WO2023151280A1 - 双模冠脉血管图像三维融合的方法和融合系统 - Google Patents
双模冠脉血管图像三维融合的方法和融合系统 Download PDFInfo
- Publication number
- WO2023151280A1 WO2023151280A1 PCT/CN2022/120827 CN2022120827W WO2023151280A1 WO 2023151280 A1 WO2023151280 A1 WO 2023151280A1 CN 2022120827 W CN2022120827 W CN 2022120827W WO 2023151280 A1 WO2023151280 A1 WO 2023151280A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- image
- mode
- blood vessel
- ivus
- dimensional
- Prior art date
Links
- 230000004927 fusion Effects 0.000 title claims abstract description 39
- 210000004351 coronary vessel Anatomy 0.000 title claims abstract description 20
- 238000007500 overflow downdraw method Methods 0.000 title abstract description 6
- 210000004204 blood vessel Anatomy 0.000 claims abstract description 114
- 238000002608 intravascular ultrasound Methods 0.000 claims abstract description 96
- 238000000034 method Methods 0.000 claims abstract description 37
- 238000013507 mapping Methods 0.000 claims abstract description 18
- 230000002792 vascular Effects 0.000 claims description 70
- 238000005070 sampling Methods 0.000 claims description 22
- 239000000523 sample Substances 0.000 claims description 21
- 230000009466 transformation Effects 0.000 claims description 19
- 238000001514 detection method Methods 0.000 claims description 17
- 238000012545 processing Methods 0.000 claims description 12
- 230000003287 optical effect Effects 0.000 claims description 7
- 238000001914 filtration Methods 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 6
- 238000005457 optimization Methods 0.000 claims description 6
- 238000007781 pre-processing Methods 0.000 claims description 6
- 230000001360 synchronised effect Effects 0.000 claims description 6
- 238000013519 translation Methods 0.000 claims description 4
- 208000029078 coronary artery disease Diseases 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 4
- 238000004195 computer-aided diagnosis Methods 0.000 abstract description 3
- 238000011156 evaluation Methods 0.000 abstract description 3
- 208000037260 Atherosclerotic Plaque Diseases 0.000 abstract description 2
- 230000035515 penetration Effects 0.000 abstract description 2
- 238000012014 optical coherence tomography Methods 0.000 description 69
- 238000002586 coronary angiography Methods 0.000 description 40
- 238000003384 imaging method Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 238000002583 angiography Methods 0.000 description 4
- 208000024172 Cardiovascular disease Diseases 0.000 description 3
- 208000026106 cerebrovascular disease Diseases 0.000 description 3
- 230000002526 effect on cardiovascular system Effects 0.000 description 3
- 230000003902 lesion Effects 0.000 description 3
- SNIOPGDIGTZGOP-UHFFFAOYSA-N Nitroglycerin Chemical compound [O-][N+](=O)OCC(O[N+]([O-])=O)CO[N+]([O-])=O SNIOPGDIGTZGOP-UHFFFAOYSA-N 0.000 description 2
- 239000000006 Nitroglycerin Substances 0.000 description 2
- 210000003484 anatomy Anatomy 0.000 description 2
- 238000002594 fluoroscopy Methods 0.000 description 2
- 229960003711 glyceryl trinitrate Drugs 0.000 description 2
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 1
- 206010003211 Arteriosclerosis coronary artery Diseases 0.000 description 1
- 206010057469 Vascular stenosis Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002872 contrast media Substances 0.000 description 1
- 208000026758 coronary atherosclerosis Diseases 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000002784 sclerotic effect Effects 0.000 description 1
- 238000002922 simulated annealing Methods 0.000 description 1
- FEPMHVLSLDOMQC-UHFFFAOYSA-N virginiamycin-S1 Natural products CC1OC(=O)C(C=2C=CC=CC=2)NC(=O)C2CC(=O)CCN2C(=O)C(CC=2C=CC=CC=2)N(C)C(=O)C2CCCN2C(=O)C(CC)NC(=O)C1NC(=O)C1=NC=CC=C1O FEPMHVLSLDOMQC-UHFFFAOYSA-N 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/0059—Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
- A61B5/0062—Arrangements for scanning
- A61B5/0066—Optical coherence imaging
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/08—Detecting organic movements or changes, e.g. tumours, cysts, swellings
- A61B8/0891—Detecting organic movements or changes, e.g. tumours, cysts, swellings for diagnosis of blood vessels
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/12—Diagnosis using ultrasonic, sonic or infrasonic waves in body cavities or body tracts, e.g. by using catheters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/52—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/5215—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
- A61B8/5238—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image
- A61B8/5246—Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for combining image data of patient, e.g. merging several images from different acquisition modes into one image combining images from the same or different imaging techniques, e.g. color Doppler and B-mode
Definitions
- the invention relates to the technical field of blood vessel imaging, in particular to a method for three-dimensional fusion of dual-mode coronary blood vessel images.
- cardiovascular and cerebrovascular diseases have become one of the major diseases that threaten human health, and coronary atherosclerosis is the main cause of cardiovascular and cerebrovascular diseases.
- X-ray coronary angiography (CAG), intravascular ultrasound (IVUS) and optical coherence tomography (OCT) are currently the main imaging techniques for the diagnosis of cardiovascular and cerebrovascular diseases.
- This imaging technology can only provide two-dimensional plane image information, and cannot intuitively reflect the actual spatial situation. Due to the limitations of 2D images, 3D reconstruction and visualization of medical images has become a research hotspot.
- CAG judges the location, nature and degree of abnormal vascular anatomy by observing the filling and disappearance of the contrast agent statically or dynamically. It can not only objectively diagnose coronary artery structure and vascular stenosis, but also achieve quantitative description of lesions.
- 3D reconstruction a 3D skeleton with spatial morphology can be obtained, which is convenient for direct observation.
- the reconstruction results only describe the spatial position and shape of the vascular lumen, and cannot obtain the shape of the lumen section and the diffuse degree and composition of the sclerotic plaque.
- IVUS and OCT use energy beams to scan 360° in the vascular lumen to obtain cross-sectional images of the lumen, and the two have complementary advantages.
- IVUS uses the reflection phenomenon of ultrasonic waves, it is beneficial to display deep structures, that is, the detection depth is deep, but the resolution of fine structure images is limited.
- the resolution of OCT is higher, and the axial resolution is about 10 to 20 times that of IVUS, but its ability to penetrate tissues is obviously not as good as that of IVUS.
- Three-dimensional reconstruction of OCT and IVUS images can well represent the complex anatomical structure of the arterial wall, and each has its own advantages.
- the object of the present invention is to provide a dual-mode coronary vessel image three-dimensional fusion method and system, which simultaneously integrates two coronary examination techniques, OCT and IVUS, and can further analyze the wall thickness and vessel wall thickness of the vessel on the basis of the CAG image.
- the size or shape of the internal plaque can be further accurately judged.
- multiple indicators can be monitored, which saves detection time and makes the detection results more accurate.
- a method for three-dimensional fusion of a dual-mode coronary vessel image comprises the following steps:
- the asynchronous acquisition mode is the simultaneously acquired OCT mode
- the asynchronous switching mode is a working mode in which the image is switched between the OCT mode and the IVUS mode.
- S2 also includes performing preprocessing on the acquired CAG image, and the preprocessing includes the following steps:
- the CAG images obtained during the withdrawal process of the vascular catheter are stacked in sequence according to the acquisition time, and the stacked CAG images are fitted with B-spline curves to obtain a three-dimensional fitting curve as the three-dimensional skeleton of the blood vessel;
- the center line of the blood vessel is obtained through fitting.
- the vascular image in OCT mode and the vascular image in IVUS mode are respectively mapped to the corresponding positions of the retracted vascular path to complete the image mapping, which specifically includes the following steps:
- the arrangement result is used as a mapping result of the blood vessel image in the OCT mode and the blood vessel image in the IVUS mode on the catheter retraction path to complete the image mapping.
- the three-dimensional fusion of OCT mode and IVUS mode includes the following steps:
- the blood vessel image in OCT mode is used as a reference image, and the blood vessel image in IVUS mode is used as an image to be registered to calculate the mutual information formula;
- the vascular images in OCT mode and the vascular images in IVUS mode are fused.
- the vector X is the coordinates of the original image
- the vector Y is the coordinates of the transformed target image
- S is the scale factor
- T is the translation matrix
- R is the rotation matrix
- the present invention also provides a three-dimensional fusion system for dual-mode coronary artery images, including a vascular catheter, an OCT detection probe, an IVUS detection probe and a data processing module;
- the vascular catheter is used to carry an OCT detection probe or an IVUS detection probe to obtain a blood vessel image in OCT mode and a blood vessel image in IVUS mode; during the retraction process, obtain a CAG image of the blood vessel;
- the data processing module is used to extract the three-dimensional skeleton of the blood vessel in the CAG image according to the CAG image, and obtain the centerline of the blood vessel through fitting according to the three-dimensional skeleton of the blood vessel; using the centerline of the blood vessel as the catheter retraction path,
- the vascular images in the OCT mode and the vascular images in the IVUS mode are respectively mapped to the corresponding positions of the vascular catheter retraction path to complete the image mapping; the mapped images are subjected to three-dimensional fusion of the OCT mode and the IVUS mode.
- the OCT optical probe and the IVUS transducer are integrated in the vascular catheter at the same time; the data output ports of the OCT optical probe and the IVUS transducer are at an angle of 180°.
- the invention discloses a method and system for three-dimensional fusion of dual-mode coronary artery images. Compared with the prior art, it has at least the following advantages:
- This application integrates two detection methods of OCT mode and IVUS mode at the same time, and performs three-dimensional fusion of OCT mode and IVUS mode on the mapped image; fully utilizes the advantages of three-dimensional CAG image space and the strong tissue penetration of IVUS and high OCT With the advantages of resolution, more comprehensive information on vessel walls and coronary atherosclerotic plaques can be obtained, thereby providing a more effective basis for computer-aided diagnosis and treatment of coronary heart disease and evaluation of interventional treatment effects.
- the fused three-dimensional blood vessel image not only has a higher resolution, but also has a deeper detection depth, and can reflect the real spatial position of the blood vessel, complementing the advantages of the three, making up for the single information source Insufficient, thus providing a more effective and intuitive basis for computer-aided diagnosis and treatment of coronary heart disease and evaluation of interventional treatment effects.
- Fig. 1 is a schematic flow chart of the method of the present invention
- Fig. 2 is a schematic diagram of rearranging image sequences according to CAG three-dimensional reconstruction results
- Figure 3(a) is a schematic diagram of a certain angle of OCT fusion CAG three-dimensional reconstruction results
- Figure 3(b) is a schematic diagram of another perspective of the 3D reconstruction result of OCT fusion CAG;
- Figure 4(a) is a schematic diagram of a certain angle of the results of IVUS fusion CAG 3D reconstruction
- Fig. 4 (b) is another perspective schematic diagram of the result of IVUS fusion CAG three-dimensional reconstruction
- FIG. 5 is a schematic flow chart of three-dimensional registration based on mutual information
- Figure 6(a) is a schematic diagram of a certain angle of the three-dimensional fusion results of OCT and IVUS;
- Fig. 6(b) is another perspective schematic diagram of the three-dimensional fusion result of OCT and IVUS.
- a dual-mode coronary vessel image provided by an embodiment of the present invention, a method for three-dimensional fusion of a dual-mode coronary vessel image, includes the following steps:
- OCT image a vascular image in OCT mode
- IVUS image a vascular image in IVUS mode
- the asynchronous acquisition mode is the simultaneously acquired OCT mode
- the asynchronous switching mode is a working mode in which the image is switched between the OCT mode and the IVUS mode.
- the acquisition of OCT and IVUS vascular images is real-time data collected from the OCT-US dual-mode imaging system, showing the structure of the vessel wall, while CAG angiography simultaneously displays the position of the probe in the lumen.
- CAG angiography simultaneously displays the position of the probe in the lumen.
- S2 also includes performing preprocessing on the acquired CAG image, and the preprocessing includes the following steps:
- the CAG images obtained during the withdrawal process of the vascular catheter are stacked in sequence according to the acquisition time, and the stacked CAG images are fitted with B-spline curves to obtain a three-dimensional fitting curve as the three-dimensional skeleton of the blood vessel;
- the reference point selected at the initial moment of the withdrawal of the vascular catheter is used as the coordinate origin to establish a three-dimensional coordinate system.
- the three-dimensional reconstruction of the vessel centerline uses the method of combining the outer polar line matching and the vessel topological characteristics to match the vessel segment, and at the same time obtain the vessel skeleton The 3D coordinates of the point.
- the center line of the blood vessel is obtained through fitting.
- the vascular image in the OCT mode and the vascular image in the IVUS mode are respectively mapped to the corresponding positions of the retracted vascular path to complete the image mapping, which specifically includes the following steps:
- t is a parameter
- a and b are the start and end ranges set according to the length of the center line, let r(t 0 ) be any point on the curve, referred to as t 0 point.
- r(t 0 + ⁇ t) is its neighbor. Two points determine the vector:
- the arrangement result is used as a mapping result of the blood vessel image in the OCT mode and the blood vessel image in the IVUS mode on the catheter retraction path to complete the image mapping.
- image mapping includes:
- the dual-mode imaging system will be polluted by noise in the process of acquiring blood vessel images, and the acquired blood vessel images must be denoised.
- the edge of the image is sharpened, and the gray scale of the image is linearly stretched to 0-255.
- the dual-mode imaging system proposed by the present invention retracts the imaging catheter at a constant rate, and the sampling rate is a constant parameter, then the OCT and IVUS image sequences are distributed at equal intervals along the guide wire, thereby determining the axial position of each frame image .
- the angle of the image sequence was determined by establishing a differential geometric model, so as to obtain the result of the arrangement of the OCT and IVUS image sequences along the three-dimensional catheter path, as shown in Figure 2.
- it also includes three-dimensional reconstruction of the sequence-rearranged OCT image and IVUS image using a ray-casting volume rendering method.
- the reconstructed image can not only see the real endoscopic structural information of the blood vessel, but also reflect the real space of the blood vessel.
- Figure 3(a), Figure 3(b), Figure 4(a), and Figure 4(b) show the morphology, OCT image, and IVUS three-dimensional reconstruction results, respectively.
- the three-dimensional fusion of OCT mode and IVUS mode includes the following steps:
- the blood vessel image in OCT mode is used as the reference image, and the blood vessel image in IVUS mode is used as the image to be registered to calculate the mutual information formula;
- the vascular images in OCT mode and the vascular images in IVUS mode are fused.
- a three-dimensional fusion method based on mutual information is preferably used.
- the 3D fusion method based on mutual information is essentially a multi-parameter optimization problem, and its purpose is to obtain the corresponding transformation parameters when the objective function reaches the maximum value.
- the traditional rigid body transformation includes translation and rotation matrices, represented by T and R respectively.
- the problem of elastic registration is solved by increasing the scale factor S.
- the vector X is the coordinates of the original image
- the vector Y is the coordinates of the transformed target image
- S is the scale factor
- T is the translation matrix
- R is the rotation matrix
- the OCT image is used as a reference image
- the IVUS image is an image to be registered.
- the method of multi-parameter optimization can adopt Powell algorithm, simulated annealing, genetic algorithm, etc. can also be used. Since the huge 3D volume data greatly increases the computational burden, only some data points are used to calculate the histogram of the image. Sampling the source image at M ⁇ N ⁇ L intervals, calculating mutual information, and then gradually increasing the sampling rate, using the registration result at the current resolution as the starting point for optimization at the next resolution to reduce the search for transformation parameters range, so as to achieve the effect of reducing the number of iterations and improving the registration speed. After registration from rough to fine at several sampling rates, the optimal transformation parameters are finally obtained, and finally the fusion is performed under the optimal parameters. The final results are shown in Figure 6(a) and Figure 6(b).
- the present invention also provides a three-dimensional fusion system of dual-mode coronary artery images, which is used to implement the above method, including a vascular catheter, an OCT detection probe, an IVUS detection probe and a data processing module;
- the vascular catheter is used to carry an OCT detection probe or an IVUS detection probe to acquire blood vessel images in OCT mode and IVUS mode; and acquire CAG images of blood vessels during the retraction process.
- the acquisition of OCT and IVUS vascular images is real-time data collected from the OCT-US dual-mode imaging system, showing the structure and shape of the vessel wall, and CAG angiography simultaneously displays the position of the probe in the lumen.
- CAG angiography simultaneously displays the position of the probe in the lumen.
- the data processing module is used to extract the three-dimensional skeleton of the blood vessel in the CAG image according to the CAG image, and obtain the centerline of the blood vessel through fitting according to the three-dimensional skeleton of the blood vessel; using the centerline of the blood vessel as the catheter retraction path,
- the vascular images in the OCT mode and the vascular images in the IVUS mode are respectively mapped to the corresponding positions of the vascular catheter retraction path to complete the image mapping; the mapped images are subjected to three-dimensional fusion of the OCT mode and the IVUS mode.
- the OCT optical probe and the IVUS transducer are integrated in the vascular catheter at the same time; the data output ports of the OCT optical probe and the IVUS transducer are at an angle of 180°.
- the OCT-US dual-mode imaging system proposed by the present invention, a single catheter is used.
- the OCT optical probe and the IVUS transducer are fixed back-to-back in the metal cap, and the back-to-back design is in the same axial position.
- the acousto-optic exits are 180° apart, the frame rate of OCT is 180 frames/s, the retraction speed is 20mm/s, and the image size is 1024*1024; the frame rate of IVUS is 30 frames/s, and the retraction speed is 0.5mm/s s, the image size is 1024*1024.
- the method of collecting OCT and IVUS image data at the same time is adopted in one retraction, and the local blood vessel segment of interest is retracted at a speed of 1mm/s as required, and the retraction time 3s. Therefore, in the same 3mm vessel segment, OCT will generate 540 images, while IVUS will generate 90 images.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Radiology & Medical Imaging (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Physics & Mathematics (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Vascular Medicine (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Ultra Sonic Daignosis Equipment (AREA)
- Endoscopes (AREA)
Abstract
一种双模冠脉血管图像三维融合的方法和融合系统,其中,该方法包括:利用血管导管,获取OCT模式下的血管图像和IVUS模式下的血管图像以及血管的CAG图像;根据CAG图像,提取CAG图像中的血管三维骨架,并根据血管三维骨架拟合得出血管中心线;将血管中心线作为导管回撤路径,将OCT模式下的血管图像和IVUS模式下的血管图像分别映射到血管导管回撤路径的相应位置上,完成图像映射;将映射后的图像进行OCT模式和IVUS模式的三维融合;充分发挥三维CAG图像空间上的优势以及IVUS的强组织穿透力和OCT高分辨率的优势,便能够获得血管壁和冠状动脉粥样硬化斑块更加全面的信息,从而为冠心病的计算机辅助诊治和对介入治疗效果的评价等提供更为有效的依据。
Description
本发明涉及血管成像技术领域,尤其涉及双模冠脉血管图像三维融合的方法。
全球范围内,心脑血管疾病已经成为了威胁人类健康的主要疾病之一,冠状动脉粥样硬化是心脑血管疾病的主要病因。X射线冠状动脉造影(coronary angiography,CAG)、血管内超声(intravascular ultrasound,IVUS)和光学相干断层成像(optical coherence tomography,OCT)是当前诊断心脑血管疾病的主要影像学技术。该影像学技术只能提供二维的平面图像信息,并不能直观的反映实际的空间情况。由于二维图像的种种局限性,医学图像的三维重建和可视化已成为目前的研究热点。
CAG通过静止或动态观察造影剂的充盈和消失情况来判断血管解剖学形态异常的部位、性质和程度。它不仅能对冠状动脉的结构和血管狭窄进行客观诊断,而且还能实现病变的量化描述,通过三维重建可以获得具有空间形态结构的三维骨架,便于直接观察。但是,该重建结果仅描述了血管内腔的空间位置和形态,无法得到管腔截面的形态和硬化斑块的弥漫程度及组成。
IVUS和OCT的成像原理相似,都是采用能量束在血管腔中进行360°扫描,获得管腔横截面图像,且两者具有优势互补的特点。IVUS由于利用的是超声波的反射现象,因此有利于显示深部结构,即探测深度较深,但对微细结构图像的分辨率却受限。OCT的分辨率较高,轴向分辨率大概是IVUS的10~20 倍,但其穿透组织的能力明显不如IVUS。对OCT和IVUS图像进行三维重建,能够很好地表现动脉血管壁复杂的解剖结构,并且各具优势。传统的IVUS和OCT三维重建是把一系列的图像按采集顺序叠加起来形成一个三维直血管段。由于IVUS和OCT本身不能提供每一帧图像的空间几何信息,因此这种方法没有考虑在图像获取过程中导管的弯曲和扭曲,其结果也是不准确的。
发明内容
因此,本发明的目的在于提供一种双模冠脉血管图像三维融合方法及系统,同时融合了OCT和IVUS两种冠脉检查技术,在CAG图像基础上,能进一步对血管的壁厚和血管内斑块的大小或形态,进行进一步准确的判断,在一次血管导管置入的过程中,能实现多个指标的监测,节约检测时间,检测结果更准确。
为了实现上述目的,本发明的一种双模冠脉血管图像一种双模冠脉血管图像三维融合的方法,包括以下步骤:
S1、利用血管导管,获取OCT模式下的血管图像和IVUS模式下的血管图像;
S2、在血管导管回撤的过程中,获取血管的CAG图像;
S3、根据所述CAG图像,提取CAG图像中的血管三维骨架,并根据所述血管三维骨架拟合得出血管中心线;
S4、将所述血管中心线作为导管回撤路径,将OCT模式下的血管图像和IVUS模式下的血管图像分别映射到血管导管回撤路径的相应位置上,完成图像映射;
S5、将映射后的图像进行OCT模式和IVUS模式的三维融合。
进一步优选的,在S1中,所述获取血管导管的OCT模式下的血管图像和 IVUS模式下的血管图像时,包括同步采集模式和异步切换模式;所述同步采集模式为同时获取的OCT模式下的血管图像和IVUS模式下的血管图像的工作模式;所述异步切换模式为OCT模式和IVUS模式切换采集图像的工作模式。
进一步优选的,在S2中还包括,对获取的CAG图像进行预处理,所述预处理包括如下步骤:
S201、对获取的CAG图像进行中值滤波,滤除图像中的噪声,并采用直方图进行均衡化处理,提高图像的对比度;
S202、对均衡化处理后的图像进行多尺度Frangi滤波,对不同尺度大小的血管进行边缘增强,得到增强图像;
S203、对所述增强图像进行细化处理,消除垂直走向和面积小于预设阈值的血管分支。
进一步优选的,在S3中,所述根据CAG图像,提取CAG图像中的血管三维骨架,并根据所述血管三维骨架拟合得出血管中心线时,包括以下方法:
将血管导管回撤的过程,获取的CAG图像,按照采集时间进行顺序叠放,将叠放后CAG图像,采用B样条曲线拟合的方法,得出三维拟合曲线,作为血管三维骨架;
以血管导管回撤的初始时刻选取的参考点,作为坐标原点,建立三维坐标系,计算所述三维拟合曲线的三维坐标;
根据三维拟合曲线的三维坐标,计算三维拟合曲线的中心线的坐标。
根据所述中心线的坐标,拟合得出血管中心线。
进一步优选的,在S4中,将OCT模式下的血管图像和IVUS模式下的血管图像分别映射到回撤血管路径的相应位置上,完成图像映射,具体包括如下步骤:
将所述血管中心线作为导管回撤路径,根据采样频率计算图像间距,确定每个OCT模式下的血管图像和IVUS模式下的血管图像的轴向位置;
建立微分几何模型,确定图像序列的角度,得到得OCT模式下的血管图像和IVUS模式下的血管图像沿导管回撤路径的排列结果;
将所述排列结果,作为OCT模式下的血管图像和IVUS模式下的血管图像,在导管回撤路径上的映射结果,完成图像映射。
进一步优选的,在S5中,OCT模式和IVUS模式三维融合,包括如下步骤:
以OCT模式下的血管图像作为参考图像,IVUS模式下的血管图像作为待配准图像,计算互信息公式;
根据互信息公式中目标函数取得最大值时对应的最优变换参数,对OCT模式下的血管图像和IVUS模式下的血管图像进行融合。
进一步优选的,所述互信息公式按照如下公式表示:
Y=S*R*X+T
其中,向量X为原图像的坐标;向量Y为变换后的目标图像坐标;S为比例因子;T为平移矩阵;R为旋转矩阵。
进一步优选的,还包括,所述互信息公式中的变换参数,按照以下步骤进行优化:
分别获取参考图像采样点和待配准图像采样点,计算参考图像采样点和待配准图像采样点,融合时对应的变换参数;
提高采样频率,将当前分辨率下的配准结果作为下一分辨率下优化的起始点以减小变换参数的搜索范围,最终得到最优的变换参数。
本发明还提供一种双模冠脉血管图像三维融合系统,包括血管导管、OCT检测探头、IVUS检测探头和数据处理模块;
所述血管导管用于搭载OCT检测探头或IVUS检测探头,获取OCT模式下的血管图像和IVUS模式下的血管图像;在回撤的过程中,获取血管的CAG图像;
所述数据处理模块,用于根据所述CAG图像,提取CAG图像中的血管三维骨架,并根据所述血管三维骨架拟合得出血管中心线;将所述血管中心线作为导管回撤路径,将OCT模式下的血管图像和IVUS模式下的血管图像分别映射到血管导管回撤路径的相应位置上,完成图像映射;将映射后的图像进行OCT模式和IVUS模式的三维融合。
进一步优选的,所述血管导管中同时集成OCT光学探头与IVUS换能器;所述OCT光学探头与IVUS换能器的数据输出口呈180°。
本发明公开了一种双模冠脉血管图像三维融合的方法及系统,相比于现有技术,至少具有以下优点:
本申请同时集成了OCT模式和IVUS模式两种检测方式,将映射后的图像进行OCT模式和IVUS模式的三维融合;充分发挥三维CAG图像空间上的优势以及IVUS的强组织穿透力和OCT高分辨率的优势,便能够获得血管壁和冠状动脉粥样硬化斑块更加全面的信息,从而为冠心病的计算机辅助诊治和对介入治疗效果的评价等提供更为有效的依据。
本申请提供的融合方法,融合以后的三维血管图像不仅具有较高的分辨率,而且具有较深的探测深度,并且能够反映血管真实的空间位置,将三者的优势互补,弥补了单一信息源的不足,从而为冠心病的计算机辅助诊治和对介入治疗效果的评价等提供更为有效和直观的依据。
图1为本发明的方法流程示意图;
图2为依据CAG三维重建结果重排图像序列的示意图;
图3(a)为OCT融合CAG三维重建结果的某角度示意图;
图3(b)为OCT融合CAG三维重建结果的另一角度示意图;
图4(a)为IVUS融合CAG三维重建的结果的某角度示意图
图4(b)为IVUS融合CAG三维重建的结果的另一角度示意图;
图5为基于互信息的三维配准的流程示意图;
图6(a)为OCT和IVUS三维融合结果的某角度示意图;
图6(b)为OCT和IVUS三维融合结果的另一角度示意图。
以下通过附图和具体实施方式对本发明作进一步的详细说明。
如图1所示,本发明一方面实施例提供的一种双模冠脉血管图像一种双模冠脉血管图像三维融合的方法,包括以下步骤:
S1、利用血管导管,获取OCT模式下的血管图像(以下简称OCT图像)和IVUS模式下的血管图像(以下简称IVUS图像);
S2、在血管导管回撤的过程中,获取血管的CAG图像;
进一步优选的,在S1中,所述获取血管导管的OCT模式下的血管图像和IVUS模式下的血管图像时,包括同步采集模式和异步切换模式;所述同步采集模式为同时获取的OCT模式下的血管图像和IVUS模式下的血管图像的工作模式;所述异步切换模式为OCT模式和IVUS模式切换采集图像的工作模式。
需要说明的是,OCT和IVUS血管图像的获取是从OCT-US双模成像系统中实时采集的数据,显示血管壁的结构形态,CAG造影则同步显示探头在管腔内的部位。在CAG中发现可疑血管后,向目标血管内注入硝酸甘油,在X射线透视图像的指导下将导管穿越病变部位,到达血管远端,将探头与成像仪连 接去除伪影后,经马达控制匀速回撤导管,并记录图像。CAG图像的采集,采用仅在导管回撤路径的起点拍摄一对角度近似垂直的造影图像。
进一步优选的,在S2中还包括,对获取的CAG图像进行预处理,所述预处理包括如下步骤:
S201、对获取的CAG图像进行中值滤波,滤除图像中的噪声,并采用直方图进行均衡化处理,提高图像的对比度;
S202、对均衡化处理后的图像进行多尺度Frangi滤波,对不同尺度大小的血管进行边缘增强,得到增强图像;
S203、对所述增强图像进行细化处理,消除垂直走向和面积小于预设阈值的血管分支。
S3、根据所述CAG图像,提取CAG图像中的血管三维骨架,并根据所述血管三维骨架拟合得出血管中心线;
进一步在S3中,所述根据CAG图像,提取CAG图像中的血管三维骨架,并根据所述血管三维骨架拟合得出血管中心线时,包括以下方法:
将血管导管回撤的过程,获取的CAG图像,按照采集时间进行顺序叠放,将叠放后CAG图像,采用B样条曲线拟合的方法,得出三维拟合曲线,作为血管三维骨架;
以血管导管回撤的初始时刻选取的参考点,作为坐标原点,建立三维坐标系,血管中心线的三维重建运用外极线匹配和血管拓扑特性相结合的方法匹配血管段,同时求出血管骨架点的三维坐标。
根据三维拟合曲线的三维坐标,计算三维拟合曲线的中心线的坐标。
根据所述中心线的坐标,拟合得出血管中心线。
S4、将所述血管中心线作为导管回撤路径,将OCT模式下的血管图像和 IVUS模式下的血管图像分别映射到血管导管回撤路径的相应位置上,完成图像映射;
进一步优选的,将OCT模式下的血管图像和IVUS模式下的血管图像分别映射到回撤血管路径的相应位置上,完成图像映射,具体包括如下步骤:
将所述血管中心线作为导管回撤路径,根据采样频率计算图像间距,确定每个OCT模式下的血管图像和IVUS模式下的血管图像的轴向位置;
建立微分几何模型,确定图像序列的角度,具体包括以下步骤:
根据提取的血管中心线建立曲线参数方程:
C:r=r(t)={x(t),y(t),z(t)},a≤t≤b
t为参数,a和b为根据中心线长度设置的起始和终止范围,设r(t
0)是曲线上的任意点,简称t
0点。r(t
0+Δt)是其邻点。两点决定向量:
Δr=r(t
0+Δt)-r(t
0)
得到得OCT模式下的血管图像和IVUS模式下的血管图像沿导管回撤路径的排列结果;
将所述排列结果,作为OCT模式下的血管图像和IVUS模式下的血管图像,在导管回撤路径上的映射结果,完成图像映射。
在本申请的一个具体实施例中,在进行图像映射时包括:
首先,对获得的OCT图像和IVUS图像预处理。
双模成像系统在获取血管图像的过程中会受到噪声的污染,必须对获取的 血管图像作去噪处理。在本实施案例中,优选3*3大小的中值滤波器对图像进行去噪。为了提高信噪比,尖锐图像边缘,再将图像灰度线性拉伸至0~255。
其次,确定各帧OCT图像和IVUS图像在三维回撤路径中的轴向位置。
本发明提出的双模成像系统是以恒定速率回撤成像导管,且采样速率为恒定参数,那么OCT和IVUS图像序列就是沿着导丝等间距分布的,从而确定了各帧图像的轴向位置。
最后,利用建立微分几何模型的方法确定图像序列的角度,从而获得OCT和IVUS图像序列沿三维导管路径的排列结果,其示意图如图2所示。
优选的,还包括采用光线投射体渲染方法对序列重排后的OCT图像和IVUS图像分别进行三维重建,重建后的图像不仅可以看到真实的血管内窥结构信息,而且能够反映血管真实的空间形态,OCT图像和IVUS三维重建后的结果分别如图3(a)、图3(b)、图4(a)、图4(b)所示。
S5、将映射后的图像进行OCT模式和IVUS模式的三维融合。
进一步优选的,在S5中,OCT模式和IVUS模式三维融合,包括如下步骤:
以OCT模式下的血管图像作为参考图像,IVUS模式下的血管图像作为待配准图像,计算互信息公式;
根据互信息公式中目标函数取得最大值时对应的最优变换参数,对OCT模式下的血管图像和IVUS模式下的血管图像进行融合。
在本实施案例中,优选采用基于互信息的三维融合方法。基于互信息的三维融合方法本质上是一个多参数优化问题,其目的是求取目标函数取得最大值时对应的变换参数。传统的刚体变换包括平移、旋转矩阵,分别以T、R表示,本发明中通过增加比例因子S解决弹性配准问题。
互信息公式按照如下公式表示:
Y=S*R*X+T (1)
S、R和T分别为:
其中,向量X为原图像的坐标;向量Y为变换后的目标图像坐标;S为比例因子;T为平移矩阵;R为旋转矩阵。
所述互信息公式中的变换参数,按照以下步骤进行优化:
分别获取参考图像采样点和待配准图像采样点,计算参考图像采样点和待配准图像采样点,融合时对应的变换参数;
提高采样频率,将当前分辨率下的配准结果作为下一分辨率下优化的起始点以减小变换参数的搜索范围,最终得到最优的变换参数。
如图5所示,在一个具体实施例中,在配准的过程中,OCT图像作为参考图像,IVUS图像为待配准图像。多参数优化的方法可以采用Powell算法,亦可采用模拟退火、遗传算法等。由于庞大的3D体数据极大地增加了计算的负担,因此只采用部分数据点来计算图像的直方图。对源图进行M×N×L的间隔进行采样,计算互信息,然后逐步提高采样率,将当前分辨率下的配准结果作为下一分辨率下优化的起始点以减小变换参数的搜索范围,从而达到减少迭代次数提高配准速度的效果。经过几种采样率下由粗糙到精细进行配准,最终得到最优的变换参数,最后在最优参数下进行融合。最终的结果如图6(a)和图6(b) 所示。
本发明还提供一种双模冠脉血管图像三维融合系统,用于实施上述方法,包括血管导管、OCT检测探头、IVUS检测探头和数据处理模块;
所述血管导管用于搭载OCT检测探头或IVUS检测探头,获取OCT模式下的血管图像和IVUS模式下的血管图像;在回撤的过程中,获取血管的CAG图像。
OCT和IVUS血管图像的获取是从OCT-US双模成像系统中实时采集的数据,显示血管壁的结构形态,CAG造影则同步显示探头在管腔内的部位。在CAG中发现可疑血管后,向目标血管内注入硝酸甘油,在X射线透视图像的指导下将导管穿越病变部位,到达血管远端,将探头与成像仪连接去除伪影后,经马达控制匀速回撤导管,并记录图像。CAG图像的采集,采用仅在导管回撤路径的起点拍摄一对角度近似垂直的造影图像。
所述数据处理模块,用于根据所述CAG图像,提取CAG图像中的血管三维骨架,并根据所述血管三维骨架拟合得出血管中心线;将所述血管中心线作为导管回撤路径,将OCT模式下的血管图像和IVUS模式下的血管图像分别映射到血管导管回撤路径的相应位置上,完成图像映射;将映射后的图像进行OCT模式和IVUS模式的三维融合。
进一步优选的,所述血管导管中同时集成OCT光学探头与IVUS换能器;所述OCT光学探头与IVUS换能器的数据输出口呈180°。
在本发明提出的OCT-US双模成像系统中,采用的是单个导管,在同一个导管内,OCT光学探头与IVUS换能器背靠背固定在金属帽内,背靠背的设计即在同一轴向位置的声光出口相距180°,OCT的帧率为180帧/s,回撤速度为20mm/s,图像大小为1024*1024;IVUS的帧率为30帧/s,回撤速度为0.5mm/s, 图像大小为1024*1024。本实施案例中,为了保证数据采集的同步性和一致性,采用一次回撤同时采集OCT和IVUS图像数据的方法,根据需要对感兴趣局部血管段,进行1mm/s速度回撤,回撤时间3s。因此,在相同3mm的血管段中,OCT将会产生540帧图像,而IVUS将会产生90帧图像。
显然,上述实施例仅是为清楚地说明所作的举例,而并非对实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。而由此所引伸出的显而易见的变化或变动仍处于本发明创造的保护范围之中。
Claims (10)
- 一种双模冠脉血管图像三维融合的方法,其特征在于,包括以下步骤:S1、利用血管导管,获取OCT模式下的血管图像和IVUS模式下的血管图像;S2、在血管导管回撤的过程中,获取血管的CAG图像;S3、根据所述CAG图像,提取CAG图像中的血管三维骨架,并根据所述血管三维骨架拟合得出血管中心线;S4、将所述血管中心线作为导管回撤路径,将OCT模式下的血管图像和IVUS模式下的血管图像分别映射到血管导管回撤路径的相应位置上,完成图像映射;S5、将映射后的图像进行OCT模式和IVUS模式的三维融合。
- 根据权利要求1所述的双模冠脉血管图像三维融合的方法,其特征在于,在S1中,所述获取血管导管的OCT模式下的血管图像和IVUS模式下的血管图像时,包括同步采集模式和异步切换模式;所述同步采集模式为同时获取的OCT模式下的血管图像和IVUS模式下的血管图像的工作模式;所述异步切换模式为OCT模式和IVUS模式切换采集图像的工作模式。
- 根据权利要求1所述的双模冠脉血管图像三维融合的方法,其特征在于,在S2中还包括,对获取的CAG图像进行预处理,所述预处理包括如下步骤:S201、对获取的CAG图像进行中值滤波,滤除图像中的噪声,并采用直方图进行均衡化处理,提高图像的对比度;S202、对均衡化处理后的图像进行多尺度Frangi滤波,对不同尺度大小的血管进行边缘增强,得到增强图像;S203、对所述增强图像进行细化处理,消除垂直走向和面积小于预设阈值的血管分支。
- 根据权利要求1所述的双模冠脉血管图像三维融合的方法,其特征在于,在S3中,所述根据CAG图像,提取CAG图像中的血管三维骨架,并根据所述血管三维骨架拟合得出血管中心线时,包括以下方法:将血管导管回撤的过程,获取的CAG图像,按照采集时间进行顺序叠放,将叠放后CAG图像,采用B样条曲线拟合的方法,得出三维拟合曲线,作为血管三维骨架;以血管导管回撤的初始时刻选取的参考点,作为坐标原点,建立三维坐标系,计算所述三维拟合曲线的三维坐标;根据三维拟合曲线的三维坐标,计算三维拟合曲线的中心线的坐标。根据所述中心线的坐标,拟合得出血管中心线。
- 根据权利要求1所述的双模冠脉血管图像三维融合的方法,其特征在于,在S4中,将OCT模式下的血管图像和IVUS模式下的血管图像分别映射到回撤血管路径的相应位置上,完成图像映射,具体包括如下步骤:将所述血管中心线作为导管回撤路径,根据采样频率计算图像间距,确定每个OCT模式下的血管图像和IVUS模式下的血管图像的轴向位置;建立微分几何模型,计算图像在曲线的切向方向的向量,根据每个图像在所述切向方向的向量,确定每个图像的角度;根据每个图像的轴向位置和角度,得到得OCT模式下的血管图像和IVUS模式下的血管图像沿导管回撤路径的排列结果;将所述排列结果,作为OCT模式下的血管图像和IVUS模式下的血管图像,在导管回撤路径上的映射结果,完成图像映射。
- 根据权利要求1所述的双模冠脉血管图像三维融合的方法,其特征在于, 在S5中,OCT模式和IVUS模式三维融合,包括如下步骤:以OCT模式下的血管图像作为参考图像,IVUS模式下的血管图像作为待配准图像;计算互信息公式;根据互信息公式中目标函数取得最大值时对应的最优变换参数,对OCT模式下的血管图像和IVUS模式下的血管图像进行融合。
- 根据权利要求6所述的双模冠脉血管图像三维融合的方法,其特征在于,所述互信息公式按照如下公式表示:Y=S*R*X+T其中,向量X为原图像的坐标;向量Y为变换后的目标图像坐标;S为比例因子;T为平移矩阵;R为旋转矩阵。
- 根据权利要求6所述的双模冠脉血管图像三维融合的方法,其特征在于,还包括,所述互信息公式中的变换参数,按照以下步骤进行优化:分别获取参考图像采样点和待配准图像采样点,计算参考图像采样点和待配准图像采样点,融合时对应的变换参数;提高采样频率,将当前分辨率下的配准结果作为下一分辨率下优化的起始点以减小变换参数的搜索范围,最终得到最优的变换参数。
- 一种双模冠脉血管图像三维融合系统,其特征在于,包括血管导管、OCT检测探头、IVUS检测探头和数据处理模块;所述血管导管用于搭载OCT检测探头或IVUS检测探头,获取OCT模式下的血管图像和IVUS模式下的血管图像;在回撤的过程中,获取血管的CAG图像;所述数据处理模块,用于根据所述CAG图像,提取CAG图像中的血管三维骨架,并根据所述血管三维骨架拟合得出血管中心线;将所述血管中心线作 为导管回撤路径,将OCT模式下的血管图像和IVUS模式下的血管图像分别映射到血管导管回撤路径的相应位置上,完成图像映射;将映射后的图像进行OCT模式和IVUS模式的三维融合。
- 根据权利要求9所述的一种双模冠脉血管图像三维融合系统,其特征在于,所述血管导管中同时集成OCT光学探头与IVUS换能器;所述OCT光学探头与IVUS换能器的数据输出口呈180°。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210117924.4A CN114145719B (zh) | 2022-02-08 | 2022-02-08 | 双模冠脉血管图像三维融合的方法和融合系统 |
CN202210117924.4 | 2022-02-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023151280A1 true WO2023151280A1 (zh) | 2023-08-17 |
Family
ID=80450259
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/120827 WO2023151280A1 (zh) | 2022-02-08 | 2022-09-23 | 双模冠脉血管图像三维融合的方法和融合系统 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN114145719B (zh) |
WO (1) | WO2023151280A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114145719B (zh) * | 2022-02-08 | 2022-04-26 | 天津恒宇医疗科技有限公司 | 双模冠脉血管图像三维融合的方法和融合系统 |
CN114596311B (zh) * | 2022-04-22 | 2022-08-12 | 深圳科亚医疗科技有限公司 | 基于血管图像的血管功能评估方法和血管功能评估装置 |
CN114820600B (zh) * | 2022-06-27 | 2022-09-27 | 天津恒宇医疗科技有限公司 | 基于oct图像的冠脉血管内支架检测方法及检测系统 |
CN115272447B (zh) * | 2022-09-29 | 2022-12-20 | 全景恒升(北京)科学技术有限公司 | 基于多模态影像的血流储备分数计算方法、装置及设备 |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070043292A1 (en) * | 2005-08-08 | 2007-02-22 | Siemens Aktiengesellschaft | Method for acquiring and evaluating vascular examination data |
CN101283929A (zh) * | 2008-06-05 | 2008-10-15 | 华北电力大学 | 一种血管三维模型的重建方法 |
US20140270436A1 (en) * | 2013-03-12 | 2014-09-18 | Lightlab Imaging, Inc. | Vascular Data Processing and Image Registration Systems, Methods, and Apparatuses |
CN108852417A (zh) * | 2018-07-25 | 2018-11-23 | 北京博纵科技有限公司 | 一种内窥成像的光学超声双导管系统及其工作方法 |
WO2020077381A1 (en) * | 2018-10-17 | 2020-04-23 | The University Of Melbourne | Coronary evaluation system and process |
CN111667447A (zh) * | 2020-06-05 | 2020-09-15 | 全景恒升(北京)科学技术有限公司 | 血管内图像融合方法、系统及图像采集装置 |
CN113724377A (zh) * | 2021-11-01 | 2021-11-30 | 杭州晟视科技有限公司 | 冠脉血管的三维重建方法、装置、电子设备及存储介质 |
CN114145719A (zh) * | 2022-02-08 | 2022-03-08 | 天津恒宇医疗科技有限公司 | 双模冠脉血管图像三维融合的方法和融合系统 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101422352B (zh) * | 2008-12-10 | 2011-07-13 | 华北电力大学(保定) | 一种交互式冠状动脉虚拟血管镜的实现方法 |
CN111652917B (zh) * | 2013-03-12 | 2024-07-09 | 光学实验室成像公司 | 血管数据处理和图像配准系统、方法及装置 |
CN107392994B (zh) * | 2017-06-30 | 2018-11-06 | 深圳大学 | 冠脉血管的三维重建方法、装置、设备及存储介质 |
CN110889896B (zh) * | 2019-11-11 | 2024-03-22 | 苏州润迈德医疗科技有限公司 | 获取血管狭窄病变区间及三维合成方法、装置和系统 |
EP3884868A1 (en) * | 2020-03-26 | 2021-09-29 | Pie Medical Imaging BV | Method and system for registering intra-object data with extra-object data |
CN112669449A (zh) * | 2020-12-31 | 2021-04-16 | 浙江理工大学 | 基于3d重建技术的cag和ivus精准联动分析方法及系统 |
CN113160189B (zh) * | 2021-04-27 | 2024-08-23 | 中国科学院深圳先进技术研究院 | 血管中心线提取方法、装置、设备及存储介质 |
-
2022
- 2022-02-08 CN CN202210117924.4A patent/CN114145719B/zh active Active
- 2022-09-23 WO PCT/CN2022/120827 patent/WO2023151280A1/zh unknown
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070043292A1 (en) * | 2005-08-08 | 2007-02-22 | Siemens Aktiengesellschaft | Method for acquiring and evaluating vascular examination data |
CN101283929A (zh) * | 2008-06-05 | 2008-10-15 | 华北电力大学 | 一种血管三维模型的重建方法 |
US20140270436A1 (en) * | 2013-03-12 | 2014-09-18 | Lightlab Imaging, Inc. | Vascular Data Processing and Image Registration Systems, Methods, and Apparatuses |
CN108852417A (zh) * | 2018-07-25 | 2018-11-23 | 北京博纵科技有限公司 | 一种内窥成像的光学超声双导管系统及其工作方法 |
WO2020077381A1 (en) * | 2018-10-17 | 2020-04-23 | The University Of Melbourne | Coronary evaluation system and process |
CN111667447A (zh) * | 2020-06-05 | 2020-09-15 | 全景恒升(北京)科学技术有限公司 | 血管内图像融合方法、系统及图像采集装置 |
CN113724377A (zh) * | 2021-11-01 | 2021-11-30 | 杭州晟视科技有限公司 | 冠脉血管的三维重建方法、装置、电子设备及存储介质 |
CN114145719A (zh) * | 2022-02-08 | 2022-03-08 | 天津恒宇医疗科技有限公司 | 双模冠脉血管图像三维融合的方法和融合系统 |
Also Published As
Publication number | Publication date |
---|---|
CN114145719A (zh) | 2022-03-08 |
CN114145719B (zh) | 2022-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2023151280A1 (zh) | 双模冠脉血管图像三维融合的方法和融合系统 | |
Nelson et al. | Three-dimensional ultrasound imaging | |
CN103077550B (zh) | 一种非门控icus图像序列中血管的四维重建方法 | |
US8942423B2 (en) | Methods for automatic segmentation and temporal tracking | |
JP5474342B2 (ja) | 3−d画像および表面マッピングによる解剖学的モデル化 | |
US9330461B2 (en) | Image-based method for measuring elasticity of biological tissues and system thereof | |
CN101422352B (zh) | 一种交互式冠状动脉虚拟血管镜的实现方法 | |
CN104376549B (zh) | 血管内超声与血管内oct图像的融合方法 | |
CN108198174B (zh) | 一种心血管ivoct与ivus自动配准方法与装置 | |
KR20150045885A (ko) | 초음파 및 ct 영상의 정합에 관한 시스템 및 작동 방법 | |
CN108053429B (zh) | 一种心血管oct与冠脉造影自动配准方法与装置 | |
JP2016509889A (ja) | 3dイメージングシステムのためのデータ表示及び処理アルゴリズム | |
CN113066091A (zh) | 基于黑血管壁曲面重建的脑血管分割方法、装置及存储介质 | |
JP6039876B2 (ja) | 左心室のねじれを測定するシステム及び方法 | |
CN114209278A (zh) | 一种基于光学相干层析成像的深度学习皮肤病诊断系统 | |
Zheng et al. | A deep learning method for motion artifact correction in intravascular photoacoustic image sequence | |
JP2023008979A (ja) | 超音波スライス強化 | |
CN101849842A (zh) | 一种执行三维心脏超声虚拟内窥镜检查术的方法 | |
CN113470060B (zh) | 基于ct影像的冠状动脉多角度曲面重建可视化方法 | |
JP5885234B2 (ja) | 疾患判定装置および超音波画像形成装置における画像解析方法 | |
KR102250086B1 (ko) | 의료 영상 정합 방법, 이를 포함하는 장치 및 컴퓨터 기록 매체 | |
CN112669449A (zh) | 基于3d重建技术的cag和ivus精准联动分析方法及系统 | |
CN111062979B (zh) | 基于医学影像获取血栓物理特性参数的可视化方法和可视化系统 | |
CN114155243A (zh) | 基于特征信息的ivus和oct图像融合方法及系统 | |
Skurski et al. | Image processing methods for diagnostic and simulation applications in cardiology |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22925638 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |