WO2023152657A1 - Éolienne à axe vertical, et navire équipé d'au moins une telle éolienne - Google Patents

Éolienne à axe vertical, et navire équipé d'au moins une telle éolienne Download PDF

Info

Publication number
WO2023152657A1
WO2023152657A1 PCT/IB2023/051124 IB2023051124W WO2023152657A1 WO 2023152657 A1 WO2023152657 A1 WO 2023152657A1 IB 2023051124 W IB2023051124 W IB 2023051124W WO 2023152657 A1 WO2023152657 A1 WO 2023152657A1
Authority
WO
WIPO (PCT)
Prior art keywords
wind turbine
wind
eccentric wheel
masts
wing elements
Prior art date
Application number
PCT/IB2023/051124
Other languages
English (en)
Inventor
Etienne MEAR
Original Assignee
Cyclonic Maritime Innovation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cyclonic Maritime Innovation filed Critical Cyclonic Maritime Innovation
Publication of WO2023152657A1 publication Critical patent/WO2023152657A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/005Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical
    • F03D3/009Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being vertical of the drag type, e.g. Savonius
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/06Rotors
    • F03D3/062Rotors characterised by their construction elements
    • F03D3/066Rotors characterised by their construction elements the wind engaging parts being movable relative to the rotor
    • F03D3/067Cyclic movements
    • F03D3/068Cyclic movements mechanically controlled by the rotor structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/30Wind motors specially adapted for installation in particular locations
    • F03D9/32Wind motors specially adapted for installation in particular locations on moving objects, e.g. vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/20Rotors
    • F05B2240/30Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor
    • F05B2240/31Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape
    • F05B2240/312Characteristics of rotor blades, i.e. of any element transforming dynamic fluid energy to or from rotational energy and being attached to a rotor of changeable form or shape capable of being reefed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • F05B2240/931Mounting on supporting structures or systems on a structure floating on a liquid surface which is a vehicle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/402Transmission of power through friction drives
    • F05B2260/4021Transmission of power through friction drives through belt drives
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2260/00Function
    • F05B2260/40Transmission of power
    • F05B2260/403Transmission of power through the shape of the drive components
    • F05B2260/4031Transmission of power through the shape of the drive components as in toothed gearing

Definitions

  • TITLE VERTICAL AXIS WIND TURBINE, AND SHIP EQUIPPED WITH AT LEAST ONE SUCH WIND TURBINE
  • the orientation modification mechanism comprises connecting rods for actuating the wing elements mounted on a hub eccentric with respect to the rotary support on which the wing elements are mounted.
  • the present invention aims to provide a vertical axis wind turbine capable of ensuring in particular the propulsion of a ship, which has new characteristics making it possible to obtain a markedly improved efficiency compared to the wind turbines which have been developed until day.
  • a vertical axis wind turbine comprising wing elements supported by masts, and means for reducing the wind resistance of these wing elements when they rise in the bed of the wind, and to increase the wind resistance of these wing elements when they descend into the wind bed, in which said means for reducing and increasing the wind resistance of the wing elements comprise:
  • This delay angle makes it possible to pass each wing element more quickly over the windward phase and to keep it longer in the leeward phase which corresponds to the driving phase.
  • This slowdown is favorable to the lift of the sail during the leeward turn by increasing the effects of the apparent wind by reducing the speed of movement of the wing element.
  • the wind turbine according to the invention also makes it possible to manage a favorable incidence and a propulsive force of the wing element over three quarters (270°) of its circular path, whereas the wind turbines of the prior art do not exploit the thrust of the wind only on half of this course (180°).
  • the optional characteristics of the wind turbine according to the invention taken alone or in combination:
  • the wind turbine further comprises fixed terminals integral with said masts, and mobile terminals articulated on said fixed terminals: these mobile terminals provide additional means to modify the wind resistance of the sails;
  • the wind turbine further comprises means for adjusting the orientation of said mobile terminals with respect to said fixed terminals: these adjustment means offer additional possibilities, such as for example forcing the sails to feather, it that is to say parallel to the direction of the wind, when you want to stop the wind turbine;
  • said synchronization means comprise pinions interposed between said mast support and said eccentric wheel;
  • said synchronization means comprise synchronization rods interposed between said mast support and said eccentric wheel;
  • the wind turbine comprises a base, a crank comprising at least one arm and a crankpin, rotatably mounted on this base, said mast support being coaxially and rotatably mounted on said crank, said eccentric wheel being rotatably mounted on said crankpin , said pinions being interposed between said mast support and said eccentric wheel ensuring a transmission ratio of 1 to 1, and said actuating rods being interposed between said fixed terminals and said eccentric wheel;
  • the wind turbine comprises a motor shaft rotatably mounted inside said base, and provided with a motor pinion cooperating with a toothing formed on the large diameter part of said eccentric wheel: this motor shaft, driven by high speed due to the multiplication ratio between the sprockets, can itself cause a electric generator and/or a propulsion system such as a ship's propeller or a turbine;
  • said masts are fixedly mounted on said mast support, and said synchronization means comprise synchronization rods connected to these fixed masts and comprising grooves cooperating with guide pins secured to said eccentric wheel;
  • the means for moving the eccentric wheel around the rotary support depending on the direction of the wind are selected from the group comprising a purely mechanical orientation member and electrical servo means;
  • the wind turbine comprises three masts and three wing elements: this odd number of masts and wing elements is optimal in terms of efficiency/cost;
  • the wing elements are chosen from the group comprising flexible sails, rigid sails, photovoltaic panels: the presence of photovoltaic panels makes it possible to usefully use the surface of the wing elements to produce electrical energy that can be used for different purposes, such as supplying the electrical installations of a ship, and in addition to propulsion.
  • the present invention also relates to a ship equipped with at least one wind turbine in accordance with the above, comprising means of propulsion driven by said motor shaft: the presence of at least one such wind turbine, and preferably of two such wind turbines on a ship, makes it possible to use the force of the wind very effectively to drive an electrical generator and/or mechanical propulsion system of this ship, of the type with propeller(s) or vertical axis turbines for example .
  • FIG. 1 a perspective view of a ship equipped with two vertical axis wind turbines according to the invention
  • FIG. 2 views respectively in perspective (2a) and in elevation (2b) of one of these two wind turbines
  • FIG. 3 an elevational view of one of these adjustable masts equipped with its sail
  • FIG. 4 perspective views of this mast and this sail in three different sail deployment positions, high (4a), intermediate (4b) and low (4c),
  • FIG. 5 a general (5a) and zoomed (5b) perspective view of the adjustable masts of this wind turbine, and the associated orientation mechanism
  • FIG. 6 detailed perspective views of the mast orientation mechanism, in the assembled state (6a), in axial section (6b) and in exploded view (6c),
  • FIG. 7 views in axial section and from above of the mechanism of figure 6,
  • FIG. 8 a perspective view of the adjustable masts of the wind turbine and the associated orientation mechanism, on which is also shown an orientation fin for the crank of this mechanism,
  • FIG. 9 top views of the wind turbine according to the invention in first (9a1) and second (9a2) positions, to which respectively correspond perspective views of these two positions (9b1 and 9b2);
  • FIG. 10 top views of the wind turbine according to the invention in third (10a3) and fourth (10a4) positions, to which respectively correspond perspective views of these two positions (10b3 and 10b4);
  • FIG. 11 a perspective view of an embodiment of the wind turbine according to the invention with rigid sails
  • FIG. 12 perspective (12a) and elevation (12b) views of an embodiment of the wind turbine according to the invention with furling sails, and with a variant of the mast orientation mechanism
  • FIG. 13 a view in perspective and in axial section of the orientation mechanism of the masts of the wind turbine of figure 12,
  • FIG. 14 perspective views of an embodiment of a wind turbine according to the invention with photovoltaic panels, respectively in driving configuration (14a) and when stationary (14b),
  • FIG. 15 a perspective view of a detail of the wind turbine of figure 14, showing a servo-controlled orientation mechanism for the photovoltaic panels,
  • FIG. 16 a perspective view of a detail of the wind turbine of figure 14, showing a mechanism for guiding the masts
  • FIG. 17 a perspective view of another embodiment of the wind turbine according to the invention.
  • FIG. 18 a perspective view of this wind turbine in transport configuration on a cart
  • FIG. 19 an exploded perspective view of the main components of this wind turbine
  • FIG. 20 a perspective view of the fixed base of this wind turbine
  • FIG. 21 a perspective view of the mast support of this wind turbine
  • FIG. 22 a perspective view from above of the eccentric wheel of this wind turbine, in a centered position
  • FIG. 23 a perspective view from above of this eccentric wheel, in an eccentric position
  • FIG. 24 a perspective view from below of this eccentric wheel, in an eccentric position
  • FIG. 25 a perspective view of a wing of this wind turbine with two adjustment positions of its leading edge
  • FIG. 26 a detailed perspective view of the hinge mechanism of the leading edge of this wind turbine
  • FIG. 27 a general perspective view and detail of the actuation and synchronization mechanism of a wing of this wind turbine
  • FIG. 28 a top view of this wind turbine in transport configuration
  • FIG. 29 a top view of this wind turbine in operating configuration, during start-up
  • FIG. 30 a top view of this wind turbine operating at full speed, the wings being in a first angular position
  • FIG. 31 a view similar to that of FIG. 30, the wings being in a second angular position.
  • wing element will designate the parts of the wind turbine intended to catch the wind, in order to cause this wind turbine to rotate around its vertical axis.
  • wing element covers not only flexible elements made of canvas (commonly called “sails”), but also rigid or semi-rigid elements (commonly called “wings”), made of all types of materials. such as glass, as well as flexible or rigid photovoltaic panels.
  • wings rigid or semi-rigid elements
  • the terms “going up in the bed of the wind” or “going down in the bed of the wind” have their usual marine meaning, respectively meaning “going against the direction of the wind” and “going in the direction of the wind”.
  • Appendix denote a direction and a force of wind as felt on a moving object such as a ship.
  • FIG. 1 in which there is shown a ship 1, in this case a trimaran, equipped with two wind turbines El and E2 with vertical axis according to the invention.
  • these two wind turbines El and E2 are installed on deck 3 of ship 1, and are adapted to drive an electric generator and/or a mechanical propulsion system of the ship (not shown), for example one or more propellers, or one or more vertical axis turbines arranged in line with the wind turbines.
  • each wind turbine E of Figure 1 comprises a plurality, and preferably three masts Ml, M2, M3 adjustable profiles, each supporting a wing element, in l species of sails VI, V2, V3 each fixed in its upper part to its associated mast, and in its lower part to a mobile terminal BMI, BM2, BM3.
  • each mobile terminal BM is mounted articulated on a fixed terminal BF integral with the lower part of the associated mast M.
  • the sail V can be rolled up inside the mobile terminal BM, so as to be able to occupy several positions, according to the situation of the vessel and the strength of the wind: fully unfurled position (figure 4a), half furled position (figure 4b) and almost fully furled position (figure 4c).
  • this mechanism O comprises a base 5 intended to be fixed on deck 3 of ship 1.
  • This base 5 of substantially cylindrical shape and reinforced by ribs 7, accommodates a crank 9 which can pivot freely inside this base 5.
  • this crank 9 comprises an input arm 11, a crank pin 13, an output arm 15 and an output shaft 17, the latter being rotatably mounted inside the base 5.
  • a mast support S which can have substantially the shape of a three-pointed star BRI, BR2, BR3.
  • each of these branches B is intended to support an adjustable mast M.
  • an eccentric wheel 21 On the pin 13 of the crank 9 is rotatably mounted an eccentric wheel 21.
  • the eccentric wheel 21 comprises a toothing cooperating with a motor pinion 23 integral a motor shaft 25 mounted freely pivoting inside the output shaft 17 of the crank 9.
  • This motor shaft 25 extends below the base 5, so as to be able to provide torque transmission to a propulsion system of the ship (not shown).
  • connecting rods B1, B2, B3 are interposed between the eccentric wheel 21 and the fixed terminals BF1, BF2, BF3, so as to ensure the modification of the orientation of the masts M1, M2, M3 with respect to the mast support S according to the kinematics visible in Figures 9 and 10.
  • the mechanism O for orienting the masts M according to the invention comprises means making it possible to hold the arms 11, 15 of the crank 9 according to a direction substantially perpendicular to the direction F of the wind.
  • these means may include a vane type fin 27, integral with the crank 9.
  • masts M1, M2, M3 can be tilted towards the center of the wind turbine in the upper part, in order to improve the performance and the stability of the assembly.
  • the connecting rods B2, B3 associated with the fixed terminals BF2, BF3 of the other two sails V2 and V3 make it possible to orient the latter in a direction substantially perpendicular to that of the wind, thus increasing their wind resistance and consequently the drive force in rotation of the mast support S, and therefore of the eccentric wheel 21 and of the motor shaft 25.
  • the fixed terminal BF3 associated with the sail V3 begins to open with respect to the associated branch BR3 of the mast support S, making it possible to reduce the wind resistance of the sail V3 while it rises in the bed of the wind.
  • the connecting rods B can be actuated in such a way to modify the orientation of the BF fixed bollards and the associated IVI masts with respect to the S mast support.
  • the orientation of the sails V with respect to the wind can be optimized according to the position occupied by these sails V in the cycle: reduction of the wind resistance in the part of the cycle where the sail V rises in the bed of the wind, and increase in the wind resistance in the part of the cycle where the sail V descends into the bed of the wind. It is thus possible to obtain a significant increase in the speed of rotation of the wind turbine E according to the invention, thanks to a simple mechanism requiring no automation.
  • the sails V are replaced by rigid panels or "wings" PI, P2, P3.
  • these fixed panels P can be made of transparent material such as safety glass, so as to limit the visual impact of the wind turbine E.
  • the sails V can be stretched between lower BMI and upper BMS mobile terminals, themselves pivotally mounted on two fixed terminals BFI, BFS respective integral with each mast m.
  • spacers EN1, EN2, EN3 and guy wires H are interposed between the masts M1, M2, M3, so as to ensure the rigidity of the whole of the wind turbine E.
  • FIG 13 Another embodiment of the mechanism O for the orientation of the masts, which can be used for example with the wind turbine E shown in Figure 12.
  • crank 9 comprises a single arm 11.
  • the mast support S is mounted integral in rotation with the motor shaft 25, under the arm 11.
  • a first drive pulley 22a is integral in rotation with the motor shaft 25, above the arm 11.
  • the eccentric wheel 21 is rotatably mounted on the eccentric upper part of the arm 11.
  • a second drive pulley 22b disposed between arm 11 and eccentric wheel 21, is mounted integral in rotation with this wheel.
  • a transmission belt 22c interconnects the two pulleys 22a and 22b.
  • a reducer 22d is coupled to the motor shaft 25.
  • the orientation of the crank 9 with respect to the direction F of the apparent wind can be carried out either in a slaved manner under the arm 11, or thanks to a wind vane mounted directly on the arm 11 above the mast support S.
  • the flexible sails are replaced by rigid photovoltaic panels P1, P2, P3, the orientation of which is controlled according to their position on the rotation cycle.
  • these photovoltaic panels P can pass from a driving situation, visible in FIG. 14a, where they are oriented in accordance with the preceding explanations, to a stop position of the wind turbine E visible in FIG. 14b , in which these panels are oriented parallel to the direction F of the wind.
  • such a system may comprise, for each sail V, a jack 33 interposed between the lower movable terminal BMI of this sail V and the associated lower fixed terminal BFI, this jack 33 being controlled by an electronic system making it possible, on the one hand, to optimize the orientation of the sails V when the wind turbine E is in a driving situation with the aim of regulating the power supplied, and on the other hand to position the sails V parallel to the direction F of the wind when you want to put the wind turbine E to stop.
  • centrifugal flyweight type can also be envisaged to perform this function of power regulation by orientation of the sails V with respect to the masts M.
  • wind turbine E which has just been described is particularly intended to be used in the field of ship propulsion, but the above teachings can also be applied to a vertical axis wind turbine intended to drive any type of machine. : turbine, electric generator, at sea or on land, on fixed buildings or offshore.
  • the wind turbine according to the invention is simple to construct, and can be installed in a wide variety of environments.
  • the speed of rotation of the wind turbine according to the invention is slow: of the order of 100 rpm for small wind turbines (typically of the order of 2 m in height) to a few revolutions per minute for larger wind turbines (typically in the order of 25 m in height), which allows less wear of mechanical parts, less noise and vibrations, as well as a reduction in the risk of collision with surrounding fauna .
  • the wind/solar combination made possible thanks to the use of photovoltaic panels, is very advantageous, and makes it possible to significantly improve the energy balance of the wind turbine.
  • the wind turbine according to the invention offers very promising prospects for zero-carbon propulsion, particularly in the maritime field.
  • FIG. 17 to 31 Another embodiment of the invention which incorporates an adjustment of eccentricity and variable delay making it possible to configure the orientation of the wings on all the positions between a lift configuration maximum (fig. 29 equivalent to the operating principle of a wind turbine Savonius) and maximum smoothness (fig. 30 and 31 equivalent to the operating principle of a Darrieus wind turbine).
  • the airfoil of the wind turbine comprises three semi-rigid wings VI, V2, V3, each mounted articulated on a fixed mast M1, M2, M3.
  • Figure 18 shows the wind turbine in a transport situation: it can then be laid down on a transport trolley C.
  • each wing VI, V2, V3 is mounted articulated on its respective fixed mast M1, M2, M3, typically via three terminals fixed 43, 45, 47.
  • each wing has, relative to the direction of wind flow, a leading edge 49, a central panel 51 and a trailing edge 53.
  • This leading edge 49, this central panel 51 and this trailing edge 53 are interconnected in their upper and lower parts respectively by upper 55 and lower 57 fins.
  • the three fixed masts M1, M2, M3 are fixed on a mast support S rotatably mounted on a fixed base 5, itself comprising a circular running rail 35 and a central rod 59, as shown in Figure 20 .
  • the mast support S has substantially the shape of a triangle, at the top of which are arranged wheels 39 capable of moving in the running rail 35 of the fixed base 5.
  • the fixed mast M1, M2, M3 of the wind turbine are intended to be fixed on the mast support S to the right 61, 62, 63 of each of these three wheels 39.
  • the rod 59 of the fixed base 5 includes a fixed gear 65, able to cooperate with the eccentric mechanism which will be described below.
  • this eccentric mechanism comprises a central frame 74 on which are mounted on the one hand an orientation adjustment motor 69, and on the other hand adjustment cylinders of eccentricity 71.
  • the orientation adjustment motor 69 drives a pinion 73 capable of cooperating with the fixed pinion 65 of the rod 59 of the fixed base 5.
  • the eccentricity adjustment cylinders 71 are capable of moving a plate 67 relative to the central frame 74, this central frame 74 being provided with a sleeve 75 capable of being rotatably mounted on the fixed rod 59 of the fixed base 5.
  • the plate 67 is provided with a plurality of rollers 79, these rollers being capable of guiding an eccentric wheel 21 in rotation.
  • This eccentric wheel 21 is provided with attachment points 83 of orientation rods B1, B2, B3 of the wings VI, V2, V3 of the wind turbine, as well as guide pins 87 of synchronization rods BS1, BS2, BS3 of the mast support S with the eccentric wheel 21, as will be explained in the following.
  • each wing VI, V2, V3 comprises, for example in its lower part, a linkage 89 allowing the leading edge 49 to be connected together. and the trailing edge 53, so that a modification of the angle of incidence of the leading edge 49 with respect to the plane of the central part 51 of the wing VI, V2, V3, has the effect of modifying also the angle of incidence of the trailing edge 53 of the wing.
  • This modification of the angle of incidence of the leading edge 49 of each wing VI, V2, V3 can be controlled by the angle between the central part 51 of the wing VI, V2, V3 and of the radial support of the respective masts M1, M2, M3 by means of a linkage not represented such that the curvature of each wing is indexed to its angular position and proportional to the value of the eccentricity
  • each wing V is connected via an orientation rod B to the respective attachment point 83 on the eccentric wheel 21.
  • each synchronization rod BS is interposed between the fixed mast M of the wing V concerned and the eccentric wheel 21.
  • each BS synchronization rod comprises a groove 91 capable of receiving the associated guide pin 87 of the eccentric wheel 21, a spring (not shown) elastically biasing the BS synchronization rod towards the position in which the pin 87 of the eccentric wheel 21 is in abutment of the part of this groove II results from this that the eccentric wheel 21 is rotated alternately by each of the synchronization rods BS in a movement synchronous with the rotation of the mast support S .
  • the orientation motor 69 and the eccentricity adjustment jacks 71 of the eccentric mechanism are used so that the plate 67 of this system extends for a maximum eccentricity value. in a direction substantially perpendicular to the true wind, as shown in figure 29.
  • this plate 67 is gradually oriented parallel to the direction of the real wind, as can be seen in FIGS. 30 and 31, where two successive positions of the wind turbine have been shown. according to the invention.
  • the synchronization rods BS1, BS2, BS3 make it possible to prevent the eccentric wheel 21 from being crazy with respect to the rotating mast support S.
  • the wind turbine according to the invention could be used for the production of electricity on land.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

L'invention concerne une éolienne (E) à axe vertical comprenant des éléments de voilure (V1, V2, V3), et des moyens (O) pour réduire la prise au vent de ces éléments de voilure (V1, V2, V3) lorsqu'ils remontent dans le lit du vent, et pour augmenter la prise au vent de ces éléments de voilure (V1, V2, V3) lorsqu'ils descendent dans le lit du vent, ainsi que des dispositifs complémentaires permettant de gérer la courbure et l'incidence de ces éléments de voilures..

Description

DESCRIPTION
TITRE : ÉOLIENNE À AXE VERTICAL, ET NAVIRE ÉQUIPÉ D'AU MOINS UNE TELLE ÉOLIENNE
[0001] Dans le domaine du transport maritime, de nombreuses recherches portent sur les moyens permettant d'utiliser au mieux la force du vent pour compléter ou se substituer aux moyens de propulsion traditionnels motorisés.
[0002] Certains axes de recherche portent sur la traction des navires au moyen de voiles libres, maintenues par des câbles et flottant au-dessus des navires.
[0003] D'autres axes de recherche portent sur l'utilisation du vent comme moyen indirect de propulsion, c'est-à-dire entraînant un système qui lui-même entraîne un générateur électrique ou bien une hélice ou analogue, assurant la propulsion du navire.
[0004] Ces derniers axes de recherche ont conduit à la mise au point d'un certain nombre de machines tournantes du type éoliennes, certaines à axes horizontaux, d'autres axes verticaux.
[0005] On connaît par exemple des documents antérieurs US6840738 et US20110116926 des éoliennes à axe vertical comprenant des mécanismes permettant de modifier les positions des éléments de voilure en fonction de leur position sur le cycle de rotation.
[0006] Dans ces éoliennes de la technique antérieure, le mécanisme de modification d'orientation comporte des bielles d'actionnement des éléments de voilure montées sur un moyeu excentré par rapport au support rotatif sur lequel sont montés les éléments de voilure.
[0007] Bien qu'offrant une certaine efficacité par rapport à des éoliennes dans lesquelles les éléments de voilure sont montés fixes sur leur support rotatif, ces éoliennes à axe vertical de la technique antérieure présentent un certain nombre d'inconvénients, parmi lesquels une orientation non optimale des éléments de voilure par rapport à la conjugaison de la direction, de la force du vent et de la vitesse de rotation de l'éolienne, grevant sérieusement l'efficacité de ces éoliennes. [0008] La présente invention vise à fournir une éolienne à axe vertical apte à assurer notamment la propulsion d'un navire, qui présente de nouvelles caractéristiques permettant d'obtenir une efficacité nettement améliorée par rapport aux éoliennes qui ont été développées jusqu'à ce jour.
On atteint notamment ce but de l'invention avec une éolienne à axe vertical comprenant des éléments de voilure supportés par des mâts, et des moyens pour réduire la prise au vent de ces éléments de voilure lorsqu'ils remontent dans le lit du vent, et pour augmenter la prise au vent de ces éléments de voilure lorsqu'ils descendent dans le lit du vent, dans laquelle lesdits moyens de réduction et d'augmentation de la prise au vent des éléments de voilure comprennent :
- un support de mâts rotatif,
- une roue excentrique montée rotative autour d'un axe parallèle et décalé par rapport à celui du support de mâts,
- des moyens pour déplacer la roue excentrique autour du support rotatif en fonction de la direction du vent,
- des moyens d'articulation des éléments de voilure sur lesdits mâts,
- des bielles d'actionnement desdits éléments de voilure, interposées entre ladite roue excentrique et ces éléments de voilure,
- des moyens de synchronisation des mouvements de rotation dudit support rotatif et de ladite roue excentrique.
[0009] Grâce à ces caractéristiques, qui permettent de réduire le freinage de l'éolienne provoqué par les voiles qui remontent face au vent, et d'augmenter l'accélération de l'éolienne par les voiles qui prennent le vent, on obtient une éolienne qui présente un rendement nettement amélioré par rapport aux solutions existantes.
[0010] La présence des moyens de synchronisation des mouvements de rotation du support rotatif et de la roue excentrique, permet de garder le contrôle de la rotation de la route excentrique par rapport à la rotation du support de mâts, et ainsi de modifier l'orientation des éléments de voilure selon des angles parfaitement définis en fonction de la direction du vent et de la position angulaire du support rotatif : on peut de la sorte optimiser la portance de ces éléments de voilure en fonction de leur position angulaire.
[0011] De plus, le fait d'utiliser une roue excentrique, c'est-à-dire un organe rotatif présentant un diamètre relativement important (du même ordre de grandeur que la moitié du diamètre du support de mâts) et non pas simplement un moyeu comme dans la technique antérieure, permet d'exploiter l'angle de retard qui existe entre les rotations du support de mâts et de la roue excentrique.
[0012] Cet angle de retard permet de faire passer chaque élément de voilure plus rapidement sur la phase au vent et de le maintenir plus longtemps dans la phase sous le vent qui correspond à la phase motrice.
[0013] Ce phénomène s'explique parce qu'en raison de l'excentricité, la distance entre le point de raccordement de l'élément de voilure sur le support de mâts et le point de raccordement de la bielle d'actionnement sur la roue excentrique, varie sur un tour avec une distance minimale du côté de l'excentricité maximale et inversement à l'opposé.
[0014] En conséquence, l'arrière de l'élément de voilure accélère son déplacement quand il passe de la distance maximale (excentricité minimale) à la distance minimale (excentricité maximale) sur le demi-tour au vent et inversement sur le demi-tour sous le vent.
[0015] Ce ralentissement est favorable à la portance de la voile lors du demi-tour sous le vent en augmentant les effets du vent apparent par la diminution de la vitesse de déplacement de l'élément de voilure.
[0016] L'éolienne selon l'invention permet également de gérer une incidence favorable et une force propulsive de l'élément de voilure sur les trois quarts (270°) de son parcours circulaire, alors que les éoliennes de la technique antérieure n'exploitent la poussée du vent que sur la moitié de ce parcours (180°). [0017] Suivant des caractéristiques optionnelles de l'éolienne selon l'invention, prises seules ou en combinaison :
[0018] - lesdits mâts sont orientables, et lesdites bielles d'actionnement sont reliées à ces mâts : de tels mâts orientables constituent une solution simple pour modifier la prise au vent des voiles ;
[0019] - l'éolienne comprend en outre des bornes fixes solidaires desdits mâts, et des bornes mobiles articulées sur lesdites bornes fixes : ces bornes mobiles fournissent des moyens complémentaires pour modifier la prise au vent des voiles ;
[0020] - l'éolienne comprend en outre des moyens pour régler l'orientation desdites bornes mobiles par rapport auxdites bornes fixes : ces moyens de réglage offrent des possibilités supplémentaires, comme par exemple de forcer les voiles à se mettre en drapeau, c'est-à-dire parallèlement à la direction du vent, lorsqu'on souhaite arrêter l'éolienne ;
[0021] - lesdits moyens de synchronisation comprennent des pignons interposés entre ledit support de mâts et ladite roue excentrique ;
[0022] - lesdits moyens de synchronisation comprennent des bielles de synchronisation interposées entre ledit support de mâts et ladite roue excentrique ;
[0023] - l'éolienne comprend une embase, une manivelle comprenant au moins un bras et un maneton, montée rotative sur cette embase, ledit support de mâts étant monté coaxial et rotatif sur ladite manivelle, ladite roue excentrique étant montée rotative sur ledit maneton, lesdits pignons étant interposés entre ledit support de mâts et ladite roue excentrique en assurant un rapport de transmission de 1 pour 1, et lesdites bielles d'actionnement étant interposées entre lesdites bornes fixes et ladite roue excentrique ;
[0024] - l'éolienne comprend un arbre moteur monté rotatif à l'intérieur de ladite embase, et muni d'un pignon moteur coopérant avec une denture formée sur la partie de grand diamètre de ladite roue excentrique : cet arbre moteur, entraîné à grande vitesse grâce au rapport de multiplication entre les pignons, peut lui-même entraîner un générateur électrique et/ou un système de propulsion tel qu'une hélice de navire ou une turbine ;
[0025] - lesdits mâts sont montés fixes sur ledit support de mâts, et lesdits moyens de synchronisation comprennent des bielles de synchronisation reliées à ces mâts fixes et comprenant des rainures coopérant avec des pions de guidage solidaires de ladite roue excentrique ;
[0026] - les moyens pour déplacer la roue excentrique autour du support rotatif en fonction de la direction du vent, sont sélectionnés dans le groupe comprenant un organe d'orientation purement mécanique et des moyens d'asservissement électrique ;
[0027] - lesdits mâts sont reliés entre eux par des haubans et des entretoises : cet agencement permet de conférer la rigidité nécessaire à l'éolienne ;
[0028] - l'éolienne comprend trois mâts et trois éléments de voilure : ce nombre impair de mâts et d'éléments de voilure est optimal en termes d'efficacité/coût ;
[0029] - les éléments de voilure sont choisis dans le groupe comprenant les voiles souples, les voiles rigides, les panneaux photovoltaïques : la présence de panneaux photovoltaïques permet d'utiliser utilement la surface des éléments de voilure pour produire de l'énergie électrique pouvant être utilisée à différentes fins, comme par exemple l'alimentation des installations électriques d'un navire, et en complément de la propulsion.
[0030] La présente invention se rapporte également à un navire équipé d'au moins une éolienne conforme à ce qui précède, comprenant des moyens de propulsion entraînés par ledit arbre moteur : la présence d'au moins une telle éolienne, et de préférence de deux telles éoliennes sur un navire, permet d'utiliser de manière très efficace la force du vent pour entraîner un générateur électrique et/ou système de propulsion mécanique de ce navire, du type à hélice(s) ou à turbines à axes verticaux par exemple.
[0031] D'autres caractéristiques et avantages de l'invention ressortiront à la lecture de la description qui suit, en référence aux figures annexées, qui illustrent : [Fig. 1] : une vue en perspective d'un navire équipé de deux éoliennes à axe vertical selon l'invention,
[Fig. 2] : des vues respectivement en perspective (2a) et en élévation (2b) de l'une de ces deux éoliennes,
[Fig. 3] : une vue en élévation de l'un de ces mâts orientables équipé de sa voile,
[Fig. 4] : des vues en perspective de ce mât et de cette voile dans trois positions différentes de déploiement de la voile, haute (4a), intermédiaire (4b) et basse (4c),
[Fig. 5] : une vue en perspective générale (5a) et zoomée (5b) des mâts orientables de cette éolienne, et du mécanisme d'orientation associé,
[Fig. 6] : des vues détaillées en perspective du mécanisme d'orientation des mâts, à l'état assemblé (6a), en coupe axiale (6b) et en vue éclatée (6c),
[Fig. 7] : des vues en coupe axiale et de dessus du mécanisme de la figure 6,
[Fig. 8] : une vue en perspective des mâts orientables de l'éolienne et du mécanisme d'orientation associé, sur laquelle on a représenté en outre un aileron d'orientation de la manivelle de ce mécanisme,
[Fig. 9] : des vues de dessus de l'éolienne selon l'invention dans des première (9al) et deuxième (9a2) positions, auxquelles correspondent respectivement des vues en perspectives de ces deux positions (9bl et 9b2) ;
[Fig. 10] : des vues de dessus de l'éolienne selon l'invention dans des troisième (10a3) et quatrième (10a4) positions, auxquelles correspondent respectivement des vues en perspectives de ces deux positions (10b3 et 10b4) ;
[Fig. 11] : une vue en perspective d'un mode de réalisation de l'éolienne selon l'invention à voiles rigides ; [Fig. 12] : des vues en perspective (12a) et en élévation (12b) d'un mode de réalisation de l'éolienne selon l'invention à voiles à enrouleurs, et avec une variante de mécanisme d'orientation des mâts,
[Fig. 13] : une vue en perspective et en coupe axiale du mécanisme d'orientation des mâts de l'éolienne de la figure 12,
[Fig. 14] : des vues en perspective d'un mode de réalisation d'une éolienne selon l'invention à panneaux photovoltaïques, respectivement en configuration motrice (14a) et à l'arrêt (14b),
[Fig. 15] : une vue en perspective d'un détail de l'éolienne de la figure 14, permettant de voir un mécanisme d'orientation asservi des panneaux photovoltaïques,
[Fig. 16] : une vue en perspective d'un détail de l'éolienne de la figure 14, permettant de voir un mécanisme de guidage des mâts,
[Fig. 17] : une vue en perspective d'un autre mode de réalisation de l'éolienne selon l'invention,
[Fig. 18] : une vue en perspective de cette éolienne en configuration de transport sur un chariot,
[Fig. 19] : une vue en perspective éclatée des principaux composants de cette éolienne,
[Fig. 20] : une vue en perspective de l'embase fixe de cette éolienne,
[Fig. 21] : une vue en perspective du support de mâts de cette éolienne,
[Fig. 22] : une vue en perspective de dessus de la roue excentrique de cette éolienne, en position centrée,
[Fig. 23] : une vue en perspective de dessus de cette roue excentrique, en position excentrée, [Fig. 24] : une vue en perspective de dessous de cette roue excentrique, en position excentrée,
[Fig. 25] : une vue en perspective d'une aile de cette éolienne avec deux positions de réglage de son bord d'attaque,
[Fig. 26] : une vue en perspective de détail du mécanisme d'articulation du bord d'attaque de cette éolienne,
[Fig. 27] : une vue en perspective générale et de détail du mécanisme d'actionnement et de synchronisation d'une aile de cette éolienne,
[Fig. 28] : une vue de dessus de cette éolienne en configuration de transport,
[Fig. 29] : une vue de dessus de cette éolienne en configuration de fonctionnement, lors du démarrage,
[Fig. 30] : une vue de dessus de cette éolienne en fonctionnement à pleine vitesse, les ailes se trouvant dans une première position angulaire,
[Fig. 31] : une vue analogue à celle de la figure 30, les ailes se trouvant dans une deuxième position angulaire.
[0032] Pour plus de clarté, les éléments identiques ou similaires sont repérés par des signes de référence identiques ou similaires sur l'ensemble des figures.
[0033] Dans ce qui suit, le terme « élément de voilure » désignera les parties de l'éolienne destinées à prendre le vent, afin de faire tourner cette éolienne autour de son axe vertical.
[0034] Ce terme « élément de voilure » couvre non seulement des éléments souples réalisés en toile (couramment appelés « voiles »), mais également des éléments rigides ou semi-rigides (couramment appelés « ailes »), réalisés en tous types de matériaux tels que du verre, ainsi que des panneaux photovoltaïques souples ou rigides. [0035] Les termes « remonter dans le lit du vent » ou « descendre dans le lit du vent » ont leur acception marine habituelle, signifiant respectivement « aller contre le sens du vent » et « aller dans le sens du vent ».
[0036] Les termes « vent apparent » désignent une direction et une force de vent tels que ressentis sur un mobile tel qu'un navire.
[0037] Les termes « supérieur » et « inférieur » s'entendent par rapport à la direction verticale qu'occupe l'éolienne en situation de fonctionnement.
[0038] On se reporte à présent à la figure 1 ci-annexée, sur laquelle on a représenté un navire 1, en l'espèce un trimaran, équipé de deux éoliennes El et E2 à axe vertical selon l'invention.
[0039] Comme cela est visible sur cette figure, ces deux éoliennes El et E2 sont installées sur le pont 3 du navire 1, et sont adaptées pour entraîner un générateur électrique et/ou un système de propulsion mécanique du navire (non représenté), par exemple une ou plusieurs hélices, ou une ou plusieurs turbines à axe vertical disposées au droit des éoliennes.
[0040] Ces turbines à axe vertical et à ailettes orientables pourront fonctionner dans l'eau selon les mêmes principes de dynamique des fluides que les voiles V des éoliennes El et E2 situées sur le pont 3 du navire 1, tels qu'ils vont être expliqués dans ce qui suit.
[0041] En se reportant à présent à la figure 2, on peut voir que chaque éolienne E de la figure 1 comporte une pluralité, et de préférence trois mâts Ml, M2, M3 orientables profilés, supportant chacun un élément de voilure, en l'espèces des voiles VI, V2, V3 fixée chacune dans sa partie supérieure à son mât associé, et dans sa partie inférieure à une borne mobile BMI, BM2, BM3.
[0042] Comme cela est visible sur la figure 3, chaque borne mobile BM est montée articulée sur une borne fixe BF solidaire de la partie inférieure du mât associé M.
[0043] De préférence, comme cela est visible à la figure 4, la voile V peut s'enrouler à l'intérieur de la borne mobile BM, de manière à pouvoir occuper plusieurs positions, selon la situation du navire et la force du vent : position totalement déroulée (figure 4a), position à moitié enroulée (figure 4b) et position presque totalement enroulée (figure 4c).
[0044] L'ensemble formé par ces mâts M et ces voiles V est lui-même monté mobile sur un mécanisme d'orientation O représenté de manière générale sur les figures 5a et 5b.
[0045] On se reporte à présent aux figures 6 et 7, sur lesquelles on a représenté de manière détaillée ce mécanisme O permettant de modifier l'orientation des mâts M et des voiles V associées.
[0046] Comme cela est visible sur ces figures, ce mécanisme O comprend une embase 5 destinée à être fixée sur le pont 3 du navire 1.
[0047] Cette embase 5, de forme sensiblement cylindrique et renforcée par des nervures 7, accueille une manivelle 9 pouvant pivoter librement à l'intérieur de cette embase 5.
[0048] Plus précisément, cette manivelle 9 comprend un bras d'entrée 11, un maneton 13, un bras de sortie 15 et un arbre de sortie 17, ce dernier étant monté rotatif à l'intérieur de l'embase 5.
[0049] Sur le bras d'entrée 11 de la manivelle 9 est monté rotatif un support de mâts S pouvant présenter sensiblement la forme d'une étoile à trois branches BRI, BR2, BR3.
[0050] Comme cela est visible notamment sur les figures 2, 9 et 10, chacune de ces branches B est destinée à supporter un mât orientable M.
[0051] Sur le maneton 13 de la manivelle 9 est montée rotative une roue excentrique 21.
[0052] Des pignons d'entraînement et de synchronisation 22, au nombre de trois, assurent un rapport de transmission de 1 pour 1 et un mouvement homocinétique entre le support de mâts S et la roue excentrique 21.
[0053] Dans sa partie de grand diamètre, et de préférence à l'intérieur de celle-ci, la roue excentrique 21 comporte une denture coopérant avec un pignon moteur 23 solidaire d'un arbre moteur 25 monté librement pivotant à l'intérieur de l'arbre de sortie 17 de la manivelle 9.
[0054] Cet arbre moteur 25 se prolonge en deçà de l'embase 5, de manière à pouvoir assurer une transmission de couple à un système de propulsion du navire (non représenté).
[0055] Comme cela est visible notamment sur les figures 2, 5, 9, 10 et 12, des bielles Bl, B2, B3 sont interposées entre la roue excentrique 21 et les bornes fixes BF1, BF2, BF3, de manière à assurer la modification de l'orientation des mâts Ml, M2, M3 par rapport au support de mâts S selon la cinématique visible sur les figures 9 et 10.
[0056] Sur ces figures, on a représenté une éolienne E selon l'invention dans quatre positions successives, chaque fois en vue de dessus et en perspective.
[0057] La direction et le sens du vent apparent sont indiqués par la flèche F.
[0058] Tout d'abord, comme cela est visible sur l'ensemble de ces figures, le mécanisme O d'orientation des mâts M selon l'invention comprend des moyens permettant de maintenir les bras 11, 15 de la manivelle 9 selon une direction sensiblement perpendiculaire à la direction F du vent.
[0059] Comme cela est visible sur la figure 8, ces moyens peuvent comprendre un aileron de type girouette 27, solidaire de la manivelle 9.
[0060] On peut également voir sur cette figure 8 que les mâts Ml, M2, M3 peuvent être inclinés vers le centre de l'éolienne dans la partie supérieure, afin d'améliorer les performances et la stabilité de l'ensemble.
[0061] Sur les figures 9al et 9bl, la voile VI est en train de remonter dans le lit du vent, et l'écartement de la borne mobile BMI par rapport à la borne fixe BF1 permet de réduire la prise au vent de cette voile VI.
[0062] Pendant ce temps, les bielles B2, B3 associées aux bornes fixes BF2, BF3 des deux autres voile V2 et V3 permettent d'orienter ces dernières selon une direction sensiblement perpendiculaire à celle du vent, augmentant ainsi leur prise au vent et par conséquent l'effort d'entraînement en rotation du support de mâts S, et donc de la roue excentrique 21 et de l'arbre moteur 25.
[0063] Sur les figures 9a2 et 9b2, la bielle B1 associée à la borne fixe BF1 de la voile VI a eu pour effet d'augmenter l'angle d'ouverture de cette borne fixe BF1 par rapport à la branche associée BRI du support de mâts S, et ainsi d'accélérer le passage de la voile VI vers la position représentée à la figure 9a2 dans laquelle cette voile VI se trouve parallèle à la direction F du vent, limitant ainsi sa prise au vent susceptible de freiner la vitesse de rotation de l'éolienne E.
[0064] Pendant ce temps, grâce à sa bielle B3 associée, la borne fixe BF3 associée à la voile V3 commence à s'ouvrir par rapport à la branche associée BR3 du support de mâts S, permettant de réduire la prise au vent de la voile V3 pendant que celle-ci remonte dans le lit du vent.
[0065] Sur les figures 10a3 et 10b3, l'ouverture de la borne fixe BF1 associée à la voile VI par rapport à la branche BRI de support de mâts S associée, a commencé à s'ouvrir, sous l'action de sa bielle associée Bl, amenant ainsi rapidement la voile VI dans une position sensiblement perpendiculaire à la direction F du vent.
[0066] Enfin, sur les figuresl0a4 et 10b4, la voile V3 se retrouve dans la même position que celle de la voile VI sur les figures 9al et 9bl.
[0067] Ce mouvement cyclique se reproduit indéfiniment.
[0068] Grâce au maintien de la direction des bras 11, 15 de la manivelle 9 perpendiculairement à la direction F du vent, et au mouvement relatif du support de mâts S et de la roue excentrique 21, on peut actionner les bielles B de manière à modifier l'orientation des bornes fixes BF et des mâts IVI associés par rapport au support de mâts S.
[0069] On peut de la sorte optimiser l'orientation des voiles V par rapport au vent selon la position qu'occupent ces voiles V dans le cycle : réduction de la prise au vent dans la partie du cycle ou la voile V remonte dans le lit du vent, et augmentation de la prise au vent dans la partie du cycle où la voile V descend dans le lit du vent. [0070] On peut de la sorte obtenir une augmentation significative de la vitesse de rotation de l'éolienne E selon l'invention, grâce à un mécanisme simple ne nécessitant aucune automatisation.
[0071] Dans la variante représentée à la figure 11, les voiles V sont remplacées par des panneaux rigides ou « ailes » PI, P2, P3.
[0072] Pour une utilisation sur un support fixe, par exemple sur un bâtiment, ces panneaux fixes P peuvent être réalisés en matériau transparent tels que du verre sécurit, de manière à limiter l'impact visuel de l'éolienne E.
[0073] On notera que l'utilisation de panneaux rigides P permet de réduire fortement la traînée aérodynamique de la voile dans son mouvement de remontée contre le vent, permettant ainsi d'améliorer le rendement de l'éolienne E.
[0074] Dans le mode de réalisation représenté à la figure 12, on peut voir que les voiles V peuvent être tendues entre des bornes mobiles inférieure BMI et supérieure BMS, elles- mêmes montées pivotantes sur deux bornes fixes BFI, BFS respectives solidaires de chaque mât M.
[0075] De préférence, comme cela est visible notamment sur la figure 12, des entretoises EN1, EN2, EN3 et des haubans H sont interposés entre les mâts Ml, M2, M3, de manière à assurer la rigidité de l'ensemble de l'éolienne E.
[0076] On a représenté à la figure 13 un autre mode de réalisation du mécanisme O d'orientation des mâts, qui peut être utilisé par exemple avec l'éolienne E représentée à la figure 12.
[0077] Ce mécanisme d'orientation O diffère de celui représenté aux figures 6 et 7 en ceci que la manivelle 9 comporte un unique bras 11.
[0078] Le support de mât S est monté solidaire en rotation de l'arbre moteur 25, sous le bras 11. [0079] Une première poulie d'entraînement 22a est solidaire en rotation de l'arbre moteur 25, au-dessus du bras 11.
[0080] La roue excentrique 21 est montée rotative sur la partie supérieure excentrée du bras 11.
[0081] Une seconde poulie d'entraînement 22b, disposée entre le bras 11 et la roue excentrique 21, est montée solidaire en rotation de cette roue.
[0082] Une courroie de transmission 22c relie entre elles les deux poulies 22a et 22b. Un réducteur 22d est couplé à l'arbre moteur 25.
[0083] Dans ce mode de réalisation du mécanisme d'orientation O des mâts M, l'orientation de la manivelle 9 par rapport à la direction F du vent apparent peut être effectuée soit de de manière asservie sous le bras 11, soit grâce à une girouette montée directement sur le bras 11 au-dessus du support de mâts S.
[0084] Dans le mode de réalisation représenté à la figure 14, les voiles souples sont remplacées par des panneaux photovoltaïques rigides PI, P2, P3, dont l'orientation est pilotée en fonction de leur position sur le cycle de rotation.
[0085] En particulier, ces panneaux photovoltaïques P peuvent passer d'une situation motrice, visible à la figure 14a, où ils sont orientés conformément aux explications qui précèdent, à une position d'arrêt de l'éolienne E visible à la figure 14b, dans laquelle ces panneaux sont orientés de manière parallèle à la direction F du vent.
[0086] Dans le mode de réalisation de la figure 14, mais aussi éventuellement dans les modes de réalisation précédents, on peut prévoir, outre le mécanisme d'orientation des mâts M, un système additionnel d'orientation des voiles V par rapport à ces mâts M.
[0087] Comme cela est visible sur la figure 15, un tel système peut comprendre, pour chaque voile V, un vérin 33 interposé entre la borne mobile inférieure BMI de cette voile V et borne fixe inférieure BFI associée, ce vérin 33 étant commandé par un système électronique permettant d'une part d'optimiser l'orientation des voiles V lorsque l'éolienne E est en situation motrice dans le but de réguler la puissance fournie, et d'autre part de positionner les voiles V parallèlement à la direction F du vent lorsque l'on souhaite mettre l'éolienne E à l'arrêt.
[0088] Une variante mécanique du type à masselotte centrifuge peut également être envisagée pour réaliser cette fonction de régulation de puissance par orientation des voiles V par rapport aux mâts M.
[0089] Dans le mode de la réalisation de la figure 16, on peut voir que l'on peut prévoir un rail circulaire 35 disposé sous le support de mâts S de l'éolienne, le poids de chacun des mâts M pouvant alors reposer sur ce rail 35 par l'intermédiaire d'une tige de support 37 et d'une roulette 39 circulant sur ce rail : on peut de la sorte reprendre une partie importante du poids de chaque mât M et de sa voile V associée, plutôt que de le faire supporter par le mécanisme d'orientation des mâts O.
[0090] L'éolienne E qui vient d'être décrite est particulièrement destinée à être utilisée dans le domaine de la propulsion des navires, mais les enseignements qui précèdent peuvent également être appliqués à une éolienne à axe vertical destinée à entraîner tout type de machine : turbine, générateur électrique, en mer comme sur terre, sur des bâtiments fixes ou en offshore.
[0091] On notera que l'on peut envisager des combinaisons des différents modes de réalisation exposés ci-dessus.
[0092] On pourrait par exemple utiliser des voiles comprenant des éléments souples ou rigides photovoltaïques sur une seule de leurs faces, et/ou placer sur ces voiles des supports de communication à affichage permanent et/ou temporaire et/ou des écrans LCD et/ou des panneaux de LED alimentés par l'éolienne, etc.
[0093] Comme on peut le comprendre à la lumière de la description qui précède, l'éolienne selon l'invention est simple à construire, et peut être installée dans des environnements très divers.
[0094] Son centre de gravité bas permet d'envisager des applications dans le domaine de la propulsion maritime. [0095] Sa maintenance est aisée à réaliser compte tenu de la simplicité des ensembles mécaniques mises en œuvre.
[0096] La vitesse de rotation de l'éolienne selon l'invention est lente : de l'ordre de 100 tr/min pour les éoliennes de petite taille (typiquement de l'ordre de 2 m de hauteur) à quelques tours par minute pour les éoliennes de plus grande taille (typiquement de l'ordre de 25 m de hauteur), ce qui permet une moindre usure des pièces mécaniques, moins de bruit et de vibrations, ainsi qu'une réduction des risques de collision avec la faune environnante.
[0097] La combinaison éolien/solaire, rendue possible grâce à l'utilisation de panneaux photovoltaïques, est très avantageuse, et permet d'améliorer significativement le bilan énergétique de l'éolienne.
[0098] Comme on l'aura par ailleurs compris, la gestion de l'orientation des mâts et des voiles est effectuée de manière complètement automatique.
[0099] L'éolienne selon l'invention offre des perspectives très prometteuses de propulsion zéro carbone notamment dans le domaine maritime.
[00100] A titre d'exemple, pour un trimaran de 25 à 30 m de longueur et de 15 m de large, deux éoliennes selon l'invention de 25 à 30 m de haut, supportant chacune trois voiles de 100 m2, peuvent tourner à environ 6 tr/min et fournir 15 kW de puissance pour 10 m/s de vent, et 90 kW de puissance pour 20 m/s de vent.
[00101] Dans l'éventualité où l'on utilise des panneaux photovoltaïques, on peut obtenir une surface de 600 m2 de panneaux susceptibles de produire de l'ordre de 200 kW d'électricité en puissance crête.
[00102] On a représenté sur les figures 17 à 31 un autre mode de réalisation de l'invention qui intègre un réglage d'excentricité et de retard variable permettant de configurer l'orientation des ailes sur toutes les positions comprises entre une configuration de portance maximum (fig. 29 équivalent au principe de fonctionnement d'une éolienne Savonius) et de finesse maximum (fig. 30 et 31 équivalent au principe de fonctionnement d'une éolienne Darrieus).
[00103] Comme on peut le voir sur la figure 17, dans ce mode de réalisation, la voilure de l'éolienne comprend trois ailes semi-rigides VI, V2, V3, montées chacune articulée sur un mât fixe Ml, M2, M3.
[00104] Il est prévu que les mâts fixes M3, M2, M3 puissent être repliés lorsqu'on veut placer l'éolienne E en position de transport, de manière à réaliser un moindre encombrement.
[00105] La figure 18 montre l'éolienne en situation de transport : elle peut alors être couchée sur un chariot de transport C.
[00106] On se reporte à présent plus précisément aux figures 17 et 27 sur lesquelles on peut voir que chaque aile VI, V2, V3 est montée articulée sur son mât fixe respectif Ml, M2, M3, typiquement par l'intermédiaire de trois bornes fixes 43, 45, 47.
[00107] Comme cela est visible sur la figure 25, chaque aile comporte, par rapport au sens d'écoulement du vent, un bord d'attaque 49, un panneau central 51 et un bord de fuite 53.
[00108] Ce bord d'attaque 49, ce panneau central 51 et ce bord de fuite 53 sont reliés entre eux dans leurs parties respectivement supérieure et inférieure par des ailerons supérieur 55 et inférieur 57.
[00109] Les trois mâts fixes Ml, M2, M3 sont fixés sur un support de mât S monté rotatif sur une embase fixe 5, comportant elle-même un rail de roulement circulaire 35 et une tige centrale 59, comme représenté à la figure 20.
[00110] En se reportant plus particulièrement à la figure 21, le support de mâts S présente sensiblement la forme d'un triangle, au sommet duquel sont disposés des roues 39 aptes à se déplacer dans le rail de roulement 35 de l'embase fixe 5. [00111] Les mât fixes Ml, M2, M3 de l'éolienne sont destinés à être fixés sur le support de mâts S au droit 61, 62, 63 de chacune de ces trois roues 39.
[00112] Comme visible à la figure 20, la tige 59 de l'embase fixe 5 comporte un pignon fixe 65, apte à coopérer avec le mécanisme d'excentrique qui va être décrit ci-après.
[00113] Comme cela est visible sur les figures 22 à 24, ce mécanisme d'excentrique comprend un châssis central 74 sur lequel sont montés d'une part un moteur de réglage d'orientation 69, et d'autre part des vérins de réglage d'excentricité 71.
[00114] Le moteur de réglage d'orientation 69 entraîne un pignon 73 apte à coopérer avec le pignon fixe 65 de la tige 59 de l'embase fixe 5.
[00115] Les vérins de réglage d'excentricité 71 sont aptes à déplacer un plateau 67 par rapport au châssis central 74, ce châssis central 74étant muni d'un manchon 75 apte à être monté rotatif sur la tige fixe 59 de l'embase fixe 5.
[00116] Le plateau 67estmuni d'une pluralité de galets 79, ces galets étant aptes à guider en rotation une roue excentrique 21.
[00117] Cette roue excentrique 21 est munie de points d'attache 83 de bielles d'orientation Bl, B2, B3 des ailes VI, V2, V3 de l'éolienne, ainsi que de pions de guidage 87 de bielles de synchronisation BS1, BS2, BS3 du support de mât S avec la roue excentrique 21, comme cela va être expliqué dans ce qui suit.
[00118] En se reportant à présent plus spécifiquement aux figures 25 et 26, on peut voir que chaque aile VI, V2, V3 comporte, par exemple dans sa partie inférieure, une tringlerie 89 permettant de relier entre eux le bord d'attaque 49 et le bord de fuite 53, de sorte qu'une modification de l'angle d'incidence du bord d'attaque 49 par rapport au plan de la partie centrale 51 de l'aile VI, V2, V3, ait pour effet de modifier également l'angle d'incidence du bord de fuite 53 de l'aile.
[00119] Cette modification de l'angle d'incidence du bord d'attaque 49 de chaque aile VI, V2, V3 peut être est piloté par l'angle entre la partie centrale 51 de l'aile VI, V2, V3 et du support radial des mâts respectifs Ml, M2, M3 au moyen d'une tringlerie non représentée de telle sorte que la courbure de chaque aile soit indexée sur sa position angulaire et proportionnellement à la valeur de l'excentricité
[00120] En se reportant à présent plus particulièrement à la figure 27, on peut voir que l'aileron inférieur 57 de chaque aile V est relié par l'intermédiaire d'une bielle d'orientation B au point d'attache respectif 83 sur la roue excentrique 21.
[00121] Par ailleurs, chaque bielle de synchronisation BS est interposée entre le mât fixe M de l'aile V concernée et la roue excentrique 21.
[00122] Plus précisément, chaque bielle de synchronisation BS comporte une rainure 91 apte à recevoir le pion de guidage associé 87 de la roue excentrique 21, un ressort (non représenté) rappelant de manière élastique la bielle de synchronisation BS vers la position dans laquelle le pion 87 de la roue excentrique 21 se trouve en butée de la partie de cette rainure II en résulte que la roue excentrique 21 est entraînée en rotation alternativement par chacune des bielles de synchronisation BS dans un mouvement synchrone avec la rotation du support de mâts S.
[00123] Le mode de fonctionnement et les avantages de cette variante d'éolienne selon l'invention résultent de ce qui précède et de sa capacité par le réglage de son excentricité, de son orientation et de son angle de retard à modifier progressivement la portance et la finesse de ses ailes V en fonction de la force du vent et de sa vitesse de rotation.
[00124] Comme cela est visible sur la figure 28, on apporte l'éolienne en position repliée de transport sur son site d'exploitation.
[00125] Puis on déplie les mât fixes Ml, M2, M3 et ont relie les bielles d'orientation Bl, B2, B3 à la roue excentrique 21, de manière à atteindre la configuration représentée à la figure 29.
[00126] Au démarrage de l'éolienne, on utilise le moteur d'orientation 69 et les vérins de réglage d'excentricité 71 du mécanisme d'excentrique de manière que le plateau67 de ce système s'étend pour une valeur d'excentricité maximum selon une direction sensiblement perpendiculaire au vent réel, comme cela est illustré à la figure 29. [00127] Lorsque l'éolienne prend de la vitesse, on oriente progressivement ce plateau 67 parallèlement à la direction du vent réel, comme cela est visible sur les figures 30 et 31, où l'on a représenté deux positions successives de l'éolienne selon l'invention.
[00128] En même temps que l'on oriente progressivement le plateau 67 parallèlement au vent on diminue l'excentricité et on augmente le retard pour avoir un réglage de finesse optimum. On obtient de la sorte le réglage aérodynamique idéal des ailes V pour la vitesse de rotation et la force du vent considérées.
[00129] En réglant de manière appropriée les valeurs d'excentricité et de retard on peut maximiser la portance et la finesse de l'aile et gérer sa courbure en fonction de la position angulaire de l'aile, tant sur l'intrados lorsqu'elle est située sous le vent (figure 31) que sur l'extrados lorsqu'elle située au vent (figure 30).
[00130] Les bielles de synchronisation BS1, BS2, BS3 permettent d'éviter que la roue excentrique 21 ne soit folle par rapport au support de mâts rotatif S.
[00131] Les rainures 91 de ces bielles de synchronisation BS, aptes à coulisser par rapport aux pions respectifs 87 fixés sur la roue excentrique 21, autorisent des déplacements limités de ces bielles de synchronisation BS par rapport à cette roue 21, inhérents à l'excentricité
[00132] Dans une variante perfectionnée, on peut prévoir des vérins de commande des longueurs de ces bielles de synchronisation BS1, BS2, BS3 par rapport à la roue excentrique 21, de manière à obtenir le réglage de l'angle de retard.
[00133] L'invention est décrite dans ce qui précède à titre d'exemple. Il est entendu que l'homme du métier est à même de réaliser différentes variantes de réalisation de l'invention sans pour autant sortir du cadre de l'invention, notamment sur la méthode pour synchroniser la roue excentrique en rotation avec le support de mâts rotatif et faire varier l'angle de retard entre ces deux éléments.
[00134] C'est ainsi par exemple que l'éolienne selon l'invention pourrait être utilisée pour la production d'électricité à terre.

Claims

REVENDICATIONS Eolienne (El, E2 ; E) à axe vertical comprenant des éléments de voilure (VI, V2, V3) supportés par des mâts (Ml, M2, M3), et des moyens (O) pour réduire la prise au vent de de ces éléments de voilure (VI, V2, V3) lorsqu'ils remontent dans le lit du vent, et pour augmenter la prise au vent de ces éléments de voilure (VI, V2, V3) lorsqu'ils descendent dans le lit du vent, dans laquelle lesdits moyens de réduction et d'augmentation de la prise au vent des éléments de voilure comprennent :
- un support de mâts rotatif (S),
- une roue excentrique (21) montée rotative autour d'un axe parallèle et décalé par rapport à celui du support de mâts (S),
- des moyens (69) pour déplacer la roue excentrique (21) autour du support rotatif (S) en fonction de la direction du vent,
- des moyens d'articulation des éléments de voilure (VI, V2, V3) par rapport audit support rotatif (S),
- des bielles d'actionnement (Bl, B2, B3) desdits éléments de voilure (VI, V2, V3), interposées entre ladite roue excentrique et ces éléments de voilure (VI, V2, V3),
- des moyens de synchronisation (22 ; BS1, BS2, BS3) des mouvements de rotation dudit support rotatif (S) et de ladite roue excentrique (21). Eolienne (El, E2) selon la revendication 1, dans laquelle lesdits mâts (Ml, M2, M3) sont orientables, et lesdites bielles d'actionnement (Bl, B2, B3) sont reliées à ces mâts. Eolienne (El, E2) selon la revendication 2, comprenant en outre des bornes fixes (BF1, BF2, BF3) solidaires desdits mâts (Ml, M2, M3), et des bornes mobiles (BMI, BM2, BM3) articulées sur lesdites bornes fixes (BF1, BF2, BF3). Eolienne (El, E2) selon la revendication 3, comprenant en outre des moyens (33) pour régler l'orientation desdites bornes mobiles (BMI, BM2, BM3) par rapport auxdites bornes fixes (BF1, BF2, BF3). Eolienne (El, E2) selon l'une quelconque des revendications précédentes, dans laquelle lesdits moyens de synchronisation comprennent des pignons (22) interposés entre ledit support de mâts (S) et ladite roue excentrique (21). Eolienne (E) selon l'une quelconque des revendications 1 à 4, dans laquelle lesdits moyens de synchronisation comprennent des bielles de synchronisation (BS1, BS2, BS3) interposées entre ledit support de mâts (S) et ladite roue excentrique (21). Eolienne (El, E2) selon les revendications 3 et 5, comprenant une embase (5) et une manivelle (9) comprenant au moins un bras (11, 15) et un maneton (13), montée rotative sur cette embase (5), ledit support de mâts (S) étant monté coaxial et rotatif sur ladite manivelle (9), ladite roue excentrique (21) étant montée rotative sur ledit maneton (13), lesdits pignons (22) étant interposés entre ledit support de mâts (S) et ladite roue excentrique (21) et assurant un rapport de transmission de 1 pour 1, et lesdites bielles d'actionnement (Bl, B2, B3) étant interposées entre lesdites bornes fixes (BF1, BF2, BF3) et ladite roue excentrique (21). Eolienne (El, E2) selon la revendication 7, comprenant un arbre moteur (25) monté rotatif à l'intérieur de ladite embase (5), et muni d'un pignon moteur (23) coopérant avec une denture formée sur la partie de grand diamètre de ladite roue excentrique (21). Eolienne (E) selon la revendication 1, dans laquelle lesdits mâts (Ml, M2, M3) sont montés fixes sur ledit support de mâts (S), et lesdits moyens de synchronisation comprennent des bielles de synchronisation (BS1, BS2, BS3) reliées à ces mâts fixes (Ml, M2, M3) et comprenant des rainures (91) coopérant avec des pions de guidage (87) solidaires de ladite roue excentrique (21). Éolienne (El, E2 ; E) selon l'une quelconque des revendications précédentes, dans laquelle les moyens pour déplacer la roue excentrique (21) autour du support rotatif (S) en fonction de la direction du vent, sont sélectionnés dans le groupe comprenant un organe d'orientation purement mécanique (27) et des moyens d'asservissement électrique. Eolienne (El, E2 ; E) selon l'une quelconque des revendications précédentes, dans laquelle lesdits mâts (Ml, M2, M3) sont reliés entre eux par des haubans (H) et des entretoises (EN1, EN2, EN3). Eolienne (El, E2 ; E) selon l'une quelconque des revendications précédentes, comprenant trois mâts (Ml, M2, M3) et trois éléments de voilure (VI, V2, V3). Eolienne (El, E2 ; E) selon l'une quelconque des revendications précédentes, dans laquelle lesdits éléments de voilure sont choisis dans le groupe comprenant les voiles souples (VI, V2, V3), les voiles rigides, les ailes, les panneaux photovoltaïques (Pl, P2, P3). Navire (1) équipé d'au moins une éolienne (El, E2 ; E) conforme à l'un quelconque des revendications précédentes dépendant de la revendication 8, comprenant des moyens de propulsion entraînés par ledit arbre moteur (25).
PCT/IB2023/051124 2022-02-08 2023-02-08 Éolienne à axe vertical, et navire équipé d'au moins une telle éolienne WO2023152657A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2201070 2022-02-08
FR2201070A FR3132547B1 (fr) 2022-02-08 2022-02-08 Eolienne à axe vertical, et navire équipé d’au moins une telle éolienne

Publications (1)

Publication Number Publication Date
WO2023152657A1 true WO2023152657A1 (fr) 2023-08-17

Family

ID=81326160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2023/051124 WO2023152657A1 (fr) 2022-02-08 2023-02-08 Éolienne à axe vertical, et navire équipé d'au moins une telle éolienne

Country Status (2)

Country Link
FR (1) FR3132547B1 (fr)
WO (1) WO2023152657A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1753252A (en) * 1927-02-25 1930-04-08 Strandgren Carl Bruno Turbine-wheel propeller and motor
US6840738B1 (en) 2004-04-06 2005-01-11 Marvin L. Swanberg Feathering turbine apparatus
US20110116926A1 (en) 2008-12-18 2011-05-19 Fox Donald A Self-Directing Vertical Axis Turbine For Harnessing Power
US20140086745A1 (en) * 2007-11-23 2014-03-27 Af Energy Corporation Vertical Axis Wind Turbine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1753252A (en) * 1927-02-25 1930-04-08 Strandgren Carl Bruno Turbine-wheel propeller and motor
US6840738B1 (en) 2004-04-06 2005-01-11 Marvin L. Swanberg Feathering turbine apparatus
US20140086745A1 (en) * 2007-11-23 2014-03-27 Af Energy Corporation Vertical Axis Wind Turbine
US20110116926A1 (en) 2008-12-18 2011-05-19 Fox Donald A Self-Directing Vertical Axis Turbine For Harnessing Power

Also Published As

Publication number Publication date
FR3132547B1 (fr) 2024-03-01
FR3132547A1 (fr) 2023-08-11

Similar Documents

Publication Publication Date Title
CA2018199C (fr) Eolienne a stator
EP2572100B1 (fr) Turbogenerateur a rotor a pales a incidence adaptee au vent apparent
EP2209990B1 (fr) Turbomachine a turbines hydrauliques a flux transverse a force globale de portance reduite
CN104884792A (zh) 垂直轴涡轮机
WO2012059697A1 (fr) Hydrolienne a flux transverse a etages autonomes
FR3012180A1 (fr) Eolienne a axe de rotation horizontal comprenant des familles de pales
FR2868483A1 (fr) Moyens de realisation d'un type d'eolienne quadrirotor et dispositif d'implantation de ces eoliennes en parc offshore
FR2982649A1 (fr) Dispositif de recuperation d'energie a partir d'un fluide en mouvement
EP2610483B1 (fr) Eolienne à axe vertical
AU2008222708B2 (en) Hubless windmill
FR2863320A1 (fr) Pale d'aerogenerateur equipee de moyens deflecteurs, et aerogenerateur correspondant
WO2014106765A1 (fr) Turbine a aubes helicoidales
WO2023152657A1 (fr) Éolienne à axe vertical, et navire équipé d'au moins une telle éolienne
KR101525553B1 (ko) 수직 로터형 풍력발전 장치
FR2519710A1 (fr) Dispositif de regulation et de surete pour le fonctionnement et la maintenance d'eolienne a axe horizontal
WO2010109081A1 (fr) Rotor pour générateur d'énergie, en particulier pour éoliennes
WO2009003285A1 (fr) Eolienne à axe verticale avec pales munies d'un moyen de rappel
FR2945325A1 (fr) Eolienne a axe de rotation perpendiculaire a la direction du vent.
CH714054A1 (fr) Dispositif avec une aile rectiligne oscillante pour la transformation de l'énergie cinétique provenant du vent ou d'un courant aquatique en une énergie mécanique et méthode pour une telle transformation.
FR2848260A1 (fr) Dispositif concentrateur de vent notamment pour eolienne a axe vertical
CN101099040B (zh) 一种垂直轴涡轮机装置
WO1992007189A1 (fr) Dispositif d'orientation des pales d'un rotor dans un flux transversal de fluide et application de celui-ci
EP4295033A1 (fr) Eolienne à flux transverse à pales jumelles, et à axes de rotation inclinés
EP3983669B1 (fr) Éolienne et installation de conversion d'énergie comprenant une telle éolienne
FR2513699A1 (fr) Systeme de captage et d'orientation de flux pour moteurs eoliens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23705315

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE