WO2023150993A1 - Ultrasonic transducers - Google Patents

Ultrasonic transducers Download PDF

Info

Publication number
WO2023150993A1
WO2023150993A1 PCT/CN2022/075954 CN2022075954W WO2023150993A1 WO 2023150993 A1 WO2023150993 A1 WO 2023150993A1 CN 2022075954 W CN2022075954 W CN 2022075954W WO 2023150993 A1 WO2023150993 A1 WO 2023150993A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrical conductors
currents
alternating
transducer
magnetic field
Prior art date
Application number
PCT/CN2022/075954
Other languages
French (fr)
Inventor
Peiyan CAO
Yurun LIU
Original Assignee
Shenzhen Genorivision Technology Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Genorivision Technology Co., Ltd. filed Critical Shenzhen Genorivision Technology Co., Ltd.
Priority to PCT/CN2022/075954 priority Critical patent/WO2023150993A1/en
Priority to TW112102938A priority patent/TW202332516A/en
Publication of WO2023150993A1 publication Critical patent/WO2023150993A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52079Constructional features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features

Definitions

  • a transducer is a device that converts energy from one form to another.
  • An ultrasonic transducer can include at least a piezoelectric element that expands and contracts resulting in a high frequency sound wave propagating through the surrounding ambient toward an object of interest.
  • the ultrasonic transducer can evaluate the resulting echo from the object to determine the properties of the object (e.g., ultrasound images of the object, distance of the object from the ultrasonic transducer, etc. ) .
  • a method comprising: sending M alternating currents respectively through M electrical conductors of a transducer while the M electrical conductors are in a magnetic field, resulting in M alternating Lorentz forces being applied to the M electrical conductors respectively, resulting in first vibrations of the M electrical conductors respectively.
  • the M alternating currents have respectively M frequencies each of which is at least 20 kHz, and M is a positive integer.
  • each of the M electrical conductors has a section with a shape of a rod.
  • the transducer further comprises M plates affixed to the M electrical conductors respectively.
  • the transducer further comprises M plates in direct physical contact with the M electrical conductors respectively.
  • the M plates are discrete from one another.
  • each of the M electrical conductors has a section with a shape of a sheet.
  • the M electrical conductors form a 1-dimensional array or a 2-dimensional array.
  • the M alternating currents have a same frequency.
  • said sending the M alternating currents comprises tuning a phase of an alternating current of the M alternating currents with respect to a phase of another alternating current of the M alternating currents.
  • the M alternating currents have pre-specified phase differences.
  • the M alternating currents are sent simultaneously.
  • the first vibrations of the M electrical conductors are at the M frequencies respectively.
  • the method further comprises: while the M electrical conductors are in the magnetic field, receiving with the M electrical conductors M echo ultrasounds respectively, thereby causing second vibrations of the M electrical conductors respectively, thereby causing M induced currents in the M electrical conductors respectively.
  • the M echo ultrasounds result from ultrasounds generated by the first vibrations of the M electrical conductors; and measuring the M induced currents.
  • said measuring the M induced currents comprises measuring frequency, phase, and amplitude of each of the M induced currents.
  • the transducer further comprises a controller that controls (A) said sending the M alternating currents and (B) said measuring the M induced currents.
  • said receiving the M echo ultrasounds and said measuring the M induced currents are performed after said sending the M alternating currents is performed.
  • a method comprising: while M electrical conductors of a transducer are in a magnetic field, receiving with the M electrical conductors M ultrasounds respectively, thereby causing vibrations of the M electrical conductors respectively, thereby causing M induced currents in the M electrical conductors respectively; and measuring the M induced currents.
  • said measuring the M induced currents comprises measuring frequency, phase, and amplitude of each of the M induced currents.
  • the transducer further comprises a controller that controls said measuring the M induced currents.
  • a transducer comprising: a magnetic field generator configured to generate a magnetic field; M electrical conductors configured to be in the magnetic field; and a controller configured to send M alternating currents respectively through the M electrical conductors while the M electrical conductors are in the magnetic field, resulting in M alternating Lorentz forces being applied to the M electrical conductors respectively, resulting in first vibrations of the M electrical conductors respectively.
  • the M alternating currents have respectively M frequencies each of which is at least 20 kHz, and M is a positive integer.
  • the controller is configured to control the sending of the M alternating currents individually.
  • the M electrical conductors are configured to receive M echo ultrasounds respectively, thereby causing second vibrations of the M electrical conductors respectively, thereby causing M induced currents in the M electrical conductors respectively while the M electrical conductors are in the magnetic field.
  • the M echo ultrasounds result from ultrasounds generated by the first vibrations of the M electrical conductors, and the controller is configured to measure the M induced currents.
  • the controller is configured to measure frequency, phase, and amplitude of each of the M induced currents.
  • Fig. 1 schematically shows a perspective view of a transducer, according to an embodiment.
  • Fig. 2 shows a flowchart generalizing the operation of the transducer, according to an embodiment.
  • Fig. 3 shows another flowchart generalizing the operation of the transducer, according to an alternative embodiment.
  • Fig. 1 schematically shows a perspective view of a transducer 100, according to an embodiment.
  • the transducer 100 may include one or more electrical conductors 110, a magnetic field generator 120, and a controller 130.
  • the transducer 100 may include 6 electrical conductors 110 as shown.
  • each of the 6 electrical conductors 110 may have two ends electrically connected to the controller 130 via two electrically conductive wires 112 and 114 respectively.
  • the electrical conductor 110.1 has two ends electrically connected to the controller 130 via two electrically conductive wires 112.1 and 114.1 respectively.
  • the electrical conductor 110.2 has two ends electrically connected to the controller 130 via two electrically conductive wires 112.2 and 114.2 respectively.
  • the electrical conductors 110 may be but do not have to be parallel to one another.
  • the magnetic field generator 120 may generate a magnetic field 122.
  • the magnetic field generator 120 may include a permanent magnet (not shown) .
  • the magnetic field generator 120 may include a coil (not shown) with a DC current running through the coil thereby generating the magnetic field 122.
  • the magnetic field generator 120 is a superconducting electromagnet coil in a magnetic resonance imaging (MRI) system.
  • the 6 electrical conductors 110 may be in the magnetic field 122.
  • the controller 130 may send 6 alternating currents respectively through the 6 electrical conductors 110.
  • the 6 alternating currents in the 6 electrical conductors 110.1, 110.2, 110.3, 110.4, 110.5, and 110.6 are referred to as the first, second, third, fourth, fifth, and sixth alternating currents respectively.
  • the controller 130 may send the corresponding alternating current through said each electrical conductor 110 via the 2 corresponding electrically conductive wires 112 and 114.
  • the controller 130 sends the first alternating current through the electrical conductor 110.1 via the two electrically conductive wires 112.1 and 114.1.
  • the controller 130 sends the second alternating current through the electrical conductor 110.2 via the two electrically conductive wires 112.2 and 114.2.
  • the controller 130 may control the sending of the 6 alternating currents individually. In other words, the controller 130 directly controls the frequency, phase, and amplitude of each of the 6 alternating currents in the 6 electrical conductors 110.
  • the operation of the transducer 100 may be as follows.
  • the controller 130 may send the 6 alternating currents respectively through the 6 electrical conductors 110 while the 6 electrical conductors 110 are in the magnetic field 122.
  • an alternating Lorentz force is applied to said each electrical conductor 110 causing said each electrical conductor 110 to vibrate.
  • This vibration of said each electrical conductor 110 generates a sound wave propagating from said each electrical conductor 110 to the surrounding ambient (e.g., air, water, liquid, gel, etc. ) .
  • the controller 130 sends the first alternating current through the electrical conductor 110.1 while the electrical conductor 110.1 is in the magnetic field 122.
  • the resulting Lorentz force applied to the electrical conductor 110.1 points into the page (i.e., away from the viewer) .
  • the resulting Lorentz force applied to the electrical conductor 110.1 points out of the page (i.e., toward the viewer) .
  • This alternating Lorentz force causes the electrical conductor 110.1 to vibrate. This vibration of the electrical conductor 110.1 generates a sound wave propagating from the electrical conductor 110.1 to the surrounding ambient.
  • each of the 6 alternating currents sent respectively through the 6 electrical conductors 110 has a frequency of at least 20 kHz. Note that the 6 alternating currents are not necessarily the same in terms of frequency, phase, and amplitude.
  • the vibration frequency of each electrical conductor 110 may be the same as the frequency of the alternating current running through said each electrical conductor 110.
  • the vibration frequency of the electrical conductor 110.1 may be the same as the frequency of the first alternating current.
  • the vibration frequency of the electrical conductor 110.2 may be the same as the frequency of the second alternating current.
  • the vibration frequency of said each electrical conductor 110 is at least 20 kHz; and therefore the resulting sound wave generated by the vibration of said each electrical conductor 110 also has a frequency of at least 20 kHz (i.e., ultrasound) .
  • Fig. 2 shows a flowchart 200 generalizing the operation of the transducer 100 of Fig. 1, according to an embodiment.
  • the operation includes sending M alternating currents respectively through M electrical conductors of a transducer while the M electrical conductors are in a magnetic field, resulting in M alternating Lorentz forces being applied to the M electrical conductors respectively, resulting in first vibrations of the M electrical conductors respectively, wherein the M alternating currents have respectively M frequencies each of which is at least 20 kHz, and wherein M is a positive integer.
  • each of the 6 electrical conductors 110 may have a section with the shape of a rod as shown.
  • each of the electrical conductors 110 may have a section with the shape of a sheet (not shown) .
  • the transducer 100 may further include 6 plates 115 affixed to the 6 electrical conductors 110 respectively as shown.
  • the 6 plates 115 may be in direct physical contact with the 6 electrical conductors 110 respectively.
  • the 6 plates 115 may be discrete from one another as shown.
  • any vibration of an electrical conductor 110 causes the vibration of the corresponding plate 115.
  • any vibration of the electrical conductor 110.1 causes the vibration of the corresponding plate 115.1.
  • the 6 electrical conductors 110 of the transducer 100 may form a 1-dimensional array (e.g., a row of 6 electrical conductors 110) or a 2-dimensional array (e.g., a 2 ⁇ 3 array of electrical conductors 110 as shown in Fig. 1) .
  • the 6 alternating currents respectively in the 6 electrical conductors 110 may be sent simultaneously. In other words, the 6 alternating currents are present respectively in the 6 electrical conductors 110 at the same time.
  • the 6 alternating currents respectively in the 6 electrical conductors 110 may have the same frequency.
  • the 6 alternating currents respectively in the 6 electrical conductors 110 may have pre-specified phase differences.
  • the 6 alternating currents may have the same frequency but their phases can be 10 degrees apart.
  • the phases of the 6 alternating currents at a time point can be 5 degrees, 15 degrees, 25 degrees, 35 degrees, 45 degrees, and 55 degrees, respectively.
  • the sending of the 6 alternating currents respectively through the 6 electrical conductors 110 may include tuning the phase of an alternating current with respect to the phase of another alternating current.
  • the phases of the first and second alternating currents are the same; but later, the phase of the second alternating current may be delayed by 10 degrees relative to the phase of the first alternating current.
  • the phase of the first alternating current is 80 degrees at a time point, then the phase of the second alternating current is 70 degrees at that time point.
  • the 6 electrical conductors 110 may respectively receive from an object 140 echo ultrasounds which results from the 6 original ultrasounds being reflected, refracted, scattered, etc., by the object 140.
  • the echo ultrasounds cause the vibrations of the 6 electrical conductors 110.
  • the vibrations of the 6 electrical conductors 110 cause 6 induced currents in the 6 electrical conductors 110 respectively.
  • the controller 130 may measure the 6 induced currents in the 6 electrical conductors 110.
  • the measuring of the 6 induced currents in the 6 electrical conductors 110 may include measuring the frequency, phase, and amplitude of each of the 6 induced currents.
  • the controller 130 may control both (A) the sending of the 6 alternating currents respectively through the 6 electrical conductors 110 and (B) the measuring of the 6 induced currents in the 6 electrical conductors 110.
  • the controller 130 may stop sending the 6 alternating currents before the 6 electrical conductors 110 receive the echo ultrasounds. In other words, the receiving of the echo ultrasounds and the measuring of the 6 induced currents are performed after the sending of the 6 alternating currents is performed.
  • the 6 electrical conductors 110 of the transducer 100 respectively generate the 6 original ultrasounds and receive the 6 echo ultrasounds each of which resulting from the 6 original ultrasounds.
  • the 6 electrical conductors 110 of the transducer 100 may receive 6 new ultrasounds not related to any ultrasound which the transducer 100 may generate.
  • the word “new” here is used for easy reference and does not have any other meaning.
  • the 6 electrical conductors 110 may respectively receive the 6 new echo ultrasounds.
  • the 6 new echo ultrasounds respectively cause the vibrations of the 6 electrical conductors 110.
  • the vibrations of the 6 electrical conductors 110 cause 6 new induced currents in the 6 electrical conductors 110 respectively.
  • the ways in which the 6 new ultrasounds are received and the 6 new induced currents are measured may be similar to the ways in which the 6 echo ultrasounds are received and the 6 resulting induced currents are measured as described above.
  • Fig. 3 shows a flowchart 300 generalizing the operation of the transducer 100 of Fig. 1, according to the alternative embodiments described above.
  • the operation includes, while M electrical conductors of a transducer are in a magnetic field, receiving with the M electrical conductors M ultrasounds respectively, thereby causing vibrations of the M electrical conductors respectively, thereby causing M induced currents in the M electrical conductors respectively.
  • the 6 electrical conductors 110 of the transducer 100 while the 6 electrical conductors 110 of the transducer 100 are in the magnetic field 122, the 6 electrical conductors 110 receive the 6 new ultrasounds respectively, thereby causing the vibrations of the 6 electrical conductors 110 respectively, thereby causing the 6 new induced currents in the 6 electrical conductors 110 respectively.
  • the operation includes measuring the M induced currents.
  • the controller 130 measures the 6 new induced currents in the 6 electrical conductors 110 respectively.
  • the measuring of the 6 new induced currents in the 6 electrical conductors 110 may include measuring the frequency, phase, and amplitude of each of the 6 new induced currents.
  • the controller 130 of the transducer 100 may control the measuring of the 6 new induced currents.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Disclosed herein is a method comprising: sending M alternating currents respectively through M electrical conductors of a transducer while the M electrical conductors are in a magnetic field, resulting in M alternating Lorentz forces being applied to the M electrical conductors respectively, resulting in first vibrations of the M electrical conductors respectively. The M alternating currents have respectively M frequencies each of which is at least 20 kHz, and M is a positive integer.

Description

ULTRASONIC TRANSDUCERS Background
A transducer is a device that converts energy from one form to another. An ultrasonic transducer can include at least a piezoelectric element that expands and contracts resulting in a high frequency sound wave propagating through the surrounding ambient toward an object of interest. The ultrasonic transducer can evaluate the resulting echo from the object to determine the properties of the object (e.g., ultrasound images of the object, distance of the object from the ultrasonic transducer, etc. ) .
Summary
Disclosed herein is a method comprising: sending M alternating currents respectively through M electrical conductors of a transducer while the M electrical conductors are in a magnetic field, resulting in M alternating Lorentz forces being applied to the M electrical conductors respectively, resulting in first vibrations of the M electrical conductors respectively. The M alternating currents have respectively M frequencies each of which is at least 20 kHz, and M is a positive integer.
In an aspect, each of the M electrical conductors has a section with a shape of a rod.
In an aspect, the transducer further comprises M plates affixed to the M electrical conductors respectively.
In an aspect, the transducer further comprises M plates in direct physical contact with the M electrical conductors respectively.
In an aspect, the M plates are discrete from one another.
In an aspect, each of the M electrical conductors has a section with a shape of a sheet.
In an aspect, the M electrical conductors form a 1-dimensional array or a 2-dimensional array.
In an aspect, the M alternating currents have a same frequency.
In an aspect, said sending the M alternating currents comprises tuning a phase of an alternating current of the M alternating currents with respect to a phase of another alternating current of the M alternating currents.
In an aspect, the M alternating currents have pre-specified phase differences.
In an aspect, the M alternating currents are sent simultaneously.
In an aspect, the first vibrations of the M electrical conductors are at the M frequencies respectively.
In an aspect, the method further comprises: while the M electrical conductors are in the magnetic field, receiving with the M electrical conductors M echo ultrasounds respectively, thereby causing second vibrations of the M electrical conductors respectively, thereby causing M induced currents in the M electrical conductors respectively. The M echo ultrasounds result from ultrasounds generated by the first vibrations of the M electrical conductors; and measuring the M induced currents.
In an aspect, said measuring the M induced currents comprises measuring frequency, phase, and amplitude of each of the M induced currents.
In an aspect, the transducer further comprises a controller that controls (A) said sending the M alternating currents and (B) said measuring the M induced currents.
In an aspect, said receiving the M echo ultrasounds and said measuring the M induced currents are performed after said sending the M alternating currents is performed.
Disclosed herein is a method, comprising: while M electrical conductors of a transducer are in a magnetic field, receiving with the M electrical conductors M ultrasounds respectively, thereby causing vibrations of the M electrical conductors respectively, thereby causing M induced currents in the M electrical conductors respectively; and measuring the M induced currents.
In an aspect, said measuring the M induced currents comprises measuring frequency, phase, and amplitude of each of the M induced currents.
In an aspect, the transducer further comprises a controller that controls said measuring the M induced currents.
Disclosed herein is a transducer, comprising: a magnetic field generator configured to generate a magnetic field; M electrical conductors configured to be in the magnetic field; and a controller configured to send M alternating currents respectively through the M electrical conductors while the M electrical conductors are in the magnetic field, resulting in M alternating Lorentz forces being applied to the M electrical conductors respectively, resulting in first vibrations of the M electrical conductors respectively. The M alternating currents have respectively M frequencies each of which is at least 20 kHz, and M is a positive integer.
In an aspect, the controller is configured to control the sending of the M alternating currents individually.
In an aspect, the M electrical conductors are configured to receive M echo ultrasounds respectively, thereby causing second vibrations of the M electrical conductors respectively,  thereby causing M induced currents in the M electrical conductors respectively while the M electrical conductors are in the magnetic field. The M echo ultrasounds result from ultrasounds generated by the first vibrations of the M electrical conductors, and the controller is configured to measure the M induced currents.
In an aspect, the controller is configured to measure frequency, phase, and amplitude of each of the M induced currents.
Brief Description of Figures
Fig. 1 schematically shows a perspective view of a transducer, according to an embodiment.
Fig. 2 shows a flowchart generalizing the operation of the transducer, according to an embodiment.
Fig. 3 shows another flowchart generalizing the operation of the transducer, according to an alternative embodiment.
Detailed Description
TRANSDUCER
Fig. 1 schematically shows a perspective view of a transducer 100, according to an embodiment. In an embodiment, the transducer 100 may include one or more electrical conductors 110, a magnetic field generator 120, and a controller 130.
ELECTRICAL CONDUCTORS
For illustration, the transducer 100 may include 6 electrical conductors 110 as shown. In an embodiment, each of the 6 electrical conductors 110 may have two ends electrically connected to the controller 130 via two electrically conductive wires 112 and 114 respectively. For example, the electrical conductor 110.1 has two ends electrically connected to the controller 130 via two electrically conductive wires 112.1 and 114.1 respectively. For another example, the electrical conductor 110.2 has two ends electrically connected to the controller 130 via two electrically conductive wires 112.2 and 114.2 respectively. The electrical conductors 110 may be but do not have to be parallel to one another.
MAGNETIC FIELD GENERATOR
In an embodiment, the magnetic field generator 120 may generate a magnetic field 122. In an embodiment, the magnetic field generator 120 may include a permanent magnet (not shown) . Alternatively, the magnetic field generator 120 may include a coil (not shown) with a DC current running through the coil thereby generating the magnetic field 122. For example,  the magnetic field generator 120 is a superconducting electromagnet coil in a magnetic resonance imaging (MRI) system. In an embodiment, the 6 electrical conductors 110 may be in the magnetic field 122.
CONTROLLER AND ALTERNATING CURRENTS
In an embodiment, the controller 130 may send 6 alternating currents respectively through the 6 electrical conductors 110. For easy reference, the 6 alternating currents in the 6 electrical conductors 110.1, 110.2, 110.3, 110.4, 110.5, and 110.6 are referred to as the first, second, third, fourth, fifth, and sixth alternating currents respectively.
In an embodiment, for each electrical conductor 110, the controller 130 may send the corresponding alternating current through said each electrical conductor 110 via the 2 corresponding electrically conductive wires 112 and 114. For example, the controller 130 sends the first alternating current through the electrical conductor 110.1 via the two electrically conductive wires 112.1 and 114.1. For another example, the controller 130 sends the second alternating current through the electrical conductor 110.2 via the two electrically conductive wires 112.2 and 114.2.
In an embodiment, the controller 130 may control the sending of the 6 alternating currents individually. In other words, the controller 130 directly controls the frequency, phase, and amplitude of each of the 6 alternating currents in the 6 electrical conductors 110.
OPERATION OF THE TRANSDUCER
In an embodiment, the operation of the transducer 100 may be as follows. The controller 130 may send the 6 alternating currents respectively through the 6 electrical conductors 110 while the 6 electrical conductors 110 are in the magnetic field 122. As a result, for each electrical conductor 110, an alternating Lorentz force is applied to said each electrical conductor 110 causing said each electrical conductor 110 to vibrate. This vibration of said each electrical conductor 110 generates a sound wave propagating from said each electrical conductor 110 to the surrounding ambient (e.g., air, water, liquid, gel, etc. ) .
For example, the controller 130 sends the first alternating current through the electrical conductor 110.1 while the electrical conductor 110.1 is in the magnetic field 122. When the first alternating current flows from left to right in the electrical conductor 110.1, the resulting Lorentz force applied to the electrical conductor 110.1 points into the page (i.e., away from the viewer) . When the first alternating current flows from right to left in the electrical conductor 110.1, the resulting Lorentz force applied to the electrical conductor 110.1 points out of the  page (i.e., toward the viewer) . This alternating Lorentz force causes the electrical conductor 110.1 to vibrate. This vibration of the electrical conductor 110.1 generates a sound wave propagating from the electrical conductor 110.1 to the surrounding ambient.
In an embodiment, each of the 6 alternating currents sent respectively through the 6 electrical conductors 110 has a frequency of at least 20 kHz. Note that the 6 alternating currents are not necessarily the same in terms of frequency, phase, and amplitude.
In an embodiment, the vibration frequency of each electrical conductor 110 may be the same as the frequency of the alternating current running through said each electrical conductor 110. For example, the vibration frequency of the electrical conductor 110.1 may be the same as the frequency of the first alternating current. For another example, the vibration frequency of the electrical conductor 110.2 may be the same as the frequency of the second alternating current.
As a result, with each alternating current having a frequency of at least 20 kHz, the vibration frequency of said each electrical conductor 110 is at least 20 kHz; and therefore the resulting sound wave generated by the vibration of said each electrical conductor 110 also has a frequency of at least 20 kHz (i.e., ultrasound) .
FLOWCHART GENERALIZING THE OPERATION OF THE TRANSDUCER
Fig. 2 shows a flowchart 200 generalizing the operation of the transducer 100 of Fig. 1, according to an embodiment.
In step 210, the operation includes sending M alternating currents respectively through M electrical conductors of a transducer while the M electrical conductors are in a magnetic field, resulting in M alternating Lorentz forces being applied to the M electrical conductors respectively, resulting in first vibrations of the M electrical conductors respectively, wherein the M alternating currents have respectively M frequencies each of which is at least 20 kHz, and wherein M is a positive integer.
For example, in the embodiments described above, with reference to Fig. 1, the controller 130 sends the 6 alternating currents (i.e., the first, second, third, fourth, fifth, and sixth alternating currents) respectively through the 6 electrical conductors 110 of the transducer 100 while the 6 electrical conductors 110 are in the magnetic field 122, resulting in the 6 alternating Lorentz forces being applied to the 6 electrical conductors 110 respectively, resulting in the vibrations of the 6 electrical conductors 110 respectively, wherein the 6  alternating currents have respectively the 6 frequencies each of which is at least 20 kHz (here, M=6) .
OTHER EMBODIMENTS
MORE ABOUT THE ELECTRICAL CONDUCTORS 110
In an embodiment, with reference to Fig. 1, each of the 6 electrical conductors 110 may have a section with the shape of a rod as shown. Alternatively, each of the electrical conductors 110 may have a section with the shape of a sheet (not shown) .
In an embodiment, with reference to Fig. 1, the transducer 100 may further include 6 plates 115 affixed to the 6 electrical conductors 110 respectively as shown. In an embodiment, the 6 plates 115 may be in direct physical contact with the 6 electrical conductors 110 respectively. In an embodiment, the 6 plates 115 may be discrete from one another as shown.
With the 6 plates 115 being affixed respectively to the 6 electrical conductors 110, any vibration of an electrical conductor 110 causes the vibration of the corresponding plate 115. For example, any vibration of the electrical conductor 110.1 causes the vibration of the corresponding plate 115.1.
In an embodiment, the 6 electrical conductors 110 of the transducer 100 may form a 1-dimensional array (e.g., a row of 6 electrical conductors 110) or a 2-dimensional array (e.g., a 2×3 array of electrical conductors 110 as shown in Fig. 1) .
MORE ABOUT THE ALTERNATING CURRENTS
In an embodiment, with reference to Fig. 1, the 6 alternating currents respectively in the 6 electrical conductors 110 may be sent simultaneously. In other words, the 6 alternating currents are present respectively in the 6 electrical conductors 110 at the same time.
In an embodiment, with reference to Fig. 1, the 6 alternating currents respectively in the 6 electrical conductors 110 may have the same frequency.
In an embodiment, with reference to Fig. 1, the 6 alternating currents respectively in the 6 electrical conductors 110 may have pre-specified phase differences. For example, the 6 alternating currents may have the same frequency but their phases can be 10 degrees apart. For example, the phases of the 6 alternating currents at a time point can be 5 degrees, 15 degrees, 25 degrees, 35 degrees, 45 degrees, and 55 degrees, respectively.
In an embodiment, with reference to Fig. 1 and step 210 of Fig. 2, the sending of the 6 alternating currents respectively through the 6 electrical conductors 110 may include tuning the phase of an alternating current with respect to the phase of another alternating current.  For example, assume that initially, the phases of the first and second alternating currents are the same; but later, the phase of the second alternating current may be delayed by 10 degrees relative to the phase of the first alternating current. As a result, if the phase of the first alternating current is 80 degrees at a time point, then the phase of the second alternating current is 70 degrees at that time point.
MEASURING OF ECHO SIGNALS
With reference to Fig. 1, assume that the 6 original ultrasounds generated respectively by the 6 electrical conductors 110 as described above propagate from the transducer 100 to the surrounding ambient.
In an embodiment, while the 6 electrical conductors 110 are in the magnetic field 122, the 6 electrical conductors 110 may respectively receive from an object 140 echo ultrasounds which results from the 6 original ultrasounds being reflected, refracted, scattered, etc., by the object 140. The echo ultrasounds cause the vibrations of the 6 electrical conductors 110. Because the 6 electrical conductors 110 are in the magnetic field 122, the vibrations of the 6 electrical conductors 110 cause 6 induced currents in the 6 electrical conductors 110 respectively.
In an embodiment, the controller 130 may measure the 6 induced currents in the 6 electrical conductors 110. In an embodiment, the measuring of the 6 induced currents in the 6 electrical conductors 110 may include measuring the frequency, phase, and amplitude of each of the 6 induced currents.
In an embodiment, the controller 130 may control both (A) the sending of the 6 alternating currents respectively through the 6 electrical conductors 110 and (B) the measuring of the 6 induced currents in the 6 electrical conductors 110.
In an embodiment, the controller 130 may stop sending the 6 alternating currents before the 6 electrical conductors 110 receive the echo ultrasounds. In other words, the receiving of the echo ultrasounds and the measuring of the 6 induced currents are performed after the sending of the 6 alternating currents is performed.
ALTERNATIVE EMBODIMENTS
In the embodiments described above, with reference to Fig. 1, the 6 electrical conductors 110 of the transducer 100 respectively generate the 6 original ultrasounds and receive the 6 echo ultrasounds each of which resulting from the 6 original ultrasounds. In an alternative embodiment, the 6 electrical conductors 110 of the transducer 100 may receive 6  new ultrasounds not related to any ultrasound which the transducer 100 may generate. The word “new” here is used for easy reference and does not have any other meaning.
Specifically, in an embodiment, while the 6 electrical conductors 110 are in the magnetic field 122, the 6 electrical conductors 110 may respectively receive the 6 new echo ultrasounds. The 6 new echo ultrasounds respectively cause the vibrations of the 6 electrical conductors 110. Because the 6 electrical conductors 110 are in the magnetic field 122, the vibrations of the 6 electrical conductors 110 cause 6 new induced currents in the 6 electrical conductors 110 respectively.
In an embodiment, the ways in which the 6 new ultrasounds are received and the 6 new induced currents are measured may be similar to the ways in which the 6 echo ultrasounds are received and the 6 resulting induced currents are measured as described above.
FLOWCHART GENERALIZING THE OPERATION OF THE TRANSDUCER ACCORDING TO ALTERNATIVE EMBODIMENTS
Fig. 3 shows a flowchart 300 generalizing the operation of the transducer 100 of Fig. 1, according to the alternative embodiments described above.
In step 310, the operation includes, while M electrical conductors of a transducer are in a magnetic field, receiving with the M electrical conductors M ultrasounds respectively, thereby causing vibrations of the M electrical conductors respectively, thereby causing M induced currents in the M electrical conductors respectively.
For example, in the alternative embodiments described above, with reference to Fig. 1, while the 6 electrical conductors 110 of the transducer 100 are in the magnetic field 122, the 6 electrical conductors 110 receive the 6 new ultrasounds respectively, thereby causing the vibrations of the 6 electrical conductors 110 respectively, thereby causing the 6 new induced currents in the 6 electrical conductors 110 respectively.
In step 320, the operation includes measuring the M induced currents. For example, in the alternative embodiments described above, with reference to Fig. 1, the controller 130 measures the 6 new induced currents in the 6 electrical conductors 110 respectively.
In an embodiment, the measuring of the 6 new induced currents in the 6 electrical conductors 110 may include measuring the frequency, phase, and amplitude of each of the 6 new induced currents. In an embodiment, the controller 130 of the transducer 100 may control the measuring of the 6 new induced currents.
While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.

Claims (23)

  1. A method, comprising:
    sending M alternating currents respectively through M electrical conductors of a transducer while the M electrical conductors are in a magnetic field, resulting in M alternating Lorentz forces being applied to the M electrical conductors respectively, resulting in first vibrations of the M electrical conductors respectively,
    wherein the M alternating currents have respectively M frequencies each of which is at least 20 kHz, and
    wherein M is a positive integer.
  2. The method of claim 1, wherein each of the M electrical conductors has a section with a shape of a rod.
  3. The method of claim 2, wherein the transducer further comprises M plates affixed to the M electrical conductors respectively.
  4. The method of claim 2, wherein the transducer further comprises M plates in direct physical contact with the M electrical conductors respectively.
  5. The method of claim 4, wherein the M plates are discrete from one another.
  6. The method of claim 1, wherein each of the M electrical conductors has a section with a shape of a sheet.
  7. The method of claim 1, wherein the M electrical conductors form a 1-dimensional array or a 2-dimensional array.
  8. The method of claim 1, wherein the M alternating currents have a same frequency.
  9. The method of claim 1, wherein said sending the M alternating currents comprises tuning a phase of an alternating current of the M alternating currents with respect to a phase of another alternating current of the M alternating currents.
  10. The method of claim 1, wherein the M alternating currents have pre-specified phase differences.
  11. The method of claim 1, wherein the M alternating currents are sent simultaneously.
  12. The method of claim 1, wherein the first vibrations of the M electrical conductors are at the M frequencies respectively.
  13. The method of claim 1, further comprising:
    while the M electrical conductors are in the magnetic field, receiving with the M electrical conductors M echo ultrasounds respectively, thereby causing second vibrations of the  M electrical conductors respectively, thereby causing M induced currents in the M electrical conductors respectively,
    wherein the M echo ultrasounds result from ultrasounds generated by the first vibrations of the M electrical conductors; and
    measuring the M induced currents.
  14. The method of claim 13, wherein said measuring the M induced currents comprises measuring frequency, phase, and amplitude of each of the M induced currents.
  15. The method of claim 13, wherein the transducer further comprises a controller that controls (A) said sending the M alternating currents and (B) said measuring the M induced currents.
  16. The method of claim 13, wherein said receiving the M echo ultrasounds and said measuring the M induced currents are performed after said sending the M alternating currents is performed.
  17. A method, comprising:
    while M electrical conductors of a transducer are in a magnetic field, receiving with the M electrical conductors M ultrasounds respectively, thereby causing vibrations of the M electrical conductors respectively, thereby causing M induced currents in the M electrical conductors respectively; and
    measuring the M induced currents.
  18. The method of claim 17, wherein said measuring the M induced currents comprises measuring frequency, phase, and amplitude of each of the M induced currents.
  19. The method of claim 17, wherein the transducer further comprises a controller that controls said measuring the M induced currents.
  20. A transducer, comprising:
    a magnetic field generator configured to generate a magnetic field;
    M electrical conductors configured to be in the magnetic field; and
    a controller configured to send M alternating currents respectively through the M electrical conductors while the M electrical conductors are in the magnetic field, resulting in M alternating Lorentz forces being applied to the M electrical conductors respectively, resulting in first vibrations of the M electrical conductors respectively,
    wherein the M alternating currents have respectively M frequencies each of which is at least 20 kHz, and
    wherein M is a positive integer.
  21. The transducer of claim 20, wherein the controller is configured to control the sending of the M alternating currents individually.
  22. The transducer of claim 20,
    wherein the M electrical conductors are configured to receive M echo ultrasounds respectively, thereby causing second vibrations of the M electrical conductors respectively, thereby causing M induced currents in the M electrical conductors respectively while the M electrical conductors are in the magnetic field,
    wherein the M echo ultrasounds result from ultrasounds generated by the first vibrations of the M electrical conductors, and
    wherein the controller is configured to measure the M induced currents.
  23. The transducer of claim 22, wherein the controller is configured to measure frequency, phase, and amplitude of each of the M induced currents.
PCT/CN2022/075954 2022-02-11 2022-02-11 Ultrasonic transducers WO2023150993A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/075954 WO2023150993A1 (en) 2022-02-11 2022-02-11 Ultrasonic transducers
TW112102938A TW202332516A (en) 2022-02-11 2023-01-30 Ultrasonic transducer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/075954 WO2023150993A1 (en) 2022-02-11 2022-02-11 Ultrasonic transducers

Publications (1)

Publication Number Publication Date
WO2023150993A1 true WO2023150993A1 (en) 2023-08-17

Family

ID=87563475

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075954 WO2023150993A1 (en) 2022-02-11 2022-02-11 Ultrasonic transducers

Country Status (2)

Country Link
TW (1) TW202332516A (en)
WO (1) WO2023150993A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170012492A1 (en) * 2015-07-07 2017-01-12 Honeywell International Inc. Multi-degree of freedom electromagnetic machine
CN107174202A (en) * 2017-05-05 2017-09-19 深圳大学 A kind of magnetosonic imaging method and system based on active probe
WO2018160951A1 (en) * 2017-03-02 2018-09-07 Quest Integrated, Llc Electromagnetic acoustic transducer (emat) for corrosion mapping

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170012492A1 (en) * 2015-07-07 2017-01-12 Honeywell International Inc. Multi-degree of freedom electromagnetic machine
WO2018160951A1 (en) * 2017-03-02 2018-09-07 Quest Integrated, Llc Electromagnetic acoustic transducer (emat) for corrosion mapping
CN107174202A (en) * 2017-05-05 2017-09-19 深圳大学 A kind of magnetosonic imaging method and system based on active probe

Also Published As

Publication number Publication date
TW202332516A (en) 2023-08-16

Similar Documents

Publication Publication Date Title
CN102894974B (en) Magneto-acoustic-electric imaging system and imaging method
US4127035A (en) Electromagnetic transducer
US4296486A (en) Shielded electromagnetic acoustic transducers
EP2424273B1 (en) Ultrasonic probe and ultrasonic imaging apparatus
KR101328063B1 (en) Magnetostrictive phased array transducer for the transduction of shear horizontal bulkwave
Kaltenbacher et al. Finite element analysis of coupled electromagnetic acoustic systems
JP2010514396A (en) Electromagnetic ultrasonic transducer and array thereof
CN109444262A (en) A kind of oblique incidence formula Electromagnetic Acoustic Transducer based on inclination magnetostatic field
US5612495A (en) Non-destructive examination device
WO2023150993A1 (en) Ultrasonic transducers
KR20110002200A (en) Magnetostrictive transducer module for generating and measuring guided waves
CN102175767B (en) Electromagnetic ultrasonic signal superposition method
JP2006511173A (en) Electromagnetic ultrasonic transducer
JP3608423B2 (en) Electromagnetic ultrasonic measurement method and apparatus
JPH11125622A (en) Sh wave electromagnetic ultrasonic transducer and measuring method
US2346655A (en) Electrodynamic vibrator
Kang et al. Wideband Electromagnetic Dynamic Acoustic Transducer as a Standard Acoustic Source for Air-coupled Ultrasonic Sensors
Chai et al. Study on the driving element of gourd transducer
JP2005118406A (en) Oscillating device
JPS59173753A (en) Plate wave transmitter and receiver
Maxfield Optimization and Application of Electrodynamic Ultrasonic Wave Transducers
JPS62277555A (en) Electromagnetic ultrasonic probe
US20210059699A1 (en) Electromagnetic shockwave transducer
CN114768125A (en) Low-frequency focusing electric stimulation device and method
Si et al. Numerical Study of Acoustic‐Electric Signal Conversion for GIS Discharge Detection and Structure Optimization for pMUT

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22925355

Country of ref document: EP

Kind code of ref document: A1