TW202332516A - Ultrasonic transducer - Google Patents

Ultrasonic transducer Download PDF

Info

Publication number
TW202332516A
TW202332516A TW112102938A TW112102938A TW202332516A TW 202332516 A TW202332516 A TW 202332516A TW 112102938 A TW112102938 A TW 112102938A TW 112102938 A TW112102938 A TW 112102938A TW 202332516 A TW202332516 A TW 202332516A
Authority
TW
Taiwan
Prior art keywords
electrical conductors
currents
transducer
alternating
magnetic field
Prior art date
Application number
TW112102938A
Other languages
Chinese (zh)
Inventor
曹培炎
劉雨潤
Original Assignee
大陸商深圳源光科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大陸商深圳源光科技有限公司 filed Critical 大陸商深圳源光科技有限公司
Publication of TW202332516A publication Critical patent/TW202332516A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/04Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with electromagnetism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/89Sonar systems specially adapted for specific applications for mapping or imaging
    • G01S15/8906Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques
    • G01S15/8909Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration
    • G01S15/8915Short-range imaging systems; Acoustic microscope systems using pulse-echo techniques using a static transducer configuration using a transducer array
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/52017Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00 particularly adapted to short-range imaging
    • G01S7/52079Constructional features
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/521Constructional features

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Acoustics & Sound (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mechanical Engineering (AREA)
  • Transducers For Ultrasonic Waves (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

Disclosed herein is a method comprising: sending M alternating currents respectively through M electrical conductors of a transducer while the M electrical conductors are in a magnetic field, resulting in M alternating Lorentz forces being applied to the M electrical conductors respectively, resulting in first vibrations of the M electrical conductors respectively. The M alternating currents have respectively M frequencies each of which is at least 20 kHz, and M is a positive integer.

Description

超聲換能器Ultrasonic transducer

本發明是有關於一種換能器,且特別是有關於一種超聲換能器。The present invention relates to a transducer, and in particular to an ultrasonic transducer.

換能器是一種將能量從一種形式轉換為另一種形式的裝置。超聲換能器可以至少包括壓電元件,該壓電元件膨脹和收縮導致高頻聲波朝向關注物體傳播通過周圍環境。超聲換能器可以對從物體產生的回波進行評估以確定物體的特性(例如,物體的超聲圖像、物體距超聲換能器的距離等)。A transducer is a device that converts energy from one form to another. The ultrasonic transducer may include at least a piezoelectric element whose expansion and contraction causes high-frequency sound waves to propagate through the surrounding environment toward the object of interest. The ultrasound transducer can evaluate the echoes generated from the object to determine the properties of the object (e.g., ultrasound image of the object, distance of the object from the ultrasound transducer, etc.).

本文公開了一種方法,所述方法包括:在換能器的M個電導體處於磁場中的同時,傳送M個交流電流分別通過所述M個電導體,導致M個交變洛倫茲力分別作用於所述M個電導體,導致所述M個電導體分別產生第一振動。所述M個交流電流分別具有M個頻率,所述M個頻率中的每一個至少為20kHz,M為正整數。Disclosed herein is a method, which method includes: while M electrical conductors of a transducer are in a magnetic field, transmitting M alternating currents through the M electrical conductors respectively, resulting in M alternating Lorentz forces respectively. Acting on the M electrical conductors causes the M electrical conductors to generate first vibrations respectively. The M alternating currents respectively have M frequencies, each of the M frequencies is at least 20 kHz, and M is a positive integer.

在一方面,所述M個電導體中的每一個都具有棒狀截面。In one aspect, each of the M electrical conductors has a rod-shaped cross-section.

在一方面,所述換能器還包括分別固定於所述M個電導體的M個板。In one aspect, the transducer further includes M plates respectively fixed to the M electrical conductors.

在一方面,所述換能器還包括分別與所述M個電導體直接物理接觸的M個板。In one aspect, the transducer further includes M plates each in direct physical contact with the M electrical conductors.

在一方面,所述M個板彼此分離。In one aspect, the M plates are separated from each other.

在一方面,所述M個電導體中的每一個都具有片狀截面。In one aspect, each of the M electrical conductors has a sheet-like cross-section.

在一方面,所述M個電導體形成一維陣列或二維陣列。In one aspect, the M electrical conductors form a one-dimensional array or a two-dimensional array.

在一方面,所述M個交流電流具有相同的頻率。In one aspect, the M alternating currents have the same frequency.

在一方面,所述傳送所述M個交流電流包括相對於所述M個交流電流中的另一個交流電流的相位對所述M個交流電流中的一個交流電流的相位進行調諧。In one aspect, transmitting the M alternating currents includes tuning a phase of one of the M alternating currents relative to a phase of another of the M alternating currents.

在一方面,所述M個交流電流具有預先指定的相位差。In one aspect, the M alternating currents have pre-specified phase differences.

在一方面,同時傳送所述M個交流電流。In one aspect, the M alternating currents are delivered simultaneously.

在一方面,所述M個電導體的所述第一振動分別處於所述M個頻率。In one aspect, the first vibrations of the M electrical conductors are respectively at the M frequencies.

在一方面,所述方法還包括:在所述M個導電體處於所述磁場中的同時,通過所述M個導電體分別接收M個回聲超聲波,從而導致所述M個導電體分別產生第二振動,從而導致在所述M個導電體中分別產生M個感應電流,所述M個回聲超聲波是由所述M個電導體的所述第一振動生成的超聲波產生的;以及測量所述M個感應電流。In one aspect, the method further includes: while the M conductors are in the magnetic field, respectively receiving M echo ultrasonic waves through the M conductors, thereby causing the M conductors to respectively generate th two vibrations, thereby causing M induced currents to be generated respectively in the M electrical conductors, the M echo ultrasonic waves being generated by the ultrasonic waves generated by the first vibration of the M electrical conductors; and measuring the M induced currents.

在一方面,所述測量所述M個感應電流包括測量所述M個感應電流中的每一個的頻率、相位和振幅。In one aspect, the measuring the M induced currents includes measuring the frequency, phase and amplitude of each of the M induced currents.

在一方面,所述換能器還包括控制(A)所述傳送所述M個交流電流和(B)所述測量所述M個感應電流的控制器。In one aspect, the transducer further includes a controller that controls (A) transmitting the M alternating currents and (B) measuring the M induced currents.

在一方面,所述接收所述M個回聲超聲波和所述測量所述M個感應電流是在所述傳送所述M個交流電流之後進行的。In one aspect, receiving the M echo ultrasonic waves and measuring the M induced currents are performed after transmitting the M alternating currents.

本文公開了一種方法,所述方法包括:在換能器的M個電導體處於磁場中的同時,通過所述M個電導體分別接收M個超聲波,從而導致所述M個電導體分別產生振動,從而導致在所述M個導電體中分別產生M個感應電流;以及測量所述M個感應電流。Disclosed herein is a method, which method includes: while M electrical conductors of a transducer are in a magnetic field, M ultrasonic waves are respectively received through the M electrical conductors, thereby causing the M electrical conductors to vibrate respectively. , thereby causing M induced currents to be generated in the M conductors respectively; and measuring the M induced currents.

在一方面,所述測量所述M個感應電流包括測量所述M個感應電流中的每一個的頻率、相位和振幅。In one aspect, the measuring the M induced currents includes measuring the frequency, phase and amplitude of each of the M induced currents.

在一方面,所述換能器還包括控制所述測量所述M個感應電流的控制器。In one aspect, the transducer further includes a controller that controls the measurement of the M induced currents.

本文公開了一種換能器,所述換能器包括:磁場發生器,被配置為產生磁場;M個電導體,被配置為處於所述磁場中;以及控制器,被配置為在所述M個電導體處於所述磁場中的同時分別通過所述M個電導體傳送M個交流電流,導致M個交變洛倫茲力分別作用於所述M個電導體上,導致所述M個電導體分別產生第一振動。所述M個交流電流分別具有M個頻率,所述M個頻率中的每一個至少為20kHz,M為正整數。Disclosed herein is a transducer that includes: a magnetic field generator configured to generate a magnetic field; M electrical conductors configured to be in the magnetic field; and a controller configured to operate in the M While the electrical conductors are in the magnetic field, M AC currents are transmitted through the M electrical conductors respectively, causing M alternating Lorentz forces to act on the M electrical conductors respectively, causing the M electrical conductors to The conductors respectively generate first vibrations. The M alternating currents respectively have M frequencies, each of the M frequencies is at least 20 kHz, and M is a positive integer.

在一方面,所述控制器被配置為單獨控制所述M個交流電流的傳送。In one aspect, the controller is configured to individually control the delivery of the M alternating currents.

在一方面,所述M個導電體被配置為分別接收M個回聲超聲波,從而導致所述M個電導體分別產生第二振動,從而在所述M個導電體處於所述磁場中的同時,導致在所述M個導電體中分別產生M個感應電流。所述M個回聲超聲波是由所述M個電導體的所述第一振動生成的超聲波產生的,並且所述控制器被配置為測量所述M個感應電流。In one aspect, the M electrical conductors are configured to receive M echo ultrasonic waves respectively, thereby causing the M electrical conductors to generate second vibrations respectively, so that while the M electrical conductors are in the magnetic field, As a result, M induced currents are respectively generated in the M conductors. The M echogenic ultrasonic waves are generated by ultrasonic waves generated by the first vibration of the M electrical conductors, and the controller is configured to measure the M induced currents.

在一方面,所述控制器被配置為測量所述M個感應電流中的每一個的頻率、相位和振幅。In one aspect, the controller is configured to measure the frequency, phase and amplitude of each of the M induced currents.

換能器transducer

圖1示意性地示出了根據實施例的換能器100的透視圖。在實施例中,換能器100可以包括一個或多個電導體110、磁場發生器120和控制器130。Figure 1 schematically shows a perspective view of a transducer 100 according to an embodiment. In embodiments, transducer 100 may include one or more electrical conductors 110 , a magnetic field generator 120 and a controller 130 .

電導體electrical conductor

為了說明,換能器100可以包括6個電導體110,如圖所示。在實施例中,6個電導體110的兩端分別經由兩條導電線112、114電連接至控制器130。例如,電導體110.1的兩端分別經由兩條導電線112.1和114.1電連接至控制器130。又例如,電導體110.2的兩端分別經由兩條導電線112.2和114.2電連接至控制器130。電導體110可以彼此平行,但不必彼此平行。For purposes of illustration, transducer 100 may include six electrical conductors 110 as shown. In the embodiment, two ends of the six electrical conductors 110 are electrically connected to the controller 130 via two conductive wires 112 and 114 respectively. For example, both ends of the electrical conductor 110.1 are electrically connected to the controller 130 via two conductive wires 112.1 and 114.1 respectively. For another example, both ends of the electrical conductor 110.2 are electrically connected to the controller 130 via two conductive wires 112.2 and 114.2 respectively. Electrical conductors 110 may be parallel to each other, but need not be parallel to each other.

磁場發生器magnetic field generator

在實施例中,磁場發生器120可以產生磁場122。在實施例中,磁場發生器120可以包括永磁體(未示出)。可替代地,磁場發生器120可以包括線圈(未示出),直流電流流過該線圈,從而產生磁場122。例如,磁場發生器120是磁共振成像(MRI)系統中的超導電磁線圈。在實施例中,6個電導體110可以處於磁場122中。In embodiments, magnetic field generator 120 may generate magnetic field 122 . In embodiments, magnetic field generator 120 may include permanent magnets (not shown). Alternatively, magnetic field generator 120 may include a coil (not shown) through which a direct current flows, thereby generating magnetic field 122 . For example, magnetic field generator 120 is a superconducting electromagnetic coil in a magnetic resonance imaging (MRI) system. In an embodiment, six electrical conductors 110 may be in the magnetic field 122 .

控制器和交流電流Controller and AC current

在實施例中,控制器130可以傳送6個交流電流分別通過6個電導體110。為了便於提及,6個電導體110.1、110.2、110.3、110.4、110.5和110.6中的6個交流電流分別被稱為第一、第二、第三、第四、第五和第六交流電流。In an embodiment, the controller 130 can transmit 6 alternating currents through the 6 electrical conductors 110 respectively. For ease of reference, the 6 alternating currents in the 6 electrical conductors 110.1, 110.2, 110.3, 110.4, 110.5 and 110.6 are respectively referred to as first, second, third, fourth, fifth and sixth alternating currents.

在實施例中,對於每個電導體110,控制器130可以經由2條對應的導電線112和114傳送對應的交流電流通過所述每個電導體110。例如,控制器130經由兩條導電線112.1和114.1傳送第一交流電流通過電導體110.1。又例如,控制器130經由兩條導電線112.2和114.2傳送第二交流電流通過電導體110.2。In an embodiment, for each electrical conductor 110 , the controller 130 may route a corresponding alternating current through each electrical conductor 110 via two corresponding conductive wires 112 and 114 . For example, controller 130 transmits a first alternating current through electrical conductor 110.1 via two conductive wires 112.1 and 114.1. As another example, controller 130 transmits a second alternating current through electrical conductor 110.2 via two conductive wires 112.2 and 114.2.

在實施例中,控制器130可以單獨地控制6個交流電流的傳送。換言之,控制器130直接控制6個電導體110中的6個交流電流中的每一個的頻率、相位和振幅。In an embodiment, the controller 130 can individually control the delivery of six alternating currents. In other words, the controller 130 directly controls the frequency, phase, and amplitude of each of the six alternating currents in the six electrical conductors 110 .

換能器的操作Transducer operation

在實施例中,換能器100可以按如下操作。在6個電導體110處於磁場122中的同時,控制器130可以傳送6個交流電流分別通過6個電導體110。結果,對於每個電導體110,交變洛倫茲力作用於所述每個電導體110,導致所述每個電導體110振動。所述每個電導體110的這種振動產生從所述每個電導體110傳播到周圍環境(例如,空氣、水、液體、凝膠等)的聲波。In embodiments, transducer 100 may operate as follows. While the six electrical conductors 110 are in the magnetic field 122, the controller 130 can transmit six alternating currents through the six electrical conductors 110 respectively. As a result, for each electrical conductor 110, an alternating Lorentz force acts on said each electrical conductor 110, causing said each electrical conductor 110 to vibrate. This vibration of each electrical conductor 110 generates sound waves that propagate from each electrical conductor 110 to the surrounding environment (eg, air, water, liquid, gel, etc.).

例如,在電導體110.1處於磁場122中的同時,控制器130傳送第一交流電流通過電導體110.1。當第一交流電流在電導體110.1中從左向右流動時,所得到的作用於電導體110.1的洛倫茲力指向頁面內(即遠離觀察者)。當第一交流電流在電導體110.1中從右向左流動時,所得到的作用於電導體110.1的洛倫茲力指向頁面外(即,朝向觀察者)。這種交變洛倫茲力導致電導體110.1振動。電導體110.1的這種振動生成從電導體110.1傳播到周圍環境的聲波。For example, the controller 130 passes a first alternating current through the electrical conductor 110.1 while the electrical conductor 110.1 is in the magnetic field 122. As the first alternating current flows from left to right in the electrical conductor 110.1, the resulting Lorentz force acting on the electrical conductor 110.1 is directed into the page (i.e. away from the observer). When a first alternating current flows from right to left in electrical conductor 110.1, the resulting Lorentz force acting on electrical conductor 110.1 is directed out of the page (ie, toward the observer). This alternating Lorentz force causes the electrical conductor 110.1 to vibrate. This vibration of the electrical conductor 110.1 generates sound waves that propagate from the electrical conductor 110.1 to the surrounding environment.

在實施例中,分別通過6個電導體110傳送的6個交流電流中的每一個具有至少20kHz的頻率。請注意,這6個交流電流在頻率、相位和振幅方面不一定相同。In an embodiment, each of the six alternating currents conveyed through the six electrical conductors 110 has a frequency of at least 20 kHz. Please note that these 6 AC currents are not necessarily the same in frequency, phase and amplitude.

在實施例中,每個電導體110的振動頻率可以與流經所述每個電導體110的交流電流的頻率相同。例如,電導體110.1的振動頻率可以與第一交流電流的頻率相同。又例如,電導體110.2的振動頻率可以與第二交流電流的頻率相同。In embodiments, the vibration frequency of each electrical conductor 110 may be the same as the frequency of the alternating current flowing through each electrical conductor 110 . For example, the frequency of vibration of the electrical conductor 110.1 may be the same as the frequency of the first alternating current. As another example, the vibration frequency of the electrical conductor 110.2 may be the same as the frequency of the second alternating current.

結果,在每個交流電流具有至少20kHz負頻率的情況下,所述每個電導體110的振動頻率至少為20kHz;因此,由所述每個電導體110的振動生成的所得到的聲波也具有至少20kHz的頻率(即超聲波)。As a result, with each alternating current having a negative frequency of at least 20 kHz, the vibration frequency of each electrical conductor 110 is at least 20 kHz; therefore, the resulting sound wave generated by the vibration of each electrical conductor 110 also has A frequency of at least 20kHz (i.e. ultrasonic).

概括換能器的操作的流程圖Flowchart outlining the operation of the transducer

圖2示出了根據實施例的概括圖1的換能器100的操作的流程圖200。Figure 2 shows a flow diagram 200 summarizing the operation of the transducer 100 of Figure 1, according to an embodiment.

在步驟210,操作包括在換能器的M個電導體處於磁場中的同時,傳送M個交流電流分別通過M個電導體,導致M個交變洛倫茲力分別作用於所述M個電導體,導致所述M個電導體分別產生第一振動,其中M個交流電流分別具有M個頻率,該M個頻率中的每一個至少為20kHz,並且,其中M為正整數。In step 210, the operation includes transmitting M alternating currents through the M electrical conductors respectively while the M electrical conductors of the transducer are in the magnetic field, causing M alternating Lorentz forces to act on the M electrical conductors respectively. conductors, causing the M electrical conductors to respectively generate first vibrations, wherein the M alternating currents respectively have M frequencies, each of the M frequencies being at least 20 kHz, and where M is a positive integer.

例如,在上述實施例中,參考圖1,在6個電導體110處於磁場122中的同時,控制器130傳送6個交流電流(即第一、第二、第三、第四、第五和第六交流電流)分別通過6個電導體110,導致6個交變洛倫茲力分別作用於6個電導體110,導致6個電導體110分別產生振動,其中6個交變電流分別具有6個頻率,該6個頻率中的每一個至少為20kHz(這裡,M=6)。For example, in the above embodiment, referring to FIG. 1 , while the six electrical conductors 110 are in the magnetic field 122 , the controller 130 delivers six alternating currents (i.e., first, second, third, fourth, fifth and The sixth alternating current) passes through the six electrical conductors 110 respectively, causing the six alternating Lorentz forces to act on the six electrical conductors 110 respectively, causing the six electrical conductors 110 to vibrate respectively, wherein the six alternating currents respectively have 6 frequencies, each of the 6 frequencies is at least 20kHz (here, M=6).

其它實施例Other embodiments

關於電導體110的更多資訊More information about Electrical Conductor 110

在實施例中,參考圖1,6個電導體110中的每一個都可以具有如圖所示的棒狀截面。可替代地,每個電導體110都可以具有片狀截面(未示出)。In an embodiment, referring to Figure 1, each of the six electrical conductors 110 may have a rod-shaped cross-section as shown. Alternatively, each electrical conductor 110 may have a sheet-like cross-section (not shown).

在實施例中,參考圖1,如圖所示,換能器100還可以包括分別固定於6個電導體110的6個板115。在實施例中,6個板115可以分別與6個電導體110直接物理接觸。在實施例中,如圖所示,6個板115可以彼此分離。In an embodiment, referring to FIG. 1 , as shown, the transducer 100 may further include six plates 115 respectively fixed to six electrical conductors 110 . In an embodiment, six plates 115 may each be in direct physical contact with six electrical conductors 110 . In an embodiment, as shown, the six plates 115 may be separated from each other.

在6個板115分別固定於6個電導體110的情況下,電導體110的任何振動都會導致對應板115振動。例如,電導體110.1的任何振動都導致對應板115.1振動。In the case where six plates 115 are respectively fixed to six electrical conductors 110, any vibration of the electrical conductors 110 will cause the corresponding plate 115 to vibrate. For example, any vibration of the electrical conductor 110.1 causes the corresponding plate 115.1 to vibrate.

在實施例中,換能器100的6個電導體110可以形成一維陣列(例如,一行6個電導體110)或二維陣列(例如,2×3陣列的電導體110,如圖1所示)。In embodiments, the six electrical conductors 110 of the transducer 100 may form a one-dimensional array (eg, a row of six electrical conductors 110 ) or a two-dimensional array (eg, a 2×3 array of electrical conductors 110 , as shown in FIG. 1 Show).

關於交流電流的更多資訊More information about alternating current

在實施例中,參考圖1,6個電導體110中的各自的6個交流電流可以被同時傳送。換言之,6個交流電流分別同時存在於6個導電體110中。In an embodiment, referring to Figure 1, six alternating currents in each of the six electrical conductors 110 may be conveyed simultaneously. In other words, six alternating currents exist in six conductors 110 at the same time.

在實施例中,參考圖1,6個電導體110中的各自的6個交流電流可以具有相同的頻率。In an embodiment, referring to Figure 1, the six alternating currents in each of the six electrical conductors 110 may have the same frequency.

在實施例中,參考圖1,6個電導體110中的各自的6個交流電流可以具有預先指定的相位差。例如,6個交流電流可以具有相同的頻率但它們的相位可以相差10度。例如,在一時間點處6個交流電流的相位可以分別為5度、15度、25度、35度、45度和55度。In an embodiment, referring to Figure 1, the six alternating currents in each of the six electrical conductors 110 may have a pre-specified phase difference. For example, 6 alternating currents can have the same frequency but their phases can differ by 10 degrees. For example, the phases of six alternating currents at one point in time may be 5 degrees, 15 degrees, 25 degrees, 35 degrees, 45 degrees and 55 degrees respectively.

在實施例中,參考圖1和圖2的步驟210,傳送6個交流電流分別通過6個電導體110可以包括相對於另一個交流電流的相位對一個交流電流的相位進行調諧。例如,假設最初,第一交流電流和第二交流電流的相位相同;但之後,第二交流電流的相位可以相對於第一交流電流的相位延遲10度。結果,如果在一時間點處第一交流電流的相位為80度,則在該時間點處第二交流電流的相位為70度。In an embodiment, referring to step 210 of FIGS. 1 and 2 , transmitting six alternating currents through six electrical conductors 110 may include tuning the phase of one alternating current with respect to the phase of another alternating current. For example, assume that initially, the phases of the first alternating current and the second alternating current are the same; but later, the phase of the second alternating current may be delayed by 10 degrees relative to the phase of the first alternating current. As a result, if the phase of the first alternating current is 80 degrees at a point in time, the phase of the second alternating current is 70 degrees at that point in time.

回聲信號的測量Measurement of echo signals

參考圖1,假設如上所述分別由6個電導體110生成的6個原始超聲波從換能器100傳播到周圍環境。Referring to Figure 1, assume that 6 original ultrasonic waves, respectively generated by 6 electrical conductors 110 as described above, propagate from the transducer 100 to the surrounding environment.

在實施例中,在6個電導體110處於磁場122中的同時,6個電導體110可分別接收來自物體140的回聲超聲波,該回聲超聲波是6個原始超聲波被物體140反射、折射、散射等產生的。該回聲超聲波導致6個電導體110振動。由於6個電導體110處於磁場122中,因此6個電導體110的振動導致在6個電導體110中分別產生6個感應電流。In an embodiment, while the six electrical conductors 110 are in the magnetic field 122, the six electrical conductors 110 can respectively receive echo ultrasonic waves from the object 140. The echo ultrasonic waves are the six original ultrasonic waves that are reflected, refracted, scattered, etc. by the object 140. generated. This echoing ultrasonic wave causes the six electrical conductors 110 to vibrate. Since the six electrical conductors 110 are in the magnetic field 122, the vibration of the six electrical conductors 110 results in six induced currents in each of the six electrical conductors 110.

在實施例中,控制器130可以測量6個電導體110中的6個感應電流。在實施例中,測量6個電導體110中的6個感應電流可以包括測量 6個感應電流中的每一個的頻率、相位和振幅。In an embodiment, controller 130 may measure 6 induced currents in 6 electrical conductors 110 . In an embodiment, measuring the six induced currents in the six electrical conductors 110 may include measuring the frequency, phase, and amplitude of each of the six induced currents.

在實施例中,控制器130可以既控制(A)傳送6個交流電流分別通過6個電導體110又控制(B)測量6個電導體110中的6個感應電流。In an embodiment, the controller 130 may both control (A) transmit 6 AC currents through the 6 electrical conductors 110 respectively and control (B) measure 6 induced currents in the 6 electrical conductors 110 .

在實施例中,控制器130可以在6個電導體110接收到回波超聲之前停止傳送6個交流電流。換言之,回聲超聲波的接收和6個感應電流的測量是在傳送6個交流電流之後進行的。In an embodiment, the controller 130 may stop delivering the 6 AC currents before the 6 electrical conductors 110 receive the echoed ultrasound. In other words, the reception of echo ultrasonic waves and the measurement of 6 induced currents are performed after transmitting 6 AC currents.

替代實施例Alternative embodiment

在上述實施例中,參考圖1,換能器100的6個電導體110分別生成6個原始超聲波並接收6個回聲超聲波,每個回聲超聲波是由6個原始超聲產生的。在替代實施例中,換能器100的6個電導體110可以接收與換能器100可生成的任何超聲波無關的6個新的超聲波。這裡的“新”字是為了便於提及,沒有任何其他含義。In the above embodiment, referring to FIG. 1 , the six electrical conductors 110 of the transducer 100 respectively generate 6 original ultrasonic waves and receive 6 echo ultrasonic waves, and each echo ultrasonic wave is generated by 6 original ultrasonic waves. In an alternative embodiment, the six electrical conductors 110 of the transducer 100 may receive six new ultrasound waves independent of any ultrasound waves the transducer 100 may generate. The word "new" here is for convenience of reference and does not have any other meaning.

具體地,在實施例中,在6個電導體110處於磁場122中的同時, 6個電導體110可以分別接收6個新的回聲超聲波。6個新的回聲超聲波分別導致6個導電體110振動。因為6個電導體110處於磁場122中,所以6個電導體110的振動導致在6個電導體110中分別產生6個新的感應電流。Specifically, in the embodiment, while the six electrical conductors 110 are in the magnetic field 122, the six electrical conductors 110 can respectively receive six new echo ultrasonic waves. The six new echo ultrasonic waves cause six conductors 110 to vibrate respectively. Because the six electrical conductors 110 are in the magnetic field 122, the vibration of the six electrical conductors 110 results in six new induced currents in each of the six electrical conductors 110.

在實施例中,接收6個新的超聲波和測量6個新的感應電流的方式可以類似於如上所述的接收6個回聲超聲波和測量6個所得到的感應電流的方式。In an embodiment, the manner of receiving 6 new ultrasonic waves and measuring 6 new induced currents may be similar to the manner of receiving 6 echoed ultrasonic waves and measuring 6 resulting induced currents as described above.

根據替代實施例的概括換能器的操作的流程圖Flowchart outlining the operation of a transducer according to an alternative embodiment

圖3示出了根據上述替代實施例的概括圖1的換能器100的操作的流程圖300。FIG. 3 shows a flow diagram 300 summarizing the operation of the transducer 100 of FIG. 1 according to the alternative embodiment described above.

在步驟310,操作包括:在換能器的M個電導體處於磁場中的同時,通過所述M個電導體分別接收M個超聲波,從而導致所述M個電導體分別產生振動,從而導致在所述M個導電體中分別產生M個感應電流。In step 310, the operation includes: while the M electrical conductors of the transducer are in the magnetic field, M ultrasonic waves are respectively received through the M electrical conductors, thereby causing the M electrical conductors to vibrate respectively, thereby causing the M induced currents are respectively generated in the M conductors.

例如,在上述替代實施例中,參考圖1,在換能器100的6個電導體110處於磁場122中的同時,6個電導體110分別接收6個新超聲波,從而導致6個電導體110分別產生振動,從而導致在6個電導體110中分別產生6個新的感應電流。For example, in the alternative embodiment described above, referring to FIG. 1 , while the 6 electrical conductors 110 of the transducer 100 are in the magnetic field 122 , each of the 6 electrical conductors 110 receives 6 new ultrasound waves, resulting in 6 electrical conductors 110 Vibrations are generated respectively, resulting in 6 new induced currents in the 6 electrical conductors 110 respectively.

在步驟320中,操作包括測量M個感應電流。例如,在上述替代實施例中,參考圖1,控制器130分別測量6個電導體110中的6個新的感應電流。In step 320, operations include measuring M induced currents. For example, in the alternative embodiment described above, referring to FIG. 1 , the controller 130 measures six new induced currents in each of the six electrical conductors 110 .

在實施例中,測量6個電導體110中的6個新的感應電流可以包括測量6個新的感應電流中的每一個的頻率、相位和振幅。在實施例中,換能器100的控制器130可以控制6個新的感應電流的測量。In an embodiment, measuring the six new induced currents in the six electrical conductors 110 may include measuring the frequency, phase, and amplitude of each of the six new induced currents. In an embodiment, the controller 130 of the transducer 100 can control the measurement of 6 new induced currents.

儘管本文已經公開了各個方面和實施例,但其他方面和實施例對於本領域技術人員來說將是顯而易見的。本文所公開的各個方面和實施例是出於說明的目的而不旨在限制,真實範圍和精神由所附權利要求指示。Although various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the appended claims.

100:換能器 110.1~110.6:電導體 112.1、112.2、114.1、114.2:導電線 115.1:板 120:磁場發生器 122:磁場 130:控制器 140:物體 200、300:流程圖 210、310、320:步驟 B:控制 100:Transducer 110.1~110.6: Electrical conductor 112.1, 112.2, 114.1, 114.2: Conductive wire 115.1: Board 120:Magnetic field generator 122:Magnetic field 130:Controller 140:Object 200, 300: flow chart 210, 310, 320: steps B:Control

圖1示意性地示出了根據實施例的換能器的透視圖。 圖2示出了根據實施例的概括換能器的操作的流程圖。 圖3示出了根據替代實施例的概括換能器的操作的另一流程。 Figure 1 schematically shows a perspective view of a transducer according to an embodiment. Figure 2 shows a flow diagram outlining the operation of a transducer, according to an embodiment. Figure 3 shows another flow outlining the operation of the transducer according to an alternative embodiment.

100:換能器 100:Transducer

110.1~110.6:電導體 110.1~110.6: Electrical conductor

112.1、112.2、114.1、114.2:導電線 112.1, 112.2, 114.1, 114.2: Conductive wire

115.1:板 115.1: Board

120:磁場發生器 120:Magnetic field generator

122:磁場 122:Magnetic field

130:控制器 130:Controller

140:物體 140:Object

B:控制 B:Control

Claims (23)

一種方法,包括: 在換能器的M個電導體處於磁場中的同時,傳送M個交流電流分別通過所述M個電導體,導致M個交變洛倫茲力分別作用於所述M個電導體,導致所述M個電導體分別產生第一振動, 其中,所述M個交流電流分別具有M個頻率,所述M個頻率中的每一個至少為20kHz,並且 其中,M為正整數。 A method that includes: While the M electrical conductors of the transducer are in the magnetic field, M alternating currents are transmitted through the M electrical conductors respectively, causing M alternating Lorentz forces to act on the M electrical conductors respectively, resulting in The M electrical conductors each produce the first vibration, Wherein, the M alternating currents respectively have M frequencies, each of the M frequencies is at least 20 kHz, and Among them, M is a positive integer. 如請求項1所述的方法,其中,所述M個電導體中的每一個都具有棒狀截面。The method of claim 1, wherein each of the M electrical conductors has a rod-shaped cross-section. 如請求項2所述的方法,其中,所述換能器還包括分別固定於所述M個電導體的M個板。The method of claim 2, wherein the transducer further includes M plates fixed to the M electrical conductors respectively. 如請求項2所述的方法,其中,所述換能器還包括分別與所述M個電導體直接物理接觸的M個板。The method of claim 2, wherein the transducer further includes M plates that are in direct physical contact with the M electrical conductors respectively. 如請求項4所述的方法,其中,所述M個板彼此分離。The method of claim 4, wherein the M boards are separated from each other. 如請求項1所述的方法,其中,所述M個電導體中的每一個都具有片狀截面。The method of claim 1, wherein each of the M electrical conductors has a sheet-shaped cross-section. 如請求項1所述的方法,其中,所述M個電導體形成一維陣列或二維陣列。The method of claim 1, wherein the M electrical conductors form a one-dimensional array or a two-dimensional array. 如請求項1所述的方法,其中,所述M個交流電流具有相同的頻率。The method of claim 1, wherein the M alternating currents have the same frequency. 如請求項1所述的方法,其中,所述傳送所述M個交流電流包括相對於所述M個交流電流中的另一個交流電流的相位對所述M個交流電流中的一個交流電流的相位進行調諧。The method of claim 1, wherein said transmitting the M alternating currents includes changing a phase of one of the M alternating currents with respect to a phase of another of the M alternating currents. Phase tuning. 如請求項1所述的方法,其中,所述M個交流電流具有預先指定的相位差。The method of claim 1, wherein the M alternating currents have a pre-specified phase difference. 如請求項1所述的方法,其中,同時傳送所述M個交流電流。The method of claim 1, wherein the M alternating currents are transmitted simultaneously. 如請求項1所述的方法,其中,所述M個電導體的所述第一振動分別處於所述M個頻率。The method of claim 1, wherein the first vibrations of the M electrical conductors are respectively at the M frequencies. 如請求項1所述的方法,還包括: 在所述M個導電體處於所述磁場中的同時,通過所述M個導電體分別接收M個回聲超聲波,從而導致所述M個導電體分別產生第二振動,從而導致在所述M個導電體中分別產生M個感應電流, 其中所述M個回聲超聲波是由所述M個電導體的所述第一振動生成的超聲波產生的;以及 測量所述M個感應電流。 The method described in request item 1 also includes: While the M conductors are in the magnetic field, M echo ultrasonic waves are respectively received by the M conductors, causing the M conductors to generate second vibrations respectively, thereby causing the M conductors to vibrate. M induced currents are generated in the conductor respectively, wherein the M echogenic ultrasonic waves are generated by ultrasonic waves generated by the first vibration of the M electrical conductors; and The M induced currents are measured. 如請求項13所述的方法,其中,所述測量所述M個感應電流包括測量所述M個感應電流中的每一個的頻率、相位和振幅。The method of claim 13, wherein the measuring the M induced currents includes measuring the frequency, phase and amplitude of each of the M induced currents. 如請求項13所述的方法,其中,所述換能器還包括控制(A)所述傳送所述M個交流電流和(B)所述測量所述M個感應電流的控制器。The method of claim 13, wherein the transducer further includes a controller that controls (A) transmitting the M alternating currents and (B) measuring the M induced currents. 如請求項13所述的方法,其中,所述接收所述M個回聲超聲波和所述測量所述M個感應電流是在所述傳送所述M個交流電流之後進行的。The method of claim 13, wherein the receiving the M echo ultrasonic waves and measuring the M induced currents are performed after transmitting the M alternating currents. 一種方法,包括: 在換能器的M個電導體處於磁場中的同時,通過所述M個電導體分別接收M個超聲波,從而導致所述M個電導體分別產生振動,從而導致在所述M個導電體中分別產生M個感應電流;以及 測量所述M個感應電流。 A method that includes: While the M electrical conductors of the transducer are in the magnetic field, M ultrasonic waves are respectively received through the M electrical conductors, causing the M electrical conductors to vibrate respectively, resulting in vibration in the M electrical conductors. Generate M induced currents respectively; and The M induced currents are measured. 如請求項17所述的方法,其中,所述測量所述M個感應電流包括測量所述M個感應電流中的每一個的頻率、相位和振幅。The method of claim 17, wherein the measuring the M induced currents includes measuring the frequency, phase and amplitude of each of the M induced currents. 如請求項17所述的方法,其中,所述換能器還包括控制所述測量所述M個感應電流的控制器。The method of claim 17, wherein the transducer further includes a controller that controls the measurement of the M induced currents. 一種換能器,包括: 磁場發生器,被配置為產生磁場; M個電導體,被配置為處於所述磁場中;以及 控制器,被配置為在所述M個電導體處於所述磁場中的同時分別通過所述M個電導體傳送M個交流電流,導致M個交變洛倫茲力分別作用於所述M個電導體上,導致所述M個電導體分別產生第一振動, 其中,所述M個交流電流分別具有M個頻率,所述M個頻率中的每一個至少為20kHz,並且 其中,M為正整數。 A transducer including: a magnetic field generator configured to generate a magnetic field; M electrical conductors configured to be in the magnetic field; and A controller configured to transmit M alternating currents through the M electrical conductors while the M electrical conductors are in the magnetic field, causing M alternating Lorentz forces to act on the M electrical conductors respectively. on the electrical conductors, causing the M electrical conductors to generate first vibrations respectively, Wherein, the M alternating currents respectively have M frequencies, each of the M frequencies is at least 20 kHz, and Among them, M is a positive integer. 如請求項20所述的換能器,其中,所述控制器被配置為單獨控制所述M個交流電流的傳送。The transducer of claim 20, wherein the controller is configured to individually control the delivery of the M alternating currents. 如請求項20所述的換能器, 其中,所述M個導電體被配置為分別接收M個回聲超聲波,從而導致所述M個電導體分別產生第二振動,從而在所述M個導電體處於所述磁場中的同時,導致在所述M個導電體中分別產生M個感應電流, 其中,所述M個回聲超聲波是由所述M個電導體的所述第一振動生成的超聲波產生的,並且 其中,所述控制器被配置為測量所述M個感應電流。 A transducer as claimed in claim 20, Wherein, the M electrical conductors are configured to receive M echo ultrasonic waves respectively, thereby causing the M electrical conductors to generate second vibrations respectively, thereby causing the M electrical conductors to generate second vibrations while the M electrical conductors are in the magnetic field. M induced currents are respectively generated in the M conductors, wherein the M echo ultrasonic waves are generated by ultrasonic waves generated by the first vibration of the M electrical conductors, and Wherein, the controller is configured to measure the M induced currents. 如請求項22所述的換能器,其中,所述控制器被配置為測量所述M個感應電流中的每一個的頻率、相位和振幅。The transducer of claim 22, wherein the controller is configured to measure the frequency, phase and amplitude of each of the M induced currents.
TW112102938A 2022-02-11 2023-01-30 Ultrasonic transducer TW202332516A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
WOPCT/CN2022/075954 2022-02-11
PCT/CN2022/075954 WO2023150993A1 (en) 2022-02-11 2022-02-11 Ultrasonic transducers

Publications (1)

Publication Number Publication Date
TW202332516A true TW202332516A (en) 2023-08-16

Family

ID=87563475

Family Applications (1)

Application Number Title Priority Date Filing Date
TW112102938A TW202332516A (en) 2022-02-11 2023-01-30 Ultrasonic transducer

Country Status (2)

Country Link
TW (1) TW202332516A (en)
WO (1) WO2023150993A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10326348B2 (en) * 2015-07-07 2019-06-18 Honeywell International Inc. Multi-degree of freedom electromagnetic machine
US11209401B2 (en) * 2017-03-02 2021-12-28 Quest Integrated, Llc Electromagnetic acoustic transducer (EMAT) for corrosion mapping
CN107174202B (en) * 2017-05-05 2020-08-04 深圳大学 Magneto-acoustic imaging method and system based on active detection

Also Published As

Publication number Publication date
WO2023150993A1 (en) 2023-08-17

Similar Documents

Publication Publication Date Title
US4127035A (en) Electromagnetic transducer
US9297678B2 (en) Acoustic flow rate meter having a high frequency induction coil mounted directly on the piping without an acoustic coupling
JP5643191B2 (en) Ultrasonic probe and ultrasonic imaging apparatus
CN104007180A (en) Torsional mode magnetostriction sensor array
CN104198594A (en) Multiple-main-frequency combined torsional-mode electromagnetic acoustic array sensor
CN109444262A (en) A kind of oblique incidence formula Electromagnetic Acoustic Transducer based on inclination magnetostatic field
Je et al. A stepped-plate bi-frequency source for generating a difference frequency sound with a parametric array
TW202332516A (en) Ultrasonic transducer
Massa An overview of electroacoustic transducers
CN102175767A (en) Electromagnetic ultrasonic signal superposition method
Been et al. A parametric array PMUT loudspeaker with high efficiency and wide flat bandwidth
JP2009145056A (en) Electromagnetic ultrasonic probe and electromagnetic ultrasonic flaw detector
JP4771575B2 (en) Underwater detector
JP2000266730A (en) Method and device for electromagnetic ultrasonic measurement
JPH11125622A (en) Sh wave electromagnetic ultrasonic transducer and measuring method
Chen et al. A High-Accuracy in-Air Reflective Rangefinder Via PMUTS Arrays Using Multi-Frequency Continuous Waves
JPH0511767B2 (en)
US2405185A (en) Sound transmitter and receiver
JPS6038214Y2 (en) electromagnetic ultrasonic transducer
Kang et al. Wideband Electromagnetic Dynamic Acoustic Transducer as a Standard Acoustic Source for Air-coupled Ultrasonic Sensors
CN114768125A (en) Low-frequency focusing electric stimulation device and method
JP2538596B2 (en) Electromagnetic ultrasonic transducer
JPS62277555A (en) Electromagnetic ultrasonic probe
JPH0310071B2 (en)
JP2002340706A (en) Torque sensor