WO2023151929A1 - Kombinierte füllstands- und temperaturmessung - Google Patents

Kombinierte füllstands- und temperaturmessung Download PDF

Info

Publication number
WO2023151929A1
WO2023151929A1 PCT/EP2023/051492 EP2023051492W WO2023151929A1 WO 2023151929 A1 WO2023151929 A1 WO 2023151929A1 EP 2023051492 W EP2023051492 W EP 2023051492W WO 2023151929 A1 WO2023151929 A1 WO 2023151929A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring device
unit
antenna
designed
radiometer
Prior art date
Application number
PCT/EP2023/051492
Other languages
English (en)
French (fr)
Inventor
Winfried Mayer
Manuela DÖRFLINGER
Original Assignee
Endress+Hauser SE+Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Endress+Hauser SE+Co. KG filed Critical Endress+Hauser SE+Co. KG
Publication of WO2023151929A1 publication Critical patent/WO2023151929A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F23/00Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm
    • G01F23/22Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water
    • G01F23/28Indicating or measuring liquid level or level of fluent solid material, e.g. indicating in terms of volume or indicating by means of an alarm by measuring physical variables, other than linear dimensions, pressure or weight, dependent on the level to be measured, e.g. by difference of heat transfer of steam or water by measuring the variations of parameters of electromagnetic or acoustic waves applied directly to the liquid or fluent solid material
    • G01F23/284Electromagnetic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K11/00Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00
    • G01K11/006Measuring temperature based upon physical or chemical changes not covered by groups G01K3/00, G01K5/00, G01K7/00 or G01K9/00 using measurement of the effect of a material on microwaves or longer electromagnetic waves, e.g. measuring temperature via microwaves emitted by the object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/86Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/225Supports; Mounting means by structural association with other equipment or articles used in level-measurement devices, e.g. for level gauge measurement

Definitions

  • the invention relates to combined filling level and temperature measurement based on radar.
  • Appropriate field devices are used in process automation technology to record relevant process parameters.
  • suitable measurement principles are implemented in the corresponding field devices in order to record a fill level, a flow rate, a pressure, a temperature, a pH value, a redox potential or a conductivity as process parameters.
  • a wide variety of field device types are manufactured and sold by the Endress + Hauser group of companies.
  • non-contact measuring methods have become established for level measurement of filling goods in containers.
  • Another advantage of non-contact measuring methods is the ability to measure the level almost continuously.
  • radar-based measurement methods are therefore predominantly used (in the context of this patent application, the term “radar” refers to signals or electromagnetic waves with frequencies between 0.03 GHz and 300 GHz). In principle, the higher the frequency, the higher the measurement resolution that can be achieved.
  • the pulse propagation time method and FMCW (“Frequency Modulated Continuous Wave”) have established themselves as measuring methods. Radar-based level measurement is described in more detail, for example, in "Radar Level Detection, Peter Devine, 2000f".
  • the temperature In addition to the fill level, the temperature must also be monitored in many processes, for example when chemically exothermic reactions are controlled by supplying appropriate reactants. To date, however, temperature measurement has not been carried out without contact as part of process automation technology, since the corresponding field devices are based on the robust, resistive measuring principle as standard. According to this measuring principle, the value of specific electrical resistances, such as pT100 elements, changes in a defined way with the temperature.
  • the invention is therefore based on the object of developing a measuring device by means of which both the temperature and the fill level can be determined, in each case without contact.
  • the invention solves this problem with a measuring device for determining a filling level and a temperature of a filling material in a container, which comprises the following components:
  • At least one antenna by means of which o radar signals can be transmitted towards the filling material in a defined frequency range and o corresponding reception signals can be received after the radar signals have been reflected on the filling material surface, and/or o thermal radiation, which can be assigned to the filling material, can be received, and a high-frequency unit which is designed o to generate the radar signals to be transmitted and o to generate a first evaluation signal based on the incoming received signals, based on which the filling level can be determined.
  • the measuring device is characterized by an additional radiometer unit, which can generate a second evaluation signal based on the thermal radiation received, so that the temperature of the filling material can be determined using the second evaluation signal.
  • an additional radiometer unit which can generate a second evaluation signal based on the thermal radiation received, so that the temperature of the filling material can be determined using the second evaluation signal.
  • the high-frequency unit should ideally be designed in such a way that it generates or processes the radar signals in a frequency range above 100 GHz, in particular between 180 GHz and 1 THz, which means that the thermal radiation has an increasing proportion in the frequency range of the transmitted radar signals lies.
  • the radiometer unit must be designed to process the thermal radiation of the corresponding frequency range.
  • the radiometer unit can be designed, for example, as a switched radiometer receiver according to the Dicke principle.
  • the radiometer unit can also be cooled using a Peltier cooling element.
  • the radar-based fill level measurement can also be used advantageously to improve or simplify the temperature measurement compared to pure radiometer-based temperature measuring devices:
  • the corresponding evaluation unit must also have the emissivity with which the respective filling material type emits the thermal radiation in the specific frequency range. Previously, this had to be known for each type of product and accordingly preset manually in the evaluation unit.
  • This presetting can be automated within the scope of the invention if the high-frequency unit is designed to also determine the degree of emission of the filling material surface based on the incoming reception signals in addition to the filling level.
  • the evaluation unit can thus correct the temperature determined by the radiometer unit on the basis of the degree of reflection obtained. This is possible because the degree of emission is equivalent to the degree of reflection of the radar signals on the surface of the product.
  • the high-frequency unit can determine the degree of reflection or emission, for example, based on the power of the received radar signals.
  • the high-frequency unit can generate the radar signal to be transmitted, for example using the FMCW or pulse propagation time method, or generate the first evaluation signal according to the corresponding method, in order to determine the level determine. Since both methods and radiometer-based circuits each require clocking according to the Dicke principle, the measuring device according to the invention can therefore preferably include a common clock generator unit which clocks both the high-frequency unit and the radiometer unit using a common clock signal . This allows the number of components to be reduced.
  • the measuring device offers the advantage that it can be designed with a very high integration density and therefore very compact.
  • the high-frequency unit and the radiometer unit can be designed, for example, as an integral part of a common, integrated semiconductor circuit.
  • the measuring device only comprises the first antenna, a controllable signal splitter such as an electronic signal switch or a multiplexer, or a non-controllable signal splitter such as a diplexer, is to be connected between the first antenna and the high-frequency unit or the radiometer unit .
  • a controllable signal splitter such as an electronic signal switch or a multiplexer, or a non-controllable signal splitter such as a diplexer
  • the measuring device can also include a second antenna, which is used exclusively to receive the thermal radiation.
  • the radar signals are transmitted or received using the first antenna. It is advantageous here if the first antenna and the second antenna are preceded by a common bundling device, ie, for example, a converging lens.
  • the measuring device comprises one or more antennas
  • these can be designed in a compact manner as a planar antenna.
  • patch or fractal antennas which are designed as an integral part of the high-frequency or radiometer unit, are suitable for this purpose.
  • the term “unit” is understood to mean, in principle, a separate arrangement or encapsulation of those electronic circuits that are provided for a specific application, for example for high-frequency signal processing or as an interface.
  • the respective unit can therefore include corresponding analog circuits for generating or processing corresponding analog signals.
  • the unit can also include digital circuits such as FPGAs, microcontrollers or storage media in conjunction with appropriate programs.
  • the program is designed to carry out the necessary procedural steps or to apply the necessary arithmetic operations.
  • different units within the meaning of the invention can potentially also access a shared physical memory or be operated using the same physical digital circuit.
  • Fig. 2 a block diagram of the measuring device
  • FIG. 3 shows a block diagram of the radiometer unit of the measuring device.
  • FIG. 1 shows a container 3 with a filling material 2, the filling level L and temperature of which are to be determined, for example, as part of a chemical process.
  • the container 3 can be up to more than 100 m high.
  • the kind of Filling goods 2 and the process also depend on the conditions in the container s. In the case of exothermic reactions, for example, high temperatures and pressures can occur, with any educts/products being able to be fed in or removed via appropriate lines.
  • the container s in the embodiment variant shown in FIG. 1 is lined with thermal insulation 31 over its entire surface on its inner wall, which is based, for example, on a plastic-based foam material or mineral wool.
  • a measuring device 1 In order to determine the filling level L and the temperature of the filling material 2 without contact, a measuring device 1 according to the invention is fitted above the filling material 2 at a known installation height h above the brine of the container 3 .
  • the measuring device 1 is attached or aligned to a corresponding opening of the container 3 in such a way that it is pressure and media-tight that only one antenna 11 of the measuring device 1 is directed into the container 3 vertically downwards towards the filling material 2, while its other components are outside of the Container 3 are arranged. Since foam materials and mineral wool are largely transparent to radar signals SHF, RHF or thermal radiation SIR in the corresponding frequency range, it does not prevent the antenna 11 from being arranged outside the thermal insulation 31 in relation to the filling material 2 .
  • the measuring device 1 can be connected to a higher-level unit 4, such as B. a local process control system or a decentralized server system.
  • the measured filling level value L or the filling material temperature can be transmitted via this, for example in order to control any inflows or outflows of the container 3 .
  • other information about the general operating status of the measuring device 1 can also be communicated.
  • the measuring device 1 determines the filling level L, as is known from the prior art: Accordingly, the measuring device 1 emits radar signals SHF via the antenna 11 in the direction of the surface of the filling material 2 . After the radar signals SHF have been reflected on the surface of the filling material, the measuring device 1 again receives the reflected radar signals RHF via the antenna 11 .
  • the signal propagation time t between transmission and reception of the respective radar signal SHF, RHF according to proportional to the distance d between the level gauge 1 and the filling material 2, where c corresponds to the radar propagation speed according to the speed of light.
  • the signal propagation time t can be measured by the measuring device 1, for example by means of the FMCW or by means of the pulse transit time method.
  • a suitably designed high-frequency unit 12 of the measuring device 1, in which the FMCW or pulse transit time measuring principle is implemented, for example, is used to determine the signal propagation time t or the filling level L based on the incoming reception signal RHF.
  • the high-frequency unit 12 is used to generate the radar signal SHF to be transmitted.
  • the high-frequency unit 12 is based on the principle of subsampling of the high-frequency pulses RHF received after transmission.
  • the high-frequency unit 12 transmits the radar signal SHF in a frequency-modulated manner and mixes the two signals SHF, RHF with one another after re-reception. As is shown in the block diagram of the measuring device 1 in FIG. Unit 15 can determine the level L.
  • the measuring device 1 includes, in addition to the high-frequency unit 12, according to the invention a radiometer unit 14, by means of which the temperature of the filling material 2 can be determined on the basis of the radiometer principle. Accordingly, both units 12, 14 are connected to the antenna 11 via a signal splitter 13. As a result, the radar signals SHF, RHF are routed from the high-frequency unit 12 to the antenna 11 and back from there, while incoming thermal radiation SIR is routed to the radiometer unit 14 in order to be able to derive the temperature of the filling material 2 therefrom.
  • the thermal radiation SIR emitted by the filling material 2 is present at least in part per se in that frequency range for which radar-based filling level measuring devices are also designed.
  • the high-frequency unit 12, the antenna 11 and the radiometer unit 14 should ideally be designed for the same frequency range. It is all the more advantageous, both for level measurement and for temperature measurement, for the higher signal frequencies the measuring device 1 is designed for: With regard to level measurement, higher measuring resolutions can be achieved. Due to the radiation intensity of the thermal radiation SIR increasing with the frequency, its sensitivity increases with regard to the temperature measurement. From these aspects, it is therefore advantageous if the corresponding units 11, 12, 13, 14 are designed for a frequency of 100 GHz or more.
  • the antenna 11 is also possible to design the antenna 11 as a planar patch antenna, which achieves a bundling of its radiation lobe of less than 10°. Strictly speaking, the measuring device 1 according to the invention is used to determine the temperature of that area of the filling material surface which is illuminated by the radiation lobe of the antenna 11 in the corresponding frequency band.
  • the planar design of the antenna 11 enables a very high integration density, as a result of which the measuring device 1 can be designed to be extremely compact according to the invention.
  • the measuring device 1 according to the invention offers the particular advantage that as far as possible all active, electrical units 12-17 of the measuring device 1 can be implemented as a common, monolithic semiconductor component.
  • the high-frequency unit 12 and the radiometer unit 14 are clocked by a common clock generator unit 17, for example in the form of a quartz oscillator.
  • the high-frequency unit 12, the signal splitter 13, and the radiometer unit 14 are controlled in addition to the evaluation unit 15 by a common control unit 16, so that the measuring device 1 can, for example, determine the temperature and the level L cyclically in alternation .
  • the high-frequency unit 12 and the radiometer unit 14 are to be switched on and off with corresponding inversion, and the signal splitter 13 is to be switched over cyclically accordingly.
  • FIG. 3 A possible embodiment variant of the radiometer unit 14 is shown in Fig. 3:
  • the block diagram of the radiometer unit 14 there reflects the so-called "Dicke principle": Accordingly, the incoming thermal radiation signal SIR via the antenna 11 is first compared with a reference -Signal s re f, which represents a defined temperature, compared. As a result, the temperature of the filling material 2 can be determined as an absolute value.
  • the reference signal s ref originates from a reference temperature sensor 142, which is designed as a resistor, for example, and is connected to ground at the end. The inherent noise of the resistor is thus used as a reference signal s ref .
  • thermal radiation signal SIR and the reference signal Sref are each amplified by an amplifier 141, 141' with low noise (also known as a “low noise amplifier”) before further processing.
  • the signals s ref , SIR are compared by means of a switch 143 which alternately switches one of the signals SIR , s ref , depending on the rate of change of the temperature, with a switching frequency between 1 Hz and 10 kHz.
  • the respectively switched through signal SIR, s ref contains the temperature information in the form of its noise power N, which it has integrated over the corresponding frequency band.
  • the physical connection is made use of, according to which
  • B corresponds to the bandwidth of the frequency band.
  • k is the Boltzmann constant.
  • the signal SIR, s re f or their noise frequency is down-converted in terms of frequency in a mixer 144 by the clock signal s c ik of the clock generator unit 17 after the switch 143 .
  • the clock signal s c ik is adjusted in advance by a frequency multiplier 145, if necessary.
  • a bandpass filter 146 and a subsequent amplifier 147 are arranged in the further signal path. These are adapted to the frequency of the down-converted signal and, in accordance with the Dicke-Fix principle, are used to further suppress component-related noise or interference signals.
  • the power of the signal processed up to that point then corresponds to the temperature of the filling material 2.
  • the amplifier 147 is finally followed by a corresponding power detector 148.
  • Both signals, the resulting second evaluation signal s t em P and the reference signal Sref, are fed to the evaluation unit 15 of the measuring device 1, which can determine the temperature of the filling material 2 as an absolute value by comparing them.
  • the measuring accuracy of the temperature measurement can be increased if the evaluation unit 15 knows the degree of emission with which the respective filling material type emits the thermal radiation in the relevant frequency range over its filling material surface. Accordingly, the degree of emission of the evaluation unit 15 can be specified manually, for example via a corresponding input unit.
  • the measuring device 1 can advantageously be further developed in such a way that the high-frequency unit 12 intended for level measurement can determine a reflection coefficient on the basis of the incoming radar signals RHF.
  • certain system parameters must be known with sufficient accuracy, in particular the antenna gain, the transmission power and the distance d to the filling material 2, which is recorded as part of the filling level measurement. Under defined conditions, these system parameters are known to be typical.
  • the reflection coefficient states to what extent the emitted radar signal SHF is reflected in terms of power on the surface of the filling material.
  • the reflection coefficient is equivalent to the emissivity of the filling material 2.
  • the high-frequency unit 12 can transmit the determined reflection coefficient or emissivity to the evaluation unit 15 accordingly. In this way, the evaluation unit 15 can determine the temperature with high precision using the second evaluation signal Stemp, the reference signal s ref and the degree of emission, without the type of filling material or its degree of emission in the evaluation unit 15 must be entered manually.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Radiation Pyrometers (AREA)

Abstract

Die Erfindung betrifft ein Messgerät (1) zur berührungslosen Bestimmung von sowohl dem Füllstand (L), als auch der Temperatur eines Füllgutes (2) in einem Behälter (3). Hierzu umfasst das Messgerät (1) zumindest eine Antenne (11), um zur Füllgut-Messung Radar-Signale (SHF) gen Füllgut (2) auszusenden und nach Reflektion der Radar-Signale (SHF) an der Füllgut-Oberfläche entsprechende Empfangs-Signale (RHF) zu empfangen. Außerdem können über die Antenne (11) Wärmestrahlung (SIR), welche dem Füllgut (2) zuordbar ist, empfangen werden, um die Temperatur des Füllgutes (2) zu bestimmen. Eine Hochfrequenz-Einheit (12) des Messgerätes (1) generiert die auszusendenden Radar-Signale (SHF) und erzeugt anhand der eingehenden Empfangs-Signale (RHF) ein erstes Auswertungs-Signal (SZF), so dass der Füllstand (L) bestimmbar ist. Erfindungsgemäß zeichnet sich das Messgerät (1) durch eine integrierte Radiometer-Einheit (14) aus, welche anhand der empfangenen Wärmestrahlung (SIR) ein zweites Auswertungs-Signal (stemp) generiert, so dass zudem die Temperatur des Füllgutes (2) bestimmbar ist, und zwar wiederum berührungslos.

Description

Kombinierte Füllstands- und Temperaturmessung
Die Erfindung betrifft kombinierte Füllstands- und Temperaturmessung auf Basis von Radar.
In der Prozessautomatisierungstechnik werden zur Erfassung relevanter Prozessparameter entsprechende Feldgeräte eingesetzt. Zwecks Erfassung der jeweiligen Prozessparameter sind in den entsprechenden Feldgeräten daher geeignete Messprinzipien implementiert, um als Prozessparameter etwa einen Füllstand, einen Durchfluss, einen Druck, eine Temperatur, einen pH-Wert, ein Redoxpotential oder eine Leitfähigkeit zu erfassen. Verschiedenste Feldgeräte-Typen werden von der Firmengruppe Endress + Hauser hergestellt und vertrieben.
Bei der Auslegung von Feldgeräten ist es unter anderem das Ziel, den Prozess bei der Messung des jeweiligen Prozessparameters möglichst nicht zu beeinflussen. Zur Füllstandsmessung von Füllgütern in Behältern haben sich dementsprechend berührungslose Messverfahren etabliert. Ein weiterer Vorteil berührungsloser Messverfahren besteht in der Fähigkeit, den Füllstand quasi kontinuierlich messen zu können. Im Bereich der kontinuierlichen Füllstandsmessung werden daher vorwiegend Radar-basierte Messverfahren eingesetzt (im Kontext dieser Patentanmeldung bezieht sich der Begriff „Radar“ auf Signale bzw. elektromagnetische Wellen mit Frequenzen zwischen 0.03 GHz und 300 GHz). Dabei ist prinzipiell eine umso höhere Mess-Auflösung erreichbar, je höher die Frequenz ist. Als Messverfahren haben sich das Pulslaufzeit- Verfahren und FMCW („Frequency Modulated Continuous Wave“) etabliert. Näher beschrieben wird Radar-basierte Füllstandsmessung beispielsweise in „Radar Level Detection, Peter Devine, 2000f‘.
Zusätzlich zum Füllstand ist bei vielen Prozessen gleichzeitig die Temperatur zu überwachen, beispielsweise wenn chemisch exotherme Reaktionen durch Zuführen entsprechender Edukte gesteuert wird. Temperaturmessung erfolgt im Rahmen der Prozessautomatisierungstechnik bis dato jedoch nicht berührungslos, da entsprechende Feldgeräte standardmäßig auf dem robusten, resistiven Messprinzip basieren. Entsprechend dieses Messprinzips ändert sich der Wert spezifischer elektrischer Widerstände, wie beispielsweise pT100-Elementen, definiert mit der Temperatur.
Prozesse, bei denen sowohl die Temperatur, als auch der Füllstand zu überwachen sind, laufen außerdem häufig in räumlich beengten Behältern ab, wodurch es gegebenenfalls schwierig bis unmöglich ist, dort beide Feldgeräte funktionsgemäß anzubringen. Der Erfindung liegt daher die Aufgabe zugrunde, ein Messgerät zu entwickeln, mittels dem sowohl die Temperatur, als auch der Füllstand bestimmbar ist, und zwar jeweils berührungslos.
Die Erfindung löst diese Aufgabe durch ein Messgerät zur Bestimmung eines Füllstandes und einer Temperatur eines Füllgutes in einem Behälter, das folgende Komponenten umfasst:
Zumindest eine Antenne, mittels welcher o in einem definierten Frequenzbereich Radar-Signale gen Füllgut aussendbar sind und o nach Reflektion der Radar-Signale an der Füllgut-Oberfläche entsprechende Empfangs-Signale empfangbar sind, und/oder o Wärmestrahlung, welche dem Füllgut zuordbar ist, empfangbar ist, und eine Hochfrequenz-Einheit, die ausgelegt ist, o die auszusendenden Radar-Signale zu generieren und o anhand der eingehenden Empfangs-Signale ein erstes Auswertungs- Signal zu erzeugen, anhand dessen der Füllstand bestimmbar ist.
Das Messgerät zeichnet sich erfindungsgemäß durch eine zusätzliche Radiometer- Einheit aus, welche anhand der empfangenen Wärmestrahlung ein zweites Auswertungs- Signal generieren kann, so dass mittels des zweiten Auswertungs-Signals die Temperatur des Füllgutes bestimmbar ist. Hierdurch wird der Effekt ausgenutzt, wonach Wärmestrahlung, die durch die Temperatur des Füllgutes hervorgerufen wird, aus dem Infrarot-Bereich bis in den Radar-Frequenzbereich herunterreicht und daher in typischen Betriebsfrequenzbereichen von Radar-basierten Füllstandsmessgeräten liegt. Somit lassen sich mittels des erfindungsgemäßen Messgerätes sowohl der Füllstand, als auch die Temperatur des Füllgutes bestimmen.
Die Hochfrequenz-Einheit ist idealerweise so auszulegen, dass sie die Radar-Signale in einem Frequenzbereich oberhalb von 100 GHz, insbesondere zwischen 180 GHz und 1 THz erzeugt bzw. verarbeitet werden, wodurch die Wärmestrahlung mit einem zunehmenden Anteil im Frequenzbereich der ausgesendeten Radar-Signale liegt. Die Radiometer-Einheit muss korrespondierend hierzu ausgelegt sein, um die Wärmestrahlung des entsprechenden Frequenzbereichs zu verarbeiten. Hierdurch lässt sich insgesamt die Empfindlichkeit der Temperatur-Messung optimieren und auch die Auflösung der Füllstandmessung wird prinzipiell erhöht. Die Radiometer-Einheit kann beispielsweise als geschalteter Radiometer-Empfänger gemäß des Dicke-Prinzips ausgelegt werden. Zur Erhöhung der Messempfindlichkeit kann die Radiometer-Einheit außerdem mittels eines Peltier-Kühlelementes gekühlt werden. Die Radar-basierte Füllstands-Messung lässt sich vorteilhafter Wiese außerdem dazu nutzen, um die Temperatur-Messung im Vergleich zu reinen Radiometer-basierten Temperaturmessgeräten zu verbessern bzw. zu vereinfachen: Um mittels des Radiometer-Prinzips die Temperatur an der Füllgut-Oberfläche hochgenau bestimmen zu können, muss der entsprechenden Auswerte-Einheit neben dem zweiten Auswertungs- Signal und einem etwaigen Referenz-Signal außerdem der Emissionsgrad, mit welchem der jeweilige Füllgut-Typ die Wärmestrahlung im konkreten Frequenzbereich ausstrahlt, vorliegen. Dieser muss bisher für jeden Füllgut-Typ bekannt sein und dementsprechend in der Auswerte-Einheit manuell voreingestellt werden. Diese Voreinstellung kann im Rahmen der Erfindung automatisiert werden, sofern die Hochfrequenz-Einheit ausgelegt ist, anhand der eingehenden Empfangs-Signale neben dem Füllstand außerdem den Emissions-Grad der Füllgut-Oberfläche zu bestimmen. Somit kann die Auswerte-Einheit die Temperatur, die durch die Radiometer-Einheit ermittelt ist, anhand des gewonnenen Reflexions-Grades korrigieren. Möglich ist dies, da der Emissions-Grad äquivalent zum Reflexions-Grad der Radar-Signale an der Füllgut-Oberfläche ist. Dadurch kann die Hochfrequenz-Einheit den Reflexions- bzw. Emissions-Grad also beispielsweise anhand der Leistung der empfangenen Radar-Signale ermitteln.
Gemäß des Stand der Technik im Bereich der Radar-basierten Füllstandsmessung kann die Hochfrequenz-Einheit das auszusendende Radar-Signal beispielsweise mittels des FMCW- oder Pulslaufzeit-Verfahrens generieren bzw. das erste Auswertungs-Signal gemäß des entsprechenden Verfahrens zu erzeugen, um den Füllstand zu bestimmen. Da beide Verfahren sowie Radiometer-basierte Schaltungen gemäß des Dicke-Prinzips jeweils eine Taktung erfordern, kann das erfindungsgemäße Messgerät daher vorzugsweise eine gemeinsame Taktgeber-Einheit umfassen, welche sowohl die Hochfrequenz-Einheit als auch die Radiometer-Einheit mittels eines gemeinsamen Takt- Signals taktet. Hierdurch lässt sich die Anzahl an Komponenten reduzieren.
Allgemein bietet das erfindungsgemäße Messgerät den Vorteil, dass es mit einer sehr hohen Integrationsdichte und somit sehr kompakt ausgelegt werden kann. Hierzu können die Hochfrequenz-Einheit und die Radiometer-Einheit beispielsweise als integraler Bestandteil einer gemeinsamen, integrierten Halbleiterschaltung ausgelegt werden.
Sofern das erfindungsgemäße Messgerät lediglich die erste Antenne umfasst, ist der ersten Antenne und der Hochfrequenz-Einheit bzw. der Radiometer-Einheit eine steuerbare Signalweiche wie beispielsweise ein elektronischer Signalschalter oder ein Multiplexer, oder eine nicht-steuerbare Signalweiche wie zum Beispiel ein Diplexer, zwischenzuschalten. Denkbar ist in diesem Zusammenhang auch, die Signalweich auf Basis von Frequenztrennung oder Polarisation zu realisieren. Alternativ zu einer Signalweiche kann das Messgerät auch eine zweite Antenne umfassen, die ausschließlich zum Empfang der Wärmestrahlung dient. In diesem Fall werden die Radar-Signale mittels der ersten Antenne ausgesandt bzw. empfangen. Hierbei ist es vorteilhaft, wenn der ersten Antenne und der zweiten Antenne eine gemeinsame Bündelungs-Vorrichtung, also bspw. eine Sammel-Linse, vorgeschaltet sind.
Unabhängig davon, ob das Messgerät eine oder mehrere Antennen umfasst, kann/können diese in kompakter Weise als Planar-Antenne ausgelegt werden. In dem Frequenz-Bereich um 100 GHz bieten sich hierzu beispielsweise Patch- oder Fraktal- Antennen an, die als integraler Bestandteil der Hochfrequenz- bzw. Radiometer-Einheit ausgeführt sind.
Unter dem Begriff „Einheit“ wird im Rahmen der Erfindung prinzipiell eine separate Anordnung bzw. Kapselung derjenigen elektronischen Schaltungen verstanden, die für einen konkreten Einsatzzweck, bspw. zur Hochfrequenz-Signalverarbeitung oder als Schnittstelle, vorgesehen sind. Die jeweilige Einheit kann also je nach Einsatzzweck entsprechende Analogschaltungen zur Erzeugung bzw. Verarbeitung entsprechender analoger Signale umfassen. Die Einheit kann jedoch auch Digitalschaltungen, wie FPGA’s, Microcontroller oder Speichermedien in Zusammenwirken mit entsprechenden Programmen umfassen. Dabei ist das Programm ausgelegt, die erforderlichen Verfahrensschritte durchzuführen bzw. die notwendigen Rechenoperationen anzuwenden. In diesem Kontext können verschiedene Einheiten im Sinne der Erfindung potenziell auch auf einen gemeinsamen physikalischen Speicher zurückgreifen bzw. mittels derselben physikalischen Digitalschaltung betrieben werden. Außerdem ist es nicht relevant, ob verschiedene elektronische Schaltungen innerhalb einer Einheit auf einer gemeinsamen Leiterkarte oder auf mehreren, verbundenen Leiterkarten angeordnet sind.
Anhand der nachfolgenden Figuren wird die Erfindung näher erläutert. Es zeigt:
Fig. 1 : Ein erfindungsgemäßes Messgerät an einem Behälter,
Fig. 2: ein Blockschaltbild des Messgerätes, und
Fig. 3 ein Blockschaltbild der Radiometer-Einheit des Messgerätes.
Zum prinzipiellen Verständnis der Erfindung ist in Fig. 1 ein Behälter 3 mit einem Füllgut 2 gezeigt, dessen Füllstand L und Temperatur beispielsweise im Rahmen eines chemischen Prozesses zu bestimmen sind. Dabei kann der Behälter 3 je nach Art des Füllgutes 2 und je nach Einsatzgebiet bis zu mehr als 100 m hoch sein. Von der Art des Füllgutes 2 und dem Prozess hängen auch die Bedingungen im Behälter s ab. So kann es im Falle von exothermen Reaktionen beispielsweise zu hoher Temperatur- und Druckbelastung kommen, wobei etwaige Edukte/Produkte über entsprechende Leitungen zu- bzw. abführbar sind. Zur thermischen Isolation ist der Behälter s bei der in Fig. 1 gezeigten Ausführungsvariante an dessen Innenwand vollflächig mit einer thermischen Isolation 31 , die beispielsweise auf einem Kunststoff-basierten Schaumstoff oder eine Mineralwolle basiert, ausgekleidet.
Um den Füllstand L und die Temperatur des Füllgutes 2 berührungslos zu ermitteln, ist ein erfindungsgemäßes Messgerät 1 oberhalb des Füllgutes 2 in einer bekannten Einbauhöhe h über der Sole des Behälters 3 angebracht. Dabei ist das Messgerät 1 derart Druck- und Mediendicht an einer entsprechenden Öffnung des Behälters 3 befestigt bzw. ausgerichtet, dass lediglich eine Antenne 11 des Messgerätes 1 in den Behälter 3 hinein vertikal nach unten gen Füllgut 2 gerichtet ist, während deren weiteren Komponenten außerhalb des Behälters 3 angeordnet sind. Da Schaumstoffe und Mineralwolle weitestgehend transparent für Radar-Signale SHF, RHF bzw. Wärmestrahlung SIR im entsprechenden Frequenzbereich sind, ist es nicht hindernd, dass die Antenne 11 in Bezug zum Füllgut 2 außerhalb der thermischen Isolation 31 angeordnet ist.
Über eine separate Schnittstellen-Einheit, wie etwa „4-20 mA“, „PROFIBUS“, „HART“, oder „Ethernet“ kann das Messgerät 1 mit einer übergeordneten Einheit 4, wie z. B. einem lokalen Prozessleitsystem oder einem dezentralen Server-System verbunden werden. Hierüber kann der gemessene Füllstandswert L oder die Füllgut-Temperatur übermittelt werden, beispielsweise um die etwaigen Zu- oder Abflüsse des Behälters 3 zu steuern. Es können aber auch anderweitige Informationen über den allgemeinen Betriebszustand des Messgerätes 1 kommuniziert werden.
Den Füllstand L bestimmt das Messgerät 1 , wie es aus dem Stand der Technik bekannt ist: Demnach sendet das Messgerät 1 über die Antenne 11 Radar-Signale SHF in Richtung der Oberfläche des Füllgutes 2 aus. Nach Reflektion der Radar-Signale SHF an der Füllgut-Oberfläche empfängt das Messgerät 1 die reflektierten Radar-Signale RHF wiederum über die Antenne 11 . Dabei ist die Signallaufzeit t zwischen Aussenden und Empfang des jeweiligen Radar-Signals SHF, RHF gemäß
Figure imgf000007_0001
proportional zum Abstand d zwischen dem Füllstandsmessgerät 1 und dem Füllgut 2, wobei c der Radar-Ausbreitungsgeschwindigkeit gemäß Lichtgeschwindigkeit entspricht. Die Signallaufzeit t kann vom Messgerät 1 beispielsweise mittels des FMCW- oder mittels des Pulslaufzeit-Verfahrens bestimmt werden. Hierdurch kann das Messgerät 1 beispielsweise auf Basis einer entsprechenden Kalibration die gemessene Laufzeit t dem jeweiligen Abstand d zuordnen. Darüber kann das Messgerät 1 gemäß d = h — L wiederum den Füllstand L bestimmen, sofern die Einbauhöhe h im Messgerät 1 hinterlegt wird. Zur Bestimmung der Signallaufzeit t bzw. des Füllstandes L anhand des eingehenden Empfangs-Signals RHF dient eine entsprechend ausgelegte Hochfrequenz- Einheit 12 des Messgerätes 1 , in welcher beispielsweise das FMCW- oder Pulslaufzeit- Messprinzip implementiert ist. Korrespondierend hierzu dient die Hochfrequenz-Einheit 12 zur Erzeugung des auszusendenden Radar-Signals SHF.
Im Falle des Pulslaufzeit-Prinzips basiert die Hochfrequenz-Einheit 12 auf dem Prinzip der Unterabtastung der nach Aussenden empfangenen Hochfrequenzpulse RHF . Dahingegen sendet die Hochfrequenz-Einheit 12 im Falle des FMCW- Prinzips das Radar-Signal SHF Frequenz-moduliert aus und mischt die beiden Signale SHF, RHF nach Wiederempfang signaltechnisch miteinander. Wie anhand des Blockschaltbildes des Messgerätes 1 in Fig. 2 gezeigt ist, generiert die Hochfrequenz-Einheit 12 sowohl im Falle von FMCW, als auch beim Pulslaufzeit-Verfahren ein analoges erstes Auswertungs- Signal SZF, anhand dessen Frequenz-Charakteristik eine entsprechend ausgelegte Auswerte-Einheit 15 den Füllstand L ermitteln kann.
Wie aus Fig. 2 hervorgeht, umfasst das Messgerät 1 neben der Hochfrequenz-Einheit 12 erfindungsgemäß zudem eine Radiometer-Einheit 14, mittels welcher auf Basis des Radiometer-Prinzips die Temperatur des Füllgutes 2 bestimmbar ist. Dementsprechend sind beide Einheiten 12, 14 über eine Signalweiche 13 mit der Antenne 11 verbunden. Hierdurch werden die Radar-Signale SHF, RHF von der Hochfrequenz-Einheit 12 zur Antenne 11 hin bzw. von dort zurückgeleitet, während eingehende Wärmestrahlung SIR zur Radiometer-Einheit 14 geleitet wird, um hieraus die Temperatur des Füllgutes 2 ableiten zu können.
Erfindungsgemäß wird sich also die Erkenntnis zunutze gemacht, dass die vom Füllgut 2 ausgehende Wärmestrahlung SIR zumindest anteilig per se in demjenigen Frequenzbereich vorliegt, auf welchen auch Radar-basierte Füllstandsmessgeräte ausgelegt sind. Dementsprechend sind die Hochfrequenz-Einheit 12, die Antenne 11 und die Radiometer-Einheit 14 idealerweise auf denselben Frequenzbereich auszulegen. Dabei ist es sowohl für die Füllstandsmessung, als auch für die Temperaturmessung umso vorteilhafter, auf je höhere Signal-Frequenzen das Messgerät 1 ausgelegt ist: Hinsichtlich der Füllstandsmessung können hierdurch prinzipbedingt höhere Mess- Auflösungen erzielt werden. Aufgrund der mit der Frequenz steigenden Strahlungsintensität der Wärmestrahlung SIR erhöht sich bezüglich der Temperaturmessung wiederum deren Empfindlichkeit. Unter diesen Aspekten ist es also vorteilhaft, wenn die entsprechenden Einheiten 11 , 12, 13, 14 auf eine Frequenz von 100 GHz oder mehr ausgelegt sind. Bei diesen Frequenzen ist es außerdem möglich, die Antenne 11 als planare Patch-Antenne auszulegen, welche eine Bündelung ihrer Abstrahlkeule von unter 10° erreicht. Gleichbedeutend hiermit wird mittels des erfindungsgemäßen Messgerätes 1 genau genommen die Temperatur desjenigen Bereichs der Füllgut-Oberfläche ermittelt, welcher durch die Abstrahlkeule der Antenne 11 im entsprechenden Frequenzband ausgeleuchtet wird.
Die planare Auslegung der Antenne 11 ermöglicht eine sehr hohe Integrationsdichte, wodurch das Messgerät 1 erfindungsgemäß äußerst kompakt ausgelegt werden kann. In diesem Zusammenhang bietet das erfindungsgemäße Messgerät 1 insbesondere den Vorteil, dass möglichst alle aktiven, elektrischen Einheiten 12-17 des Messgerätes 1 als gemeinsames, monolithisches Halbleiterbauteil realisiert werden können.
Bei der in Fig. 2 gezeigten Ausführungsvariante des Messgerätes 1 werden die Hochfrequenz-Einheit 12 und die Radiometer-Einheit 14 durch eine gemeinsame Taktgeber-Einheit 17 getaktet, beispielsweise in Form eines Schwingquarzes. Darüber hinaus werden die Hochfrequenz-Einheit 12, die Signalweiche 13, und die Radiometer- Einheit 14 neben der Auswerte-Einheit 15 durch eine gemeinsame Steuer-Einheit 16 gesteuert, so dass das Messgerät 1 beispielsweise zyklisch abwechselnd die Temperatur und den Füllstand L bestimmen kann. Dementsprechend invertierend sind die Hochfrequenz-Einheit 12 und die Radiometer-Einheit 14 in diesem Fall an- und auszuschalten, und die Signalweiche 13 ist entsprechend zyklisch umzuschalten.
Eine mögliche Ausführungsvariante der Radiometer-Einheit 14 ist in Fig. 3 dargestellt: Das dortige Blockschaltbild der Radiometer-Einheit 14 spiegelt das so genannte „Dicke- Prinzip“ wider: Demnach wird das über die Antenne 11 eingehende Wärmestrahlungs- Signal SIR zunächst mit einem Referenz-Signal sref, das eine definierte Temperatur repräsentiert, verglichen. Hierdurch ist die Temperatur des Füllgutes 2 als absoluter Wert bestimmbar. Das Referenz-Signal sref entstammt einem Referenztemperatur-Geber 142, welcher beispielsweise als Widerstand ausgelegt ist und endseitig auf Masse geschaltet ist. Somit dient das Eigenrauschen des Widerstand als Referenz-Signal sref. Die dort anliegende Temperatur ist über einen separaten Temperatur-Sensor zu erfassen und der Auswerte-Einheit 15 zuzuführen. Um das Wärmestrahlungs-Signal SIR und das Referenz- Signal Sref auswerten zu können, werden diese vor Weiterverarbeitung jeweils durch einen Verstärker 141 , 141 ‘ mit niedrigem Rauschen (auch bekannt als „Low Noise Amplifier“) verstärkt. Der Vergleich der Signale sref, SIR erfolgt mittels eines Schalters 143, welcher zyklisch abwechselnd eines der Signale SIR, sref durschaltet, je nach Änderungsrate der Temperatur mit einer Schaltfrequenz zwischen 1 Hz und 10kHz. Das jeweils durchgeschaltete Signal SIR, sref beinhaltet die Temperatur-Information in Form seiner Rauschleistung N, die es über das entsprechende Frequenzband integriert aufweist. Gemäß des Radiometer-Prinzips wird sich also der physikalische Zusammenhang zunutze gemacht, wonach
Figure imgf000010_0001
Dabei entspricht B der Bandbreite des Frequenzbandes. Bei k handelt es sich um die Boltzmann-Konstante.
Zu einer einfacheren Auswertbarkeit der Temperatur-Information wird das Signal SIR, sref bzw. deren Rauschfrequenz im Anschluss an den Schalter 143 in einem Mischer 144 durch das Takt-Signal scik der Taktgeber-Einheit 17 frequenztechnisch heruntergemischt. Dabei wird das Takt-Signal scik durch einen Frequenz-Multiplikator 145 vorab gegebenenfalls angepasst.
Ausgehend vom Mischer 144 sind im weiteren Signalpfad ein Bandpass 146 und ein anschließender Verstärker 147 angeordnet. Diese sind auf die Frequenz des heruntergemischten Signals angepasst und dienen gemäß dem Dicke-Fix Prinzips zur weiteren Unterdrückung von Bauteil-bedingtem Rauschen bzw. Störsignalen. Hiernach korrespondiert die Leistung des bis dorthin verarbeiteten Signals der Temperatur des Füllgutes 2. Um ein analoges zweites DC-Auswertungs-Signal stemP zu erhalten, deren Spannung die Temperatur repräsentiert, ist dem Verstärker 147 abschließend ein entsprechender Leistungsdetektor 148 nachgeschaltet.
Beide Signale, das resultierende zweite Auswertungs-Signal stemP und das Referenz- Signal Sref werden der Auswerte-Einheit 15 des Messgerätes 1 zugeführt, welche durch deren Vergleich die Temperatur des Füllgutes 2 als absoluten Wert bestimmen kann. Dabei kann die Messgenauigkeit der Temperaturmessung erhöht werden, sofern der Auswerte-Einheit 15 der Emissions-Grad, mit welchem der jeweilige Füllgut-Typ die Wärmestrahlung im relevanten Frequenzbereich über dessen Füllgut-Oberfläche abstrahlt, bekannt ist. Dementsprechend kann der Emissions-Grad der Auswerte-Einheit 15 beispielsweise über eine entsprechende Eingabe-Einheit manuell vorgegeben werden.
Nachteilhaft hieran ist jedoch einerseits, dass der Emissions-Grad des jeweiligen Füllgut- Typs per se bekannt sein muss. Andererseits darf nicht vergessen werden, den Emissions-Grad in der Auswerte-Einheit 15 je nach Situation manuell zu ändern, sofern im Behälter 3 beispielsweise ein neuer Füllgut-Typ vorliegt bzw. der im Behälter 3 stattfindende Prozess abgeändert wird. Um dies zu überwinden, kann das erfindungsgemäße Messgerät 1 derart vorteilhaft weiterentwickelt werden, so dass die zur Füllstandsmessung bestimmte Hochfrequenz-Einheit 12 anhand der eingehenden Radar- Signale RHF einen Reflexionskoeffizienten ermitteln kann. Dazu müssen bestimmte Systemparameter mit ausreichender Genauigkeit bekannt sein, insbesondere der Antennengewinn, die Sendeleistung und die Entfernung d zum Füllgut 2, welche im Rahmen der Füllstandsmessung erfasst wird. Unter definierten Bedingungen sind diese Systemparameter als typischerweise bekannt.
Der Reflexionskoeffizient sagt aus, zu welchem Anteil das ausgesendete Radar-Signal SHF an der Füllgut-Oberfläche leistungsmäßig reflektiert wird. Dabei ist der Reflexionskoeffizient äquivalent zum Emissions-Grad des Füllgutes 2. Bei entsprechender Auslegung kann die Hochfrequenz-Einheit 12 den ermittelten Reflexionskoeffizienten bzw. Emissions-Grad dementsprechend der Auswerte-Einheit 15 übermitteln. Hierdurch kann die Auswerte-Einheit 15 anhand des zweiten Auswertungs- Signals Stemp, des Referenz-Signals sref und des Emissions-Grades die Temperatur hochgenau ermitteln, ohne dass der Füllgut-Typ bzw. dessen Emissions-Grad in der Auswerte-Einheit 15 manuell eingegeben werden muss.
Bezugszeichenliste
1 Messgerät
2 Füllgut
3 Behälter
4 Übergeordnete Einheit
11 Antenne
12 Hochfrequenz-Einheit
13 Erster Umschalter
14 Radiometer-Einheit
15 Auswerte-Einheit
16 Steuer-Einheit
17 Taktgeber-Einheit
31 Thermische Isolation
141 , 141“ Low Noise Amplifier
142 Referenztemperatur-Geber
143 Zweiter Umschalter
144 Mischer
145 Frequenz-Multiplikator
146 Bandpassfilter
147 Verstärker
148 Leistungsdetektor d Entfernung h Einbauhöhe
L Füllstand
RHF Empfangs-Signal
SHF Radar-Signal
SIR Wärmestrahlung
SZF Erstes Auswertungs-Signal
Scik Takt-Signal
Sref Referenztemperatur-Signal
Stemp Zweites Auswertungs-Signal

Claims

Patentansprüche
1 . Messgerät zur Bestimmung eines Füllstandes (L) und einer Temperatur eines Füllgutes (2) in einem Behälter (3), folgende Komponenten umfassend:
Zumindest eine Antenne (11), mittels welcher o in einem definierten Frequenzbereich Radar-Signale (SHF) gen Füllgut (2) aussendbar sind und o nach Reflektion der Radar-Signale (SHF) an der Füllgut-Oberfläche entsprechende Empfangs-Signale (RHF) empfangbar sind, und/oder o Wärmestrahlung (SIR), welche dem Füllgut (2) zuordbar ist, empfangbar ist, und eine Hochfrequenz-Einheit (12), die ausgelegt ist, o die auszusendenden Radar-Signale (SHF) ZU generieren und o anhand der eingehenden Empfangs-Signale (RHF) ein erstes Auswertungs-Signal (SZF) ZU erzeugen, anhand dessen der Füllstand (L) bestimmbar ist, gekennzeichnet durch eine Radiometer-Einheit (14), welche ausgelegt ist, anhand der empfangenen Wärmestrahlung (SIR) ein zweites Auswertungs-Signal (Stemp) zu generieren, mittels welchem die Temperatur des Füllgutes (2) bestimmbar ist.
2. Messgerät nach Anspruch 1 , wobei die Hochfrequenz-Einheit (12) ausgelegt ist, die Radar-Signale (SHF, RHF) in einem Frequenzbereich oberhalb von 100 GHz, insbesondere zwischen 180 GHz und 500 GHz zu erzeugen bzw. zu verarbeiten, und wobei die Radiometer-Einheit (14) ausgelegt ist, die Wärmestrahlung (SIR) des entsprechenden Frequenzbereichs zu verarbeiten.
3. Messgerät nach Anspruch 1 oder 2, wobei Hochfrequenz-Einheit (12) ausgelegt ist, anhand der eingehenden Empfangs-Signale (RHF) einen Emissions-Grad der Füllgut- Oberfläche zu bestimmen, so dass die ermittelte Temperatur anhand des Emissions- Grades korrigierbar ist.
4. Messgerät nach Anspruch 1 , 2 oder 3, wobei die Radiometer-Einheit (14) als geschalteter Radiometer-Empfänger gemäß des Dicke-Prinzips ausgelegt ist.
5. Messgerät nach einem der vorhergehenden Ansprüche, wobei die Hochfrequenz- Einheit (12) ausgelegt ist, das auszusendende Radar-Signal (SHF) mittels des FMCW- oder Pulslaufzeit-Verfahrens zu generieren bzw. das erste Auswertungs-Signal (SZF) gemäß des entsprechenden Verfahrens zu erzeugen.
6. Messgerät nach Anspruch 4 und 5, umfassend: eine Taktgeber-Einheit (17), welche die Hochfrequenz-Einheit (12) und die Radiometer-Einheit (14) mittels eines gemeinsamen Takt-Signals (scik) taktet.
7. Messgerät nach einem der vorhergehenden Ansprüche, wobei zumindest die Hochfrequenz-Einheit (12) und die Radiometer-Einheit (14) als integraler Bestandteil einer gemeinsamen, integrierten Halbleiterschaltung ausgelegt sind.
8. Messgerät nach einem der vorhergehenden Ansprüche, umfassend:
Eine zweite Antenne, die zum Empfang der Wärmestrahlung (SIR) ausgelegt ist, wobei die Radar-Signale (SHF, RHF) mittels der ersten Antenne (11) ausgesandt bzw. empfangen werden.
9. Messgerät nach zumindest einem der vorhergehenden Ansprüche, wobei die erste Antenne (11) bzw. die zweite Antenne als Planar-Antenne ausgelegt ist/sind.
10. Messgerät nach Anspruch 8 oder 9, wobei der ersten Antenne (11 ) und der zweiten Antenne eine gemeinsame Bündelungs-Vorrichtung vorgeschaltet sind.
11 . Messgerät nach einem der Ansprüche 1 bis 7 umfassend:
Eine insbesondere steuerbare Signalweiche (13), welche der ersten Antenne (11 ) und der Hochfrequenz-Einheit (12) bzw. der Radiometer-Einheit (14) zwischengeschaltet ist.
12. Messgerät nach einem der vorhergehenden Ansprüche, wobei die Radiometer- Einheit (14) ein Peltier-Kühlelement umfasst.
PCT/EP2023/051492 2022-02-14 2023-01-23 Kombinierte füllstands- und temperaturmessung WO2023151929A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102022103341.4A DE102022103341A1 (de) 2022-02-14 2022-02-14 Kombinierte Füllstands- und Temperaturmessung
DE102022103341.4 2022-02-14

Publications (1)

Publication Number Publication Date
WO2023151929A1 true WO2023151929A1 (de) 2023-08-17

Family

ID=85076254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2023/051492 WO2023151929A1 (de) 2022-02-14 2023-01-23 Kombinierte füllstands- und temperaturmessung

Country Status (2)

Country Link
DE (1) DE102022103341A1 (de)
WO (1) WO2023151929A1 (de)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2045586A1 (de) * 2007-10-01 2009-04-08 Siemens Milltronics Process Instruments Inc. Verfahren und System zur Messung des Füllstandes eines Materials
DE202013102514U1 (de) * 2013-06-11 2013-06-17 Vega Grieshaber Kg Füllstandmessgerät zur Feuchtigkeitsbestimmung
CN203672498U (zh) * 2014-01-16 2014-06-25 王春刚 非接触式太阳能热水器传感器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5171733A (en) 1990-12-04 1992-12-15 The Regents Of The University Of California Antenna-coupled high Tc superconducting microbolometer
GB201015207D0 (en) 2010-09-13 2010-10-27 Radio Physics Solutions Ltd Improvements in or relating to millimeter and sub-millimeter mave radar-radiometric imaging
CN103728027B (zh) 2014-01-16 2016-03-09 王春刚 非接触式太阳能热水器传感器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2045586A1 (de) * 2007-10-01 2009-04-08 Siemens Milltronics Process Instruments Inc. Verfahren und System zur Messung des Füllstandes eines Materials
DE202013102514U1 (de) * 2013-06-11 2013-06-17 Vega Grieshaber Kg Füllstandmessgerät zur Feuchtigkeitsbestimmung
CN203672498U (zh) * 2014-01-16 2014-06-25 王春刚 非接触式太阳能热水器传感器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PETER DEVINE, RADAR LEVEL DETECTION, 2000

Also Published As

Publication number Publication date
DE102022103341A1 (de) 2023-08-17

Similar Documents

Publication Publication Date Title
DE69730416T2 (de) Füllstandmessradargerät
EP3308110B1 (de) Verfahren und vorrichtung zur überprüfung der funktionsfähigkeit eines radar-basierten füllstandsmessgeräts
EP3139139A1 (de) Füllstandmessgerät mit störsignal-erfassungsmodus
EP3918313B1 (de) Messgerät zur bestimmung eines dielektrizitätswertes
EP2856123B1 (de) Vorrichtung zur messung der dielektrischen und/oder magnetischen eigenschaften einer probe mittels einer mikrowellen-transmissionsmessung
DE102019110621A1 (de) Tomografievorrichtung und Tomografieverfahren
WO2021104839A1 (de) Fmcw-basiertes abstandsmessgerät
DE102018132739B4 (de) Verfahren zur FMCW-basierten Abstandsmessung
WO2023151929A1 (de) Kombinierte füllstands- und temperaturmessung
WO2020151869A1 (de) Messgerät zur bestimmung eines dielektrizitätswertes
DE4027973A1 (de) Vorrichtung zur bestimmung des profils der oberflaeche der begichtung in einem schachtofen
DE102019132354A1 (de) FMCW-basiertes Abstandsmessgerät
EP4070048B1 (de) Füllstandsmessgerät
EP4073496A1 (de) Messgerät zur bestimmung eines dielektrizitätswertes
EP3746753B1 (de) Verfahren zur detektion von potentiellen fehlerzuständen an einem fmcw-basierten füllstandsmessgerät
EP1303754A1 (de) Vorrichtung zur feststellung der änderung der dichte eines mediums
EP3467446B1 (de) Radarfüllstandmessgerät mit synchronisationssignal auf verschiedenen schichten einer platine
DE102022103343A1 (de) Berührungslose Temperaturmessung
DE102018123429A1 (de) Füllstandsmessgerät
WO2020035472A1 (de) Füllstandsmessgerät
DE102020129764A1 (de) Füllstandsmessgerät
EP3884246B1 (de) Messgerät
DE102019124825B4 (de) Messgerät zur Bestimmung eines Dielelektrizitätswertes
DE102022128393A1 (de) Ortsauflösende Füllstandsmessung
DE102020134061A1 (de) Hochfrequenz-basiertes Feldgerät

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23701896

Country of ref document: EP

Kind code of ref document: A1