WO2023152840A1 - 配線形成用部材、配線形成用部材を用いた配線層の形成方法、及び、配線形成部材 - Google Patents

配線形成用部材、配線形成用部材を用いた配線層の形成方法、及び、配線形成部材 Download PDF

Info

Publication number
WO2023152840A1
WO2023152840A1 PCT/JP2022/005195 JP2022005195W WO2023152840A1 WO 2023152840 A1 WO2023152840 A1 WO 2023152840A1 JP 2022005195 W JP2022005195 W JP 2022005195W WO 2023152840 A1 WO2023152840 A1 WO 2023152840A1
Authority
WO
WIPO (PCT)
Prior art keywords
wiring
forming member
adhesive layer
wiring forming
layer
Prior art date
Application number
PCT/JP2022/005195
Other languages
English (en)
French (fr)
Inventor
将司 大越
由佳 伊藤
俊輔 高木
邦彦 赤井
希 高野
弘行 伊澤
大輔 藤本
智彦 小竹
Original Assignee
株式会社レゾナック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社レゾナック filed Critical 株式会社レゾナック
Priority to PCT/JP2022/005195 priority Critical patent/WO2023152840A1/ja
Priority to TW112104440A priority patent/TW202346522A/zh
Priority to PCT/JP2023/004204 priority patent/WO2023153443A1/ja
Publication of WO2023152840A1 publication Critical patent/WO2023152840A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • C09J9/02Electrically-conducting adhesives
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits

Definitions

  • the present disclosure relates to a wiring forming member, a wiring layer forming method using the wiring forming member, and a wiring forming member.
  • Patent Document 1 discloses a method of manufacturing a printed wiring board containing electronic components such as an IC chip.
  • insulating resin layers 102 and 103 are formed on both sides in the stacking direction of an electronic component 101 provided with electrodes 101a.
  • via holes reaching the electrodes 101 a of the electronic component 101 are formed by laser drilling, plating layer formation, and electrode formation by etching.
  • 104 and 105 are formed on each insulating resin layer 102 and 103 .
  • FIGS. 9A to 9C further formation of insulating resin layers 106 and 107, formation of via electrodes 108 by laser drilling and formation of plating layers, and formation of electrodes by etching, etc.
  • the component-embedded substrate 110 is formed.
  • an adhesive that has a metal layer such as a metal foil laminated and that has conductive particles as a member for forming wiring.
  • the wiring forming member obtained by the above method it was found that air bubbles or delamination may occur between the cured adhesive and the base material. It is desirable that the wiring-forming member not only be able to connect the wirings with sufficient conductivity, but also that the adhesive has moldability so that the above-mentioned problems are unlikely to occur.
  • the present disclosure provides a wiring forming member that can simplify the process of forming a wiring layer that connects wirings while sufficiently suppressing the occurrence of air bubbles or peeling when wiring is formed, and the wiring forming member. and a wiring forming member.
  • This wiring forming member includes a metal layer and an adhesive layer disposed on the metal layer.
  • the adhesive layer contains conductive particles, an epoxy resin, and a phenol resin.
  • the adhesive layer contains conductive particles, the metal layer that becomes the wiring pattern or wiring after processing and the other wiring pattern or wiring bonded via the adhesive layer Electrical continuity between the wirings can be obtained, and the process of forming the wiring layer connecting the wirings can be simplified as compared with the conventional process of laser processing, filled plating, and the like.
  • the adhesive layer contains an epoxy resin and a phenol resin, it is possible to sufficiently suppress the generation of air bubbles or peeling between the substrate forming the wiring layer and the cured adhesive layer. can be done. Such an effect is achieved by the combination of the epoxy resin and the phenol resin, which makes it easier to maintain the curing reaction over a long period of time, making it easier to obtain sufficient embeddability and uniform reactivity. The applicant believes that
  • the phenolic resin may have a hydroxyl equivalent of 300 g/eq or less.
  • the wiring forming member may contain, as the phenolic resin, a novolac-type phenolic resin or a novolac-type phenolic resin in which the aromatic ring is substituted with an alkyl group.
  • the wiring forming member may contain a novolak type epoxy resin as the epoxy resin.
  • the wiring forming member may further contain a filler.
  • the present disclosure includes a metal layer and an adhesive layer disposed on the metal layer, the adhesive layer including conductive particles and a thermosetting component, the adhesive The layer relates to a wiring forming member having a reaction rate of 90% or less when heated at 180° C. for 5 minutes.
  • the adhesive layer contains conductive particles, it is possible to simplify the process of forming the wiring layer that connects the wirings, as described above.
  • the adhesive layer containing the thermosetting component has the above-described reaction characteristics, it is possible to sufficiently prevent air bubbles or peeling from occurring between the base material forming the wiring layer and the cured product of the adhesive layer. can be suppressed. The present applicant believes that such an effect is also achieved by facilitating the acquisition of sufficient embeddability and uniform reactivity due to the slow curing reaction.
  • the thickness of the adhesive layer may be 0.8 to 2 times the average particle size of the conductive particles.
  • the wiring forming member may further include a release film.
  • the wiring forming member can be easily handled as a member, and the working efficiency when forming the wiring layer using the wiring forming member can be improved.
  • this peeling film can be used by arranging it on the surface of the adhesive layer opposite to the metal layer.
  • an adhesive layer containing conductive particles and a thermosetting component and a metal layer are separately provided, and the adhesive layer can be adhered to the metal layer during use. It relates to a wiring forming member.
  • the adhesive layer contains an epoxy resin and a phenol resin as thermosetting components.
  • the same effects as those of the wiring forming member according to the one aspect can be obtained. Furthermore, since the adhesive layer and the metal layer can be prepared separately (as a set of wiring forming members), it is possible to select wiring forming members having a more optimal material composition and to use wiring forming members. It is possible to improve the degree of freedom of work when fabricating the wiring layer.
  • the phenolic resin may have a hydroxyl equivalent of 300 g/eq or less.
  • the adhesive layer has a reaction rate of 90% or less when heated at 180°C for 5 minutes.
  • the adhesive layer and the metal layer can be prepared separately (as a set of wiring forming members), it is possible to select wiring forming members having a more optimal material composition and to use wiring forming members. It is possible to improve the degree of freedom of work when fabricating the wiring layer.
  • the present disclosure relates to a method of forming a wiring layer using any of the wiring forming members described above.
  • This method of forming a wiring layer includes the steps of preparing any of the wiring forming members described above, preparing a base material on which wiring is formed, and forming a surface of the base material on which the wiring is formed so as to cover the wiring. a step of arranging the wiring forming member so that the adhesive layer faces the substrate, a step of thermocompression bonding the wiring forming member to the substrate, and a step of patterning the metal layer And prepare.
  • this forming method the working process can be greatly simplified as compared with the conventional method.
  • the present disclosure relates to a wiring forming member.
  • This wiring forming member comprises a substrate having wiring, and a cured adhesive layer of any of the above wiring forming members arranged on the substrate so as to cover the wiring.
  • the wiring is electrically connected to the metal layer of the wiring forming member or to another wiring formed from the metal layer. According to this aspect, it is possible to obtain a wiring forming member with sufficiently few air bubbles or peeling between the cured product and the substrate.
  • FIG. 1 is a cross-sectional view showing a wiring forming member according to an embodiment of the present disclosure.
  • 2(a) to 2(d) are diagrams for sequentially explaining a method of forming a wiring layer using the wiring forming member shown in FIG.
  • FIGS. 3A to 3C are cross-sectional views showing wiring forming members according to another embodiment of the present disclosure and a state in which the wiring forming members are crimped.
  • FIG. 4 is a cross-sectional view showing a wiring forming member according to another embodiment of the present disclosure.
  • 5(a) to 5(d) are diagrams for sequentially explaining a method of forming a wiring layer using the wiring forming member shown in FIG.
  • FIG. 6(a) and 6(b) are cross-sectional views for explaining an example of forming a wiring layer using the wiring forming member shown in FIG. 7(a) and 7(b) are cross-sectional views for explaining another example in which a wiring layer is formed using the wiring forming member shown in FIG. 8A to 8D are cross-sectional views for sequentially explaining a method of manufacturing a conventional component-embedded board.
  • 9(a) to 9(c) are cross-sectional views for sequentially explaining the method of manufacturing a conventional component-embedded substrate, showing the steps following FIG.
  • a wiring forming member according to an embodiment of the present disclosure and a wiring layer forming method using the wiring forming member will be described below with reference to the drawings.
  • the same or corresponding parts are denoted by the same reference numerals, and overlapping descriptions are omitted.
  • positional relationships such as up, down, left, and right are based on the positional relationships shown in the drawings.
  • the dimensional ratios of the drawings are not limited to the illustrated ratios.
  • the numerical range indicated using “-” includes the numerical values before and after "-" as the minimum and maximum values, respectively.
  • the upper limit or lower limit described in one numerical range is replaced with the upper limit or lower limit of the numerical range described in other steps. good too.
  • the upper and lower limits of the numerical ranges may be replaced with the values shown in the examples.
  • FIG. 1 is a cross-sectional view showing a wiring forming member according to one embodiment of the present disclosure.
  • the wiring forming member 1 includes an adhesive layer 10 and a metal layer 20 .
  • the wiring forming member 1 is a member that can be used, for example, when manufacturing a rewiring layer, a build-up multilayer wiring board, a component-embedded board, and the like, although the wiring forming member 1 is not limited to these. Further, the wiring forming member 1 may be used as an EMI shield or the like.
  • the adhesive layer 10 includes conductive particles 12 and an insulating adhesive component 14 in which the conductive particles 12 are dispersed.
  • the adhesive layer 10 has a thickness of, for example, 5 ⁇ m to 50 ⁇ m.
  • Adhesive component 14 of adhesive layer 10 is defined as the solid content other than conductive particles 12 .
  • the adhesive layer 10 may be in a B-stage state, that is, in a semi-cured state before the wiring layer is formed by the wiring forming member 1 .
  • the conductive particles 12 are substantially spherical particles having conductivity, such as metal particles made of metal such as Au, Ag, Ni, Cu, solder, or conductive carbon particles made of conductive carbon. consists of The conductive particles 12 are coated conductive particles comprising a core containing non-conductive glass, ceramic, plastic (such as polystyrene), etc., and a coating layer containing the above metal or conductive carbon and covering the core. good. Among these, the conductive particles 12 are coated conductive particles having a core containing metal particles or plastic formed of a heat-fusible metal and a coating layer containing metal or conductive carbon and covering the core. There may be.
  • the conductive particles 12 include a core made of polymer particles (plastic particles) such as polystyrene, and a metal layer covering the core.
  • the polymer particles may have substantially the entire surface coated with a metal layer, and a part of the surface of the polymer particles is exposed without being coated with the metal layer as long as the function as a connecting material is maintained. You may have
  • the polymer particles may be, for example, particles containing a polymer containing at least one monomer selected from styrene and divinylbenzene as a monomer unit.
  • the metal layer may be made of various metals such as Ni, Ni/Au, Ni/Pd, Cu, NiB, Ag, and Ru.
  • the metal layer may be an alloy layer made of an alloy of Ni and Au, an alloy of Ni and Pd, or the like.
  • the metal layer may be a multi-layer structure consisting of multiple metal layers.
  • the metal layer may consist of a Ni layer and an Au layer.
  • the metal layer may be made by plating, vapor deposition, sputtering, soldering, or the like.
  • the metal layer may be a thin film (for example, a thin film formed by plating, vapor deposition, sputtering, etc.).
  • the conductive particles 12 may have an insulating layer. Specifically, for example, an insulating layer further covering the coating layer is provided on the outside of the coating layer in the conductive particles of the above embodiments that include a core (for example, a polymer particle) and a coating layer such as a metal layer that coats the core. may be provided.
  • the insulating layer may be the outermost layer located on the outermost surface of the conductive particles.
  • the insulating layer may be a layer made of an insulating material such as silica or acrylic resin.
  • the average particle diameter Dp of the conductive particles 12 may be 1 ⁇ m or more, 2 ⁇ m or more, or 5 ⁇ m or more from the viewpoint of excellent dispersibility and conductivity.
  • the average particle diameter Dp of the conductive particles may be 50 ⁇ m or less, 30 ⁇ m or less, or 20 ⁇ m or less from the viewpoint of excellent dispersibility and conductivity. From the above viewpoint, the average particle size Dp of the conductive particles may be 1 to 50 ⁇ m, 5 to 30 ⁇ m, 5 to 20 ⁇ m, or 2 to 20 ⁇ m.
  • the maximum particle diameter of the conductive particles 12 may be smaller than the minimum spacing between electrodes (shortest distance between adjacent electrodes) in the wiring pattern.
  • the maximum particle size of the conductive particles 12 may be 1 ⁇ m or more, 2 ⁇ m or more, or 5 ⁇ m or more from the viewpoint of excellent dispersibility and conductivity.
  • the maximum particle size of the conductive particles may be 50 ⁇ m or less, 30 ⁇ m or less, or 20 ⁇ m or less from the viewpoint of excellent dispersibility and conductivity. From the above viewpoint, the maximum particle size of the conductive particles may be 1 to 50 ⁇ m, 2 to 30 ⁇ m, or 5 to 20 ⁇ m.
  • the particle size is measured for 300 arbitrary particles (pcs) by observation using a scanning electron microscope (SEM), and the average value of the obtained particle sizes is defined as the average particle size Dp. The largest value obtained is taken as the maximum particle size of the particles.
  • the particle diameter of the particles is the diameter of the circle circumscribing the particles in the SEM image.
  • the content of the conductive particles 12 is determined according to the fineness of the electrodes to be connected.
  • the amount of the conductive particles 12 is not particularly limited, but is 0.1% by volume or more based on the total volume of the adhesive component (components other than the conductive particles in the adhesive composition). may be 0.2% by volume or more. When the above compounding amount is 0.1% by volume or more, a decrease in conductivity tends to be suppressed.
  • the amount of the conductive particles 12 may be 30% by volume or less, or 10% by volume or less, based on the total volume of the adhesive components (components other than the conductive particles 12 in the adhesive composition). good too. If the blending amount is 30% by volume or less, there is a tendency that short circuits are less likely to occur.
  • volume % is determined based on the volume of each component before curing at 23°C, but the volume of each component can be converted from weight to volume using specific gravity.
  • a suitable solvent water, alcohol, etc.
  • a suitable solvent that wets the component well without dissolving or swelling the component is placed in a measuring cylinder, etc., and the increased volume of the component is added to the It can also be obtained as a volume.
  • the adhesive component 14 constituting the adhesive layer 10 contains a thermosetting component.
  • Thermosetting components include thermosetting resins, curing agents, and curing accelerators.
  • the adhesive component can contain an epoxy resin and a phenol resin as thermosetting components from the viewpoint of sufficiently suppressing the occurrence of air bubbles or peeling during wiring formation.
  • the epoxy resin may be a compound having two or more epoxy groups in the molecule, and may be a bisphenol A type epoxy resin, a bisphenol F type epoxy resin, a bisphenol S type epoxy resin, a biphenyl type epoxy resin, or a biphenyl novolac type epoxy resin.
  • phenol novolak type epoxy resin cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, bisphenol F novolak type epoxy resin, dicyclopentadiene type epoxy resin, alicyclic epoxy resin, aliphatic chain epoxy resin, glycidyl ester type Epoxy resins, isocyanurate-type epoxy resins, hydantoin-type epoxy resins, glycidyl ether compounds of polyfunctional phenols, glycidyl ether compounds of bifunctional alcohols, hydrogenated products thereof, and the like.
  • biphenyl novolak type epoxy resin phenol novolak type epoxy resin, cresol novolak type epoxy resin, bisphenol A novolak type epoxy resin, or bisphenol F novolak type epoxy resin are preferred from the viewpoint of handling and availability.
  • a novolak type epoxy resin may also be used.
  • Epoxy resins may be used alone or in combination of two or more.
  • the adhesive component may contain a compound having three or more epoxy groups in one molecule as an epoxy resin.
  • the epoxy resin may have an epoxy equivalent of 100 to 1000 g/eq, 125 to 900 g/eq, or 150 to 800 g/eq from the viewpoint of ensuring adhesive strength and heat resistance and good reactivity. eq may be used. Epoxy equivalent is determined by a method standardized in JIS (K7236:2001).
  • the content of the epoxy resin in the adhesive component may be 5 to 95% by mass, or 10 to 90% by mass, based on the total amount of the adhesive component (the total solid content other than the conductive particles 12 in the adhesive layer 10). %, or 15 to 85% by mass.
  • Phenolic resin functions as a curing agent for epoxy resin.
  • Phenolic resins include novolak-type phenolic resins such as phenol novolak, cresol novolak, bisphenol A novolak, bisphenol F novolak, and catechol novolak, and those obtained by substituting the aromatic rings of these with alkyl groups.
  • a phenol resin may be used individually by 1 type, and may use 2 or more types together.
  • the adhesive component may contain a compound having three or more phenol groups or cresol groups in one molecule as a phenol resin.
  • a phenol novolac-type phenol resin, a cresol novolak-type phenol resin, a bisphenol A novolak-type phenol resin, or a bisphenol F novolak-type phenol resin may be used from the viewpoint of ease of handling and availability. good.
  • the hydroxyl group equivalent of the phenol resin may be 300 g/eq or less, or 250 g/eq or less, from the viewpoint of suppressing the generation of air bubbles or peeling during wiring formation. From the viewpoint of reactivity, it may be 50 g/eq or more, or 100 g/eq or more.
  • the hydroxyl group equivalent of the phenol resin is obtained by the following measuring method.
  • the flask is then fitted with an air condenser and heated to 100° C. for 1 hour. After cooling the flask, add 1 mL of water and heat the flask again at 100° C. for 10 minutes. After recooling the flask, rinse the air condenser and flask neck with 5 mL of neutralized methanol and add 1 mL of phenolphthalein reagent.
  • the solution thus obtained is titrated with a 0.1 mol/L potassium hydroxide/ethanol solution to determine the hydroxyl value. From the obtained hydroxyl value, the hydroxyl equivalent (g/eq) in terms of mass per 1 mol (1 eq) of hydroxyl is calculated.
  • the content of the phenolic resin in the adhesive component can be set so that the number of hydroxyl groups in the phenolic resin is 0.5 to 2 per epoxy group in the epoxy resin.
  • the adhesive component containing the epoxy resin and the phenol resin may further contain a thermosetting resin other than the epoxy resin, and may further contain a curing agent other than the phenol resin.
  • thermosetting resins other than epoxy resins polyimide resins, triazine resins such as melamine resins, modified products of these resins, and the like can be used.
  • Curing agents other than phenolic resins include amines, amides, acid anhydrides, acids, imidazoles and the like.
  • Curing accelerators include imidazole compounds, organic phosphorus compounds, tertiary amines, quaternary ammonium salts, and the like.
  • a hardening accelerator may be used individually by 1 type, and may use 2 or more types together.
  • the content of the curing accelerator in the adhesive component may be 0.001-10% by mass based on the total amount of the adhesive component.
  • the adhesive component containing an epoxy resin and a phenol resin contains an imidazole compound as a curing accelerator from the viewpoint of being able to arbitrarily adjust the temperature and time when used (for example, the heating temperature and heating time during thermocompression bonding). may contain.
  • the adhesive component 14 may contain components other than the thermosetting components described above. Other components may further include fillers, film-forming agents, softeners, antioxidants, colorants, flame retardants, thixotropic agents, coupling agents, and the like.
  • Fillers include inorganic fillers and organic fillers.
  • inorganic fillers include alumina, silica, titanium oxide, clay, calcium carbonate, aluminum carbonate, magnesium silicate, aluminum silicate, mica, short glass fibers, aluminum borate, and silicon carbide.
  • organic fillers include silicone particles, methacrylate/butadiene/styrene particles, acryl/silicone particles, polyamide particles, and polyimide particles.
  • One filler may be used alone, or two or more fillers may be used in combination.
  • the adhesive component can contain silica particles as a filler from the viewpoint of improving heat resistance, improving mechanical properties, and adjusting fluidity during use (for example, during thermocompression bonding).
  • the maximum diameter of the filler may be less than the particle diameter of the conductive particles 12, and may be 0.001 to 10 ⁇ m.
  • the content of the filler may be 5 to 60 parts by volume with respect to 100 parts by volume of the adhesive component.
  • the filler content is 5 to 60 parts by volume, good connection reliability tends to be obtained.
  • thermoplastic resins are preferably used, and phenoxy resins, polyvinyl formal resins, polystyrene resins, polyvinyl butyral resins, polyester resins, polyamide resins, xylene resins, polyurethane resins, polyacrylic resins, polyester urethane resins, etc. mentioned. Additionally, these polymers may contain siloxane bonds or fluorine substituents. These resins can be used singly or in combination of two or more. Among the above resins, a phenoxy resin may be used from the viewpoint of adhesive strength, compatibility, heat resistance, and mechanical strength.
  • the molecular weight of the thermoplastic resin may be 5,000 to 150,000 or 10,000 to 80,000 in weight average molecular weight. A weight-average molecular weight of 5,000 or more facilitates obtaining good film formability, and a weight-average molecular weight of 150,000 or less facilitates obtaining good compatibility with other components.
  • the weight average molecular weight refers to a value measured using a standard polystyrene calibration curve from gel permeation chromatography (GPC) under the following conditions.
  • the content of the film-forming material may be 0.5 to 75% by mass, or may be 1 to 50% by mass, based on the total amount of the adhesive component.
  • the adhesive component 14 does not substantially contain highly reactive radically polymerizable compounds such as acrylic compounds, methacrylic compounds, styrene compounds, and vinyl compounds from the viewpoint of improving storage stability and connection reliability. may be Note that "substantially free” means that the content is 1% by mass or less based on the total amount of the adhesive component. The content of the compound in the adhesive component may be 0.5% by mass or less or 0% by mass based on the total amount of the adhesive component.
  • the adhesive layer 10 contains conductive particles 12 and a thermosetting component, and the reaction rate when heated at 180° C. for 5 minutes may be 90% or less, or 85% or less. , 80% or less.
  • the above reaction rate means a value obtained by the following measuring method. [Measurement of reaction rate when heated at 180°C for 5 minutes] A part of the adhesive layer is scraped off to obtain two 5 mg evaluation samples before heating. Next, one of the evaluation samples before heating is heated at 180° C. for 5 minutes to obtain an evaluation sample after heating. For each of the evaluation sample before heating and the evaluation sample after heating, a differential scanning calorimeter (DSC) device (product name DSC7, manufactured by Perkin Elmer) was used to measure the temperature range from 30 ° C. to 250 ° C. under a nitrogen stream. The DSC calorific value is measured at a temperature rate of 10°C/min. Based on the measured DSC calorific value, the reaction rate when heated at 180° C.
  • DSC differential scanning calorimeter
  • reaction rate (Cx-Cy) x 100/Cx [In the formula, Cx indicates the DSC calorific value (J/g) of the evaluation sample before heating, and Cy indicates the DSC calorific value (J/g) of the evaluation sample after heating. ]
  • Thermosetting components include thermosetting resins, curing agents, and curing accelerators.
  • thermosetting resins include epoxy resins, polyimide resins, triazine resins such as melamine resins, phenol resins, and modified products of these resins.
  • curing agents include polyfunctional phenolic resins such as phenol novolak and cresol novolak when epoxy resins are used as thermosetting resins.
  • the adhesive layer 10 having a reaction rate of 90% or less may contain the conductive particles 12 and the adhesive component 14 described above.
  • the thickness of the adhesive layer may be 0.1 times or more, 0.2 times or more, 0.3 times or more, or 0.1 times or more the average particle diameter Dp of the conductive particles 12 . It may be 5 times or more, 0.8 times or more, or 1 time or more.
  • the thickness of the adhesive layer may be 10 times or less, 7 times or less, 5 times or less, or 3 times or less the average particle diameter Dp of the conductive particles 12, It may be 2 times or less, 1.8 times or less, 1.5 times or less, or 1 time or less.
  • the surface roughness Rz of one surface and the opposite surface of the metal layer 20 may be the same or may be different.
  • the metal layer 20 has a thickness of, for example, 5 ⁇ m to 200 ⁇ m.
  • the thickness of the metal layer here is the thickness including the surface roughness Rz.
  • the metal layer 20 is, for example, copper foil, aluminum foil, nickel foil, stainless steel, titanium, or platinum.
  • the adhesive layer 10 is arranged on the first surface 20 a of the metal layer 20 .
  • the surface roughness Rz of the first surface 20a of the metal layer 20 may be 0.3 ⁇ m or more, 0.5 ⁇ m or more, or 1.0 ⁇ m or more. Further, the surface roughness Rz of the first surface 20a of the metal layer 20 may be 50 ⁇ m or less, 40 ⁇ m or less, 30 ⁇ m or less, 20 ⁇ m or less, or 20 ⁇ m. may be smaller, may be 17 ⁇ m or less, may be 10 ⁇ m or less, may be 8.0 ⁇ m or less, may be 5.0 ⁇ m or less, may be 3.0 ⁇ m or less .
  • the surface roughness Rz of the first surface 20a of the metal layer 20 may be, for example, 0.3 ⁇ m or more and 20 ⁇ m or less, or may be 0.3 ⁇ m or more and less than 20 ⁇ m, more specifically, 0.5 ⁇ m or more. It may be 10 ⁇ m or less.
  • the surface roughness Rz of the second surface 20b of the metal layer 20 may be, for example, 20 ⁇ m or more, and may be rougher than the surface roughness Rz of the first surface 20a. It may be less than the surface roughness Rz of the first surface 20a.
  • the surface roughness Rz of the first surface 20a of the metal layer 20 may be 0.3 ⁇ m or more.
  • the surface roughness Rz of the first surface 20a of the metal layer 20 may be made smaller than 0.3 ⁇ m by adopting a material or a connection structure that can ensure adhesiveness.
  • the surface roughness Rz means the ten-point average roughness Rzjis measured according to the method specified in JIS standards (JIS B 0601-2001), and is measured using a commercially available surface roughness profile measuring machine. value. For example, it can be measured using a nanosearch microscope ("SFT-3500" manufactured by Shimadzu Corporation).
  • the ratio of the surface roughness Rz of the first surface 20a of the metal layer 20 to the average particle size Dp of the conductive particles 12, "surface roughness/average particle size", is 0.03 or more. may be 0.04 or more, 0.05 or more, 0.06 or more, 0.1 or more, or 0.2 or more may be 0.3 or more, 0.5 or more, or 1 or more.
  • the ratio of the surface roughness Rz of the first surface 20a of the metal layer 20 to the average particle diameter Dp of the conductive particles 12, "surface roughness/average particle diameter”, may be 3 or less, or 2 or less, 1.7 or less, or 1.5 or less.
  • the ratio of the surface roughness Rz of the first surface 20a of the metal layer 20 to the average particle diameter Dp of the conductive particles 12, "surface roughness/average particle diameter", is, for example, 0.05 or more and 3 or less. It may be 0.06 or more and 2 or less.
  • the ratio of the surface roughness Rz of the first surface 20a of the metal layer 20 to the average particle size Dp of the conductive particles 12, "surface roughness/average particle size” is in the range of 0.05 to 3.
  • the surface roughness Rz of the first surface 20a of the metal layer 20 and the average particle size Dp of the conductive particles 12 are controlled so that
  • FIG. 2(a) to 2(d) are diagrams showing a method of forming a wiring layer using the wiring forming member shown in FIG.
  • a wiring forming member 1 is prepared. Furthermore, the base material 30 on which the wiring 32 is formed is prepared. Then, the wiring forming member 1 is arranged so that the adhesive layer 10 side of the wiring forming member 1 faces the base material 30 . Thereafter, as shown in FIG. 2B, lamination is performed so as to cover the wiring 32, and the wiring forming member 1 is attached onto the base material 30. Then, as shown in FIG.
  • predetermined heating and pressure are applied to the wiring forming member 1, and pressure bonding to the base material 30 is performed.
  • the conductive particles 12 that need to ensure conductivity are more reliably deformed into flat-shaped conductive particles 12a. be able to.
  • the flattened conductive particles 12a (the insulating layer is destroyed and the conductive portion is exposed) are arranged on the wiring 32, and the metal layer 20 and the wiring 32 are arranged. Reliable electrical continuity between and can be achieved.
  • the adhesive layer 10 is also crushed to form a thinner adhesive layer 10A.
  • the metal layer 20 is subjected to a predetermined patterning process (eg, an etching process) to be processed into a predetermined wiring pattern 20c (another wiring).
  • a predetermined patterning process eg, an etching process
  • the second surface 20b of the metal layer 20 may be processed to be smooth.
  • a wiring layer may be formed by repeating the processes of (a) to (d) of FIG. 2 described above a predetermined number of times.
  • the method of forming a wiring layer using a wiring forming member includes the steps of preparing a wiring forming member, preparing a base material on which wiring is formed, and placing the base material so as to cover the wiring. arranging the wiring forming member on the surface on which the wiring is formed so that the adhesive layer side faces the substrate; thermocompression bonding the wiring forming member to the base material; and performing a patterning process on the layer.
  • the wiring forming member 1b is formed.
  • This wiring forming member 1b is composed of a base material 30 having wirings 32 and a cured product (heat-pressed wiring forming material) of the adhesive component 14 of the wiring forming member 1 arranged on the base material 30 so as to cover the wirings 32 . Adhesive layer of the member for use).
  • the wiring 32 and the metal layer 20 of the wiring forming member 1 or the wiring 20c formed (eg, etched) from the metal layer 20 are electrically connected by the conductive particles 12a.
  • the wiring forming member 1b may have a configuration having a plurality of wiring layers (layers in which the wirings described above are connected to each other). .
  • the process of forming the wiring layer connecting the wirings can be performed in comparison with the conventional processes such as laser processing and fill plating. can be simplified. Moreover, it becomes possible to easily thin the formed wiring layer.
  • any one of the following effects can be achieved between the substrate forming the wiring layer and the cured adhesive layer. It is possible to sufficiently suppress the occurrence of air bubbles or peeling in the film. (i) By including the epoxy resin and the phenol resin in the adhesive layer 10, it becomes easy to maintain the curing reaction for a long time, and it becomes easy to obtain sufficient embeddability and uniform reactivity. (ii) Since the adhesive layer 10 has the above reaction rate, the curing reaction can be easily maintained for a long time, and sufficient embedding properties and uniform reactivity can be easily obtained.
  • the present disclosure is not limited to the above embodiments, and can be applied to various embodiments.
  • the conductive particles 12 may be arranged (unevenly distributed) on the metal layer 20 side.
  • the conductive particles 12 are not exposed on the second surface 10b opposite the metal layer 20, but are present between the conductive particles 12 and the first surface 20a of the metal layer 20.
  • the thickness of the adhesive layer 10 may be 0 ⁇ m or more than 0.1 ⁇ m and 1 ⁇ m or less.
  • the conductive particles 12 are arranged on the metal layer 20 side, the conductive particles 12 can be flattened more reliably by the metal layer 20 in the wiring layer 1d. In addition, by unevenly distributing the conductive particles 12 on the metal layer 20 side in this way, the trapping rate of the conductive particles 12 on the wiring (electrode) or the like can be improved. That is, conduction can be made more stable.
  • the distance between the conductive particles 12 and the first surface 20a of the metal layer 20 is from the surface of the metal layer 20 in contact with the adhesive layer 10 to It means the shortest distance to the surface of the conductive particles 12, and is, for example, an average value at arbitrary 30 points.
  • This distance was obtained by sandwiching the wiring forming member between two sheets of glass (thickness: about 1 mm), 100 g of bisphenol A type epoxy resin (trade name: JER811, manufactured by Mitsubishi Chemical Corporation), and a curing agent (trade name: Epomount curing agent, manufactured by Refinetech Co., Ltd.) 10 g of the resin composition is cast, the cross section is polished using a polishing machine, and a scanning electron microscope (SEM, trade name: SE-8020, Hitachi, Ltd.) is used. (manufactured by Hi-tech Science).
  • the adhesive layer 10d may be formed separately into the first adhesive layer 10e and the second adhesive layer 10f.
  • the adhesive components constituting the first adhesive layer 10e and the second adhesive layer 10f may be the same as the adhesive components constituting the adhesive layer 10 described above. is different in that the conductive particles 12 are not dispersed, that is, are not included.
  • the conductive particles 12 are dispersed in the first adhesive layer 10e, that is, contained therein.
  • the conductive particles 12 are arranged on the metal layer 20 side. It becomes possible to more reliably crush into a flat shape.
  • the trapping rate of the conductive particles 12 on the wiring (electrode) or the like can be improved. That is, conduction can be made more stable.
  • the wiring forming members 1, 1c, and 1e may further include a release film.
  • the release film may be adhered to the side of the adhesive layers 10, 10c, and 10d opposite to the side to which the metal layer 20 is adhered, and the side of the metal layer 20 to which the adhesive layers 10, 10c, and 10d are adhered. may be adhered to the opposite side of the , or may be adhered to both of them.
  • the first surface 20a of the metal layer 20 may be adhered to the adhesive layers 10, 10c and 10d. In this case, the wiring forming member becomes easy to handle, and the working efficiency when forming the wiring layer using the wiring forming member can be improved.
  • the wiring forming member is a member formed by bonding the adhesive layer 10 and the metal layer 20 together.
  • 20 may be provided separately, and may be configured as a set product such that the adhesive layer 10 can be adhered to the first surface 20a of the metal layer 20 during use.
  • the adhesive layer 10 and the metal layer 20 can be prepared separately (as a set of wiring forming members), it is possible to select a wiring forming member having a more optimal material composition, and to perform wiring forming. It becomes possible to improve the degree of freedom of work when fabricating the wiring layer using the member.
  • FIG. 4 is a cross-sectional view showing a wiring forming member according to another embodiment of the present disclosure.
  • the wiring forming member 2 shown in FIG. 4 includes an adhesive layer 10 containing conductive particles 12 and a metal layer 20 .
  • the adhesive layer 10 comprises a first adhesive layer 15 containing conductive particles 12 and an adhesive component 14 and a second adhesive layer 16 containing an adhesive component 17 .
  • the first adhesive layer 15 includes conductive particles 12 and an insulating adhesive component 14 in which the conductive particles 12 are dispersed.
  • Adhesive component 14 is similar to that described above. Also, the first adhesive layer 15 may have the reaction rate described above.
  • the thickness d1 of the first adhesive layer 15 may be 0.1 times or more, 0.2 times or more, or 0.3 times or more the average particle size Dp of the conductive particles 12. It may be 0.5 times or more, 0.8 times or more, or 1 time or more.
  • the thickness d1 of the first adhesive layer 15 may be 10 times or less, 7 times or less, 5 times or less, or 3 times or less the average particle diameter Dp of the conductive particles 12. It may be 2 times or less, it may be 1.8 times or less, it may be 1.5 times or less, or it may be 1 time or less.
  • the second adhesive layer 16 contains an insulating adhesive component 17 .
  • the insulating adhesive component 17 in the second adhesive layer 16 may be the same as or different from the adhesive component 14 .
  • the second adhesive layer 16 has a thickness of, for example, 1 ⁇ m to 50 ⁇ m.
  • the adhesive component 17 of the second adhesive layer 16 is defined as the solid content other than the conductive particles.
  • the second adhesive layer 16 may be in a B-stage state, that is, a semi-cured state, before the wiring layer is formed by the wiring forming member 2 .
  • the thickness d2 of the second adhesive layer 16 may be 0.1 times or more, 0.5 times or more, or 0.8 times or more the thickness d1 of the first adhesive layer 15. It may be 1 times or more.
  • the thickness d2 of the second adhesive layer 16 may be 10 times or less, 7 times or less, 5 times or less, or 3 times or less the thickness d1 of the first adhesive layer 15. and may be 1 times or less.
  • FIG. 5A to 5D are diagrams showing a method of forming a wiring layer using the wiring forming member shown in FIG.
  • the wiring forming member 2 is prepared. Furthermore, the base material 30 on which the wiring 32 is formed is prepared. Then, the wiring forming member 2 is arranged so that the adhesive layer 10 side of the wiring forming member 2 faces the base material 30 . Thereafter, as shown in FIG. 5B, lamination is performed so as to cover the wiring 32, and the wiring forming member 2 is attached onto the base material 30. Then, as shown in FIG.
  • predetermined heating and pressure are applied to the wiring forming member 2, and pressure bonding to the base material 30 is performed.
  • the conductive particles 12 that need to ensure conductivity are more reliably deformed into flat-shaped conductive particles 12a. be able to.
  • the flattened conductive particles 12a (the insulating layer is destroyed and the conductive portion is exposed) are arranged on the wiring 32, and the metal layer 20 and the wiring 32 are arranged. good electrical continuity between the At this time, the adhesive layer 10 is also crushed to form a thinner adhesive layer 10B.
  • the adhesive layer 10 includes the first adhesive layer 15 in which the conductive particles are contained in the adhesive component and the second adhesive layer 16, the thickness direction of the portion where the conductive connection is not desired Good insulation reliability is achieved in
  • the metal layer 20 is subjected to a predetermined patterning process (for example, an etching process) to be processed into a predetermined wiring pattern 20c (another wiring).
  • a predetermined patterning process for example, an etching process
  • the second surface 20b of the metal layer 20 may be processed to be smooth.
  • a wiring layer may be formed by repeating the processes of (a) to (d) of FIG. 5 described above a predetermined number of times.
  • the method of forming a wiring layer using a wiring forming member includes the steps of preparing a wiring forming member, preparing a base material on which wiring is formed, and placing the base material so as to cover the wiring. arranging the wiring forming member on the surface on which the wiring is formed so that the adhesive layer side faces the substrate; thermocompression bonding the wiring forming member to the base material; and performing a patterning process on the layer.
  • the wiring forming member 2b is formed.
  • the wiring forming member 2b is composed of a substrate 30 having wirings 32, and the first adhesive layer 15 and the second adhesive layer 16 of the wiring forming member 2 arranged on the substrate 30 so as to cover the wirings 32. and a cured product (adhesive layer of the wiring forming member that is thermocompression bonded).
  • the wiring 32 and the metal layer 20 of the wiring forming member 2 or the wiring pattern 20c formed (eg, etched) from the metal layer 20 are electrically connected by the conductive particles 12a. 5A to 5D are repeated a predetermined number of times, the wiring forming member 2b may have a structure having a plurality of wiring layers (layers in which the wirings described above are connected to each other). .
  • the process of forming the wiring layer connecting the wirings can be performed in comparison with the conventional processes such as laser processing and fill plating. can be simplified. Moreover, it becomes possible to easily thin the formed wiring layer. Furthermore, it is possible to sufficiently suppress the occurrence of air bubbles or peeling between the substrate forming the wiring layer and the cured adhesive layer.
  • the degree of freedom in designing the wiring pattern when forming the wiring layer can be sufficiently ensured due to the following effects.
  • the wiring layer formed by patterning the metal layer 20 has a portion where it is not desired to electrically connect in the stacking direction (or the thickness direction of the adhesive layer). Even if it has, it becomes easy to ensure the insulation reliability in the part concerned.
  • the conductive particles 12 are less likely to come into contact with portions other than the conductively connected portions, resulting in the contact of the conductive particles. It becomes easy to suppress the transmission loss of the wiring.
  • FIG. 6 are cross-sectional views for explaining an example in which a wiring layer is formed using the wiring forming member 2 according to this embodiment.
  • FIG. 6A a substrate 30 having wiring patterns 32a and 32b is prepared, and wiring is formed on the surface of the substrate 30 on which the wiring patterns are formed so as to cover the wiring patterns 32a and 32b.
  • 2 shows a state in which the adhesive layer 10 side of the member 2 is disposed so as to face the base material 30.
  • FIG. After that, through a step of thermocompression bonding the wiring forming member 2 to the base material 30 and a step of patterning the metal layer 20, as shown in FIG. A wiring forming member is obtained in which the wiring pattern 20d electrically connected to the wiring pattern 32a and the wiring pattern 20e not desired to be electrically connected to the wiring pattern 32b are formed.
  • the adhesive layer 10 of the wiring forming member 2 consists of the first adhesive layer 15 containing the conductive particles 12 and the adhesive component 14 and the second adhesive layer 15 containing no conductive particles but containing the adhesive component 17 .
  • the adhesive layer 16 By including the adhesive layer 16, the wiring pattern 20e that is not desired to be conductively connected while ensuring good conduction between the wiring pattern 20d and the wiring pattern 32a through the conductive particles 12 when pressure-bonded. and the wiring pattern 32b, the adhesive layer 18a can be provided with a thickness sufficient to secure a distance that does not cause conduction by the conductive particles 12. As shown in FIG. As a result, the wiring pattern 20e and the wiring pattern 32b are not electrically connected, and the insulation reliability in the thickness direction of the adhesive layer can be ensured.
  • FIG. 7 are cross-sectional views for explaining another example in which a wiring layer is formed using the wiring forming member 2 according to this embodiment.
  • FIG. 7A a substrate 30 having a wiring pattern 32a is prepared, and the wiring forming member 2 is applied to the surface of the substrate 30 on which the wiring pattern is formed so as to cover the wiring pattern 32a with an adhesive layer.
  • 10 shows the state when arranged so that the 10 side faces the base material 30.
  • FIG. After that, through a step of thermocompression bonding the wiring forming member 2 to the base material 30 and a step of patterning the metal layer 20, as shown in FIG.
  • a wiring forming member is obtained in which a wiring pattern 20d electrically connected to the wiring pattern 32a and a wiring pattern 20f not electrically connected (or a portion of the wiring pattern not electrically connected) are formed.
  • the adhesive layer 10 of the wiring forming member 2 consists of the first adhesive layer 15 containing the conductive particles 12 and the adhesive component 14 and the second adhesive layer 15 containing no conductive particles but containing the adhesive component 17 .
  • the adhesive layer 16 when pressure-bonded, the wiring pattern 20f and the conductive particles 12 are secured while ensuring good conduction between the wiring pattern 20d and the wiring pattern 32a through the conductive particles 12.
  • An adhesive layer 18a may be provided to prevent contact with the substrate.
  • the wiring pattern 20f it is possible to suppress the transmission loss of the wiring caused by the contact of the conductive particles.
  • the metal layer 20, the second adhesive layer 16, and the first adhesive layer 15 are laminated in this order, so that the wiring pattern 20f and the conductive particles 12 It becomes easier to prevent contact.
  • the wiring pattern 20f may be formed by a step of patterning the metal layer 20 and a step of forming a rewiring.
  • the conductive particles 12 are locally arranged. may be distributed in
  • the conductive particles 12 are locally arranged on the second adhesive layer 16 side, but the conductive particles 12 are placed on the second adhesive layer It may be locally arranged on the side opposite to the 16 side (the side of the second surface 10b of the adhesive layer 10).
  • the second adhesive layer 16 of the wiring forming member 2 does not contain conductive particles, the second adhesive layer 16 may contain a part of the main body of the conductive particles 12 ( In other words, it may not contain all of the particle bodies of the conductive particles 12).
  • the adhesive layer 10 of the wiring forming member 2 may be composed of two layers, the first adhesive layer 15 and the second adhesive layer 16. It may be composed of three or more layers including a layer (for example, a third adhesive layer) other than the agent layer 16 .
  • the third adhesive layer may be a layer having a composition similar to that described above for the first adhesive layer 15 or the second adhesive layer 16, and for the first adhesive layer 15 or the second adhesive layer 16 It may be a layer having a thickness similar to that mentioned above.
  • the wiring forming member 2 may be configured by laminating a metal layer, a third adhesive layer, a second adhesive layer, and a first adhesive layer in this order. Although it may be configured by laminating one adhesive layer and the third adhesive layer in this order, it is not limited thereto.
  • the wiring forming member 2 may further include a release film.
  • the release film may be adhered to the side of the adhesive layer 10 opposite to the side to which the metal layer 20 is adhered (the second surface 10b side of the adhesive layer 10), and the adhesive layer 10 of the metal layer 20 may It may be adhered to the opposite side (the second surface 20b side of the metal layer 20) to the surface to be adhered (the first surface 20a of the metal layer), or may be adhered to both of them.
  • the wiring forming member becomes easy to handle, and the working efficiency when forming the wiring layer using the wiring forming member can be improved.
  • the wiring forming member is a member formed by bonding the adhesive layer 10 and the metal layer 20 together.
  • the adhesive layer 10 may be provided separately from the layer 20 and configured as a set that allows the adhesive layer 10 to adhere to the first surface 20a of the metal layer 20 during use.
  • the adhesive layer 10 and the metal layer 20 can be prepared separately (as a set of wiring forming members), it is possible to select a wiring forming member having a more optimal material composition, and to perform wiring forming. It becomes possible to improve the degree of freedom of work when fabricating the wiring layer using the member.
  • thermosetting component As an adhesive component, the following thermosetting component and filler were prepared.
  • Epoxy resin A NC-3000H (biphenyl novolak type epoxy resin, manufactured by Nippon Kayaku Co., Ltd., trade name, epoxy equivalent: 289 g / eq)
  • Phenolic resin A KA-1165 (cresol novolac type phenolic resin, manufactured by DIC Corporation, trade name, hydroxyl group equivalent: 119 g/eq)
  • the hydroxyl group equivalent of the phenol resin was determined by the following measuring method.
  • Curing accelerator A G-8009L (isocyanate mask imidazole, manufactured by Daiichi Kogyo Seiyaku Co., Ltd., trade name) (filler) Silica particles A: SC-2050 (KC) (fused spherical silica, average particle size 0.5 ⁇ m, manufactured by Admatechs Co., Ltd., trade name)
  • the solution thus obtained was titrated with a 0.1 mol/L potassium hydroxide/ethanol solution to determine the hydroxyl value. From the obtained hydroxyl value, the hydroxyl equivalent (g/eq) in terms of mass per 1 mol (1 eq) of hydroxyl was calculated.
  • Conductive particles 1 As the conductive particles, the following were prepared.
  • Conductive particles 1 gold-plated resin particles (resin material: styrene-divinylbenzene copolymer) having an average particle diameter of 20 ⁇ m and a specific gravity of 1.7 were prepared.
  • Conductive particles 2 As the conductive particles 2, gold-plated resin particles (resin material: styrene-divinylbenzene copolymer) having an average particle diameter of 10 ⁇ m and a specific gravity of 1.8 were prepared.
  • Example 1 ⁇ Preparation of Wiring Forming Member> (Example 1) After dissolving 23.12 g of epoxy resin A, 9.52 g of phenol resin A, and 0.065 g of curing accelerator A in 13.05 g of methyl ethyl ketone (MEK), 12.56 g of silica particles A and 17.03 g of conductive particles 1 were added, and adhesion was performed. A coating liquid for forming an agent layer was prepared.
  • MEK methyl ethyl ketone
  • This coating liquid is applied to one side (surface roughness Rz: 3.0 ⁇ m) of copper foil (manufactured by Mitsui Kinzoku Mining, trade name “3EC-M3-VLP”, thickness: 12 ⁇ m).
  • a 20 ⁇ m-thick adhesive layer was formed on the copper foil by applying the adhesive using a precision coating machine (product name: Seismic Coating Machine) and drying with hot air at 160° C. for 10 minutes.
  • Example 2 Copper foil was prepared in the same manner as in Example 1, except that the amounts of the epoxy resin, phenol resin, curing accelerator and silica particles, and the type and amount of the conductive particles were changed to those shown in Table 1. An adhesive layer having a thickness of 16 ⁇ m was formed thereon.
  • Example 3 Copper foil was prepared in the same manner as in Example 1, except that the amounts of the epoxy resin, phenol resin, curing accelerator and silica particles, and the type and amount of the conductive particles were changed to those shown in Table 1. An adhesive layer having a thickness of 20 ⁇ m was formed thereon.
  • phenoxy resin manufactured by Union Carbide Co., Ltd., trade name "PKHC"
  • PKHC resin in which acrylic rubber fine particles are dispersed in bisphenol A type epoxy resin (acrylic fine particle content: 17% by mass, epoxy equivalent: 220 ⁇ 240), 10 parts by mass of cresol novolac type epoxy resin (epoxy equivalent: 163 to 175), silica fine particles (manufactured by Shin-Etsu Chemical Co., Ltd., trade name “KMP-605”, average particle size 2 ⁇ m).
  • Curing agent B A masterbatch type curing agent ( Asahi Kasei Chemical Industry Co., Ltd.)
  • This coating liquid is applied to one side (surface roughness Rz: 3.0 ⁇ m) of copper foil (manufactured by Mitsui Kinzoku Mining, trade name “3EC-M3-VLP”, thickness: 12 ⁇ m).
  • a 18 ⁇ m-thick adhesive layer was formed on the copper foil by applying the adhesive using a precision coating machine (product name: Seismic Coating Machine) and drying with hot air at 70° C. for 3 minutes.
  • the reaction rate when heated at 180° C. for 5 minutes was determined according to the following method. [Measurement of reaction rate when heated at 180°C for 5 minutes] A part of the adhesive layer was scraped off to obtain two 5 mg evaluation samples before heating. Then, one of the evaluation samples before heating was heated at 180° C. for 5 minutes to obtain an evaluation sample after heating. For each of the evaluation sample before heating and the evaluation sample after heating, a differential scanning calorimeter (DSC) device (product name DSC7, manufactured by Perkin Elmer) was used to measure the temperature range from 30 ° C. to 250 ° C. under a nitrogen stream. The DSC calorific value was measured at a temperature rate of 10°C/min.
  • DSC differential scanning calorimeter
  • reaction rate (Cx-Cy) x 100/Cx
  • Cx indicates the DSC calorific value (J/g) of the evaluation sample before heating
  • Cy indicates the DSC calorific value (J/g) of the evaluation sample after heating.
  • connection resistance value was measured according to the following method.
  • a sample in which a resist was formed on the manufactured connector was immersed in an etching solution and shaken.
  • An etching solution was prepared with copper chloride: 100 g/L and hydrochloric acid: 100 ml/L.
  • copper chloride 100 g/L
  • hydrochloric acid 100 ml/L.
  • Evaluation criteria A: Bubbles or peeling is not observed in an area range of 90% or more in the evaluation sample.
  • connection resistance value ⁇ Preparation of evaluation sample>
  • the wiring forming member was attached to a circuit board (PWB) having three copper circuits with a line width of 1000 ⁇ m, a pitch of 10000 ⁇ m and a thickness of 15 ⁇ m on an epoxy substrate containing glass cloth.
  • PWB circuit board
  • thermocompression bonding apparatus heating method: constant heat type, manufactured by Toray Engineering Co., Ltd.
  • a sample in which a resist was formed on the manufactured connector was immersed in an etching solution and shaken.
  • the etching solution was adjusted with copper chloride: 100 g/L and hydrochloric acid: 100 ml/L.
  • copper chloride 100 g/L
  • hydrochloric acid 100 ml/L.
  • the resistance value between the remaining copper foil portion on the circuit and the copper circuit on the substrate was measured with a multimeter immediately after bonding.
  • the resistance value is the average of 37 points of resistance between the remaining copper foil portion on the circuit and the copper circuit on the substrate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

配線形成用部材1は、接着剤層10と金属層20とを備える。接着剤層10は、導電性粒子12と熱硬化性成分とを含む接着剤組成物から構成される。金属層20は、接着剤層10上に配置される。この配線形成用部材1では、接着剤層が、熱硬化性成分として、エポキシ樹脂とフェノール樹脂とを含む。

Description

配線形成用部材、配線形成用部材を用いた配線層の形成方法、及び、配線形成部材
 本開示は、配線形成用部材、配線形成用部材を用いた配線層の形成方法、及び、配線形成部材に関する。
 特許文献1には、ICチップ等の電子部品を内蔵したプリント配線板の製造方法が開示されている。
特開2012-191204号公報
 従来の部品内蔵基板の製造方法では、図8の(a)及び(b)に示すように、電極101aが設けられた電子部品101の積層方向の両側に絶縁樹脂層102,103を形成する。その後、図8の(c)及び(d)に示すように、レーザによる穴あけ、めっき層の形成、及び、エッチングによる電極形成等を行うことにより、電子部品101の各電極101aに到るビア電極104,105を各絶縁樹脂層102及び103に形成する。そして、図9の(a)~(c)に示すように、更なる絶縁樹脂層106,107の形成、レーザによる穴あけ及びめっき層の形成によるビア電極108の形成、及び、エッチングによる電極形成等を繰り返すことにより、部品内蔵基板110が形成される。しかしながら、このような部品内蔵基板の製造方法では、多くの処理を行って1つの導電層(ビア電極)を形成し、複数の導電層を形成するにはこれら処理を繰り返す必要があり、製造プロセスが非常に煩雑であった。
 そこで、金属箔等の金属層が積層されており且つ導電性粒子を有する接着剤を配線形成用の部材として検討した。このような配線形成用部材によれば、基材の配線が形成された面に対して配線形成用部材を接着剤層が基材に対向するように配置する工程と、配線形成用部材を基材に対して加熱圧着する工程と、金属層に対してパターニング処理を行う工程とを経ることで、配線が形成された基材上に配線と接続された配線層を簡便に形成することが期待できる。
 しかし、上記の方法によって得られる配線形成部材について詳細な観察を行ったところ、接着剤の硬化物と基材との間に気泡又は剥離が発生する場合があることが判明した。配線形成用部材は、配線間を充分な導通性で繋ぐことができるだけでなく、接着剤が上記の問題を生じにくい成形性を有していることが望ましい。
 そこで、本開示は、配線形成するときに気泡又は剥離が発生することを充分抑制しつつ、配線間を繋ぐ配線層の形成プロセスを簡略化することができる配線形成用部材、当該配線形成用部材を用いた配線層の形成方法、及び、配線形成部材を提供することを目的とする。
 本開示は、一側面として、配線形成用部材に関する。この配線形成用部材は、金属層と、金属層上に配置される接着剤層と、を備える。この配線形成用部材では、接着剤層が、導電性粒子と、エポキシ樹脂と、フェノール樹脂と、を含む。
 上記の配線形成用部材によれば、接着剤層が導電性粒子を含むことにより、加工後に配線パターン又は配線となる金属層と、接着剤層を介して接着される他の配線パターン又は配線との間における電気的導通を得ることができ、レーザ加工及びフィルドめっき処理などを行う従来のプロセスに比べ、配線間を繋ぐ配線層の形成プロセスを簡略化することができる。また、接着剤層が、エポキシ樹脂とフェノール樹脂とを含むことにより、配線層を形成する基材と、接着剤層の硬化物との間に気泡又は剥離が発生することを充分に抑制することができる。なお、このような効果は、エポキシ樹脂とフェノール樹脂との組み合わせにより、硬化反応を長時間にわたって維持することが容易となり、充分な埋め込み性と均一な反応性とが得られやすくなることで奏されたものと本出願人は考えている。
 上記の配線形成用部材において、フェノール樹脂の水酸基当量が、300g/eq以下であってもよい。
 上記の配線形成用部材は、上記フェノール樹脂として、ノボラック型フェノール樹脂、又は、芳香環がアルキル基で置換されたノボラック型フェノール樹脂を含んでいてもよい。
 上記の配線形成用部材は、上記エポキシ樹脂として、ノボラック型エポキシ樹脂を含んでいてもよい。
 上記の配線形成用部材は、充填剤を更に含んでいてもよい。
 本開示は、別の側面として、金属層と、該金属層上に配置される接着剤層と、を備え、接着剤層が、導電性粒子と、熱硬化性成分と、を含み、接着剤層は、180℃で5分間加熱したときの反応率が90%以下である、配線形成用部材に関する。
 上記の配線形成用部材によれば、接着剤層が導電性粒子を含むことにより、上記と同様に、配線間を繋ぐ配線層の形成プロセスを簡略化することができる。また、熱硬化性成分を含む接着剤層が上記の反応特性を有することにより、配線層を形成する基材と、接着剤層の硬化物との間に気泡又は剥離が発生することを充分に抑制することができる。なお、このような効果についても、緩やかな硬化反応によって充分な埋め込み性と均一な反応性とが得られやすくなることで奏されたものと本出願人は考えている。
 上記の一側面及び別の側面において、配線形成用部材は、接着剤層の厚みが、導電性粒子の平均粒径の0.8~2倍であってもよい。
 上記の一側面及び別の側面において、配線形成用部材は、更に、剥離フィルムを備えていてもよい。この場合、配線形成用部材が部材として扱い易くなり、配線形成用部材を用いて配線層を形成する際の作業効率を向上させることができる。なお、この剥離フィルムは、一例として、接着剤層の金属層とは反対側の面に配置して使用することができる。
 本開示は、更に別の側面として、導電性粒子及び熱硬化性成分を含む接着剤層と、金属層と、が別体として設けられ、使用時に金属層に接着剤層が接着可能である、配線形成用部材に関する。
 更に別の側面の配線形成用部材における一態様として、接着剤層が、熱硬化性成分として、エポキシ樹脂と、フェノール樹脂と、を含む。
 上記の配線形成用部材によれば、上記の一側面に係る配線形成用部材と同様の効果を奏することができる。更に、接着剤層と金属層とを別々に(配線形成用部材のセットとして)用意することができるため、より最適な材料構成の配線形成用部材を選択したり等、配線形成用部材を用いて配線層を作製する際の作業自由度を向上することが可能となる。
 上記の配線形成用部材において、フェノール樹脂の水酸基当量が、300g/eq以下であってもよい。
 更に別の側面の配線形成用部材における別の態様として、接着剤層は、180℃で5分間加熱したときの反応率が90%以下である。
 上記の配線形成用部材によれば、上記の別の側面に係る配線形成用部材と同様の効果を奏することができる。更に、接着剤層と金属層とを別々に(配線形成用部材のセットとして)用意することができるため、より最適な材料構成の配線形成用部材を選択したり等、配線形成用部材を用いて配線層を作製する際の作業自由度を向上することが可能となる。
 本開示は、更に別の側面として、上記何れかの配線形成用部材を用いて配線層を形成する方法に関する。この配線層の形成方法は、上記何れかの配線形成用部材を準備する工程と、配線が形成されている基材を準備する工程と、配線を覆うように基材の配線が形成された面に対して配線形成用部材を接着剤層が基材に対向するように配置する工程と、配線形成用部材を基材に対して加熱圧着する工程と、金属層に対してパターニング処理を行う工程と、を備える。この形成方法によれば、従来の工法に比べて、加工プロセスを大幅に簡略化することができる。また、この形成方法によれば、接着剤層の硬化物と基材との間に気泡又は剥離が発生することを充分抑制することが可能となる。
 本開示は、更に別の側面として、配線形成部材に関する。この配線形成部材は、配線を有する基材と、配線を覆うように基材上に配置される、上記何れかの配線形成用部材の接着剤層の硬化物と、を備える。この配線形成部材では、配線と、配線形成用部材の金属層又は金属層から形成された別の配線とが電気的に接続されている。この態様によれば、硬化物と基材との間における気泡又は剥離が充分少ない配線形成部材を得ることができる。
 本開示によれば、配線形成するときに気泡又は剥離が発生することを充分抑制しつつ、配線間を繋ぐ配線層の形成プロセスを簡略化することができる。
図1は、本開示の一実施形態に係る配線形成用部材を示す断面図である。 図2の(a)~(d)は、図1に示す配線形成用部材を用いた配線層の形成方法を順に説明するための図である。 図3の(a)~(c)は、本開示の別の実施形態に係る配線形成用部材とそれら配線形成用部材を圧着した場合の状態を示す断面図である。 図4は、本開示の別の実施形態に係る配線形成用部材を示す断面図である。 図5の(a)~(d)は、図4に示す配線形成用部材を用いた配線層の形成方法を順に説明するための図である。 図6の(a)~(b)は、図4に示す配線形成用部材を用いて配線層を形成した場合の一例を説明するための断面図である。 図7の(a)~(b)は、図4に示す配線形成用部材を用いて配線層を形成した場合の別の例を説明するための断面図である。 図8の(a)~(d)は、従来の部品内蔵基板を製造する方法を順に説明するための断面図である。 図9の(a)~(c)は、従来の部品内蔵基板を製造する方法を順に説明するための断面図であって、図8に続く工程を示す。
 以下、図面を参照しながら、本開示の一実施形態に係る配線形成用部材、及び配線形成用部材を用いた配線層の形成方法について説明する。以下の説明では、同一又は相当部分には同一の符号を付し、重複する説明は省略する。また、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。更に、図面の寸法比率は図示の比率に限られるものではない。
 本明細書において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。また、本明細書に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 
 図1は、本開示の一実施形態に係る配線形成用部材を示す断面図である。図1に示すように、配線形成用部材1は、接着剤層10と、金属層20と、を備えて構成されている。配線形成用部材1は、これらに限定されないが、例えば、再配線層、ビルドアップ多層配線板、及び、部品内蔵基板等を作製する際に使用することができる部材である。また、配線形成用部材1は、EMIシールドなどに用いてもよい。
 接着剤層10は、導電性粒子12と、導電性粒子12が分散された絶縁性の接着剤成分14とを含む。接着剤層10は、例えば5μm~50μmの厚みを有している。接着剤層10の接着剤成分14は、導電性粒子12以外の固形分として定義される。接着剤層10は、配線形成用部材1による配線層の形成が行われる前においては、Bステージ状態、すなわち半硬化状態であってもよい。
[導電性粒子の構成]
 導電性粒子12は、導電性を有する略球形の粒子であり、Au、Ag、Ni、Cu、はんだ等の金属で構成された金属粒子、又は、導電性カーボンで構成された導電性カーボン粒子などから構成されている。導電性粒子12は、非導電性のガラス、セラミック、プラスチック(ポリスチレン等)などを含むコアと、上記金属又は導電性カーボンを含み、コアを被覆する被覆層とを備える被覆導電粒子であってもよい。導電性粒子12は、これらの中でも、熱溶融性の金属で形成された金属粒子、又はプラスチックを含むコアと、金属又は導電性カーボンを含み、コアを被覆する被覆層とを備える被覆導電粒子であってもよい。
 導電性粒子12は、一実施形態において、ポリスチレン等のポリマー粒子(プラスチック粒子)からなるコアと、コアを被覆する金属層とを含む。ポリマー粒子は、その表面の実質的に全体が金属層で被覆されていてもよく、接続材料としての機能が維持される範囲で、ポリマー粒子の表面の一部が金属層で被覆されずに露出していてもよい。ポリマー粒子は、例えば、スチレン及びジビニルベンゼンから選ばれる少なくとも1種のモノマーをモノマー単位として含む重合体を含む粒子であってもよい。
 金属層は、Ni、Ni/Au、Ni/Pd、Cu、NiB、Ag、Ru等の各種の金属により形成されていてもよい。金属層は、NiとAuとの合金、NiとPdとの合金等からなる合金層であってよい。金属層は、複数の金属層からなる多層構造であってもよい。例えば、金属層は、Ni層とAu層とからなっていてもよい。金属層は、めっき、蒸着、スパッタ、はんだ等で作製されてもよい。金属層は薄膜(例えば、めっき、蒸着、スパッタ等で形成される薄膜)であってもよい。
 導電性粒子12は、絶縁層を有していてもよい。具体的には、例えば、コア(例えばポリマー粒子)と、コアを被覆する金属層等の被覆層とを含む上記実施形態の導電性粒子における被覆層の外側に、被覆層を更に覆う絶縁層が設けられていてよい。絶縁層は導電性粒子の最表面に位置する最表面層であってよい。絶縁層は、シリカ、アクリル樹脂等の絶縁性材料から形成された層であってよい。
 導電性粒子12の平均粒径Dpは、分散性及び導電性に優れる観点から、1μm以上であってもよく、2μm以上であってもよく、5μm以上であってもよい。導電性粒子の平均粒径Dpは、分散性及び導電性に優れる観点から、50μm以下であってもよく、30μm以下であってもよく、20μm以下であってもよい。上記観点から、導電性粒子の平均粒径Dpは、1~50μmであってもよく、5~30μmであってもよく、5~20μmであってもよく、2~20μmであってもよい。
 導電性粒子12の最大粒径は、配線パターンにおける電極の最小間隔(隣り合う電極間の最短距離)よりも小さくてもよい。導電性粒子12の最大粒径は、分散性及び導電性に優れる観点から、1μm以上であってもよく、2μm以上であってもよく、5μm以上であってもよい。導電性粒子の最大粒径は、分散性及び導電性に優れる観点から、50μm以下であってもよく、30μm以下であってもよく、20μm以下であってもよい。上記観点から、導電性粒子の最大粒径は、1~50μmであってもよく、2~30μmであってもよく、5~20μmであってもよい。
 本明細書では、任意の粒子300個(pcs)について、走査型電子顕微鏡(SEM)を用いた観察により粒径の測定を行い、得られた粒径の平均値を平均粒径Dpとし、得られた最も大きい値を粒子の最大粒径とする。なお、粒子が突起を有する場合等、粒子の形状が球形ではない場合、粒子の粒径は、SEMの画像における粒子に外接する円の直径とする。
 導電性粒子12の含有量は、接続する電極の精細度等に応じて決められる。例えば、導電性粒子12の配合量は、特に制限は受けないが、接着剤成分(接着剤組成物における導電性粒子を除く成分)の全体積を基準として、0.1体積%以上であってもよく、0.2体積%以上であってもよい。上記配合量が0.1体積%以上であると、導電性が低くなることが抑制される傾向がある。導電性粒子12の配合量は、接着剤成分(接着剤組成物における導電性粒子12を除く成分)の全体積を基準として、30体積%以下であってもよく、10体積%以下であってもよい。上記配合量が30体積%以下であると、回路の短絡が生じにくくなる傾向がある。なお、「体積%」は23℃の硬化前の各成分の体積をもとに決定されるが、各成分の体積は、比重を利用して重量から体積に換算することができる。また、メスシリンダー等にその成分を溶解したり膨潤させたりせず、その成分をよくぬらす適当な溶媒(水、アルコール等)を入れたものに、その成分を投入し増加した体積をその成分の体積として求めることもできる。
[接着剤層/接着剤成分の構成]
 接着剤層10を構成する接着剤成分14は、熱硬化性成分を含有している。熱硬化性成分としては、熱硬化性樹脂、硬化剤、及び硬化促進剤が挙げられる。
 接着剤成分は、配線形成の際に気泡又は剥離の発生を充分抑制する観点から、熱硬化性成分として、エポキシ樹脂と、フェノール樹脂とを含有することができる。
 エポキシ樹脂としては、分子内に2個以上のエポキシ基を有する化合物であればよく、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、脂環式エポキシ樹脂、脂肪族鎖状エポキシ樹脂、グリシジルエステル型エポキシ樹脂、イソシアヌラート型エポキシ樹脂、ヒダントイン型エポキシ樹脂、多官能フェノール類のグリシジルエーテル化合物、二官能アルコール類のグリシジルエーテル化合物、及び、それらの水素添加物等が挙げられる。これらのうち、取り扱い性や入手のしやすさの観点から、ビフェニルノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、又はビスフェノールFノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂を用いてもよい。エポキシ樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
 接着剤成分は、接着強度と耐熱性の確保の観点から、エポキシ樹脂として、1分子中に3個以上のエポキシ基を有する化合物を含有してもよい。
 エポキシ樹脂は、接着強度と耐熱性の確保、及び良好な反応性の観点から、エポキシ当量が100~1000g/eqであってもよく、125~900g/eqであってもよく、150~800g/eqであってもよい。エポキシ当量は、JIS規格(K7236:2001)に規格化された方法によって求められる。
 接着剤成分におけるエポキシ樹脂の含有量は、接着剤成分全量(接着剤層10における導電性粒子12以外の固形分全量)を基準として、5~95質量%であってもよく、10~90質量%であってもよく、15~85質量%であってもよい。
 フェノール樹脂は、エポキシ樹脂の硬化剤として機能する。フェノール樹脂としては、フェノールノボラック、クレゾールノボラック、ビスフェノールAノボラック、ビスフェノールFノボラック、及びカテコールノボラック等のノボラック型フェノール樹脂、及びこれらの芳香環をアルキル基で置換したもの等が挙げられる。フェノール樹脂は、1種を単独で用いてもよく、2種以上を併用してもよい。
 接着剤成分は、接着強度と耐熱性の確保の観点から、フェノール樹脂として、1分子中に3個以上のフェノール基又はクレゾール基を有する化合物を含有してもよい。このような化合物としては、取り扱い性や入手のしやすさの観点から、フェノールノボラック型フェノール樹脂、クレゾールノボラック型フェノール樹脂、ビスフェノールAノボラック型フェノール樹脂、又はビスフェノールFノボラック型フェノール樹脂等を用いてもよい。
 フェノール樹脂の水酸基当量は、配線形成の際に気泡又は剥離の発生を抑制する観点から、300g/eq以下であってもよく、250g/eq以下であってもよく、取り扱いのしやすさと良好な反応性の観点から、50g/eq以上であってもよく、100g/eq以上であってもよい。
 なお、フェノール樹脂の水酸基当量は、以下の測定方法によって求められる。
<水酸基当量の測定方法>
 丸底フラスコに、試料1gを精密に量り入れ、更に無水酢酸とピリジン試液5mLを正確に量り入れる。次に、フラスコに空気冷却器を取り付け、100℃で1時間加熱する。フラスコ冷却後、水1mLを加え、再びフラスコを100℃で10分間加熱する。フラスコ再冷却後、空気冷却器、及びフラスコの首部を中和メタノール5mLで洗いこみ、フェノールフタレイン試薬1mLを加える。このようにして得られる溶液について、0.1mol/Lの水酸化カリウム・エタノール溶液を用いて滴定し、水酸基価を求める。得られた水酸基価から、水酸基1mol(1eq)あたりの質量に換算した水酸基当量(g/eq)を算出する。
 接着剤成分におけるフェノール樹脂の含有量は、フェノール樹脂の水酸基の数が、エポキシ樹脂のエポキシ基1個あたり0.5~2個になるように設定することができる。
 エポキシ樹脂とフェノール樹脂とを含有する接着剤成分は、エポキシ樹脂以外の熱硬化性樹脂を更に含有してもよく、フェノール樹脂以外の硬化剤を更に含有してもよい。エポキシ樹脂以外の熱硬化性樹脂としては、ポリイミド樹脂、メラミン樹脂等のトリアジン樹脂、及び、これら樹脂の変性物などを用いることができる。フェノール樹脂以外の硬化剤としては、アミン類、アミド類、酸無水物類、酸類、イミダゾール類等が挙げられる。
 硬化促進剤としては、イミダゾール系化合物、有機リン系化合物、第3級アミン、第4級アンモニウム塩等が挙げられる。硬化促進剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 接着剤成分における硬化促進剤の含有量は、接着剤成分全量を基準として、0.001~10質量%であってもよい。
 エポキシ樹脂とフェノール樹脂とを含有する接着剤成分は、使用するときの温度及び時間(例えば加熱圧着時の加熱温度及び加熱時間)を任意に調整できる観点から、硬化促進剤として、イミダゾール系化合物を含有してもよい。
 接着剤成分14は、上述した熱硬化性成分以外のその他の成分を含有していてもよい。その他の成分としては、充填剤、フィルム形成材、軟化剤、老化防止剤、着色剤、難燃化剤、チキソトロピック剤、カップリング剤等を更に含有していてもよい。
 充填剤としては、無機充填剤及び有機充填剤が挙げられる。無機充填剤としては、アルミナ、シリカ、酸化チタン、クレー、炭酸カルシウム、炭酸アルミニウム、ケイ酸マグネシウム、ケイ酸アルミニウム、マイカ、ガラス短繊維、ホウ酸アルミニウム、炭化ケイ素等が挙げられる。有機充填剤としては、シリコーン粒子、メタアクリレート・ブタジエン・スチレン粒子、アクリル・シリコーン粒子、ポリアミド粒子、ポリイミド粒子等が挙げられる。充填剤は、1種を単独で用いてもよく、2種以上を併用してもよい。
 接着剤成分は、耐熱性の向上、機械物性の向上、及び使用時(例えば加熱圧着時)の流動性調整などの観点から、充填剤として、シリカ粒子を含有することができる。
 充填剤の最大径は、導電性粒子12の粒径未満であってもよく、0.001~10μmであってもよい。
 充填剤の含有量は、接着剤成分100体積部に対して5体積部~60体積部であってもよい。充填剤の含有量が、5体積部~60体積部であると、良好な接続信頼性が得られる傾向にある。
 フィルム形成材としては、熱可塑性樹脂が好適に用いられ、フェノキシ樹脂、ポリビニルホルマール樹脂、ポリスチレン樹脂、ポリビニルブチラール樹脂、ポリエステル樹脂、ポリアミド樹脂、キシレン樹脂、ポリウレタン樹脂、ポリアクリル樹脂、ポリエステルウレタン樹脂等が挙げられる。さらに、これらのポリマー中には、シロキサン結合又はフッ素置換基が含まれていてもよい。これらの樹脂は、単独あるいは2種類以上を混合して用いることができる。上記の樹脂の中でも、接着強度、相溶性、耐熱性、及び機械強度の観点から、フェノキシ樹脂を用いてもよい。
 熱可塑性樹脂の分子量が大きいほどフィルム形成性が容易に得られ、また、フィルムの流動性に影響する溶融粘度を広範囲に設定できる。熱可塑性樹脂の分子量は、重量平均分子量で5000~150000であってもよく、10000~80000であってもよい。重量平均分子量を5000以上とすることで良好なフィルム形成性が得られやすく、150000以下とすることで他の成分との良好な相溶性が得られやすい。
 なお、本開示において、重量平均分子量は、下記の条件に従って、ゲル浸透クロマトグラフ(GPC)より標準ポリスチレンによる検量線を用いて測定した値をいう。
(測定条件)
装置:東ソー株式会社製 GPC-8020
検出器:東ソー株式会社製 RI-8020
カラム:日立化成株式会社製 Gelpack GLA160S+GLA150S
試料濃度:120mg/3mL
溶媒:テトラヒドロフラン
注入量:60μL
圧力:2.94×106Pa(30kgf/cm
流量:1.00mL/min
 また、フィルム形成材の含有量は、接着剤成分全量を基準として0.5~75質量%であってもよく、1~50質量%であってもよい。
 接着剤成分14は、保存安定性の向上及び接続信頼性の向上の観点から、アクリル化合物、メタクリル化合物、スチレン化合物、及びビニル化合物等の反応性の高いラジカル重合性化合物を実質的に含まないものであってもよい。なお、実質的に含まないとは、接着剤成分全量を基準とした含有量が1質量%以下であることを指す。接着剤成分における上記化合物の含有量は、接着剤成分全量を基準として、0.5質量%以下であってもよく、0質量%であってもよい。
[接着剤層10]
 接着剤層10は、導電性粒子12と、熱硬化性成分と、を含み、180℃で5分間加熱したときの反応率が90%以下であってもよく、85%以下であってもよく、80%以下であってもよい。
 上記の反応率は、以下の測定方法によって求められる値を意味する。
[180℃で5分間加熱したときの反応率の測定]
 接着剤層の一部を削り取り、加熱前評価サンプル5mgを二つ得る。次いで、加熱前評価サンプルの一つを180℃で5分間加熱して、加熱後評価サンプルを得る。加熱前評価サンプル及び加熱後評価サンプルのそれぞれについて、示差走査熱量測定(DSC)装置(製品名DSC7、PERKIN ELMER社製)を使用して、窒素気流下、測定温度範囲30℃~250℃、昇温速度10℃/分でDSC発熱量を測定する。測定されたDSC発熱量に基づき、下記式から180℃で5分間加熱したときの反応率を求める。
反応率=(Cx-Cy)×100/Cx
[式中、Cxは、加熱前評価サンプルのDSC発熱量(J/g)を示し、Cyは、加熱後評価サンプルのDSC発熱量(J/g)を示す。]
 熱硬化性成分としては、熱硬化性樹脂、硬化剤、及び硬化促進剤が挙げられる。熱硬化性樹脂としては、エポキシ樹脂、ポリイミド樹脂、メラミン樹脂等のトリアジン樹脂、フェノール樹脂、及びこれら樹脂の変性物などが挙げられる。硬化剤としては、熱硬化性樹脂としてエポキシ樹脂を用いる場合には、フェノールノボラック及びクレゾールノボラック等の多官能性フェノール樹脂が挙げられる。
 上記反応率が90%以下である接着剤層10は、導電性粒子12と、上述した接着剤成分14とを含んで構成されていてもよい。
 接着剤層の厚さは、導電性粒子12の平均粒径Dpの0.1倍以上であってよく、0.2倍以上であってよく、0.3倍以上であってよく、0.5倍以上であってよく、0.8倍以上であってよく、1倍以上であってよい。接着剤層の厚さは、導電性粒子12の平均粒径Dpの10倍以下であってよく、7倍以下であってよく、5倍以下であってよく、3倍以下であってよく、2倍以下であってよく、1.8倍以下であってよく、1.5倍以下であってよく、1倍以下であってよい。
[金属層の構成]
 金属層20の一方の表面と反対の表面の表面粗さRzは同等でもいいが、異なる場合でもよい。金属層20は、例えば、5μm~200μmの厚みを有している。ここでいう金属層の厚みは、表面粗さRzを含む厚さである。金属層20は、例えば、銅箔、アルミ箔、ニッケル箔、ステンレス、チタン、又は、白金である。
 金属層20の第1面20a上に接着剤層10が配置されている。金属層20の第1面20aの表面粗さRzは、0.3μm以上であってもよく、0.5μm以上であってもよく、1.0μm以上であってよい。また、金属層20の第1面20aの表面粗さRzは、50μm以下であってもよく、40μm以下であってもよく、30μm以下であってもよく、20μm以下であってもよく、20μmより小さくてもよく、17μm以下であってもよく、10μm以下であってもよく、8.0μm以下であってもよく、5.0μm以下であってもよく、3.0μm以下であってよい。金属層20の第1面20aの表面粗さRzは、例えば、0.3μm以上20μm以下であってもよく、0.3μm以上で20μmより小さくてもよく、より詳細には、0.5μm以上10μm以下であってよい。なお、金属層20の第2面20bの表面粗さRzは、例えば20μm以上であってよく、第1面20aの表面粗さRzよりも粗くてもよく、第1面20aと同様の表面粗さであってもよく、第1面20aの表面粗さRzよりも粗くなくてもよい。なお、金属層20の第1面20aの表面粗さRzが平滑すぎる(例えば表面粗さRzが0.2μmである)場合、金属層20と接着剤層10との接着性を長期に亘って維持できずに剥がれてしまうことがある。このため、金属層20の第1面20aの表面粗さRzは、0.3μm以上であってもよい。但し、接着性を確保できる材料又は接続構成を採用することで、金属層20の第1面20aの表面粗さRzを0.3μmより小さくしてもよい。
 表面粗さRzは、JIS規格(JIS B 0601ー2001)に規定される方法を準拠して測定される十点平均粗さRzjisを意味し、市販の表面粗さ形状測定機を用いて測定された値をいう。例えば、ナノサーチ顕微鏡(株式会社島津製作所製「SFT-3500」)を用いて測定が可能である。
 ここで、導電性粒子12の平均粒径Dpに対する、金属層20の第1面20aの表面粗さRzとの関係について、以下、説明する。本実施形態では、導電性粒子12の平均粒径Dpに対する、金属層20の第1面20aの表面粗さRzの比である「表面粗さ/平均粒径」は、0.03以上であってもよく、0.04以上であってもよく、0.05以上であってもよく、0.06以上であってもよく、0.1以上であってもよく、0.2以上であってもよく、0.3以上であってもよく、0.5以上であってもよく、1以上であってよい。また、導電性粒子12の平均粒径Dpに対する、金属層20の第1面20aの表面粗さRzの比である「表面粗さ/平均粒径」は、3以下であってもよく、2以下であってもよく、1.7以下であってもよく、1.5以下であってよい。導電性粒子12の平均粒径Dpに対する、金属層20の第1面20aの表面粗さRzの比である「表面粗さ/平均粒径」は、例えば、0.05以上3以下であってよく、より詳細には、0.06以上2以下であってよい。本実施形態では、導電性粒子12の平均粒径Dpに対する、金属層20の第1面20aの表面粗さRzの比である「表面粗さ/平均粒径」が0.05~3の範囲となるように、金属層20の第1面20aの表面粗さRz及び導電性粒子12の平均粒径Dpを管理している。
 本開示は、別の側面として、配線形成用部材を用いて配線層を形成する方法に関する。上述した配線形成用部材1を用いて配線層を形成する方法について、図2を参照して説明する。図2の(a)~(d)は、図1に示す配線形成用部材を用いた配線層の形成方法を示す図である。
 まず、図2の(a)に示すように、配線形成用部材1を準備する。さらに、配線32が形成されている基材30を準備する。そして、配線形成用部材1の接着剤層10側が基材30に向くように配線形成用部材1を配置する。その後、図2の(b)に示すように、配線32を覆うようにラミネートを行い、基材30上に配線形成用部材1を貼り付ける。
 続いて、図2の(c)に示すように、配線形成用部材1に対して所定の加熱及び加圧を行い、基材30に対する圧着を行う。この際、配線形成用部材1の金属層20の第1面20aが平坦であると、導電性を確保する必要がある導電性粒子12を扁平形状の導電性粒子12aへとより確実に変形させることができる。そして、圧着された配線形成用部材1aでは、配線32上に扁平された(これにより絶縁層が破壊されて導通部が露出した)導電性粒子12aが配置されており、金属層20と配線32との間の確実な電気的導通が図られるようになる。この際、接着剤層10も潰されて、より薄い接着剤層10Aとなる。
 続いて、図2の(d)に示すように、金属層20に対して所定のパターニング処理(例えばエッチング処理)を行い、所定の配線パターン20c(別の配線)へと加工する。なお、この際、金属層20の第2面20bに対して、平滑な面になるような処理を施してもよい。上述した図2の(a)~(d)の処理を所定回数繰り返して、配線層を形成してもよい。
 すなわち、配線形成用部材を用いた配線層の形成方法は、配線形成用部材を準備する工程と、配線が形成されている基材を準備する工程と、前記配線を覆うように前記基材の配線が形成された面に対して前記配線形成用部材を接着剤層側が基板に対向するように配置する工程と、前記配線形成用部材を前記基材に対して加熱圧着する工程と、前記金属層に対してパターニング処理を行う工程と、を備える。
 以上により、配線形成部材1bが形成される。この配線形成部材1bは、配線32を有する基材30と、配線32を覆うように基材30上に配置される配線形成用部材1の接着剤成分14の硬化物(加熱圧着された配線形成用部材の接着剤層)と、を備える。この配線形成部材1bでは、配線32と、配線形成用部材1の金属層20又は金属層20から形成(例えばエッチング加工)された配線20cとが導電性粒子12aにより電気的に接続される。なお、図2の(a)~(d)の処理を所定回数繰り返した場合、配線形成部材1bは、複数の配線層(上述した配線同士を接続した層)を有した構成であってもよい。
 このように、本実施形態に係る配線形成用部材1を用いた配線層の形成方法によれば、レーザ加工及びフィルドめっき処理などを行う従来のプロセスに比べ、配線間を繋ぐ配線層の形成プロセスを簡略化することができる。また、形成された配線層を容易に薄型化することが可能となる。
 更に、本実施形態に係る配線形成用部材1を用いた配線層の形成方法によれば、下記のいずれかの作用によって、配線層を形成する基材と、接着剤層の硬化物との間に気泡又は剥離が発生することを充分に抑制することができる。
(i)接着剤層10がエポキシ樹脂とフェノール樹脂とを含むことにより、硬化反応を長時間にわたって維持することが容易となり、充分な埋め込み性と均一な反応性とが得られやすくなる。
(ii)接着剤層10が上記反応率を有するものであることにより、硬化反応を長時間にわたって維持することが容易となり、充分な埋め込み性と均一な反応性とが得られやすくなる。
 以上、本開示の実施形態について詳細に説明してきたが、本開示は上記実施形態に限定されるものではなく、様々な実施形態に適用することができる。例えば、上記実施形態では、図3の(a)に示すように、配線形成用部材1において、導電性粒子12を接着剤層10内でランダム又は平均的に分散させる構成であったが、図3の(b)に示すように、導電性粒子12を金属層20側に配置する(偏在させる)ようにしてもよい。この場合、接着剤層10において、導電性粒子12は、金属層20と反対側の第2面10bで露出せず、導電性粒子12と金属層20の第1面20aとの間に存在する接着剤層10の厚みが0μm又は0.1μmより大きく1μm以下であってもよい。この場合、導電性粒子12を金属層20側に配置していることになるため、配線層1dにおいて、金属層20によって導電性粒子12をより確実に扁平形状に潰すことが可能となる。また、このように導電性粒子12を金属層20側に偏在させることにより、導電性粒子12の配線(電極)等への捕捉率を向上させることができる。つまり、導通をより安定なものにすることができる。なお、上述した導電性粒子12と金属層20の第1面20aとの間の距離(その間に存在する接着剤層10の厚み)は、金属層20の接着剤層10と接している表面から導電性粒子12の表面までの最短距離を意味し、例えば任意の30点における平均値である。また、この距離は、配線形成用部材を2枚のガラス(厚み:1mm程度)で挟み込み、ビスフェノールA型エポキシ樹脂(商品名:JER811、三菱ケミカル株式会社製)100gと、硬化剤(商品名:エポマウント硬化剤、リファインテック株式会社製)10gとからなる樹脂組成物で注型後に、研磨機を用いて断面研磨を行い、走査型電子顕微鏡(SEM、商品名:SE-8020、株式会社日立ハイテクサイエンス製)を用いて測定する。
 また、図3の(c)に示すように、接着剤層10dを第1接着剤層10eと第2接着剤層10fとに分けて形成するようにしてもよい。第1接着剤層10eと第2接着剤層10fとを構成する接着剤成分は、上述した接着剤層10を構成する接着剤成分と同じであってもよいが、第2接着剤層10fには導電性粒子12が分散されていない、即ち含まれていない点が相違する。この変形例に係る配線形成用部材1eでは、第1接着剤層10eに導電性粒子12が分散するように、即ち含まれるようにしている。この場合、図3の(b)に示す変形例と同様に、導電性粒子12を金属層20側に配置していることになるため、配線層1fにおいて、金属層20によって導電性粒子12をより確実に扁平形状に潰すことが可能となる。また、このように導電性粒子12を金属層20側に偏在させることにより、導電性粒子12の配線(電極)等への捕捉率を向上させることができる。つまり、導通をより安定なものにすることができる。
 また、配線形成用部材1,1c,1eにおいて、剥離フィルムを更に備えてもよい。剥離フィルムは、接着剤層10,10c,10dの金属層20が接着される面とは反対側に接着されていてもよく、金属層20の接着剤層10,10c,10dが接着される面とは反対側に接着されていてもよく、これらの両方に接着されていてもよい。また、金属層20の第1面20aが接着剤層10,10c,10dに接着されていてもよい。この場合、配線形成用部材が扱い易くなり、配線形成用部材を用いて配線層を形成する際の作業効率を向上することができる。
 また、上記では配線形成用部材が接着剤層10と金属層20が接着されてなる部材である場合を例にとって説明したが、本実施形態における配線形成用部材は、接着剤層10と金属層20とが別体として設けられ、使用時に金属層20の第1面20aに接着剤層10が接着可能となるようなセット品から構成されてもよい。この場合、接着剤層10と金属層20とを別々に(配線形成用部材のセットとして)用意することができるため、より最適な材料構成の配線形成用部材を選択したり等、配線形成用部材を用いて配線層を作製する際の作業自由度を向上することが可能となる。
 図4は、本開示の別の実施形態に係る配線形成用部材を示す断面図である。図4に示される配線形成用部材2は、導電性粒子12を含む接着剤層10と、金属層20と、を備えて構成されている。接着剤層10は、導電性粒子12と接着剤成分14とを含む第1接着剤層15、接着剤成分17を含む第2接着剤層16と、を備える。
 第1接着剤層15は、導電性粒子12と、導電性粒子12が分散された絶縁性の接着剤成分14を含む。接着剤成分14は、上述したものと同様である。また、第1接着剤層15が、上記反応率を有するものであってもよい。
 第1接着剤層15の厚さd1は、導電性粒子12の平均粒径Dpの0.1倍以上であってよく、0.2倍以上であってよく、0.3倍以上であってよく、0.5倍以上であってよく、0.8倍以上であってよく、1倍以上であってよい。第1接着剤層15の厚さd1は、導電性粒子12の平均粒径Dpの10倍以下であってよく、7倍以下であってよく、5倍以下であってよく、3倍以下であってよく、2倍以下であってよく、1.8倍以下であってよく、1.5倍以下であってよく、1倍以下であってよい。
 第2接着剤層16は、絶縁性の接着剤成分17を含む。第2接着剤層16における絶縁性の接着剤成分17は、接着剤成分14と同じでもよく、異なっていてもよい。第2接着剤層16は、例えば1μm~50μmの厚みを有している。第2接着剤層16の接着剤成分17は、導電性粒子以外の固形分として定義される。第2接着剤層16は、配線形成用部材2による配線層の形成が行われる前においては、Bステージ状態、すなわち半硬化状態であってもよい。
 第2接着剤層16の厚さd2は、第1接着剤層15の厚さd1の0.1倍以上であってよく、0.5倍以上であってよく、0.8倍以上であってよく、1倍以上であってよい。第2接着剤層16の厚さd2は、第1接着剤層15の厚さd1の10倍以下であってよく、7倍以下であってよく、5倍以下であってよく、3倍以下であってよく、1倍以下であってよい。
 次に、上述した配線形成用部材2を用いて配線層を形成する方法について、図5を参照して説明する。図5の(a)~(d)は、図4に示す配線形成用部材を用いた配線層の形成方法を示す図である。
 まず、図5の(a)に示すように、配線形成用部材2を準備する。さらに、配線32が形成されている基材30を準備する。そして、配線形成用部材2の接着剤層10側が基材30に向くように配線形成用部材2を配置する。その後、図5の(b)に示すように、配線32を覆うようにラミネートを行い、基材30上に配線形成用部材2を貼り付ける。
 続いて、図5の(c)に示すように、配線形成用部材2に対して所定の加熱及び加圧を行い、基材30に対する圧着を行う。この際、配線形成用部材2の金属層20の第1面20aが平坦であると、導電性を確保する必要がある導電性粒子12を扁平形状の導電性粒子12aへとより確実に変形させることができる。そして、圧着された配線形成用部材2aでは、配線32上に扁平された(これにより絶縁層が破壊されて導通部が露出した)導電性粒子12aが配置されており、金属層20と配線32との間の良好な電気的導通が図られるようになる。この際、接着剤層10も潰されて、より薄い接着剤層10Bとなる。また、接着剤層10が、導電性粒子が接着剤成分中に含まれる第1接着剤層15と、第2接着剤層16と、を備えているため、導通接続したくない箇所の厚み方向における良好な絶縁信頼性が図られる。
 続いて、図5の(d)に示すように、金属層20に対して所定のパターニング処理(例えばエッチング処理)を行い、所定の配線パターン20c(別の配線)へと加工する。なお、この際、金属層20の第2面20bに対して、平滑な面になるような処理を施してもよい。上述した図5の(a)~(d)の処理を所定回数繰り返して、配線層を形成してもよい。
 すなわち、配線形成用部材を用いた配線層の形成方法は、配線形成用部材を準備する工程と、配線が形成されている基材を準備する工程と、前記配線を覆うように前記基材の配線が形成された面に対して前記配線形成用部材を接着剤層側が基板に対向するように配置する工程と、前記配線形成用部材を前記基材に対して加熱圧着する工程と、前記金属層に対してパターニング処理を行う工程と、を備える。
 以上により、配線形成部材2bが形成される。この配線形成部材2bは、配線32を有する基材30と、配線32を覆うように基材30上に配置される配線形成用部材2の第1接着剤層15及び第2接着剤層16の硬化物(加熱圧着された配線形成用部材の接着剤層)と、を備える。この配線形成部材2bでは、配線32と、配線形成用部材2の金属層20又は金属層20から形成(例えばエッチング加工)された配線パターン20cとが導電性粒子12aにより電気的に接続される。なお、図5の(a)~(d)の処理を所定回数繰り返した場合、配線形成部材2bは、複数の配線層(上述した配線同士を接続した層)を有した構成であってもよい。
 このように、本実施形態に係る配線形成用部材2を用いた配線層の形成方法によれば、レーザ加工及びフィルドめっき処理などを行う従来のプロセスに比べ、配線間を繋ぐ配線層の形成プロセスを簡略化することができる。また、形成された配線層を容易に薄型化することが可能となる。更に、配線層を形成する基材と、接着剤層の硬化物との間に気泡又は剥離が発生することを充分に抑制することができる。
 更に、本実施形態に係る配線形成用部材2を用いた配線層の形成方法によれば、下記の効果によって、配線層を形成する際の配線パターンの設計自由度を充分確保することができる。
(i)接着剤層10が第2接着剤層16を含むことにより、金属層20をパターン化して形成する配線層が積層方向(又は接着剤層の厚み方向)に導通接続したくない部分を有する場合であっても、当該部分における絶縁信頼性を確保することが容易となる。
(ii)金属層20をパターン化して形成する配線層又は別途形成される再配線において、導通接続される部分以外の部分に導電性粒子12が接触しにくくなり、導電性粒子の接触に起因する配線の電送損失を抑制することが容易となる。
 図面を参照しながら上記の効果について説明する。
 図6の(a)~(b)は、本実施形態に係る配線形成用部材2を用いて配線層を形成した場合の一例を説明するための断面図である。
 図6の(a)は、配線パターン32aと配線パターン32bとを有する基材30を準備し、配線パターン32a,32bを覆うように基材30の配線パターンが形成された面に対して配線形成用部材2を接着剤層10側が基材30に対向するように配置したときの状態を示す。この後、配線形成用部材2を基材30に対して加熱圧着する工程と、金属層20に対してパターニング処理を行う工程とを経ることで、図6の(b)に示されるような、配線パターン32aと導通接続する配線パターン20dと、配線パターン32bと導通接続したくない配線パターン20eとが形成された配線形成部材が得られる。
 ここで、配線形成用部材2の接着剤層10が、導電性粒子12と接着剤成分14とを含む第1接着剤層15と、導電性粒子を含まず、接着剤成分17を含む第2接着剤層16と、を含むことにより、圧着した際に、導電性粒子12を介して配線パターン20dと配線パターン32aの配線間で良好な導通を確保しつつ、導通接続したくない配線パターン20eと配線パターン32bとの間においては、導電性粒子12による導通が生じない距離を確保することができる厚みで接着剤層18aを設けることができる。これにより、配線パターン20eと配線パターン32bとは導通接続されず、接着剤層の厚み方向における絶縁信頼性を確保することができる。
 図7の(a)~(b)は、本実施形態に係る配線形成用部材2を用いて配線層を形成した場合の別の例を説明するための断面図である。
 図7の(a)は、配線パターン32aを有する基材30を準備し、配線パターン32aを覆うように基材30の配線パターンが形成された面に対して配線形成用部材2を接着剤層10側が基材30に対向するように配置したときの状態を示す。この後、配線形成用部材2を基材30に対して加熱圧着する工程と、金属層20に対してパターニング処理を行う工程とを経ることで、図7の(b)に示されるような、配線パターン32aと導通接続する配線パターン20dと、導通接続されていない配線パターン20f(又は配線パターンにおける導通接続されない部分)とが形成された配線形成部材が得られる。
 ここで、配線形成用部材2の接着剤層10が、導電性粒子12と接着剤成分14とを含む第1接着剤層15と、導電性粒子を含まず、接着剤成分17を含む第2接着剤層16と、を含むことにより、圧着した際に、導電性粒子12を介して配線パターン20dと配線パターン32aの配線間で良好な導通を確保しつつ、配線パターン20fと導電性粒子12とが接触しないような接着剤層18aを設けることができる。これにより、配線パターン20fにおいて、導電性粒子の接触に起因する配線の電送損失を抑制することができる。特に、配線形成用部材2において、金属層20と、第2接着剤層16と、第1接着剤層15と、がこの順に積層されていることにより、配線パターン20fと導電性粒子12との接触を防止することが容易となる。
 図7に示される方法において、配線パターン20fを、金属層20に対するパターニング処理を行う工程と、再配線を形成する工程とによって形成してもよい。
 図4に示される配線形成用部材2の第1接着剤層15においては、導電性粒子12を局在的に配置しているが、導電性粒子12を接着剤成分14内でランダム又は平均的に分散させてもよい。
 また、配線形成用部材2の第1接着剤層15においては、導電性粒子12を第2接着剤層16側に局在的に配置しているが、導電性粒子12を第2接着剤層16側の反対側(接着剤層10の第2面10b側)に局在的に配置してもよい。
 また、配線形成用部材2の第2接着剤層16には導電性粒子が含まれていないが、第2接着剤層16が導電性粒子12の粒子本体の一部を含んでいてもよい(換言すれば、導電性粒子12の粒子本体の全部を含んでいなくてもよい)。
 また、配線形成用部材2の接着剤層10は、第1接着剤層15及び第2接着剤層16の二層から構成されるものであってよく、第1接着剤層15及び第2接着剤層16以外の層(例えば第3接着剤層)を備える、三層以上の層から構成されるものであってもよい。第3接着剤層は、第1接着剤層15又は第2接着剤層16について上述した組成と同様の組成を有する層であってよく、第1接着剤層15又は第2接着剤層16について上述した厚さと同様の厚さを有する層であってよい。例えば、配線形成用部材2は、金属層、第3接着剤層、第2接着剤層、第1接着剤層の順に積層され構成されていてもよく、金属層、第2接着剤層、第1接着剤層、第3接着剤層の順に積層され構成されていてもよいが、限定されるものではない。
 また、配線形成用部材2において、剥離フィルムを更に備えてもよい。剥離フィルムは、接着剤層10の金属層20が接着される面とは反対側(接着剤層10の第2面10b側)に接着されていてもよく、金属層20の接着剤層10が接着される面(金属層の第1面20a)とは反対側(金属層20の第2面20b側)に接着されていてもよく、これらの両方に接着されていてもよい。この場合、配線形成用部材が扱い易くなり、配線形成用部材を用いて配線層を形成する際の作業効率を向上することができる。
 また、上記では配線形成用部材が接着剤層10と金属層20が接着されてなる部材である場合を例にとって説明したが、本実施形態における配線形成用部材2は、接着剤層10と金属層20とが別体として設けられ、使用時に金属層20の第1面20aに接着剤層10が接着可能となるようなセット品から構成されてもよい。この場合、接着剤層10と金属層20とを別々に(配線形成用部材のセットとして)用意することができるため、より最適な材料構成の配線形成用部材を選択したり等、配線形成用部材を用いて配線層を作製する際の作業自由度を向上することが可能となる。
 以下、実施例を挙げて本開示についてさらに具体的に説明する。ただし、本開示はこれら実施例に限定されるものではない。
 接着剤成分として、下記の熱硬化性成分及び充填剤を準備した。
(熱硬化性成分)
 エポキシ樹脂A:NC-3000H(ビフェニルノボラック型エポキシ樹脂、日本化薬株式会社製、商品名、エポキシ当量:289g/eq)
 フェノール樹脂A:KA-1165(クレゾールノボラック型フェノール樹脂、DIC株式会社製、商品名、水酸基当量:119g/eq)なお、フェノール樹脂の水酸基当量は下記の測定方法によって求めた。
 硬化促進剤A:G-8009L(イソシアネートマスクイミダゾール、第一工業製薬株式会社製、商品名)
(充填剤)
 シリカ粒子A:SC-2050(KC)(溶融球状シリカ、平均粒径0.5μm、アドマテックス株式会社製、商品名)
<水酸基当量の測定方法>
 丸底フラスコに、試料1gを精密に量り入れ、更に無水酢酸とピリジン試液5mLを正確に量り入れた。次に、フラスコに空気冷却器を取り付け、100℃で1時間加熱した。フラスコ冷却後、水1mLを加え、再びフラスコを100℃で10分間加熱した。フラスコ再冷却後、空気冷却器、及びフラスコの首部を中和メタノール5mLで洗いこみ、フェノールフタレイン試薬1mLを加えた。このようにして得られた溶液について、0.1mol/Lの水酸化カリウム・エタノール溶液を用いて滴定し、水酸基価を求めた。得られた水酸基価から、水酸基1mol(1eq)あたりの質量に換算した水酸基当量(g/eq)を算出した。
 導電性粒子として、下記を準備した。
(導電性粒子1)
 導電性粒子1として、金めっき樹脂粒子(樹脂材質:スチレン-ジビニルベンゼン共重合体)、平均粒径20μm、比重1.7の導電性粒子を準備した。
(導電性粒子2)
 導電性粒子2として、金めっき樹脂粒子(樹脂材質:スチレン-ジビニルベンゼン共重合体)、平均粒径10μm、比重1.8の導電性粒子を準備した。
(導電性粒子3)
 導電性粒子3として、Ni粒子、平均粒径20μm、比重8.9の導電性粒子を準備した。
<配線形成用部材の作製>
(実施例1)
 エポキシ樹脂A23.12g、フェノール樹脂A9.52g、及び硬化促進剤A0.065gを、メチルエチルケトン(MEK)13.05gに溶解した後、シリカ粒子A12.56g及び導電性粒子1を17.03g加え、接着剤層形成用塗布液を調製した。
 この塗布液を、銅箔(三井金属鉱業製、商品名「3EC-M3-VLP」、厚み:12μm)の片面(表面粗さRz:3.0μm)に塗工装置((株)康井精機社製、製品名:精密塗工機)を用いて塗布し、160℃で10分間熱風乾燥することにより、銅箔上に厚み20μmの接着剤層を作製した。
(実施例2)
 エポキシ樹脂、フェノール樹脂、硬化促進剤及びシリカ粒子の配合量、並びに導電性粒子の種類及び配合量を表1に記載されるものに変更した以外は、実施例1と同様の方法で、銅箔上に厚み16μmの接着剤層を作製した。
(実施例3)
 エポキシ樹脂、フェノール樹脂、硬化促進剤及びシリカ粒子の配合量、並びに導電性粒子の種類及び配合量を表1に記載されるものに変更した以外は、実施例1と同様の方法で、銅箔上に厚み20μmの接着剤層を作製した。
(比較例1)
 フェノキシ樹脂(ユニオンカーバイド株式会社製、商品名「PKHC」)を25質量部、アクリルゴム微粒子をビスフェノールA型エポキシ樹脂に分散させた樹脂(アクリル微粒子の含有量:17質量%、エポキシ当量:220~240)を10質量部、クレゾールノボラック型エポキシ樹脂(エポキシ当量:163~175)を10質量部、シリカ微粒子(信越化学工業株式会社製、商品名「KMP-605」、平均粒径2μm)を10質量部、ニッケルの導電粒子(福田金属箔粉工業株式会社製、商品名「NiPF-BQ」、平均粒径5μm)を10質量部、下記の硬化剤Bを55質量部、トルエンを60質量部、酢酸エチルを60質量部配合し、接着剤層形成用塗布液を調製した。
硬化剤B:イミダゾール変性体を核とし、その表面をポリウレタンで被覆してなる平均粒径5μmのマイクロカプセル型硬化剤を、液状ビスフェノールF型エポキシ樹脂中に分散してなるマスターバッチ型硬化剤(旭化成化成工業株式会社製)
 この塗布液を、銅箔(三井金属鉱業製、商品名「3EC-M3-VLP」、厚み:12μm)の片面(表面粗さRz:3.0μm)に塗工装置((株)康井精機社製、製品名:精密塗工機)を用いて塗布し、70℃で3分間熱風乾燥することにより、銅箔上に厚み18μmの接着剤層を作製した。
 上記で作製した接着剤層について、下記の方法にしたがって、180℃で5分間加熱したときの反応率を求めた。
[180℃で5分間加熱したときの反応率の測定]
 接着剤層の一部を削り取り、加熱前評価サンプル5mgを二つ得た。次いで、加熱前評価サンプルの一つを180℃で5分間加熱して、加熱後評価サンプルを得た。加熱前評価サンプル及び加熱後評価サンプルのそれぞれについて、示差走査熱量測定(DSC)装置(製品名DSC7、PERKIN ELMER社製)を使用して、窒素気流下、測定温度範囲30℃~250℃、昇温速度10℃/分でDSC発熱量を測定した。測定されたDSC発熱量に基づき、下記式から180℃で5分間加熱したときの反応率を求めた。
反応率=(Cx-Cy)×100/Cx
[式中、Cxは、加熱前評価サンプルのDSC発熱量(J/g)を示し、Cyは、加熱後評価サンプルのDSC発熱量(J/g)を示す。]
 上記で作製した配線形成用部材について、下記の方法にしたがって、成形性の評価及び接続抵抗値の測定を行った。
[成形性]
<評価サンプルの作製>
 250mm×250mmサイズの配線形成用部材を、ガラスクロス入りエポキシ基板上に1.0mmφ、ピッチ1.5mm、厚み12μmの銅回路を有する回路板(PWB)に貼付けた。これを、熱圧着装置を用いて、180℃、2MPaで60分間加熱加圧して接続し、接続体を作製した。なお、比較例1は、180℃、2MPaで30分間加熱加圧して接続し、接続体を作製した。
 作製した接続体にレジストを形成したサンプルをエッチング溶液に浸漬し、揺動を加えた。エッチング溶液は、塩化銅:100g/L、塩酸:100ml/Lで調製した。所定の銅箔部分が無くなったところで、純水洗浄を行った。その後、レジストを剥離し所望の評価サンプルを得た。
<評価サンプルの観察>
 作製した評価サンプルについて、目視で外観を観察し、気泡又は剥離の有無を観察し、下記の評価基準にしたがって成形性を評価した。
(評価基準)
A:評価サンプル中、90%以上の面積範囲で気泡又は剥離が見られない
B:評価サンプル中、70%以上90%未満の面積範囲で気泡又は剥離が見られない。
C:評価サンプル中、30%超の面積範囲又は全域で気泡又は剥離が見られる。
[接続抵抗値の測定〕
<評価サンプルの作製>
 配線形成用部材を、ガラスクロス入りエポキシ基板上にライン幅1000μm、ピッチ10000μm、厚み15μmの銅回路を3本有する回路板(PWB)に貼付けた。これを、熱圧着装置(加熱方式:コンスタントヒート型、東レエンジニアリング社製)を用いて、180℃、2MPaで60分間加熱加圧して幅2mmにわたり接続し、接続体を作製した。
 作製した接続体にレジストを形成したサンプルをエッチング溶液に浸漬し、揺動を加えた。エッチング溶液は、塩化銅:100g/L、塩酸:100ml/Lで調整した。所定の銅箔部分が無くなったところで、純水洗浄を行った。その後、レジストを剥離し所望の評価サンプルを得た。
<評価サンプルの測定>
 回路上の残った銅箔部分と基板上の銅回路間の抵抗値を、接着直後にマルチメータで測定した。抵抗値は回路上の残った銅箔部分と基板上の銅回路間の抵抗37点の平均で示した。
Figure JPOXMLDOC01-appb-T000001
 1,1c,1e…配線形成用部材、1a,1d,1f…配線層、1b……配線形成部材、2…配線形成用部材、10,10c,10d…接着剤層、10a…第1面、10b…第2面、10e…第1接着剤層、10f…第2接着剤層、12,12a…導電性粒子、14,14a…接着剤層、15…第1接着剤層、16…第2接着剤層、17…接着剤層、18a…接着剤層、20…金属層、20a…第1面、20b…第2面、30…基材、32…配線。

 

Claims (13)

  1.  金属層と、該金属層上に配置される接着剤層と、を備え、
     前記接着剤層が、導電性粒子と、エポキシ樹脂と、フェノール樹脂と、を含む、配線形成用部材。
  2.  前記フェノール樹脂の水酸基当量が、300g/eq以下である、請求項1に記載の配線形成用部材。
  3.  前記フェノール樹脂として、ノボラック型フェノール樹脂、又は、芳香環がアルキル基で置換されたノボラック型フェノール樹脂を含む、請求項1又は2に記載の配線形成用部材。
  4.  前記エポキシ樹脂として、ノボラック型エポキシ樹脂を含む、請求項1~3の何れか一項に記載の配線形成用部材。
  5.  充填剤を更に含む、請求項1~4の何れか一項に記載の配線形成用部材。
  6.  金属層と、該金属層上に配置される接着剤層と、を備え、
     前記接着剤層が、導電性粒子と、熱硬化性成分と、を含み、
     前記接着剤層は、180℃で5分間加熱したときの反応率が90%以下である、配線形成用部材。
  7.  前記接着剤層の厚みが、前記導電性粒子の平均粒径の0.8~2倍である、請求項1~6の何れか一項に記載の配線形成用部材。
  8.  更に、剥離フィルムを備える、
    請求項1~7の何れか一項に記載の配線形成用部材。
  9.  導電性粒子及び熱硬化性成分を含む接着剤層と、金属層と、が別体として設けられ、使用時に前記金属層に前記接着剤層が接着可能である、配線形成用部材であって、
     前記接着剤層が、前記熱硬化性成分として、エポキシ樹脂と、フェノール樹脂と、を含む、配線形成用部材。
  10.  前記フェノール樹脂の水酸基当量が、300g/eq以下である、請求項9に記載の配線形成用部材。
  11.  導電性粒子及び熱硬化性成分を含む接着剤層と、金属層と、が別体として設けられ、使用時に前記金属層に前記接着剤層が接着可能である、配線形成用部材であって、
     前記接着剤層は、180℃で5分間加熱したときの反応率が90%以下である、配線形成用部材。
  12.  請求項1~11の何れか一項に記載の配線形成用部材を準備する工程と、
     配線が形成されている基材を準備する工程と、
     前記配線を覆うように前記基材の配線が形成された面に対して前記配線形成用部材を前記接着剤層が前記基材に対向するように配置する工程と、
     前記配線形成用部材を前記基材に対して加熱圧着する工程と、
     前記金属層に対してパターニング処理を行う工程と、
    を備える、配線層の形成方法。
  13.  配線を有する基材と、
     前記配線を覆うように前記基材上に配置される、請求項1~11の何れか一項に記載の配線形成用部材の前記接着剤層の硬化物と、
    を備え、
     前記配線と、前記配線形成用部材の前記金属層又は前記金属層から形成された別の配線とが電気的に接続されている、配線形成部材。

     
PCT/JP2022/005195 2022-02-09 2022-02-09 配線形成用部材、配線形成用部材を用いた配線層の形成方法、及び、配線形成部材 WO2023152840A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2022/005195 WO2023152840A1 (ja) 2022-02-09 2022-02-09 配線形成用部材、配線形成用部材を用いた配線層の形成方法、及び、配線形成部材
TW112104440A TW202346522A (zh) 2022-02-09 2023-02-08 配線形成用構件、使用了配線形成用構件之配線層之形成方法及配線形成構件
PCT/JP2023/004204 WO2023153443A1 (ja) 2022-02-09 2023-02-08 配線形成用部材、配線形成用部材を用いた配線層の形成方法、及び、配線形成部材

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/005195 WO2023152840A1 (ja) 2022-02-09 2022-02-09 配線形成用部材、配線形成用部材を用いた配線層の形成方法、及び、配線形成部材

Publications (1)

Publication Number Publication Date
WO2023152840A1 true WO2023152840A1 (ja) 2023-08-17

Family

ID=87563844

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005195 WO2023152840A1 (ja) 2022-02-09 2022-02-09 配線形成用部材、配線形成用部材を用いた配線層の形成方法、及び、配線形成部材

Country Status (1)

Country Link
WO (1) WO2023152840A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326469A (ja) * 2000-05-16 2001-11-22 Toshiba Chem Corp プリント配線板およびプリント配線板の製造方法
JP2015130417A (ja) * 2014-01-08 2015-07-16 日東電工株式会社 フィルム状接着剤、フィルム状接着剤付きダイシングテープ、半導体装置の製造方法、及び半導体装置
WO2018003513A1 (ja) * 2016-06-29 2018-01-04 Dic株式会社 フェノールノボラック樹脂、硬化性樹脂組成物及びその硬化物
JP2019087536A (ja) * 2015-01-13 2019-06-06 デクセリアルズ株式会社 異方導電性フィルム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001326469A (ja) * 2000-05-16 2001-11-22 Toshiba Chem Corp プリント配線板およびプリント配線板の製造方法
JP2015130417A (ja) * 2014-01-08 2015-07-16 日東電工株式会社 フィルム状接着剤、フィルム状接着剤付きダイシングテープ、半導体装置の製造方法、及び半導体装置
JP2019087536A (ja) * 2015-01-13 2019-06-06 デクセリアルズ株式会社 異方導電性フィルム
WO2018003513A1 (ja) * 2016-06-29 2018-01-04 Dic株式会社 フェノールノボラック樹脂、硬化性樹脂組成物及びその硬化物

Similar Documents

Publication Publication Date Title
KR101553282B1 (ko) 프린트 배선판용 쉴드 필름 및 프린트 배선판
JP7392743B2 (ja) 磁性ペースト
TW201206295A (en) Multilayer wiring substrate, and method for producing multilayer wiring substrate
JP5064842B2 (ja) 金属箔、それを用いた金属ベース回路基板、金属ベース多層回路基板の製造方法
CN101976590A (zh) 导电性糊剂和使用其制造多层印刷布线板的方法
JP2021158316A (ja) 磁性組成物
WO2023152840A1 (ja) 配線形成用部材、配線形成用部材を用いた配線層の形成方法、及び、配線形成部材
TWI356829B (en) A filler for through hole and a multi-layered circ
WO2023153443A1 (ja) 配線形成用部材、配線形成用部材を用いた配線層の形成方法、及び、配線形成部材
JP7081667B2 (ja) 磁性ペースト
KR20090123944A (ko) 기재 부착 절연 시트, 다층 프린트 배선판, 반도체 장치 및 다층 프린트 배선판의 제조 방법
JP2009194105A (ja) スルーホール用充填剤及び多層配線基板
JP4468080B2 (ja) 多層配線基板用導電性ペースト組成物
WO2023095917A1 (ja) 配線形成用部材、配線形成用部材を用いた配線層の形成方法、及び、配線形成部材
TW202146582A (zh) 樹脂組成物
WO2023152838A1 (ja) 配線形成用部材、配線形成用部材を用いた配線層の形成方法、及び、配線形成部材
US20230328897A1 (en) Member for forming wiring, method for forming wiring layer using member for forming wiring, and wiring forming member
WO2023153445A1 (ja) 配線形成用部材、配線形成用部材を用いた配線層の形成方法、及び、配線形成部材
JP4481734B2 (ja) 多層配線基板用導電性ペースト組成物
JP4965102B2 (ja) ビアホール充填用導電性ペースト組成物
WO2022158450A1 (ja) 導電性部材、電子装置の製造方法、接続構造体、及び、電子装置
JP2023115732A (ja) 放熱構造形成用部材、電子装置の製造方法、及び、電子装置
JP4481733B2 (ja) 多層配線基板用導電性ペースト組成物
EP4141899A1 (en) Method of manufacturing inductor-embedded substrate
WO2023190423A1 (ja) 導電性接着剤層及び放熱構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925861

Country of ref document: EP

Kind code of ref document: A1