WO2023153016A1 - 信号処理方法、信号処理装置、及び信号処理システム - Google Patents
信号処理方法、信号処理装置、及び信号処理システム Download PDFInfo
- Publication number
- WO2023153016A1 WO2023153016A1 PCT/JP2022/037165 JP2022037165W WO2023153016A1 WO 2023153016 A1 WO2023153016 A1 WO 2023153016A1 JP 2022037165 W JP2022037165 W JP 2022037165W WO 2023153016 A1 WO2023153016 A1 WO 2023153016A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- value
- signal
- photomultiplier tube
- noise
- signal processing
- Prior art date
Links
- 238000012545 processing Methods 0.000 title claims abstract description 73
- 238000003672 processing method Methods 0.000 title claims description 16
- 238000000684 flow cytometry Methods 0.000 claims abstract description 24
- 238000007405 data analysis Methods 0.000 claims abstract description 22
- 238000004458 analytical method Methods 0.000 claims description 30
- 238000011156 evaluation Methods 0.000 claims description 29
- 238000000034 method Methods 0.000 claims description 27
- 230000008569 process Effects 0.000 claims description 21
- 238000006243 chemical reaction Methods 0.000 claims description 20
- 230000003287 optical effect Effects 0.000 claims description 9
- 230000005284 excitation Effects 0.000 claims description 5
- 239000012530 fluid Substances 0.000 description 19
- 239000012491 analyte Substances 0.000 description 13
- 238000001514 detection method Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000011324 bead Substances 0.000 description 5
- 238000004043 dyeing Methods 0.000 description 4
- 239000007850 fluorescent dye Substances 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/10—Investigating individual particles
- G01N15/14—Optical investigation techniques, e.g. flow cytometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
- G01N21/53—Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
Definitions
- One aspect of the embodiments relates to a signal processing method, a signal processing device, and a signal processing system.
- flow cytometry is known as a technique for counting, sorting, and characterizing samples such as cells using laser light.
- US Pat. or a second sensor that senses a fluorescent component for example, US Pat. or a second sensor that senses a fluorescent component.
- the output signal from the sensor may fluctuate due to variations in the detection characteristics of the sensor.
- Setting parameters such as the supply voltage of the sensor can be adjusted to suppress fluctuations in the output signal of the sensor.
- light with the same incident intensity is detected as different output signal values depending on the degree of adjustment. .
- different analytical results may occur depending on the degree of adjustment.
- one aspect of the embodiments has been made in view of such problems, and provides a signal processing method, a signal processing apparatus, and a signal processing system capable of reducing variations in analysis results by flow cytometry.
- the challenge is to
- a signal processing method is a signal processing method for processing the output of a photomultiplier tube that constitutes a flow cytometer, and is a signal light generated by flow cytometry using the flow cytometer. is obtained as the first current signal, and the value of the first current signal is divided by the gain of the photomultiplier tube to obtain the signal light incident on the photomultiplier tube or the number of photoelectrons emitted from the photoelectric conversion portion of the photomultiplier tube is calculated, and data analysis is performed based on the analytical evaluation value.
- the signal processing device is a signal processing device that processes the output of a photomultiplier tube that constitutes a flow cytometer and includes a processor, wherein the processor uses the flow cytometer.
- the output current signal of the photomultiplier tube based on the signal light generated by the flow cytometry is obtained as the first current signal, and the value of the first current signal is divided by the gain of the photomultiplier tube.
- Calculate an analytical evaluation value, which is either the number of photons of signal light incident on the photomultiplier tube or the number of photoelectrons emitted from the photoelectric conversion section of the photomultiplier tube, and perform data analysis based on the analytical evaluation value is configured as
- a signal processing system includes the signal processing device described above, a photomultiplier tube, and an optical system that guides signal light to the photomultiplier tube.
- the signal light generated using the flow cytometer is detected by the photomultiplier tube to obtain the first current signal
- An analytical evaluation value which is the number of photons of the signal light incident on the photomultiplier tube or the number of photoelectrons emitted from the photoelectric conversion portion of the photomultiplier tube, is calculated from the value of the first current signal, and the calculated analytical evaluation value Data analysis is performed based on As a result, signal light can be analyzed quantitatively, and variations in analysis results by flow cytometry can be reduced.
- FIG. 1 is a schematic configuration diagram of a flow cytometer system 1, which is a flow cytometer according to an embodiment
- FIG. 2 is a block diagram showing an example of a hardware configuration of a data processing device 12 of FIG. 1;
- FIG. 2 is a block diagram showing a functional configuration of a data processing device 12;
- FIG. FIG. 4 is a graph showing an example of dot plots generated and output in data analysis by the analysis unit 203 of FIG. 3;
- FIG. FIG. 4 is a graph showing an example of dot plots generated and output in data analysis by the analysis unit 203 of FIG. 3;
- 4 is a flow chart showing the procedure of a signal processing method according to the embodiment; 4 is a flow chart showing the procedure of a signal processing method according to the embodiment; 1 is a graph showing an example of dot plots generated and output in conventional flow cytometric data analysis; 1 is a graph showing an example of dot plots generated and output in conventional flow cytometric data analysis;
- FIG. 1 is a schematic configuration diagram of a flow cytometer system 1, which is a flow cytometer (signal processing system) according to an embodiment.
- a flow cytometer system 1 is a system for performing flow cytometry, and is composed of a fluid system 2 , an optical system (optical system) 3 , and an electronic system (signal processor) 4 .
- the fluidic system 2 includes a flow cell 6 into which a sample fluid containing an analyte such as cells or particles is injected and which allows the analyte contained in the sample fluid to be aligned and passed through a narrow channel 5. be done.
- the flow cell 6 is also provided with a function (not shown) for sorting (classifying and distributing) the gated analytes by electric field control or the like.
- the optical system 3 is a system that optically analyzes the analyte passing through the flow cell 6 by flow cytometry.
- This optical system 3 comprises a laser light source 7, a lens 8, filters 9a, 9b, 9c and 9d, dichroic mirrors 10b and 10c, and photomultiplier tubes 11a, 11b, 11c and 11d, and is analyzed by flow cytometry.
- Various lights generated from the object are guided to the photomultiplier tubes 11a, 11b, 11c, and 11d.
- the laser light source 7 is a light source device that generates laser light (excitation light) in a single wavelength band at a specific frequency.
- the filter 9a transmits forward scattered light generated from the sample fluid by irradiation with laser light.
- the dichroic mirror 10b reflects the side-scattered light generated from the sample fluid due to the irradiation of the laser light, and transmits the fluorescence generated from the sample fluid.
- the dichroic mirror 10c reflects the fluorescence in the first wavelength band out of the fluorescence transmitted through the dichroic mirror 10b, and transmits the fluorescence in the remaining wavelength bands out of the fluorescence transmitted through the dichroic mirror 10b.
- the filter 9b transmits the side scattered light reflected by the dichroic mirror 10b, and the filter 9c transmits the first fluorescence in the first wavelength band reflected by the dichroic mirror 10c.
- the filter 9d transmits the second fluorescence in the second wavelength band among the fluorescence transmitted through the dichroic mirror 10c.
- the photomultiplier tubes 11a, 11b, 11c, and 11d are provided on the optical axes of the forward scattered light, the side scattered light, the first fluorescent light, and the second fluorescent light, respectively. , the first fluorescence, and the second fluorescence are measured.
- the electronic system 4 includes a data processing device 12 and is a device for analyzing the light intensity measured by the optical system 3 .
- the data processing device 12 is electrically connected to a plurality of photomultiplier tubes 11a, 11b, 11c, and 11d, and is detected by each channel of the plurality of photomultiplier tubes 11a, 11b, 11c, and 11d. Based on the intensity signal indicating the intensity obtained, data analysis such as creating a histogram or dot plot (also referred to as a cytogram) is performed, and gating processing is performed.
- the data processor 12 also sorts (classifies and sorts) the analytes contained in the sample fluid based on the gating process.
- FIG. 2 is a block diagram showing an example of the hardware configuration of the data processing device 12
- FIG. 3 is a block diagram showing the functional configuration of the data processing device 12. As shown in FIG.
- the data processing device 12 physically includes a CPU (Central Processing Unit) 101 as a processor, a RAM (Random Access Memory) 102 or ROM (Read Only Memory) 103 as a recording medium, a communication A computer or the like including a module 104, an input/output module 106, etc., which are electrically connected to each other.
- the data processing device 12 may include a display, a keyboard, a mouse, a touch panel display, and the like as input/output devices, and may include a data recording device such as a hard disk drive and a semiconductor memory. Also, the data processing device 12 may be configured by a plurality of computers.
- the data processing device 12 includes a signal acquisition unit 201, a calculation unit 202, and an analysis unit 203 as functional components.
- Each functional unit of the data processing device 12 shown in FIG. 3 operates the communication module 104, the input/output module 106, etc. under the control of the CPU 101 by loading programs onto hardware such as the CPU 101 and the RAM 102. It is realized by reading and writing data in the RAM 102 as well as allowing the data to be read.
