WO2023153138A1 - 波動制御装置、波長変換素子、演算素子、センサ、偏光制御素子及び光アイソレータ - Google Patents
波動制御装置、波長変換素子、演算素子、センサ、偏光制御素子及び光アイソレータ Download PDFInfo
- Publication number
- WO2023153138A1 WO2023153138A1 PCT/JP2023/000812 JP2023000812W WO2023153138A1 WO 2023153138 A1 WO2023153138 A1 WO 2023153138A1 JP 2023000812 W JP2023000812 W JP 2023000812W WO 2023153138 A1 WO2023153138 A1 WO 2023153138A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- control device
- wave
- wave control
- metamaterial
- magnetic material
- Prior art date
Links
- 230000010287 polarization Effects 0.000 title claims description 54
- 230000003287 optical effect Effects 0.000 title claims description 12
- 238000006243 chemical reaction Methods 0.000 title claims description 8
- 239000000696 magnetic material Substances 0.000 claims abstract description 221
- 230000000694 effects Effects 0.000 claims description 150
- 230000005415 magnetization Effects 0.000 claims description 125
- 230000005291 magnetic effect Effects 0.000 claims description 101
- 230000005288 electromagnetic effect Effects 0.000 claims description 28
- 230000003993 interaction Effects 0.000 claims description 16
- 235000001674 Agaricus brunnescens Nutrition 0.000 claims description 4
- 238000000034 method Methods 0.000 claims description 3
- 238000005516 engineering process Methods 0.000 abstract description 96
- 238000010586 diagram Methods 0.000 description 64
- 239000000463 material Substances 0.000 description 32
- 239000000758 substrate Substances 0.000 description 20
- 230000009471 action Effects 0.000 description 12
- 230000005684 electric field Effects 0.000 description 11
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000011347 resin Substances 0.000 description 6
- 229920005989 resin Polymers 0.000 description 6
- 238000005520 cutting process Methods 0.000 description 4
- 230000004907 flux Effects 0.000 description 4
- 230000001902 propagating effect Effects 0.000 description 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 239000003302 ferromagnetic material Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 239000002223 garnet Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000035699 permeability Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 238000010146 3D printing Methods 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 229910000423 chromium oxide Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- MTRJKZUDDJZTLA-UHFFFAOYSA-N iron yttrium Chemical compound [Fe].[Y] MTRJKZUDDJZTLA-UHFFFAOYSA-N 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012788 optical film Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000002210 silicon-based material Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 239000002887 superconductor Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/09—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on magneto-optical elements, e.g. exhibiting Faraday effect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/82—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by variation of the magnetic field applied to the device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P1/00—Auxiliary devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01P—WAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
- H01P3/00—Waveguides; Transmission lines of the waveguide type
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N50/00—Galvanomagnetic devices
- H10N50/80—Constructional details
Definitions
- This technology relates to technology using a wave control device, and more specifically to technology for controlling electromagnetic waves using metamaterials.
- Patent Documents 1 to 3, for example Conventionally, techniques for controlling electromagnetic waves using metamaterials are known (see Patent Documents 1 to 3, for example).
- the main object of the present technology is to provide a wave control device capable of improving the controllability of electromagnetic waves.
- the present technology provides a wave control device including a metamaterial and a magnetic material.
- the metamaterial is arranged and the magnetization direction of the magnetic material is set such that an electromagnetic effect and a magneto-optical effect and/or an interaction between the electromagnetic effect and the magneto-optical effect are generated with respect to electromagnetic waves.
- the metamaterial may be arranged and the magnetization direction of the magnetic material may be set such that at least an interaction between an electromagnetic effect and a magneto-optical effect occurs with respect to the electromagnetic wave.
- the metamaterial may be arranged and the magnetization direction of the magnetic material may be set so as to further generate an electromagnetic effect and a magneto-optical effect with respect to the electromagnetic wave.
- the metamaterial may be arranged around an electromagnetic wave waveguide.
- the metamaterial may be provided integrally with the waveguide.
- a core of the waveguide may be the magnetic material.
- the metamaterial may be provided on the outer surface of the core.
- a waveguide member including the core of the waveguide may be further provided.
- the metamaterial and the magnetic material may be provided on the outer surface of the core.
- the metamaterial and the magnetic material may be arranged on a propagation path of the electromagnetic wave.
- the metamaterial and the magnetic material may be arranged side by side along the propagation direction of the electromagnetic wave.
- the metamaterial may be provided on the magnetic material.
- the metamaterial may be arranged and the magnetization direction of the magnetic material may be set so that the polarization state of only one of the forward wave and the backward wave of the electromagnetic wave is changed.
- the metamaterial is arranged such that the effective refractive index difference between the forward circularly polarized light and the left circularly polarized light of the electromagnetic wave is different from the effective refractive index difference between the backward circularly polarized light and the backward circular light of the electromagnetic wave. and a magnetization direction of the magnetic material may be set.
- the metamaterial includes a split ring resonator, the magnetic moment direction of the split ring resonator is substantially perpendicular to the waveguide direction of the electromagnetic wave, and the magnetic moment direction is substantially perpendicular to the magnetization direction of the magnetic material. They may be parallel. In this case, the split direction of the split ring resonator may be substantially parallel to the waveguide direction or substantially perpendicular to the waveguide direction.
- the metamaterial includes a split ring resonator, the magnetic moment direction of the split ring resonator is substantially perpendicular to the waveguide direction of the electromagnetic wave, and the magnetic moment direction is substantially perpendicular to the magnetization direction of the magnetic material. It can be vertical.
- the split direction of the split ring resonator may be substantially perpendicular to both the waveguide direction and the magnetization direction, or may be substantially perpendicular to the waveguide direction and the magnetization direction. It may be substantially parallel, may be substantially parallel to both the waveguide direction and the magnetization direction, or may be substantially parallel to the waveguide direction and substantially perpendicular to the magnetization direction. good too.
- the metamaterial may include any of cut wire pair resonators, spiral resonators, mushroom resonators, V-shaped resonators and fishnet resonators.
- the electromagnetic waves may be guided in TM mode.
- the magnetization direction of the magnetic material may be set by an external magnetic field.
- the present technology also provides a wavelength conversion element including the wave control device.
- the present technology also provides an arithmetic element comprising the wave control device.
- the present technology also provides a sensor comprising the wave control device.
- the present technology also provides a polarization control element including the wave control device.
- the present technology also provides an optical isolator comprising the wave control device.
- FIG. 2A is the determinant of FIG. 1 for a generic medium.
- FIG. 2B is the determinant of FIG. 1 for magnetic materials.
- FIG. 2C is the determinant of FIG. 1 for multiferroic materials.
- 3A to 3C are diagrams for explaining that the MO tensor can be controlled by the magnetization direction of the magnetic material.
- 4A to 4F are diagrams for explaining that the ME tensor can be controlled by arranging metamaterials.
- 5A and 5B are diagrams for explaining that the MO tensor and the ME tensor can be controlled simultaneously.
- FIG. 1 is a perspective view of a wave motion control device according to Example 1 of a first embodiment of the present technology
- FIG. It is a perspective view of a wave control device according to Example 2 of the first embodiment of the present technology.
- FIG. 14A and 14B are diagrams for explaining the concept of the wave control device according to the second embodiment of the present technology. It is a perspective view of a wave motion control device according to Example 1 of a second embodiment of the present technology. It is a perspective view of a wave control device according to Example 2 of the second embodiment of the present technology. It is a perspective view of a wave motion control device according to Example 3 of the second embodiment of the present technology. It is a perspective view of a wave motion control device according to Example 4 of the second embodiment of the present technology. It is a perspective view of a wave motion control device according to Example 5 of the second embodiment of the present technology.
- 20A and 20B are diagrams for explaining the concept of the wave motion control device according to the third embodiment of the present technology. It is a perspective view of a wave motion control device according to Example 1 of the third embodiment of the present technology. It is a perspective view of a wave motion control device according to Example 2 of the third embodiment of the present technology. It is a perspective view of a wave motion control device according to Example 3 of the third embodiment of the present technology. It is a perspective view of a wave control device according to Example 4 of the third embodiment of the present technology. It is a perspective view of a wave motion control device according to Example 5 of the third embodiment of the present technology. 26A and 26B are diagrams for explaining the concept of the wave control device according to the fourth embodiment of the present technology.
- FIG. 1 It is a perspective view of a wave control device according to Example 1 of the fourth embodiment of the present technology. It is a perspective view of a wave control device according to Example 2 of the fourth embodiment of the present technology. It is a perspective view of a wave motion control device according to Example 3 of the fourth embodiment of the present technology. It is a perspective view of a wave control device according to Example 4 of the fourth embodiment of the present technology. It is a perspective view of a wave control device according to Example 5 of the fourth embodiment of the present technology.
- 32A and 32B are diagrams for explaining the concept of the wave control device according to the fifth embodiment of the present technology. It is a perspective view of a wave control device according to Example 1 of the fifth embodiment of the present technology.
- FIG. 20 is a perspective view of a wave motion control device according to Example 4 of the sixth embodiment of the present technology; It is a perspective view of a wave motion control device according to Example 5 of the sixth embodiment of the present technology.
- 44A and 44B are diagrams showing specific examples 1 and 2 of the shape of the metamaterial, respectively.
- 45A and 45B are diagrams showing specific examples 3 and 4 of the shape of the metamaterial, respectively.
- 46A and 46B are diagrams showing specific examples 5 and 6 of the metamaterial shape, respectively.
- 47A and 47B are diagrams for explaining specific example 7 of the metamaterial shape.
- 48A and 48B are diagrams for explaining specific example 8 of the metamaterial shape.
- FIG. 49A is a diagram showing a slab waveguide structure used for calculating a propagation constant ⁇ of a wave control device according to a fifth embodiment of the present technology
- FIG. 49B is a diagram showing a non-reciprocal loss difference when the uppermost layer in FIG. 49A is made of a magnetic material in calculating the propagation constant ⁇ of the wave control device according to the fifth embodiment of the present technology
- FIG. 49C is a diagram showing a non-reciprocal phase difference when the uppermost layer in FIG. 49A is made of a magnetic material in calculating the propagation constant ⁇ of the wave control device according to the fifth embodiment of the present technology
- FIG. 49D is a diagram showing a non-reciprocal loss difference when the uppermost layer in FIG.
- FIG. 49A is composed of a metamaterial and a magnetic material in the calculation of the propagation constant ⁇ of the wave control device according to the fifth embodiment of the present technology
- FIG. be. 49E is a diagram showing a non-reciprocal phase difference when the uppermost layer in FIG. 49A is composed of a metamaterial and a magnetic material in the calculation of the propagation constant ⁇ of the wave control device according to the fifth embodiment of the present technology
- FIG. be. 50A and 50B are diagrams for explaining free space propagation (forward wave) considering only the MO effect.
- 51A and 51B are diagrams for explaining free space propagation (backward waves) considering only the MO effect.
- FIGS. 52A and 52B are diagrams for explaining free space propagation (forward wave) considering only the ME effect.
- 53A and 53B are diagrams for explaining free space propagation (backward waves) considering only the ME effect.
- 54A and 54B are diagrams for explaining an example of free-space propagation (forward wave) considering the MO effect and the ME effect.
- 55A and 55B are diagrams for explaining an example of free-space propagation (backward waves) considering the MO effect and the ME effect.
- 56A and 56B are diagrams for explaining another example of free space propagation (forward wave) considering the MO effect and the ME effect.
- 57A and 57B are diagrams for explaining another example of free space propagation (backward wave) considering the MO effect and the ME effect.
- 58A is a perspective view of a wave motion control device according to Example 1 of the seventh embodiment of the present technology; FIG.
- FIG. 58B is a diagram for explaining an arrangement of metamaterials and magnetic materials in the wave control device of FIG. 58A, which can exhibit unidirectionally limited polarization controllability
- FIG. 59A is a perspective view of a wave motion control device according to Example 2 of the seventh embodiment of the present technology
- FIG. 59B is a diagram for explaining an arrangement of metamaterials and magnetic materials in the wave control device of FIG. 59A, which arrangement can exhibit unidirectionally limited polarization controllability
- FIG. 60A is a perspective view of a wave motion control device according to Example 3 of the seventh embodiment of the present technology
- FIG. 60B is a diagram for explaining the arrangement of metamaterials and magnetic materials in the wave control device of FIG. 60A, which arrangement can exhibit unidirectionally limited polarization controllability
- FIG. 61A and 61B are diagrams for explaining the conditions under which the unidirectional limited polarization controllability is exhibited.
- Wave motion control device according to first embodiment of present technology 2. Wave motion control device according to the second embodiment of the present technology;3. Wave motion control device according to the third embodiment of the present technology;4. Wave motion control device according to the fourth embodiment of the present technology;5. Wave motion control device according to fifth embodiment of the present technology6. A wave control device according to a sixth embodiment of the present technology;7. Wave motion control device according to the seventh embodiment of the present technology8. Concrete example of shape of metamaterial9. Modified example of the present technology 10.
- multiferroic materials which can control the magnetic response of a medium by an electric field and the electrical response of a medium by a magnetic field (ME effect), are attracting attention as next-generation new memory and energy conversion devices. .
- the general relationship between the electric flux density D, the magnetic flux density B, the electric field E and the magnetic field H considering the MO effect and the ME effect can be expressed as shown in Fig. 1.
- the tensors related to the MO effect are the light gray MO tensors
- the tensors related to the ME effect are the dark gray ME tensors.
- ⁇ represents the permittivity of the medium
- ⁇ represents the magnetic permeability of the medium.
- the application direction of the electric field and the direction of electric polarization are the same, and the application direction of the magnetic field and the magnetization direction are the same (scalar quantity). Therefore, general media can control the reflection and refraction of electromagnetic waves (for example, light).
- the MO tensor in the lower diagram of FIG. Any off-diagonal component has a value. That is, a multiferroic material controls magnetization by an electric field and electric polarization by a magnetic field. Thus, multiferroic materials can control the reflection, refraction, polarization, etc. of electromagnetic waves (eg, light) with both magnetic and electric fields.
- electromagnetic waves eg, light
- the off-diagonal component of the MO tensor can be controlled by the magnetization direction MD of the magnetic material (for example, rectangular parallelepiped).
- the placement of metamaterials eg, split-ring resonators
- FIGS. 4E and 4F show examples of the TM mode.
- the inventors controlled the MO tensor (more specifically, the off-diagonal component of the MO tensor) by the magnetization direction of the magnetic material (see, for example, FIGS. 3A to 3C), and the ME tensor ( Specifically, the diagonal and off-diagonal components of the ME tensor) are effectively combined (see, for example, FIGS. 4A-4F) with the MO tensor and We have developed a wave control device according to this technology as a wave control device that can freely control both ME tensors (see Fig. 5A).
- the electromagnetic wave guided in the TE mode can be controlled while mode-matching (maintaining the TE mode).
- the term of the ME effect appears in the wave equation of the electromagnetic wave to be controlled as shown in FIG. 6B, but the term of the MO effect does not appear. This means that in the example shown in FIG. 6A, the ME tensor can be controlled, but the MO tensor cannot.
- the electromagnetic wave guided in the TM mode can be controlled while mode matching (while maintaining the TM mode).
- a term of the MO effect, a term of the ME effect, and a term of interaction between the MO effect and the ME effect appear in the wave equation of the electromagnetic wave to be controlled as shown in FIG. 7B. This means that both MO tensors and ME tensors can be controlled at will in the example shown in FIG. 7A.
- FIG. 8A is a conceptual diagram of the wave control device 10 according to the first embodiment.
- FIG. 8B is a diagram showing a wave equation of electromagnetic waves controlled by the wave control device 10 according to the first embodiment.
- the xyz three-dimensional orthogonal coordinate system for example, left-handed system shown in FIG. 8A will be used as appropriate.
- a wave control device 10 according to the first embodiment includes a metamaterial 100 and a magnetic material 200, as shown in FIG. 8A as an example.
- the metamaterial 100 is arranged and the magnetization direction MD of the magnetic material 200 is set so as to generate an electromagnetic effect and a magneto-optical effect on electromagnetic waves.
- the magnetization direction of the magnetic material 200 may be set by an external magnetic field.
- the magnetization direction of the magnetic material 200 can be set by the application direction of the external magnetic field.
- a metamaterial 100 may be provided around the electromagnetic wave waveguide.
- the metamaterial 100 may be provided integrally with the electromagnetic wave waveguide.
- the two-dimensional (planar) metamaterial 100 can be formed on the constituent elements (core and clad) of the waveguide using, for example, photolithography, vapor deposition, sputtering, and the like. is.
- the core of the electromagnetic wave waveguide may be the magnetic material 200 . That is, the magnetic material 200 may be made of a material that propagates and emits incident electromagnetic waves to be controlled while totally reflecting them.
- the metamaterial 100 may be provided on the outer surface (eg, side surface) of the core.
- the magnetic material 200 forming the core is preferably transparent to the wavelength of the electromagnetic wave (for example, a transparent ferromagnetic material) in order to guide the electromagnetic wave to be controlled.
- the outer surfaces of the core other than the surface forming the incident end of the electromagnetic wave (incident end surface) and the surface forming the output end (output end surface) are referred to as side surfaces of the core.
- the wave control device 10 may further include a waveguide member 300 (see FIG. 11) including a core of an electromagnetic wave waveguide.
- the metamaterial 100 and the magnetic material 200 may be provided on the outer surface (eg, side surface) of the core.
- the metamaterial 100 includes a split ring resonator (SSR) as an example.
- SSR split ring resonator
- the magnetic moment direction (substantially x-axis direction) of the split-ring resonator as the metamaterial 100 is substantially perpendicular to the waveguide direction (substantially z-axis direction) of the electromagnetic waves, and the split-ring resonance
- the magnetic moment direction (substantially x-axis direction) of the container and the magnetization direction (substantially z-axis direction) of the magnetic material are substantially perpendicular.
- the split direction of the split ring resonator as the metamaterial 100 is the waveguide direction of the electromagnetic wave (approximately the z-axis direction). and the magnetization direction (substantially z-axis direction) of the magnetic material.
- the term “substantially” includes the case of complete agreement and the case of slight difference in the range of equivalent effect.
- the wave control device 10 In the wave control device 10, by combining the arrangement of the metamaterial 100 and the magnetization direction MD of the magnetic material 200, it is possible to control the electromagnetic wave guided in the TM mode while mode-matching it (while maintaining the TM mode). be. Furthermore, the wave equation of the electromagnetic waves controlled by the wave control device 10 is expressed by the following formula (1) (see FIG. 8B), and it can be seen that both the MO effect and the ME effect are exhibited.
- ⁇ y 2 (1 ⁇ 2 / ⁇ 2 )H x +[ ⁇ 2 ( ⁇ (1 ⁇ 2 / ⁇ 2 )+ ⁇ 2 ) ⁇ 2 )]H x 0 (1)
- ⁇ is the permittivity
- ⁇ is the magnetic permeability
- ⁇ is the angular frequency
- ⁇ is the MO effect parameter
- ⁇ is the ME effect parameter
- ⁇ is the propagation constant (same below).
- i ⁇ is entered into a, which is an element related to the MO effect
- ⁇ is entered into E, which is an element related to the ME effect.
- the split-ring resonator as the metamaterial 100 is made of a thin wire made of a material selected from, for example, one of metals, dielectrics, conductive magnetic materials, semiconductors, and superconductors, or a combination of these. It is The outer diameter of the split ring resonator is preferably about 1/100 to 1/2 of the wavelength of the electromagnetic wave, for example. The wire diameter of the split ring resonator is preferably 1/1000 to 1/100, more preferably 1/1000 to 1/10, of the wavelength of the electromagnetic wave.
- the magnetic material 200 for example, iron, nickel, cobalt, magnetic garnet, iron oxide, chromium oxide, ferrite, non-oxidized metal magnetic material (oxide), etc. can be used. Note that these are examples of the magnetic material 200, and the magnetic material 200 may be another magnetic material. In the example shown in FIG. 8, a rectangular parallelepiped magnetic material is shown, but the size, shape, etc. of the magnetic material are not limited and can be changed as appropriate.
- inorganic materials such as quartz glass and silicon, and organic materials such as polyimide resin, polyamide resin, and polyether resin can be used.
- the material of the waveguide member 300 is preferably selected in consideration of the transparency, refractive index, wavelength characteristics, dispersibility, etc. of the electromagnetic wave to be controlled.
- the core of the electromagnetic wave waveguide to be controlled is a magnetic material 200.
- the metamaterial 100 is provided on one outer surface (for example, the larger side surface) of the magnetic material 200 as the core.
- a plurality of metamaterials 100 are provided regularly (for example, at equal intervals) substantially parallel to the waveguiding direction WGD (longitudinal direction of the magnetic material 200) of the electromagnetic waves to be controlled.
- the magnetic moment direction MMD of the split ring resonator serving as the metamaterial 100 is substantially perpendicular to the waveguide direction WGD of the electromagnetic wave
- the magnetic moment direction MMD of the split ring resonator and the magnetic material is substantially perpendicular to the magnetization direction MD of
- the split direction SD (cut direction) of the split ring resonator is substantially perpendicular to both the waveguide direction WGD of the electromagnetic wave and the magnetization direction MD of the magnetic material 200.
- the metamaterial 100 is provided on the other outer surface (for example, the side surface with the smaller area) of the magnetic material 200 serving as the core. Except for the above, it has substantially the same configuration as the wave control device 10-1 according to the first embodiment.
- the split direction SD (cut direction) of the split ring resonator as the metamaterial 100 is substantially perpendicular to both the waveguide direction WGD of the electromagnetic wave and the magnetization direction MD of the magnetic material 200.
- the wave control device 10-3 As shown in FIG. 11, the wave control device 10-3 according to the third embodiment further includes a waveguide member 300 including a core 300b of an electromagnetic wave waveguide.
- the waveguide member 300 includes, as an example, a base portion 300a in addition to the core 300b.
- a core 300b which is a ridge portion, is provided on a flat base portion 300a.
- the metamaterial 100 is provided on the upper surface of the core 300b, and the magnetic material 200 is provided on one side surface of the core 300b.
- a plurality of metamaterials 100 are provided regularly (for example, at regular intervals) substantially parallel to the waveguide direction WGD of the electromagnetic wave to be controlled (the longitudinal direction of the magnetic material 200).
- the waveguide member 300 is formed by processing a substrate transparent to the wavelength of the electromagnetic wave (for example, Si substrate) or the like in order to guide the electromagnetic wave to be controlled.
- the metamaterial 100 can be made of Au
- the magnetic material 200 can be made of YIG (Yttrium Iron Garnet).
- the magnetic moment direction MMD of the split ring resonator serving as the metamaterial 100 is substantially perpendicular to the waveguide direction WGD of the electromagnetic waves
- the magnetic moment direction MMD of the split ring resonator and the magnetic material is substantially perpendicular to the magnetization direction MD of
- the split direction SD (cut direction) of the split ring resonator is substantially perpendicular to both the waveguide direction WGD of the electromagnetic waves and the magnetization direction MD of the magnetic material 200.
- a wave motion control device 10-4 according to Example 4 has substantially the same configuration as the wave control device 10-3 according to the third embodiment.
- the split direction SD (cut direction) of the split ring resonator as the metamaterial 100 is substantially perpendicular to both the waveguide direction WGD of the electromagnetic wave and the magnetization direction MD of the magnetic material 200.
- a wave control device 10-5 according to Example 5 has a metamaterial 100 provided on one side of a core 300b facing one side and the other side, and a magnetic material 200 on the other side. It has substantially the same configuration as the wave control device 10-3 according to the third embodiment, except that it is provided.
- the split direction SD (cut direction) of the split ring resonator as the metamaterial 100 is substantially perpendicular to both the waveguide direction WGD of the electromagnetic wave and the magnetization direction MD of the magnetic material 200.
- a wave control device 10 includes a metamaterial 100 and a magnetic material 200 .
- the controllability of electromagnetic waves can be improved.
- the metamaterial 100 is arranged and the magnetization direction MD of the magnetic material 200 is set so that at least an electromagnetic effect and a magneto-optical effect are generated with respect to electromagnetic waves. Thereby, the controllability of electromagnetic waves can be reliably improved.
- the metamaterial 100 is preferably arranged around the electromagnetic wave waveguide. Thereby, the control action of the metamaterial 100 can be exerted on the electromagnetic waves.
- the metamaterial 100 is preferably provided integrally with the electromagnetic wave waveguide. Thereby, the positional relationship between the metamaterial 100 and the electromagnetic wave waveguide can be maintained at a desired (effective) positional relationship.
- the core of the electromagnetic wave waveguide may be the magnetic material 200 .
- the magnetic material 200 since the magnetic material 200 also serves as a core, it is possible to reduce the number of parts and reduce the size.
- the metamaterial 100 may be provided on the outer surface of the magnetic material 200 as the core. As a result, the metamaterial 100 can be stably arranged at a position where it can exert a sufficient control action on the electromagnetic wave.
- the wave control device 10 may further include a waveguide member 300 including a core 300b of an electromagnetic wave waveguide.
- a waveguide member 300 including a core 300b of an electromagnetic wave waveguide since the core 300b is provided separately from the magnetic material 200, the degree of freedom in selecting the material of the magnetic material 200 can be improved.
- the metamaterial 100 and the magnetic material 200 may be provided on the outer surface of the core of the waveguide member 300 . As a result, the metamaterial 100 and the magnetic material 200 can be stably arranged at positions where they can exert sufficient control action on electromagnetic waves.
- the metamaterial 100 includes a split ring resonator, the magnetic moment direction MMD of the split ring resonator and the waveguide direction WGD of the electromagnetic wave are substantially perpendicular, and the magnetic moment direction MMD and the magnetization of the magnetic material 200 are aligned. It is preferable that the direction MD is substantially perpendicular. Thereby, the control action of the metamaterial 100 and the magnetic material 200 can be exerted on electromagnetic waves.
- the split direction SD (cut direction) of the split ring resonator as the metamaterial 100 is more preferably substantially perpendicular to both the waveguide direction WGD and the magnetization direction MD. As a result, the control action of the metamaterial 100 and the magnetic material 200 can be reliably exerted on electromagnetic waves.
- the electromagnetic wave to be controlled by the wave control device 10 is preferably guided in TM mode. As a result, the wave control device 10 can reliably generate the MO effect with respect to electromagnetic waves.
- the magnetization direction MD of the magnetic material 200 may be set by an external magnetic field. Thereby, the magnetization direction MD can be stably maintained in a desired direction.
- FIG. 14A is a conceptual diagram of the wave control device 20 according to the first embodiment.
- FIG. 14B is a diagram showing a wave equation of electromagnetic waves controlled by the wave control device 20 according to the second embodiment.
- the xyz three-dimensional orthogonal coordinate system for example, left-handed system shown in FIG. 14A will be used as appropriate.
- the magnetic moment direction (substantially x-axis direction) of the split ring resonator as the metamaterial 100 and direction) are substantially perpendicular to each other, and the magnetic moment direction (substantially x-axis direction) of the split ring resonator and the magnetization direction (substantially y-axis direction) of the magnetic material are substantially perpendicular.
- the split direction (cut direction, approximately y-axis direction) of the split ring resonator as the metamaterial 100 is approximately perpendicular to the electromagnetic wave guiding direction (substantially z-axis direction), and It is substantially parallel to the magnetization direction MD (substantially the y-axis direction) of the magnetic material 200 .
- the wave motion control device 20 according to the second embodiment can obtain the same effect as the wave motion control device 10 according to the first embodiment.
- the core of the electromagnetic wave waveguide is a magnetic material 200, as shown in FIG.
- the metamaterial 100 is provided on the outer surface (for example, the side surface with the larger area) of the magnetic material 200 as the core.
- a plurality of metamaterials 100 are provided regularly (for example, at equal intervals) substantially parallel to the waveguiding direction WGD (longitudinal direction of the magnetic material 200) of the electromagnetic waves to be controlled.
- the magnetic moment direction MMD of the split ring resonator as the metamaterial 100 is substantially perpendicular to the waveguide direction WGD of the electromagnetic waves, and the magnetic moment direction MMD of the split ring resonator and the magnetic material It is substantially perpendicular to the magnetization direction MD of the material 200 .
- the split direction SD (cutting direction) of the split ring resonator as the metamaterial 100 is substantially perpendicular to the waveguide direction WGD of the electromagnetic waves, and the magnetization direction of the magnetic material 200. It is substantially parallel to MD.
- the metamaterial 100 is provided on the other outer surface (for example, the smaller side surface) of the magnetic material 200 serving as the core. Except for the above, it has substantially the same configuration as the wave control device 20-1 according to the first embodiment.
- the split direction SD (cut direction) of the split ring resonator as the metamaterial 100 is substantially perpendicular to the waveguide direction WGD of the electromagnetic wave, and also the magnetization direction MD of the magnetic material 200. Almost parallel.
- the wave control device 20-3 As shown in FIG. 17, the wave control device 20-3 according to the third embodiment further includes a waveguide member 300 including a core 300b of an electromagnetic wave waveguide.
- the waveguide member 300 includes, as an example, a base portion 300a in addition to the core 300b.
- a core 300b which is a ridge portion, is provided on a flat base portion 300a.
- the metamaterial 100 is provided on the upper surface of the core 300b, and the magnetic material 200 is provided on one side surface of the core 300b.
- a plurality of metamaterials 100 are provided regularly (for example, at regular intervals) substantially parallel to the waveguide direction WGD of the electromagnetic wave to be controlled (the longitudinal direction of the magnetic material 200).
- the waveguide member 300 is formed by processing a substrate transparent to the wavelength of the electromagnetic wave (for example, Si substrate) or the like in order to guide the electromagnetic wave to be controlled.
- the metamaterial 100 can be made of Au
- the magnetic material 200 can be made of YIG, for example.
- the magnetic moment direction MMD of the split ring resonator as the metamaterial 100 is substantially perpendicular to the waveguide direction WGD of the electromagnetic waves, and the magnetic moment direction MMD of the split ring resonator and the magnetic material It is substantially perpendicular to the magnetization direction MD of the material 200 .
- the split direction SD (cut direction) of the split ring resonator as the metamaterial 100 is substantially perpendicular to the waveguide direction WGD of the electromagnetic waves, and the magnetization direction of the magnetic material 200. It is substantially parallel to MD.
- the wave control device 10-4 according to the fourth embodiment has the metamaterial 100 provided on the side surface of the core 300b and the magnetic material 200 provided on the upper surface of the core 300b. Except for this, it has substantially the same configuration as the wave motion control device 20-3 according to the third embodiment.
- the split direction SD (cut direction) of the split ring resonator as the metamaterial 100 is substantially perpendicular to the waveguiding direction WGD of the electromagnetic wave and the magnetization direction MD of the magnetic material 200. Almost parallel.
- a wave motion control device 20-5 according to Example 5 has a metamaterial 100 provided on one of the facing one side and the other side of a core 300b, and a magnetic material 200 on the other side. It has substantially the same configuration as the wave motion control device 20-3 according to the third embodiment, except that it is provided.
- the split direction SD (cut direction) of the split ring resonator as the metamaterial 100 is substantially perpendicular to the waveguiding direction WGD of the electromagnetic waves and the magnetization direction MD of the magnetic material 200. Almost parallel.
- FIG. 20A is a conceptual diagram of a wave control device 30 according to the third embodiment.
- FIG. 20B is a diagram showing a wave equation of electromagnetic waves controlled by the wave control device 30 according to the third embodiment.
- the xyz three-dimensional orthogonal coordinate system for example, left-handed system shown in FIG. 20A will be used as appropriate.
- the magnetic moment direction (substantially x-axis direction) of the split ring resonator as the metamaterial 100 ) are substantially perpendicular to each other, and the magnetic moment direction (substantially x-axis direction) of the split ring resonator and the magnetization direction (substantially z-axis direction) of the magnetic material are substantially perpendicular.
- the split direction (cut direction, approximately z-axis direction) of the split ring resonator as the metamaterial 100 is the guiding direction (approximately z-axis direction) of the electromagnetic wave and the magnetization direction of the magnetic material 200. It is substantially parallel to both MD (substantially z-axis direction).
- the core of the electromagnetic wave waveguide is made of the magnetic material 200, as shown in FIG.
- the metamaterial 100 is provided on the outer surface (for example, the side surface with the larger area) of the magnetic material 200 as the core.
- a plurality of metamaterials 100 are provided regularly (for example, at equal intervals) substantially parallel to the waveguiding direction WGD (longitudinal direction of the magnetic material 200) of the electromagnetic waves to be controlled.
- the magnetic moment direction MMD of the split ring resonator as the metamaterial 100 is substantially perpendicular to the waveguide direction WGD of the electromagnetic waves, and the magnetic moment direction MMD of the split ring resonator and the magnetic material It is substantially perpendicular to the magnetization direction MD of the material 200 .
- the split direction SD (cut direction) of the split ring resonator as the metamaterial 100 is substantially parallel to both the waveguide direction WGD of the electromagnetic wave and the magnetization direction MD of the magnetic material 200.
- the metamaterial 100 is provided on the other outer surface (for example, the smaller side surface) of the magnetic material 200 as the core. Except for the above, it has substantially the same configuration as the wave control device 30-1 according to the first embodiment.
- the split direction SD (cut direction) of the split ring resonator as the metamaterial 100 is substantially parallel to both the waveguide direction WGD of the electromagnetic wave and the magnetization direction MD of the magnetic material 200.
- the wave control device 30-3 further includes a waveguide member 300 including a core 300b of an electromagnetic wave waveguide.
- the waveguide member 300 includes, as an example, a base portion 300a in addition to the core 300b.
- a core 300b which is a ridge portion, is provided on a flat base portion 300a.
- the metamaterial 100 is provided on the upper surface of the core 300b, and the magnetic material 200 is provided on one side surface of the core 300b.
- a plurality of metamaterials 100 are provided regularly (for example, at regular intervals) substantially parallel to the waveguide direction WGD of the electromagnetic wave to be controlled (the longitudinal direction of the magnetic material 200).
- the waveguide member 300 is formed by processing a substrate transparent to the wavelength of the electromagnetic wave (for example, Si substrate) or the like in order to guide the electromagnetic wave to be controlled.
- the metamaterial 100 can be made of Au
- the magnetic material 200 can be made of YIG, for example.
- the magnetic moment direction MMD of the split ring resonator serving as the metamaterial 100 is substantially perpendicular to the waveguide direction WGD of the electromagnetic waves
- the magnetic moment direction MMD of the split ring resonator and the magnetic material 200 is substantially perpendicular to the magnetization direction MD of
- the split direction SD (cut direction) of the split ring resonator as the metamaterial 100 is substantially parallel to both the waveguide direction WGD of the electromagnetic wave and the magnetization direction MD of the magnetic material 200.
- a wave motion control device 30-4 according to Example 4 has substantially the same configuration as the wave control device 30-3 according to the third embodiment.
- the split direction SD (cut direction) of the split ring resonator as the metamaterial 100 is substantially parallel to both the waveguide direction WGD of the electromagnetic wave and the magnetization direction MD of the magnetic material 200.
- a wave control device 30-5 according to Example 5 has a metamaterial 100 provided on one side of a core 300b facing one side and the other side, and a magnetic material 200 on the other side. It has substantially the same configuration as the wave control device 30-3 according to the third embodiment, except that it is provided.
- the split direction SD (cut direction) of the split ring resonator as the metamaterial 100 is substantially parallel to both the waveguide direction WGD of the electromagnetic wave and the magnetization direction MD of the magnetic material 200.
- FIG. 26A is a conceptual diagram of a wave control device 40 according to the fourth embodiment.
- FIG. 26B is a diagram showing a wave equation of electromagnetic waves controlled by the wave control device 40 according to the fourth embodiment.
- the xyz three-dimensional orthogonal coordinate system for example, left-handed system shown in FIG. 26A will be used as appropriate.
- the wave control device 40 As shown in FIG. ) are substantially perpendicular to each other, and the magnetic moment direction (substantially x-axis direction) of the split ring resonator is substantially perpendicular to the magnetization direction MD (substantially y-axis direction) of the magnetic material. Furthermore, in the wave control device 40, the split direction (cut direction, approximately z-axis direction) of the split ring resonator as the metamaterial 100 is approximately parallel to the electromagnetic wave guiding direction (substantially z-axis direction), and It is substantially perpendicular to the magnetization direction MD (substantially y-axis direction) of the magnetic material 200 .
- the wave control device 40 In the wave control device 40, by combining the arrangement of the metamaterial 100 and the magnetization direction of the magnetic material 200, the electromagnetic wave guided in the TM mode can be controlled while mode-matching (while maintaining the TM mode). . Furthermore, the wave equation of the electromagnetic waves controlled by the wave control device 20 is expressed by the following equation (4) (see FIG. 26B), and it can be seen that both the MO effect and the ME effect are exhibited.
- the core of the electromagnetic wave waveguide is a magnetic material 200, as shown in FIG.
- the metamaterial 100 is provided on the outer surface (for example, the side surface with the larger area) of the magnetic material 200 as the core.
- a plurality of metamaterials 100 are provided regularly (for example, at equal intervals) substantially parallel to the waveguiding direction WGD (longitudinal direction of the magnetic material 200) of the electromagnetic waves to be controlled.
- the magnetic moment direction MMD of the split ring resonator as the metamaterial 100 is substantially perpendicular to the waveguide direction WGD of the electromagnetic waves, and the magnetic moment direction MMD of the split ring resonator and the magnetic It is substantially perpendicular to the magnetization direction MD of the body material 200 .
- the split direction SD (cutting direction) of the split ring resonator as the metamaterial 100 is substantially parallel to the waveguide direction WGD of the electromagnetic waves, and the magnetization direction of the magnetic material 200. It is substantially perpendicular to MD.
- the metamaterial 100 is provided on the other outer surface (for example, the side surface with the smaller area) of the magnetic material 200 as the core. Except for the above, it has substantially the same configuration as the wave control device 40-1 according to the first embodiment.
- the split direction SD (cut direction) of the split ring resonator as the metamaterial 100 is substantially parallel to the waveguide direction WGD of the electromagnetic waves, and also the magnetization direction MD of the magnetic material 200. Almost vertical.
- the wave control device 40-3 As shown in FIG. 29, the wave control device 40-3 according to the third embodiment further includes a waveguide member 300 including a core 300b of an electromagnetic wave waveguide.
- the waveguide member 300 includes, as an example, a base portion 300a in addition to the core 300b.
- a core 300b which is a ridge portion, is provided on a flat base portion 300a.
- the metamaterial 100 is provided on the upper surface of the core 300b, and the magnetic material 200 is provided on one side surface of the core 300b.
- a plurality of metamaterials 100 are provided regularly (for example, at regular intervals) substantially parallel to the waveguide direction WGD of the electromagnetic wave to be controlled (the longitudinal direction of the magnetic material 200).
- the waveguide member 300 is formed by processing a substrate transparent to the wavelength of the electromagnetic wave (for example, Si substrate) or the like in order to guide the electromagnetic wave to be controlled.
- the metamaterial 100 can be made of Au
- the magnetic material 200 can be made of YIG, for example.
- the magnetic moment direction MMD of the split-ring resonator serving as the metamaterial 100 is substantially perpendicular to the waveguide direction WGD of the electromagnetic waves, and the magnetic moment direction MMD of the split-ring resonator and the magnetic material 200 are substantially perpendicular to each other. is substantially perpendicular to the magnetization direction MD of .
- the split direction SD (cut direction) of the split ring resonator as the metamaterial 100 is substantially parallel to the waveguide direction WGD of the electromagnetic waves, and the magnetization direction of the magnetic material 200. It is substantially perpendicular to MD.
- a wave motion control device 40-4 according to Example 4 has substantially the same configuration as the wave control device 40-3 according to the third embodiment.
- the split direction SD (cut direction) of the split ring resonator as the metamaterial 100 is substantially parallel to the waveguide direction WGD of the electromagnetic waves and the magnetization direction MD of the magnetic material 200. Almost vertical.
- a wave control device 40-5 according to Example 5 has a metamaterial 100 provided on one side of a core 300b facing one side and the other side, and a magnetic material 200 on the other side. It has substantially the same configuration as the wave motion control device 40-3 according to the third embodiment, except that it is provided.
- the split direction SD (cut direction) of the split ring resonator as the metamaterial 100 is substantially parallel to the waveguide direction WGD of the electromagnetic waves and the magnetization direction MD of the magnetic material 200. Almost vertical.
- the wave control device 60 according to the sixth embodiment described above it is possible to obtain the same effect as the wave control device 50 according to the fifth embodiment.
- Wave control device (Configuration of wave control device) A wave motion control device according to a fifth embodiment of the present technology will be described below with reference to the drawings.
- 32A is a conceptual diagram of the wave control device 50 according to the fifth embodiment.
- FIG. 32B is a diagram showing a wave equation of electromagnetic waves controlled by the wave control device 50 according to the fifth embodiment.
- the xyz three-dimensional orthogonal coordinate system (for example, left-handed system) shown in FIG. 32A will be used as appropriate.
- the wave control device 50 has a metamaterial 100 arranged and a magnetic material 200 so that at least an interaction between an electromagnetic effect and a magneto-optical effect occurs with respect to electromagnetic waves.
- a magnetization direction MD is set.
- the metamaterial 100 may be arranged and the magnetization direction MD of the magnetic material 200 may be set so as to further generate an electromagnetic effect and a magneto-optical effect on electromagnetic waves.
- the wave control device 50 according to the fifth embodiment as an example, as shown in FIG. ) are substantially perpendicular to each other, and the magnetic moment direction (substantially x-axis direction) of the split ring resonator and the magnetization direction MD (substantially x-axis direction) of the magnetic material 200 are substantially parallel (more specifically, are almost in the same direction). Furthermore, in the wave control medium 50 according to the fifth embodiment, the split direction (substantially z-axis direction) of the split ring resonator as the metamaterial 100 is substantially parallel to the waveguide direction (substantially z-axis direction) of the electromagnetic wave. .
- the wave control device 50 In the wave control device 50, by combining the arrangement of the metamaterial 100 and the magnetization direction of the magnetic material 200, it is possible to control the electromagnetic waves guided in the TM mode while mode-matching (while maintaining the TM mode). . Furthermore, the wave equation of the electromagnetic wave controlled by the wave control device 50 becomes as shown in the following equation (5) (see FIG. 32B), and the MO effect, the ME effect, and the interaction between the MO effect and the ME effect are expressed. I know you do.
- the nonreciprocity which is a function of the MO effect, is greatly enhanced compared to the case where only the magnetic material is used (Fig. 3B).
- the non-reciprocity of the medium containing the metamaterial 100 and the magnetic material 200 arranged as shown in FIG. It is obtained by calculating the difference in propagation loss (non-reciprocal loss difference) and the phase difference (non-reciprocal phase difference) between forward and backward waves from the calculated propagation constant ⁇ .
- FIG. 49B shows the nonreciprocal loss difference
- FIG. 49C shows the nonreciprocal phase difference when the uppermost layer is composed of the magnetic material 200 and only the MO effect occurs in the slab waveguide structure of FIG. 49A.
- the non-reciprocal loss difference of is shown in FIG. 49D and the non-reciprocal phase difference is shown in FIG. 49E.
- the non-reciprocal loss difference in FIG. 49D shows a large value compared to the non-reciprocal loss difference in FIG. 49B.
- the non-reciprocal phase difference in FIG. 49E shows a large value compared to the non-reciprocal phase difference in FIG. 49C.
- a wave control device 50 according to the fifth embodiment includes a metamaterial 100 and a magnetic material 200 .
- the controllability of electromagnetic waves can be improved.
- the metamaterial 100 is arranged and the magnetization direction of the magnetic material 200 is arranged so that at least the interaction between the electromagnetic effect and the magneto-optical effect occurs with respect to electromagnetic waves. MD is set. This can sufficiently improve the controllability of electromagnetic waves.
- the metamaterial 100 is arranged and the magnetization direction MD of the magnetic material is set so that an electromagnetic effect and a magneto-optical effect are further generated with respect to electromagnetic waves. Thereby, electromagnetic waves can be controlled almost perfectly.
- wave motion control device 50 substantially the same effects as those of the wave motion control device 10 according to the first embodiment can be obtained.
- the core of the electromagnetic wave waveguide is made of the magnetic material 200, as shown in FIG.
- the metamaterial 100 is provided on the outer surface (for example, the side surface with the larger area) of the magnetic material 200 as the core.
- a plurality of metamaterials 100 are provided regularly (for example, at equal intervals) substantially parallel to the waveguiding direction WGD (longitudinal direction of the magnetic material 200) of the electromagnetic waves to be controlled.
- the magnetic moment direction MMD of the split ring resonator serving as the metamaterial 100 is substantially perpendicular to the waveguide direction WGD of the electromagnetic waves, and the magnetic moment direction MMD of the split ring resonator and the magnetic It is substantially parallel to the magnetization direction MD of the body material 200 (more precisely, the directions are substantially the same). Furthermore, in the wave control device 50-1, the split direction SD (cut direction) of the split ring resonator as the metamaterial 100 is substantially parallel to the waveguide direction WGD of the electromagnetic wave.
- the metamaterial 100 is provided on the other outer surface (for example, the side surface with the smaller area) of the magnetic material 200 serving as the core. Except for the above, the configuration is substantially the same as that of the wave control device 50-1 according to the first embodiment.
- the split direction SD (cut direction) of the split ring resonator as the metamaterial 100 is substantially parallel to the waveguide direction WGD of the electromagnetic wave.
- the wave control device 50-3 according to Example 3 further includes a waveguide member 300 including a core 300b of an electromagnetic wave waveguide.
- the waveguide member 300 includes, as an example, a base portion 300a in addition to the core 300b.
- a core 300b which is a ridge portion, is provided on a flat base portion 300a.
- the metamaterial 100 is provided on the upper surface of the core 300b, and the magnetic material 200 is provided on one side surface of the core 300b.
- a plurality of metamaterials 100 are provided regularly (for example, at regular intervals) substantially parallel to the waveguide direction WGD of the electromagnetic wave to be controlled (the longitudinal direction of the magnetic material 200).
- the waveguide member 300 is formed by processing a substrate transparent to the wavelength of the electromagnetic wave (for example, Si substrate) or the like in order to guide the electromagnetic wave to be controlled.
- the metamaterial 100 can be made of Au
- the magnetic material 200 can be made of YIG, for example.
- the magnetic moment direction MMD of the split ring resonator serving as the metamaterial 100 is substantially perpendicular to the waveguide direction WGD of the electromagnetic waves, and the magnetic moment direction MMD of the split ring resonator and the magnetic It is substantially parallel to the magnetization direction MD of the body material 200 .
- the split direction SD (cut direction) of the split ring resonator as the metamaterial 100 is substantially parallel to the waveguide direction WGD of the electromagnetic waves.
- a wave motion control device 50-4 according to Example 4 has substantially the same configuration as the wave control device 50-3 according to the third embodiment.
- the split direction SD (cut direction) of the split ring resonator as the metamaterial 100 is substantially parallel to the waveguide direction WGD of the electromagnetic wave.
- the wave motion control device 50-5 according to the fifth embodiment has the metamaterial 100 provided on one of the facing one side and the other side of the core 300b, and the magnetic material 200 provided on the other side. It has substantially the same configuration as the wave motion control device 50-3 according to the third embodiment, except that
- the split direction SD (cut direction) of the split ring resonator as the metamaterial 100 is substantially parallel to the waveguide direction WGD of the electromagnetic waves.
- FIG. 38A is a conceptual diagram of a wave control device 60 according to the sixth embodiment.
- FIG. 38B is a diagram showing a wave equation of electromagnetic waves controlled by the wave control device 60 according to the sixth embodiment.
- the xyz three-dimensional orthogonal coordinate system for example, left-handed system shown in FIG. 38A will be used as appropriate.
- the wave control device 60 has a metamaterial 100 arranged and a magnetic material 200 so that at least an interaction between an electromagnetic effect and a magneto-optical effect occurs with respect to electromagnetic waves.
- a magnetization direction MD is set.
- the metamaterial 100 may be arranged and the magnetization direction MD of the magnetic material 200 may be set so as to further generate an electromagnetic effect and a magneto-optical effect on electromagnetic waves.
- the magnetic moment direction (substantially x-axis direction) of the split ring resonator as the metamaterial 100 and direction) are substantially perpendicular to each other, and the magnetic moment direction (substantially x-axis direction) of the split ring resonator and the magnetization direction MD (substantially x-axis direction) of the magnetic material 200 are substantially parallel (more details direction is almost the same).
- the split direction (substantially y-axis direction, cut direction) of the split ring resonator as the metamaterial 100 is substantially perpendicular to the waveguide direction (substantially z-axis direction) of the electromagnetic waves.
- the wave control device 60 In the wave control device 60, by combining the arrangement of the metamaterial 100 and the magnetization direction of the magnetic material 200, the electromagnetic wave guided in the TM mode can be controlled while mode-matching (while maintaining the TM mode). . Furthermore, the wave equation of the electromagnetic wave controlled by the wave control device 60 becomes as shown in the following formula (6) (see FIG. 38B), and the MO effect, the ME effect, and the interaction between the MO effect and the ME effect are expressed. I know you do.
- the core of the electromagnetic wave waveguide is made of the magnetic material 200.
- the metamaterial 100 is provided on one outer surface (for example, the larger side surface) of the magnetic material 200 as the core.
- a plurality of metamaterials 100 are provided regularly (for example, at equal intervals) substantially parallel to the waveguiding direction WGD (longitudinal direction of the magnetic material 200) of the electromagnetic waves to be controlled.
- the magnetic moment direction MMD of the split ring resonator as the metamaterial 100 is substantially perpendicular to the waveguide direction WGD of the electromagnetic waves, and the magnetic moment direction MMD of the split ring resonator and the magnetic It is substantially parallel to the magnetization direction MD of the body material 200 (more precisely, the directions are substantially the same). Furthermore, in the wave control device 60-1, the split direction SD (cutting direction) of the split ring resonator as the metamaterial 100 is substantially perpendicular to the waveguide direction WGD of the electromagnetic wave.
- the metamaterial 100 is provided on the other outer surface (for example, the smaller side surface) of the magnetic material 200 serving as the core. Except for the above, it has substantially the same configuration as the wave motion control device 60-1 according to the first embodiment.
- the split direction SD (cut direction) of the split ring resonator as the metamaterial 100 is substantially perpendicular to the waveguide direction WGD of the electromagnetic wave.
- a wave control device 60-3 according to the third embodiment further includes a waveguide member 300 including a core 300b of an electromagnetic wave waveguide, as shown in FIG.
- the waveguide member 300 includes, as an example, a base portion 300a in addition to the core 300b.
- a core 300b which is a ridge portion, is provided on a flat base portion 300a.
- the metamaterial 100 is provided on the upper surface of the core 300b, and the magnetic material 200 is provided on one side surface of the core 300b.
- a plurality of metamaterials 100 are provided regularly (for example, at regular intervals) substantially parallel to the waveguide direction WGD of the electromagnetic wave to be controlled (the longitudinal direction of the magnetic material 200).
- the waveguide member 300 is formed by processing a substrate transparent to the wavelength of the electromagnetic wave (for example, Si substrate) or the like in order to guide the electromagnetic wave to be controlled.
- the metamaterial 100 can be made of Au
- the magnetic material 200 can be made of YIG, for example.
- the magnetic moment direction MMD of the split ring resonator as the metamaterial 100 is substantially perpendicular to the waveguide direction WGD of the electromagnetic waves
- the magnetic moment direction MMD of the split ring resonator and the magnetic It is substantially parallel to the magnetization direction MD of the body material 200
- the split direction SD (cutting direction) of the split ring resonator as the metamaterial 100 is substantially perpendicular to the waveguide direction WGD of the electromagnetic wave.
- a wave motion control device 60-4 according to Example 4 has substantially the same configuration as the wave control device 60-3 according to the third embodiment.
- the split direction SD (cut direction) of the split ring resonator as the metamaterial 100 is substantially perpendicular to the waveguide direction WGD of the electromagnetic waves.
- a wave control device 60-5 according to Example 5 has a metamaterial 100 provided on one side of a core 300b facing one side and the other side, and a magnetic material 200 on the other side. It has substantially the same configuration as the wave control device 60-3 according to the third embodiment, except that it is provided.
- the split direction SD (cut direction) of the split ring resonator as the metamaterial 100 is substantially perpendicular to the waveguide direction WGD of the electromagnetic wave.
- Wave control device according to the seventh embodiment of the present technology> 50A and 50B are diagrams for explaining free space propagation (forward wave) considering only the MO effect. 51A and 51B are diagrams for explaining free space propagation (backward waves) considering only the MO effect.
- the MO effect has nonreciprocal polarization rotation controllability.
- FIGS. 52A and 52B are diagrams for explaining free space propagation (forward wave) considering only the ME effect.
- 53A and 53B are diagrams for explaining free space propagation (backward waves) considering only the ME effect.
- linearly polarized light is applied as a backward wave (backward wave) along its propagation direction.
- the direction of polarization rotation rotation of linearly polarized light
- the ME effect has reciprocal polarization rotation controllability.
- FIGS. 54A and 54B are diagrams for explaining an example of free space propagation (forward wave) considering the MO effect and the ME effect.
- 55A and 55B are diagrams for explaining an example of free-space propagation (backward waves) considering the MO effect and the ME effect.
- FIGS. 56A and 56B are diagrams for explaining another example of free space propagation (forward wave) considering the MO effect and the ME effect.
- 57A and 57B are diagrams for explaining another example of free space propagation (backward wave) considering the MO effect and the ME effect.
- the inventors have developed a wave motion control device according to the seventh embodiment as a wave motion control device for embodying this new knowledge.
- the wave motion control device according to the seventh embodiment will be described in detail with several examples.
- FIG. 58A is a perspective view of a wave motion control device 70-1 according to Example 1 of the seventh embodiment of the present technology.
- FIG. 58B is a diagram for explaining the arrangement of the metamaterials 100 in the wave control device 70-1 of FIG. 58A, which can exhibit unidirectional polarization controllability.
- the three-dimensional orthogonal coordinate system shown in FIG. 58A will be used as appropriate.
- the polarization state of only one of the forward wave FW and the backward wave BW of the electromagnetic wave to be controlled is changed (so that the unidirectional limited polarization controllability is exhibited). )
- the metamaterial 100 is placed and the magnetization direction MD of the magnetic material 200 is set.
- the difference in the effective refractive index between the right-handed circularly polarized light and the left-handed circularly polarized light of the forward wave FW as the electromagnetic wave to be controlled ) and the effective refractive index difference between the right-handed circularly polarized light and the left-handed circularly polarized light of the backward wave BW as the electromagnetic wave difference in the refractive indices sensed by the right-handed circularly polarized light and the left-handed circularly polarized light.
- the metamaterial 100 is arranged so that it differs from 2 effective refractive index differences, and the magnetization direction M of the magnetic material 200 is set.
- FIGS. 61A and 61B are diagrams for explaining the conditions under which the unidirectional limited polarization controllability is exhibited.
- the horizontal axis indicates the parameter ⁇ for the MO effect
- the vertical axis indicates the parameter ⁇ for the ME effect.
- FIG. 61A shows the difference in effective refractive index (first effective refractive index difference) between right-handed circularly polarized and left-handed circularly polarized forward waves by gradation (shading).
- FIG. 61B shows the difference in effective refractive index (second effective refractive index difference) between the right-handed circularly polarized light and the left-handed circularly polarized light of the backward wave using gradation.
- the first effective refractive index difference is relatively large and the second effective refractive index difference is relatively small. , and thus only the polarization direction of the forward wave FW can be rotated.
- the values on the dashed-dotted lines in FIGS. 61A and 61B as the values of ⁇ and ⁇ the first effective refractive index difference is relatively small and the second effective refractive index difference is relatively large. It is thus possible to rotate only the polarization direction of the backward wave BW.
- the metamaterial 100 and the magnetic material 200 are arranged on the propagation path of the electromagnetic waves (forward wave FW and backward wave BW) to be controlled.
- the metamaterial 100 and the magnetic material 200 are arranged side by side along the propagation direction of the electromagnetic wave (for example, the y-axis direction).
- the magnetization direction MD of the magnetic material 200 (the direction in which the external magnetic field is applied) is along the propagation direction of the electromagnetic wave (for example, the -y direction).
- the value is entered in the off-diagonal component a (see FIG. 3A) of the MO tensor. That is, nonreciprocal polarization rotation control can be performed on electromagnetic waves by the MO effect.
- the magnetic material 200 is, for example, a flat plate member made of a magnetic material and supported by the support substrate 400 .
- the magnetic material 200 and the support substrate 400 are both arranged parallel to the xz plane.
- a plurality of metamaterials 100 are provided on a magnetic material 200 in an array (for example, in a matrix along the xz plane).
- the support substrate 400 include semiconductor substrates such as Si substrates and Ge substrates, and SOI (Silicon On Insulator) substrates.
- the magnetic material 200 and the support substrate 400 are preferably transparent to the wavelength of the electromagnetic wave to be controlled.
- each metamaterial 100 has a chirality structure.
- each metamaterial 100 includes, for example, a helix.
- the number of turns of the spiral is 1, but may be 2 or more.
- Each metamaterial 100 is arranged such that the magnetic moment direction (pitch direction, axial direction) of the helix is substantially orthogonal to the magnetization direction MD of the magnetic material 200 (specifically, substantially parallel to the x-axis direction). It is In this case, the diagonal component G of the ME tensor is populated (see FIG. 58B). That is, reciprocal polarization rotation control can be performed on electromagnetic waves by the ME effect.
- non-reciprocal polarization rotation control by the MO effect and reciprocal polarization rotation control by the ME effect can be combined for the electromagnetic wave to be controlled. Only one polarization direction of forward wave FW and backward wave BW can be rotated.
- the wave control device 70-1 Since the wave control device 70-1 has such a unidirectional limited polarization controllability, it can be expected to be used as a wave control device for, for example, a polarization control element or an optical isolator.
- FIG. 59A is a perspective view of a wave motion control device 70-2 according to Example 2 of the seventh embodiment of the present technology.
- FIG. 59B is a diagram for explaining the arrangement of the metamaterials 100 in the wave control device 70-2 of FIG. 59A, which can exhibit unidirectional polarization controllability.
- the wave control device 70-2 has the same configuration as the wave control device 70-1 according to Example 1, except that the arrangement (orientation) of the metamaterial 100 is different. .
- each metamaterial 100 is arranged such that the magnetic moment direction (pitch direction, axial direction) of the helical body is substantially parallel to the magnetization direction MD of the magnetic material 200 (specifically, substantially in the y-axis direction). are arranged parallel to each other).
- the diagonal component H of the ME tensor has a value (see FIG. 59B).
- the wave motion control device 70-2 has the same functions and effects as the wave motion control device 70-1 according to the first embodiment.
- FIG. 60A is a perspective view of a wave motion control device 70-3 according to Example 3 of the seventh embodiment of the present technology.
- FIG. 60B is a diagram for explaining the layout of the metamaterial 100 in the wave control device 70-2 of FIG. 60A, which can exhibit unidirectional polarization controllability.
- the wave control device 70-3 has the same configuration as the wave control device 70-1 according to Example 1, except that the arrangement (orientation) of the metamaterial 100 is different. .
- each metamaterial 100 is arranged such that the magnetic moment direction (pitch direction, axial direction) of the helix is substantially parallel to the z-axis (substantially perpendicular to the magnetization direction MD).
- the diagonal component I of the ME tensor has a value (see FIG. 60B).
- the wave motion control device 70-3 has the same actions and effects as the wave motion control device 70-1 according to the first embodiment.
- the shape, arrangement and number of metamaterials 100 can be changed as appropriate.
- the shape of the metamaterial 100 may be any shape as long as it has chirality.
- the array arrangement may be a staggered arrangement or a one-dimensional arrangement.
- the number of metamaterials 100 is not limited to plural, and may be singular.
- the metamaterial included in the wave control device according to the present technology has a shape in which magnetization (or electric polarization) is induced by an electric field (or magnetic field), and the induced electric polarization or magnetization depends on the arrangement of the metamaterial. preferable.
- shape of such a metamaterial in addition to the split ring resonator (SSR, see FIG. 44A) described in each of the above embodiments, for example, a double split ring resonator (DSSR, see FIG. 44B), a sphere (see FIG. 45A) , cut wire pair (see FIG. 45B), spiral (see FIG. 46A), mushroom shape (see FIG. 46B), V shape (see FIGS.
- 47A and 47B fishnet shape (see FIGS. 48A and 48B). utensils can be mentioned. 47A and 47B are quoted from Meinzer, N., Barnes, W. L., & Hooper, I. R. (2014). Plasmonic meta-atoms and metasurfaces. Nature Photonics, 8(12), 889-898. . 48A and 48B are shown in Ku, Z., Dani, K. M., Upadhya, P. C., & Brueck, S. R. (2009). Bianisotropicnegative-index metamaterial embedded in a symmetric medium. Journal of the Optical Society of America B, 26(12). , B34.
- the resonators having the shapes described above can also be constructed with the same material and the same size as the split ring resonators described in the above embodiments. Even when the metamaterial has a double split resonator, the same combination as the combination of the arrangement of the split ring resonator and the magnetization direction of the magnetic material described in each of the above embodiments can be adopted. Equivalent or better effects can be obtained by
- the metamaterial 100 may be formed by performing self-organization by drying the mixed polymer solution, or a photocurable resin, a thermosetting resin, a photosoluble resin, or a heat-soluble resin may be applied to the components of the waveguide.
- the metamaterial 100 may be formed by 3D printing a flexible resin, or by patterning a metal onto a component of a waveguide to form a metal wire and then spontaneously shrinking the metal wire.
- Material 100 may be formed, or metamaterial 100 may be formed by spontaneous growth of metal structures from metal patterned surface treatments on waveguide components.
- the corresponding ME tensor component changes, that is, the direction of magnetization (or electric polarization) induced when an electric field (or magnetic field) is applied in a certain direction varies depending on the shape of the metamaterial. Therefore, the metamaterial is arranged according to the shape of the metamaterial so that an electromagnetic effect, a magneto-optical effect, and/or an interaction between the electromagnetic effect and the magneto-optical effect occurs with respect to electromagnetic waves, and , the magnetization direction of the magnetic material is preferably set.
- the metamaterial is arranged according to the shape of the metamaterial and the magnetization direction of the magnetic material is set so that at least the electromagnetic effect and the magneto-optical effect are generated with respect to electromagnetic waves. preferably.
- the metamaterial is arranged and the magnetization direction of the magnetic material is set according to the shape of the metamaterial so that the electromagnetic effect and the magneto-optical effect are further generated with respect to the electromagnetic wave. is preferred.
- the electromagnetic wave is caused to interact with the electromagnetic effect, the magneto-optical effect, and/or the interaction between the electromagnetic effect and the magneto-optical effect.
- the metamaterial 100 is arranged, and the magnetization direction MD of the magnetic material 200 is preferably set. Thereby, controllability of electromagnetic waves can be improved.
- part of the configuration of the wave motion control device according to each example of each of the above embodiments may be combined within a mutually consistent range.
- the wave control device may be composed of a metamaterial and a magnetic material and arranged around the electromagnetic wave waveguide. That is, the wave control device does not have to include an electromagnetic wave waveguide as a component.
- the arrangement of the metamaterial and the magnetization direction of the magnetic material are combined so as to control (mode-match) the electromagnetic wave guided in the TM mode while maintaining the TM mode.
- the arrangement of the metamaterial and the magnetization direction of the magnetic material may be combined so as to control the electromagnetic waves guided in the TM mode without maintaining the TM mode (so as to provide mode mismatch).
- an electromagnetic wave waveguide may be composed of a core and a clad.
- the core and/or clad may be a magnetic material or may be part of the waveguide member.
- electromagnetic wave waveguides include, for example, a flat core sandwiched between two flat clads (slab type), a core surrounded by clads (embedded type), and a It is surrounded by a clad and part of the core is exposed to the outside (semi-embedded type), or it is a plate-shaped core with a rail-shaped clad (ridge type). good too.
- the metamaterial and the magnetic material may be provided on the same side of the core of the waveguide.
- the metamaterial and/or the magnetic material may be provided on the incident facet and/or the emitting facet of the core of the waveguide.
- the wave control device can also be applied to, for example, wavelength conversion elements, arithmetic elements, sensors, and the like.
- the wave control device can be used as a transmitting/receiving device for transmitting and receiving or a light receiving and emitting device for receiving and emitting light, a small antenna, a low profile antenna, a frequency selection filter, an artificial magnetic conductor, an electro Band gap materials, noise countermeasure materials, isolators, radio wave lenses, radar materials, optical lenses, optical films, optical elements for terahertz, radio wave and optical camouflage/invisibility materials, heat dissipation materials, heat shielding materials, heat storage materials, modulation/demodulation of electromagnetic waves, Wavelength conversion, electromagnetic wave reflection (electromagnetic wave control), electromagnetic wave transmission (electromagnetic wave control), non-linear device, speaker, energy absorption material, black body material, quenching material, energy conversion material, radio wave lens, optical lens, color filter, frequency selection filter , electromagnetic wave reflectors, beam phase control devices, polarization control elements, optical isolators, and
- a wave control device comprising a metamaterial and a magnetic material.
- the metamaterial is arranged such that an electromagnetic effect, a magneto-optical effect, and/or an interaction between the electromagnetic effect and the magneto-optical effect occurs with respect to electromagnetic waves, and the magnetic material is magnetized;
- the wave control device according to (1) wherein the direction is set.
- the metamaterial is arranged and the magnetization direction of the magnetic material is set so that at least an interaction between an electromagnetic effect and a magneto-optical effect occurs with respect to the electromagnetic wave; ).
- the meta is such that the effective refractive index difference between the forward circularly polarized light and the left circularly polarized light of the electromagnetic wave is different from the effective refractive index difference between the backward circularly polarized light and the backward circularly polarized light of the electromagnetic wave.
- the wave control device according to any one of (11) to (14), wherein a material is arranged and the magnetization direction of the magnetic material is set.
- the metamaterial includes a split ring resonator, the magnetic moment direction of the split ring resonator is substantially perpendicular to the waveguide direction of the electromagnetic wave, and the magnetic moment direction and the magnetization direction of the magnetic material are substantially perpendicular to each other.
- the wave motion control device according to any one of (2) to (10).
- the wave control device wherein the splitting direction of the split ring resonator is substantially parallel to the waveguide direction.
- the metamaterial includes a split ring resonator, the magnetic moment direction of the split ring resonator is substantially perpendicular to the waveguide direction of the electromagnetic wave, and the magnetic moment direction and the magnetization direction of the magnetic material are substantially perpendicular to each other.
- the wave motion control device according to any one of (2) to (10), wherein the and are substantially perpendicular to each other.
- the wave control device according to (1) to (23), wherein the metamaterial includes any one of a cut wire pair resonator, a spiral resonator, a mushroom resonator, a V-shaped resonator and a fishnet resonator. .
- the wave control device according to any one of (2) to (24), wherein the electromagnetic wave is guided in TM mode.
- the wave control device according to any one of (1) to (25), wherein the magnetization direction of the magnetic material is set by an external magnetic field.
- a wavelength conversion element comprising the wave control device according to any one of (1) to (26).
- a computing element comprising the wave control device according to any one of (1) to (26).
- a sensor comprising the wave control device according to any one of (1) to (26).
- a polarization control element comprising the wave control device according to any one of (1) to (26).
- An optical isolator comprising the wave control device according to any one of (1) to (26).
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Nonlinear Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Life Sciences & Earth Sciences (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
Abstract
電磁波の制御性を向上することができる波動制御装置を提供する。 本技術に係る波動制御装置は、メタマテリアルと磁性体材料とを備える。本技術に係る波動制御装置によれば、電磁波の制御性を向上することができる波動制御装置を提供する。本技術によれば、電磁波の制御性を向上することができる波動制御装置を提供することができる。
Description
本技術は、波動制御装置を用いた技術に関し、より詳細には、メタマテリアルを用いて電磁波を制御する技術に関する。
従来、メタマテリアルを用いて電磁波を制御する技術が知られている(例えば特許文献1~3参照)。
しかしながら、従来の技術では、電磁波の制御性を向上することに関して改善の余地があった。
そこで、本技術では、電磁波の制御性を向上することができる波動制御装置を提供することを主目的とする。
本技術は、メタマテリアルと磁性体材料とを備える、波動制御装置を提供する。
電磁波に対して電気磁気効果及び磁気光学効果、並びに/又は、電気磁気効果と磁気光学効果との相互作用が生じるように、前記メタマテリアルが配置され、且つ、前記磁性体材料の磁化方向が設定されていてもよい。
前記電磁波に対して少なくとも、電気磁気効果と磁気光学効果との相互作用が生じるように、前記メタマテリアルが配置され、且つ、前記磁性体材料の磁化方向が設定されていてもよい。
前記電磁波に対して電気磁気効果及び磁気光学効果が更に生じるように、前記メタマテリアルが配置され、且つ、前記磁性体材料の磁化方向が設定されていてもよい。
前記メタマテリアルは、電磁波の導波路の周辺に配置されていてもよい。
前記メタマテリアルは、前記導波路と一体的に設けられていてもよい。
前記導波路のコアは、前記磁性体材料であってもよい。
前記メタマテリアルは、前記コアの外面に設けられていてもよい。
前記導波路のコアを含む導波路部材を更に備えていてもよい。
前記メタマテリアル及び前記磁性体材料は、前記コアの外面に設けられていてもよい。
前記メタマテリアル及び前記磁性体材料は、前記電磁波の伝播経路上に配置されていてもよい。
前記メタマテリアル及び前記磁性体材料は、前記電磁波の伝播方向に沿って並べて配置されていてもよい。
前記メタマテリアルは、前記磁性体材料上に設けられていてもよい。
前記電磁波の前進波及び後退波の一方の偏光状態のみが変化するように前記メタマテリアルが配置され、且つ、前記磁性体材料の磁化方向が設定されていてもよい。
前記電磁波の前進波の右円偏光及び左円偏光における実効屈折率の差と、前記電磁波の後退波の右円偏光及び左円偏光における実効屈折率の差とが異なるように前記メタマテリアルが配置され、且つ、前記磁性体材料の磁化方向が設定されていてもよい。
前記メタマテリアルは、スプリットリング共振器を含み、前記スプリットリング共振器の磁気モーメント方向と前記電磁波の導波方向とが略垂直であり、前記磁気モーメント方向と前記磁性体材料の磁化方向とが略平行であってもよい。この場合に、前記スプリットリング共振器のスプリット方向は、前記導波方向と略平行であってもよいし、前記導波方向と略垂直であってもよい。
前記メタマテリアルは、スプリットリング共振器を含み、前記スプリットリング共振器の磁気モーメント方向と前記電磁波の導波方向とが略垂直であり、前記磁気モーメント方向と前記磁性体材料の磁化方向とが略垂直であってもよい。この場合に、前記スプリットリング共振器のスプリット方向は、前記導波方向及び前記磁化方向のいずれとも略垂直であってもよいし、前記導波方向と略垂直であり、且つ、前記磁化方向と略平行であってもよいし、前記導波方向及び前記磁化方向のいずれとも略平行であってもよいし、前記導波方向と略平行であり、且つ、前記磁化方向と略垂直であってもよい。
前記メタマテリアルは、カットワイヤペア共振器、スパイラル共振器、マッシュルーム共振器、V字共振器及びフィッシュネット共振器のいずれかを含んでいてもよい。
前記電磁波は、TMモードで導波してもよい。
前記磁性体材料は、外部磁場により磁化方向が設定されてもよい。
本技術は、前記波動制御装置を備える、波長変換素子も提供する。
本技術は、前記波動制御装置を備える、演算素子も提供する。
本技術は、前記波動制御装置を備える、センサも提供する。
本技術は、前記波動制御装置を備える、偏光制御素子も提供する。
本技術は、前記波動制御装置を備える、光アイソレータも提供する。
電磁波に対して電気磁気効果及び磁気光学効果、並びに/又は、電気磁気効果と磁気光学効果との相互作用が生じるように、前記メタマテリアルが配置され、且つ、前記磁性体材料の磁化方向が設定されていてもよい。
前記電磁波に対して少なくとも、電気磁気効果と磁気光学効果との相互作用が生じるように、前記メタマテリアルが配置され、且つ、前記磁性体材料の磁化方向が設定されていてもよい。
前記電磁波に対して電気磁気効果及び磁気光学効果が更に生じるように、前記メタマテリアルが配置され、且つ、前記磁性体材料の磁化方向が設定されていてもよい。
前記メタマテリアルは、電磁波の導波路の周辺に配置されていてもよい。
前記メタマテリアルは、前記導波路と一体的に設けられていてもよい。
前記導波路のコアは、前記磁性体材料であってもよい。
前記メタマテリアルは、前記コアの外面に設けられていてもよい。
前記導波路のコアを含む導波路部材を更に備えていてもよい。
前記メタマテリアル及び前記磁性体材料は、前記コアの外面に設けられていてもよい。
前記メタマテリアル及び前記磁性体材料は、前記電磁波の伝播経路上に配置されていてもよい。
前記メタマテリアル及び前記磁性体材料は、前記電磁波の伝播方向に沿って並べて配置されていてもよい。
前記メタマテリアルは、前記磁性体材料上に設けられていてもよい。
前記電磁波の前進波及び後退波の一方の偏光状態のみが変化するように前記メタマテリアルが配置され、且つ、前記磁性体材料の磁化方向が設定されていてもよい。
前記電磁波の前進波の右円偏光及び左円偏光における実効屈折率の差と、前記電磁波の後退波の右円偏光及び左円偏光における実効屈折率の差とが異なるように前記メタマテリアルが配置され、且つ、前記磁性体材料の磁化方向が設定されていてもよい。
前記メタマテリアルは、スプリットリング共振器を含み、前記スプリットリング共振器の磁気モーメント方向と前記電磁波の導波方向とが略垂直であり、前記磁気モーメント方向と前記磁性体材料の磁化方向とが略平行であってもよい。この場合に、前記スプリットリング共振器のスプリット方向は、前記導波方向と略平行であってもよいし、前記導波方向と略垂直であってもよい。
前記メタマテリアルは、スプリットリング共振器を含み、前記スプリットリング共振器の磁気モーメント方向と前記電磁波の導波方向とが略垂直であり、前記磁気モーメント方向と前記磁性体材料の磁化方向とが略垂直であってもよい。この場合に、前記スプリットリング共振器のスプリット方向は、前記導波方向及び前記磁化方向のいずれとも略垂直であってもよいし、前記導波方向と略垂直であり、且つ、前記磁化方向と略平行であってもよいし、前記導波方向及び前記磁化方向のいずれとも略平行であってもよいし、前記導波方向と略平行であり、且つ、前記磁化方向と略垂直であってもよい。
前記メタマテリアルは、カットワイヤペア共振器、スパイラル共振器、マッシュルーム共振器、V字共振器及びフィッシュネット共振器のいずれかを含んでいてもよい。
前記電磁波は、TMモードで導波してもよい。
前記磁性体材料は、外部磁場により磁化方向が設定されてもよい。
本技術は、前記波動制御装置を備える、波長変換素子も提供する。
本技術は、前記波動制御装置を備える、演算素子も提供する。
本技術は、前記波動制御装置を備える、センサも提供する。
本技術は、前記波動制御装置を備える、偏光制御素子も提供する。
本技術は、前記波動制御装置を備える、光アイソレータも提供する。
以下、本技術を実施するための好適な実施形態について図面を参照しながら説明する。以下に説明する実施形態は、本技術の代表的な実施形態の一例を示したものであり、いずれの実施形態も組み合わせることが可能である。また、これらにより本技術の範囲が狭く解釈されることはない。なお、説明は以下の順序で行う。
0.導入
1.本技術の第1実施形態に係る波動制御装置
2.本技術の第2実施形態に係る波動制御装置
3.本技術の第3実施形態に係る波動制御装置
4.本技術の第4実施形態に係る波動制御装置
5.本技術の第5実施形態に係る波動制御装置
6.本技術の第6実施形態に係る波動制御装置
7.本技術の第7実施形態に係る波動制御装置
8.メタマテリアルの形状の具体例
9.本技術の変形例
10.本技術の適用用途
0.導入
1.本技術の第1実施形態に係る波動制御装置
2.本技術の第2実施形態に係る波動制御装置
3.本技術の第3実施形態に係る波動制御装置
4.本技術の第4実施形態に係る波動制御装置
5.本技術の第5実施形態に係る波動制御装置
6.本技術の第6実施形態に係る波動制御装置
7.本技術の第7実施形態に係る波動制御装置
8.メタマテリアルの形状の具体例
9.本技術の変形例
10.本技術の適用用途
<0.導入>
ところで、例えば強磁性体に外部磁場を印加することで、誘電率の非対角成分を制御することができ、媒質を透過/反射する電磁波の偏光状態を制御することできる。この現象は磁気光学(MO)効果として知られており、ファラデー回転素子などのように光アイソレータとして応用されている。
ところで、例えば強磁性体に外部磁場を印加することで、誘電率の非対角成分を制御することができ、媒質を透過/反射する電磁波の偏光状態を制御することできる。この現象は磁気光学(MO)効果として知られており、ファラデー回転素子などのように光アイソレータとして応用されている。
また、近年、電場により媒質の磁気的応答を、磁場により媒質の電気的応答を制御できる(ME効果)を発生させるマルチフェロイック材料が次世代の新型メモリやエネルギー変換デバイスとして注目を浴びている。
近年、電磁波の制御性の更なる向上が期待されている。そこで、発明者らは、MO効果及びME効果の一方のみでは、電磁波の制御性に関して不十分であるとの見解に立ち、鋭意検討の末、メタマテリアルと磁性体材料とを組み合わせることにより、少なくともMO効果(磁気光学効果)及びME効果(電気磁気効果)を発現する波動制御装置、並びに少なくともMO効果及びME効果の相互作用を発現する波動制御装置を開発した。
MO効果とME効果を考慮した電束密度D、磁束密度B、電場E及び磁場Hの一般的な関係は、図1のように書き表すことができる。図1下図において、MO効果に関するtensorが薄灰色のMO tensorであり、ME効果に関するtensorが濃灰色のME tensorである。なお、D,B,E,Hの関係を図1下図のように6×6の行列で関連付けて定式化することは、新規な試みである。なお、図1下図において、εは媒質の誘電率、μは媒質の透磁率を表す。
図2Aに示すように、一般的な媒質(例えば非磁性体材料)の場合、図1下図のMO tensorは、対角成分のみに値が入り、非対角成分はすべて0である(a~c=0)。また、図1下図のME tensorは、対角成分及び非対角成分のいずれも0(A~I=0)である。すなわち、一般的な媒質は、電場によって電気分極を制御し、磁場によって磁化を制御する。一般的な媒質では、電場の印加方向と電気分極の方向とが一致し、且つ、磁場の印加方向と磁化方向とが一致する(スカラー量)。よって、一般的な媒質は、電磁波(例えば光)の反射や屈折を制御することができる。
図2Bに示すように、磁性体材料の場合、図1下図のMO tensorは、対角成分及び非対角成分のいずれにも値が入り、図1下図のME tensorは、対角成分及び非対角成分のいずれも0(A~I=0)である。すなわち、磁性体材料は、電場によって電気分極を制御し、磁場によって磁化を制御する。磁性体材料は、電場の印加方向と電気分極の方向とが一致せず、電磁波の偏波(例えば光の偏光)を制御することができる。
図2Cに示すように、マルチフェロイック材料の場合、図1下図のMO tensorは、a~c=0であり対角成分のみに値が入り、図1下図のME tensorは、対角成分及び非対角成分のいずれにも値が入る。すなわち、マルチフェロイック材料は、電場によって磁化を制御し、磁場によって電気分極を制御する。これより、マルチフェロイック材料は、電磁波(例えば光)の反射、屈折、偏波等を磁場及び電場の両方で制御することができる。
以上のように、従来、MO tensorとME tensorの両方を自在に制御できる材料は開発されていない。
ここで、図3A~図3Cに示すように、磁性体材料(例えば直方体形状のもの)の磁化方向MDにより、MO tensorの非対角成分を制御できることが分かる。図4A~図4Fに示すように、メタマテリアル(例えばスプリットリング共振器)の配置により、ME tensorの対角成分及び非対角成分を制御できることが分かる。なお、図4A~図4DがTEモードの例を示し、図4E及び図4FがTMモードの例を示している。
そこで、発明者らは、磁性体材料の磁化方向によりMO tensor(詳しくはMO tensorの非対角成分)を制御すること(例えば図3A~図3C参照)と、メタマテリアルの配置によりME tensor(詳しくはME tensorの対角成分及び非対角成分)を制御すること(例えば図4A~図4F参照)とを効果的に組み合わせること(例えば図5B参照、詳細は後述する)により、MO tensorとME tensorの両方(図5A参照)を自在に制御できる波動制御装置として、本技術に係る波動制御装置を開発した。
補足すると、図6Aに示すような磁性体材料の磁化方向MD及びメタマテリアルの配置の組み合わせにより、TEモードで導波する電磁波をモード整合させつつ(TEモードを維持しつつ)制御することができる。図6Aに示す例では、図6Bに示すように制御対象の電磁波の波動方程式にME効果の項が出現するが、MO効果の項が出現しない。これは、図6Aに示す例では、ME tensorを制御することはできるが、MO tensorを制御することはできないことを意味する。
一方、例えば図7Aに示すような磁性体材料の磁化方向MD及びメタマテリアルの配置の組み合わせにより、TMモードで導波する電磁波をモード整合させつつ(TMモードを維持しつつ)制御することができる。図7Aに示す例では、図7Bに示すように制御対象の電磁波の波動方程式にMO効果の項及びME効果の項、並びにMO効果とME効果との相互作用の項が出現する。これは、図7Aに示す例では、MO tensorとME tensorの両方を自在に制御できることを意味する。
<1.本技術の第1実施形態に係る波動制御装置>
(波動制御装置の構成)
以下、本技術の第1実施形態に係る波動制御装置について図面を用いて説明する。図8Aは、第1実施形態に係る波動制御装置10の概念図である。図8Bは、第1実施形態に係る波動制御装置10により制御された電磁波の波動方程式を示す図である。以下、図8Aに示すxyz3次元直交座標系(例えば左手系)を適宜用いて説明する。
(波動制御装置の構成)
以下、本技術の第1実施形態に係る波動制御装置について図面を用いて説明する。図8Aは、第1実施形態に係る波動制御装置10の概念図である。図8Bは、第1実施形態に係る波動制御装置10により制御された電磁波の波動方程式を示す図である。以下、図8Aに示すxyz3次元直交座標系(例えば左手系)を適宜用いて説明する。
第1実施形態に係る波動制御装置10は、一例として図8Aに示すように、メタマテリアル100と磁性体材料200とを備える。
波動制御装置10は、一例として、電磁波に対して電気磁気効果及び磁気光学効果が生じるように、メタマテリアル100が配置され、且つ、磁性体材料200の磁化方向MDが設定されている。
磁性体材料200は、外部磁場により磁化方向が設定されてもよい。この場合には、外部磁場の印加方向により磁性体材料200の磁化方向を設定することができる。
電磁波の導波路の周辺にメタマテリアル100が設けられていてもよい。この場合に、メタマテリアル100は、電磁波の導波路と一体的に設けられていてもよい。この場合に、特に2次元状(平面状)のメタマテリアル100は、導波路の構成要素(コアやクラッド)に対して例えばフォトリソグラフィー法、蒸着法、スパッタ法等を用いて形成することが可能である。
電磁波の導波路のコアは、磁性体材料200であってもよい。すなわち、磁性体材料200は、入射された制御対象の電磁波を全反射させながら伝播させ出射させる材料からなってもよい。コアが磁性体材料200である場合に、メタマテリアル100は、コアの外面(例えば側面)に設けられていてもよい。コアを構成する磁性体材料200は、制御対象の電磁波を導波させるために該電磁波の波長に対して透明なもの(例えば透明強磁性体)であることが好ましい。なお、本明細書中、コアの外面のうち電磁波の入射端を構成する面(入射端面)及び出射端を構成する面(出射端面)以外の面をコアの側面と呼ぶことにする。
波動制御装置10は、電磁波の導波路のコアを含む導波路部材300(図11参照)を更に備えていてもよい。この場合に、メタマテリアル100及び磁性体材料200は、コアの外面(例えば側面)に設けられていてもよい。
メタマテリアル100は、一例としてスプリットリング共振器(SSR)を含む。波動制御装置10では、メタマテリアル100としてのスプリットリング共振器の磁気モーメント方向(略x軸方向)と電磁波の導波方向(略z軸方向)とが略垂直であり、且つ、該スプリットリング共振器の磁気モーメント方向(略x軸方向)と磁性体材料の磁化方向(略z軸方向)とが略垂直である。さらに、波動制御装置10では、メタマテリアル100としてのスプリットリング共振器のスプリット方向(切れ目方向、略y軸方向、端部同士が対向する方向)が、電磁波の導波方向(略z軸方向)及び磁性体材料の磁化方向(略z軸方向)のいずれとも略垂直である。なお、本明細書中、「略」は、完全に一致する場合と、同効の範囲の微差がある場合とを含む。
(波動制御装置の作用)
波動制御装置10では、このようなメタマテリアル100の配置及び磁性体材料200の磁化方向MDの組み合わせにより、TMモードで導波する電磁波をモード整合させつつ(TMモードを維持しつつ)制御可能である。さらに、波動制御装置10により制御された電磁波の波動方程式は、下記(1)式(図8B参照)のようになり、MO効果及びME効果の双方を発現することが分かる。
波動制御装置10では、このようなメタマテリアル100の配置及び磁性体材料200の磁化方向MDの組み合わせにより、TMモードで導波する電磁波をモード整合させつつ(TMモードを維持しつつ)制御可能である。さらに、波動制御装置10により制御された電磁波の波動方程式は、下記(1)式(図8B参照)のようになり、MO効果及びME効果の双方を発現することが分かる。
∂y2(1-γ2/ε2)Hx+[ω2(με(1-γ2/ε2)+ζ2)-β2)]Hx=0 ・・・(1) 但し、εは誘電率、μは透磁率、ωは角周波数、γはMO効果に関するパラメータ、ζはME効果に関するパラメータ、βは伝搬定数である(以下同様)。また、ここではMO効果に関する要素であるaにはiγが、ME効果に関する要素であるEにはζが入るとする。
(メタマテリアルの詳細)
メタマテリアル100としてのスプリットリング共振器は、例えば金属、誘電体、導電性磁性体、半導体、超伝導体のいずれか一つ、又は、これらの複数の組合せから選択された材料からなる細線で形成されている。スプリットリング共振器の外径は、例えば電磁波の波長の1/100~1/2程度が好適である。スプリットリング共振器の線径は、例えば電磁波の波長の1/1000~1/100が好適であり、1/1000~1/10がより好適である。
メタマテリアル100としてのスプリットリング共振器は、例えば金属、誘電体、導電性磁性体、半導体、超伝導体のいずれか一つ、又は、これらの複数の組合せから選択された材料からなる細線で形成されている。スプリットリング共振器の外径は、例えば電磁波の波長の1/100~1/2程度が好適である。スプリットリング共振器の線径は、例えば電磁波の波長の1/1000~1/100が好適であり、1/1000~1/10がより好適である。
(磁性体材料の詳細)
磁性体材料200として、例えば鉄、ニッケル、コバルト、磁性ガーネット、酸化鉄、酸化クロム、フェライト、非酸化金属磁性体(オキサイド)等を用いることができる。なお、これらは磁性体材料200の一例であり、磁性体材料200は他の磁性体材料であってもよい。図8に示す例では、直方体形状の磁性体材料が示されているが、磁性体材料の大きさ、形状等は、限定されず、適宜変更可能である。
磁性体材料200として、例えば鉄、ニッケル、コバルト、磁性ガーネット、酸化鉄、酸化クロム、フェライト、非酸化金属磁性体(オキサイド)等を用いることができる。なお、これらは磁性体材料200の一例であり、磁性体材料200は他の磁性体材料であってもよい。図8に示す例では、直方体形状の磁性体材料が示されているが、磁性体材料の大きさ、形状等は、限定されず、適宜変更可能である。
(導波路部材の詳細)
導波路部材300の材料として、例えば石英ガラス、シリコン等の無機材料や、例えばポリイミド系樹脂、ポリアミド系樹脂、ポリエーテル系樹脂等の有機材料を用いることができる。導波路部材300の材料は、制御対象の電磁波の透過性、屈折率、波長特性、分散性等を考慮して選択することが好ましい。
導波路部材300の材料として、例えば石英ガラス、シリコン等の無機材料や、例えばポリイミド系樹脂、ポリアミド系樹脂、ポリエーテル系樹脂等の有機材料を用いることができる。導波路部材300の材料は、制御対象の電磁波の透過性、屈折率、波長特性、分散性等を考慮して選択することが好ましい。
以下、本技術の第1実施形態に係る波動制御装置10の幾つかの実施例(下位概念)について説明する。
(実施例1に係る波動制御媒質)
実施例1に係る波動制御装置10-1では、図9に示すように、制御対象の電磁波の導波路のコアが磁性体材料200である。波動制御装置10-1では、メタマテリアル100は、コアとしての磁性体材料200の一の外面(例えば面積が大きい方の側面)に設けられている。ここでは、複数のメタマテリアル100が制御対象の電磁波の導波方向WGD(磁性体材料200の長手方向)に略平行に規則的(例えば等間隔)に設けられている。
実施例1に係る波動制御装置10-1では、図9に示すように、制御対象の電磁波の導波路のコアが磁性体材料200である。波動制御装置10-1では、メタマテリアル100は、コアとしての磁性体材料200の一の外面(例えば面積が大きい方の側面)に設けられている。ここでは、複数のメタマテリアル100が制御対象の電磁波の導波方向WGD(磁性体材料200の長手方向)に略平行に規則的(例えば等間隔)に設けられている。
波動制御装置10-1では、メタマテリアル100としてのスプリットリング共振器の磁気モーメント方向MMDと電磁波の導波方向WGDとが略垂直であり、該スプリットリング共振器の磁気モーメント方向MMDと磁性体材料の磁化方向MDとが略垂直である。さらに、波動制御装置10-1では、該スプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGD及び磁性体材料200の磁化方向MDのいずれとも略垂直である。
(実施例2に係る波動制御媒質)
実施例2に係る波動制御装置10-2では、図10に示すように、メタマテリアル100がコアとしての磁性体材料200の他の外面(例えば面積が小さい方の側面)に設けられている点を除いて、実施例1に係る波動制御装置10-1と概ね同様の構成を有する。
実施例2に係る波動制御装置10-2では、図10に示すように、メタマテリアル100がコアとしての磁性体材料200の他の外面(例えば面積が小さい方の側面)に設けられている点を除いて、実施例1に係る波動制御装置10-1と概ね同様の構成を有する。
波動制御装置10-2でも、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGD及び磁性体材料200の磁化方向MDのいずれとも略垂直である。
(実施例3に係る波動制御媒質)
実施例3に係る波動制御装置10-3は、図11に示すように、電磁波の導波路のコア300bを含む導波路部材300を更に備えている。導波路部材300は、一例として、コア300bに加えてベース部300aを含む。導波路部材300では、平板状のベース部300a上に突条部であるコア300bが設けられている。
実施例3に係る波動制御装置10-3は、図11に示すように、電磁波の導波路のコア300bを含む導波路部材300を更に備えている。導波路部材300は、一例として、コア300bに加えてベース部300aを含む。導波路部材300では、平板状のベース部300a上に突条部であるコア300bが設けられている。
メタマテリアル100はコア300bの上面に設けられ、磁性体材料200はコア300bの一側面に設けられている。こでは、複数のメタマテリアル100が制御対象の電磁波の導波方向WGD(磁性体材料200の長手方向)に略平行に規則的(例えば等間隔)に設けられている。
導波路部材300は、制御対象の電磁波を導波させるために、該電磁波の波長に対して透明な基板(例えばSi基板)等を加工することにより成形されている。メタマテリアル100として例えばAu製のもの、磁性体材料200として例えばYIG(Yttrium Iron Garnet)製のものを用いることができる。
波動制御装置10-3では、メタマテリアル100としてのスプリットリング共振器の磁気モーメント方向MMDと電磁波の導波方向WGDとが略垂直であり、該スプリットリング共振器の磁気モーメント方向MMDと磁性体材料の磁化方向MDとが略垂直である。さらに、波動制御装置10-3では、該スプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGD及び磁性体材料200の磁化方向MDのいずれとも略垂直である。
(実施例4に係る波動制御装置)
実施例4に係る波動制御装置10-4は、図12に示すように、メタマテリアル100がコア300bの側面に設けられ、磁性体材料200がコア300bの上面に設けられている点を除いて、実施例3に係る波動制御装置10-3と概ね同様の構成を有する。
実施例4に係る波動制御装置10-4は、図12に示すように、メタマテリアル100がコア300bの側面に設けられ、磁性体材料200がコア300bの上面に設けられている点を除いて、実施例3に係る波動制御装置10-3と概ね同様の構成を有する。
波動制御装置10-4でも、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGD及び磁性体材料200の磁化方向MDのいずれとも略垂直である。
(実施例5に係る波動制御媒質)
実施例5に係る波動制御装置10-5は、図13に示すように、コア300bの相対する一側面及び他側面のうち一側面にメタマテリアル100が設けられ、他側面に磁性体材料200が設けられている点を除いて、実施例3に係る波動制御装置10-3と概ね同様の構成を有する。
実施例5に係る波動制御装置10-5は、図13に示すように、コア300bの相対する一側面及び他側面のうち一側面にメタマテリアル100が設けられ、他側面に磁性体材料200が設けられている点を除いて、実施例3に係る波動制御装置10-3と概ね同様の構成を有する。
波動制御装置10-5でも、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGD及び磁性体材料200の磁化方向MDのいずれとも略垂直である。
(波動制御装置の効果)
第1実施形態に係る波動制御装置10は、メタマテリアル100と磁性体材料200とを備えている。この場合、メタマテリアル100の配置及び磁性体材料200の磁化方向を効果的に組み合わせることにより、電磁波の制御性を向上することができる。
第1実施形態に係る波動制御装置10は、メタマテリアル100と磁性体材料200とを備えている。この場合、メタマテリアル100の配置及び磁性体材料200の磁化方向を効果的に組み合わせることにより、電磁波の制御性を向上することができる。
電磁波に対して少なくとも電気磁気効果及び磁気光学効果が生じるように、メタマテリアル100が配置され、且つ、磁性体材料200の磁化方向MDが設定されていることが好ましい。これにより、電磁波の制御性を確実に向上することができる。
メタマテリアル100は、電磁波の導波路の周辺に配置されていることが好ましい。これにより、メタマテリアル100の制御作用を電磁波に及ぼすことができる。
メタマテリアル100は、電磁波の導波路と一体的に設けられていることが好ましい。これにより、メタマテリアル100と電磁波の導波路との位置関係を所望の(有効な)位置関係に保持することができる。
電磁波の導波路のコアは、磁性体材料200であってもよい。これにより、磁性体材料200がコアを兼ねるので、部品点数の削減及び小型化を図ることができる。
メタマテリアル100は、コアとしての磁性体材料200の外面に設けられていてもよい。これにより、メタマテリアル100を電磁波に対して制御作用を十分に及ぼすことが可能な位置に安定的に配置することができる。
波動制御装置10は、電磁波の導波路のコア300bを含む導波路部材300を更に備えていてもよい。これにより、コア300bが磁性体材料200とは別に設けられるので、磁性体材料200の材質の選択の自由度を向上することができる。
メタマテリアル100及び磁性体材料200は、導波路部材300のコアの外面に設けられていてもよい。これにより、メタマテリアル100及び磁性体材料200を電磁波に対して制御作用を十分に及ぼすことが可能な位置に安定的に配置することができる。
メタマテリアル100は、スプリットリング共振器を含み、該スプリットリング共振器の磁気モーメント方向MMDと電磁波の導波方向WGDとが略垂直であり、且つ、該磁気モーメント方向MMDと磁性体材料200の磁化方向MDとが略垂直であることが好ましい。これにより、メタマテリアル100及び磁性体材料200の制御作用を電磁波に対して及ぼすことができる。
メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)は、導波方向WGD及び磁化方向MDのいずれとも略垂直であることがより好ましい。これにより、メタマテリアル100及び磁性体材料200の制御作用を電磁波に対して確実に及ぼすことができる。
波動制御装置10による制御対象の電磁波は、TMモードで導波することが好ましい。これにより、波動制御装置10は、電磁波に対してMO効果を確実に発生させることができる。
磁性体材料200は、外部磁場によって磁化方向MDが設定されてもよい。これにより、磁化方向MDを所望の方向に安定して維持することができる。
<2.本技術の第2実施形態に係る波動制御装置>
(波動制御装置の構成)
以下、本技術の第2実施形態に係る波動制御装置について図面を用いて説明する。図14Aは、第1実施形態に係る波動制御装置20の概念図である。図14Bは、第2実施形態に係る波動制御装置20により制御された電磁波の波動方程式を示す図である。以下、図14Aに示すxyz3次元直交座標系(例えば左手系)を適宜用いて説明する。
(波動制御装置の構成)
以下、本技術の第2実施形態に係る波動制御装置について図面を用いて説明する。図14Aは、第1実施形態に係る波動制御装置20の概念図である。図14Bは、第2実施形態に係る波動制御装置20により制御された電磁波の波動方程式を示す図である。以下、図14Aに示すxyz3次元直交座標系(例えば左手系)を適宜用いて説明する。
第2実施形態に係る波動制御装置20では、一例として図14Aに示すように、メタマテリアル100としてのスプリットリング共振器の磁気モーメント方向(略x軸方向)と電磁波の導波方向(略z軸方向)とが略垂直であり、スプリットリング共振器の磁気モーメント方向(略x軸方向)と磁性体材料の磁化方向(略y軸方向)とが略垂直である。さらに、波動制御装置20では、メタマテリアル100としてのスプリットリング共振器のスプリット方向(切れ目方向、略y軸方向)が、電磁波の導波方向(略z軸方向)と略垂直であり、且つ、磁性体材料200の磁化方向MD(略y軸方向)と略平行である。
(波動制御装置の作用)
波動制御装置20では、このようなメタマテリアル100の配置及び磁性体材料200の磁化方向MDの組み合わせにより、TMモードで導波する電磁波をモード整合させつつ(TMモードを維持しつつ)制御可能である。さらに、波動制御装置20により制御された電磁波の波動方程式は、下記(2)式(図14B参照)のようになり、MO効果及びME効果の双方を発現することが分かる。
波動制御装置20では、このようなメタマテリアル100の配置及び磁性体材料200の磁化方向MDの組み合わせにより、TMモードで導波する電磁波をモード整合させつつ(TMモードを維持しつつ)制御可能である。さらに、波動制御装置20により制御された電磁波の波動方程式は、下記(2)式(図14B参照)のようになり、MO効果及びME効果の双方を発現することが分かる。
∂y2Hx+[ω2(1-γ2/ε2)(με+ζ2)-(1-γ2/ε2)β2)]Hx=0 ・・・(2)ここではMO効果に関する要素であるcにはiγが、ME効果に関する要素であるEにはζが入るとする。
(波動制御装置の効果)
第2実施形態に係る波動制御装置20によれば、第1実施形態に係る波動制御装置10と同様の効果を得ることができる。
第2実施形態に係る波動制御装置20によれば、第1実施形態に係る波動制御装置10と同様の効果を得ることができる。
以下、本技術の第2実施形態に係る波動制御装置20の幾つかの実施例(下位概念)について説明する。
(実施例1に係る波動制御媒質)
実施例1に係る波動制御装置20-1では、図15に示すように、電磁波の導波路のコアが磁性体材料200である。波動制御装置20-1では、メタマテリアル100は、コアとしての磁性体材料200の外面(例えば面積が大きい方の側面)に設けられている。ここでは、複数のメタマテリアル100が制御対象の電磁波の導波方向WGD(磁性体材料200の長手方向)に略平行に規則的(例えば等間隔)に設けられている。
実施例1に係る波動制御装置20-1では、図15に示すように、電磁波の導波路のコアが磁性体材料200である。波動制御装置20-1では、メタマテリアル100は、コアとしての磁性体材料200の外面(例えば面積が大きい方の側面)に設けられている。ここでは、複数のメタマテリアル100が制御対象の電磁波の導波方向WGD(磁性体材料200の長手方向)に略平行に規則的(例えば等間隔)に設けられている。
波動制御装置20-1では、メタマテリアル100としてのスプリットリング共振器の磁気モーメント方向MMDと電磁波の導波方向WGDとが略垂直であり、且つ、スプリットリング共振器の磁気モーメント方向MMDと磁性体材料200の磁化方向MDとが略垂直である。さらに、波動制御装置20-1では、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGDと略垂直であり、且つ、磁性体材料200の磁化方向MDと略平行である。
(実施例2に係る波動制御媒質)
実施例2に係る波動制御装置20-2では、図16に示すように、メタマテリアル100がコアとしての磁性体材料200の他の外面(例えば面積が小さい方の側面)に設けられている点を除いて、実施例1に係る波動制御装置20-1と概ね同様の構成を有する。
実施例2に係る波動制御装置20-2では、図16に示すように、メタマテリアル100がコアとしての磁性体材料200の他の外面(例えば面積が小さい方の側面)に設けられている点を除いて、実施例1に係る波動制御装置20-1と概ね同様の構成を有する。
波動制御装置20-2でも、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGDと略垂直であり、且つ、磁性体材料200の磁化方向MDと略平行である。
(実施例3に係る波動制御媒質)
実施例3に係る波動制御装置20-3は、図17に示すように、波動制御装置20-3は、電磁波の導波路のコア300bを含む導波路部材300を更に備えている。導波路部材300は、一例として、コア300bに加えてベース部300aを含む。導波路部材300では、平板状のベース部300a上に突条部であるコア300bが設けられている。
実施例3に係る波動制御装置20-3は、図17に示すように、波動制御装置20-3は、電磁波の導波路のコア300bを含む導波路部材300を更に備えている。導波路部材300は、一例として、コア300bに加えてベース部300aを含む。導波路部材300では、平板状のベース部300a上に突条部であるコア300bが設けられている。
メタマテリアル100はコア300bの上面に設けられ、磁性体材料200はコア300bの一側面に設けられている。こでは、複数のメタマテリアル100が制御対象の電磁波の導波方向WGD(磁性体材料200の長手方向)に略平行に規則的(例えば等間隔)に設けられている。
導波路部材300は、制御対象の電磁波を導波させるために、該電磁波の波長に対して透明な基板(例えばSi基板)等を加工することにより成形されている。メタマテリアル100として例えばAu製のもの、磁性体材料200として例えばYIG製のものを用いることができる。
波動制御装置20-3では、メタマテリアル100としてのスプリットリング共振器の磁気モーメント方向MMDと電磁波の導波方向WGDとが略垂直であり、且つ、スプリットリング共振器の磁気モーメント方向MMDと磁性体材料200の磁化方向MDとが略垂直である。さらに、波動制御装置20-3では、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGDと略垂直であり、且つ、磁性体材料200の磁化方向MDと略平行である。
(実施例4に係る波動制御装置)
実施例4に係る波動制御装置10-4は、図18に示すように、メタマテリアル100がコア300bの側面に設けられ、且つ、磁性体材料200がコア300bの上面に設けられている点を除いて、実施例3に係る波動制御装置20-3と概ね同様の構成を有する。
実施例4に係る波動制御装置10-4は、図18に示すように、メタマテリアル100がコア300bの側面に設けられ、且つ、磁性体材料200がコア300bの上面に設けられている点を除いて、実施例3に係る波動制御装置20-3と概ね同様の構成を有する。
波動制御装置20-4でも、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGDと略垂直であり、且つ、磁性体材料200の磁化方向MDと略平行である。
(実施例5に係る波動制御媒質)
実施例5に係る波動制御装置20-5は、図19に示すように、コア300bの相対する一側面及び他側面のうち一側面にメタマテリアル100が設けられ、他側面に磁性体材料200が設けられている点を除いて、実施例3に係る波動制御装置20-3と概ね同様の構成を有する。
実施例5に係る波動制御装置20-5は、図19に示すように、コア300bの相対する一側面及び他側面のうち一側面にメタマテリアル100が設けられ、他側面に磁性体材料200が設けられている点を除いて、実施例3に係る波動制御装置20-3と概ね同様の構成を有する。
波動制御装置20-5でも、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGDと略垂直であり、且つ、磁性体材料200の磁化方向MDと略平行である。
<3.本技術の第3実施形態に係る波動制御装置>
(波動制御装置の構成)
以下、本技術の第3実施形態に係る波動制御装置について図面を用いて説明する。図20Aは、第3実施形態に係る波動制御装置30の概念図である。図20Bは、第3実施形態に係る波動制御装置30により制御された電磁波の波動方程式を示す図である。以下、図20Aに示すxyz3次元直交座標系(例えば左手系)を適宜用いて説明する。
(波動制御装置の構成)
以下、本技術の第3実施形態に係る波動制御装置について図面を用いて説明する。図20Aは、第3実施形態に係る波動制御装置30の概念図である。図20Bは、第3実施形態に係る波動制御装置30により制御された電磁波の波動方程式を示す図である。以下、図20Aに示すxyz3次元直交座標系(例えば左手系)を適宜用いて説明する。
第3実施形態に係る波動制御装置30では、一例として図20Aに示すようにメタマテリアル100としてのスプリットリング共振器の磁気モーメント方向(略x軸方向)と電磁波の導波方向(略z軸方向)とが略垂直であり、スプリットリング共振器の磁気モーメント方向(略x軸方向)と磁性体材料の磁化方向(略z軸方向)とが略垂直である。さらに、波動制御装置30では、メタマテリアル100としてのスプリットリング共振器のスプリット方向(切れ目方向、略z軸方向)が、電磁波の導波方向(略z軸方向)及び磁性体材料200の磁化方向MD(略z軸方向)のいずれとも略平行である。
(波動制御装置の作用)
波動制御装置30では、このようなメタマテリアル100の配置及び磁性体材料200の磁化方向の組み合わせにより、TMモードで導波する電磁波をモード整合させつつ(TMモードを維持しつつ)制御可能である。さらに、波動制御装置20により制御された電磁波の波動方程式は、下記(3)式(図20B参照)のようになり、MO効果及びME効果の双方を発現することが分かる。
波動制御装置30では、このようなメタマテリアル100の配置及び磁性体材料200の磁化方向の組み合わせにより、TMモードで導波する電磁波をモード整合させつつ(TMモードを維持しつつ)制御可能である。さらに、波動制御装置20により制御された電磁波の波動方程式は、下記(3)式(図20B参照)のようになり、MO効果及びME効果の双方を発現することが分かる。
∂y2(1-γ2/ε2)Hx+[ω2(1-γ2/ε2)(με+ζ2)-β2)]Hx=0 ・・・(3)ここではMO効果に関する要素であるaにはiγが、ME効果に関する要素であるCにはζが入るとする。
(波動制御装置の効果)
第3実施形態に係る波動制御装置30によれば、第1実施形態に係る波動制御装置10と同様の効果を得ることができる。
第3実施形態に係る波動制御装置30によれば、第1実施形態に係る波動制御装置10と同様の効果を得ることができる。
以下、本技術の第2実施形態に係る波動制御装置20の幾つかの実施例(下位概念)について説明する。
(実施例1に係る波動制御媒質)
実施例1に係る波動制御装置30-1では、図21に示すように、電磁波の導波路のコアが磁性体材料200である。波動制御装置30-1では、メタマテリアル100は、コアとしての磁性体材料200の外面(例えば面積が大きい方の側面)に設けられている。ここでは、複数のメタマテリアル100が制御対象の電磁波の導波方向WGD(磁性体材料200の長手方向)に略平行に規則的(例えば等間隔)に設けられている。
実施例1に係る波動制御装置30-1では、図21に示すように、電磁波の導波路のコアが磁性体材料200である。波動制御装置30-1では、メタマテリアル100は、コアとしての磁性体材料200の外面(例えば面積が大きい方の側面)に設けられている。ここでは、複数のメタマテリアル100が制御対象の電磁波の導波方向WGD(磁性体材料200の長手方向)に略平行に規則的(例えば等間隔)に設けられている。
波動制御装置30-1では、メタマテリアル100としてのスプリットリング共振器の磁気モーメント方向MMDと電磁波の導波方向WGDとが略垂直であり、且つ、スプリットリング共振器の磁気モーメント方向MMDと磁性体材料200の磁化方向MDとが略垂直である。さらに、波動制御装置30-1では、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGD及び磁性体材料200の磁化方向MDのいずれとも略平行である。
(実施例2に係る波動制御媒質)
実施例2に係る波動制御装置30-2では、図22に示すように、メタマテリアル100がコアとしての磁性体材料200の他の外面(例えば面積が小さい方の側面)に設けられている点を除いて、実施例1に係る波動制御装置30-1と概ね同様の構成を有する。
実施例2に係る波動制御装置30-2では、図22に示すように、メタマテリアル100がコアとしての磁性体材料200の他の外面(例えば面積が小さい方の側面)に設けられている点を除いて、実施例1に係る波動制御装置30-1と概ね同様の構成を有する。
波動制御装置30-2でも、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGD及び磁性体材料200の磁化方向MDのいずれとも略平行である。
(実施例3に係る波動制御媒質)
実施例3に係る波動制御装置30-3は、図23に示すように、波動制御装置30-3は、電磁波の導波路のコア300bを含む導波路部材300を更に備えている。導波路部材300は、一例として、コア300bに加えてベース部300aを含む。導波路部材300では、平板状のベース部300a上に突条部であるコア300bが設けられている。
実施例3に係る波動制御装置30-3は、図23に示すように、波動制御装置30-3は、電磁波の導波路のコア300bを含む導波路部材300を更に備えている。導波路部材300は、一例として、コア300bに加えてベース部300aを含む。導波路部材300では、平板状のベース部300a上に突条部であるコア300bが設けられている。
メタマテリアル100はコア300bの上面に設けられ、磁性体材料200はコア300bの一側面に設けられている。こでは、複数のメタマテリアル100が制御対象の電磁波の導波方向WGD(磁性体材料200の長手方向)に略平行に規則的(例えば等間隔)に設けられている。
導波路部材300は、制御対象の電磁波を導波させるために、該電磁波の波長に対して透明な基板(例えばSi基板)等を加工することにより成形されている。メタマテリアル100として例えばAu製のもの、磁性体材料200として例えばYIG製のものを用いることができる。
波動制御装置30-3では、メタマテリアル100としてのスプリットリング共振器の磁気モーメント方向MMDと電磁波の導波方向WGDとが略垂直であり、スプリットリング共振器の磁気モーメント方向MMDと磁性体材料200の磁化方向MDとが略垂直である。さらに、波動制御装置30-3では、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGD及び磁性体材料200の磁化方向MDのいずれとも略平行である。
(実施例4に係る波動制御装置)
実施例4に係る波動制御装置30-4は、図24に示すように、メタマテリアル100がコア300bの側面に設けられ、磁性体材料200がコア300bの上面に設けられている点を除いて、実施例3に係る波動制御装置30-3と概ね同様の構成を有する。
実施例4に係る波動制御装置30-4は、図24に示すように、メタマテリアル100がコア300bの側面に設けられ、磁性体材料200がコア300bの上面に設けられている点を除いて、実施例3に係る波動制御装置30-3と概ね同様の構成を有する。
波動制御装置30-4でも、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGD及び磁性体材料200の磁化方向MDのいずれとも略平行である。
(実施例5に係る波動制御媒質)
実施例5に係る波動制御装置30-5は、図25に示すように、コア300bの相対する一側面及び他側面のうち一側面にメタマテリアル100が設けられ、他側面に磁性体材料200が設けられている点を除いて、実施例3に係る波動制御装置30-3と概ね同様の構成を有する。
実施例5に係る波動制御装置30-5は、図25に示すように、コア300bの相対する一側面及び他側面のうち一側面にメタマテリアル100が設けられ、他側面に磁性体材料200が設けられている点を除いて、実施例3に係る波動制御装置30-3と概ね同様の構成を有する。
波動制御装置30-5でも、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGD及び磁性体材料200の磁化方向MDのいずれとも略平行である。
<4.本技術の第4実施形態に係る波動制御装置>
(波動制御装置の構成)
以下、本技術の第4実施形態に係る波動制御装置について図面を用いて説明する。図26Aは、第4実施形態に係る波動制御装置40の概念図である。図26Bは、第4実施形態に係る波動制御装置40により制御された電磁波の波動方程式を示す図である。以下、図26Aに示すxyz3次元直交座標系(例えば左手系)を適宜用いて説明する。
(波動制御装置の構成)
以下、本技術の第4実施形態に係る波動制御装置について図面を用いて説明する。図26Aは、第4実施形態に係る波動制御装置40の概念図である。図26Bは、第4実施形態に係る波動制御装置40により制御された電磁波の波動方程式を示す図である。以下、図26Aに示すxyz3次元直交座標系(例えば左手系)を適宜用いて説明する。
第4実施形態に係る波動制御装置40では、一例として図26Aに示すように、メタマテリアル100としてのスプリットリング共振器の軸方向(略x軸方向)と電磁波の導波方向(略z軸方向)とが略垂直であり、スプリットリング共振器の磁気モーメント方向(略x軸方向)と磁性体材料の磁化方向MD(略y軸方向)とが略垂直である。さらに、波動制御装置40では、メタマテリアル100としてのスプリットリング共振器のスプリット方向(切れ目方向、略z軸方向)が、電磁波の導波方向(略z軸方向)と略平行であり、且つ、磁性体材料200の磁化方向MD(略y軸方向)と略垂直である。
(波動制御装置の作用)
波動制御装置40では、このようなメタマテリアル100の配置及び磁性体材料200の磁化方向の組み合わせにより、TMモードで導波する電磁波をモード整合させつつ(TMモードを維持しつつ)制御可能である。さらに、波動制御装置20により制御された電磁波の波動方程式は、下記(4)式(図26B参照)のようになり、MO効果及びME効果の双方を発現することが分かる。
波動制御装置40では、このようなメタマテリアル100の配置及び磁性体材料200の磁化方向の組み合わせにより、TMモードで導波する電磁波をモード整合させつつ(TMモードを維持しつつ)制御可能である。さらに、波動制御装置20により制御された電磁波の波動方程式は、下記(4)式(図26B参照)のようになり、MO効果及びME効果の双方を発現することが分かる。
∂y2Hx+[ω2(με(1-γ2/ε2)+ζ2)-(1-γ2/ε2)β2)]Hx=0 ・・・(4)ここではMO効果に関する要素であるcにはiγが、ME効果に関する要素であるCにはζが入るとする。
(波動制御装置の効果)
第4実施形態に係る波動制御装置40によれば、第1実施形態に係る波動制御装置10と同様の効果を得ることができる。
第4実施形態に係る波動制御装置40によれば、第1実施形態に係る波動制御装置10と同様の効果を得ることができる。
以下、本技術の第4実施形態に係る波動制御装置20の幾つかの実施例(下位概念)について説明する。
(実施例1に係る波動制御媒質)
実施例1に係る波動制御装置40-1では、図27に示すように、電磁波の導波路のコアが磁性体材料200である。波動制御装置40-1では、メタマテリアル100は、コアとしての磁性体材料200の外面(例えば面積が大きい方の側面)に設けられている。ここでは、複数のメタマテリアル100が制御対象の電磁波の導波方向WGD(磁性体材料200の長手方向)に略平行に規則的(例えば等間隔)に設けられている。
実施例1に係る波動制御装置40-1では、図27に示すように、電磁波の導波路のコアが磁性体材料200である。波動制御装置40-1では、メタマテリアル100は、コアとしての磁性体材料200の外面(例えば面積が大きい方の側面)に設けられている。ここでは、複数のメタマテリアル100が制御対象の電磁波の導波方向WGD(磁性体材料200の長手方向)に略平行に規則的(例えば等間隔)に設けられている。
波動制御装置40-1では、メタマテリアル100としてのスプリットリング共振器の磁気モーメント方向MMDと電磁波の導波方向WGDとが略垂直であり、且つ、該スプリットリング共振器の磁気モーメント方向MMDと磁性体材料200の磁化方向MDとが略垂直である。さらに、波動制御装置40-1では、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGDと略平行であり、且つ、磁性体材料200の磁化方向MDと略垂直である。
(実施例2に係る波動制御媒質)
実施例2に係る波動制御装置40-2では、図28に示すように、メタマテリアル100がコアとしての磁性体材料200の他の外面(例えば面積が小さい方の側面)に設けられている点を除いて、実施例1に係る波動制御装置40-1と概ね同様の構成を有する。
実施例2に係る波動制御装置40-2では、図28に示すように、メタマテリアル100がコアとしての磁性体材料200の他の外面(例えば面積が小さい方の側面)に設けられている点を除いて、実施例1に係る波動制御装置40-1と概ね同様の構成を有する。
波動制御装置40-2でも、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGDと略平行であり、且つ、磁性体材料200の磁化方向MDと略垂直である。
(実施例3に係る波動制御媒質)
実施例3に係る波動制御装置40-3は、図29に示すように、波動制御装置40-3は、電磁波の導波路のコア300bを含む導波路部材300を更に備えている。導波路部材300は、一例として、コア300bに加えてベース部300aを含む。導波路部材300では、平板状のベース部300a上に突条部であるコア300bが設けられている。
実施例3に係る波動制御装置40-3は、図29に示すように、波動制御装置40-3は、電磁波の導波路のコア300bを含む導波路部材300を更に備えている。導波路部材300は、一例として、コア300bに加えてベース部300aを含む。導波路部材300では、平板状のベース部300a上に突条部であるコア300bが設けられている。
メタマテリアル100はコア300bの上面に設けられ、磁性体材料200はコア300bの一側面に設けられている。こでは、複数のメタマテリアル100が制御対象の電磁波の導波方向WGD(磁性体材料200の長手方向)に略平行に規則的(例えば等間隔)に設けられている。
導波路部材300は、制御対象の電磁波を導波させるために、該電磁波の波長に対して透明な基板(例えばSi基板)等を加工することにより成形されている。メタマテリアル100として例えばAu製のもの、磁性体材料200として例えばYIG製のものを用いることができる。
波動制御装置40-3では、メタマテリアル100としてのスプリットリング共振器の磁気モーメント方向MMDと電磁波の導波方向WGDとが略垂直であり、スプリットリング共振器の磁気モーメント方向MMDと磁性体材料200の磁化方向MDとが略垂直である。さらに、波動制御装置40-3では、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGDと略平行であり、且つ、磁性体材料200の磁化方向MDと略垂直である。
(実施例4に係る波動制御装置)
実施例4に係る波動制御装置40-4は、図30に示すように、メタマテリアル100がコア300bの側面に設けられ、磁性体材料200がコア300bの上面に設けられている点を除いて、実施例3に係る波動制御装置40-3と概ね同様の構成を有する。
実施例4に係る波動制御装置40-4は、図30に示すように、メタマテリアル100がコア300bの側面に設けられ、磁性体材料200がコア300bの上面に設けられている点を除いて、実施例3に係る波動制御装置40-3と概ね同様の構成を有する。
波動制御装置40-4でも、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGDと略平行であり、且つ、磁性体材料200の磁化方向MDと略垂直である。
(実施例5に係る波動制御媒質)
実施例5に係る波動制御装置40-5は、図31に示すように、コア300bの相対する一側面及び他側面のうち一側面にメタマテリアル100が設けられ、他側面に磁性体材料200が設けられている点を除いて、実施例3に係る波動制御装置40-3と概ね同様の構成を有する。
実施例5に係る波動制御装置40-5は、図31に示すように、コア300bの相対する一側面及び他側面のうち一側面にメタマテリアル100が設けられ、他側面に磁性体材料200が設けられている点を除いて、実施例3に係る波動制御装置40-3と概ね同様の構成を有する。
波動制御装置40-5でも、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGDと略平行であり、且つ、磁性体材料200の磁化方向MDと略垂直である。
以上説明した第6実施形態に係る波動制御装置60によれば、第5実施形態に係る波動制御装置50と同様の効果を得ることができる。
<5.本技術の第5実施形態に係る波動制御装置>
(波動制御装置の構成)
以下、本技術の第5実施形態に係る波動制御装置について図面を用いて説明する。32Aは、第5実施形態に係る波動制御装置50の概念図である。図32Bは、第5実施形態に係る波動制御装置50により制御された電磁波の波動方程式を示す図である。以下、図32Aに示すxyz3次元直交座標系(例えば左手系)を適宜用いて説明する。
(波動制御装置の構成)
以下、本技術の第5実施形態に係る波動制御装置について図面を用いて説明する。32Aは、第5実施形態に係る波動制御装置50の概念図である。図32Bは、第5実施形態に係る波動制御装置50により制御された電磁波の波動方程式を示す図である。以下、図32Aに示すxyz3次元直交座標系(例えば左手系)を適宜用いて説明する。
波動制御装置50は、一例として図32Aに示すように、電磁波に対して少なくとも電気磁気効果と磁気光学効果との相互作用が生じるように、メタマテリアル100が配置され、且つ、磁性体材料200の磁化方向MDが設定されている。
波動制御装置50は、電磁波に対して電気磁気効果及び磁気光学効果が更に生じるように、メタマテリアル100が配置され、且つ、磁性体材料200の磁化方向MDが設定されていてもよい。
第5実施形態に係る波動制御装置50では、一例として図32Aに示すように、メタマテリアル100としてのスプリットリング共振器の軸方向(略x軸方向)と電磁波の導波方向(略z軸方向)とが略垂直であり、且つ、該スプリットリング共振器の磁気モーメント方向(略x軸方向)と磁性体材料200の磁化方向MD(略x軸方向)とが略平行である(より詳細には向きが略一致している)。さらに、第5実施形態に係る波動制御媒質50では、メタマテリアル100としてのスプリットリング共振器のスプリット方向(略z軸方向)が、電磁波の導波方向(略z軸方向)と略平行である。
(波動制御装置の作用)
波動制御装置50では、このようなメタマテリアル100の配置及び磁性体材料200の磁化方向の組み合わせにより、TMモードで導波する電磁波をモード整合させつつ(TMモードを維持しつつ)制御可能である。さらに、波動制御装置50により制御された電磁波の波動方程式は、下記(5)式(図32B参照)のようになり、MO効果及びME効果と、MO効果とME効果との相互作用とを発現することが分かる。
波動制御装置50では、このようなメタマテリアル100の配置及び磁性体材料200の磁化方向の組み合わせにより、TMモードで導波する電磁波をモード整合させつつ(TMモードを維持しつつ)制御可能である。さらに、波動制御装置50により制御された電磁波の波動方程式は、下記(5)式(図32B参照)のようになり、MO効果及びME効果と、MO効果とME効果との相互作用とを発現することが分かる。
∂y2Hx+[ω2(με(1-γ2/ε2)+ζ2-β2)]Hx-2iβ(ωζγ/ε)Hx=0 ・・・(5)ここではMO効果に関する要素であるbにはiγが、ME効果に関する要素であるCにはζが入るとする。
波動制御装置50では、磁性体材料のみを用いた場合(図3B)に比較して、MO効果による機能である非相反性が大きく増強される。波動制御装置50において、図32Aに示すように配置されたメタマテリアル100及び磁性体材料200を含む媒質の非相反性は、図49Aのスラブ導波路型構造においてトランスファーマトリクス法による数値解析を用いて算出される伝搬定数βから、前進波と後進波の伝搬ロスの差(非相反損失差)及び位相差(非相反位相差)を算出することで求められる。
図49Aのスラブ導波路型構造において最上層が磁性体材料200で構成されMO効果のみが生じる場合の非相反損失差が図49Bに示され、非相反位相差が図49Cに示されている。図49Aのスラブ導波路型構造において最上層が図32Aに示すように配置されたメタマテリアル100及び磁性体材料200で構成されMO効果及びME効果、並びにMO効果とME効果の相互作用が生じる場合の非相反損失差が図49Dに示され、非相反位相差が図49Eに示されている。図49Dの非相反損失差は、図49Bの非相反損失差と比較して大きな値を示す。図49Eの非相反位相差は、図49Cの非相反位相差と比較して大きな値を示す。
(波動制御装置の効果)
第5実施形態に係る波動制御装置50は、メタマテリアル100と磁性体材料200とを備えている。この場合、メタマテリアル100の配置及び磁性体材料200の磁化方向を効果的に組み合わせることにより、電磁波の制御性を向上することができる。
第5実施形態に係る波動制御装置50は、メタマテリアル100と磁性体材料200とを備えている。この場合、メタマテリアル100の配置及び磁性体材料200の磁化方向を効果的に組み合わせることにより、電磁波の制御性を向上することができる。
第5実施形態に係る波動制御装置50では、電磁波に対して少なくとも、電気磁気効果と磁気光学効果との相互作用が生じるように、メタマテリアル100が配置され、且つ、磁性体材料200の磁化方向MDが設定されている。これにより、電磁波の制御性を十分に向上することができる。
波動制御装置50では、電磁波に対して電気磁気効果及び磁気光学効果が更に生じるように、メタマテリアル100が配置され、且つ、磁性体材料の磁化方向MDが設定されていることが好ましい。これにより、電磁波を略完全に制御することができる。
波動制御装置50によれば、第1実施形態に係る波動制御装置10と概ね同様の効果も得られる。
以下、本技術の第5実施形態に係る波動制御装置50の幾つかの実施例(下位概念)について説明する。
(実施例1に係る波動制御媒質)
実施例1に係る波動制御装置50-1では、図33に示すように、電磁波の導波路のコアが磁性体材料200である。波動制御装置50-1では、メタマテリアル100は、コアとしての磁性体材料200の外面(例えば面積が大きい方の側面)に設けられている。ここでは、複数のメタマテリアル100が制御対象の電磁波の導波方向WGD(磁性体材料200の長手方向)に略平行に規則的(例えば等間隔)に設けられている。
実施例1に係る波動制御装置50-1では、図33に示すように、電磁波の導波路のコアが磁性体材料200である。波動制御装置50-1では、メタマテリアル100は、コアとしての磁性体材料200の外面(例えば面積が大きい方の側面)に設けられている。ここでは、複数のメタマテリアル100が制御対象の電磁波の導波方向WGD(磁性体材料200の長手方向)に略平行に規則的(例えば等間隔)に設けられている。
波動制御装置50-1は、メタマテリアル100としてのスプリットリング共振器の磁気モーメント方向MMDと電磁波の導波方向WGDとが略垂直であり、且つ、該スプリットリング共振器の磁気モーメント方向MMDと磁性体材料200の磁化方向MDとが略平行である(より詳細には向きが略一致している)。さらに、波動制御装置50-1では、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGDと略平行である。
(実施例2に係る波動制御媒質)
実施例2に係る波動制御装置50-2では、図34に示すように、メタマテリアル100がコアとしての磁性体材料200の他の外面(例えば面積が小さい方の側面)に設けられている点を除いて、実施例1に係る波動制御装置50-1と概ね同様の構成を有する。
実施例2に係る波動制御装置50-2では、図34に示すように、メタマテリアル100がコアとしての磁性体材料200の他の外面(例えば面積が小さい方の側面)に設けられている点を除いて、実施例1に係る波動制御装置50-1と概ね同様の構成を有する。
波動制御装置50-2でも、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGDと略平行である。
(実施例3に係る波動制御媒質)
実施例3に係る波動制御装置50-3は、図35に示すように、電磁波の導波路のコア300bを含む導波路部材300を更に備えている。導波路部材300は、一例として、コア300bに加えてベース部300aを含む。導波路部材300では、平板状のベース部300a上に突条部であるコア300bが設けられている。
実施例3に係る波動制御装置50-3は、図35に示すように、電磁波の導波路のコア300bを含む導波路部材300を更に備えている。導波路部材300は、一例として、コア300bに加えてベース部300aを含む。導波路部材300では、平板状のベース部300a上に突条部であるコア300bが設けられている。
メタマテリアル100はコア300bの上面に設けられ、磁性体材料200はコア300bの一側面に設けられている。こでは、複数のメタマテリアル100が制御対象の電磁波の導波方向WGD(磁性体材料200の長手方向)に略平行に規則的(例えば等間隔)に設けられている。
導波路部材300は、制御対象の電磁波を導波させるために、該電磁波の波長に対して透明な基板(例えばSi基板)等を加工することにより成形されている。メタマテリアル100として例えばAu製のもの、磁性体材料200として例えばYIG製のものを用いることができる。
波動制御装置50-3は、メタマテリアル100としてのスプリットリング共振器の磁気モーメント方向MMDと電磁波の導波方向WGDとが略垂直であり、且つ、該スプリットリング共振器の磁気モーメント方向MMDと磁性体材料200の磁化方向MDとが略平行である。さらに、波動制御装置50-1では、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGDと略平行である。
(実施例4に係る波動制御装置)
実施例4に係る波動制御装置50-4は、図36に示すように、メタマテリアル100がコア300bの側面に設けられ、磁性体材料200がコア300bの上面に設けられている点を除いて、実施例3に係る波動制御装置50-3と概ね同様の構成を有する。
実施例4に係る波動制御装置50-4は、図36に示すように、メタマテリアル100がコア300bの側面に設けられ、磁性体材料200がコア300bの上面に設けられている点を除いて、実施例3に係る波動制御装置50-3と概ね同様の構成を有する。
波動制御装置50-4でも、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGDと略平行である。
(実施例5に係る波動制御媒質)
実施例5に係る波動制御装置50-5、図37に示すように、コア300bの相対する一側面及び他側面のうち一側面にメタマテリアル100が設けられ、他側面に磁性体材料200が設けられている点を除いて、実施例3に係る波動制御装置50-3と概ね同様の構成を有する。
実施例5に係る波動制御装置50-5、図37に示すように、コア300bの相対する一側面及び他側面のうち一側面にメタマテリアル100が設けられ、他側面に磁性体材料200が設けられている点を除いて、実施例3に係る波動制御装置50-3と概ね同様の構成を有する。
波動制御装置50-5でも、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGDと略平行である。
<6.本技術の第6実施形態に係る波動制御装置>
(波動制御装置の構成)
以下、本技術の第6実施形態に係る波動制御装置について図面を用いて説明する。図38Aは、第6実施形態に係る波動制御装置60の概念図である。図38Bは、第6実施形態に係る波動制御装置60により制御された電磁波の波動方程式を示す図である。以下、図38Aに示すxyz3次元直交座標系(例えば左手系)を適宜用いて説明する。
(波動制御装置の構成)
以下、本技術の第6実施形態に係る波動制御装置について図面を用いて説明する。図38Aは、第6実施形態に係る波動制御装置60の概念図である。図38Bは、第6実施形態に係る波動制御装置60により制御された電磁波の波動方程式を示す図である。以下、図38Aに示すxyz3次元直交座標系(例えば左手系)を適宜用いて説明する。
波動制御装置60は、一例として図38Aに示すように、電磁波に対して少なくとも電気磁気効果と磁気光学効果との相互作用が生じるように、メタマテリアル100が配置され、且つ、磁性体材料200の磁化方向MDが設定されている。
波動制御装置60は、電磁波に対して電気磁気効果及び磁気光学効果が更に生じるように、メタマテリアル100が配置され、且つ、磁性体材料200の磁化方向MDが設定されていてもよい。
第6実施形態に係る波動制御装置60では、一例として図38Aに示すように、メタマテリアル100としてのスプリットリング共振器の磁気モーメント方向(略x軸方向)と電磁波の導波方向(略z軸方向)とが略垂直であり、且つ、該スプリットリング共振器の磁気モーメント方向(略x軸方向)と磁性体材料200の磁化方向MD(略x軸方向)とが略平行である(より詳細には向きが略一致している)。さらに、波動制御装置60では、メタマテリアル100としてのスプリットリング共振器のスプリット方向(略y軸方向、切れ目方向)が、電磁波の導波方向(略z軸方向)と略垂直である。
(波動制御装置の作用)
波動制御装置60では、このようなメタマテリアル100の配置及び磁性体材料200の磁化方向の組み合わせにより、TMモードで導波する電磁波をモード整合させつつ(TMモードを維持しつつ)制御可能である。さらに、波動制御装置60により制御された電磁波の波動方程式は、下記(6)式(図38B参照)のようになり、MO効果及びME効果と、MO効果とME効果との相互作用とを発現することが分かる。
波動制御装置60では、このようなメタマテリアル100の配置及び磁性体材料200の磁化方向の組み合わせにより、TMモードで導波する電磁波をモード整合させつつ(TMモードを維持しつつ)制御可能である。さらに、波動制御装置60により制御された電磁波の波動方程式は、下記(6)式(図38B参照)のようになり、MO効果及びME効果と、MO効果とME効果との相互作用とを発現することが分かる。
∂y2Hx+[ω2(με(1-γ2/ε2)+ζ2-β2)]Hx+2∂y(ωζγ/ε)Hx=0 ・・・(6)ここではMO効果に関する要素であるbにはiγが、ME効果に関する要素であるEにはζが入るとする。
(波動制御装置の効果)
第6実施形態に係る波動制御装置60によれば、第5実施形態に係る波動制御装置50と同様の効果を得ることができる。
第6実施形態に係る波動制御装置60によれば、第5実施形態に係る波動制御装置50と同様の効果を得ることができる。
以下、本技術の第6実施形態に係る波動制御装置60の幾つかの実施例(下位概念)について説明する。
(実施例1に係る波動制御媒質)
実施例1に係る波動制御装置60-1では、図39に示すように、電磁波の導波路のコアが磁性体材料200である。波動制御装置60-1では、メタマテリアル100は、コアとしての磁性体材料200の一の外面(例えば面積が大きい方の側面)に設けられている。ここでは、複数のメタマテリアル100が制御対象の電磁波の導波方向WGD(磁性体材料200の長手方向)に略平行に規則的(例えば等間隔)に設けられている。
実施例1に係る波動制御装置60-1では、図39に示すように、電磁波の導波路のコアが磁性体材料200である。波動制御装置60-1では、メタマテリアル100は、コアとしての磁性体材料200の一の外面(例えば面積が大きい方の側面)に設けられている。ここでは、複数のメタマテリアル100が制御対象の電磁波の導波方向WGD(磁性体材料200の長手方向)に略平行に規則的(例えば等間隔)に設けられている。
波動制御装置60-1は、メタマテリアル100としてのスプリットリング共振器の磁気モーメント方向MMDと電磁波の導波方向WGDとが略垂直であり、且つ、該スプリットリング共振器の磁気モーメント方向MMDと磁性体材料200の磁化方向MDとが略平行である(より詳細には向きが略一致している)。さらに、波動制御装置60-1では、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGDと略垂直である。
(実施例2に係る波動制御媒質)
実施例2に係る波動制御装置60-2では、図40に示すように、メタマテリアル100がコアとしての磁性体材料200の他の外面(例えば面積が小さい方の側面)に設けられている点を除いて、実施例1に係る波動制御装置60-1と概ね同様の構成を有する。
実施例2に係る波動制御装置60-2では、図40に示すように、メタマテリアル100がコアとしての磁性体材料200の他の外面(例えば面積が小さい方の側面)に設けられている点を除いて、実施例1に係る波動制御装置60-1と概ね同様の構成を有する。
波動制御装置60-2でも、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGDと略垂直である。
(実施例3に係る波動制御媒質)
実施例3に係る波動制御装置60-3は、図41に示すように、電磁波の導波路のコア300bを含む導波路部材300を更に備えている。導波路部材300は、一例として、コア300bに加えてベース部300aを含む。導波路部材300では、平板状のベース部300a上に突条部であるコア300bが設けられている。
実施例3に係る波動制御装置60-3は、図41に示すように、電磁波の導波路のコア300bを含む導波路部材300を更に備えている。導波路部材300は、一例として、コア300bに加えてベース部300aを含む。導波路部材300では、平板状のベース部300a上に突条部であるコア300bが設けられている。
メタマテリアル100はコア300bの上面に設けられ、磁性体材料200はコア300bの一側面に設けられている。こでは、複数のメタマテリアル100が制御対象の電磁波の導波方向WGD(磁性体材料200の長手方向)に略平行に規則的(例えば等間隔)に設けられている。
導波路部材300は、制御対象の電磁波を導波させるために、該電磁波の波長に対して透明な基板(例えばSi基板)等を加工することにより成形されている。メタマテリアル100として例えばAu製のもの、磁性体材料200として例えばYIG製のものを用いることができる。
波動制御装置60-3では、メタマテリアル100としてのスプリットリング共振器の磁気モーメント方向MMDと電磁波の導波方向WGDとが略垂直であり、且つ、該スプリットリング共振器の磁気モーメント方向MMDと磁性体材料200の磁化方向MDとが略平行である。さらに、波動制御装置60-3では、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGDと略垂直である。
(実施例4に係る波動制御装置)
実施例4に係る波動制御装置60-4は、図42に示すように、メタマテリアル100がコア300bの側面に設けられ、磁性体材料200がコア300bの上面に設けられている点を除いて、実施例3に係る波動制御装置60-3と概ね同様の構成を有する。
実施例4に係る波動制御装置60-4は、図42に示すように、メタマテリアル100がコア300bの側面に設けられ、磁性体材料200がコア300bの上面に設けられている点を除いて、実施例3に係る波動制御装置60-3と概ね同様の構成を有する。
波動制御装置60-4でも、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGDと略垂直である。
(実施例5に係る波動制御媒質)
実施例5に係る波動制御装置60-5は、図43に示すように、コア300bの相対する一側面及び他側面のうち一側面にメタマテリアル100が設けられ、他側面に磁性体材料200が設けられている点を除いて、実施例3に係る波動制御装置60-3と概ね同様の構成を有する。
実施例5に係る波動制御装置60-5は、図43に示すように、コア300bの相対する一側面及び他側面のうち一側面にメタマテリアル100が設けられ、他側面に磁性体材料200が設けられている点を除いて、実施例3に係る波動制御装置60-3と概ね同様の構成を有する。
波動制御装置60-5でも、メタマテリアル100としてのスプリットリング共振器のスプリット方向SD(切れ目方向)が、電磁波の導波方向WGDと略垂直である。
<7.本技術の第7実施形態に係る波動制御装置>
図50A及び図50Bは、MO効果のみを考えた自由空間伝播(前進波)について説明するための図である。図51A及び図51Bは、MO効果のみを考えた自由空間伝播(後退波)について説明するための図である。
図50A及び図50Bは、MO効果のみを考えた自由空間伝播(前進波)について説明するための図である。図51A及び図51Bは、MO効果のみを考えた自由空間伝播(後退波)について説明するための図である。
電磁波の自由空間伝播において、MO効果(磁気光学効果)のみを考えた場合、前進波としての直線偏光は、その伝播方向に沿って印加された磁場への入射前(z=0)から、該磁場からの出射後(z=L)までに偏光方向が例えば右回り(+方向)にθだけ回転する(図50A及び図50B参照)。
該電磁波の自由空間伝播において、MO効果のみを考えた場合、後退波(後進波)としての直線偏光は、その伝播方向に沿って印加された磁場への入射前(z=0)から、該磁場からの出射後(z=L)までに偏光方向が例えば左回り(-方向)にθだけ回転する(図51A及び図51B参照)。
すなわち、電磁波の自由空間伝播において、MO効果のみを考えた場合、該磁場内をそれぞれ伝播した前進波及び後退波の偏光回転(直線偏光の回転)の向きは、逆になる。すなわち、MO効果は、非相反な偏光回転制御性を有する。
図52A及び図52Bは、ME効果のみを考えた自由空間伝播(前進波)について説明するための図である。図53A及び図53Bは、ME効果のみを考えた自由空間伝播(後退波)について説明するための図である。
電磁波の自由空間伝播において、ME効果(電気磁気効果)のみを考えた場合(特にME効果に関するパラメータζの値が虚数の場合)、前進波としての直線偏光は、その伝播方向に沿って印加された磁場への入射前(z=0)から、該磁場からの出射後(z=L)までに偏光方向が例えば右回り(+方向)にφだけ回転する(図52A及び図52B参照)。
該電磁波の自由空間伝播において、ME効果のみを考えた場合(特にME効果に関するパラメータζの値が虚数の場合)、後退波(後進波)としての直線偏光は、その伝播方向に沿って印加された磁場への入射前(z=0)から、該磁場からの出射後(z=L)までに偏光方向が例えば右回り(+方向)にφだけ回転する(図53A及び図53B参照)。
すなわち、電磁波の自由空間伝播において、ME効果のみを考えた場合、該磁場内をそれぞれ伝播した前進波及び後退波の偏光回転(直線偏光の回転)の向きは、同じになる。すなわち、ME効果は、相反な偏光回転制御性を有する。
図54A及び図54Bは、MO効果及びME効果を考えた自由空間伝播(前進波)の一例について説明するための図である。図55A及び図55Bは、MO効果及びME効果を考えた自由空間伝播(後退波)の一例について説明するための図である。
電磁波の自由空間伝播において、MO効果及びME効果を考えた場合、前進波としての直線偏光の偏光方向を、その伝播方向に沿って印加された磁場への入射前(z=0)から、該磁場からの出射後(z=L)までに例えば右回り(+方向)にθ+φ(>0)だけ回転させることが可能である(図54A及び図54B参照)。
該電磁波の自由空間伝播において、MO効果及びME効果を考えた場合、後退波としての直線偏光の偏光方向を、その伝播方向に沿って印加された磁場への入射前(z=0)から、該磁場からの出射後(z=L)までに回転させないこと(θ+φ=0とすること)が可能である(図55A及び図55B参照)。
図56A及び図56Bは、MO効果及びME効果を考えた自由空間伝播(前進波)の他の例について説明するための図である。図57A及び図57Bは、MO効果及びME効果を考えた自由空間伝播(後退波)の他の例について説明するための図である。
電磁波の自由空間伝播において、MO効果及びME効果を考えた場合、前進波としての直線偏光の偏光方向を、その伝播方向に沿って印加された磁場への入射前(z=0)から、該磁場からの出射後(z=L)までに回転させないこと(θ+φ=0とすること)が可能である(図56A及び図56B参照)。
該電磁波の自由空間伝播において、MO効果及びME効果を考えた場合、後退波としての直線偏光の偏光方向を、その伝播方向に沿って印加された磁場への入射前(z=0)から、該磁場からの出射後(z=L)までに例えば右回り(+方向)にθ+φ(>0)だけ回転させることが可能である(図57A及び図57B参照)。
以上の説明から分かるように、MO効果の非相反な偏光回転制御性と、ME効果の相反な偏光回転制御性とを組み合わせることにより、該磁場内をそれぞれ伝播した前進波及び後退波の一方のみの偏光方向を回転させることが可能となる。
発明者らは、この新規知見を具現化するための波動制御装置として、第7実施形態に係る波動制御装置を開発した。以下、第7実施形態に係る波動制御装置について幾つかの実施例を挙げて詳細に説明する。
(実施例1に係る波動制御装置)
図58Aは、本技術の第7実施形態の実施例1に係る波動制御装置70-1の斜視図である。図58Bは、図58Aの波動制御装置70-1におけるメタマテリアル100の配置であって一方向限定偏光制御性を発現しうる配置について説明するための図である。以下、図58Aに示す3次元直交座標系を適宜用いて説明する。
図58Aは、本技術の第7実施形態の実施例1に係る波動制御装置70-1の斜視図である。図58Bは、図58Aの波動制御装置70-1におけるメタマテリアル100の配置であって一方向限定偏光制御性を発現しうる配置について説明するための図である。以下、図58Aに示す3次元直交座標系を適宜用いて説明する。
波動制御装置70-1では、図58Aに示すように、制御対象の電磁波の前進波FW及び後退波BWの一方の偏光状態のみが変化するように(一方向限定偏光制御性が発現するように)メタマテリアル100が配置され、且つ、磁性体材料200の磁化方向MDが設定されている。
具体的には、波動制御装置70-1では、制御対象の電磁波としての前進波FWの右円偏光及び左円偏光における実効屈折率の差(右円偏光及び左円偏光が感じる屈折率の差)である第1実効屈折率差と、該電磁波としての後退波BWの右円偏光及び左円偏光における実効屈折率の差で(右円偏光及び左円偏光が感じる屈折率の差)ある第2実効屈折率差とが異なるようにメタマテリアル100が配置され、且つ、磁性体材料200の磁化方向Mが設定されている。特に、第1及び第2実効屈折率差の差が比較的大きい場合に、前進波FW及び後退波BWの一方の偏光状態のみを変化させること(詳しくは前進波FW及び後退波BWの一方の偏光方向のみを回転させること)が可能となる。
図61A及び図61Bは、一方向限定偏光制御性が発現する条件について説明するための図である。図61A及び図61Bの各々において、横軸はMO効果に関するパラメータγを示し、縦軸はME効果に関するパラメータζを示す。図61Aは、前進波の右円偏光及び左円偏光における実効屈折率の差(第1実効屈折率差)をグラデーション(濃淡)により示している。図61Bは、後退波の右円偏光及び左円偏光における実効屈折率の差(第2実効屈折率差)をグラデーション(濃淡)により示している。例えば、γ及びζの値として、図61A及び図61Bの破線上の値を選択することにより、第1実効屈折率差を比較的大きく、且つ、第2実効屈折率差を比較的小さくすることができ、ひいては前進波FWの偏光方向のみを回転させることが可能となる。例えば、γ及びζの値として、図61A及び図61Bの一点鎖線上の値を選択することにより、第1実効屈折率差を比較的小さく、且つ、第2実効屈折率差を比較的大きくすることができ、ひいては後退波BWの偏光方向のみを回転させることが可能となる。
図58Aに戻り、波動制御装置70-1では、メタマテリアル100及び磁性体材料200は、制御対象の電磁波(前進波FW及び後退波BW)の伝播経路上に配置されている。メタマテリアル100及び磁性体材料200は、該電磁波の伝播方向(例えばy軸方向)に沿って並べて配置されている。ここでは、磁性体材料200の磁化方向MD(外部磁場の印加方向)が該電磁波の伝播方向に沿う方向(例えば-y方向)となっている。この場合、MOテンソルの非対角成分a(図3A参照)に値が入る。すなわち、電磁波に対して、MO効果による非相反な偏光回転制御を行うことができる。
磁性体材料200は、一例として、磁性体からなる平板部材であり、支持基板400に支持されている。磁性体材料200及び支持基板400は、一例として、いずれもxz平面に平行に配置されている。磁性体材料200上にメタマテリアル100がアレイ状(例えばxz平面に沿ってマトリクス状)に複数設けられている。支持基板400としては、例えばSi基板、Ge基板等の半導体基板や、SOI(Silicon On Insulator)基板が挙げられる。磁性体材料200及び支持基板400は、制御対象の電磁波の波長に対して透明であることが好ましい。
各メタマテリアル100は、一例として、カイラリティ構造を有する。具体的には、各メタマテリアル100は、例えば螺旋体を含む。ここでは、該螺旋体の巻き数は、1であるが、2以上であってもよい。各メタマテリアル100は、該螺旋体の磁気モーメント方向(ピッチ方向、軸方向)が、磁性体材料200の磁化方向MDと略直交するように(詳しくはx軸方向に略平行となるように)配置されている。この場合、MEテンソルの対角成分Gに値が入る(図58B参照)。すなわち、電磁波に対して、ME効果による相反な偏光回転制御を行うことができる。
以上のように構成される波動制御装置70-1では、制御対象の電磁波に対して、MO効果による非相反な偏光回転制御及びME効果による相反な偏光回転制御を組み合わせて行うことができ、ひいては前進波FW及び後退波BWの一方の偏光方向のみを回転させることができる。
波動制御装置70-1は、このような一方向限定偏光制御性を有することから、例えば偏光制御素子や光アイソレータの波動制御装置として利用が期待できる。
(実施例2に係る波動制御装置)
図59Aは、本技術の第7実施形態の実施例2に係る波動制御装置70-2の斜視図である。図59Bは、図59Aの波動制御装置70-2におけるメタマテリアル100の配置であって一方向限定偏光制御性を発現しうる配置について説明するための図である。
図59Aは、本技術の第7実施形態の実施例2に係る波動制御装置70-2の斜視図である。図59Bは、図59Aの波動制御装置70-2におけるメタマテリアル100の配置であって一方向限定偏光制御性を発現しうる配置について説明するための図である。
波動制御装置70-2は、図59A及び図59Bに示すように、メタマテリアル100の配置(姿勢)が異なる点を除いて、実施例1に係る波動制御装置70-1と同様の構成を有する。
波動制御装置70-2では、各メタマテリアル100は、螺旋体の磁気モーメント方向(ピッチ方向、軸方向)が磁性体材料200の磁化方向MDと略平行となるように(詳しくはy軸方向に略平行となるように)配置されている。この場合には、MEテンソルの対角成分Hに値が入る(図59B参照)。
波動制御装置70-2は、実施例1に係る波動制御装置70-1と同様の作用・効果を奏する。
(実施例3に係る波動制御装置)
図60Aは、本技術の第7実施形態の実施例3に係る波動制御装置70-3の斜視図である。図60Bは、図60Aの波動制御装置70-2におけるメタマテリアル100の配置であって一方向限定偏光制御性を発現しうる配置について説明するための図である。
図60Aは、本技術の第7実施形態の実施例3に係る波動制御装置70-3の斜視図である。図60Bは、図60Aの波動制御装置70-2におけるメタマテリアル100の配置であって一方向限定偏光制御性を発現しうる配置について説明するための図である。
波動制御装置70-3は、図60A及び図60Bに示すように、メタマテリアル100の配置(姿勢)が異なる点を除いて、実施例1に係る波動制御装置70-1と同様の構成を有する。
波動制御装置70-3では、各メタマテリアル100は、螺旋体の磁気モーメント方向(ピッチ方向、軸方向)がz軸に略平行となるように(磁化方向MDと略直交するように)配置されている。この場合には、MEテンソルの対角成分Iに値が入る(図60B参照)。
波動制御装置70-3は、実施例1に係る波動制御装置70-1と同様の作用・効果を奏する。
以上説明した第7実施形態の各実施例に係る波動制御装置において、メタマテリアル100の形状、配置及び数は、適宜変更可能である。例えばメタマテリアル100の形状は、カイラリティを有する形状であれば如何なる形状であってもよい。例えばアレイ配置は、千鳥配置であってもよいし、一次元配置であってもよい。例えばメタマテリアル100の数は、複数に限らず、単数であってもよい。
<8.メタマテリアルの形状の具体例>
本技術に係る波動制御装置が備えるメタマテリアルは、電場(又は磁場)によって磁化(又は電気分極)が誘起され、誘起された電気分極や磁化が該メタマテリアルの配置に依存する形状を有するものが好ましい。このようなメタマテリアルの形状として、上記各実施形態で説明したスプリットリング共振器(SSR、図44A参照)の他、例えばダブルスプリットリング共振器(DSSR、図44B参照)、球体(図45A参照)、カットワイヤペア(図45B参照)、スパイラル(図46A参照)、マッシュルーム形状(図46B参照)、V字形状(図47A及び図47B参照)、フィッシュネット形状(図48A及び図48B参照)の共振器を挙げることができる。なお、図47A及び図47Bは、Meinzer, N., Barnes, W. L., & Hooper, I. R. (2014). Plasmonic meta-atoms and metasurfaces. Nature Photonics, 8(12), 889-898. からの引用である。図48A及び図48Bは、Ku, Z., Dani, K. M., Upadhya, P. C., & Brueck, S. R. (2009). Bianisotropicnegative-index metamaterial embedded in a symmetric medium. Journal of the OpticalSociety of America B, 26(12), B34.からの引用である。以上の各形状を有する共振器も、上記各実施形態で説明したスプリットリング共振器と同様の材料及び同程度の大きさで構成することができる。なお、メタマテリアルがダブルスプリット共振器を持つ場合にも、上記各実施形態で説明したスプリットリング共振器の配置と磁性体材料の磁化方向との組み合わせと同様の組み合わせを採用することができ、これにより同等以上の効果を得ることができる。
本技術に係る波動制御装置が備えるメタマテリアルは、電場(又は磁場)によって磁化(又は電気分極)が誘起され、誘起された電気分極や磁化が該メタマテリアルの配置に依存する形状を有するものが好ましい。このようなメタマテリアルの形状として、上記各実施形態で説明したスプリットリング共振器(SSR、図44A参照)の他、例えばダブルスプリットリング共振器(DSSR、図44B参照)、球体(図45A参照)、カットワイヤペア(図45B参照)、スパイラル(図46A参照)、マッシュルーム形状(図46B参照)、V字形状(図47A及び図47B参照)、フィッシュネット形状(図48A及び図48B参照)の共振器を挙げることができる。なお、図47A及び図47Bは、Meinzer, N., Barnes, W. L., & Hooper, I. R. (2014). Plasmonic meta-atoms and metasurfaces. Nature Photonics, 8(12), 889-898. からの引用である。図48A及び図48Bは、Ku, Z., Dani, K. M., Upadhya, P. C., & Brueck, S. R. (2009). Bianisotropicnegative-index metamaterial embedded in a symmetric medium. Journal of the OpticalSociety of America B, 26(12), B34.からの引用である。以上の各形状を有する共振器も、上記各実施形態で説明したスプリットリング共振器と同様の材料及び同程度の大きさで構成することができる。なお、メタマテリアルがダブルスプリット共振器を持つ場合にも、上記各実施形態で説明したスプリットリング共振器の配置と磁性体材料の磁化方向との組み合わせと同様の組み合わせを採用することができ、これにより同等以上の効果を得ることができる。
上述したメタマテリアル100の具体例のうち、特に3次元状(立体形状)のメタマテリアル100と導波路との一体化方法として、導波路の構成要素(コアやクラッド)に対して、例えばブロックコポリマー又は混合ポリマー溶液の乾燥による自己組織化を行うことによりメタマテリアル100を形成してもよいし、導波路の構成要素に対して光硬化性樹脂、熱硬化性樹脂、光溶解性樹脂又は熱溶解性樹脂の3D印刷を行うことによりメタマテリアル100を形成してもよいし、導波路の構成要素上へ金属をパターニングして金属細線を形成した後、該金属細線を自発的収縮させることによりメタマテリアル100を形成してもよいし、導波路の構成要素上に金属によりパターン形成された表面処理部からの金属構造の自発的成長を行うことによりメタマテリアル100を形成してもよい。
なお、メタマテリアルの形状によって、対応するME tensorの成分が変わる、すなわちある方向で電場(又は磁場)を印加した場合に誘起される磁化(又は電気分極)の方向はメタマテリアルの形状によって異なる。そこで、電磁波に対して電気磁気効果及び磁気光学効果、並びに/又は、電気磁気効果と磁気光学効果との相互作用が生じるように、メタマテリアルの形状に応じて、該メタマテリアルが配置され、且つ、磁性体材料の磁化方向が設定されることが好ましい。
さらに、電磁波に対して少なくとも、電気磁気効果と磁気光学効果との相互作用が生じるように、メタマテリアルの形状に応じて、該メタマテリアルが配置され、且つ、磁性体材料の磁化方向が設定されることが好ましい。この場合に、さらに、電磁波に対して電気磁気効果及び磁気光学効果が更に生じるように、メタマテリアルの形状に応じて、該メタマテリアルが配置され、且つ、磁性体材料の磁化方向が設定されることが好ましい。
以上説明したように、本技術の各実施形態に係る波動制御装置では、電磁波に対して電気磁気効果及び磁気光学効果、並びに/又は、電気磁気効果と磁気光学効果との相互作用が生じるように、メタマテリアル100が配置され、且つ、磁性体材料200の磁化方向MDが設定されていることが好ましい。これにより、電磁波の制御性を向上することができる。
<9.本技術の変形例>
以上説明した各実施形態に係る波動制御装置は、適宜変更可能である。
以上説明した各実施形態に係る波動制御装置は、適宜変更可能である。
例えば、上記各実施形態の各実施例に係る波動制御装置の構成の一部を相互に矛盾しない範囲内で組み合わせてもよい。
例えば、波動制御装置は、メタマテリアル及び磁性体材料で構成され、電磁波の導波路の周辺に配置されてもよい。すなわち、波動制御装置は、電磁波の導波路を構成要素に含まなくてもよい。
上記各実施形態では、メタマテリアルの配置及び磁性体材料の磁化方向をTMモードで導波する電磁波をTMモードを維持しつつ制御するように(モード整合となるように)組み合わせた場合を例にとって説明したが、メタマテリアルの配置及び磁性体材料の磁化方向をTMモードで導波する電磁波をTMモードを維持せずに制御するように(モード不整合となるように)組み合わせてもよい。
例えば、電磁波の導波路は、コアとクラッドとで構成されてもよい。この場合に、コア及び/又はクラッドが、磁性体材料であってもよいし、導波路部材の一部であってもよい。具体的には、電磁波の導波路は、例えば平板状のコアが平板状の2つのクラッドで挟まれたもの(スラブ型)や、コアがクラッドで取り囲まれたもの(埋め込み型)や、コアがクラッドで取り囲まれたものであってコアの一部が外部に露出しているもの(半埋め込み型)や、平板状のコア上にレール状のクラッドが設けられたもの(リッジ型)であってもよい。
例えば、メタマテリアル及び磁性体材料は、導波路のコアの同一の側面に設けられてもよい。
例えば、メタマテリアル及び/又は磁性体材料は、導波路のコアの入射端面及び/又は出射端面に設けられてもよい。
上記各実施形態に係る波動制御装置は、例えば波長変換素子、演算素子、センサ等に適用することもできる。
<10.本技術の適用用途>
上記各実施形態及び変形例に係る波動制御装置は、上述した用途の他、送受信を行う送受信装置又は受発光を行う受発光装置、小型アンテナ、低背アンテナ、周波数選択フィルタ、人工磁気導体、エレクトロバンドギャップ部材、ノイズ対策部材、アイソレータ、電波レンズ、レーダー部材、光学レンズ、光学フィルム、テラヘルツ用光学素子、電波および光学迷彩・不可視化部材、放熱部材、遮熱部材、蓄熱部材、電磁波の変復調、波長変換等、電磁波反射(電磁波制御)、電磁波透過(電磁波制御)、非線形デバイス、スピーカー、エネルギー吸収材、黒体材、消光材、エネルギー変換材、電波レンズ、光学レンズ、カラーフィルタ、周波数選択フィルタ、電磁波反射材、ビーム位相制御装置、偏光制御素子、光アイソレータ等に適用することもできる。
なお、本技術では、以下の構成を取ることができる。
(1)メタマテリアルと磁性体材料とを備える、波動制御装置。
(2)電磁波に対して電気磁気効果及び磁気光学効果、並びに/又は、電気磁気効果と磁気光学効果との相互作用が生じるように、前記メタマテリアルが配置され、且つ、前記磁性体材料の磁化方向が設定されている、(1)に記載の波動制御装置。
(3)前記電磁波に対して少なくとも、電気磁気効果と磁気光学効果との相互作用が生じるように、前記メタマテリアルが配置され、且つ、前記磁性体材料の磁化方向が設定されている、(2)に記載の波動制御装置。
(4)前記電磁波に対して電気磁気効果及び磁気光学効果が更に生じるように、前記メタマテリアルが配置され、且つ、前記磁性体材料の磁化方向が設定されている、(3)に記載の波動制御装置。
(5)前記電磁波の導波路の周辺に前記メタマテリアルが設けられている、(2)~(4)のいずれか1つに記載の波動制御装置。
(6)前記メタマテリアルは、前記導波路と一体的に設けられている、(5)に記載の波動制御装置。
(7)前記導波路のコアは、前記磁性体材料である、(5)又は(6)に記載の波動制御装置。
(8)前記メタマテリアルは、前記コアの外面に設けられている、(7)に記載の波動制御装置。
(9)前記導波路のコアを含む導波路部材を更に備える、(5)又は(6)に記載の波動制御装置。
(10)前記メタマテリアル及び前記磁性体材料は、前記コアの外面に設けられている、(9)に記載の波動制御装置。
(11)前記メタマテリアル及び前記磁性体材料は、前記電磁波の伝播経路上に配置されている、(2)~(4)のいずれか1つに記載の波動制御装置。
(12)前記メタマテリアル及び前記磁性体材料は、前記電磁波の伝播方向に沿って並べて配置されている、(11)に記載の波動制御装置。
(13)前記メタマテリアルは、前記磁性体材料上に設けられている、(11)又は(12)に記載の波動制御装置。
(14)前記電磁波の前進波及び後退波の一方の偏光状態のみが変化するように前記メタマテリアルが配置され、且つ、前記磁性体材料の磁化方向が設定されている、(11)~(13)のいずれか1つに記載の波動制御装置。
(15)前記電磁波の前進波の右円偏光及び左円偏光における実効屈折率の差と、前記電磁波の後退波の右円偏光及び左円偏光における実効屈折率の差とが異なるように前記メタマテリアルが配置され、且つ、前記磁性体材料の磁化方向が設定されている、(11)~(14)のいずれか1つに記載の波動制御装置。
(16)前記メタマテリアルは、スプリットリング共振器を含み、前記スプリットリング共振器の磁気モーメント方向と前記電磁波の導波方向とが略垂直であり、前記磁気モーメント方向と前記磁性体材料の磁化方向とが略平行である、(2)~(10)のいずれか1つに記載の波動制御装置。
(17)前記スプリットリング共振器のスプリット方向は、前記導波方向と略平行である、(16)に記載の波動制御装置。
(18)前記スプリットリング共振器のスプリット方向は、前記導波方向と略垂直である、(16)に記載の波動制御装置。
(19)前記メタマテリアルは、スプリットリング共振器を含み、前記スプリットリング共振器の磁気モーメント方向と前記電磁波の導波方向とが略垂直であり、前記磁気モーメント方向と前記磁性体材料の磁化方向とが略垂直である、(2)~(10)のいずれか1つに記載の波動制御装置。
(20)前記スプリットリング共振器のスプリット方向は、前記導波方向及び前記磁化方向のいずれとも略垂直である、(19)に記載の波動制御装置。
(21)前記スプリットリング共振器のスプリット方向は、前記導波方向と略垂直であり、且つ、前記磁化方向と略平行である、(19)に記載の波動制御装置。
(22)前記スプリットリング共振器のスプリット方向は、前記導波方向及び前記磁化方向のいずれとも略平行である、(19)に記載の波動制御装置。
(23)前記スプリットリング共振器のスプリット方向は、前記導波方向と略平行であり、且つ、前記磁化方向と略垂直である、(19)に記載の波動制御装置。
(24)前記メタマテリアルは、カットワイヤペア共振器、スパイラル共振器、マッシュルーム共振器、V字共振器及びフィッシュネット共振器のいずれかを含む、(1)~(23)に記載の波動制御装置。
(25)前記電磁波は、TMモードで導波する、(2)~(24)のいずれか1つに記載の波動制御装置。
(26)前記磁性体材料は、外部磁場により磁化方向が設定される、(1)~(25)のいずれか1つに記載の波動制御装置。
(27)(1)~(26)のいずれか1つに記載の波動制御装置を備える、波長変換素子。
(28)(1)~(26)のいずれか1つに記載の波動制御装置を備える、演算素子。
(29)(1)~(26)のいずれか1つに記載の波動制御装置を備える、センサ。
(30)(1)~(26)のいずれか1つに記載の波動制御装置を備える、偏光制御素子。
(31)(1)~(26)のいずれか1つに記載の波動制御装置を備える、光アイソレータ。
(1)メタマテリアルと磁性体材料とを備える、波動制御装置。
(2)電磁波に対して電気磁気効果及び磁気光学効果、並びに/又は、電気磁気効果と磁気光学効果との相互作用が生じるように、前記メタマテリアルが配置され、且つ、前記磁性体材料の磁化方向が設定されている、(1)に記載の波動制御装置。
(3)前記電磁波に対して少なくとも、電気磁気効果と磁気光学効果との相互作用が生じるように、前記メタマテリアルが配置され、且つ、前記磁性体材料の磁化方向が設定されている、(2)に記載の波動制御装置。
(4)前記電磁波に対して電気磁気効果及び磁気光学効果が更に生じるように、前記メタマテリアルが配置され、且つ、前記磁性体材料の磁化方向が設定されている、(3)に記載の波動制御装置。
(5)前記電磁波の導波路の周辺に前記メタマテリアルが設けられている、(2)~(4)のいずれか1つに記載の波動制御装置。
(6)前記メタマテリアルは、前記導波路と一体的に設けられている、(5)に記載の波動制御装置。
(7)前記導波路のコアは、前記磁性体材料である、(5)又は(6)に記載の波動制御装置。
(8)前記メタマテリアルは、前記コアの外面に設けられている、(7)に記載の波動制御装置。
(9)前記導波路のコアを含む導波路部材を更に備える、(5)又は(6)に記載の波動制御装置。
(10)前記メタマテリアル及び前記磁性体材料は、前記コアの外面に設けられている、(9)に記載の波動制御装置。
(11)前記メタマテリアル及び前記磁性体材料は、前記電磁波の伝播経路上に配置されている、(2)~(4)のいずれか1つに記載の波動制御装置。
(12)前記メタマテリアル及び前記磁性体材料は、前記電磁波の伝播方向に沿って並べて配置されている、(11)に記載の波動制御装置。
(13)前記メタマテリアルは、前記磁性体材料上に設けられている、(11)又は(12)に記載の波動制御装置。
(14)前記電磁波の前進波及び後退波の一方の偏光状態のみが変化するように前記メタマテリアルが配置され、且つ、前記磁性体材料の磁化方向が設定されている、(11)~(13)のいずれか1つに記載の波動制御装置。
(15)前記電磁波の前進波の右円偏光及び左円偏光における実効屈折率の差と、前記電磁波の後退波の右円偏光及び左円偏光における実効屈折率の差とが異なるように前記メタマテリアルが配置され、且つ、前記磁性体材料の磁化方向が設定されている、(11)~(14)のいずれか1つに記載の波動制御装置。
(16)前記メタマテリアルは、スプリットリング共振器を含み、前記スプリットリング共振器の磁気モーメント方向と前記電磁波の導波方向とが略垂直であり、前記磁気モーメント方向と前記磁性体材料の磁化方向とが略平行である、(2)~(10)のいずれか1つに記載の波動制御装置。
(17)前記スプリットリング共振器のスプリット方向は、前記導波方向と略平行である、(16)に記載の波動制御装置。
(18)前記スプリットリング共振器のスプリット方向は、前記導波方向と略垂直である、(16)に記載の波動制御装置。
(19)前記メタマテリアルは、スプリットリング共振器を含み、前記スプリットリング共振器の磁気モーメント方向と前記電磁波の導波方向とが略垂直であり、前記磁気モーメント方向と前記磁性体材料の磁化方向とが略垂直である、(2)~(10)のいずれか1つに記載の波動制御装置。
(20)前記スプリットリング共振器のスプリット方向は、前記導波方向及び前記磁化方向のいずれとも略垂直である、(19)に記載の波動制御装置。
(21)前記スプリットリング共振器のスプリット方向は、前記導波方向と略垂直であり、且つ、前記磁化方向と略平行である、(19)に記載の波動制御装置。
(22)前記スプリットリング共振器のスプリット方向は、前記導波方向及び前記磁化方向のいずれとも略平行である、(19)に記載の波動制御装置。
(23)前記スプリットリング共振器のスプリット方向は、前記導波方向と略平行であり、且つ、前記磁化方向と略垂直である、(19)に記載の波動制御装置。
(24)前記メタマテリアルは、カットワイヤペア共振器、スパイラル共振器、マッシュルーム共振器、V字共振器及びフィッシュネット共振器のいずれかを含む、(1)~(23)に記載の波動制御装置。
(25)前記電磁波は、TMモードで導波する、(2)~(24)のいずれか1つに記載の波動制御装置。
(26)前記磁性体材料は、外部磁場により磁化方向が設定される、(1)~(25)のいずれか1つに記載の波動制御装置。
(27)(1)~(26)のいずれか1つに記載の波動制御装置を備える、波長変換素子。
(28)(1)~(26)のいずれか1つに記載の波動制御装置を備える、演算素子。
(29)(1)~(26)のいずれか1つに記載の波動制御装置を備える、センサ。
(30)(1)~(26)のいずれか1つに記載の波動制御装置を備える、偏光制御素子。
(31)(1)~(26)のいずれか1つに記載の波動制御装置を備える、光アイソレータ。
10、10-1~10-5、20、20-1~20-5、30、30-1~30-5、40、40-1~40-5、50、50-1~50-5、60、60-1~60-5:波動制御装置、100:メタマテリアル、200:磁性体材料、300:導波路部材、300b:コア、MMD:磁気モーメント方向、WGD:導波方向、MD:磁化方向、SD:スプリット方向。
Claims (31)
- メタマテリアルと磁性体材料とを備える、波動制御装置。
- 電磁波に対して電気磁気効果及び磁気光学効果、並びに/又は、電気磁気効果と磁気光学効果との相互作用が生じるように、前記メタマテリアルが配置され、且つ、前記磁性体材料の磁化方向が設定されている、請求項1に記載の波動制御装置。
- 前記電磁波に対して少なくとも、電気磁気効果と磁気光学効果との相互作用が生じるように、前記メタマテリアルが配置され、且つ、前記磁性体材料の磁化方向が設定されている、請求項2に記載の波動制御装置。
- 前記電磁波に対して電気磁気効果及び磁気光学効果が更に生じるように、前記メタマテリアルが配置され、且つ、前記磁性体材料の磁化方向が設定されている、請求項3に記載の波動制御装置。
- 前記メタマテリアルは、前記電磁波の導波路の周辺に配置されている、請求項2に記載の波動制御装置。
- 前記メタマテリアルは、前記導波路と一体的に設けられている、請求項5に記載の波動制御装置。
- 前記導波路のコアは、前記磁性体材料である、請求項5に記載の波動制御装置。
- 前記メタマテリアルは、前記コアの外面に設けられている、請求項7に記載の波動制御装置。
- 前記導波路のコアを含む導波路部材を更に備える、請求項5に記載の波動制御装置。
- 前記メタマテリアル及び前記磁性体材料は、前記コアの外面に設けられている、請求項9に記載の波動制御装置。
- 前記メタマテリアル及び前記磁性体材料は、前記電磁波の伝播経路上に配置されている、請求項2に記載の波動制御装置。
- 前記メタマテリアル及び前記磁性体材料は、前記電磁波の伝播方向に沿って並べて配置されている、請求項11に記載の波動制御装置。
- 前記メタマテリアルは、前記磁性体材料上に設けられている、請求項12に記載の波動制御装置。
- 前記電磁波の前進波及び後退波の一方の偏光状態のみが変化するように前記メタマテリアルが配置され、且つ、前記磁性体材料の磁化方向が設定されている、請求項11に記載の波動制御装置。
- 前記電磁波の前進波の右円偏光及び左円偏光における実効屈折率の差と、前記電磁波の後退波の右円偏光及び左円偏光における実効屈折率の差とが異なるように前記メタマテリアルが配置され、且つ、前記磁性体材料の磁化方向が設定されている、請求項14に記載の波動制御装置。
- 前記メタマテリアルは、スプリットリング共振器を含み、
前記スプリットリング共振器の磁気モーメント方向と前記電磁波の導波方向とが略垂直であり、
前記磁気モーメント方向と前記磁性体材料の磁化方向とが略平行である、請求項2に記載の波動制御装置。 - 前記スプリットリング共振器のスプリット方向は、前記導波方向と略平行である、請求項16に記載の波動制御装置。
- 前記スプリットリング共振器のスプリット方向は、前記導波方向と略垂直である、請求項16に記載の波動制御装置。
- 前記メタマテリアルは、スプリットリング共振器を含み、
前記スプリットリング共振器の磁気モーメント方向と前記電磁波の導波方向とが略垂直であり、
前記磁気モーメント方向と前記磁性体材料の磁化方向とが略垂直である、請求項2に記載の波動制御装置。 - 前記スプリットリング共振器のスプリット方向は、前記導波方向及び前記磁化方向のいずれとも略垂直である、請求項19に記載の波動制御装置。
- 前記スプリットリング共振器のスプリット方向は、前記導波方向と略垂直であり、且つ、前記磁化方向と略平行である、請求項19に記載の波動制御装置。
- 前記スプリットリング共振器のスプリット方向は、前記導波方向及び前記磁化方向のいずれとも略平行である、請求項19に記載の波動制御装置。
- 前記スプリットリング共振器のスプリット方向は、前記導波方向と略平行であり、且つ、前記磁化方向と略垂直である、請求項19に記載の波動制御装置。
- 前記メタマテリアルは、カットワイヤペア共振器、スパイラル共振器、マッシュルーム共振器、V字共振器及びフィッシュネット共振器のいずれかを含む、請求項2に記載の波動制御装置。
- 前記電磁波は、TMモードで導波する、請求項2に記載の波動制御装置。
- 前記磁性体材料は、外部磁場により磁化方向が設定される、請求項2に記載の波動制御装置。
- 請求項1に記載の波動制御装置を備える、波長変換素子。
- 請求項1に記載の波動制御装置を備える、演算素子。
- 請求項1に記載の波動制御装置を備える、センサ。
- 請求項1に記載の波動制御装置を備える、偏光制御素子。
- 請求項1に記載の波動制御装置を備える、光アイソレータ。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023580125A JPWO2023153138A1 (ja) | 2022-02-14 | 2023-01-13 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022020734 | 2022-02-14 | ||
JP2022-020734 | 2022-02-14 | ||
JP2022-032281 | 2022-03-03 | ||
JP2022032281 | 2022-03-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023153138A1 true WO2023153138A1 (ja) | 2023-08-17 |
Family
ID=87564231
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/000812 WO2023153138A1 (ja) | 2022-02-14 | 2023-01-13 | 波動制御装置、波長変換素子、演算素子、センサ、偏光制御素子及び光アイソレータ |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023153138A1 (ja) |
WO (1) | WO2023153138A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0497118A (ja) * | 1990-08-09 | 1992-03-30 | Canon Inc | アイソレータ機能を有する光変調器 |
JP2012501100A (ja) * | 2008-08-22 | 2012-01-12 | デューク ユニバーシティー | 面及び導波路のためのメタ材料 |
US20170299904A1 (en) * | 2016-04-18 | 2017-10-19 | Regents Of The University Of Minnesota | Spin magneto-optical modulator |
JP2020512585A (ja) * | 2017-03-21 | 2020-04-23 | エー・テー・ハー・チューリッヒEth Zuerich | テラヘルツを生成および/または検出するための装置およびその製造方法 |
JP2020112606A (ja) * | 2019-01-08 | 2020-07-27 | 国立大学法人東京工業大学 | 光機能デバイスの制御方法および制御装置 |
JP2021193437A (ja) * | 2020-06-09 | 2021-12-23 | 国立大学法人東京工業大学 | 非磁性の導波路型アイソレータ |
WO2022113551A1 (ja) * | 2020-11-27 | 2022-06-02 | ソニーグループ株式会社 | 波動制御媒質、波動制御素子、波動制御部材、波動制御装置、および波動制御媒質の製造方法 |
-
2023
- 2023-01-13 WO PCT/JP2023/000812 patent/WO2023153138A1/ja active Application Filing
- 2023-01-13 JP JP2023580125A patent/JPWO2023153138A1/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0497118A (ja) * | 1990-08-09 | 1992-03-30 | Canon Inc | アイソレータ機能を有する光変調器 |
JP2012501100A (ja) * | 2008-08-22 | 2012-01-12 | デューク ユニバーシティー | 面及び導波路のためのメタ材料 |
US20170299904A1 (en) * | 2016-04-18 | 2017-10-19 | Regents Of The University Of Minnesota | Spin magneto-optical modulator |
JP2020512585A (ja) * | 2017-03-21 | 2020-04-23 | エー・テー・ハー・チューリッヒEth Zuerich | テラヘルツを生成および/または検出するための装置およびその製造方法 |
JP2020112606A (ja) * | 2019-01-08 | 2020-07-27 | 国立大学法人東京工業大学 | 光機能デバイスの制御方法および制御装置 |
JP2021193437A (ja) * | 2020-06-09 | 2021-12-23 | 国立大学法人東京工業大学 | 非磁性の導波路型アイソレータ |
WO2022113551A1 (ja) * | 2020-11-27 | 2022-06-02 | ソニーグループ株式会社 | 波動制御媒質、波動制御素子、波動制御部材、波動制御装置、および波動制御媒質の製造方法 |
Non-Patent Citations (1)
Title |
---|
WU ZHONG; MA TIAN-MING: "Microwave propagation in a metamaterial-ferromagnetic waveguide", JOURNAL OF APPLIED PHYSICS, AMERICAN INSTITUTE OF PHYSICS, 2 HUNTINGTON QUADRANGLE, MELVILLE, NY 11747, vol. 127, no. 8, 28 February 2020 (2020-02-28), 2 Huntington Quadrangle, Melville, NY 11747, XP012244997, ISSN: 0021-8979, DOI: 10.1063/1.5127920 * |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023153138A1 (ja) | 2023-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kriegler et al. | Bianisotropic photonic metamaterials | |
Tuz et al. | Polarization transformations by a magneto-photonic layered structure in the vicinity of a ferromagnetic resonance | |
Tretyakov et al. | Bianisotropic route to the realization and matching of backward-wave metamaterial slabs | |
US7727643B2 (en) | Tunable negative refractive index composite | |
Lagarkov et al. | Wide-angle absorption by the use of a metamaterial plate | |
Tang et al. | Metamaterial lenses and their applications at microwave frequencies | |
Elsayed et al. | Transmission investigation of one-dimensional Fibonacci-based quasi-periodic photonic crystals including nanocomposite material and plasma | |
Dionne et al. | Circular polarization and nonreciprocal propagation in magnetic media | |
Mehdian et al. | Optical and magneto-optical properties of plasma-magnetic metamaterials | |
Shiu et al. | Photonic Chern insulators made of gyromagnetic hyperbolic metamaterials | |
Chen et al. | Anomalous Electromagnetic Tunneling in Bianisotropic ϵ-μ-Zero Media | |
Li et al. | Controlling asymmetric retroreflection of metasurfaces via localized loss engineering | |
Shen | Negative refractive index in gyrotropically magnetoelectric media | |
Semchenko et al. | Reflection and transmission by a uniaxially bi-anisotropic slab under normal incidence of plane waves | |
Shamonina | Slow waves in magnetic metamaterials: History, fundamentals and applications | |
Rao et al. | Tunable polarization encoder capable of polarization conversion and separation based on a layered photonic structure | |
WO2023153138A1 (ja) | 波動制御装置、波長変換素子、演算素子、センサ、偏光制御素子及び光アイソレータ | |
Lei et al. | Spoof localized surface Plasmon enhanced isolation and circulation | |
Fedorin | Polarization transformation by a hyperbolic metamaterial on a metal substrate | |
Lu et al. | Observation of topological rainbow in non-Hermitian systems | |
Amel'chenko et al. | Micromagnetic simulation of ferromagnetic metamaterials with wire inclusions | |
Yang et al. | Tellegen responses in metamaterials | |
Tyboroski et al. | Nonreciprocity in millimeter wave devices using a magnetic grating metamaterial | |
US4047801A (en) | Optical wave guide having distributed gyrotropy | |
Wang et al. | Transmission-reflection decoupling of non-Hermitian photonic doping epsilon-near-zero media |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23752607 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023580125 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |