WO2023151607A1 - 柔性直流输电电压源换流阀试验方法及电源装置 - Google Patents

柔性直流输电电压源换流阀试验方法及电源装置 Download PDF

Info

Publication number
WO2023151607A1
WO2023151607A1 PCT/CN2023/075084 CN2023075084W WO2023151607A1 WO 2023151607 A1 WO2023151607 A1 WO 2023151607A1 CN 2023075084 W CN2023075084 W CN 2023075084W WO 2023151607 A1 WO2023151607 A1 WO 2023151607A1
Authority
WO
WIPO (PCT)
Prior art keywords
converter valve
test
voltage source
source converter
voltage
Prior art date
Application number
PCT/CN2023/075084
Other languages
English (en)
French (fr)
Other versions
WO2023151607A9 (zh
Inventor
胡应宏
李�雨
吕志瑞
蔡巍
卢毅
宋鹏
龙凯华
杜维柱
黄天啸
Original Assignee
华北电力科学研究院有限责任公司
国网冀北电力有限公司电力科学研究院
国家电网有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华北电力科学研究院有限责任公司, 国网冀北电力有限公司电力科学研究院, 国家电网有限公司 filed Critical 华北电力科学研究院有限责任公司
Publication of WO2023151607A1 publication Critical patent/WO2023151607A1/zh
Publication of WO2023151607A9 publication Critical patent/WO2023151607A9/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/327Testing of circuit interrupters, switches or circuit-breakers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/12Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing
    • G01R31/1227Testing dielectric strength or breakdown voltage ; Testing or monitoring effectiveness or level of insulation, e.g. of a cable or of an apparatus, for example using partial discharge measurements; Electrostatic testing of components, parts or materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/26Testing of individual semiconductor devices
    • G01R31/2601Apparatus or methods therefor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/60Arrangements for transfer of electric power between AC networks or generators via a high voltage DC link [HVCD]

Definitions

  • the invention relates to a flexible direct current transmission technology, in particular to a test method for a voltage source converter valve of a flexible direct current transmission and a power supply device.
  • Modular Multilevel Converter adopts controllable shut-off power electronic devices and pulse width modulation technology (Pulse Width Modulation, PWM), which can realize independent control of active power and reactive power, It can also supply power to the passive network, which is a novel multilevel converter topology.
  • PWM pulse width modulation technology
  • the flexible direct current transmission system based on the modular voltage source converter valve can overcome the shortcomings of the traditional thyristor direct current transmission, and connect new energy power plants (such as wind power, solar power, etc.) to the grid, supply power to long-distance loads, and construct Urban load centers and other fields have broad application prospects.
  • modular multi-level converter valves Compared with conventional DC thyristor valves, modular multi-level converter valves have the advantages of compact and modular design, easy to move, install, debug and maintain, convenient to expand and realize multi-terminal DC transmission, etc., and become an indispensable part of the future power transmission and distribution system. missing important component.
  • the sub-module based on IGBT (Insulated Gate Bipolar Transistor, insulated gate bipolar transistor) power electronic components is the core component of the MMC converter valve.
  • IGBT Insulated Gate Bipolar Transistor, insulated gate bipolar transistor
  • the sub-module is extremely vulnerable to vibration, Influenced by complex transportation environments such as drop, high and low temperature, and humidity, in order to ensure the normal function of the MMC converter valve sub-module used in the flexible direct current transmission project, it is necessary to test the converter valve sub-module before installation.
  • the project mostly adopts the method of testing the valve section composed of multiple sub-modules in series, or performs an unlocking test on the converter valve from the AC system when conditions are met.
  • the offshore wind power flexible DC transmission project is similar to the onshore flexible DC transmission project.
  • the offshore platform does not have the AC power point and load of the onshore converter station, which makes the two face different engineering practical problems.
  • Offshore converter stations are all operating in an isolated state, and there is no AC system power supply during the infrastructure construction stage. Only after the converter valve is in place and the submarine cable connection is completed, can the system test of the converter valve be performed from the DC submarine cable. At this time, the converter valve has not been completely tested, and it cannot be guaranteed that the converter valve will be put into operation in good condition. Only a full and complete station system test can ensure the safety of equipment and the smooth progress of system debugging.
  • the present invention provides a flexible direct current transmission voltage source converter valve test method, including:
  • the tested voltage source converter valve is unlocked, and the electrical performance test is performed on the tested voltage source converter valve;
  • the voltage source converter valve under test is blocked, and the energy harvesting power supply blocking test is performed on the voltage source converter valve under test.
  • connection of the positive pole, ground or negative pole connection end of the voltage source converter valve under test to the external test DC power supply by controlling the isolating switch includes:
  • the positive, ground and negative poles of the external test DC power supply are respectively connected to the positive, ground and negative terminals of the voltage source converter valve under test; or, the positive pole test During the test, the positive pole and the ground of the external test DC power supply are respectively connected to the positive pole and the ground connection end of the voltage source converter valve, and the negative pole DC power supply is not connected in the air; during the negative pole test, the negative pole and ground of the external test DC power supply are respectively connected to To the negative pole and ground connection terminal of the voltage source converter valve, the positive pole DC power supply is not connected in the air;
  • the power transmission system is a pseudo-bipolar flexible DC power transmission system, and the positive pole, ground and negative pole of the external test DC power supply are respectively connected to the positive pole, ground and negative pole connection terminals of the voltage source converter valve under test;
  • the positive pole and ground of the external test DC power supply are respectively connected to the tested
  • the positive pole and ground connection terminal of the voltage source converter valve, and the negative pole DC power supply are not connected in the air; when the negative pole converter is used, the negative pole and ground of the external test DC power supply are respectively connected to the negative pole and ground connection of the voltage source converter valve under test. terminal, the positive DC power supply is not connected.
  • the step of controlling the boost of the external test DC power supply to charge the capacitance of the measured voltage source converter valve, and performing the start-up voltage test of the energy harvesting power source for the measured voltage source converter valve includes:
  • the step of controlling the boost of the external test DC power supply to charge the capacitance of the measured voltage source converter valve, and performing the start-up voltage test of the energy harvesting power source for the measured voltage source converter valve includes:
  • the sub-modules are controlled according to the detected energy-taking power supply voltage, communication status and capacitor voltage equalization of the converter valve sub-module.
  • the energy harvesting power supply starts the voltage test.
  • performing a voltage withstand test on the measured voltage source converter valve includes:
  • the voltage source converter valve under test is unlocked, and the electrical performance test of the voltage source converter valve under test includes:
  • the passive unlocking of the measured voltage source converter valve includes:
  • the voltage source converter valve under test is passively unlocked at different preset durations.
  • the voltage source converter valve under test is passively unlocked with different preset modulation ratios.
  • the voltage source converter valve under test is unlocked, and the electrical performance test of the voltage source converter valve under test includes:
  • the active unlocking of the measured voltage source converter valve includes:
  • the voltage source converter valve under test is actively unlocked at different preset durations.
  • the voltage source converter valve under test is actively unlocked with different preset modulation ratios.
  • the present invention also provides a flexible DC transmission voltage source converter valve test power supply device, the power supply device is used to output DC power supply, and provides the above-mentioned external test DC power supply;
  • the test power supply includes: incoming line switch protection circuit , voltage regulating device and step-up transformer;
  • One end of the incoming line switch protection circuit is connected to one end of the voltage regulating device, the other end of the incoming line switch protection circuit is connected to an external AC power supply, and the incoming line switch protection circuit realizes the connection between the external AC source and the voltage regulating device. disconnect;
  • the other end of the voltage regulating device is connected to the primary side of the step-up transformer, and is used for regulating the voltage of the external AC power connected through the protection circuit of the incoming line switch;
  • the first end of the secondary side of the step-up transformer is grounded, and the second end of the secondary side of the step-up transformer is used to output the DC power required for charging and unlocking tests.
  • the flexible DC transmission voltage source converter valve test method and the test power supply provided by the present invention connect the positive, ground or negative terminal of the voltage source converter valve under test to the external test DC power supply by controlling the isolation switch; Boost the DC power supply to charge the capacitor of the voltage source converter valve under test, and conduct the energy-taking power starting voltage test on the voltage source converter valve under test; after charging the capacitor of the voltage source converter valve under test to the rated voltage, The tested voltage source converter valve is subjected to a withstand voltage test; after the withstand voltage test is completed, the tested voltage source converter valve is unlocked, and an electrical performance test is performed on the tested voltage source converter valve; after the electrical performance test is completed, The voltage source converter valve under test is blocked, and the energy harvesting power supply blocking test is performed on the voltage source converter valve under test.
  • the diodes of the sub-modules of the converter valve itself are controlled to form a rectification circuit, and the charging step is completed, and the entire converter station, converter, valve tower, and valve component sub-modules are completed at one time.
  • Energy harvesting power supply starting voltage test, sub-module withstand voltage test, IGBT on-off test, bypass switch protection action test, energy harvesting power supply blocking voltage, sub-module capacitance, sub-module discharge resistance test the technical scheme is easy to operate and easy for equipment It has low performance requirements and a wide range of applications. It is not only suitable for valve section sub-module performance testing, but also for sub-module performance testing of valve towers and valve hall bridge arms.
  • Fig. 1 is the flow chart of the test method of the flexible direct current transmission voltage source converter valve provided by the present invention
  • Fig. 2 is a schematic diagram of the wiring of the pseudo-bipolar converter DC voltage test power supply provided in the embodiment of the present invention
  • Fig. 3 is a schematic diagram of the DC power supply wiring of the true bipolar converter provided in the embodiment of the present invention.
  • Figure 4 is a schematic diagram of the positive pole connection of the DC pressurized test power supply of the unipolar converter provided in the embodiment of the present invention.
  • Fig. 5 is a schematic diagram of the negative pole connection of the DC pressurized test power supply of the unipolar converter provided in the embodiment of the present invention.
  • Fig. 6 is a schematic diagram of the connection of the positive DC power supply of the true bipolar converter provided in the embodiment of the present invention.
  • Fig. 7 is a schematic diagram of the wiring of the negative DC power supply of the true bipolar converter provided in the embodiment of the present invention.
  • Fig. 8 is a schematic diagram of an unlocking waveform of a pseudo-bipolar converter in an embodiment of the present invention.
  • Fig. 9 is a schematic diagram of unlocking waveforms of a true bipolar converter in an embodiment of the present invention.
  • Fig. 10 is a schematic diagram of a DC charging device for a true bipolar (pseudo-bipolar) offshore flexible DC transmission converter valve;
  • Figure 11 is a three-phase schematic diagram of a true bipolar (false bipolar) offshore flexible DC transmission converter valve DC charging device
  • Fig. 12 Single-phase schematic diagram of positive polarity flexible DC transmission converter valve DC charging device
  • Fig. 13 Single-phase schematic diagram of DC charging device for negative polarity flexible DC transmission converter valve
  • Fig. 14 Three-phase schematic diagram of positive polarity flexible direct current transmission converter valve direct current charging device
  • FIG. 15 Three-phase schematic diagram of a DC charging device for a negative polarity flexible DC transmission converter valve.
  • the offshore wind power flexible DC transmission project is similar to the onshore flexible DC transmission project.
  • the offshore platform does not have the AC power point and load of the onshore converter station, which makes the two face different engineering practical problems.
  • the commissioning of offshore converter stations is mainly divided into two stages: station system commissioning at the wharf and offshore end-to-end system commissioning.
  • Station system commissioning is the basis and guarantee for end-to-end system commissioning. Only a full and complete station system test can ensure the safety of equipment and the smooth progress of system debugging.
  • the converter valve is generally charged and unlocked through the AC system.
  • the converter valve is charged and unlocked from the AC system, and it faces many problems in the offshore soft straight project.
  • the main problems are:
  • the required power supply capacity is large.
  • the capacity of the converter valve is relatively large (about 1000MVA).
  • the converter valve has very high requirements on the system strength and power supply capacity. Taking switching converter transformers into consideration, the transient power when the AC is charging and unlocking the converter valve accounts for 5% of the rated power, then the power capacity required by the AC system is 50MVA, which is about the capacity of 1-2 main transformers in a 110kV substation.
  • there are still stability problems such as system oscillation, which threaten the safety of converter valves and equipment.
  • Temporary grounding devices are required.
  • the grounding points of offshore wind power projects are all set on land, and there is no grounding point for offshore converter stations.
  • temporary grounding devices need to be added.
  • the grounding methods that can be adopted are mainly two kinds of DC resistance voltage division and grounding reactance, and the cost of both is about 1 million.
  • the grounding impedance of the temporary grounding device is difficult to meet the debugging requirements (less than 0.5 ohms).
  • the present invention provides a flexible DC transmission voltage source converter valve test method, as shown in Figure 1, the method of the present invention includes:
  • Step S101 connecting the positive, ground or negative terminal of the voltage source converter valve under test to an external test DC power supply by controlling the isolation switch;
  • Step S102 controlling the boost of the external test DC power supply to charge the capacitance of the measured voltage source converter valve, and performing an energy harvesting power start-up voltage test on the measured voltage source converter valve;
  • Step S103 after charging the capacitor of the voltage source converter valve under test to a rated voltage, conduct a withstand voltage test on the voltage source converter valve under test;
  • Step S104 after the withstand voltage test is completed, the voltage source converter valve under test is unlocked, and an electrical performance test is performed on the voltage source converter valve under test;
  • Step S105 after the electrical performance test is completed, the voltage source converter valve under test is blocked, and an energy harvesting power supply blocking test is performed on the voltage source converter valve under test.
  • Voltage source converter valves are mainly modular multi-level converter valves, that is, MMC (MMC, modular multi-level) converter valves are divided into converter valve power modules (hereinafter referred to as sub-modules), valve sections, valve Layer and valve tower structure, generally 4-6 sub-modules constitute a valve section, 4-6 valve sections constitute a valve layer, 4-5 valve layers constitute a valve tower, and a valve hall in the converter station is a bridge
  • the arm generally consists of 2 valve towers.
  • Figure 2 shows the topology of a unipolar voltage source converter valve
  • Figure 3 shows the topology of a true bipolar voltage source converter valve.
  • the converter valve sub-module is the smallest unit of the converter valve.
  • the sub-module composed of the power electronic component IGBT and its anti-parallel diode is the core component of the converter valve. Its electrical performance directly affects the overall function of the converter valve.
  • the valves are easily affected by complex transportation environments such as vibration, drop, high and low temperature, and humidity when they are transported to the site.
  • valve sub-module In order to ensure that all converter valve sub-modules used in the flexible direct current transmission The valve sub-module is tested, and the valve section, valve tower and bridge arm test for the debugging of the converter valve components are tests that effectively verify the performance of the sub-module.
  • the present invention proposes a charging scheme that uses an external DC power supply to charge the diode rectification circuit of the MMC converter valve submodule itself to charge the submodule capacitor.
  • This scheme simplifies the charging circuit and reduces the requirements for charging equipment.
  • the operability of the charging step is improved, and the application range is wide.
  • the converter is composed of one or more converter valves. Based on the charging scheme, the converter, converter valve, converter valve valve section, and converter valve component tests are used to evaluate the internal electrical performance of the converter valve and sub-modules.
  • the complete test process can be completed including converter, converter valve, converter valve valve section, converter valve component sub-module energy harvesting power supply start-up voltage test, sub-module withstand voltage test, IGBT on-off test, bypass switch Protection action test and energy harvesting power supply blocking, sub-module DC side capacitance, discharge resistance voltage test test items, converter valve performance assessment is complete, test operation is flexible and simple, and the valve section test based on this charging scheme can be extended to unipolar , Pseudo-bipolar, true bipolar converter valve performance test.
  • An embodiment of the present invention provides a DC side charging and unlocking test method for a flexible direct current transmission voltage source converter valve, which is used to improve the efficiency and reliability of the internal electrical performance detection of the converter and the converter valve sub-module.
  • test power line to the converter valve.
  • the positive pole, ground and negative pole of the test power supply to the positive pole, ground and negative pole of the voltage source converter valve respectively.
  • the positive pole, ground and negative pole of the test power supply are respectively connected to the positive pole, ground and negative pole of the voltage source converter valve.
  • the bipolar test is carried out at the same time, and the positive pole, ground and negative pole of the test power supply are respectively connected to the positive pole, ground and negative pole of the voltage source converter valve.
  • the positive pole and ground of the test power supply are respectively connected to the positive pole and ground of the voltage source converter valve, and the negative pole DC power supply is not connected, as shown in Figure 4.
  • the negative pole and ground of the test power supply are respectively connected to the negative pole and ground of the voltage source converter valve, and the positive pole DC power supply is not connected, as shown in Figure 5.
  • the pole unit shall be tested separately.
  • the positive pole and the ground of the test power supply are respectively connected to the positive pole and ground of the voltage source converter valve, and the negative pole DC power supply is suspended, as shown in Figure 6.
  • the pressurization process can adopt two ways of stepwise pressurization and gradual pressurization.
  • Step-by-step pressurization method control the external DC power supply to slowly increase the voltage to the minimum energy-taking power supply of the sub-modules, check that the status of each sub-module is normal, if the number of abnormal modules does not exceed the redundant value, continue the test; after the DC voltage reaches the rated voltage , to check the operating voltage; after the inspection, the conditions for unlocking the converter valve are met.
  • sub-module status inspection and operating voltage inspection can be realized through the pole control and valve control monitoring system of the flexible direct current transmission voltage source converter valve.
  • the control and monitoring system realizes the sub-module status inspection and operating voltage inspection, which will not be repeated here.
  • the method of testing the electrical performance of the voltage source converter valve can be divided into passive unlocking and active unlocking according to the presence or absence of DC power supply. In order to ensure the safety of the converter valve and DC power supply, passive unlocking is performed first.
  • the converter valve isolation switch or the DC power supply can be turned off, and the DC power supply can be withdrawn to perform passive unlocking of the converter valve;
  • the DC power supply can be continuously disconnected, and the converter valve can be actively unlocked with the DC power supply.
  • the modulation ratio can be gradually increased until the modulation ratio is 1;
  • the unlocking time can be gradually increased until it is unlocked for a long time.
  • the converter valve Under the condition of passive unlocking, the converter valve can be unlocked with different lengths of time under the condition of fixed modulation ratio.
  • unlocking time of the converter valve such as unlocking the converter valve for 500ms, and check whether the output waveform of the AC voltage output by the converter valve is consistent with the waveform issued by the control and protection;
  • the converter valve After fully verifying that the control and protection functions are correct, the converter valve can be unlocked for a long time.
  • the converter valve Under the condition of passive unlocking, the converter valve can be unlocked with different modulation ratios under the condition of unlocking time.
  • the converter valve After fully verifying that the control and protection functions are correct, the converter valve can be unlocked for a long time.
  • the converter valve Under active unlocking conditions, the converter valve can be unlocked with different modulation ratios and different lengths of time.
  • the modulation ratio can be gradually increased until the modulation ratio is 1;
  • the unlocking time can be gradually increased until it is unlocked for a long time.
  • the converter valve can be unlocked for different lengths of time with a fixed modulation ratio.
  • unlocking time of the converter valve such as unlocking the converter valve for 500ms, and check whether the output waveform of the AC voltage output by the converter valve is consistent with the waveform issued by the control and protection;
  • the converter valve After fully verifying that the control and protection functions are correct, the converter valve can be unlocked for a long time.
  • the converter valves can be unlocked with different modulation ratios depending on the unlocking time.
  • the converter valve After fully verifying that the control and protection functions are correct, the converter valve can be unlocked for a long time.
  • the unlocking waveform of the pseudo-bipolar converter valve is shown in Figure 8
  • the unlocking waveform of the true bipolar converter valve is shown in Figure 9.
  • the following measures are taken as the preset valve control adjustment strategy of the converter valve, so as to realize the adjustment of the number of sub-modules of each bridge arm and the adjustment of the overcurrent protection value of the external DC power supply.
  • the specific measures include:
  • the exit rate of the sub-modules is adjusted.
  • the sub-modules are gradually withdrawn to avoid sudden changes in the number of sub-modules. If the number of sub-modules per bridge arm is 432, then the number will be 431 next time until it is reduced to the required number of sub-modules.
  • the valve control strategy of the converter valve is adjusted to reduce the exit speed of sub-modules while avoiding sudden changes in the number of sub-modules. If the number of sub-modules per bridge arm is 432, then the number will be 431 next time until it is reduced to the required number of sub-modules.
  • Adjust the over-current protection setting value of the external DC power supply specifically, adjust the first-stage over-current protection setting value according to the parameters of the converter valve sub-module.
  • the technical solution provided by the embodiment of the present invention uses the diode of the converter valve sub-module itself to form a rectifier
  • the loop completes the charging step, as shown in Figure 2.
  • the diodes and capacitors on each sub-module are used to form a loop, and the entire converter station, converter, valve tower, and valve component sub-module energy-taking power start-up voltage test, Sub-module withstand voltage test, IGBT on-off test, bypass switch protection action test, energy harvesting power supply blocking voltage, sub-module capacitance, and sub-module discharge resistance test can fully evaluate the electrical performance and parameters of the converter valve and sub-module.
  • the technical solution provided by the embodiment of the present invention can solve the problem of detecting and testing the performance of the converter valve when the island converter station, offshore converter station, and land converter station have no AC system power supply, so as to ensure the safety and reliability of the converter valve. put into service.
  • the present invention also provides a flexible direct current transmission voltage source converter valve test power supply device, the power supply device is used to output the direct current power supply, and provides the external test direct current power supply required by the above test method;
  • the test power supply includes: incoming line Switch protection circuit, voltage regulating device and step-up transformer;
  • One end of the incoming line switch protection circuit is connected to one end of the voltage regulating device, the other end of the incoming line switch protection circuit is connected to an external AC power supply, and the incoming line switch protection circuit realizes the connection between the external AC source and the voltage regulating device. disconnect;
  • the other end of the voltage regulating device is connected to the primary side of the step-up transformer, and is used for regulating the voltage of the external AC power connected through the protection circuit of the incoming line switch;
  • the first end of the secondary side of the step-up transformer is grounded, and the second end of the secondary side of the step-up transformer is used to output the DC power required for charging and unlocking tests.
  • FIG. 10 it is a schematic diagram of a DC charging device for a flexible DC power transmission converter valve provided by an embodiment of the present invention.
  • the first end of the incoming line switch protection cabinet is connected to the external AC power supply for connection to the external AC power supply. Realize the connection and disconnection between the transformer and the AC power supply.
  • the incoming switchgear includes a current-limiting resistor and a closing resistor structure, wherein the current-limiting resistor is used to reduce the excitation inrush current of the transformer; the closing resistor structure is used to control the connection and disconnection of the current-limiting resistor.
  • the incoming switchgear is composed of a current-limiting branch and a switch branch connected in parallel, and the current-limiting branch is composed of a current-limiting resistor R1 and a switch S2 in series.
  • the switch branch is composed of switch S1 .
  • Voltage regulating transformer The first end of the voltage regulating transformer is connected to the AC power supply through the second end of the incoming switch cabinet.
  • the voltage regulating transformer is used to adjust the voltage of the external AC power supply, reduce the impact current and the capacity of the whole set of equipment, and improve the safety of the equipment. sex.
  • the voltage regulating transformer is a single-phase power frequency transformer or a three-phase power frequency transformer.
  • FIG. 2 is a schematic diagram of a true bipolar (false bipolar) offshore flexible DC transmission converter valve DC charging device using a three-phase power supply and a single-phase three-phase circuit. In the embodiment shown in Figure 11, two sets of step-up transformers are used.
  • the step-up transformer is a single-phase power frequency transformer or a three-phase power frequency transformer, and may be a semi-insulated transformer.
  • Step-up transformer the primary side is connected to the AC power supply at the second end of the voltage regulating transformer, used to boost the low-voltage AC power supply of the voltage regulating transformer to the required AC voltage, and the first terminal of the secondary side is grounded;
  • the first end of the AC current limiting resistor R 2 is electrically connected to the AC power supply through the second end of the step-up transformer, which is used to limit the current during the step-up process and protect the device when the device body fails;
  • a voltage doubling capacitor C 1 the first end of the voltage doubling capacitor C 1 is connected to the second end of the AC current limiting resistor R 2 for realizing voltage doubling;
  • Rectifier diode D1 the first end of rectifier diode D1 is connected to the second end of voltage doubler capacitor C1 , the second end of rectifier diode D1 is connected to ground, rectifier diode D1 and voltage doubler capacitor C1 together realize the rectified voltage Double the boost;
  • the rectifier diode D 2 the first end of which is connected to the second end of the voltage doubling capacitor C 1 , realizes unidirectional current flow and prevents the rectifier device from being reversed by the power supply of the converter valve. charging;
  • the filter capacitor C 2 the first end of the filter capacitor C 2 is connected to the second end of the rectifier diode D 2 to filter the uncontrollable rectified voltage to make the output voltage smoother;
  • the voltage divider is composed of resistors, the first end of the voltage divider is connected to the second end of the rectifier diode D2 , and the second end of the voltage divider is connected to the ground for measuring the output DC voltage; No voltage divider can be configured, and the voltage can be read by using the flexible DC transmission voltage source converter valve measuring device;
  • DC current limiting resistor R 2 the first terminal of DC current limiting resistor R 2 is connected to the second terminal of rectifier diode D 2 , and the second terminal of current limiting resistor R 2 is connected to the tested flexible DC transmission voltage source converter valve for limiting The current during the boosting process, and the protection of the equipment when the equipment body and the tested product fail;
  • Discharge device and discharge switch S 3 the discharge device and discharge switch S 3 are in the disconnected state during normal operation; after the test is completed, after the AC power switch S 1 is disconnected, the discharge switch S 3 is closed, and the discharge switch has a positive effect on the DC filter capacitor C 2 discharge.
  • the controller is used for the opening and closing and locking of the device-related switches S 1 , S 2 and S 3 , and the voltage regulating function of the voltage regulating transformer.
  • the protection device is used for overcurrent and overvoltage protection related to the device to avoid the impact on the system caused by equipment failure.
  • the device for the DC charging and unlocking test of the flexible direct current transmission voltage source converter valve provided by the embodiment of the present invention can be applied to the flexible direct current transmission true bipolar and pseudo bipolar voltage source converter valve, and unipolar voltage source converter valve For the test, connect the output high-voltage DC power supply of the device to the corresponding polarity of the converter valve, and connect the equipment ground to the flexible DC system ground.
  • the test device provided by the embodiment of the present invention is applied to the test of the unipolar voltage source converter valve.
  • the positive pole or negative pole of the high-voltage DC power output of the device is connected to the corresponding polarity of the converter valve, and the equipment ground is connected to the flexible system ground.
  • test device provided by the embodiment of the present invention is used as a single-phase schematic diagram of a positive polarity flexible direct current transmission converter valve DC charging device.
  • the details of the rectifier connection are as follows:
  • the rectifier diode D 1 the cathode of the rectifier diode D 1 is connected to the second end of the voltage doubler capacitor C 1 , the anode of the rectifier diode D 1 is connected to the ground, and the rectifier diode D 1 and the voltage doubler capacitor C 1 work together to double the rectified voltage;
  • the rectifier diode D 2 the anode of the rectifier diode D 2 is connected to the second end of the voltage doubler capacitor C 1 to realize the unidirectional flow of current and prevent the reverse charging of the rectifier device by the power supply of the converter valve;
  • the filter capacitor C 2 the first end of the filter capacitor C 2 is connected to the cathode of the rectifier diode D 2 to filter the uncontrollable rectified voltage to make the output voltage smoother;
  • the voltage divider is composed of resistors.
  • the first end of the voltage divider is connected to the cathode of the rectifier diode D2 , and the second end of the voltage divider is connected to the ground for measuring the output DC voltage;
  • the DC transmission voltage source converter valve measuring device reads the voltage;
  • DC current limiting resistor R 3 the first terminal of DC current limiting resistor R 3 is connected to the cathode of rectifier diode D 2 , and the second terminal of current limiting resistor R 3 is connected to the converter valve of the tested flexible DC transmission voltage source, which is used to limit the boost The current in the process, and the protection equipment when the equipment body and the tested product fail;
  • FIG. 13 it is a single-phase schematic diagram of the test device of the present invention as a DC charging device for a negative polarity flexible DC transmission converter valve.
  • the rectifier is connected as follows:
  • the rectifier diode D 1 the anode of the rectifier diode D 1 is connected to the second end of the voltage doubler capacitor C 1 , the cathode of the rectifier diode D 1 is connected to the ground, and the rectifier diode D 1 and the voltage doubler capacitor C 1 work together to double the rectified voltage;
  • the rectifier diode D 2 the cathode of the rectifier diode D 2 is connected to the second end of the voltage doubler capacitor C 1 to realize the unidirectional flow of current and prevent the reverse charging of the rectifier device by the power supply of the converter valve;
  • Filter capacitor C 2 the first terminal of filter capacitor C 2 is connected to the anode of rectifier diode D 2 to filter the uncontrollable rectified voltage to make the output voltage smoother;
  • the voltage divider is composed of resistors to divide the voltage.
  • the first end of the voltage divider is connected to the second end of the anode of the rectifier diode D2 , and the second end is connected to the ground for measuring the output DC voltage; it is also possible not to configure the voltage divider.
  • the first end of the DC current limiting resistor R3 is connected to the anode of the rectifier diode D2 , and the second end of the current limiting resistor R3 is connected to the tested flexible DC transmission voltage source converter valve, which is used to limit the current during the boosting process, and Protect the equipment when the equipment body and the tested product fail.
  • the device of this embodiment is applied to the test of a true bipolar or pseudo-polar voltage source converter valve.
  • the positive pole and negative pole of the high-voltage DC power output of the device are connected to the corresponding polarity of the converter valve at the same time, and the equipment ground is connected to the flexible system ground.
  • the device further includes: AC current limiting resistor R 2 , capacitor C 1 , rectifier diode D 1 and rectifier diode D 2 ; that is, it is composed of capacitor C 1 , rectifier diode D 1 and rectifier diode D 2
  • the rectifier circuit rectifies the voltage output from the high-voltage side of the transformer to realize the step-up of the DC voltage without inrush current. Through the optimized parameters of the transformer, rectifier and capacitor, it can meet the charging and unlocking test of the DC side of the converter valve.
  • the output voltage at the high voltage side of the transformer is output to the ground circuit of the rectifier through the current limiting resistor R2 for rectification.
  • the second end of the secondary side of the step-up transformer is connected to the first end of the AC current limiting resistor R2 , and the second end of the AC current limiting resistor R2 is connected to the rectifier diode through the capacitor C1
  • the first terminal of D 2 is connected, the second terminal of the rectifier diode D 2 is connected to the external device under test to output the voltage required for charging and unlocking tests, the first terminal of the rectifier diode D 1 is connected to the Between the capacitor C1 and the rectifier diode D2 , the second end of the rectifier diode D1 is grounded.
  • test device is used for the rectification circuit when conducting positive polarity converter valve experiments
  • the first end of the rectifier diode D1 is a cathode, and the second end of the rectifier diode D1 is an anode;
  • the first terminal of the rectifying diode D2 is an anode, and the second terminal of the rectifying diode D2 is a cathode.
  • the device is used for the rectification circuit when performing negative polarity converter valve experiments
  • the first end of the rectifier diode D1 is an anode, and the second end of the rectifier diode D1 is a cathode;
  • the first terminal of the rectifying diode D2 is a cathode, and the second terminal of the rectifying diode D2 is an anode.
  • the positive power supply rectifier is connected as:
  • the rectifier diode D 1 the cathode of the rectifier diode D 1 is connected to the second end of the voltage doubler capacitor C 1 , the anode of the rectifier diode D 1 is connected to the ground, and the rectifier diode D 1 and the voltage doubler capacitor C 1 work together to double the rectified voltage;
  • the rectifier diode D 2 the anode of the rectifier diode D 2 is connected to the second end of the voltage doubler capacitor C 1 to realize the unidirectional flow of current and prevent the reverse charging of the rectifier device by the power supply of the converter valve;
  • the filter capacitor C 2 the first end of the filter capacitor C 2 is connected to the cathode of the rectifier diode D 2 to filter the uncontrollable rectified voltage to make the output voltage smoother;
  • the voltage divider is composed of resistors for voltage division.
  • the first end of the voltage divider is connected to the second end of the cathode of the rectifier diode D2 , and the second end of the voltage divider is connected to the ground for measuring the output DC voltage;
  • voltage converter use the flexible direct current transmission voltage source converter valve measuring device to read the voltage;
  • DC current limiting resistor R 2 the first terminal of DC current limiting resistor R 2 is connected to the cathode of rectifier diode D 2 , and the second terminal of current limiting resistor R 2 is connected to the converter valve of the tested flexible DC transmission voltage source, which is used to limit the boost The current in the process, and the protection equipment when the equipment body and the tested product fail;
  • the negative power supply rectifier is connected as:
  • the rectifier diode D 1 the anode of the rectifier diode D 1 is connected to the second end of the voltage doubler capacitor C 1 , the cathode of the rectifier diode D 1 is connected to the ground, and the rectifier diode D 1 and the voltage doubler capacitor C 1 work together to double the rectified voltage;
  • the rectifier diode D 2 the cathode of the rectifier diode D 2 is connected to the second end of the voltage doubler capacitor C 1 to realize the unidirectional flow of current and prevent the reverse charging of the rectifier device by the power supply of the converter valve;
  • Filter capacitor C 2 the first terminal of filter capacitor C 2 is connected to the anode of rectifier diode D 2 to filter the uncontrollable rectified voltage to make the output voltage smoother;
  • the voltage divider is composed of resistors to divide the voltage.
  • the first end of the voltage divider is connected to the anode of the rectifier diode D2 , and the second end is connected to the ground for measuring the output DC voltage;
  • the voltage is read by the measuring device of the transmission voltage source converter valve;
  • DC current limiting resistor R 2 the first terminal of DC current limiting resistor R 2 is connected to the second terminal of the anode of rectifier diode D 2 , and the second terminal of current limiting resistor R 2 is connected to the tested flexible DC transmission voltage source converter valve for Limit the current during the boosting process, and protect the equipment when the equipment body and the tested product fail.
  • test power supply voltage regulating transformer, step-up transformer, AC current limiting resistor R 2 , voltage doubler capacitor C 1 , and rectifier diode D 1 can be single-phase circuits or three-phase circuits.
  • a three-phase circuit For a three-phase circuit, it consists of three identical voltage regulating transformers, step-up transformers, AC current limiting resistor R 2 , voltage doubler capacitor C 1 , rectifier diode D 1 , and rectifier diode D 2 to form a unit, and the three units are respectively Connect A, B, C three phases to realize the voltage doubler rectification of the power supply.
  • the three units are connected in parallel at the rectifier diode D2, and then connected with the filter capacitor C2 and the current limiting resistor.
  • Figure 14 is a three-phase schematic diagram of a positive polarity flexible DC power transmission converter valve DC charging device in an embodiment of the present invention
  • Figure 15 is a three-phase schematic diagram of a negative polarity flexible DC power transmission converter valve DC charging device in an embodiment of the present invention
  • the controller control device voltage regulating transformer switches S 1 and S 2 are disconnected, and the discharge device switch S 3 is disconnected; after the test starts, first the controller control device voltage regulating transformer switch S 2 is closed; After a certain period of time, the controller controls the voltage regulating transformer switch S 1 of the device to be closed, and the voltage regulating transformer switch S 2 is disconnected; then the controller boosts the external AC power supply through the transformer by adjusting the voltage regulating transformer, and then converts the rectified DC power supply to the inverter.
  • the circuit formed by the flow valve, the output charges the capacitor of the sub-module of the measured valve section, valve tower or valve hall bridge arm. After the test is completed, open the S 1 switch and close the S 3 switch. After the device is distributed and discharged, open the S 3 and the test is over.
  • the voltage regulating transformer in this embodiment can realize voltage regulation and frequency conversion based on a variable frequency power supply.
  • the test device provided in this embodiment, during the charging process, according to the voltage and current detected by the oscilloscope of the controller, the start-up voltage test of the converter valve and the sub-module energy harvesting power supply, and the withstand voltage test of the converter valve and the sub-module are completed in sequence; After rising to the rated DC voltage, start the unlocking test of the converter valve as a whole, verify the primary DC withstand voltage and unlocking function of the converter valve, check the secondary control logic, triggering, communication, etc., and electrify the converter valve system of the flexible DC transmission voltage source Get ready for debugging.
  • the test device for the flexible direct current transmission voltage source converter valve provided by the present invention realizes zero-start boost of the voltage through a step-up transformer, and can meet the DC side charging requirements of the converter valve by selecting appropriate parameters of the transformer, rectifier and capacitor. And the unlocking test can be applied to the test of the offshore and onshore flexible DC transmission voltage source converter valve without system power supply, and comprehensively inspect the single and overall performance of the voltage source converter valve.
  • the step-up transformer can be realized by using a variable frequency power supply.
  • the embodiments of the present invention may be provided as methods, systems, or computer program products. Accordingly, the present invention can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware aspects. Furthermore, the present invention may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) having computer-usable program code embodied therein.
  • computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory capable of directing a computer or other programmable data processing apparatus to operate in a specific manner, such that the instructions stored in the computer-readable memory produce an article of manufacture comprising instruction means, the instructions
  • the device realizes the function specified in one or more procedures of the flowchart and/or one or more blocks of the block diagram.

Abstract

一种柔性直流输电电压源换流阀试验方法及电源装置,方法包括:通过控制隔离开关将被测电压源换流阀的正极、地或负极连接端连接到外部试验直流电源(S101);控制外部试验直流电源升压对被测电压源换流阀的电容进行充电,进行取能电源启动电压测试(S102);对被测电压源换流阀的电容充电至额定电压后,进行耐压测试试验(S103);耐压测试试验完成后,对被测电压源换流阀解锁,对被测电压源换流阀进行电气性能试验(S104);电气性能试验试验完成后,闭锁被测电压源换流阀进行取能电源闭锁测试(S105)。本方法试验过程操作简单、对设备性能要求低,且适用范围广,不仅适用于阀段子模块性能检测,而且适用于阀塔和单极、双极换流阀的性能检测。

Description

柔性直流输电电压源换流阀试验方法及电源装置 技术领域
本发明涉及柔性直流输电技术,具体的讲是一种柔性直流输电电压源换流阀试验方法及电源装置。
背景技术
模块化多电平换流阀(Modular Multilevel Converter,MMC)采用可控关断型电力电子器件和脉冲宽度调制技术(Pulse Width Modulation,PWM),既可以实现有功功率和无功功率的独立控制,又能向无源网络供电,是一种新颖的多电平变换器拓扑结构。基于模块化电压源换流阀的柔性直流输电系统,能够克服传统可控硅直流输电的缺点,在连接新能源发电场(如风力发电、太阳能发电等)到电网、向远距离负荷供电、构筑城市负荷中心等领域具有广阔的应用前景。模块化多电平换流阀较常规直流晶闸管阀具有紧凑化、模块化设计,易于移动、安装、调试和维护,方便扩展和实现多端直流输电等优点,成为未来输配电系统中一个不可或缺的重要组成部分。
基于IGBT(Insulated Gate Bipolar Transistor,绝缘栅双极型晶体管)电力电子元件的子模块是MMC换流阀的核心元件,工程安装阶段,但是子模块在运抵现场的过程中,极易受到振动、跌落、高低温、湿度等复杂运输环境的影响,为了保证柔性直流输电工程使用的MMC换流阀子模块功能正常,需要在安装前对换流阀子模块进行测试。为了缩短现场安装调试时间,工程多采用以多个子模块串联组成的阀段为单位进行测试的方法,或者具备条件后,从交流系统对换流阀进行解锁试验。
在原理上,海上风电柔性直流输电工程和陆上柔性直流输电相似,海上平台没有陆上换流站的交流电源点和负荷,使得两者面临不同的工程实际问题。海上换流站都是处于孤岛运行状态,在基建阶段没有交流系统电源。只有等换流阀就位、海缆连接完成后,才具备从直流海缆对换流阀进行系统试验。此时,换流阀没有经过完全的试验,不能保证换流阀完好的投入运行。只有充分和完善的站系统试验,才能保证设备的安全和系统调试的顺利进行。继续采用陆上换流站的调试方式,通过交流系统对换流阀进行充电与解锁调试的方式,是不经济的,而且也是不可行的。寻找适合海上柔直换流站调试的电源和方法,已成为制约海上柔直调试的最大难题,必须寻求新的调试技术与设备。
发明内容
为克服现有技术中柔性直流输电电压源换流阀试验的至少一缺陷,本发明提供了一种柔性直流输电电压源换流阀试验方法,包括:
通过控制隔离开关将被测电压源换流阀的正极、地或负极连接端连接到外部试验直流电源;
控制所述外部试验直流电源升压对被测电压源换流阀的电容进行充电,对被测电压源换流阀进行取能电源启动电压测试;
对被测电压源换流阀的电容充电至额定电压后,对被测电压源换流阀进行耐压测试试验;
耐压测试试验完成后,对被测电压源换流阀解锁,对被测电压源换流阀进行电气性能试验;
电气性能试验试验完成后,闭锁被测电压源换流阀,对被测电压源换流阀进行取能电源闭锁测试。
本发明实施例中,所述的通过控制隔离开关将被测电压源换流阀的正极、地或负极连接端连接到外部试验直流电源包括:
确定输电系统为真双极柔性直流输电换流器,所述外部试验直流电源的正极、地和负极,分别接于被测电压源换流阀的正极、地和负极连接端;或者,正极试验时,所述外部试验直流电源的正极、地分别接于电压源换流阀的正极、地连接端,负极直流电源悬空不接;负极试验时,所述外部试验直流电源的负极、地分别接于电压源换流阀的负极、地连接端,正极直流电源悬空不接;
确定输电系统为伪双极柔性直流输电系统,所述外部试验直流电源的正极、地和负极,分别接于被测电压源换流阀的正极、地和负极连接端;
确定输电系统为单极柔性直流输电系统,正极换流器时,所述外部试验直流电源的正极、地分别接于被测 电压源换流阀的正极、地连接端,负极直流电源悬空不接;负极换流器时,所述外部试验直流电源的负极、地分别接于被测电压源换流阀的负极、地连接端,正极直流电源悬空不接。
本发明实施例中,所述控制所述外部试验直流电源升压对被测电压源换流阀的电容进行充电,对被测电压源换流阀进行取能电源启动电压测试包括:
控制外部试验直流电源升压至被测电压源换流阀的子模块最小取能电源,确定换流阀子模块中的异常模块数量不超过预设冗余值,则继续升压至被测电压源换流阀的额定电压,在升压充电过程中,根据检测到的换流阀子模块的取能电源电压、通信状态以及电容均应进行子模块的取能电源启动电压测试。
本发明实施例中,所述控制所述外部试验直流电源升压对被测电压源换流阀的电容进行充电,对被测电压源换流阀进行取能电源启动电压测试包括:
控制外部直流电源升压至被测电压源换流阀的额定电压,在升压充电过程中,根据检测到的换流阀子模块的取能电源电压、通信状态以及电容均压进行子模块的取能电源启动电压测试。
本发明实施例中,所述对被测电压源换流阀的电容充电至额定电压后,对被测电压源换流阀进行耐压测试试验包括:
对被测电压源换流阀的电容充电至额定电压后,确定电压源换流阀子模块的取能电源电压、通信状态以及电容均压正常后,并且电压源换流阀的旁路子模块个数少于预设的冗余数量时,控制被测电压源换流阀、阀段、阀塔或阀厅桥臂两端的电压升至额定电压,且保持预设时长,在预设时长内,完成换流阀耐压测试。
本发明实施例中,所述的耐压测试试验完成后,对被测电压源换流阀解锁,对被测电压源换流阀进行电气性能试验包括:
控制所述隔离开关断开外部试验直流电源,对被测电压源换流阀解锁进行无源解锁,根据被测电压源换流阀输出波形对被测电压源换流阀进行电气性能试验检测。
本发明实施例中,所述的对被测电压源换流阀解锁进行无源解锁包括:
按预设的固定调制比,以预设的不同时长对被测电压源换流阀进行无源解锁;或
按预设的固定时长,以预设的不同调制比对被测电压源换流阀进行无源解锁。
本发明实施例中,所述的耐压测试试验完成后,对被测电压源换流阀解锁,对被测电压源换流阀进行电气性能试验包括:
对被测电压源换流阀解锁进行有源解锁,根据被测电压源换流阀输出波形对被测电压源换流阀进行电气性能试验检测。
本发明实施例中,所述的对被测电压源换流阀解锁进行有源解锁包括:
按预设的固定调制比,以预设的不同时长对被测电压源换流阀进行有源解锁;或
按预设的固定时长,以预设的不同调制比对被测电压源换流阀进行有源解锁。
另一方面,本发明还提供一种柔性直流输电电压源换流阀试验电源装置,电源装置用于输出直流电源,提供上述的外部试验直流电源;所述的试验电源包括:进线开关保护电路,调压装置以及升压变压器;
所述进线开关保护电路的一端连接到调压装置的一端,所述进线开关保护电路的另一端连接外部交流电源,所述进线开关保护电路实现外部交流源与调压装置的连接与断开;
所述调压装置的另一端连接到升压变压器的原边,用于对通过进线开关保护电路接入的外部交流电源进行调压;
所述升压变压器的副边的第一端接地,所述升压变压器的副边的第二端用于输出充电与解锁试验所需直流电源。
本发明提供的柔性直流输电电压源换流阀试验方法及试验电源,通过控制隔离开关将被测电压源换流阀的正极、地或负极连接端连接到外部试验直流电源;控制所述外部试验直流电源升压对被测电压源换流阀的电容进行充电,对被测电压源换流阀进行取能电源启动电压测试;对被测电压源换流阀的电容充电至额定电压后,对被测电压源换流阀进行耐压测试试验;耐压测试试验完成后,对被测电压源换流阀解锁,对被测电压源换流阀进行电气性能试验;电气性能试验试验完成后,闭锁被测电压源换流阀,对被测电压源换流阀进行取能电源闭锁测试。通过控制外部直流电源的接入及升压过程,控制换流阀自身的子模块的二极管构成整流回路,完成充电步骤,一次性完成整个换流站、换流器、阀塔、阀组件子模块取能电源启动电压测试、子模块耐压测试、IGBT的开通关断测试、旁路开关保护动作测试、取能电源闭锁电压、子模块电容、子模块放电电阻测试,技术方案操作简单、对设备性能要求低,且适用范围广,不仅适用于阀段子模块性能检测,而且适用于阀塔和阀厅桥臂的子模块性能检测。
为让本发明的上述和其他目的、特征和优点能更明显易懂,下文特举较佳实施例,并配合所附图式,作详细说明如下。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的柔性直流输电电压源换流阀试验方法的流程图;
图2为本发明实施例中提供的伪双极换流器直流加压试验电源接线示意图;
图3为本发明实施例中提供的真双极换流器直流电源接线示意图;
图4为本发明实施例中提供的单极换流器直流加压试验电源正极接线示意;
图5为本发明实施例中提供的单极换流器直流加压试验电源负极接线示意;
图6为本发明实施例中提供的真双极换流器正极直流电源接线示意图;
图7为本发明实施例中提供的真双极换流器负极直流电源接线示意图;
图8为本发明实施例中的伪双极换流器解锁波形示意图;
图9为本发明实施例中的真双极换流器解锁波形示意图;
图10为真双极(伪双极)海上柔性直流输电换流阀直流充电装置示意图;
图11为真双极(伪双极)海上柔性直流输电换流阀直流充电装置三相示意图;
图12正极性柔性直流输电换流阀直流充电装置单相示意图;
图13负极性柔性直流输电换流阀直流充电装置单相示意图;
图14正极性柔性直流输电换流阀直流充电装置三相示意图;
图15负极性柔性直流输电换流阀直流充电装置三相示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
海上风电柔性直流输电工程和陆上柔性直流输电相似,海上平台没有陆上换流站的交流电源点和负荷,使得两者面临不同的工程实际问题。海上换流站的调试主要分为在码头的站系统调试和海上的端对端系统调试两阶段,站系统调试是端对端系统调试的基础和保障。只有充分和完善的站系统试验,才能保证设备的安全和系统调试的顺利进行。根据已有调试经验,在调试期间,一般通过交流系统对换流阀进行充电与解锁,但是换流阀从交流充电与解锁,在海上柔直工程中面临很多问题,主要问题有:
1.所需电源容量大换流阀容量较大(约在1000MVA数量级),在码头调试期间,换流阀对系统强度和电源容量要求非常大。以投切换流变压器,从交流对换流阀充电以及解锁时的暂态功率占额定功率的5%计算,则交流系统需要的电源容量为50MVA,约为110kV变电站1-2台主变容量。另外,在系统强度较弱的情况下,还存在系统振荡等稳定问题,威胁换流阀与设备的安全。
2.需要增加充电电阻模块化电压源换流阀在充电前,电容器的电压为零,电容器近似为短路。如果没有充电电阻,则会产生非常大的充电电流,导致换流阀损坏。为此,需要增加充电电阻,限制充电时的过流。如通过交流对换流阀进行充电,充电电阻容量在5MVA左右,电阻成本较高,成本约在200万左右;电阻制作周期长,需要专门定制,时间约4-6个月;电阻通用性差,根据每个工程具体参数,需要不同的充电电阻。
3.需要临时接地装置海上风电柔直工程的接地点,均设置在陆上,海上换流站没有接地点。海上换流站在陆上调试期间,需要增设临时接地装置。可以采取的接地方式,主要由直流电阻分压与接地电抗两种,两者的成本都在100万左右。另外,临时接地装置的接地阻抗,很难满足调试要求(小于0.5欧姆)。
4.与实际系统运行方式有差异海上换流站正常运行,是通过直流侧对换流阀进行充电与解锁。如果从交流侧进行充电与解锁,则使得调试与正常运行方式有所差异。如从交流侧进行充电与解锁,在海上调试期间也需要补充相应试验。
基于以上原因,继续采用陆上换流站的调试方式,通过交流系统对换流阀进行充电与解锁调试的方式,是不经济的,而且也是不可行的。寻找适合海上柔直换流站调试的电源和方法,已成为制约海上柔直调试的最大难题,必须寻求新的调试技术与设备。为此,我们提出从直流侧对系统进行充电与解锁,从而避免了电源容量、大功率充电电阻、临时接地装置、运行方式等问题。
有鉴于此,本发明提供了一种柔性直流输电电压源换流阀试验方法,如图1所示,本发明的方法包括:
步骤S101,通过控制隔离开关将被测电压源换流阀的正极、地或负极连接端连接到外部试验直流电源;
步骤S102,控制所述外部试验直流电源升压对被测电压源换流阀的电容进行充电,对被测电压源换流阀进行取能电源启动电压测试;
步骤S103,对被测电压源换流阀的电容充电至额定电压后,对被测电压源换流阀进行耐压测试试验;
步骤S104,耐压测试试验完成后,对被测电压源换流阀解锁,对被测电压源换流阀进行电气性能试验;
步骤S105,电气性能试验试验完成后,闭锁被测电压源换流阀,对被测电压源换流阀进行取能电源闭锁测试。
下面结合具体的实施例对本发明的技术方案作详细描述,在介绍本发明实施例之前,首先对本发明实施例提供技术方案涉及的技术名词进行介绍如下。
电压源换流阀,主要为模块化多电平换流阀,也就是MMC(MMC,模块化多电平)换流阀分为换流阀功率模块(以下简称子模块)、阀段、阀层和阀塔结构,一般4-6个子模块构成1个阀段,4-6个阀段构成1个阀层,4-5个阀层构成1个阀塔,换流站内阀厅1个桥臂一般由2个阀塔构成。
图2所示为单极电压源换流阀拓扑结构,图3所示为真双极电压源换流阀拓扑结构。换流阀子模块是换流阀的最小单元,由电力电子元件IGBT及其反并联二极管组成的子模块是换流阀的核心元件,其电气性能直接影响换流阀的整体功能,由于换流阀在运抵现场的过程中易受到振动、跌落、高低温、湿度等复杂运输环境的影响,为保证柔性直流输电工程中使用的全部换流阀子模块功能正常,需要在安装前对换流阀子模块进行测试,针对换流阀部件调试的阀段、阀塔和桥臂试验便是有效检验子模块性能的试验。
现有技术中通过整流模块电源对换流阀子模块充电实现子模块性能测试的存在诸多不足,缺乏对换流阀整体性能检测的方法,不能有效的判断子模块之间的连接、安装、通讯等各种功能都正常。
因此,考虑到上述技术问题,本发明提出了一种利用外接直流电源对MMC换流阀子模块自身的二极管整流回路实现子模块电容充电的充电方案,该方案简化充电回路,降低充电设备要求,提高充电步骤可操作性,适用范围广。并且换流器由一个或多个换流阀构成,基于该充电方案的换流器、换流阀、换流阀阀段、换流阀组件试验用于考核换流阀及子模块内部电气性能,其完整试验过程可完成包括换流器、换流阀、换流阀阀段、换流阀组件子模块取能电源启动电压测试、子模块耐压测试、IGBT开通关断测试、旁路开关保护动作测试和取能电源闭锁、子模块直流侧电容、放电电阻电压测试的测试项目,换流阀性能考核完备、试验操作灵活简单,而且基于该充电方案的阀段试验可推广应用到单极、伪双极、真双极为换流阀性能测试。
下面对该检测换流阀电气性能的方案进行详细介绍如下。
本发明实施例提供了一种柔性直流输电电压源换流阀直流侧充电与解锁试验方法,用以提高换流器、换流阀子模块内部电气性能检测的效率和可靠性。
(1)试验过程中的接线和相应电气的操作如下:
试验前的试验接线过程中,首先断开换流阀与外部的电气连接,并保持足够的安全距离。
接着后将试验电源线接入换流阀,根据柔性直流输电系统拓扑结构,通过将试验电源的正极、地和负极,分别接于电压源换流阀的正极、地和负极。
然后断开换流阀相应的接地刀。
最后,合入换流阀相应的隔离刀,使外部直流电源与换流阀构成回路。
(2)试验电源与换流阀的接线如下:
对于伪双极柔性直流输电系统,如图2所示,试验电源的正极、地和负极,分别接于电压源换流阀的正极、地和负极。
对于真双极柔性直流输电系统,如图3所示,双极同时进行试验,试验电源的正极、地和负极,分别接于电压源换流阀的正极、地和负极。
对于单极柔性直流输电系统,正极换流器时,试验电源的正极、地分别接于电压源换流阀的正极、地,负极直流电源悬空不接,如图4所示。
对于单极柔性直流输电系统,负极换流器时,试验电源的负极、地分别接于电压源换流阀的负极、地,正极直流电源悬空不接,如图5所示。
真双极柔性直流输电换流器,以极为单位,分开试验。
真双极柔性直流输电换流器,正极试验时,试验电源的正极、地分别接于电压源换流阀的正极、地,负极直流电源悬空不接,如图6所示。
真双极柔性直流输电换流器,负极试验时,试验电源的负极、地分别接于电压源换流阀的负极、地,正极直流电源悬空不接,如图7所示。
(3)试验电源连接完成、换流阀水冷、控制保护装置正常运行后,直流电源装置具备给换流阀加压。
(4)加压过程可以采用分阶段加压与逐步加压两种方式。
分步加压方式,控制外部直流电源缓慢升压至子模块最小取能电源,检查各子模块状态正常,如果异常模块数量不超过冗余值,则继续进行试验;直流电压加到额定电压后,进行运行电压检查;检查结束后,具备换流阀解锁试验条件。
逐步加压方式,控制外部直流电源缓慢升压换流阀额定电压,通过换流阀极控与阀控监视后台进行子模块状态检查、运行电压检查;检查结束后,具备换流阀解锁试验条件。
本发明实施例中,子模块状态检查及运行电压检查通过柔性直流输电电压源换流阀的极控与阀控监视系统即可实现,对本领域技术人员可清楚获知如何实现如何利用极控与阀控监视系统实现子模块状态检查及运行电压检查,在此不再赘述。
(5)在充电的过程中,根据换流站极控、换流阀阀控在监测到子模块的通信状态、取能电源工作状态、各子模块直流电压检测电压等功能,各子模块直流电压检测与预设启动电压的差值小于第一预设电压值时,根据检测到的每个子模块的取能电源电压、通信状态及子模块电容均压情况,完成子模块取能电源启动电压测试。
(6)换流阀与子模块耐压测试在监测到每个子模块的取能电源电压正常、通信状态正常及电容均压正常后,旁路子模块个数少于冗余数量时,控制被测电压源换流器、换流阀、阀段、阀塔或阀厅桥臂两端的电压升至额定电压,且保持预设时长,在所述预设时长内,完成换流阀、子模块耐压测试。
(7)检测电压源换流阀电气性能试验的方法,根据有无直流电源,可以分为无源解锁与有源解锁,为了保证换流阀与直流电源的安全,先进行无源解锁。
可以换流阀隔离开关或者关闭直流电源,退出直流电源,进行换流阀的无源解锁;
可以不断开直流电源,带着直流电源,进行换流阀的有源解锁。
(7.1)为了保证控制、保护功能正确,保证换流阀安全,在无源解锁条件下,可以以不同的调制比、不同的时间长度来解锁换流阀。
可以在固定解锁时间长度的情况下,逐步增大调制比,直到调制比为1;
可以在固定调制比的情况下,逐步增大解锁时间,直到长时解锁。
为了保证换流阀的安全,先以较低调制比、较短时间解锁开始,然后逐步增大调制比和解锁时间。
在无源解锁条件下,可以在固定调制比的情况下,以不同的时间长度来解锁换流阀。
先解锁换流阀一周波20ms,检查换流阀输出的交流电压输波形是否与控保下发波形一致;
逐步增大换流阀解锁时间,如解锁换流阀100ms,检查换流阀输出的交流电压输波形是否与控保下发波形一致;
进一步增大换流阀解锁时间,如解锁换流阀500ms,检查换流阀输出的交流电压输波形是否与控保下发波形一致;
充分验证控制保护功能都正确后,则可以长期解锁换流阀。
在无源解锁条件下,可以在解锁时间的情况下,以不同的调制比来解锁换流阀。
先以较低的调制比,如0.5,解锁换流阀固定时间,检查换流阀输出的交流电压输波形是否与控保下发波形一致;
在增大调制比,如0.8,解锁换流阀固定时间,检查换流阀输出的交流电压输波形是否与控保下发波形一致;
增大调制比到1,解锁换流阀固定时间,检查换流阀输出的交流电压输波形是否与控保下发波形一致;
充分验证控制保护功能都正确后,则可以长期解锁换流阀。
(7.2)在有源解锁条件下,可以以不同的调制比、不同的时间长度来解锁换流阀。
可以在固定解锁时间长度的情况下,逐步增大调制比,直到调制比为1;
可以在固定调制比的情况下,逐步增大解锁时间,直到长时解锁。
在有源解锁条件下,可以在固定调制比的情况下,以不同的时间长度来解锁换流阀。
先解锁换流阀一周波20ms,检查换流阀输出的交流电压输波形是否与控保下发波形一致;
逐步增大换流阀解锁时间,如解锁换流阀100ms,检查换流阀输出的交流电压输波形是否与控保下发波形一致;
进一步增大换流阀解锁时间,如解锁换流阀500ms,检查换流阀输出的交流电压输波形是否与控保下发波形一致;
充分验证控制保护功能都正确后,则可以长期解锁换流阀。
在有源解锁条件下,可以在解锁时间的情况下,以不同的调制比来解锁换流阀。
先以较低的调制比,如0.5,解锁换流阀固定时间,检查换流阀输出的交流电压输波形是否与控保下发波形一致;
在增大调制比,如0.8,解锁换流阀固定时间,检查换流阀输出的交流电压输波形是否与控保下发波形一致;
增大调制比到1,解锁换流阀固定时间,检查换流阀输出的交流电压输波形是否与控保下发波形一致;
充分验证控制保护功能都正确后,则可以长期解锁换流阀。
伪双极换流阀解锁波形如图8所示,真双极换流阀解锁波形如图9所示。
(8)加压试验过程中,电压源换流阀在充电到一定阶段后,进入主动充电阶段,会使得换流阀投入子模块数突然减半,为了减小换流阀不可控充电到主动充电转换过程中,子模块数突变导致直流电源过流,或者需 要的直流电源容量过大。即电压源换流阀由不控充电到主动充电时,按预设的换流阀阀控调整策略调整每个桥臂子模块的个数及调整外部直流电源过流保护定值。
具体的,本发明一实施例中,采取以下措施作为预设的换流阀阀控调整策略,从而实现调整每个桥臂子模块的个数及调整外部直流电源过流保护定值,具体措施包括:
在换流阀阀控策略中进行子模块退出速率调整,在由不控充电到主动充电时,逐步退出子模块,避免子模块个数突变。如每桥臂子模块个数为432个,则下一次为431个,直到减小为所需子模块个数。
换流阀阀控策略调整,在避免子模块个数突变的同时,降低子模块退出的速度。如每桥臂子模块个数为432个,则下一次为431个,直到减小为所需子模块个数。
调整外部直流电源过流保护定值,具体为根据换流阀子模块参数,调整过流保护一段定值。
(9)换流阀闭锁后,子模块旁路电容参数与放电电阻测试,开关保护动作功能测试及子模块取能电源闭锁测试。换流阀子模块根据直流电容电压放电速度,计算子模块的直流电容与直流侧电阻。
与现有技术中通过直流电源对换流阀子模块充电实现换流阀、子模块电气性能测试的方案相比较,本发明实施例提供的技术方案,利用换流阀子模块自身的二极管构成整流回路完成充电步骤,即图2所示,利用各子模块上面的二极管及其电容构成回路,一次性完成整个换流站、换流器、阀塔、阀组件子模块取能电源启动电压测试、子模块耐压测试、IGBT的开通关断测试、旁路开关保护动作测试、取能电源闭锁电压、子模块电容、子模块放电电阻测试,可以充分考核换流阀、子模块电气性能与参数。本发明实施例提供的技术方案可以解决孤岛换流站、海上换流站、陆上换流站在没有交流系统电源的情况下,检测换流阀性能检测与试验,保证换流阀安全、可靠投入运行。
另外,本发明还提供一种柔性直流输电电压源换流阀试验电源装置,电源装置用于输出直流电源,提供上述的试验方法所需的外部试验直流电源;所述的试验电源包括:进线开关保护电路,调压装置以及升压变压器;
所述进线开关保护电路的一端连接到调压装置的一端,所述进线开关保护电路的另一端连接外部交流电源,所述进线开关保护电路实现外部交流源与调压装置的连接与断开;
所述调压装置的另一端连接到升压变压器的原边,用于对通过进线开关保护电路接入的外部交流电源进行调压;
所述升压变压器的副边的第一端接地,所述升压变压器的副边的第二端用于输出充电与解锁试验所需直流电源。
如图10所示,为本发明一实施例提供的柔性直流输电换流阀直流充电装置示意图。
进线开关保护柜第一端与外部交流电源连接,用于外部交流电源连接。实现变压器与交流电源的连接与断开。
本发明实施例中,进线开关柜包含限流电阻和合闸电阻结构,其中,限流电阻用于减小变压器的励磁涌流;合闸电阻结构用于控制限流电阻的接入与断开。
具体的,如图10所示,本实施例中,进线开关柜由限流支路和开关支路两条支路并联组成,限流支路由限流电阻R1和开关S2串联组成,开关支路由开关S1组成,在具体合入操作顺序中,在保证开关S1和S2断开的情况下,合入S2开关;在一段时间后,合入S1开关,分开S2开关,进线开关柜操作完成。分开时,则直接分开S1开关。
调压变压器,调压变压器的第一端通过进线开关柜的第二端与交流电源连接,调压变压器用于将外部交流电源调压,减小冲击电流和整套设备的容量,提高设备安全性。
本发明实施例中,调压变压器为单相工频变压器或三相工频变压器。
当试验装置的外部电源采用三相电源时,选用三相变压器。当试验装置的外部电源采用单相电源时,选用单相变压器。
当装置对真双极或伪双极电压源换流阀试验时,装置正负双极的升压变压器可以共用一组变压器,也可以使用2组变压器,正负极分别使用一组调压变压器。图2为真双极(伪双极)海上柔性直流输电换流阀直流充电装置采用三相电源,三相电路单相示意图,图11所示的实施例中,采用两组升压变压器。
升压变压器为单相工频变压器或三相工频变压器,可以为半绝缘变压器。
升压变压器,原边与调压变压器第二端交流电源连接,用于将调压变压器低压交流电源升压到所需交流电压,副边第一端接地;
交流限流电阻R2,交流限流电阻R2第一端通过升压变压器的第二端与交流电源电连接,用于限制升压过程中的电流,以及设备本体发生故障时保护设备;
倍压电容C1,倍压电容C1第一端与交流限流电阻R2的第二端连接,用于实现电压的倍压;
整流二极管D1,整流二极管D1的第一端与倍压电容C1第二端连接,整流二极管D1的第二端与地连接,整流二极管D1与倍压电容器C1一起实现整流电压的一倍升压;
整流二极管D2,其第一端与倍压电容C1第二端连接,实现电流单向流动,避免换流阀电源反向对整流装 置充电;
滤波电容器C2,滤波电容器C2的第一端与整流二极管D2的第二端连接,将不可控整流的电压滤波,使得输出电压更加平滑;
分压器,本实施例中分压器由电阻器组成,分压器第一端与整流二极管D2第二端连接,分压器第二端与地连接,用于测量输出直流电压;也可以不配置分压器,利用柔性直流输电电压源换流阀测量装置读取电压;
直流限流电阻R2,直流限流电阻R2第一端与整流二极管D2第二端连接,限流电阻R2第二端连接到被试柔性直流输电电压源换流阀,用于限制升压过程中的电流,以及设备本体、被试品发生故障时保护设备;
放电装置及放电开关S3,正常工作时放电装置及放电开关S3处于断开状态;试验结束后,断开交流电源开关S1后,闭合放电开关S3,放电开关对直流滤波电容器C2放电。
控制器,用于在装置相关开关S1、S2和S3的开合与闭锁,调压变压器的调压功能。
保护装置,用于在装置相关过流与过压保护,避免设备故障造成对系统的影响。
本发明实施例提供的用于柔性直流输电电压源换流阀直流充电与解锁试验的装置,可以应用于柔性直流输电真双极和伪双极电压源换流阀、单极电压源换流阀试验,将装置输出高压直流电源与换流阀对应极性连接,设备地与柔直系统地连接。
本发明实施例提供的试验装置应用于单极电压源换流阀试验,将装置输出高压直流电源的正极或负极与换流阀对应极性连接,设备地与柔直系统地连接。
如图12所示,为本发明实施例提供的试验装置作为正极性柔性直流输电换流阀直流充电装置的单相示意图,当装置应用于正极换流阀试验时,整流器连接具体如下:
整流二极管D1,整流二极管D1阴极与倍压电容C1第二端连接,整流二极管D1阳极与地连接,整流二极管D1与倍压电容器C1一起实现整流电压的一倍升压;
整流二极管D2,整流二极管D2阳极与倍压电容C1第二端连接,实现电流单向流动,避免换流阀电源反向对整流装置充电;
滤波电容器C2,滤波电容器C2第一端与整流二极管D2阴极连接,将不可控整流的电压滤波,使得输出电压更加平滑;
分压器,由电阻器组成,分压器第一端与整流二极管D2阴极连接,分压器第二端与地连接,用于测量输出直流电压;也可以不配置分压器,利用柔性直流输电电压源换流阀测量装置读取电压;
直流限流电阻R3,直流限流电阻R3第一端与整流二极管D2阴极连接,限流电阻R3第二端连接到被试柔性直流输电电压源换流阀,用于限制升压过程中的电流,以及设备本体、被试品发生故障时保护设备;
如图13所示,为本发明的试验装置作为负极性柔性直流输电换流阀直流充电装置的单相示意图,当装置应用与负极换流阀试验时,整流器连接为:
整流二极管D1,整流二极管D1阳极与倍压电容C1第二端连接,整流二极管D1阴极与地连接,整流二极管D1与倍压电容器C1一起实现整流电压的一倍升压;
整流二极管D2,整流二极管D2阴极与倍压电容C1第二端连接,实现电流单向流动,避免换流阀电源反向对整流装置充电;
滤波电容器C2,滤波电容器C2第一端与整流二极管D2阳极连接,将不可控整流的电压滤波,使得输出电压更加平滑;
分压器,由电阻器分压组成,分压器第一端与整流二极管D2阳极第二端连接,第二端与地连接,用于测量输出直流电压;也可以不配置分压器,利用柔性直流输电电压源换流阀测量装置读取电压;
直流限流电阻R3,第一端与整流二极管D2阳极连接,限流电阻R3第二端连接到被试柔性直流输电电压源换流阀,用于限制升压过程中的电流,以及设备本体、被试品发生故障时保护设备。
本实施例的装置应用于真双极或伪极电压源换流阀试验,将装置输出高压直流电源正极和负极同时与换流阀对应极性连接,设备地与柔直系统地连接。
本发明实施例中,所述的装置还包括:交流限流电阻R2、电容C1、整流二极管D1及整流二极管D2;即由电容C1、整流二极管D1及整流二极管D2组成的整流器电路对变压器高压侧输出的电压进行整流,实现直流电压的无冲击电流的升压,通过优化的变压器、整流器、电容参数,能够满足换流阀直流侧充电与解锁试验,本实施例中,变压器高压侧输出电压经限流电阻R2输出至整流器地电路进行整流。
本实施例中,升压变压器的副边的第二端连接到所述的交流限流电阻R2的第一端,所述交流限流电阻R2的第二端通过电容C1与整流二极管D2的第一端相连接,所述整流二极管D2的第二端连接到外部被试设备,以输出充电与解锁试验所需电压,所述整流二极管D1的第一端连接到所述电容C1与整流二极管D2之间,所述整流二极管D1的第二端接地。
本发明实施例中,所述的试验装置用于进行正极性换流阀实验时,整流电路;
所述整流二极管D1的第一端为阴极,整流二极管D1的第二端为阳极;
所述整流二极管D2的第一端为阳极,整流二极管D2的第二端为阴极。
本发明实施例中,所述的装置用于进行负极性换流阀实验时,整流电路;
所述整流二极管D1的第一端为阳极,整流二极管D1的第二端为阴极;
所述整流二极管D2的第一端为阴极,整流二极管D2的第二端为阳极。
如图12所示,正极电源整流器连接为:
整流二极管D1,整流二极管D1阴极与倍压电容C1第二端连接,整流二极管D1阳极与地连接,整流二极管D1与倍压电容器C1一起实现整流电压的一倍升压;
整流二极管D2,整流二极管D2阳极与倍压电容C1第二端连接,实现电流单向流动,避免换流阀电源反向对整流装置充电;
滤波电容器C2,滤波电容器C2第一端与整流二极管D2阴极连接,将不可控整流的电压滤波,使得输出电压更加平滑;
分压器,由电阻器分压组成,分压器第一端与整流二极管D2阴极第二端连接,分压器第二端与地连接,用于测量输出直流电压;也可以不配置分压器,利用柔性直流输电电压源换流阀测量装置读取电压;
直流限流电阻R2,直流限流电阻R2第一端与整流二极管D2阴极连接,限流电阻R2第二端连接到被试柔性直流输电电压源换流阀,用于限制升压过程中的电流,以及设备本体、被试品发生故障时保护设备;
如图14所示,负极电源整流器连接为:
整流二极管D1,整流二极管D1阳极与倍压电容C1第二端连接,整流二极管D1阴极与地连接,整流二极管D1与倍压电容器C1一起实现整流电压的一倍升压;
整流二极管D2,整流二极管D2阴极与倍压电容C1第二端连接,实现电流单向流动,避免换流阀电源反向对整流装置充电;
滤波电容器C2,滤波电容器C2第一端与整流二极管D2阳极连接,将不可控整流的电压滤波,使得输出电压更加平滑;
分压器,由电阻器分压组成,分压器第一端与整流二极管D2阳极连接,第二端与地连接,用于测量输出直流电压;也可以不配置分压器,利用柔性直流输电电压源换流阀测量装置读取电压;
直流限流电阻R2,直流限流电阻R2第一端与整流二极管D2阳极第二端连接,限流电阻R2第二端连接到被试柔性直流输电电压源换流阀,用于限制升压过程中的电流,以及设备本体、被试品发生故障时保护设备。
试验电源、调压变压器、升压变压器、交流限流电阻R2、倍压电容C1、整流二极管D1,可以是单相电路,也可以是三相电路。
为三相电路,则由三个相同的调压变压器、升压变压器、交流限流电阻R2、倍压电容C1、整流二极管D1、整流二极管D2组成一个单元,由三个单元分别接入A,B,C三相,实现电源的倍压整流。三个单元在整流二极管D2处并联,再与滤波电容器C2和限流电阻连接。如图14为本发明实施例中正极性柔性直流输电换流阀直流充电装置三相示意图,图15所示,为本发明实施例中负极性柔性直流输电换流阀直流充电装置三相示意图,其中仅图示了三相电路单线图,对本领域技术人员而言,根据图14和图15可清楚获知其连接关系,在此不再赘述。
控制器试验前,控制器控制装置调压变压器开关S1、S2断开,放电装置开关S3断开;试验开始后,首先控制器控制装置的调压变压器开关S2合入;然后一段时间后,控制器控制装置的调压变压器开关S1合入,断开调压变压器开关S2;接着控制器通过调节调压变压器将外部交流电源经变压器升压后,将整流直流电源与换流阀构成的回路,输出给被测阀段、阀塔或阀厅桥臂的子模块电容充电。试验完成后,分开S1开关,合入S3开关,对装置分放电后,分开S3,试验结束。
本实施例中的调压变压器,可以采用基于变频电源的方式来实现调压与变频率。
本实施例提供的试验装置,在充电的过程中,根据控制器的示波器检测电压与电流,依次完成换流阀与子模块取能电源启动电压测试、换流阀与子模块耐压测试;待升至额定直流电压后,开始换流阀整体的解锁试验,验证换流阀一次直流耐压、解锁功能,二次控制逻辑与触发、通信等检查,为柔性直流输电电压源换流阀系统带电调试做好准备。
本发明提供的用于柔性直流输电电压源换流阀的试验装置,其通过升压变压器实现电压的零起升压,通过选择适当的变压器、整流器、电容参数,能够满足换流阀直流侧充电与解锁试验,可以应用于没有系统电源的海上和陆上柔性直流输电电压源换流阀的试验,全面检验电压源换流阀单体、整体性能。本发明实施例中,升压变压器可以采用变频电源来实现。
以上参照附图描述了本发明的优选实施方式。这些实施方式的许多特征和优点根据该详细的说明书是清楚的,因此所附权利要求旨在覆盖这些实施方式的落入其真实精神和范围内的所有这些特征和优点。此外,由于本领域的技术人员容易想到很多修改和改变,因此不是要将本发明的实施方式限于所例示和描述的精确结构和操作,而是可以涵盖落入其范围内的所有合适修改和等同物。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
本发明中应用了具体实施例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (9)

  1. 一种柔性直流输电电压源换流阀试验方法,其特征在于,所述的方法包括:
    通过控制隔离开关将被测电压源换流阀的正极、地或负极连接端连接到外部试验直流电源;
    控制所述外部试验直流电源升压对被测电压源换流阀的电容进行充电,对被测电压源换流阀进行取能电源启动电压测试;
    被测电压源换流阀的电容充电至额定电压后,对被测电压源换流阀进行耐压测试试验;
    耐压测试试验完成后,对被测电压源换流阀解锁进行电气性能试验;
    电气性能试验试验完成后,闭锁被测电压源换流阀,对被测电压源换流阀进行取能电源闭锁测试;
    所述的通过控制隔离开关将被测电压源换流阀的正极、地或负极连接端连接到外部试验直流电源包括:
    确定输电系统为真双极柔性直流输电换流器,所述外部试验直流电源的正极、地和负极,分别接于被测电压源换流阀的正极、地和负极连接端;或者,正极试验时,所述外部试验直流电源的正极、地分别接于电压源换流阀的正极、地连接端,负极直流电源悬空不接;负极试验时,所述外部试验直流电源的负极、地分别接于电压源换流阀的负极、地连接端,正极直流电源悬空不接;
    确定输电系统为伪双极柔性直流输电系统,所述外部试验直流电源的正极、地和负极,分别接于被测电压源换流阀的正极、地和负极连接端;
    确定输电系统为单极柔性直流输电系统,正极换流器时,所述外部试验直流电源的正极、地分别接于被测电压源换流阀的正极、地连接端,负极直流电源悬空不接;负极换流器时,所述外部试验直流电源的负极、地分别接于被测电压源换流阀的负极、地连接端,正极直流电源悬空不接。
  2. 如权利要求1所述的柔性直流输电电压源换流阀试验方法,其特征在于,所述控制所述外部试验直流电源升压对被测电压源换流阀的电容进行充电,对被测电压源换流阀进行取能电源启动电压测试包括:
    控制外部试验直流电源升压至被测电压源换流阀的子模块最小取能电压,确定换流阀子模块中的异常模块数量不超过预设冗余值,则继续升压至被测电压源换流阀的额定电压,在升压充电过程中,根据检测到的换流阀子模块的取能电源电压、通信状态以及电容均应进行子模块的取能电源启动电压测试。
  3. 如权利要求1所述的柔性直流输电电压源换流阀试验方法,其特征在于,所述对被测电压源换流阀的电容充电至额定电压后,对被测电压源换流阀进行耐压测试试验包括:
    对被测电压源换流阀的电容充电至额定电压后,确定电压源换流阀子模块的取能电源电压、通信状态以及电容均压正常后,且电压源换流阀的旁路子模块个数少于预设的冗余数量时,控制被测电压源换流阀、阀段、阀塔或阀厅桥臂两端的电压升至额定电压,且保持预设时长,在预设时长内,完成换流阀耐压测试。
  4. 如权利要求1所述的柔性直流输电电压源换流阀试验方法,其特征在于,所述的耐压测试试验完成后,对被测电压源换流阀解锁,对被测电压源换流阀进行电气性能试验包括:
    控制所述隔离开关断开外部试验直流电源、或关闭外部直流电源,对被测电压源换流阀解锁进行无源解锁,根据被测电压源换流阀输出波形对被测电压源换流阀进行电气性能试验检测。
  5. 如权利要求1所述的柔性直流输电电压源换流阀试验方法,其特征在于,所述的对被测电压源换流阀解锁进行无源解锁包括:
    按预设的固定调制比,以预设的不同时长对被测电压源换流阀进行无源解锁;
    或,按预设的固定时长,以预设的不同调制比对被测电压源换流阀进行无源解锁。
  6. 如权利要求1所述的柔性直流输电电压源换流阀试验方法,其特征在于,所述的耐压测试试验完成后,对被测电压源换流阀解锁,对被测电压源换流阀进行电气性能试验包括:
    对被测电压源换流阀解锁进行有源解锁,根据被测电压源换流阀输出波形对被测电压源换流阀进行电气性能试验检测。
  7. 如权利要求1所述的柔性直流输电电压源换流阀试验方法,其特征在于,所述的对被测电压源换流阀解锁进行有源解锁包括:
    按预设的固定调制比,以预设的不同时长对被测电压源换流阀进行有源解锁;
    或,按预设的固定时长,以预设的不同调制比对被测电压源换流阀进行有源解锁。
  8. 如权利要求1所述的柔性直流输电电压源换流阀试验方法,其特征在于,所述的方法还包括:
    电压源换流阀由不控充电到主动充电,按预设的换流阀阀控调整策略调整每个桥臂子模块的个数及调整外部直流电源过流保护定值。
  9. 一种柔性直流输电电压源换流阀试验电源装置,其特征在于,所述的电源装置用于输出直流电源,提供权利要求1-8中任一权利要求所述的外部试验直流电源;所述的试验电源包括:进线开关保护电路,调压装置以及升压变压器;
    所述进线开关保护电路的一端连接到调压装置的一端,所述进线开关保护电路的另一端连接外部交流电源,所述进线开关保护电路实现外部交流源与调压装置的连接与断开;
    所述调压装置的另一端连接到升压变压器的原边,用于对通过进线开关保护电路接入的外部交流电源进行调压;
    所述升压变压器的副边的第一端接地,所述升压变压器的副边的第二端用于输出充电与解锁试验所需直流电源。
PCT/CN2023/075084 2022-02-11 2023-02-08 柔性直流输电电压源换流阀试验方法及电源装置 WO2023151607A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210126861.9 2022-02-11
CN202210126861.9A CN114167278B (zh) 2022-02-11 2022-02-11 柔性直流输电电压源换流阀试验方法及电源装置

Publications (2)

Publication Number Publication Date
WO2023151607A1 true WO2023151607A1 (zh) 2023-08-17
WO2023151607A9 WO2023151607A9 (zh) 2023-09-28

Family

ID=80489692

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/075084 WO2023151607A1 (zh) 2022-02-11 2023-02-08 柔性直流输电电压源换流阀试验方法及电源装置

Country Status (2)

Country Link
CN (1) CN114167278B (zh)
WO (1) WO2023151607A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116990623A (zh) * 2023-09-26 2023-11-03 国网江苏省电力有限公司电力科学研究院 一种模块化换流阀测试装置及测试方法
CN117155105A (zh) * 2023-11-01 2023-12-01 国网浙江省电力有限公司电力科学研究院 一种全直流系统直流变压器启动控制方法及系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114167278B (zh) * 2022-02-11 2022-05-17 华北电力科学研究院有限责任公司 柔性直流输电电压源换流阀试验方法及电源装置
CN115047333B (zh) * 2022-08-11 2022-11-01 国网经济技术研究院有限公司 一种海上平台换流阀码头无源解锁试验方法及系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102354203A (zh) * 2011-06-24 2012-02-15 中国电力科学研究院 一种动态模拟装置与工程控制系统的联合试验方法
CN103809114A (zh) * 2014-01-21 2014-05-21 清华大学 一种模块化多电平换流器换流阀的功率对冲试验装置
CN104269996A (zh) * 2014-09-05 2015-01-07 中国西电电气股份有限公司 特高压换流阀运行试验用辅助取能装置及方法
EP2983280A1 (en) * 2014-08-07 2016-02-10 ABB Technology AG Power conversion device
CN109239589A (zh) * 2018-07-06 2019-01-18 国网浙江省电力有限公司电力科学研究院 高压混合式直流断路器工程现场分合闸一致性试验方法
CN109946600A (zh) * 2019-04-03 2019-06-28 国网冀北电力有限公司电力科学研究院 检测换流阀子模块内部电气性能的装置及控制方法
WO2020199880A1 (zh) * 2019-04-03 2020-10-08 南京南瑞继保电气有限公司 模块化多电平换流器带电投入运行的方法及控制系统
CN114167278A (zh) * 2022-02-11 2022-03-11 华北电力科学研究院有限责任公司 柔性直流输电电压源换流阀试验方法及电源装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102323815B (zh) * 2011-06-16 2014-03-26 中国电力科学研究院 一种模块化多电平柔性直流输电阀基控制设备试验系统
CN103033701B (zh) * 2012-11-30 2017-11-07 许继电气股份有限公司 柔性直流输电换流阀稳态大功率运行试验装置及试验方法
CN106291295B (zh) * 2015-05-29 2023-11-14 中电普瑞科技有限公司 一种链式statcom换流链端间耐压试验方法
CN105787224B (zh) * 2016-05-06 2023-01-10 国网福建省电力有限公司 一种模块化多电平换流器无环流仿真模型的建模方法
CN109921454B (zh) * 2019-04-17 2021-05-28 国家电网有限公司 基于模块化多电平换流器的柔性直流系统启动方法及装置
CN110596580B (zh) * 2019-09-05 2021-12-24 许继集团有限公司 一种柔直换流阀过压旁路试验方法及装置
CN111537842B (zh) * 2020-04-03 2023-08-08 南京南瑞继保电气有限公司 一种柔性直流输电换流站的试验系统及试验方法
CN112269152A (zh) * 2020-10-29 2021-01-26 华北电力科学研究院有限责任公司 变压器及换流阀充电试验电路及方法
CN113655324B (zh) * 2021-09-03 2023-05-30 广东电网有限责任公司广州供电局 一种换流阀运行试验拓扑平台

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102354203A (zh) * 2011-06-24 2012-02-15 中国电力科学研究院 一种动态模拟装置与工程控制系统的联合试验方法
CN103809114A (zh) * 2014-01-21 2014-05-21 清华大学 一种模块化多电平换流器换流阀的功率对冲试验装置
EP2983280A1 (en) * 2014-08-07 2016-02-10 ABB Technology AG Power conversion device
CN104269996A (zh) * 2014-09-05 2015-01-07 中国西电电气股份有限公司 特高压换流阀运行试验用辅助取能装置及方法
CN109239589A (zh) * 2018-07-06 2019-01-18 国网浙江省电力有限公司电力科学研究院 高压混合式直流断路器工程现场分合闸一致性试验方法
CN109946600A (zh) * 2019-04-03 2019-06-28 国网冀北电力有限公司电力科学研究院 检测换流阀子模块内部电气性能的装置及控制方法
WO2020199880A1 (zh) * 2019-04-03 2020-10-08 南京南瑞继保电气有限公司 模块化多电平换流器带电投入运行的方法及控制系统
CN114167278A (zh) * 2022-02-11 2022-03-11 华北电力科学研究院有限责任公司 柔性直流输电电压源换流阀试验方法及电源装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116990623A (zh) * 2023-09-26 2023-11-03 国网江苏省电力有限公司电力科学研究院 一种模块化换流阀测试装置及测试方法
CN116990623B (zh) * 2023-09-26 2023-12-12 国网江苏省电力有限公司电力科学研究院 一种模块化换流阀测试装置及测试方法
CN117155105A (zh) * 2023-11-01 2023-12-01 国网浙江省电力有限公司电力科学研究院 一种全直流系统直流变压器启动控制方法及系统

Also Published As

Publication number Publication date
WO2023151607A9 (zh) 2023-09-28
CN114167278A (zh) 2022-03-11
CN114167278B (zh) 2022-05-17

Similar Documents

Publication Publication Date Title
WO2023151607A1 (zh) 柔性直流输电电压源换流阀试验方法及电源装置
WO2017084120A1 (zh) 单向直流-直流自耦变压器及其高低压侧故障隔离方法
CN104714132A (zh) 柔性直流输电变流器性能测试平台及其控制方法
US20190319450A1 (en) Pcs for ess and pcs operating method
CN110867884A (zh) 耗能模块、海上风电经柔性直流外送系统及故障穿越策略
CN104753079B (zh) 一种可实现功率反送的混合直流输电系统
Hou et al. A dynamic series voltage compensator for the mitigation of LCC-HVDC commutation failure
EP4227692A1 (en) Modular batch energy acquisition and commutation circuit and control method
CN107086605B (zh) 一种电网零起升压的黑启动方法
CN112269152A (zh) 变压器及换流阀充电试验电路及方法
CN114389353A (zh) 电力装置端备用开关单元
Liu et al. A study on vsc-hvdc based black start method
CN113295973B (zh) 压接型子模块过压击穿试验及其阀段运行回路的调整方法
Gatta et al. Modelling of battery energy storage systems under faulted conditions: Assessment of protection systems behaviour
CN113922407A (zh) 柔直换流站低压加压系统及控制方法
CN114167194B (zh) 用于柔性直流输电电压源换流阀的试验装置
Zhou Analysis on control and protection of MMC-based HVDC flexible transmission system
CN113933617A (zh) 一种有源型模块化换流器试验系统及控制方法
Yang et al. Comparison of grounding modes of mmc-based flexible dc distribution system
CN109239589B (zh) 高压混合式直流断路器工程现场分合闸一致性试验方法
Andersson et al. Black start of a passive AC network using bipolar LCC HVDC
Yonggang et al. Transient overvoltage study on LCC-MMC hybrid UHVDC transmission system
CN110601249A (zh) 电压源换流器单元及在线投入方法以及电压源换流阀
Liu et al. Side-by-side connection of LCC-HVDC links to form a DC grid
Zhu et al. New VSC-HVDC Solution with Overhead Transmission Line for BC-SIN Project

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752387

Country of ref document: EP

Kind code of ref document: A1