WO2023151230A1 - 一种新型交流氩弧焊机 - Google Patents

一种新型交流氩弧焊机 Download PDF

Info

Publication number
WO2023151230A1
WO2023151230A1 PCT/CN2022/106414 CN2022106414W WO2023151230A1 WO 2023151230 A1 WO2023151230 A1 WO 2023151230A1 CN 2022106414 W CN2022106414 W CN 2022106414W WO 2023151230 A1 WO2023151230 A1 WO 2023151230A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
argon arc
correction
generate
waveform
Prior art date
Application number
PCT/CN2022/106414
Other languages
English (en)
French (fr)
Inventor
尤志春
孙慧博
胡星
Original Assignee
上海威特力焊接设备制造股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海威特力焊接设备制造股份有限公司 filed Critical 上海威特力焊接设备制造股份有限公司
Publication of WO2023151230A1 publication Critical patent/WO2023151230A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/16Arc welding or cutting making use of shielding gas
    • B23K9/167Arc welding or cutting making use of shielding gas and of a non-consumable electrode
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/09Arrangements or circuits for arc welding with pulsed current or voltage
    • B23K9/091Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits
    • B23K9/092Arrangements or circuits for arc welding with pulsed current or voltage characterised by the circuits characterised by the shape of the pulses produced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K9/00Arc welding or cutting
    • B23K9/32Accessories

Definitions

  • the invention relates to the field of welding technology, in particular to a novel AC argon arc welding machine.
  • the argon arc welding machine is a machine using argon arc welding, which adopts the arc starting method of high voltage breakdown.
  • Argon arc welding is tungsten inert gas shielded arc welding, which refers to the welding method that uses industrial tungsten or active tungsten as non-melting electrode and inert gas (argon) as protection, referred to as TIG.
  • the arc starting method of argon arc welding adopts the arc starting method of high voltage breakdown. Firstly, a high frequency and high voltage is applied between the electrode needle (tungsten needle) and the workpiece to break down the argon gas to make it conductive, and then supply continuous current to ensure the stability of the arc.
  • the working principle of the argon arc welding machine in the main circuit, auxiliary power supply, drive circuit, protection circuit, etc. is the same as that of the manual arc welding machine.
  • the traditional AC argon arc welding machine usually takes the form of a square wave as the AC current output waveform, and its waveform is shown in Figure 1.
  • Figure 1 In practice, it has been found that when using the above-mentioned traditional square wave for welding, air bubbles are prone to occur, causing problems such as unevenness of the welding surface and easy occurrence of arc breaks, which cannot meet the requirements of high-standard welding scenarios, and urgently need improvement.
  • the present invention provides a multifunctional AC argon arc welding machine.
  • the first aspect of the present invention provides a novel AC argon arc welding machine, including a main control module (101), a waveform generation module (102), a waveform correction module (103), and a power supply module (104), the main control module (101) is connected with the waveform generation module (102) and the waveform correction module (103); wherein,
  • the waveform generation module (102) is used to generate a standard square wave
  • the main control module (101) is configured to generate a first instruction and a second instruction, the first instruction is transmitted to the waveform generation module (102) to trigger it to generate the standard square wave, and the second instruction transmitted to the waveform correction module (103) to trigger it to generate the correction scheme;
  • the power supply module (104) provides power for the main control module (101), the waveform generation module (102), and the waveform correction module (103);
  • the waveform generating module (102) is further configured to correct the standard square wave according to the correction scheme.
  • the correction scheme includes a first sub-solution
  • the first sub-solution includes: setting the current value of the standard square wave in the negative half cycle to be greater than the first value in the positive half cycle, and the positive half cycle The current value does not change.
  • the first value is 5%-25%.
  • the modification solution further includes a second sub-solution, the second sub-solution includes: setting a current switching point in a positive half cycle and a negative half cycle of the current.
  • the modification solution further includes a third sub-solution, and the third sub-solution includes: setting bumps in the negative half cycle of the current.
  • the duration of the bump is 10%-25% of the duration of the negative half cycle
  • the magnitude of the current is 5-25% of the current of the negative half cycle.
  • the waveform generating module (102) when the waveform generating module (102) generates a standard square wave and corrects the standard square wave according to the correction scheme, it is realized by using software codes.
  • the novel AC argon arc welding machine also includes a camera module (105), which is used to take images of welding sites;
  • the main control module (101) is further configured to judge whether to generate the second instruction according to the welding site image.
  • the main control module (101) is further configured to judge whether to generate the second instruction according to the welding site image, including:
  • the main control module (101) processes the image of the welding site to extract the roughness of the welding object, and judges whether the roughness is greater than a preset value, and if so, does not generate the second instruction, otherwise Then generate the second instruction.
  • the main control module (101) processes the welding site image to extract the roughness of the welding object, including:
  • the feature data is input into a depth recognition model, and the depth recognition model outputs scene attributes, and the roughness of the welding object is determined according to the scene attributes.
  • the new type of AC argon arc welding machine provided by the present invention can overcome the problems that the traditional square wave is prone to air bubbles, which causes the welding surface to be not smooth enough, and is prone to arc breaks, etc., and significantly improves the performance of the AC argon arc welding machine .
  • Fig. 1 is the schematic diagram of the standard square wave in the prior art
  • Fig. 2 is a schematic structural view of a novel AC argon arc welding machine disclosed in an embodiment of the present invention
  • Fig. 3 is a schematic diagram of a modified square wave disclosed by an embodiment of the present invention.
  • Fig. 4 is another schematic diagram of the modified square wave disclosed by the embodiment of the present invention.
  • Fig. 5 is another structural schematic diagram of a new type of AC argon arc welding machine disclosed in the embodiment of the present invention.
  • first”, “second”, “third” and “fourth” in the specification and claims of the present invention are used to distinguish different objects, rather than to describe a specific order of objects.
  • first input, the second input, the third input, and the fourth input are used to distinguish different inputs, rather than describing a specific sequence of inputs.
  • words such as “exemplarily” or “for example” are used as examples, illustrations or descriptions. Any embodiment or design solution described as “exemplary” or “for example” in the embodiments of the present invention shall not be interpreted as being more preferred or more advantageous than other embodiments or design solutions. Rather, the use of words such as “exemplarily” or “for example” is intended to present related concepts in a concrete manner.
  • multiple means two or more, for example, multiple processing units refer to two or more processing units; multiple elements Refers to two or more elements, etc.
  • FIG. 2 is a schematic structural diagram of a novel AC argon arc welding machine disclosed in an embodiment of the present invention.
  • a new type of AC argon arc welding machine according to the embodiment of the present invention includes a main control module (101), a waveform generation module (102), a waveform correction module (103), and a power supply module (104).
  • the main control module (101) is connected with the waveform generation module (102) and the waveform modification module (103); wherein,
  • the waveform generation module (102) is used to generate a standard square wave
  • the main control module (101) is configured to generate a first instruction and a second instruction, the first instruction is transmitted to the waveform generation module (102) to trigger it to generate the standard square wave, and the second instruction transmitted to the waveform correction module (103) to trigger it to generate the correction scheme;
  • the power supply module (104) provides power for the main control module (101), the waveform generation module (102), and the waveform correction module (103);
  • the waveform generating module (102) is further configured to correct the standard square wave according to the correction scheme.
  • the traditional square wave for welding is of a standard type. Referring to Figure 1, this traditional square wave is prone to bubbles, resulting in uneven welding surface and prone to arc breaks. And other problems, unable to meet the high standard welding scene requirements.
  • the present invention provides a novel AC argon arc welding machine
  • the main control module (101) controls the waveform generation module (102) to generate a standard square wave
  • the waveform correction module (103) controls the waveform generation
  • the module (102) then corrects the standard square wave according to the correction scheme, thus obtaining an improved square wave, which at least partially overcomes the defects mentioned in the background technology, and finally improves the performance of the AC argon arc welding machine.
  • the correction scheme includes a first sub-solution
  • the first sub-solution includes: setting the current value of the standard square wave in the negative half cycle to be greater than the first value in the positive half cycle, and the positive half cycle The current value does not change.
  • the negative half cycle and the positive half cycle of the traditional square wave current in the prior art are the same, and the present invention improves this.
  • the negative half cycle of the standard square wave is set The current of the cycle is larger than the first value of the positive half cycle.
  • the instantaneous high current of the negative half cycle is conducive to cleaning the oxide film on the surface of the workpiece; at the same time, the current of the positive half cycle remains unchanged, so the tungsten electrode can emit enough electrons without overheating, which is beneficial to the stability of the sub-arc.
  • the effects of cleaning the cathode, less burning loss of the tungsten electrode and good arc stability are taken into account at the same time.
  • the first value is 5%-25%.
  • the modification solution further includes a second sub-solution, the second sub-solution includes: setting a current switching point in a positive half cycle and a negative half cycle of the current.
  • the present invention sets the current switching point in the positive half cycle and the negative half cycle of the current, so the current switching is performed at the set switching point, so that the corrected square wave can weaken the IGBT switching Time loss, so as to protect the IGBT, and at the same time, it can effectively prevent the arc break caused by the switching of AC and DC.
  • the modification solution further includes a third sub-solution, and the third sub-solution includes: setting bumps in the negative half cycle of the current.
  • the present invention in order to further enhance the cleaning effect, the present invention further sets bumps in the negative half cycle of the current. At the same time, since the duration of the bump current is short, it does not cause too much loss to the tungsten rod of the argon arc welding torch.
  • the duration of the bump is 10%-25% of the duration of the negative half cycle
  • the magnitude of the current is 5-25% of the current of the negative half cycle.
  • the waveform generating module (102) when the waveform generating module (102) generates a standard square wave and corrects the standard square wave according to the correction scheme, it is realized by using software codes.
  • the waveform generation in the prior art is usually realized by pre-designed hardware circuits, which is expensive to implement and has poor flexibility, making it difficult to meet diverse requirements.
  • the waveform effect of the square wave in the present invention is realized by software code, that is, the corresponding waveform is generated by the preset waveform generation and correction code.
  • FIG. 4 it represents an enlarged view of one cycle.
  • 0-7 in the figure represent the segmentation points of the waveform diagram, and the waveform diagram is divided into 7 segments, and the new waveform diagram can be realized by giving corresponding given values in each of the seven segments.
  • T 1/f
  • negative half-cycle time duty cycle*T
  • positive half-cycle time T-negative half-cycle time
  • the switching point (0-1) time is determined by the falling time from the maximum current to the switching point current .
  • the accuracy is the minimum time interval of a given value, and the accuracy also determines the minimum period.
  • the novel AC argon arc welding machine also includes a camera module (105), which is used to take images of welding sites;
  • the main control module (101) is further configured to judge whether to generate the second instruction according to the welding site image.
  • the novel AC argon arc welding machine of the present invention also includes a camera module (105), wherein the main control module (101) determines the corresponding welding requirements according to the image of the welding site, so as to decide whether to generate the first
  • the second instruction is whether to modify the standard square wave. Therefore, the solution of the present invention can determine the welding requirement based on the identification of the welding scene, and then generate a more accurate square wave waveform.
  • the main control module (101) is further configured to judge whether to generate the second instruction according to the welding site image, including:
  • the main control module (101) processes the image of the welding site to extract the roughness of the welding object, and judges whether the roughness is greater than a preset value, and if so, does not generate the second instruction, otherwise Then generate the second instruction.
  • the present invention determines the roughness of the welding object through the image of the welding site, and then uses the standard square wave Or use a modified square wave for welding.
  • the roughness of the welding object involved in the present invention may be the surface flatness of the steel plate to be welded or the size of the weld seam. Therefore, the present invention can automatically determine the current welding scene of the new AC argon arc welding machine through image recognition technology, and then predict the level of the welding standard of the current welding task, and finally determine whether to generate a corrected square wave, which can effectively Reduce the cumbersomeness of users to set the target waveform through manual operation.
  • the new AC argon arc welding machine in the present invention can also include an interactive module, an interactive module
  • an interactive module On the one hand, it can allow users to set the square wave waveform through manual operation (that is, to choose whether to use a standard square wave or a modified square wave), and on the other hand, it can also display the corrected square wave to be generated automatically predicted by the image recognition technology to the user , for confirmation by the user.
  • the waveform generation module (102) can be triggered to correct the standard square wave according to the correction scheme.
  • the main control module (101) processes the welding site image to extract the roughness of the welding object, including:
  • the feature data is input into a depth recognition model, and the depth recognition model outputs scene attributes, and the roughness of the welding object is determined according to the scene attributes.
  • the accuracy of determining the roughness according to the surface flatness of the steel plate to be welded or the size of the weld seam is relatively poor, because the flatness of the steel plate surface is not necessarily the scene of the first welding standard, and the weld seam
  • the size is also susceptible to human influence.
  • the present invention further determines the scene attribute of the welding site according to the welding site image to determine the aforementioned roughness, that is, by determining the corresponding welding scene as high-precision mechanical equipment according to the welding site image, the roughness can be determined as low; when the welding scene is the steel plate welding of an ordinary factory building, the roughness is determined to be high; when the welding scene is a special workshop of a shipyard, the roughness is determined to be low.
  • the accuracy of recognition can only be ensured after it has been fully trained.
  • pictures of various welding scenes including close-up, mid-range, and long-range views
  • the scene attributes of these pictures can be marked, and then a training set can be constructed, and the depth recognition model can be trained using the pictures in the training set.
  • the depth recognition model can be constructed by convolutional neural network (convolutional neural network, CNN), DBN and stacked auto-encoder network (stacked auto-encoder network) models, etc., since the construction method is generally known in the art, the present invention hereby No longer.
  • the present invention designs the optimization of the training set, namely:
  • the reliability of each picture in the training set is calculated by the following formula:
  • Tru i is the reliability value of the i-th picture in the training set that has been trained;
  • L k is the loss calculation function of the network for sample i at the kth iteration in the training process;
  • is the learning parameter of the network;
  • mean ( ⁇ ) is the average loss value of the i-th image that has been trained during the entire training process;
  • L( ⁇ ) is the objective function of network classification;
  • x i is the feature data of the i-th image, and y i is the labeled label;
  • the picture is deleted from the training set.
  • the present invention can divide the training of the depth recognition model into stages, that is, try the training first, so as to obtain pictures with low reliability in the training set (for example, the picture clarity is too low, the scene is too complicated, etc.) Screening out, so that the pictures in the training set are more suitable, which is conducive to improving the training results of the depth recognition model.
  • the deep recognition model is formally trained using the filtered training set.
  • Various implementations of the systems and techniques described above herein can be implemented in digital electronic circuit systems, integrated circuit systems, field programmable gate arrays (FPGAs), application specific integrated circuits (ASICs), application specific standard products (ASSPs), systems on chips Implemented in a system of systems (SOC), load programmable logic device (CPLD), computer hardware, firmware, software, and/or combinations thereof.
  • FPGAs field programmable gate arrays
  • ASICs application specific integrated circuits
  • ASSPs application specific standard products
  • SOC system of systems
  • CPLD load programmable logic device
  • computer hardware firmware, software, and/or combinations thereof.
  • programmable processor can be a special purpose or general purpose programmable processor, can receive data and instructions from a storage system, at least one input system, and at least one output system, and transmit data and instructions to the storage system, the at least one input system, and the at least one output system an output system.
  • Program codes for implementing the methods of the present disclosure may be written in any combination of one or more programming languages. These program codes may be provided to a processor or controller of a general-purpose computer, a special-purpose computer, or other programmable data processing system, so that the program code, when executed by the processor or controller, causes the functions/functions specified in the flowchart and/or block diagrams to Action is implemented.
  • the program code may execute entirely on the machine, partly on the machine, as a stand-alone software package partly on the machine and partly on a remote machine or entirely on the remote machine or server.
  • a machine-readable medium may be a tangible medium that may contain or store a program for use by or in conjunction with an instruction execution system, system, or device.
  • a machine-readable medium may be a machine-readable signal medium or a machine-readable storage medium.
  • a machine-readable medium may include, but is not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, system, or device, or any suitable combination of the foregoing.
  • machine-readable storage media would include one or more wire-based electrical connections, portable computer discs, hard drives, random access memory (RAM), read only memory (ROM), erasable programmable read only memory (EPROM or flash memory), optical fiber, compact disk read only memory (CD-ROM), optical storage, magnetic storage, or any suitable combination of the foregoing.
  • RAM random access memory
  • ROM read only memory
  • EPROM or flash memory erasable programmable read only memory
  • CD-ROM compact disk read only memory
  • magnetic storage or any suitable combination of the foregoing.
  • the systems and techniques described herein can be implemented on a computer having a display system (e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor) for displaying information to the user. ); and a keyboard and pointing system (eg, a mouse or a trackball) through which a user can provide input to a computer.
  • a display system e.g., a CRT (cathode ray tube) or LCD (liquid crystal display) monitor
  • a keyboard and pointing system eg, a mouse or a trackball
  • Other kinds of systems can also be used to provide interaction with the user; for example, the feedback provided to the user can be any form of sensory feedback (e.g., visual feedback, auditory feedback, or tactile feedback); and can be in any form (including Acoustic input, speech input or, tactile input) to receive input from the user.
  • the systems and techniques described herein can be implemented in a computing system that includes back-end components (e.g., as a data server), or a computing system that includes middleware components (e.g., an application server), or a computing system that includes front-end components (e.g., as a a user computer having a graphical user interface or web browser through which a user can interact with embodiments of the systems and techniques described herein), or including such backend components, middleware components, Or any combination of front-end components in a computing system.
  • the components of the system can be interconnected by any form or medium of digital data communication, eg, a communication network. Examples of communication networks include: Local Area Network (LAN), Wide Area Network (WAN) and the Internet.
  • a computer system may include clients and servers.
  • Clients and servers are generally remote from each other and typically interact through a communication network.
  • the relationship of client and server arises by computer programs running on the respective computers and having a client-server relationship to each other.
  • the server can be a cloud server, a server of a distributed system, or a server combined with a blockchain.
  • steps may be reordered, added or deleted using the various forms of flow shown above.
  • each step described in the present disclosure may be executed in parallel, sequentially, or in a different order, as long as the desired result of the technical solution disclosed in the present disclosure can be achieved, no limitation is imposed herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Arc Welding Control (AREA)

Abstract

一种新型交流氩弧焊机,包括主控模块(101)、波形生成模块(102)、波形修正模块(103)、电源模块(104);波形生成模块(102),用于生成标准方波;波形修正模块(103),用于生成修正方案,并将修正方案传输给波形生成模块(102);主控模块(101),用于生成第一指令和第二指令,第一指令触发波形生成模块(102)生成标准方波,第二指令触发波形修正模块(103)生成修正方案;波形生成模块(102)根据修正方案对标准方波进行修正。

Description

一种新型交流氩弧焊机 技术领域
本发明涉及焊接技术领域,具体而言,涉及一种新型交流氩弧焊机。
背景技术
氩弧焊机是使用氩弧焊的机器,采用高压击穿的起弧方式。氩弧焊即钨极惰性气体保护弧焊,指用工业钨或活性钨作不熔化电极,惰性气体(氩气)作保护的焊接方法,简称TIG。氩弧焊的起弧采用高压击穿的起弧方式,先在电极针(钨针)与工件间加以高频高压,击穿氩气,使之导电,然后供给持续的电流,保证电弧稳定。氩弧焊机在主回路、辅助电源、驱动电路、保护电路等方面的工作原理是与手弧焊机是相同的。
传统的交流氩弧焊机通常情况下以方波的形式作为交流电流输出波形,其波形参照图1所示。在实践中发现,使用上述传统方波进行焊接时,容易出现气泡导致焊接面不够平整、容易出现断弧等问题,无法满足高标准的焊接场景需求,亟需改进。
发明内容
为了至少解决上述背景技术中存在的技术问题,本发明提供了一种多功能交流氩弧焊机。
本发明的第一方面提供了一种新型交流氩弧焊机,包括主控模块(101)、波形生成模块(102)、波形修正模块(103)、电源模块(104),所述主控模块(101)与所述波形生成模块(102)、所述波形修正模块(103)连接;其中,
所述波形生成模块(102),用于生成标准方波;
所述波形修正模块(103),用于生成修正方案,并将所述修正方案传输给所述波形生成模块(102);
所述主控模块(101),用于生成第一指令和第二指令,所述第一指令传输给所述波形生成模块(102)以触发其生成所述标准方波,所述第二指令传输给所述波形修正模块(103)以触发其生成所述修正方案;
所述电源模块(104)为所述主控模块(101)、波形生成模块(102)、波形修正模块(103)提供电力;
所述波形生成模块(102),还用于根据所述修正方案对所述标准方波进行修正。
作为一种优选,所述修正方案包括第一子方案,所述第一子方案包括:设置所述标准方波的电流值在负半周期比正半周期大第一值,且正半周期的电流值不变。
作为一种优选,所述第一值为5%-25%。
作为一种优选,所述修正方案还包括第二子方案,所述第二子方案包括:在电流的正半周期和负半周期设置电流切换点。
作为一种优选,所述修正方案还包括第三子方案,所述第三子方案包括:在电流负半周期设置凸点。
作为一种优选,所述凸点的持续时长是负半周期时长的10%—25%,电流大小是负半周期电流的5—25%。
作为一种优选,所述波形生成模块(102)在生成标准方波和根据所述修正方案对所述标准方波进行修正时,采用软件代码实现。
作为一种优选,所述新型交流氩弧焊机还包括摄像模块(105),其用于拍摄焊接现场图像;
所述主控模块(101)还用于根据所述焊接现场图像判断是否生成所述第二指令。
作为一种优选,所述主控模块(101)还用于根据所述焊接现场图像判断是否生成所述第二指令,包括:
所述主控模块(101)对所述焊接现场图像进行处理,以提取得出焊接对象的粗糙度,判断所述粗糙度是否大于预设值,若是,则不生成所述第二指令,反之则生成所述第二指令。
作为一种优选,所述主控模块(101)对所述焊接现场图像进行处理,以提取得出焊接对象的粗糙度,包括:
对所述焊接现场图像进行处理,以获得特征数据;
将所述特征数据输入深度识别模型,所述深度识别模型输出场景属性,根据所述场景属性确定所述焊接对象的粗糙度。
相比于现有技术,本发明提供的新型交氩弧焊机能够克服传统方波的容易出现气泡导致焊接面不够平整、容易出现断弧等问题,显著的提升了交流氩弧焊机的性能。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1是现有技术中的标准方波的示意图;
图2是本发明实施例公开的一种新型交流氩弧焊机的结构示意图;
图3是本发明实施例公开的修正方波的示意图;
图4是本发明实施例公开的修正方波的另一示意图;
图5是本发明实施例公开的一种新型交流氩弧焊机的另一种结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步定义和解释。
在本发明的描述中,需要说明的是,若出现术语“上”、“下”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系,或者是该发明产品使用时惯常摆放的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的系统或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
本发明的说明书和权利要求书中的术语“第一”、“第二”、“第三”和“第四”等是用于区别不同的对象,而不是用于描述对象的特定顺序。例如,第一输入、第二输入、第三输入和第四输入等是用于区别不同的输入,而不是用于描述输入的特定顺序。
在本发明实施例中,“示例性地”或者“例如”等词用于表示作例子、例证或说明。本发明实施例中被描述为“示例性地”或者“例如”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用“示例性地”或者“例如”等词旨在以具体方式呈现相关概念。
在本发明实施例的描述中,除非另有说明,“多个”的含义是指两个或者两个以上,例如,多个处理单元是指两个或者两个以上的处理单元;多个元件是指两个或者两个以上的元件等。
需要说明的是,在不冲突的情况下,本发明的实施例中的特征可以相互结合。
实施例一
请参阅图2,图2是本发明实施例公开的一种新型交流氩弧焊机的结构示意图。如图2所示,本发明实施例的一种新型交流氩弧焊机,包括主控模块(101)、波形生成模块(102)、波形修正模块(103)、电源模块(104),所述主控模块(101)与所述波形生成模块(102)、所述波形修正模块(103)连接;其中,
所述波形生成模块(102),用于生成标准方波;
所述波形修正模块(103),用于生成修正方案,并将所述修正方案传输给所述波形生成模块(102);
所述主控模块(101),用于生成第一指令和第二指令,所述第一指令传输给所述波形生成模块(102)以触发其生成所述标准方波,所述第二指令传输给所述波形修正模块(103)以触发其生成所述修正方案;
所述电源模块(104)为所述主控模块(101)、波形生成模块(102)、波形修正模块(103)提供电力;
所述波形生成模块(102),还用于根据所述修正方案对所述标准方波进行修正。
在本发明实施例中,如背景技术所述,传统的焊接用方波都是标准型的,参照图1所示,这种传统方波存在容易出现气泡导致焊接面不够平整、容易出现断弧等问题,无法满足高标准的焊接场景需求。有鉴于此,本发明提供了一种新型交流氩弧焊机,主控模块(101)控制波形生成模块(102)生成标准方波,还控制波形修正模块(103)生成修正方案,于是波形生成模块(102)再根据修正方案对标准方波进行修正,于是得到了经过改进的方波,进而至少部分的克服背景技术中所提到的缺陷,最终提升的交流氩弧焊机的性能。
作为一种优选,所述修正方案包括第一子方案,所述第一子方案包括:设置所述标准方波的电流值在负半周期比正半周期大第一值,且正半周期的电流值不变。
在本发明实施例中,现有技术中的传统方波的电流的负半周期和正半周期都是相同的,本发明对此进行改进,具体而言,参照图3,设置标准方 波负半周期的电流比正半周期的大第一值,其中,负半周期的瞬间大电流有利于工件表面氧化膜被清理掉;同时,正半周期的电流保持不变,于是,钨极可以发射足够的电子而又不至于过热,有利子电弧的稳定。如此设置,同时兼顾了阴极清理作用和钨极烧损少、电弧稳定性好的效果。
作为一种优选,所述第一值为5%-25%。
在本发明实施例中,经过实验验证,设置第一值为5%-25%,可以使工件表面氧化膜更好的被清理掉,从而使得焊缝更加平滑。
作为一种优选,所述修正方案还包括第二子方案,所述第二子方案包括:在电流的正半周期和负半周期设置电流切换点。
在本发明实施例中,参照图3,本发明在电流的正半周期和负半周期设置电流切换点,于是,在设置的切换点进行电流的切换,使得修正后的方波能够减弱IGBT切换时的损耗,从而保护IGBT,同时,还能有效的杜绝因交直流切换而产生的断弧。
作为一种优选,所述修正方案还包括第三子方案,所述第三子方案包括:在电流负半周期设置凸点。
在本发明实施例中,参照图3,为了进一步增强清理效果,本发明进一步在电流负半周设置凸点。同时,由于凸点电流的时长是短暂的,所以,并不会对氩弧焊枪的钨棒造成过多损耗。
作为一种优选,所述凸点的持续时长是负半周期时长的10%—25%,电流大小是负半周期电流的5—25%。
在本发明实施例中,经过实验验证,设置凸点的持续时长为负半周期时长的10%—25%可以获得更好的清理效果。
作为一种优选,所述波形生成模块(102)在生成标准方波和根据所述修正方案对所述标准方波进行修正时,采用软件代码实现。
在本发明实施例中,现有技术中的波形生成通常是通过预先设计的硬件电路来实现,该种方式实施成本较高,而且灵活性较差,难以满足多样 化的需求。有鉴于此,本发明中的方波的波形效果通过软件代码实现,即通过预先设置好的波形生成及修正代码来生成对应的波形。
举例而言:
参照图4所示,其表示一个周期的放大图。图中0-7表示波形图的分割点,将波形图分割为7段,在这七段中分别给相应的给定值就可以将新型波形图实现。其中,T=1/f、负半周时间=占空比*T、正半周期时间=T-负半周期时间,切换点(0-1)的时间由最大电流到切换点电流的下降时间决定。
需要进行说明的是,精度是给定值的最小时间间隔,同时精度也决定了最小周期。
作为一种优选,所述新型交流氩弧焊机还包括摄像模块(105),其用于拍摄焊接现场图像;
所述主控模块(101)还用于根据所述焊接现场图像判断是否生成所述第二指令。
在本发明实施例中,焊接场景是多样的,不同的焊接场景代表着不同的焊接需求,例如,场景A对焊接精度要求度较低,此时仅使用标准方波即可满足需要,而场景B则对焊接精度要求度较高,此时需要使用定制方波。于是,参照图5,本发明的新型交流氩弧焊机还包括摄像模块(105),其中,主控模块(101)根据对焊接现场图像进行识别以确定对应的焊接需求,从而决策是否生成第二指令,即是否对标准方波进行修正。于是,本发明的方案能够基于对焊接场景的识别来确定焊接需求,继而生成更为准确的方波波形。
作为一种优选,所述主控模块(101)还用于根据所述焊接现场图像判断是否生成所述第二指令,包括:
所述主控模块(101)对所述焊接现场图像进行处理,以提取得出焊接对象的粗糙度,判断所述粗糙度是否大于预设值,若是,则不生成所述第二指令,反之则生成所述第二指令。
在本发明实施例中,一般情况下,焊接对象的粗糙程度可以较为准确的反映焊接标准的高低,于是,本发明通过焊接现场图像来确定焊接对象的粗糙度,进而做出是采用标准方波还是采用修正方波进行焊接。
需要进行说明的是,本发明中所涉及的焊接对象的粗糙度可以是待焊接钢板的表面平整度或者焊缝的大小。于是,本发明可以通过图像识别技术来自动确定新型交流氩弧焊机当前所处的焊接场景,进而预测出当前的焊接任务的焊接标准的高低程度,最终确定是否生成修正的方波,可以有效降低用户通过手动操作来设置目标波形的繁琐。
另外,在通过图像识别技术自动确定出目标波形之后,为了避免对焊接场景的错误识别而导致生成不适宜的方波波形,本发明中的新型交流氩弧焊机还可包括交互模块,交互模块一方面可以允许用户通过手动操作设置方波波形(即选择使用标准方波,还是使用修正方波),另一方面还可以将根据图像识别技术自动预测出的待生成的修正方波显示给用户,以供用户确认,在得到用户的确认指令之后,则可以触发波形生成模块(102)根据所述修正方案对所述标准方波进行修正。
作为一种优选,所述主控模块(101)对所述焊接现场图像进行处理,以提取得出焊接对象的粗糙度,包括:
对所述焊接现场图像进行处理,以获得特征数据;
将所述特征数据输入深度识别模型,所述深度识别模型输出场景属性,根据所述场景属性确定所述焊接对象的粗糙度。
在本发明实施例中,前述的根据待焊接钢板的表面平整度或者焊缝的大小来确定粗糙度的准确性较差,因为钢板表面的平整度并不一定是第焊接标准的场景,焊缝的大小也容易受人为影响。有鉴于此,本发明进一步根据焊接现场图像来确定焊接现场的场景属性来确定前述的粗糙度,即通过据焊接现场图像来确定出对应的焊接场景为高精密机械设备,则可确定粗糙度为低;当焊接场景为普通厂房的钢板焊接时,则确定粗糙度为高;当焊接场景为造船厂的特种车间时,则确定粗糙度为低。
需要进行说明的是,对于深度识别模型来说,其只有在得到了充分的训练之后才能确保识别的准确性。对此,可以事先收集各种焊接场景的图片(包括近景、中景、远景),对这些图片进行场景属性标注,进而构建出训练集,利用训练集中的图片来对深度识别模型进行训练。另外,深度识别模型可以通过卷积神经网络(convolutional neural network,CNN)、DBN和堆栈自编码网络(stacked auto-encoder network)模型等构建,由于构建方法为本领域所普遍知晓,本发明在此不再赘述。
作为一种改进,在对深度识别模型进行训练时,本发明设计了对训练集的优化,即:
训练过程中,通过下式计算训练集中各图片的可靠度:
Figure PCTCN2022106414-appb-000001
式中,Tru i为训练集中第i个已经进行训练的图片的可靠度值;L k为训练过程中第k th个迭代时网络对样本i的损失计算函数;θ为网络的学习参数;mean(·)为第i个已经进行训练的图片在整个训练过程中的损失均值;L(·)是网络分类的目标函数;x i为第i个图片的特征数据,y i为标注的标签;
若所述可靠度低于阈值,则将所述图片从训练集中删除。
在本发明实施例中,本发明可以将对深度识别模型的训练分为阶段性,即先试训练,从而得出训练集中可靠度低的图片(例如图片清晰度过低、场景过于复杂等)筛除,从而使得训练集中的图片更为合适,有利于提高深度识别模型的训练结果。在此之后,再利用经过筛选的训练集对深度识别模型进行正式的训练。
本文中以上描述的系统和技术的各种实施方式可以在数字电子电路系统、集成电路系统、场可编程门阵列(FPGA)、专用集成电路(ASIC)、专用标准产品(ASSP)、芯片上系统的系统(SOC)、负载可编程逻辑设备(CPLD)、计算机硬件、固件、软件、和/或它们的组合中实现。这些各种实施方式可以包括:实施在一个或者多个计算机程序中,该一个或者多个计算机程序可在包括至少一个可编程处理器的可编程系统上执行和/或解释,该可编程 处理器可以是专用或者通用可编程处理器,可以从存储系统、至少一个输入系统、和至少一个输出系统接收数据和指令,并且将数据和指令传输至该存储系统、该至少一个输入系统、和该至少一个输出系统。
用于实施本公开的方法的程序代码可以采用一个或多个编程语言的任何组合来编写。这些程序代码可以提供给通用计算机、专用计算机或其他可编程数据处理系统的处理器或控制器,使得程序代码当由处理器或控制器执行时使流程图和/或框图中所规定的功能/操作被实施。程序代码可以完全在机器上执行、部分地在机器上执行,作为独立软件包部分地在机器上执行且部分地在远程机器上执行或完全在远程机器或服务器上执行。
在本公开的上下文中,机器可读介质可以是有形的介质,其可以包含或存储以供指令执行系统、系统或设备使用或与指令执行系统、系统或设备结合地使用的程序。机器可读介质可以是机器可读信号介质或机器可读储存介质。机器可读介质可以包括但不限于电子的、磁性的、光学的、电磁的、红外的、或半导体系统、系统或设备,或者上述内容的任何合适组合。机器可读存储介质的更具体示例会包括基于一个或多个线的电气连接、便携式计算机盘、硬盘、随机存取存储器(RAM)、只读存储器(ROM)、可擦除可编程只读存储器(EPROM或快闪存储器)、光纤、便捷式紧凑盘只读存储器(CD-ROM)、光学储存设备、磁储存设备、或上述内容的任何合适组合。
为了提供与用户的交互,可以在计算机上实施此处描述的系统和技术,该计算机具有:用于向用户显示信息的显示系统(例如,CRT(阴极射线管)或者LCD(液晶显示器)监视器);以及键盘和指向系统(例如,鼠标或者轨迹球),用户可以通过该键盘和该指向系统来将输入提供给计算机。其它种类的系统还可以用于提供与用户的交互;例如,提供给用户的反馈可以是任何形式的传感反馈(例如,视觉反馈、听觉反馈、或者触觉反馈);并且可以用任何形式(包括声输入、语音输入或者、触觉输入)来接收来自用户的输入。
可以将此处描述的系统和技术实施在包括后台部件的计算系统(例如,作为数据服务器)、或者包括中间件部件的计算系统(例如,应用服务器)、或者包括前端部件的计算系统(例如,具有图形用户界面或者网络浏览器的 用户计算机,用户可以通过该图形用户界面或者该网络浏览器来与此处描述的系统和技术的实施方式交互)、或者包括这种后台部件、中间件部件、或者前端部件的任何组合的计算系统中。可以通过任何形式或者介质的数字数据通信(例如,通信网络)来将系统的部件相互连接。通信网络的示例包括:局域网(LAN)、广域网(WAN)和互联网。
计算机系统可以包括客户端和服务器。客户端和服务器一般远离彼此并且通常通过通信网络进行交互。通过在相应的计算机上运行并且彼此具有客户端-服务器关系的计算机程序来产生客户端和服务器的关系。服务器可以是云服务器,也可以为分布式系统的服务器,或者是结合了区块链的服务器。
应该理解,可以使用上面所示的各种形式的流程,重新排序、增加或删除步骤。例如,本发公开中记载的各步骤可以并行地执行也可以顺序地执行也可以不同的次序执行,只要能够实现本公开公开的技术方案所期望的结果,本文在此不进行限制。
上述具体实施方式,并不构成对本公开保护范围的限制。本领域技术人员应该明白的是,根据设计要求和其他因素,可以进行各种修改、组合、子组合和替代。任何在本公开的精神和原则之内所作的修改、等同替换和改进等,均应包含在本公开保护范围之内。

Claims (10)

  1. 一种新型交流氩弧焊机,其特征在于:包括主控模块(101)、波形生成模块(102)、波形修正模块(103)、电源模块(104),所述主控模块(101)与所述波形生成模块(102)、所述波形修正模块(103)连接;其中,
    所述波形生成模块(102),用于生成标准方波;
    所述波形修正模块(103),用于生成修正方案,并将所述修正方案传输给所述波形生成模块(102);
    所述主控模块(101),用于生成第一指令和第二指令,所述第一指令传输给所述波形生成模块(102)以触发其生成所述标准方波,所述第二指令传输给所述波形修正模块(103)以触发其生成所述修正方案;
    所述电源模块(104)为所述主控模块(101)、波形生成模块(102)、波形修正模块(103)提供电力;
    所述波形生成模块(102),还用于根据所述修正方案对所述标准方波进行修正。
  2. 根据权利要求1所述的一种新型交流氩弧焊机,其特征在于:所述修正方案包括第一子方案,所述第一子方案包括:设置所述标准方波的电流值在负半周期比正半周期大第一值,且正半周期的电流值不变。
  3. 根据权利要求2所述的一种新型交流氩弧焊机,其特征在于:所述第一值为5%-25%。
  4. 根据权利要求1或3所述的一种新型交流氩弧焊机,其特征在于:所述修正方案还包括第二子方案,所述第二子方案包括:在电流的正半周期和负半周期设置电流切换点。
  5. 根据权利要求4所述的一种新型交流氩弧焊机,其特征在于:所述修正方案还包括第三子方案,所述第三子方案包括:在电流负半周期设置凸点。
  6. 根据权利要求5所述的一种新型交流氩弧焊机,其特征在于:所述凸点的持续时长是负半周期时长的10%—25%,电流大小是负半周期电流的5—25%。
  7. 根据权利要求1或6所述的一种新型交流氩弧焊机,其特征在于:所述波形生成模块(102)在生成标准方波和根据所述修正方案对所述标准方波进行修正时,采用软件代码实现。
  8. 根据权利要求7所述的一种新型交流氩弧焊机,其特征在于:所述新型交流氩弧焊机还包括摄像模块(105),其用于拍摄焊接现场图像;
    所述主控模块(101)还用于根据所述焊接现场图像判断是否生成所述第二指令。
  9. 根据权利要求8所述的一种新型交流氩弧焊机,其特征在于:所述主控模块(101)还用于根据所述焊接现场图像判断是否生成所述第二指令,包括:
    所述主控模块(101)对所述焊接现场图像进行处理,以提取得出焊接对象的粗糙度,判断所述粗糙度是否大于预设值,若是,则不生成所述第二指令,反之则生成所述第二指令。
  10. 根据权利要求9所述的一种新型交流氩弧焊机,其特征在于:所述主控模块(101)对所述焊接现场图像进行处理,以提取得出焊接对象的粗糙度,包括:
    对所述焊接现场图像进行处理,以获得特征数据;
    将所述特征数据输入深度识别模型,所述深度识别模型输出场景属性,根据所述场景属性确定所述焊接对象的粗糙度。
PCT/CN2022/106414 2022-02-14 2022-07-19 一种新型交流氩弧焊机 WO2023151230A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210132376.2A CN114378411A (zh) 2022-02-14 2022-02-14 一种新型交流氩弧焊机
CN202210132376.2 2022-02-14

Publications (1)

Publication Number Publication Date
WO2023151230A1 true WO2023151230A1 (zh) 2023-08-17

Family

ID=81205624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106414 WO2023151230A1 (zh) 2022-02-14 2022-07-19 一种新型交流氩弧焊机

Country Status (2)

Country Link
CN (1) CN114378411A (zh)
WO (1) WO2023151230A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114378411A (zh) * 2022-02-14 2022-04-22 上海威特力焊接设备制造股份有限公司 一种新型交流氩弧焊机
CN116038074B (zh) * 2023-01-05 2024-06-11 广州亦高电气设备有限公司 交流氩弧焊控制方法和控制设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140251967A1 (en) * 2013-03-08 2014-09-11 Lincoln Global, Inc. Arc welding with waveform control function
CN104661783A (zh) * 2012-09-24 2015-05-27 林肯环球股份有限公司 为ac弧焊工艺提供低电流调节的系统和方法
CN107810080A (zh) * 2015-06-24 2018-03-16 伊利诺斯工具制品有限公司 用于焊接机器视觉的飞行时间相机
CN112894068A (zh) * 2021-04-02 2021-06-04 上海威特力焊接设备制造股份有限公司 一种具有保护作用的氩弧焊机
CN114378411A (zh) * 2022-02-14 2022-04-22 上海威特力焊接设备制造股份有限公司 一种新型交流氩弧焊机

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3312713B2 (ja) * 1995-04-28 2002-08-12 オリジン電気株式会社 交流プラズマアーク溶接機
US6111216A (en) * 1999-01-19 2000-08-29 Lincoln Global, Inc. High current welding power supply
AT501489B1 (de) * 2005-02-25 2009-07-15 Fronius Int Gmbh Verfahren zum steuern und/oder regeln eines schweissgerätes und schweissgerät
DE102006034330B3 (de) * 2006-07-21 2007-08-23 Ewm Hightec Welding Gmbh Lichtbogenschweißgerät
CN201009041Y (zh) * 2007-03-07 2008-01-23 四川玛瑞焊业发展有限公司 方波氩弧焊机
JP5234042B2 (ja) * 2010-04-07 2013-07-10 株式会社デンソー アーク溶接方法およびその装置
CN103182592A (zh) * 2011-12-28 2013-07-03 哈尔滨学兴科技开发有限公司 一种交直流混合焊接方法及装置
CN205342168U (zh) * 2016-01-13 2016-06-29 上海威特力焊接设备制造股份有限公司 一种用于交流氩弧焊机的波形控制电路
CN105436667B (zh) * 2016-01-13 2017-08-01 上海威特力焊接设备制造股份有限公司 一种用于交流氩弧焊机的波形控制电路
CN206382679U (zh) * 2017-01-13 2017-08-08 深圳市川瑞贝科技有限公司 一种交直流氩弧焊小电流稳弧电路
JP6882832B2 (ja) * 2017-09-26 2021-06-02 株式会社ダイヘン 交流非消耗電極アーク溶接制御方法
CN108555421B (zh) * 2018-04-03 2020-06-16 哈尔滨工程大学 一种基于脉冲协调双钨极氩弧焊的熔滴过渡控制装置及其控制方法
CN210633088U (zh) * 2019-09-30 2020-05-29 唐山松下产业机器有限公司 焊机控制装置和焊机
CN114393283A (zh) * 2022-02-11 2022-04-26 上海威特力焊接设备制造股份有限公司 一种多功能交流氩弧焊机

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104661783A (zh) * 2012-09-24 2015-05-27 林肯环球股份有限公司 为ac弧焊工艺提供低电流调节的系统和方法
US20140251967A1 (en) * 2013-03-08 2014-09-11 Lincoln Global, Inc. Arc welding with waveform control function
CN107810080A (zh) * 2015-06-24 2018-03-16 伊利诺斯工具制品有限公司 用于焊接机器视觉的飞行时间相机
CN112894068A (zh) * 2021-04-02 2021-06-04 上海威特力焊接设备制造股份有限公司 一种具有保护作用的氩弧焊机
CN114378411A (zh) * 2022-02-14 2022-04-22 上海威特力焊接设备制造股份有限公司 一种新型交流氩弧焊机

Also Published As

Publication number Publication date
CN114378411A (zh) 2022-04-22

Similar Documents

Publication Publication Date Title
WO2023151230A1 (zh) 一种新型交流氩弧焊机
US20210210091A1 (en) Method, device, and storage medium for waking up via speech
US20220270373A1 (en) Method for detecting vehicle, electronic device and storage medium
US9250791B2 (en) Display control device, display control method, and computer program
EP4086730A1 (en) Touch control method for display, terminal device, and storage medium
EP3852008A2 (en) Image detection method and apparatus, device, storage medium and computer program product
US20210073973A1 (en) Method and apparatus for component fault detection based on image
WO2021068468A1 (zh) 知识图谱的向量表示生成方法、装置及设备
CN110659600B (zh) 物体检测方法、装置及设备
US20210304438A1 (en) Object pose obtaining method, and electronic device
US10514802B2 (en) Method for controlling display of touchscreen, and mobile device
EP3901908B1 (en) Method and apparatus for tracking target, device, medium and computer program product
EP3822858A2 (en) Method and apparatus for identifying key point locations in an image, and computer readable medium
CN111861991B (zh) 计算图像清晰度的方法以及装置
WO2023173677A1 (zh) 轨迹融合方法、装置、设备及存储介质
EP3929810A2 (en) Method and apparatus for identifying image and electronic device
US20220004812A1 (en) Image processing method, method for training pre-training model, and electronic device
CN110727383A (zh) 基于小程序的触控交互方法、装置、电子设备与存储介质
CN111814651B (zh) 车道线的生成方法、装置和设备
CN112967017B (zh) 一种会议管理方法、装置、设备以及存储介质
JP6287861B2 (ja) 情報処理装置、情報処理方法、及び、プログラム記憶媒体
US20220134464A1 (en) Weld line data generation device, welding system, weld line data generation method, and computer readable medium
CN114393283A (zh) 一种多功能交流氩弧焊机
CN111858303B (zh) 小程序的页面控制方法、装置、设备及介质
CN112183484A (zh) 一种图像处理方法、装置、设备以及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925589

Country of ref document: EP

Kind code of ref document: A1