- the CPU 101 of the data processing device 12 executes a program to cause each functional unit shown in FIG. 3 to function, and sequentially executes processing corresponding to a signal processing method to be described later.
- the CPU 101 may be a single piece of hardware, or may be implemented in a programmable logic such as an FPGA like a soft processor.
- the RAM and ROM may be stand-alone hardware, or may be built in programmable logic such as FPGA.
- Various data necessary for executing the program and various data generated by executing the program are all stored in built-in memories such as ROM 103 and RAM 102, or recording media such as hard disk drives. The functions of the functional components of data processor 12 are described in detail below.
- the signal acquisition unit 201 acquires intensity signals (output current signals) output from each channel of the plurality of photomultiplier tubes 11a, 11b, 11c, and 11d.
- the intensity signal to be acquired is obtained by detecting a current due to multiplied electrons according to the intensity of forward scattered light, side scattered light, or signal light such as fluorescence generated by flow cytometry in each photomultiplier tube. is an analog signal obtained by
- the signal acquisition unit 201 converts the acquired intensity signal of each channel into a digital value DN and outputs the digital value DN to the calculation unit 202 .
- the A/D conversion function of the signal acquisition unit 201 may be realized by an external circuit unit of the data processing device 12 .
- the calculation unit 202 converts the digital value DN of each channel output from the signal acquisition unit 201 into a virtual photon number (photon number).
- a virtual photon number photon number
- the average value A S [DN: digital number] of the intensity signal and the noise ⁇ this (standard deviation) [DN rms] of the intensity signal are expressed by the following equations (1) and (2) represented by
- the parameters mainly related to expected values are represented by uppercase letters
- the parameters mainly related to noise are represented by lowercase Greek letters.
- .sigma.C is a function of transmitting an intensity signal from the output of the photomultiplier tube of each channel to the signal acquisition unit 201 of the data processing device 12 in the flow cytometer system 1 and converting it into a digital value.
- the effective value means a value calculated from the intensity signal output from the photomultiplier tube by removing components that can be ignored in terms of statistical calculation (the same applies hereinafter).
- QB indicates the conversion efficiency of photons into electrons (quantum efficiency of background light) [e/photon] of the photomultiplier tube according to the wavelength spectrum of the background light incident on the photomultiplier tube.
- B indicate the expected value of the index (expected value of virtual photon number of background light) [photon] according to the virtual photon number in the incident light amount of the background light incident on the photomultiplier tube.
- virtual photon number means a value that relatively indicates the actual number of photons while maintaining quantitativeness (the same applies hereinafter).
- Q S represents the conversion efficiency of the photomultiplier tube from photons to electrons (quantum efficiency of signal light) [e/photon] according to the wavelength spectrum of the signal light incident on the photomultiplier tube.
- S denotes the expected value of the index according to the number of photons in the incident light intensity of the signal light incident on the photomultiplier tube (the expected value of the virtual photon number of the signal light) [photon]
- ⁇ is the laser light source 7 Alternatively, it is a value (variation rate on the light source and sample side) that indicates the degree of variation in the signal light generated before the incident on the photomultiplier tube due to the sample fluid, etc., as a ratio to the expected value of the signal light amount.
- A0 are values (offsets) [DN] indicating the unique offsets of the A/D conversion circuit.
- Q B *B indicates the number of effective photoelectrons [e] of the background light incident on the photomultiplier tube
- Q S *S indicates the photomultiplier tube shows the number of effective photoelectrons [e] of the signal light incident on .
- Factors that change the value of the variation rate ⁇ on the light source and sample side mainly include variation due to how the laser beam hits the analysis object such as cells flowing through the channel 5 in the flow cell 6 of the flow cytometer system 1. , and variability occurring from one analyte to another. Variations due to how the laser light impinges include variations in how the laser light impinges on the channel 5 and spatial variations in the analyte flowing through the channel 5 . In addition, variations among analytes include variations in the size of the analyte and variations in the content of molecules or molecular structures to be measured that exist within the analyte.
- Factors that substantially affect the variation rate ⁇ are variations in the amount of light in the laser light source 7 itself over time, variations due to how the laser light hits the channel 5, variations over time in the flow velocity in the channel 5, and variations in the flow velocity within the channel 5.
- spatial variability of the analyte variability of the size of the analyte, variability of the content of molecules or molecular structures present in the analyte, spatial variation of molecules or molecular structures present in the analyte variations in binding rate between molecules or molecular structures and staining fluorescence, variations in luminescence efficiency of staining fluorescence, and variations due to contaminants other than the analyte flowing through the channel 5, and the like.
- the first and second terms in the square root are independent of the parameter S, which is the expected value of the virtual photon number of the signal light, and are the circuit noise including the noise of the A/D conversion circuit or the background
- the third term in the square root is the noise (shot noise) generated in the process of converting photons into electrons, depending on the square root S 1/2 of the parameter S.
- the fourth term in the square root is the term that depends on the parameter S and mainly varies with the source and sample side variations.
- the known conversion coefficient C, gain G, and quantum efficiency QS of signal light are input to the data processing device 12 by the user and stored in advance in an internal recording medium such as the RAM 102. .
- the calculator 202 uses the parameters stored for each channel to calculate the number of virtual photons corresponding to the signal light detected in each channel as follows.
- the calculation unit 202 stops detection by flow cytometry, and calculates the digital value DN of the intensity signal (output current signal) output from the photomultiplier tube in a state where no signal light is incident on the photomultiplier tube.
- the calculation unit 202 changes the intensity of the laser light to a predetermined intensity, uses beads or dyeing phosphors that produce an appropriate amount of emitted light, or mounts a light source for calibration on the flow cytometer side.
- a plurality of digital values DN of the intensity signal (output current signal) output from the photomultiplier tube Acquisition for events is performed, and the average value (second average value) A S>>H and standard deviation (third noise value) ⁇ S>>H of the digital value DN are calculated and acquired.
- the intensity of the laser beam, the beads, the dyeing phosphor, or the calibration light source is determined according to the upper limit of the amount of light emitted by the object to be analyzed, the upper limit of the input voltage of the signal processing circuit, or the like.
- the calculated standard deviation ⁇ S >> H and average value A S >> H are as shown in the following formulas (5) and (6) by applying the theoretical formulas of formulas (1) and (2). value. Therefore, the calculation unit 202 can calculate the variation rate ⁇ using the following equation (7) based on the average value A S>>H and the standard deviation ⁇ S>>H . Then, the calculation unit 202 stores the calculated parameter ⁇ in an internal recording medium.
- the calculation unit 202 changes the intensity of the laser light to two types, uses two types of beads and dyeing phosphors that again provide an appropriate amount of light emission, and emits two types of light amount to the flow cytometer side for calibration.
- the sample fluid to be measured is targeted for each of the states in which the intensity of the signal light is changed to two types, high and low, by mounting a light source or by reducing the light intensity using an ND filter when the light intensity is sufficiently large.
- the detection by flow cytometry is started, and the digital value DN of the intensity signal (output current signal) output from the photomultiplier tube is obtained for a plurality of events in each state.
- the calculation unit 202 converts the standard deviation ⁇ this [DN rms] into the number of virtual photons by dividing the standard deviation ⁇ this by the conversion coefficient C, the gain G, and the quantum efficiency Q S of the signal light. It can be converted to the standard deviation ⁇ this [photon rms].
- the analysis unit 203 performs data analysis based on the data of the number of virtual photons S for each channel and the standard deviation ⁇ this of each channel calculated by the calculation unit 202 . Specifically, a histogram and a dot plot are generated based on the virtual photon numbers S of a plurality of channels, and output to an input/output device.
- the analysis unit 203 performs gating processing on the generated dot plot to demarcate a group of different analytes. Furthermore, the analysis unit 203 can also control the fluid system 2 to execute a sorting process for classifying and distributing groups based on the boundaries of groups of analytes.
- FIG. 4 and 5 are graphs showing examples of dot plots generated and output in data analysis by the analysis unit 203.
- FIG. FIG. 4 shows a dot plot plotting the relationship between the virtual photon number of the fluorescence channel corresponding to antibody A and the virtual photon number of the fluorescence channel corresponding to antibody B, with the boundaries defined by the gating process being solid lines. is indicated. In this way, the percentage of the population in the entire analyte to be detected is calculated and output by the gating process, and the percentage of the population negative for both antibody A and antibody B is "36.6%", antibody B only is output as the proportion of the population positive for , "27.7%” for the population positive for only antibody A, and "1.05%” for both antibodies A and B.
- the gate interval determined by the standard deviation ⁇ this corresponding to the average value S of the virtual photon number of the group centered on The boundaries of the range W can be automatically defined.
- the range W determined by the standard deviation ⁇ this is set, for example, to a range of virtual photon numbers S ⁇ 3 ⁇ this .
- FIG. 6 shows preparatory processing of parameters for each channel by the flow cytometer system 1
- FIG. 7 shows analysis processing by flow cytometry for a sample fluid.
- the user inputs the conversion coefficient C, the gain G, and the quantum efficiency QS of the signal light, which are known parameters for each channel, to the data processing device 12 (step S101).
- the data processing device 12 acquires the data of the digital value DN of each channel for a plurality of events while the signal light is not incident on each channel (step S102).
- the data processing device 12 detects the signal light for the sample fluid to be measured, thereby acquiring the data of the digital value DN of each channel for a plurality of events (step S104). Then, the parameter ⁇ of each channel is obtained and stored in the data processing device 12 (step S105).
- the intensity of the laser light is changed to two types, two types of beads or fluorescent dyes that provide an appropriate amount of light emission are used, two types of light sources for calibration are used, or Using two types of ND filters from a bright state, etc., and changing the intensity of the signal light to two types of high and low, the data processing device 12 detects the signal light for the sample fluid to be measured. As a result, the data of the digital value DN of each channel is obtained for a plurality of events (step S106). Then, the parameter F of each channel is obtained and stored in the data processor 12 (step S107). With the above, the preparatory process is completed.
- flow cytometer system 1 starts detection of a sample fluid to be measured by flow cytometry with the laser beam intensity set to a predetermined value suitable for measurement, and data processing is performed accordingly.
- the data of the digital value DN of each channel is acquired by the device 12 (step S201).
- the data processor 12 uses the digital value DN of each channel, a histogram and dot plot of each channel are generated (step S202).
- a standard deviation ⁇ this corresponding to the number of virtual photons S is calculated (step S203).
- the data processing device 12 performs gating processing using the calculated virtual photon number S and standard deviation ⁇ this on the generated histogram and dot plot (step S204). Based on the results of the gating process, the data processing device 12 classifies groups of objects to be analyzed (target groups) in the data shown in the histograms and dot plots (step S205).
- step S206 when the data processing device 12 is set to perform sorting (step S206; Yes), the data processing device 12 performs sorting on the classified target groups. controlled (S207). On the other hand, when the data processing device 12 is set so that sorting is not executed (step S206; No), the data processing device 12 processes data such as calculation of the ratio of the classified target group to the whole. Analysis processing is performed (S208).
- the signal light generated in each channel is detected by the photomultiplier tubes 11a, 11b, 11c, and 11d to obtain an intensity signal, and from the digital value DN of the intensity signal
- a virtual photon number S of the signal light incident on the photomultiplier tubes 11a, 11b, 11c, and 11d is calculated, and data analysis is performed based on the calculated virtual photon number S of the signal light.
- signal light can be analyzed quantitatively, and variations in analysis results by flow cytometry can be reduced.
- the number of virtual photons is used as the analysis evaluation value, it is possible to reduce variations in analysis results by flow cytometry between different apparatuses.
- the data processing device 12 executes, as data analysis, a gating process for demarcating the boundaries of groups to be analyzed.
- gating processing can be performed based on quantitative signal light intensity information, and the accuracy of group identification to be analyzed can be improved.
- the standard deviation ⁇ this corresponding to the noise contained in the virtual photon number S of the calculated signal light is calculated from the calculated virtual photon number S, and the standard deviation ⁇ this is calculated in the gating process.
- the deviation ⁇ this is used to set the gating interval. This makes it possible to further improve the accuracy of group identification to be analyzed.
- the virtual photon number S of the signal light can be calculated without the effects of background light and dark current. As a result, the reliability of analysis results by flow cytometry can be enhanced.
- the noise component of the virtual photon number of the signal light can be calculated in consideration of the effects of background light and dark current. As a result, it is possible to further improve the accuracy of group identification to be analyzed.
- the data processing device 12 also calculates the digital value DN of the intensity signal of the photomultiplier tubes 11a, 11b, 11c, and 11d based on the signal light corresponding to the laser beam of the predetermined intensity in the flow cytometer system 1.
- FIG. 8 is a graph showing an example of dot plots generated and output by one system in conventional flow cytometric data analysis
- FIG. 9 is a graph showing another system in conventional flow cytometric data analysis
- FIG. 10 is a graph showing an example of a dotplot generated and output by .
- the gating process in the dot plot is not limited to automatic setting by the electronic system 4, but may be set by the operator's input, or the automatically set one may be adjusted by the operator's input.
- the photomultiplier tubes in the embodiments are not limited to those provided with dynodes or anodes that are electron collecting electrodes, but also HPDs (Hybrid Photo Detectors) that multiply and detect photoelectrons emitted from the photoelectric conversion section with semiconductor elements. It's okay.
- the data processing device 12 may use the number of effective photoelectrons (the number of photoelectrons) instead of the number of virtual photons as the analysis evaluation value.
- the theoretical model represented by the following formula (11) and the following formula (12) is applied as a theoretical model of the intensity of signal light and noise.
- This modification also enables data analysis such as gating processing using the calculated number of effective photoelectrons E s and standard deviation ⁇ this , and quantitatively analyzes the signal light. variation can be reduced.
- the analytical evaluation value is the number of photons. In this case, it is also possible to reduce variations in analysis results between devices by flow cytometry.
- the data analysis includes a gating process that demarcates the group to be analyzed.
- gating processing can be performed based on quantitative signal light intensity information, and the accuracy of group identification to be analyzed can be improved.
- a first noise value corresponding to the noise included in the analytical evaluation value is further calculated, and in the gating process, the analysis It is also preferred to use the evaluation value and the first noise value to set the interval of the gate.
- the processor further calculates a first noise value corresponding to noise included in the analytical evaluation value based on the analytical evaluation value and the gain of the photomultiplier tube, and performs gating processing.
- a value corresponding to the noise contained in the photon number is calculated from the calculated number of photons of the signal light, and the gate section is set using the value in the gating process. This makes it possible to further improve the accuracy of group identification to be analyzed.
- the average value of the second current signal which is the output current signal of the photomultiplier tube when no signal light is incident on the flow cytometer, is obtained as the first average value, It is also preferred to use the value of the first current signal minus one mean value to calculate the analytical estimate.
- the processor obtains the average value of the second current signal, which is the output current signal of the photomultiplier tube when no signal light is incident on the flow cytometer, as the first average value. and the value of the first current signal from which the first average value is subtracted is preferably used to calculate the analytical evaluation value. In this way, the number of photons of signal light can be calculated without the effects of background light and dark current. As a result, the reliability of analysis results by flow cytometry can be enhanced.
- the noise value of the second current signal which is the output current signal of the photomultiplier tube when no signal light is incident on the flow cytometer
- the processor acquires the noise value of the second current signal, which is the output current signal of the photomultiplier tube when no signal light is incident on the flow cytometer, as the second noise value.
- the second noise value is further used to calculate the first noise value. In this way, the noise component of the number of photons of signal light can be calculated in consideration of the effects of background light and dark current. As a result, it is possible to further improve the accuracy of group identification to be analyzed.
- the second average value is the average value of the third current signal, which is the output current signal of the photomultiplier tube based on the signal light corresponding to the excitation light of the predetermined intensity in the flow cytometer. and a third noise value, which is the noise value of the third current signal, and further using the second average value and the third noise value to calculate the first noise value.
- the processor is the average value of the third current signal, which is the output current signal of the photomultiplier tube based on the signal light corresponding to the excitation light of the predetermined intensity in the flow cytometer.
- SYMBOLS 1 Flow cytometer system, 2... Fluid system, 3... Optical system, 4... Electronic system (signal processor), 5... Channel, 6... Flow cell, 7... Laser light source, 8... Lens, 9a, 9b, 9c, 9d... filter, 10b, 10c... dichroic mirror, 11a, 11b, 11c, 11d... photomultiplier tube, 12... data processor, 201... signal acquisition unit, 202... calculation unit, 203... analysis unit.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Dispersion Chemistry (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
データ処理装置12は、フローサイトメータシステム1を構成する光電子増倍管11a,11b,11c,11dの出力を処理し、プロセッサを備える信号処理装置であって、プロセッサは、フローサイトメータシステム1を用いたフローサイトメトリーによって生じた信号光を基にした光電子増倍管11a,11b,11c,11dの強度信号を取得し、強度信号のデジタル値DNを、光電子増倍管11a,11b,11c,11dのゲインG及び信号光の量子効率QSで除算することにより、光電子増倍管11a,11b,11c,11dに入射する信号光の仮想ホトン数Sを計算し、信号光の仮想ホトン数Sを基にデータ解析を実行するように構成されている。
Description
実施形態の一側面は、信号処理方法、信号処理装置、及び信号処理システムに関する。
従来から、細胞等の試料を対象にレーザ光を利用して計数、選別、及び特性解析する技術としてフローサイトメトリーが知られている。例えば、下記特許文献1には、光源に対して軸方向に配置され、前方散乱成分を感知する第1のセンサと、第1のセンサに対してある角度に置かれ、側方散乱成分及び/又は蛍光成分を感知する第2のセンサとを具備するフローサイトメトリーシステムが開示されている。
上述したような従来の装置においては、センサの検出特性のばらつきによってセンサからの出力信号に変動が生じる場合がある。センサの出力信号の変動を抑えるためにセンサにおける供給電圧等の設定パラメータを調整することもできるが、この場合は、調整の度合いによって同一の入射強度の光が異なる出力信号の値として検出される。その結果、調整の度合いによって異なる分析結果が生じる場合があった。
そこで、実施形態の一側面は、かかる課題に鑑みてなされたものであり、フローサイトメトリーによる分析結果のばらつきを低減することが可能な信号処理方法、信号処理装置、及び信号処理システムを提供することを課題とする。
実施形態の第一の側面に係る信号処理方法は、フローサイトメータを構成する光電子増倍管の出力を処理する信号処理方法であって、フローサイトメータを用いたフローサイトメトリーによって生じた信号光を基にした光電子増倍管の出力電流信号を第1電流信号として取得し、第1電流信号の値を、光電子増倍管のゲインで除算することにより、光電子増倍管に入射する信号光の光子数あるいは光電子増倍管の光電変換部から放出される光電子数のいずれかである解析評価値を計算し、解析評価値を基にデータ解析を実行する。
あるいは、実施形態の第二の側面に係る信号処理装置は、フローサイトメータを構成する光電子増倍管の出力を処理し、プロセッサを備える信号処理装置であって、プロセッサは、フローサイトメータを用いたフローサイトメトリーによって生じた信号光を基にした光電子増倍管の出力電流信号を第1電流信号として取得し、第1電流信号の値を、光電子増倍管のゲインで除算することにより、光電子増倍管に入射する信号光の光子数あるいは光電子増倍管の光電変換部から放出される光電子数のいずれかである解析評価値を計算し、解析評価値を基にデータ解析を実行するように構成されている。
あるいは、実施形態の第三の側面に係る信号処理システムは、上述した信号処理装置と、光電子増倍管と、信号光を光電子増倍管に導く光学系と、を備える。
上記第一の側面、上記第二の側面、あるいは上記第三の側面によれば、フローサイトメータを用いて生じた信号光が光電子増倍管によって検出されて第1電流信号が取得され、その第1電流信号の値から、光電子増倍管に入射する信号光の光子数あるいは光電子増倍管の光電変換部から放出される光電子数である解析評価値が計算され、計算された解析評価値を基にデータ解析が実行される。その結果、定量的に信号光を解析することができ、フローサイトメトリーによる分析結果のばらつきを低減することができる。
本開示のいずれかの側面によれば、フローサイトメトリーによる分析結果のばらつきを低減することができる。
以下、添付図面を参照して、本発明の実施形態について詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。
図1は、実施形態にかかるフローサイトメータ(信号処理システム)であるフローサイトメータシステム1の概略構成図である。フローサイトメータシステム1は、フローサイトメトリーを実施するためのシステムであり、流体システム2、光学システム(光学系)3、及び電子システム(信号処理装置)4によって構成される。
流体システム2は、細胞あるいは粒子等の分析対象物を含むサンプル流体が注入され、サンプル流体に含まれる分析対象物を細いチャネル5内に整列させて通過させることが可能なフローセル6を含んで構成される。このフローセル6には、ゲーティングされた分析対象物を電場制御等によってソーティング(分類および振り分け)する機能(図示せず)も設けられている。
光学システム3は、フローセル6内を通過する分析対象物をフローサイトメトリーにより光学的に分析するシステムである。この光学システム3は、レーザ光源7、レンズ8、フィルタ9a,9b,9c,9d、ダイクロイックミラー10b,10c、光電子増倍管11a,11b,11c,11dを含んで構成され、フローサイトメトリーによって分析対象物から発生した各種の光を光電子増倍管11a,11b,11c,11dに導光する。レーザ光源7は特定周波数で単一波長帯のレーザ光(励起光)を生成する光源装置であり、レンズ8はレーザ光源7から出射されたレーザ光をフローセル6内のチャネル5に集光する。フィルタ9aは、レーザ光の照射によってサンプル流体から生じた前方散乱光を透過させる。ダイクロイックミラー10bは、レーザ光の照射によってサンプル流体から生じた側方散乱光を反射し、サンプル流体から生じた蛍光を透過させる。ダイクロイックミラー10cは、ダイクロイックミラー10bを透過した蛍光のうちの第一の波長帯の蛍光を反射し、透過した蛍光のうちの残余の波長帯の蛍光を透過させる。フィルタ9bは、ダイクロイックミラー10bによって反射された側方散乱光を透過させ、フィルタ9cは、ダイクロイックミラー10cによって反射された第一の波長帯の第一の蛍光を透過させる。フィルタ9dは、ダイクロイックミラー10cを透過した蛍光のうち第二の波長帯の第二の蛍光を透過させる。光電子増倍管11a,11b,11c,11dは、それぞれ、前方散乱光、側方散乱光、第一の蛍光、及び第二の蛍光の光軸上に設けられ、前方散乱光、側方散乱光、第一の蛍光、及び第二の蛍光のそれぞれの強度を測定する。
電子システム4は、データ処理装置12を含んで構成され、光学システム3によって測定された光の強度を解析するための装置である。具体的には、データ処理装置12は、複数の光電子増倍管11a,11b,11c,11dに電気的に接続され、複数の光電子増倍管11a,11b,11c,11dの各チャネルで検出された強度を示す強度信号を基にヒストグラムあるいはドットプロット(サイトグラムともいう。)等を作成するデータ解析を実行するとともにゲーティング処理を実行する。また、データ処理装置12は、ゲーティング処理を基に、サンプル流体に含まれる分析対象物を対象にソーティング(分類および振り分け)を実行する。
次に、図2および図3を参照して、データ処理装置12の構成を説明する。図2は、データ処理装置12のハードウェア構成の一例を示すブロック図であり、図3は、データ処理装置12の機能構成を示すブロック図である。
図2に示すように、データ処理装置12は、物理的には、プロセッサであるCPU(Central Processing Unit)101、記録媒体であるRAM(Random Access Memory)102又はROM(Read Only Memory)103、通信モジュール104、及び入出力モジュール106等を含んだコンピュータ等であり、各々は電気的に接続されている。なお、データ処理装置12は、入出力デバイスとして、ディスプレイ、キーボード、マウス、タッチパネルディスプレイ等を含んでいてもよいし、ハードディスクドライブ、半導体メモリ等のデータ記録装置を含んでいてもよい。また、データ処理装置12は、複数のコンピュータによって構成されていてもよい。
図3に示すように、データ処理装置12は、機能的な構成要素として、信号取得部201、計算部202、及び解析部203を備えている。図3に示すデータ処理装置12の各機能部は、CPU101及びRAM102等のハードウェア上にプログラムを読み込ませることにより、CPU101の制御のもとで、通信モジュール104、及び入出力モジュール106等を動作させるとともに、RAM102におけるデータの読み出し及び書き込みを行うことで実現される。データ処理装置12のCPU101は、プログラムを実行することによって図3の各機能部を機能させ、後述する信号処理方法に対応する処理を順次実行する。なお、CPU101は、単体のハードウェアでもよく、ソフトプロセッサのようにFPGAのようなプログラマブルロジックの中に実装されたものでもよい。RAMやROMについても単体のハードウェアでもよく、FPGAのようなプログラマブルロジックの中に内蔵されたものでもよい。プログラムの実行に必要な各種データ、及び、プログラムの実行によって生成された各種データは、全て、ROM103、RAM102等の内蔵メモリ、又は、ハードディスクドライブなどの記録媒体に格納される。以下、データ処理装置12の機能的な構成要素の機能について詳細に説明する。
信号取得部201は、複数の光電子増倍管11a,11b,11c,11dの各チャネルから出力された強度信号(出力電流信号)を取得する。取得する強度信号は、それぞれの光電子増倍管において、フローサイトメトリーによって生じた前方散乱光、側方散乱光、あるいは、蛍光等の信号光に強度に応じた増倍電子による電流を検出することによって得られたアナログ信号である。信号取得部201は、取得した各チャネルの強度信号をデジタル値DNに変換して計算部202に出力する。なお、信号取得部201のA/D変換の機能は、データ処理装置12の外付けの回路部によって実現されてもよい。
計算部202は、信号取得部201から出力された各チャネルのデジタル値DNを、各チャネルに入射した現実の光子(ホトン)の数に準じた指標(解析評価値)である仮想ホトン数(光子数)へ変換する計算を実行する。ここで、計算部202による計算機能の説明に先立って、本願の発明者らにより検討された信号光の強度及びノイズの理論モデルについて説明する。
検討された理論モデルによれば、強度信号の平均値AS[DN:デジタルナンバー]及び強度信号のノイズσthis(標準偏差)[DN rms]は、下記式(1)及び下記式(2)によって表される。
ここで、上記式におけるパラメータのうち、主に期待値に関わるものは大文字のアルファベットで表わされ、主にノイズに関わるものは小文字のギリシャ文字で表わされている。σCは、フローサイトメータシステム1内で各チャネルの光電子増倍管の出力からデータ処理装置12の信号取得部201までの間において、強度信号を伝達してデジタル値に変換するまでの機能を担う回路(以下、単に「A/D変換用回路」という。)が発生するノイズ[DN rms]を示し、Cは、A/D変換用回路における光電子増倍管によって出力された電子数に対するデジタル値DNの変換係数[DN/e]を示し、Fは、増倍機構を有する光電子増倍管が持つ増倍揺らぎの程度を示す指数(過剰雑音係数)であり、Gは、光電子増倍管の持つ増倍率(ゲイン)、すなわち、入力電子数に対する出力電子数の比率[e/e]であり、Dは、光電子増倍管が持つ暗電流の有効電子数期待値[e]である。有効値とは、光電子増倍管の出力する強度信号から統計計算上において無視できる成分を除いて算出された値を意味する(以下同様)。また、QBは、光電子増倍管に入射している背景光の波長スペクトルに応じた、光電子増倍管の光子から電子への変換効率(背景光の量子効率)[e/photon]を示し、Bは、光電子増倍管に入射している背景光の入射光量における仮想ホトン数に準じた指標の期待値(背景光の仮想ホトン数期待値)[photon]を示す。「仮想ホトン数」とは、現実の光子数を定量性を保って相対的に示した値を意味する(以下同様)。また、QSは、光電子増倍管に入射している信号光の波長スペクトルに応じた、光電子増倍管の光子から電子への変換効率(信号光の量子効率)[e/photon]を示し、Sは、光電子増倍管に入射している信号光の入射光量における光子数に準じた指標の期待値(信号光の仮想ホトン数期待値)[photon]を示し、ρは、レーザ光源7あるいはサンプル流体等を起因とした、光電子増倍管への入射よりも前に発生した信号光のばらつき度合いを、信号光量期待値に対する比率によって示した値(光源及びサンプル側のばらつき率)であり、A0は、A/D変換用回路が持つ固有のオフセットを示す値(オフセット)[DN]である。
ここで、上記式におけるパラメータのうち、主に期待値に関わるものは大文字のアルファベットで表わされ、主にノイズに関わるものは小文字のギリシャ文字で表わされている。σCは、フローサイトメータシステム1内で各チャネルの光電子増倍管の出力からデータ処理装置12の信号取得部201までの間において、強度信号を伝達してデジタル値に変換するまでの機能を担う回路(以下、単に「A/D変換用回路」という。)が発生するノイズ[DN rms]を示し、Cは、A/D変換用回路における光電子増倍管によって出力された電子数に対するデジタル値DNの変換係数[DN/e]を示し、Fは、増倍機構を有する光電子増倍管が持つ増倍揺らぎの程度を示す指数(過剰雑音係数)であり、Gは、光電子増倍管の持つ増倍率(ゲイン)、すなわち、入力電子数に対する出力電子数の比率[e/e]であり、Dは、光電子増倍管が持つ暗電流の有効電子数期待値[e]である。有効値とは、光電子増倍管の出力する強度信号から統計計算上において無視できる成分を除いて算出された値を意味する(以下同様)。また、QBは、光電子増倍管に入射している背景光の波長スペクトルに応じた、光電子増倍管の光子から電子への変換効率(背景光の量子効率)[e/photon]を示し、Bは、光電子増倍管に入射している背景光の入射光量における仮想ホトン数に準じた指標の期待値(背景光の仮想ホトン数期待値)[photon]を示す。「仮想ホトン数」とは、現実の光子数を定量性を保って相対的に示した値を意味する(以下同様)。また、QSは、光電子増倍管に入射している信号光の波長スペクトルに応じた、光電子増倍管の光子から電子への変換効率(信号光の量子効率)[e/photon]を示し、Sは、光電子増倍管に入射している信号光の入射光量における光子数に準じた指標の期待値(信号光の仮想ホトン数期待値)[photon]を示し、ρは、レーザ光源7あるいはサンプル流体等を起因とした、光電子増倍管への入射よりも前に発生した信号光のばらつき度合いを、信号光量期待値に対する比率によって示した値(光源及びサンプル側のばらつき率)であり、A0は、A/D変換用回路が持つ固有のオフセットを示す値(オフセット)[DN]である。
なお、上記式(1),(2)において、QB*Bは、光電子増倍管に入射している背景光の有効光電子数[e]を示し、QS*Sは、光電子増倍管に入射している信号光の有効光電子数[e]を示している。これらの値は、上記式(1),(2)において、暗電流の有効電子数期待値Dと並んで、これらが検討された理論モデルにおける基軸物理量として扱われている。ここでいう有効光電子数とは、光電子増倍管において入射する光に応じて光電変換部から放出される光電子の数から、統計計算上において無視できる成分を除いて算出された値を意味する(以下同様)。
光源及びサンプル側のばらつき率ρの値の変化の要因としては、主に、フローサイトメータシステム1のフローセル6内のチャネル5を流れる細胞等の分析対象物へのレーザ光の当たり方によるばらつきと、分析対象物毎に発生するばらつきとが存在する。レーザ光の当たり方によるばらつきには、レーザ光のチャネル5への当たり方のばらつきと、チャネル5内を流れる分析対象物の空間的なばらつきとが含まれる。また、分析対象物毎のばらつきには、分析対象物の大きさのばらつきと、分析対象物内に存在する測定対象となる分子あるいは分子構造の含有率のばらつきとが含まれる。ばらつき率ρに実質的に影響する要因は、レーザ光源7そのものにおける経時的な光量のばらつき、レーザ光のチャネル5への当たり方によるばらつき、チャネル5内の流速の経時的なばらつき、チャネル5内の分析対象物の空間的なばらつき、分析対象物の大きさのばらつき、分析対象物内に存在する分子あるいは分子構造の含有率のばらつき、分析対象物内に存在する分子あるいは分子構造の空間的なばらつき、分子あるいは分子構造物と染色蛍光との結合率のばらつき、染色蛍光の発光効率のばらつき、チャネル5を流れる分析対象物以外の異物によるばらつき、等が挙げられる。
上記式(2)において、平方根内の第1項及び第2項は、信号光の仮想ホトン数期待値であるパラメータSに依存せず、A/D変換用回路のノイズを含む回路ノイズあるいは背景光と暗電流とによって主に変化する項であり、平方根内の第3項は、パラメータSの平方根S1/2に依存して、光子から電子への変換過程で発生するノイズ(ショットノイズ)によって主に変化する項であり、平方根内の第4項は、パラメータSに依存して、光源及びサンプル側のばらつきによって主に変化する項である。この式から、信号光の強度が比較的低い場合では、第1項から第3項までの影響を考慮すれば強度信号のノイズの傾向が評価できるが、信号光の強度が高い場合には、第4項の影響も加味しなければ強度信号のノイズの傾向が評価できないことが明らかにされた。
上記のチャネル毎のパラメータのうち既知である変換係数C、ゲインG、及び信号光の量子効率QSは、ユーザによりデータ処理装置12に入力され、予めRAM102等の内部の記録媒体に記憶される。計算部202は、各チャネルに関して記憶されているパラメータを利用して次のようにして各チャネルで検出された信号光に対応する仮想ホトン数を計算する。
すなわち、計算部202は、フローサイトメトリーによる検出を停止させ、光電子増倍管への信号光の入射がない状態で光電子増倍管から出力された強度信号(出力電流信号)のデジタル値DNを複数イベント分取得し、デジタル値DNの平均値(第1平均値)AS=0及び標準偏差(第2ノイズ値)σS=0を計算および取得する。計算された平均値AS=0及び標準偏差σS=0は、式(1)及び式(2)の理論式を適用すれば、下記式(3)及び下記式(4)に示すような値に近似する。
そして、計算部202は、計算したパラメータAS=0,σS=0を内部の記録媒体に記憶させる。
そして、計算部202は、計算したパラメータAS=0,σS=0を内部の記録媒体に記憶させる。
加えて、計算部202は、レーザ光の強度を所定強度に変更する、適当な発光光量となるビーズあるいは染色蛍光体を使う、または、フローサイトメータ側に校正用光源を搭載する、等の方法により、信号光の強度が十分に大きい状態で測定対象のサンプル流体を対象にフローサイトメトリーによる検出を開始させ、光電子増倍管から出力された強度信号(出力電流信号)のデジタル値DNを複数イベント分取得し、デジタル値DNの平均値(第2平均値)AS≫H及び標準偏差(第3ノイズ値)σS≫Hを計算および取得する。上記レーザ光の強度、ビーズ、染色蛍光体、または、校正用光源は、分析対象物が発光する光量の上限値、または、信号処理回路の入力上限電圧等に応じて決定される。計算された標準偏差σS≫H及び平均値AS≫Hは、式(1)及び式(2)の理論式を適用すれば、下記式(5)及び下記式(6)に示すような値に近似する。従って、計算部202は、平均値AS≫H及び標準偏差σS≫Hを基に、下記式(7)を用いて、ばらつき率ρを計算することができる。
そして、計算部202は、計算したパラメータρを、内部の記録媒体に記憶させる。
そして、計算部202は、計算したパラメータρを、内部の記録媒体に記憶させる。
加えて、計算部202は、レーザ光の強度を2種類に変更する、改めて適当な発光光量となる2種類のビーズや染色蛍光体を使う、フローサイトメータ側へ2種類の光量を発する校正用光源を搭載する、または、十分に光量の大きい状態に対してNDフィルタを用い減光する等によって、信号光の強度を高低の2種類に変更した状態のそれぞれにおいて、測定対象のサンプル流体を対象にフローサイトメトリーによる検出を開始させ、それぞれの状態で光電子増倍管から出力された強度信号(出力電流信号)のデジタル値DNを複数イベント分取得する。さらに、計算部202は、光電子増倍管への入射光量が高い場合のデジタル値DNの平均値AH及び標準偏差σHと、光電子増倍管への入射光量が低い場合のデジタル値DNの平均値AL及び標準偏差σLを、計算および取得する。また、計算部202は、平均値AH,AL、標準偏差σH,σL、及び平均値AS=0を基に、下記式(8)を用いて、過剰雑音係数Fを計算する。
そして、計算部202は、計算したパラメータFを、内部の記録媒体に記憶させる。
そして、計算部202は、計算したパラメータFを、内部の記録媒体に記憶させる。
上記のようにして記憶したチャネル毎のパラメータを参照して、計算部202は、レーザ光の強度を測定に適した所定値に設定した状態で測定対象のサンプル流体のフローサイトメトリーによる検出を開始させ、各チャネルの光電子増倍管から出力された強度信号(第1電流信号)のデジタル値DNを取得する。さらに、計算部202は、記憶した各チャネルのパラメータを参照し、下記式(9)を計算することにより、デジタル値DNの示す強度信号の平均値ASから仮想ホトン数Sを導出する。
すなわち、計算部202は、強度信号の平均値ASから平均値AS=0を減算し、減算した値を、変換係数C、ゲインG、及び信号光の量子効率QSによって除算することにより、光電子増倍管に入射する信号光の仮想ホトン数Sを計算する。
すなわち、計算部202は、強度信号の平均値ASから平均値AS=0を減算し、減算した値を、変換係数C、ゲインG、及び信号光の量子効率QSによって除算することにより、光電子増倍管に入射する信号光の仮想ホトン数Sを計算する。
加えて、計算部202は、上記のようにして計算した仮想ホトン数Sと、記憶した各チャネルのパラメータを参照することにより、デジタル値DNの示す強度信号の標準偏差(第1ノイズ値)σthisを導出する。詳細には、計算部202は、下記式(10)を利用して、標準偏差σS=0を二乗した値に、変換係数C、ゲインG、信号光の量子効率QS、ばらつき率ρ、過剰雑音係数F、及び仮想ホトン数Sによって計算した値を加算し、加算した値の平方根を求めることにより、標準偏差(第1ノイズ値)σthisを計算する。その後、計算部202は、この標準偏差σthisを、変換係数C、ゲインG、及び信号光の量子効率QSで除算することにより、標準偏差σthis[DN rms]を仮想ホトン数に換算した標準偏差σthis[photon rms]に変換することができる。
解析部203は、計算部202によって計算されたチャネル毎の仮想ホトン数S及びチャネル毎の標準偏差σthisのデータを基に、データ解析を実行する。具体的には、複数のチャネルの仮想ホトン数Sを基にヒストグラム及びドットプロットを生成し、それらを入出力デバイスに出力する。また、解析部203は、生成したドットプロットを対象にゲーティング処理を行い、異なる分析対象物の集団の境界を画定する。さらに、解析部203は、流体システム2を制御することにより、分析対象物の集団の境界を基に、集団を分類及び振り分けするソーティング処理を実行させることもできる。
解析部203は、計算部202によって計算されたチャネル毎の仮想ホトン数S及びチャネル毎の標準偏差σthisのデータを基に、データ解析を実行する。具体的には、複数のチャネルの仮想ホトン数Sを基にヒストグラム及びドットプロットを生成し、それらを入出力デバイスに出力する。また、解析部203は、生成したドットプロットを対象にゲーティング処理を行い、異なる分析対象物の集団の境界を画定する。さらに、解析部203は、流体システム2を制御することにより、分析対象物の集団の境界を基に、集団を分類及び振り分けするソーティング処理を実行させることもできる。
図4及び図5は、解析部203によるデータ解析において生成および出力されたドットプロットの例を示すグラフである。図4には、抗体Aに対応する蛍光チャネルの仮想ホトン数と抗体Bに対応する蛍光チャネルの仮想ホトン数との関係をプロットしたドットプロットが示され、ゲーティング処理によって画定された境界が実線で示されている。このように、ゲーティング処理により検出対象の全体の分析対象物中の集団の割合が計算及び出力され、抗体A及び抗体Bの両方が陰性の集団の割合“36.6%”、抗体Bのみが陽性の集団の割合“34.7%”、抗体Aのみが陽性の集団の割合“27.7%”、抗体A,Bの両方が陽性の割合“1.05%”と出力される。図5には、蛍光色素Cy5を用いた蛍光チャネルの仮想ホトン数と蛍光色素TRを用いた蛍光チャネルの仮想ホトン数との関係をプロットしたドットプロットが示されている。このように、ゲーティング処理によって集団の境界を画定する際には、集団の仮想ホトン数の平均値Sを中心とした、その平均値Sに対応する標準偏差σthisで決定されるゲート区間の範囲Wの境界を自動で画定することができる。標準偏差σthisで決定される範囲Wは、例えば、仮想ホトン数がS±3×σthisの範囲に設定される。
次に、図6及び図7を参照して、フローサイトメータシステム1を用いた光電子増倍管の出力信号の処理方法の手順を説明する。図6には、フローサイトメータシステム1によるチャネル毎のパラメータの事前準備の処理を示し、図7には、サンプル流体を対象としたフローサイトメトリーによる分析処理を示す。
まず、図6を参照して、ユーザによって、チャネル毎のパラメータのうち既知である変換係数C、ゲインG、及び信号光の量子効率QSがデータ処理装置12に入力される(ステップS101)。その後、フローサイトメータシステム1において各チャネルに信号光が入射しない状態で、データ処理装置12によって各チャネルのデジタル値DNのデータが複数イベント分取得される(ステップS102)。そうすると、データ処理装置12において、各チャネルのパラメータAS=0,σS=0が取得及び保存される(ステップS103)。
次に、フローサイトメータシステム1においてレーザ光を所定強度に変更する、適当な発光光量となるビーズあるいは染色蛍光体を使う、または、フローサイトメータ側に校正用光源を搭載する、等の方法により、信号光の強度が十分に大きい状態で、データ処理装置12によって、測定対象のサンプル流体を対象に信号光を検出することにより、各チャネルのデジタル値DNのデータが複数イベント分取得される(ステップS104)。そうすると、データ処理装置12において、各チャネルのパラメータρが取得及び保存される(ステップS105)。
さらに、フローサイトメータシステム1においてレーザ光の強度を2種類に変更する、適当な発光光量となる2種類のビーズ又は蛍光色素を用いる、2種類の光量の校正用光源を用いる、あるいは、十分に明るい状態から2種類のNDフィルタを用いる、等を行い、信号光の強度を高低の2種類に変更した状態で、データ処理装置12において、測定対象のサンプル流体を対象に信号光が検出されることにより、各チャネルのデジタル値DNのデータが複数イベント分取得される(ステップS106)。そうすると、データ処理装置12において、各チャネルのパラメータFが取得及び保存される(ステップS107)。以上により、事前準備処理が完了される。
図7を参照して、フローサイトメータシステム1においてレーザ光の強度を測定に適した所定値に設定した状態で測定対象のサンプル流体のフローサイトメトリーによる検出が開始され、それに応じて、データ処理装置12によって、各チャネルのデジタル値DNのデータが取得される(ステップS201)。次に、データ処理装置12において、各チャネルのデジタル値DNを用いて、各チャネルのヒストグラム、及びドットプロットが生成される(ステップS202)。その際には、データ処理装置12によって、記憶した各チャネルのパラメータAS=0,σS=0,ρ,Fが参照され、各チャネルのデジタル値DNが仮想ホトン数Sに変換されるとともに仮想ホトン数Sに対応する標準偏差σthisが計算される(ステップS203)。
その後、データ処理装置12によって、生成したヒストグラム及びドットプロットに対して、計算した仮想ホトン数S及び標準偏差σthisを用いたゲーティング処理が施される(ステップS204)。そして、データ処理装置12によって、ゲーティング処理の結果に基づいて、ヒストグラム及びドットプロットに示されるデータ中の分析対象物の集団(ターゲット集団)の分類分けが行われる(ステップS205)。
次に、データ処理装置12においてソーティングが実行されるように設定されている場合(ステップS206;Yes)には、データ処理装置12によって、分類分けされたターゲット集団に対してソーティングが行われるように制御される(S207)。一方、データ処理装置12においてソーティングが実行されないように設定されている場合(ステップS206;No)には、データ処理装置12によって、分類分けされたターゲット集団に対して全体に対する割合の計算等のデータ解析処理が行われる(S208)。
以上説明した実施形態に係るフローサイトメータシステム1の作用効果について説明する。
本実施形態に係るフローサイトメータシステム1においては、各チャネルにおいて生じた信号光が光電子増倍管11a,11b,11c,11dによって検出されて強度信号が取得され、その強度信号のデジタル値DNから光電子増倍管11a,11b,11c,11dに入射する信号光の仮想ホトン数Sが計算され、計算された信号光の仮想ホトン数Sを基にデータ解析が実行される。その結果、定量的に信号光を解析することができ、フローサイトメトリーによる分析結果のばらつきを低減することができる。特に、本実施形態では、解析評価値として仮想ホトン数が用いられているので、異なる装置間でのフローサイトメトリーによる分析結果のばらつきも低減することができる。
また、本実施形態かかるデータ処理装置12は、データ解析として、解析対象の集団の境界を画定するゲーティング処理を実行する。これにより、定量的な信号光の強度情報を基にゲーティング処理を行うことができ、解析対象の集団同定の精度を高めることができる。
さらに、本実施形態に係るデータ処理装置12においては、計算した信号光の仮想ホトン数Sからその仮想ホトン数Sに含まれるノイズに相当する標準偏差σthisが計算され、ゲーティング処理においてその標準偏差σthisを用いてゲート区間が設定される。これにより、解析対象の集団同定の精度をさらに高めることできる。
さらに、本実施形態に係るデータ処理装置12は、フローサイトメータシステム1において信号光の入射がない場合の光電子増倍管11a,11b,11c,11dの強度信号のデジタル値DNの平均値AS=0を取得し、平均値AS=0を減算した平均値ASを用いて、信号光の仮想ホトン数Sを計算している。こうすれば、背景光および暗電流の影響を除いて信号光の仮想ホトン数Sを計算することができる。その結果、フローサイトメトリーによる分析結果の信頼性を高めることができる。
また、本実施形態に係るデータ処理装置12は、フローサイトメータシステム1において信号光の入射がない場合の光電子増倍管11a,11b,11c,11dの強度信号のデジタル値DNの標準偏差σS=0を取得し、標準偏差σS=0をさらに用いて、標準偏差σthisを計算している。こうすれば、背景光および暗電流の影響を考慮して信号光の仮想ホトン数のノイズ成分を計算することができる。その結果、解析対象の集団同定の精度をより高めることできる。
また、本実施形態に係るデータ処理装置12は、フローサイトメータシステム1において所定強度のレーザ光に応じた信号光に基づいた光電子増倍管11a,11b,11c,11dの強度信号のデジタル値DNの平均値AS≫Hと、そのデジタル値DNの標準偏差σS≫Hを取得し、平均値AS≫H及び標準偏差σS≫Hをさらに用いて、標準偏差σthisを計算している。かかる構成を採れば、光源の特性及び解析対象のばらつきを考慮して信号光の仮想ホトン数のノイズ成分を計算することができる。その結果、解析対象の集団同定の精度をより高めることできる。
図8は、従来のフローサイトメトリーによるデータ解析において、一のシステムによって生成および出力されたドットプロットの例を示すグラフであり、図9は、従来のフローサイトメトリーによるデータ解析において、別のシステムによって生成および出力されたドットプロットの例を示すグラフである。このように、同じ分析対象物を含むサンプル流体を対象とした場合でも、2つのシステムでデータ解析による集団の比率が異なって計算される。例えば、抗体A,Bの両方が陽性の割合が、一のシステムでは“0.78%”と計算され、別のシステムでは“10.1%”と計算され、両者によって計算される比率が大きく異なった値に計算される。これは、システムに含まれる装置の特性のばらつき、システムのオペレータによる装置の調整度合いのばらつき等が起因している。本実施形態によれば、このようなばらつきによる分析結果のばらつきを確実に低減することができる。
以上、本発明の種々の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、各請求項に記載した要旨を変更しない範囲で変形し、又は他のものに適用したものであってもよい。
例えば、ドットプロットにおけるゲーティング処理は、電子システム4による自動設定に限らず、作業者の入力によって設定してもよいし、自動設定されたものを作業者の入力によって調整してもよい。また、実施形態における光電子増倍管は、ダイノードあるいは電子収集電極であるアノードを備えたもののみではなく、光電変換部から放出された光電子を半導体素子で増倍および検出するHPD(Hybrid Photo Detector)でもよい。
また、変形例として、データ処理装置12は、解析評価値として、仮想ホトン数の代わりに有効光電子数(光電子数)を用いてもよい。その場合には、信号光の強度及びノイズの理論モデルとして、下記式(11)及び下記式(12)によって表される理論モデルが適用される。
本変形例においては、計算部202は、上記実施形態と同様にして、暗電流の有効電子数期待値ED、背景光の有効光電子数EB、有効光電子数期待値ESとして、パラメータAES=0,σES=0、ばらつき率ρ、パラメータFを計算し内部の記憶媒体に記憶させる。そして、計算部202は、測定対象のサンプル流体の検出が開始された際に、取得したデジタル値DNを基に下記式(13)を計算することにより、デジタル値DNの示す強度信号の平均値ASから、有効光電子数ESを導出する。
さらに、計算部202は、下記式(14)に、計算した有効光電子数ESと、記憶したパラメータσES=0,F及びばらつき率ρとを適用することにより、標準偏差σthisを計算する。
その後、計算部202は、この標準偏差σthisを変換係数C及びゲインGで除算することにより、標準偏差σthis[DN rms]を有効光電子数に換算した標準偏差σthis[e rms]に変換することができる。
その後、計算部202は、この標準偏差σthisを変換係数C及びゲインGで除算することにより、標準偏差σthis[DN rms]を有効光電子数に換算した標準偏差σthis[e rms]に変換することができる。
本変形例によっても、計算した有効光電子数ES及び標準偏差σthisを用いたゲーティング処理等のデータ解析が可能となり、定量的に信号光を解析することができ、フローサイトメトリーによる分析結果のばらつきを低減することができる。
実施形態の第一の側面及び第二の側面においては、解析評価値は、光子数である、ことが好適である。この場合、さらに、フローサイトメトリーによる分析結果の装置間でのばらつきも低減することができる。
また、上記第一の側面及び上記第二の側面においては、データ解析は、解析対象の集団の境界を画定するゲーティング処理を含む、ことが好適である。これにより、定量的な信号光の強度情報を基にゲーティング処理を行うことができ、解析対象の集団同定の精度を高めることができる。
また、上記第一の側面においては、解析評価値、及び光電子増倍管のゲインを基に、解析評価値に含まれるノイズに相当する第1ノイズ値をさらに計算し、ゲーティング処理では、解析評価値及び第1ノイズ値を用いてゲートの区間を設定する、ことも好適である。また、上記第二の側面においては、プロセッサは、解析評価値、及び光電子増倍管のゲインを基に、解析評価値に含まれるノイズに相当する第1ノイズ値をさらに計算し、ゲーティング処理では、解析評価値及び第1ノイズ値を用いてゲートの区間を設定する、ことも好適である。この場合、計算した信号光の光子数からその光子数に含まれるノイズに相当する値が計算され、ゲーティング処理においてその値を用いてゲートの区間が設定される。これにより、解析対象の集団同定の精度をさらに高めることできる。
またさらに、上記第一の側面においては、フローサイトメータにおいて信号光の入射がない場合の光電子増倍管の出力電流信号である第2電流信号の平均値を第1平均値として取得し、第1平均値を減算した第1電流信号の値を用いて、解析評価値を計算する、ことも好適である。またさらに、上記第二の側面においては、プロセッサは、フローサイトメータにおいて信号光の入射がない場合の光電子増倍管の出力電流信号である第2電流信号の平均値を第1平均値として取得し、第1平均値を減算した第1電流信号の値を用いて、解析評価値を計算する、ことも好適である。こうすれば、背景光および暗電流の影響を除いて信号光の光子数を計算することができる。その結果、フローサイトメトリーによる分析結果の信頼性を高めることができる。
さらにまた、上記第一の側面においては、フローサイトメータにおいて信号光の入射がない場合の光電子増倍管の出力電流信号である第2電流信号のノイズ値を第2ノイズ値として取得し、第2ノイズ値をさらに用いて、第1ノイズ値を計算する、ことも好適である。さらにまた、上記第二の側面においては、プロセッサは、フローサイトメータにおいて信号光の入射がない場合の光電子増倍管の出力電流信号である第2電流信号のノイズ値を第2ノイズ値として取得し、第2ノイズ値をさらに用いて、第1ノイズ値を計算する、ことも好適である。こうすれば、背景光および暗電流の影響を考慮して信号光の光子数のノイズ成分を計算することができる。その結果、解析対象の集団同定の精度をより高めることできる。
また、上記第一の側面においては、フローサイトメータにおいて所定強度の励起光に応じた信号光に基づいた光電子増倍管の出力電流信号である第3電流信号の平均値である第2平均値と、当該第3電流信号のノイズ値である第3ノイズ値とを取得し、第2平均値及び第3ノイズ値をさらに用いて、第1ノイズ値を計算する、ことも好適である。また、上記第二の側面においては、プロセッサは、フローサイトメータにおいて所定強度の励起光に応じた信号光に基づいた光電子増倍管の出力電流信号である第3電流信号の平均値である第2平均値と、当該第3電流信号のノイズ値である第3ノイズ値とを取得し、第2平均値及び第3ノイズ値をさらに用いて、第1ノイズ値を計算する、ことも好適である。かかる構成を採れば、光源の特性及び解析対象のばらつきを考慮して信号光の光子数のノイズ成分を計算することができる。その結果、解析対象の集団同定の精度をより高めることできる。
1…フローサイトメータシステム、2…流体システム、3…光学システム、4…電子システム(信号処理装置)、5…チャネル、6…フローセル、7…レーザ光源、8…レンズ、9a,9b,9c,9d…フィルタ、10b,10c…ダイクロイックミラー、11a,11b,11c,11d…光電子増倍管、12…データ処理装置、201…信号取得部、202…計算部、203…解析部。
Claims (15)
- フローサイトメータを構成する光電子増倍管の出力を処理する信号処理方法であって、
前記フローサイトメータを用いたフローサイトメトリーによって生じた信号光を基にした前記光電子増倍管の出力電流信号を第1電流信号として取得し、
前記第1電流信号の値を、前記光電子増倍管のゲインで除算することにより、前記光電子増倍管に入射する前記信号光の光子数あるいは前記光電子増倍管の光電変換部から放出される光電子数のいずれかである解析評価値を計算し、
前記解析評価値を基にデータ解析を実行する、
信号処理方法。 - 前記解析評価値は、前記光子数である、
請求項1に記載の信号処理方法。 - 前記データ解析は、解析対象の集団の境界を画定するゲーティング処理を含む、
請求項1又は2に記載の信号処理方法。 - 前記解析評価値、及び前記光電子増倍管のゲインを基に、前記解析評価値に含まれるノイズに相当する第1ノイズ値をさらに計算し、
前記ゲーティング処理では、前記解析評価値及び前記第1ノイズ値を用いてゲートの区間を設定する、
請求項3に記載の信号処理方法。 - 前記フローサイトメータにおいて前記信号光の入射がない場合の前記光電子増倍管の出力電流信号である第2電流信号の平均値を第1平均値として取得し、
前記第1平均値を減算した前記第1電流信号の値を用いて、前記解析評価値を計算する、
請求項1~4のいずれか1項に記載の信号処理方法。 - 前記フローサイトメータにおいて前記信号光の入射がない場合の前記光電子増倍管の出力電流信号である第2電流信号のノイズ値を第2ノイズ値として取得し、
前記第2ノイズ値をさらに用いて、前記第1ノイズ値を計算する、
請求項4に記載の信号処理方法。 - 前記フローサイトメータにおいて所定強度の励起光に応じた前記信号光に基づいた前記光電子増倍管の出力電流信号である第3電流信号の平均値である第2平均値と、当該第3電流信号のノイズ値である第3ノイズ値とを取得し、
前記第2平均値及び前記第3ノイズ値をさらに用いて、前記第1ノイズ値を計算する、
請求項4に記載の信号処理方法。 - フローサイトメータを構成する光電子増倍管の出力を処理し、プロセッサを備える信号処理装置であって、
前記プロセッサは、
前記フローサイトメータを用いたフローサイトメトリーによって生じた信号光を基にした前記光電子増倍管の出力電流信号を第1電流信号として取得し、
前記第1電流信号の値を、前記光電子増倍管のゲインで除算することにより、前記光電子増倍管に入射する前記信号光の光子数あるいは前記光電子増倍管の光電変換部から放出される光電子数のいずれかである解析評価値を計算し、
前記解析評価値を基にデータ解析を実行するように構成されている、
信号処理装置。 - 前記解析評価値は、前記光子数である、
請求項8に記載の信号処理装置。 - 前記データ解析は、解析対象の集団の境界を画定するゲーティング処理を含む、
請求項8又は9に記載の信号処理装置。 - 前記プロセッサは、
前記解析評価値、及び前記光電子増倍管のゲインを基に、前記解析評価値に含まれるノイズに相当する第1ノイズ値をさらに計算し、
前記ゲーティング処理では、前記解析評価値及び前記第1ノイズ値を用いてゲートの区間を設定する、
請求項10に記載の信号処理装置。 - 前記プロセッサは、
前記フローサイトメータにおいて前記信号光の入射がない場合の前記光電子増倍管の出力電流信号である第2電流信号の平均値を第1平均値として取得し、
前記第1平均値を減算した前記第1電流信号の値を用いて、前記解析評価値を計算する、
請求項8~11のいずれか1項に記載の信号処理装置。 - 前記プロセッサは、
前記フローサイトメータにおいて前記信号光の入射がない場合の前記光電子増倍管の出力電流信号である第2電流信号のノイズ値を第2ノイズ値として取得し、
前記第2ノイズ値をさらに用いて、前記第1ノイズ値を計算する、
請求項11に記載の信号処理装置。 - 前記プロセッサは、
前記フローサイトメータにおいて所定強度の所定強度の励起光に応じた前記信号光に基づいた前記光電子増倍管の出力電流信号である第3電流信号の平均値である第2平均値と、当該第3電流信号のノイズ値である第3ノイズ値とを取得し、
前記第2平均値及び前記第3ノイズ値をさらに用いて、前記第1ノイズ値を計算する、
請求項11に記載の信号処理装置。 - 請求項8~14のいずれか1項に記載の信号処理装置と、
前記光電子増倍管と、
前記信号光を前記光電子増倍管に導く光学系と、
を備える信号処理システム。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-018690 | 2022-02-09 | ||
JP2022018690 | 2022-02-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023153016A1 true WO2023153016A1 (ja) | 2023-08-17 |
Family
ID=87563987
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/037165 WO2023153016A1 (ja) | 2022-02-09 | 2022-10-04 | 信号処理方法、信号処理装置、及び信号処理システム |
PCT/JP2023/003471 WO2023153316A1 (ja) | 2022-02-09 | 2023-02-02 | 信号処理方法、信号処理装置、及び信号処理システム |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/003471 WO2023153316A1 (ja) | 2022-02-09 | 2023-02-02 | 信号処理方法、信号処理装置、及び信号処理システム |
Country Status (1)
Country | Link |
---|---|
WO (2) | WO2023153016A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009105024A (ja) * | 2007-10-25 | 2009-05-14 | Inst Nuclear Energy Research Rocaec | 光電子倍増管の連接インターフェース装置 |
JP2018179709A (ja) * | 2017-04-11 | 2018-11-15 | シスメックス株式会社 | 免疫細胞の免疫刺激応答性を測定する方法、免疫細胞における免疫シナプスの形成能を判定する方法及び細胞分析装置 |
JP2019502915A (ja) * | 2015-12-18 | 2019-01-31 | アボット・ラボラトリーズAbbott Laboratories | 粒子検出方法及びそれを実施するためのシステム |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05209822A (ja) * | 1992-01-30 | 1993-08-20 | Hitachi Ltd | 粒子計数装置 |
JPH09204235A (ja) * | 1996-05-30 | 1997-08-05 | Hamamatsu Photonics Kk | 光学的相関装置 |
JP5870851B2 (ja) * | 2012-05-29 | 2016-03-01 | ソニー株式会社 | 情報処理装置、情報処理方法、及びプログラム |
JP6954358B2 (ja) * | 2017-09-08 | 2021-10-27 | ソニーグループ株式会社 | 微小粒子測定装置、情報処理装置および情報処理方法 |
-
2022
- 2022-10-04 WO PCT/JP2022/037165 patent/WO2023153016A1/ja unknown
-
2023
- 2023-02-02 WO PCT/JP2023/003471 patent/WO2023153316A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009105024A (ja) * | 2007-10-25 | 2009-05-14 | Inst Nuclear Energy Research Rocaec | 光電子倍増管の連接インターフェース装置 |
JP2019502915A (ja) * | 2015-12-18 | 2019-01-31 | アボット・ラボラトリーズAbbott Laboratories | 粒子検出方法及びそれを実施するためのシステム |
JP2018179709A (ja) * | 2017-04-11 | 2018-11-15 | シスメックス株式会社 | 免疫細胞の免疫刺激応答性を測定する方法、免疫細胞における免疫シナプスの形成能を判定する方法及び細胞分析装置 |
Also Published As
Publication number | Publication date |
---|---|
WO2023153316A1 (ja) | 2023-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
USRE49543E1 (en) | Fine particle measuring apparatus | |
USRE49373E1 (en) | System and method for adjusting cytometer measurements | |
JP4580166B2 (ja) | 蛍光分析装置及び蛍光分析方法 | |
KR101149880B1 (ko) | 유세포 분석기식 측정 시스템의 하나 이상의 파라미터의 제어 방법 | |
US10371639B2 (en) | Detecting fluorescent material in a stained particle by comparison with an unstained particle over a plurality of frequency bands and by estimating a linear combination of base vectors | |
EP2756286B1 (en) | Spectrum analysis apparatus, fine particle measurement apparatus, and methods for spectrum analysis and spectrum chart display | |
US20130346023A1 (en) | Systems and methods for unmixing data captured by a flow cytometer | |
WO2023153016A1 (ja) | 信号処理方法、信号処理装置、及び信号処理システム | |
CA2852915C (en) | Methods and systems for image data processing | |
JP7329165B1 (ja) | 信号処理方法、信号処理装置、及び信号処理システム | |
Wood | How well can your flow cytometer detect photons? | |
Naivar et al. | Digital data acquisition and processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22926033 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |