均屈折率がこの数値範囲となることで遠赤外線反射防止層32との組み合わせによって可視光の反射を抑制して、遠赤外線透過部材10の意匠性を向上することができる。なお、可視光反射防止層33の波長550nmの光に対する屈折率は、遠赤外線反射防止層32の波長550nmの光に対する屈折率以下であることが好ましく、可視光反射防止層33の波長380nm~780nmの光に対する平均屈折率は、遠赤外線反射防止層32の波長380nm~780nmの光に対する平均屈折率以下であることが好ましい。 The visible light antireflection layer 33 preferably has a refractive index of 2.0 or less, more preferably 1.3 or more and 1.8 or less, and 1.4 or more and 1.7 or less for light with a wavelength of 550 nm. is more preferable. In addition, the visible light antireflection layer 33 preferably has an average refractive index of 2.0 or less, more preferably 1.3 or more and 1.8 or less, and 1.4 for light with a wavelength of 380 nm to 780 nm. It is more preferable that it is not less than 1.7 and not more than 1.7. The refractive index and average refractive index for visible light of the visible light antireflection layer 33 are in this numerical range, so that the combination with the far infrared ray antireflection layer 32 suppresses the reflection of visible light, and the design of the far infrared ray transmitting member 10 can improve sexuality. The refractive index of the visible light antireflection layer 33 for light with a wavelength of 550 nm is preferably equal to or less than the refractive index of the far-infrared antireflection layer 32 for light with a wavelength of 550 nm. is preferably equal to or lower than the average refractive index of the far-infrared antireflection layer 32 for light with a wavelength of 380 nm to 780 nm.
 可視光反射防止層33の材料は任意であり、例えば、ZrO、Al、TiO、Si4、AlN、SiO、MgO及びダイヤモンドライクカーボンの群より選ばれる少なくとも1種の材料を含むものであってよい。また、可視光反射防止層33は、Al、SiOおよびMgOの群より選ばれる少なくとも1種の材料を含むことが好ましい。 The material of the visible light antireflection layer 33 is arbitrary, and for example, at least one selected from the group consisting of ZrO 2 , Al 2 O 3 , TiO 2 , Si 3 N 4 , AlN, SiO 2 , MgO and diamond-like carbon. It may contain materials. Moreover, the visible light antireflection layer 33 preferably contains at least one material selected from the group consisting of Al 2 O 3 , SiO 2 and MgO.
(密着層)
 密着層34は、図7に示すように、機能膜30a、30bにおいて、遠赤外線反射防止層32よりも内側(基材20と接している側)に形成されることが好ましい。密着層34は、機能膜30a、30bの基材20への接着力を向上させる層である。
(Adhesion layer)
As shown in FIG. 7, the adhesion layer 34 is preferably formed on the inner side (the side in contact with the substrate 20) of the far-infrared antireflection layer 32 in the functional films 30a and 30b. The adhesion layer 34 is a layer that improves the adhesion of the functional films 30 a and 30 b to the substrate 20 .
 密着層34は、波長10μmの光に対する屈折率が、1.0以上4.3以下であることが好ましく、1.5以上4.3以下であることがより好ましく、1.5以上3.8以下であることが更に好ましい。また、密着層34は、波長8μm~12μmの光に対する平均屈折率が、1.0以上4.3以下であることが好ましく、1.5以上4.3以下であることがより好ましく、1.5以上3.8以下であることがさらに好ましい。密着層34の遠赤外線に対する屈折率や平均屈折率がこの数値範囲となることで、遠赤外線の反射を抑制して、遠赤外線を適切に透過できる。 The adhesion layer 34 preferably has a refractive index of 1.0 or more and 4.3 or less, more preferably 1.5 or more and 4.3 or less, and 1.5 or more and 3.8 for light with a wavelength of 10 μm. More preferably: In addition, the adhesion layer 34 preferably has an average refractive index of 1.0 to 4.3, more preferably 1.5 to 4.3, for light with a wavelength of 8 μm to 12 μm. More preferably, it is 5 or more and 3.8 or less. By setting the refractive index and average refractive index of the adhesion layer 34 to far infrared rays within this numerical range, the reflection of far infrared rays can be suppressed and the far infrared rays can be properly transmitted.
 密着層34は、遠赤外線を透過可能である。密着層34は、10μmの波長の光に対する消衰係数が、0.4以下であることが好ましく、0.2以下であることがより好ましく、0.1以下であることがさらに好ましい。密着層34は、波長8μm~12μmの光に対する平均消衰係数が、0.4以下であることが好ましく、0.2以下であることがより好ましく、0.1以下であることがさらに好ましい。消衰係数や平均消衰係数がこの範囲となることで、遠赤外線を適切に透過することができる。 The adhesion layer 34 can transmit far infrared rays. The adhesion layer 34 preferably has an extinction coefficient of 0.4 or less, more preferably 0.2 or less, and even more preferably 0.1 or less for light with a wavelength of 10 μm. The adhesion layer 34 preferably has an average extinction coefficient of 0.4 or less, more preferably 0.2 or less, and even more preferably 0.1 or less for light with a wavelength of 8 μm to 12 μm. When the extinction coefficient and the average extinction coefficient fall within this range, far-infrared rays can be properly transmitted.
 密着層34の材料は任意であるが、例えば、Si、Ge、MgO、NiOx、CuOx、ZnS、Al、ZrO、SiO、TiO、ZnO、及びBiの群より選ばれる少なくとも1種の材料を含むものであることが好ましい。 Although the material of the adhesion layer 34 is arbitrary, for example, it is selected from the group of Si, Ge, MgO, NiOx, CuOx, ZnS, Al2O3 , ZrO2 , SiO2 , TiO2 , ZnO , and Bi2O3 . It preferably contains at least one material that is
(撥水層)
 撥水層35は、遠赤外線透過部材10の撥水性を向上させるための層である。機能膜30aおよび30bが撥水層35を有している場合は、撥水層35が機能膜30aおよび30bの最表面であることがあることが好ましい。図8の例の場合、撥水層35が機能膜30aの表面31aとなり、撥水層35によって表面31aの撥水性を向上することできる。
(Water-repellent layer)
The water repellent layer 35 is a layer for improving the water repellency of the far-infrared transmitting member 10 . When the functional films 30a and 30b have a water-repellent layer 35, the water-repellent layer 35 is preferably the outermost surface of the functional films 30a and 30b. In the example of FIG. 8, the water-repellent layer 35 serves as the surface 31a of the functional film 30a, and the water-repellent layer 35 can improve the water repellency of the surface 31a.
 撥水層35を形成する方法は任意であるが、例えば蒸着法によって形成することができる。撥水層の材料は、遠赤外線を透過可能であれば、任意であるが、例えば、AFS-R2(シンクロン社製)を用いることができる。 Although the method for forming the water-repellent layer 35 is arbitrary, it can be formed by vapor deposition, for example. Any material can be used for the water-repellent layer as long as it can transmit far infrared rays. For example, AFS-R2 (manufactured by Syncron Co., Ltd.) can be used.
(機能膜の形成方法)
 次に、機能膜30a及び30bの形成方法について説明する。本実施形態では、スパッタリングにより、基材20の表面上に、機能膜30a及び30bが形成されることが好ましい。スパッタリングで機能膜30a及び30bを形成することで、膜の密着性を向上させることができる。例えば、機能膜30a及び30bの遠赤外線反射防止層がNiOである場合には、基材20の表面を100℃以上300℃以下で加熱しながら機能膜30a及び30bを形成することが好ましい。ただし、機能膜30a及び30bの形成方法は、スパッタリングに限定されず、例えば蒸着で形成してもよい。
(Method for forming functional film)
Next, a method for forming the functional films 30a and 30b will be described. In this embodiment, the functional films 30a and 30b are preferably formed on the surface of the substrate 20 by sputtering. By forming the functional films 30a and 30b by sputtering, the adhesion of the films can be improved. For example, when the far infrared ray antireflection layer of the functional films 30a and 30b is NiO, it is preferable to form the functional films 30a and 30b while heating the surface of the substrate 20 at 100°C or higher and 300°C or lower. However, the method of forming the functional films 30a and 30b is not limited to sputtering, and may be formed by vapor deposition, for example.
(遠赤外線透過部材の特性)
 本実施形態に係る遠赤外線透過部材が有している特性に関して、入射角5°で入射させた可視光の正反射率、波長8μm~12μmの光の平均透過率、ΔEのそれぞれの好ましい値の範囲は上述の通りである。本実施形態に係る遠赤外線透過部材が有しているとさらに好ましい特性に関して、以下に説明する。
(Characteristics of far-infrared transmitting member)
Regarding the characteristics of the far-infrared transmitting member according to the present embodiment, the specular reflectance of visible light incident at an incident angle of 5°, the average transmittance of light with a wavelength of 8 μm to 12 μm, and the preferable values of ΔE The ranges are as described above. Further preferable characteristics of the far-infrared transmitting member according to this embodiment will be described below.
 本実施形態において、可視光の全反射率は15%以下が好ましく、より好ましくは12%以下であり、さらに好ましくは8%以下であり、よりさらに好ましくは5%以下であり、特に好ましくは2%以下である。可視光の全反射率がこの範囲となることで、意匠性の良い黒色外観を得ることができる。ここで、可視光の全反射率は、JIS-Z8722:2009に規定する幾何条件d(8°:di)で測定し、JIS R3106に基づいて算出される。 In the present embodiment, the total reflectance of visible light is preferably 15% or less, more preferably 12% or less, even more preferably 8% or less, even more preferably 5% or less, and particularly preferably 2%. % or less. When the total reflectance of visible light falls within this range, a black appearance with good design can be obtained. Here, the total reflectance of visible light is measured under the geometric condition d (8°: di) specified in JIS-Z8722:2009 and calculated based on JIS R3106.
(用途)
 本実施形態に係る遠赤外線透過部材は、遠赤外線を適切に透過し、かつ、角度によらず良好な意匠性が得られることから、遠赤外線センサに用いる部材として好適である。また、本実施形態に係る遠赤外線透過部材を用いた遠赤外線センサは、良好な意匠性を示すことから、外部に露出して設置される環境下において、特に好適である。具体的な用途としては、車載用センサ、ドローン搭載用センサ、監視カメラ用センサ、スマートフォン搭載用センサ、ウェアラブル端末用センサ、モーションセンサなどが挙げられる。
(Application)
The far-infrared transmitting member according to the present embodiment appropriately transmits far-infrared rays and provides a good design regardless of the angle, so that it is suitable as a member used for a far-infrared sensor. Further, the far-infrared sensor using the far-infrared transmitting member according to the present embodiment exhibits good designability, and is particularly suitable for an environment in which the sensor is exposed to the outside. Specific applications include sensors for vehicles, sensors for drones, sensors for surveillance cameras, sensors for smartphones, sensors for wearable terminals, and motion sensors.
(実施例)
 以下に、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明はこれに限定されない。表1、2、3には、実施例及び比較例の構成と各特性の測定結果及び評価結果を示している。
(Example)
EXAMPLES The present invention will be specifically described below with reference to Examples and Comparative Examples, but the present invention is not limited thereto. Tables 1, 2, and 3 show the configurations of Examples and Comparative Examples, and the measurement results and evaluation results of each characteristic.
 表1、2、3の「凹凸処理」の欄には、基材に対して凹凸を形成した方法を示している。光の入射側及び出射側のそれぞれの面について示し、「なし」とは、凹凸を形成する処理が当該面に対して未実施であることを意味する。 The "roughness treatment" column in Tables 1, 2, and 3 shows the method of forming the irregularities on the base material. It is shown for each of the surfaces on the light incident side and the light emitting side, and "none" means that the surface has not been processed to form unevenness.
 表1、2、3の「機能膜」の欄には、基材上に形成された機能膜の材料を示している。光の入射側及び出射側のそれぞれの面について示し、「なし」とは、当該面上に機能膜が形成されていないことを意味する。 The "functional film" column in Tables 1, 2, and 3 shows the material of the functional film formed on the substrate. It is shown for each surface on the light incident side and the light emitting side, and "none" means that no functional film is formed on the surface.
 すなわち、例えば、例1のサンプルは基材であるSi基板の光の入射側及び出射側の両面に対して、化学エッチングによって凹凸が形成された後、機能膜としてNiO単層膜が光の入射側及び出射側の両面に形成されたサンプルである。 That is, for example, in the sample of Example 1, unevenness is formed by chemical etching on both the light incident side and the light emitting side of the Si substrate that is the base material, and then a NiO single layer film is formed as the functional film. It is a sample formed on both the side and the exit side.
 以下に、表面形状及び光学特性の測定方法を記載する。 The method for measuring the surface shape and optical properties is described below.
(算術平均高さSa)
 ISO 25178に基づいて、VK-X250(KEYENCE社製)を用いて、対物レンズ150倍にて測定した。
(Arithmetic mean height Sa)
Based on ISO 25178, VK-X250 (manufactured by KEYENCE) was used and an objective lens of 150 times was used for measurement.
(粗さ曲線要素の平均長さRSm)
 JIS 0601に基づいて、VK-X250(KEYENCE社製)を用いて、対物レンズ150倍にて測定した。
(Average length RSm of roughness curve element)
Based on JIS 0601, VK-X250 (manufactured by KEYENCE) was used and an objective lens of 150 times was used for measurement.
(二乗平均平方根傾斜RΔq)
 JIS 0601に基づいて、VK-X250(KEYENCE社製)を用いて、対物レンズ150倍にて測定した。
(root mean square slope RΔq)
Based on JIS 0601, VK-X250 (manufactured by KEYENCE) was used and an objective lens of 150 times was used for measurement.
(正反射率)
 入射角5°で入射させた場合において、可視光域の正反射スペクトルをU4100(日立社製)を用いて測定し、JIS R3106に基づいて算出した。
(regular reflectance)
The specular reflection spectrum in the visible light region was measured using U4100 (manufactured by Hitachi, Ltd.) at an incident angle of 5°, and calculated based on JIS R3106.
(全反射率)
 可視光域の全反射スペクトルをJIS-Z8722:2009に規定する幾何条件d(8°:di))にて、U4100(日立社製)を用いて測定し、JIS R3106に基づいて算出した。
(total reflectance)
The total reflection spectrum in the visible light region was measured using U4100 (manufactured by Hitachi) under the geometric condition d (8°: di) defined in JIS-Z8722:2009, and calculated based on JIS R3106.
(ΔE)
 ΔEは以下の方法によって、測定することができる。V-770型紫外可視近赤外分光光度計、ARMN-920型(日本分光社製)を用いて、入射角5°検出角5°、及び入射角45°検出角45°のときの可視光の分光反射率をそれぞれ測定した。
(ΔE)
ΔE can be measured by the following method. Visible light at an incident angle of 5 ° detection angle of 5 ° and an incident angle of 45 ° detection angle of 45 ° using a V-770 type ultraviolet-visible near-infrared spectrophotometer, ARMN-920 type (manufactured by JASCO Corporation) The spectral reflectance of each was measured.
 その後、測定した可視光の分光反射率とJIS Z 8781―4に基づいて、照明光に標準イルミナントD65を用いた際のCIE-Lab表色系における反射光の色度座標L 、L をそれぞれ求め、上記の式(1)に基づいてΔEを算出した。 After that, based on the measured spectral reflectance of visible light and JIS Z 8781-4, the chromaticity coordinates L 1 * a 1 * of the reflected light in the CIE-Lab color system when using the standard illuminant D65 as the illumination light. b 1 * and L 2 * a 2 * b 2 * were obtained, respectively, and ΔE was calculated based on the above formula (1).
 なお、Sa、RSm、RΔq、正反射率、全反射率、ΔEは、各サンプルの光の入射側の面において測定を行った結果を表1、2、3に示している。 Note that Tables 1, 2, and 3 show the results of measuring Sa, RSm, RΔq, specular reflectance, total reflectance, and ΔE on the light incident surface of each sample.

(遠赤外線平均透過率(波長8μm~12μm))
 Nicolet iS10(ThermoScientific社製)を用いて測定した。ここで、平均透過率は、8μm~12μmのそれぞれの波長の光の透過率の平均値である。

(Far-infrared average transmittance (wavelength 8 μm to 12 μm))
It was measured using Nicolet iS10 (manufactured by ThermoScientific). Here, the average transmittance is the average value of the transmittance of light with wavelengths of 8 μm to 12 μm.
 例13から例16のサンプルについては、撥水性の評価のために水接触角の測定をさらに実施した。以下に、水接触角の測定方法を記載する。 For the samples of Examples 13 to 16, the water contact angle was also measured to evaluate water repellency. The method for measuring the water contact angle is described below.
(水接触角)
 JISR32757(1999年)に基づいて、接触角計としてCA―X(協和界面科学社製)を用いて、測定した。なお、測定箇所は、光の入射側の面の機能膜表面における3か所とし、測定結果の平均値を表3の「水接触角」の欄に示した。
(water contact angle)
Based on JISR32757 (1999), it was measured using CA-X (manufactured by Kyowa Interface Science Co., Ltd.) as a contact angle meter. The measurement points were three points on the surface of the functional film on the light incident side, and the average value of the measurement results is shown in the column of "water contact angle" in Table 3.
(評価)
 例1から例16のそれぞれのサンプルについて、意匠性と遠赤外線透過性能の評価を行った。意匠性の評価には、サンプルの光の入射面における、上記の正反射率、全反射率及びΔEを用いた。特に重要な指標である正反射率とΔEについて、正反射率が10%以下かつΔEが6.0以下を満たすサンプルは丸とし、合格とした。一方で、正反射率とΔEの少なくともどちらか一方の測定結果が上記の基準を満たさない場合は、バツとし、不合格とした。
(evaluation)
Each sample of Examples 1 to 16 was evaluated for designability and far-infrared transmission performance. For the evaluation of designability, the specular reflectance, total reflectance and ΔE on the light incident surface of the sample were used. With respect to the specular reflectance and ΔE, which are particularly important indicators, the samples satisfying the specular reflectance of 10% or less and ΔE of 6.0 or less were evaluated as round and passed. On the other hand, when the measurement result of at least one of the specular reflectance and ΔE did not meet the above criteria, it was marked as crossed out and rejected.
 遠赤外線透過性能の評価においては、サンプルの波長8μm~12μmの光の平均透過率を用いた。平均透過率が、80%以上を二重丸とし、50%以上であり80%より低い場合を丸とし、50%より低い場合をバツとし、丸、二重丸を合格とした。 In evaluating the far-infrared transmission performance, the average transmittance of light with a wavelength of 8 μm to 12 μm was used. An average transmittance of 80% or more is indicated by a double circle, an average transmittance of 50% or more and less than 80% is indicated by a circle, and an average transmittance of less than 50% is indicated by a cross.
 本明細書においては、上記の意匠性及び遠赤外線透過性能の両方の評価結果が丸もしくは二重丸となったサンプルを実施例とし、意匠性及び遠赤外線透過性能の少なくとも一方の評価結果がバツとなったサンプルを比較例とする。すなわち、例1、2、6、9、11、12、13、14、15は実施例に相当し、例3、4、5、7、8、10、16は比較例に相当する。 In the present specification, samples in which the evaluation results of both the designability and far-infrared transmission performance are circled or double-circled are used as examples, and the evaluation results of at least one of the designability and far-infrared transmission performance are crossed. Let the sample which became become a comparative example. That is, Examples 1, 2, 6, 9, 11, 12, 13, 14 and 15 correspond to Examples, and Examples 3, 4, 5, 7, 8, 10 and 16 correspond to Comparative Examples.
 なお、例13から例16のサンプルについては、さらに撥水性の評価を行った。撥水性の評価においては、サンプルの水接触角を用いた。水接触角が、120°以上のサンプルを丸とし、120°より低い場合をバツとし、丸を合格とした。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
The samples of Examples 13 to 16 were further evaluated for water repellency. In the evaluation of water repellency, the water contact angle of the sample was used. A sample with a water contact angle of 120° or more was evaluated as a circle, and a sample with a water contact angle of less than 120° was evaluated as a cross, and a circle was evaluated as a pass.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
(例1~4)
 例1~4は、図3に示す遠赤外線透過部材10の例である。例1~4においては、基材20の両面上に化学エッチング処理をして、凹凸を形成した。薬液として、KOH、有機溶媒、界面活性剤を用いて、組成は適宜調整し、表面形状の異なる4種類の基材を用意した。その後、基材の両面上に、スパッタリングによって機能膜30a及び30bを形成し、遠赤外線透過部材とした。なお、例1~4においては、基材として厚さ0.5mmのSi基板を用い、機能膜30a及び30bは遠赤外線反射防止層のNiOの単層膜とした。また、本例では、基材20の第一の主面21が光の入射側に相当する。
(Examples 1-4)
Examples 1 to 4 are examples of the far-infrared transmitting member 10 shown in FIG. In Examples 1-4, both sides of the substrate 20 were chemically etched to form unevenness. Using KOH, an organic solvent, and a surfactant as the chemical liquid, the composition was appropriately adjusted, and four types of substrates having different surface shapes were prepared. After that, functional films 30a and 30b were formed on both sides of the base material by sputtering to obtain a far-infrared transmitting member. In Examples 1 to 4, a Si substrate having a thickness of 0.5 mm was used as the base material, and the functional films 30a and 30b were single-layer films of NiO, which are far-infrared antireflection layers. Further, in this example, the first main surface 21 of the substrate 20 corresponds to the light incident side.
 例1~4において、機能膜を形成する際は、基材の主面上に、ロードロック式スパッタ装置(RAS-1100BII、シンクロン社製)を用いて、後酸化スパッタ法により、膜厚が約1.2μmのNiO膜を形成した。NiO膜の成膜条件は、以下の通りである。 In Examples 1 to 4, the functional film was formed on the main surface of the base material by a post-oxidation sputtering method using a load-lock type sputtering apparatus (RAS-1100BII, manufactured by Synchron Co., Ltd.) to a film thickness of about A 1.2 μm NiO film was formed. The conditions for forming the NiO film are as follows.
(NiO成膜条件)
 ターゲット:NiO(70質量%)+Ni(30質量%)混合ターゲット
 スパッタリングガス:Arガス(流量:150sccm)
 投入電力:6kW
 反応性ガス:Ar(流量70sccm)+O(流量:10sccm)
 RF電力:2kW
 基板温度:常温
 成膜圧力:0.19Pa
(NiO deposition conditions)
Target: NiO (70% by mass) + Ni (30% by mass) mixed target Sputtering gas: Ar gas (flow rate: 150 sccm)
Input power: 6 kW
Reactive gas: Ar (flow rate: 70 sccm) + O 2 (flow rate: 10 sccm)
RF power: 2kW
Substrate temperature: normal temperature Film formation pressure: 0.19 Pa
(例5)
 例5は、基材20の表面に凹凸は形成せずに、基材の両面上にスパッタリングによって機能膜を形成した。なお、例5においては、基材20として厚さ0.5mmのSi基板を用い、機能膜30a及び30b遠赤外線反射防止層のNiOの単層膜とした。NiO膜の成膜方法は、例1~4と同様である。
(Example 5)
In Example 5, the functional films were formed on both sides of the base material 20 by sputtering without forming unevenness on the surface of the base material 20 . In Example 5, a Si substrate having a thickness of 0.5 mm was used as the base material 20, and the functional films 30a and 30b were single-layer films of NiO for the anti-reflection layers of far-infrared rays. The method of forming the NiO film is the same as in Examples 1-4.
(例1~5の評価結果)
 表1に例1~5のサンプルの評価結果を示す。光の入射側において、凹凸上に形成された機能膜を有する例1~4は、例5に対して良好な意匠性が得られていることが分かる。このことから、凹凸上に機能膜を形成し、機能膜表面において、可視光を散乱させることによって、可視光の正反射率及び全反射率を低下させ、角度によらず、一定の色調を持った意匠性の良い遠赤外線透過部材が得られることが分かる。
(Evaluation results of Examples 1 to 5)
Table 1 shows the evaluation results of the samples of Examples 1-5. It can be seen that Examples 1 to 4, which have functional films formed on the uneven surface on the light incident side, have better design properties than Example 5. From this, by forming a functional film on the uneven surface and scattering visible light on the surface of the functional film, the regular reflectance and total reflectance of visible light are reduced, and a constant color tone is obtained regardless of the angle. It can be seen that a far-infrared transmitting member with good design can be obtained.
 図9は例1と例5のサンプルの正反射率の測定結果である。例1と例5を比較すると、例1は正反射率が可視光全域にわたって、低下していることが分かる。このことからも、凹凸上に機能膜を形成し、可視光を散乱させることによって、正反射率を低下させ、意匠性を向上できることが分かる。 FIG. 9 shows the measurement results of the specular reflectance of the samples of Examples 1 and 5. Comparing Example 1 and Example 5, it can be seen that Example 1 has a lower regular reflectance over the entire visible light range. From this, it can be seen that by forming a functional film on the unevenness to scatter visible light, the specular reflectance can be lowered and the design can be improved.
 一方で、例1、2と例3、4を比較すると、例3、4は例1、2に対して遠赤外線透過性能が低下していることが分かる。これは、例3、4の光の入射側の機能膜表面におけるSa及びRSmが、例1、2と比較すると大きいため、該表面において遠赤外線が散乱していることによるものであると考えられる。従って、例1、2のように光の入射側の機能膜表面のSa及びRSmを上述の好ましい範囲にすることによって、遠赤外線を適切に透過しつつ、角度によらず、良好な意匠性を持った遠赤外線透過部材を得ることができると考えられる。 On the other hand, when comparing Examples 1 and 2 with Examples 3 and 4, it can be seen that Examples 3 and 4 have lower far-infrared transmission performance than Examples 1 and 2. This is probably due to the scattering of far-infrared rays on the surface of the functional film on the light incident side of Examples 3 and 4, since Sa and RSm are larger than those of Examples 1 and 2. . Therefore, as in Examples 1 and 2, by setting Sa and RSm on the surface of the functional film on the light incident side to the above-mentioned preferred ranges, far-infrared rays can be properly transmitted, and good designability can be achieved regardless of the angle. It is considered possible to obtain a far-infrared transmitting member with
 図10は例1、3、5のサンプルの遠赤外線の透過率の測定結果である。例3のサンプルは、良好な意匠性を示すものの、遠赤外線の透過率は例1、5と比較して、低下することが分かる。これは、上述のように光の入射側の機能膜表面において、遠赤外線が散乱していることによるものであると考えられる。一方、例1は、光の入射側の機能膜表面のSa及びRSmを上述の好ましい範囲としたことによって、遠赤外線を適切に透過できたと考えられる。例5は機能膜が凹凸上に形成されていないため、機能膜表面では遠赤外線が散乱されず、適切に透過できたものの、意匠性の低いサンプルであった。 Fig. 10 shows the measurement results of the far-infrared transmittance of the samples of Examples 1, 3, and 5. It can be seen that the sample of Example 3 has a good design property, but the transmittance of far infrared rays is lower than those of Examples 1 and 5. This is presumably due to the scattering of far-infrared rays on the surface of the functional film on the light incident side, as described above. On the other hand, in Example 1, far-infrared rays can be appropriately transmitted by setting Sa and RSm on the surface of the functional film on the light incident side to the above-mentioned preferred ranges. In Example 5, since the functional film was not formed on the uneven surface, the far-infrared rays were not scattered on the surface of the functional film and could be properly transmitted, but the sample had poor design.
 これらのことから、図10からも光の入射側の機能膜表面のSa及びRSmを上述の好ましい範囲にすることによって、遠赤外線を適切に透過しつつ、角度によらず、良好な意匠性を持った遠赤外線透過部材を得ることができると考えられる。 From these facts, it can be seen from FIG. 10 that by setting the Sa and RSm of the functional film surface on the light incident side within the above-mentioned preferable ranges, it is possible to appropriately transmit far infrared rays and achieve good designability regardless of the angle. It is considered possible to obtain a far-infrared transmitting member with
(例6~8)
 例6~8は、図4に示す遠赤外線透過部材10の例である。例6~8においては、基材の光の入射側である第一の主面21上にウェットブラスト装置(Jr.TypeII、マコー社製)を用いて、凹凸を形成した。ウェットブラストは液体と研磨材とを混合したスラリーを圧縮エアを使って被加工物に噴射することにより被加工物の表面に凹凸を付与する手法である。研磨材にはフジミインコーポレーテッド社製ホワイトアルミナWA#6000、WA#4000、WA#2500を用いた。スラリー濃度、エア圧力、スラリー圧力、噴射ノズルと被加工物との距離、掃引速度、処理回数を調整することで、表面形状の異なる3種類の基材を用意した。 
(Examples 6-8)
Examples 6 to 8 are examples of the far-infrared transmitting member 10 shown in FIG. In Examples 6 to 8, unevenness was formed using a wet blasting device (Jr. Type II, manufactured by Maco Co., Ltd.) on the first main surface 21 of the substrate, which is the light incident side. Wet blasting is a technique for imparting irregularities to the surface of a workpiece by injecting slurry, which is a mixture of a liquid and an abrasive, onto the workpiece using compressed air. White alumina WA#6000, WA#4000, and WA#2500 manufactured by Fujimi Incorporated were used as abrasives. By adjusting the slurry concentration, air pressure, slurry pressure, distance between the injection nozzle and the workpiece, sweep speed, and number of treatments, three types of substrates with different surface shapes were prepared.
 その後、基材の両面上に、スパッタリングによって機能膜30a及び30bを形成し、遠赤外線透過部材とした。なお、例6~8においては、基材20として厚さ0.5mmのSi基板を用い、機能膜30a及び30bを遠赤外線反射防止層のNiO膜とした。NiO膜の成膜方法は、例1~5と同様である。 After that, functional films 30a and 30b were formed on both sides of the base material by sputtering to form a far-infrared transmitting member. In Examples 6 to 8, a Si substrate having a thickness of 0.5 mm was used as the base material 20, and the functional films 30a and 30b were NiO films of far-infrared antireflection layers. The method of forming the NiO film is the same as in Examples 1-5.
(例6~8の評価結果)
 表2に例6~8のサンプルの評価結果を示す。例6と例7、8を比較すると、例7、8は例6に対して、意匠性が低下していることが分かる。これは、例7、8の凹凸上に形成された機能膜表面におけるSaが、例6に比べて小さいため、該表面において、可視光が十分に散乱されていないことによるものであると考えられる。従って、例6のようにSaを上述の好ましい範囲にすることによって、可視光を適切に散乱させ、角度によらず、良好な意匠性を持った遠赤外線透過部材を得ることができると考えられる。
(Evaluation results of Examples 6 to 8)
Table 2 shows the evaluation results of the samples of Examples 6-8. Comparing Example 6 with Examples 7 and 8, it can be seen that Examples 7 and 8 are inferior to Example 6 in designability. This is probably because the surface Sa of the functional film formed on the uneven surface of Examples 7 and 8 is smaller than that of Example 6, and visible light is not sufficiently scattered on the surface. . Therefore, it is believed that by setting Sa within the above-mentioned preferable range as in Example 6, it is possible to obtain a far-infrared transmitting member that appropriately scatters visible light and has a good design regardless of the angle. .
(例9)
 例9は、図6に示す遠赤外線透過部材10の例であり、例1のサンプルに対して、光の入射側である機能膜の表面上に可視光反射防止層であるAlの単層膜をさらに形成した構成である。例9においては、例1と同様の条件で、基材20の両面上に化学エッチング処理をして、凹凸を形成した。その後、光の入射側である第一の主面21上に、機能膜30aとして、遠赤外線反射防止層であるNiOの単層膜と、可視光反射防止層であるAlの単層膜とをこの順で積層し、基材の凹凸が形成されていない、光の出射側である第二の主面22上に、機能膜30bとしてNiOの単層膜を形成した。NiO膜の成膜方法は、例1~8と同様である。
(Example 9)
Example 9 is an example of the far-infrared transmitting member 10 shown in FIG . This is a configuration in which a single layer film is further formed. In Example 9, under the same conditions as in Example 1, both sides of the substrate 20 were subjected to chemical etching treatment to form unevenness. After that, on the first main surface 21, which is the light incident side, as the functional film 30a, a single layer of NiO as a far-infrared antireflection layer and a single layer of Al 2 O 3 as a visible light antireflection layer are formed. A single-layer film of NiO was formed as the functional film 30b on the second main surface 22, which is the light emitting side, on which the unevenness is not formed on the substrate. The method of forming the NiO film is the same as in Examples 1-8.
 例9において、Alを形成する際は、NiOの単層膜上に、搬送式スパッタ装置を用いて、反応性スパッタ法により、膜厚が約0.1μmのAl膜を形成した。Al膜の成膜条件は、以下の通りである。 In Example 9, when forming Al 2 O 3 , an Al 2 O 3 film having a thickness of about 0.1 μm was formed on the NiO single layer film by reactive sputtering using a transport type sputtering apparatus. formed. The deposition conditions for the Al 2 O 3 film are as follows.
(Al成膜条件)
 ターゲット:Al
 スパッタリングガス:Ar 70sccm
 反応性ガス:O2 10sccm
 投入電力:500W
 基板温度:室温
 成膜圧力:0.5Pa
(Al 2 O 3 deposition conditions)
Target: Al
Sputtering gas: Ar 70 sccm
Reactive gas: O2 10 sccm
Input power: 500W
Substrate temperature: Room temperature Film formation pressure: 0.5 Pa
(例10)
 例10は、例5のサンプルに対して、光の入射側である機能膜の表面上に可視光反射防止層であるAlの単層膜をさらに形成した構成である。具体的には次のように作製した。例5と同様な条件で、基材の表面に凹凸は形成せずに、基材の光の入射側である面上に機能膜として、遠赤外線反射防止層であるNiOの単層膜と、可視光反射防止層であるAlの単層膜とをこの順で積層し、基材の光の出射側である面上に、機能膜としてNiOの単層膜を形成した。NiO膜の成膜方法は、例1~9と同様であり、Al膜の成膜方法は、例9と同様である。
(Example 10)
Example 10 has a structure in which a single-layer film of Al 2 O 3 as a visible light antireflection layer is further formed on the surface of the functional film, which is the light incident side, of the sample of Example 5. Specifically, it was produced as follows. Under the same conditions as in Example 5, without forming unevenness on the surface of the substrate, a single layer film of NiO, which is a far-infrared antireflection layer, was formed as a functional film on the light incident side of the substrate, A monolayer film of Al 2 O 3 as a visible light antireflection layer was laminated in this order, and a monolayer film of NiO was formed as a functional film on the surface of the substrate from which light was emitted. The method for forming the NiO film is the same as in Examples 1 to 9, and the method for forming the Al 2 O 3 film is the same as in Example 9.
(例9の評価結果)
 表2に例9のサンプルの評価結果を示す。表2より、例9のサンプルは意匠性及び遠赤外線透過性能についてどちらも良好な結果を示すことが分かる。機能膜に可視光反射防止層であるAl膜を形成した以外は、同様の条件で作製した例1のサンプルと比較すると、例9は全反射率が低下しており、さらに意匠性が向上していることが分かる。
(Evaluation result of Example 9)
Table 2 shows the evaluation results of the samples of Example 9. From Table 2, it can be seen that the sample of Example 9 exhibits good results in terms of both designability and far-infrared transmission performance. Compared to the sample of Example 1, which was produced under the same conditions except that an Al 2 O 3 film, which is a visible light antireflection layer, was formed on the functional film, Example 9 has a lower total reflectance, and is more designable. is improved.
(例10の評価結果)
 表2に例10のサンプルの評価結果を示す。機能膜に可視光反射防止層であるAl膜を形成した以外は、同様の条件で作製した例5のサンプルと比較すると、例10は正反射率および全反射率が低下しており、意匠性が向上していることが分かる。一方で、例9のサンプルと比較すると、ΔEが上昇しており、角度による色調の変化が確認された。このことから、機能膜の表面の凹凸によって、可視光を散乱させることによって、角度による色調の変化を抑制できることが分かる。
(Evaluation result of Example 10)
Table 2 shows the evaluation results of the samples of Example 10. Compared to the sample of Example 5, which was produced under the same conditions except that the Al 2 O 3 film, which is a visible light antireflection layer, was formed on the functional film, Example 10 had lower regular reflectance and total reflectance. , it can be seen that the designability is improved. On the other hand, compared with the sample of Example 9, ΔE was increased, confirming a change in color tone depending on the angle. From this, it can be seen that the change in color tone depending on the angle can be suppressed by scattering visible light with the unevenness of the surface of the functional film.
(例11)
 例11は、図2に示す遠赤外線透過部材10の例であり、例1のサンプルに対して、機能膜30bを形成していない構成である。機能膜30bを形成していないこと以外は、例1と同様の条件でサンプルを作製した。
(Example 11)
Example 11 is an example of the far-infrared transmitting member 10 shown in FIG. A sample was produced under the same conditions as in Example 1, except that the functional film 30b was not formed.
(例11の評価結果)
 表2に例11のサンプルの評価結果を示す。機能膜が光の入射側にのみ形成されている構成であるため、例1と比較すると、例11は遠赤外線透過率の低下が見られるものの、遠赤外線透過部材として、十分な透過率が得られることが分かる。また、意匠性については、例1と同様に良好な特性を示すことが確認された。
(Evaluation result of Example 11)
Table 2 shows the evaluation results of the samples of Example 11. Since the functional film is formed only on the light incident side, compared with Example 1, Example 11 shows a decrease in far-infrared transmittance, but sufficient transmittance is obtained as a far-infrared transmitting member. It is understood that In addition, it was confirmed that good design properties were exhibited as in Example 1.
(例12)
 例12は、図3に示す遠赤外線透過部材10の例である。例12においては、基材20の両面上に化学エッチング処理をして、凹凸を形成した。薬液の組成を調整し、凹凸形成後の基材の表面形状が例1~4のサンプルと異なること以外は、例1~4と同様の条件でサンプルを作製した。
(Example 12)
Example 12 is an example of the far-infrared transmitting member 10 shown in FIG. In Example 12, both sides of substrate 20 were chemically etched to form irregularities. Samples were prepared under the same conditions as in Examples 1 to 4, except that the composition of the chemical solution was adjusted and the surface shape of the substrate after unevenness formation was different from those of Examples 1 to 4.
(例12の評価結果)
 表3に例12のサンプルの評価結果を示す。表3より、例12のサンプルは意匠性及び遠赤外線透過性能についてどちらも良好な結果を示すことが分かる。例12は、例1、2と同様に、光の入射側の機能膜表面のSa及びRSmが上述の好ましい範囲であるため、遠赤外線を適切に透過しつつ、角度によらず、良好な意匠性を有すると考えられる。
(Evaluation result of Example 12)
Table 3 shows the evaluation results of the samples of Example 12. From Table 3, it can be seen that the sample of Example 12 exhibits good results in terms of both design and far-infrared transmission performance. In Example 12, as in Examples 1 and 2, the Sa and RSm of the functional film surface on the light incident side are within the above-described preferred ranges, so far-infrared rays are appropriately transmitted, and good design is achieved regardless of the angle. It is considered to have sexuality.
(例13)
 例13は、図8に示す遠赤外線透過部材10の例であり、例1のサンプルに対して、機能膜の表面上に撥水層をさらに形成した構成である。例13においては、例1と同様の条件で、基材20の両面上に化学エッチング処理をして、凹凸を形成した。その後、光の入射側である第一の主面21上に、機能膜30aとして、遠赤外線反射防止層であるNiOの単層膜と、撥水層とをこの順で積層し、光の出射側である第二の主面22上に、機能膜30bとして、遠赤外線反射防止層であるNiOの単層膜と、撥水層とをこの順で積層した。NiO膜の成膜方法は、例1~12と同様である。
(Example 13)
Example 13 is an example of the far-infrared transmitting member 10 shown in FIG. 8, and has a configuration in which a water-repellent layer is further formed on the surface of the functional film in addition to the sample of Example 1. FIG. In Example 13, under the same conditions as in Example 1, both sides of the substrate 20 were subjected to chemical etching to form unevenness. After that, on the first main surface 21, which is the light incident side, as the functional film 30a, a single layer film of NiO, which is a far-infrared antireflection layer, and a water-repellent layer are laminated in this order to emit light. As the functional film 30b, a single layer film of NiO, which is a far-infrared antireflection layer, and a water-repellent layer were laminated in this order on the second main surface 22, which is the side. The method of forming the NiO film is the same as in Examples 1-12.
 例13において、撥水層を形成する際は、NiOの単層膜上に、ロードロック式スパッタ装置(RAS-1100BII、シンクロン社製)を用いて、蒸着法により形成した。撥水層の成膜条件は、以下の通りである。 In Example 13, when the water-repellent layer was formed, it was formed on the NiO single-layer film by vapor deposition using a load-lock type sputtering apparatus (RAS-1100BII, manufactured by Synchron Co., Ltd.). The deposition conditions for the water-repellent layer are as follows.
(撥水層成膜条件)
 蒸着温度:300度
 蒸着時間:5分
 蒸着材:AFS-R2(シンクロン社製)
(Water-repellent layer deposition conditions)
Vapor deposition temperature: 300 degrees Vapor deposition time: 5 minutes Vapor deposition material: AFS-R2 (manufactured by Syncron)
(例13の評価結果)
 表3に例13のサンプルの評価結果を示す。表3より、例13のサンプルは良好な撥水性を示すことが分かる。これは、例13の光の入射側の機能膜表面におけるSaが上述の好ましい範囲であったためであると考えられる。
(Evaluation result of Example 13)
Table 3 shows the evaluation results of the samples of Example 13. From Table 3, it can be seen that the sample of Example 13 exhibits good water repellency. This is probably because Sa on the functional film surface on the light incident side of Example 13 was within the preferred range described above.
 さらに、例13のサンプルは意匠性及び遠赤外線透過性能についてどちらも良好な結果を示すことが分かる。例13は、実施例である例1のサンプルに対して、機能膜の表面上に撥水層を形成した構成であるが、この結果より、機能膜の最表面に撥水層を形成した場合であっても、良好な意匠性及び遠赤外線透過性能を維持できることが分かる。 Furthermore, it can be seen that the sample of Example 13 exhibits good results in terms of both designability and far-infrared transmission performance. Example 13 has a configuration in which a water-repellent layer is formed on the surface of the functional film in comparison with the sample of Example 1, which is an embodiment. However, it can be seen that good design and far-infrared transmission performance can be maintained.
(例14、15)
 例14、15は、図8に示す遠赤外線透過部材10の例であり、例14は、例12のサンプルに対して、例15は、例2のサンプルに対して、機能膜の表面上に撥水層をさらに形成した構成である。NiO膜の成膜方法は、例1~13と同様であり、撥水層の成膜方法は、例13と同様である。
(Examples 14 and 15)
Examples 14 and 15 are examples of the far-infrared transmitting member 10 shown in FIG. It is a structure in which a water-repellent layer is further formed. The method for forming the NiO film is the same as in Examples 1 to 13, and the method for forming the water-repellent layer is the same as in Example 13.
(例14、15の評価結果)
 表3に例14、15のサンプルの評価結果を示す。表3より、例14、15のサンプルは良好な撥水性を示すことが分かる。これは、例14、15の光の入射側の機能膜表面におけるSaが上述の好ましい範囲であったためであると考えられる。
(Evaluation results of Examples 14 and 15)
Table 3 shows the evaluation results of the samples of Examples 14 and 15. From Table 3, it can be seen that the samples of Examples 14 and 15 exhibit good water repellency. It is considered that this is because the Sa on the functional film surface on the light incident side in Examples 14 and 15 was within the preferred range described above.
 さらに、例14、15のサンプルは意匠性及び遠赤外線透過性能についてどちらも良好な結果を示すことが分かる。例14は、実施例である例12のサンプルに対して、例15は、例2のサンプルに対して、機能膜の表面上に撥水層を形成した構成である。この結果より、例13と同様に、機能膜の最表面に撥水層を形成した場合であっても、良好な意匠性及び遠赤外線透過性能を維持できることが分かる。 Furthermore, it can be seen that the samples of Examples 14 and 15 show good results in terms of both designability and far-infrared transmission performance. Example 14 is a sample of Example 12, and Example 15 is a sample of Example 2, in which a water-repellent layer is formed on the surface of the functional film. From this result, it can be seen that, as in Example 13, good design and far-infrared transmission performance can be maintained even when a water-repellent layer is formed on the outermost surface of the functional film.
(例16)
 例16は、例5のサンプルに対して、機能膜の表面上に撥水層をさらに形成した構成である。NiO膜の成膜方法は、例1~15と同様であり、撥水層の成膜方法は、例13~15と同様である。
(Example 16)
Example 16 has a structure in which a water-repellent layer is further formed on the surface of the functional film in addition to the sample of Example 5. The method of forming the NiO film is the same as in Examples 1-15, and the method of forming the water-repellent layer is the same as in Examples 13-15.
(例16の評価結果)
 表3に例16のサンプルの評価結果を示す。表3より、例16は、例13~15のサンプルと比較すると、撥水性が低下していることが分かる。例16は、基材表面に対して凹凸処理を実施してないため、例16の光の入射側の機能膜表面におけるSaが上述の好ましい範囲外である。このため、例13~15と比較して、撥水性が低下したと考えられる。
(Evaluation result of Example 16)
Table 3 shows the evaluation results of the samples of Example 16. From Table 3, it can be seen that Example 16 has lower water repellency than the samples of Examples 13-15. In Example 16, since the surface of the base material was not subjected to the unevenness treatment, the Sa of the functional film surface on the light incident side of Example 16 was outside the above-mentioned preferred range. For this reason, compared with Examples 13-15, it is considered that the water repellency was lowered.
 以上、本発明の実施形態を説明したが、この実施形態の内容により実施形態が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、前述した実施形態の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。 Although the embodiment of the present invention has been described above, the embodiment is not limited by the content of this embodiment. In addition, the components described above include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those within the so-called equivalent range. Furthermore, the components described above can be combined as appropriate. Furthermore, various omissions, replacements, or modifications of components can be made without departing from the gist of the above-described embodiments.
 本発明は、遠赤外線を利用する様々な装置に好適に利用できる。本発明は、角度によらす、良好な意匠性が得られるため、外部に露出して設置される場合において特に好適である。 The present invention can be suitably used for various devices that use far infrared rays. INDUSTRIAL APPLICABILITY The present invention is particularly suitable for installation exposed to the outside, since good design properties can be obtained regardless of the angle.
 10 遠赤外線透過部材
 20 基材
 21 第一の主面
 22 第二の主面
 30a、30b 機能膜
 31a、31b 表面
 32 遠赤外線反射防止層
 33 可視光反射防止層
 34 密着層
 35 撥水層
REFERENCE SIGNS LIST 10 far-infrared transmitting member 20 substrate 21 first main surface 22 second main surface 30a, 30b functional film 31a, 31b surface 32 far-infrared antireflection layer 33 visible light antireflection layer 34 adhesion layer 35 water-repellent layer

Claims (23)

  1.  入射角5°で入射させた際の、JIS R3106に基づいて算出される可視光の正反射率が10%以下であり、波長8μm~12μmの光の平均透過率が50%以上であり、以下の式(1)で定義されるΔEの値が6.0以下であることを特徴とする遠赤外線透過部材。
    Figure JPOXMLDOC01-appb-M000001
     L :入射角5°、検出角5°で測定した可視光の分光反射率とJIS Z 8781―4に基づいて算出される、照明光に標準イルミナントD65を用いた際のCIE-Lab表色系における反射光の色度座標
     L :入射角45°、検出角45°で測定した可視光の分光反射率とJIS Z 8781―4に基づいて算出される、照明光に標準イルミナントD65を用いた際のCIE-Lab表色系における反射光の色度座標
    The specular reflectance of visible light calculated based on JIS R3106 when incident at an incident angle of 5° is 10% or less, and the average transmittance of light with a wavelength of 8 μm to 12 μm is 50% or more. A far-infrared transmitting member, wherein the value of ΔE defined by the formula (1) is 6.0 or less.
    Figure JPOXMLDOC01-appb-M000001
    L 1 * a 1 * b 1 * : Spectral reflectance of visible light measured at an incident angle of 5° and a detection angle of 5° and calculated based on JIS Z 8781-4, using standard illuminant D65 as illumination light Chromaticity coordinates of reflected light in the actual CIE-Lab color system L 2 * a 2 * b 2 * : Spectral reflectance of visible light measured at an incident angle of 45° and a detection angle of 45° and JIS Z 8781-4 Chromaticity coordinates of reflected light in the CIE-Lab color system when using standard illuminant D65 for illumination light, calculated based on
  2.  波長8μm~12μmの光の平均透過率が80%以上である請求項1に記載の遠赤外線透過部材。 The far-infrared transmitting member according to claim 1, which has an average transmittance of 80% or more for light with a wavelength of 8 μm to 12 μm.
  3.  前記正反射率が5%以下である請求項1または2に記載の遠赤外線透過部材。 The far-infrared transmitting member according to claim 1 or 2, wherein the regular reflectance is 5% or less.
  4.  JIS-Z8722:2009に規定する幾何条件d(8°:di)で測定した際の、JIS R3106に基づいて算出される前記可視光の全反射率が15%以下である、請求項1~3のいずれか1項に記載の遠赤外線透過部材。 Claims 1 to 3, wherein the total reflectance of visible light calculated based on JIS R3106 is 15% or less when measured under the geometric condition d (8°: di) defined in JIS-Z8722:2009. The far-infrared transmitting member according to any one of .
  5.  少なくとも一方の主面に前記可視光を散乱させる凹凸を備えた基材と、前記凹凸上に前記波長8μm~12μmの光の反射を防止する機能膜とを有する請求項1~4のいずれか1項に記載の遠赤外線透過部材。 5. The substrate according to any one of claims 1 to 4, comprising a base material provided with unevenness for scattering visible light on at least one main surface, and a functional film for preventing reflection of light having a wavelength of 8 μm to 12 μm on the unevenness. The far-infrared transmitting member according to the item.
  6.  前記基材の両主面に前記凹凸を備え、前記凹凸上に第一の前記機能膜及び第二の前記機能膜を有する請求項5に記載の遠赤外線透過部材。 The far-infrared transmitting member according to claim 5, wherein both main surfaces of the base material are provided with the unevenness, and the first functional film and the second functional film are formed on the unevenness.
  7.  前記基材の一方の主面に前記凹凸を備え、前記凹凸上に第一の前記機能膜を有し、前記基材のもう一方の主面に第二の前記機能膜を有する請求項5に記載の遠赤外線透過部材。 6. The method according to claim 5, wherein one main surface of the base material is provided with the unevenness, the first functional film is formed on the unevenness, and the second functional film is formed on the other main surface of the base material. The far-infrared transmitting member as described.
  8.  前記凹凸上の機能膜の表面における算術平均高さSa(ISO 25178)が0.030μm以上、1.000μm以下である、請求項5~7のいずれか1項に記載の遠赤外線透過部材。 The far-infrared transmitting member according to any one of claims 5 to 7, wherein the arithmetic mean height Sa (ISO 25178) on the surface of the uneven functional film is 0.030 µm or more and 1.000 µm or less.
  9.  前記凹凸上の機能膜の表面における粗さ曲線要素の平均長さRSm(JISB 0601)が15μm以下である、請求項8に記載の遠赤外線透過部材。 The far-infrared transmitting member according to claim 8, wherein the average length RSm (JISB 0601) of the roughness curve elements on the surface of the functional film on the unevenness is 15 µm or less.
  10.  前記凹凸上の機能膜の表面における二乗平均平方根傾斜RΔq(JISB 0601)が20°以下である、請求項8または9に記載の遠赤外線透過部材。 The far-infrared transmitting member according to claim 8 or 9, wherein a root-mean-square slope RΔq (JISB 0601) on the surface of the uneven functional film is 20° or less.
  11.  前記機能膜が1層以上の遠赤外線反射防止層を有する、請求項5~10のいずれか1項に記載の遠赤外線透過部材。 The far-infrared transmitting member according to any one of claims 5 to 10, wherein the functional film has one or more far-infrared antireflection layers.
  12.  前記遠赤外線反射防止層は、NiO、ダイヤモンドライクカーボン、ZrO、ZnS、Ge、Si、MgO、ZnO群より選ばれる少なくとも1種の材料を含む、請求項11に記載の遠赤外線透過部材。 The far-infrared transmitting member according to claim 11, wherein the far-infrared antireflection layer contains at least one material selected from the group of NiO, diamond-like carbon, ZrO2 , ZnS, Ge, Si, MgO, and ZnO.
  13.  前記機能膜が最表面に可視光反射防止層を有する、請求項11または12に記載の遠赤外線透過部材。 The far-infrared transmitting member according to claim 11 or 12, wherein the functional film has a visible light antireflection layer on the outermost surface.
  14.  前記可視光反射防止層は、Al、SiOおよびMgOの群より選ばれる少なくとも1種の材料を含む、請求項13に記載の遠赤外線透過部材。 The far-infrared transmitting member according to claim 13, wherein the visible light antireflection layer contains at least one material selected from the group of Al2O3 , SiO2 and MgO .
  15.  前記基材は、Si、Ge、ZnS、及びカルコゲナイドガラスの群より選ばれる少なくとも1種の材料を含む、請求項5~14のいずれか1項に記載の遠赤外線透過部材。 The far-infrared transmitting member according to any one of claims 5 to 14, wherein the base material contains at least one material selected from the group consisting of Si, Ge, ZnS, and chalcogenide glass.
  16.  前記機能膜が最表面に撥水層を有する、請求項11または12に記載の遠赤外線透過部材。 The far-infrared transmitting member according to claim 11 or 12, wherein the functional film has a water-repellent layer on its outermost surface.
  17.  一方の主面に可視光を散乱させる凹凸を備えた基材と、前記凹凸上に波長8μm~12μmの光の反射を防止する第一の機能膜と、前記基材のもう一方の主面に第二の機能膜を有し、前記第一の機能膜の表面における算術平均高さSa(ISO 25178)が0.030μm以上、1.000μm以下であることを特徴とする遠赤外線透過部材。 A substrate provided with unevenness for scattering visible light on one main surface, a first functional film on the unevenness for preventing reflection of light with a wavelength of 8 μm to 12 μm, and on the other main surface of the substrate A far-infrared transmitting member having a second functional film, wherein the surface of the first functional film has an arithmetic mean height Sa (ISO 25178) of 0.030 μm or more and 1.000 μm or less.
  18.  前記第一の機能膜の表面における粗さ曲線要素の平均長さRSm(JISB 0601)が15μm以下である、請求項17に記載の遠赤外線透過部材。 The far-infrared transmitting member according to claim 17, wherein the average length RSm (JISB 0601) of the roughness curve elements on the surface of the first functional film is 15 µm or less.
  19.  前記第一の機能膜の表面における二乗平均平方根傾斜RΔq(JISB 0601)が20°以下である、請求項17または18に記載の遠赤外線透過部材。 The far-infrared transmitting member according to claim 17 or 18, wherein the root-mean-square slope RΔq (JISB 0601) on the surface of the first functional film is 20° or less.
  20.  請求項1~19のいずれか1項に記載の遠赤外線透過部材を用いた遠赤外線センサ。 A far-infrared sensor using the far-infrared transmitting member according to any one of claims 1 to 19.
  21.  請求項20に記載の遠赤外線センサを用いた車載用センサ。 An in-vehicle sensor using the far-infrared sensor according to claim 20.
  22.  請求項21に記載の車載用センサを用いたスマートフォン搭載用センサ。 A smartphone-mounted sensor using the vehicle-mounted sensor according to claim 21.
  23.  請求項22に記載のスマートフォン搭載用センサを用いたウェアラブル端末用センサ。 A wearable terminal sensor using the smartphone-mounted sensor according to claim 22.
PCT/JP2023/002679 2022-02-09 2023-01-27 Far-infrared transmission member, far-infrared sensor, automotive sensor, smartphone-mounted sensor, and sensor for wearable terminal WO2023153242A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-019094 2022-02-09
JP2022019094 2022-02-09

Publications (1)

Publication Number Publication Date
WO2023153242A1 true WO2023153242A1 (en) 2023-08-17

Family

ID=87564167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002679 WO2023153242A1 (en) 2022-02-09 2023-01-27 Far-infrared transmission member, far-infrared sensor, automotive sensor, smartphone-mounted sensor, and sensor for wearable terminal

Country Status (1)

Country Link
WO (1) WO2023153242A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063942A (en) * 2007-09-10 2009-03-26 Sumitomo Electric Ind Ltd Far-infrared camera lens, lens unit, and imaging apparatus
JP2015132710A (en) * 2014-01-14 2015-07-23 コニカミノルタ株式会社 Far-infrared lens, image capturing lens system, and camera system
JP2019020654A (en) * 2017-07-20 2019-02-07 日本電気硝子株式会社 Cover member and information apparatus
JP2019045687A (en) * 2017-09-01 2019-03-22 東海光学株式会社 Optical product and infrared sensor cover

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009063942A (en) * 2007-09-10 2009-03-26 Sumitomo Electric Ind Ltd Far-infrared camera lens, lens unit, and imaging apparatus
JP2015132710A (en) * 2014-01-14 2015-07-23 コニカミノルタ株式会社 Far-infrared lens, image capturing lens system, and camera system
JP2019020654A (en) * 2017-07-20 2019-02-07 日本電気硝子株式会社 Cover member and information apparatus
JP2019045687A (en) * 2017-09-01 2019-03-22 東海光学株式会社 Optical product and infrared sensor cover

Similar Documents

Publication Publication Date Title
TWI729973B (en) Durable anti-reflective articles
TWI570085B (en) Temperable three layer antireflective coating, coated article including temperable three layer antireflective coating, and/or method of making the same
JP7407839B2 (en) Near-infrared narrowband optical filter and manufacturing method
KR102392445B1 (en) Scratch-resistant chemically tempered glass substrate and use thereof
EP0980850A1 (en) Colour suppressed anti-reflective glass
KR101200724B1 (en) A transparent subtrate with anti-reflection functionality
CN113646276B (en) Optical component
US20100182678A1 (en) Absorbing layers for the control of transmission, reflection, and absorption
JP2009083183A (en) Optical membrane laminate
WO2016031167A1 (en) Anti-reflection film and optical member provided with anti-reflection film
WO2019187416A1 (en) Antireflection film and optical member
WO2022244686A1 (en) Method for producing far-infrared transmission member, and far-infrared transmission member
JP2017151409A (en) Infrared transmission film, optical film, antireflection film, optical component, optical system and imaging device
WO2020103206A1 (en) Polarization-independent filter
CN213537738U (en) Colored glass
CN111045127A (en) Perspective covering piece and preparation method thereof
WO2022065000A1 (en) Far-infrared ray transmitting member and method for manufacturing far-infrared ray transmitting member
WO2022045011A1 (en) Far-infrared transmitting member, and method for manufacturing far-infrared transmitting member
JPWO2022045011A5 (en)
WO2023153242A1 (en) Far-infrared transmission member, far-infrared sensor, automotive sensor, smartphone-mounted sensor, and sensor for wearable terminal
KR101914861B1 (en) Cover glass with color coating
KR102147373B1 (en) Infrared anti-reflection coating layer nd manufacturing method thereof
CN209911588U (en) Near-infrared narrow-band filter and optical sensing system
TW201637859A (en) Glass/resin transparent laminate for window
EP3365295B1 (en) Ultraviolet light-resistant articles and methods for making the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752707

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023580174

Country of ref document: JP

Kind code of ref document: A