WO2023149765A1 - Machine tool thermal displacement compensation device and compensation method therefor - Google Patents

Machine tool thermal displacement compensation device and compensation method therefor Download PDF

Info

Publication number
WO2023149765A1
WO2023149765A1 PCT/KR2023/001641 KR2023001641W WO2023149765A1 WO 2023149765 A1 WO2023149765 A1 WO 2023149765A1 KR 2023001641 W KR2023001641 W KR 2023001641W WO 2023149765 A1 WO2023149765 A1 WO 2023149765A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
correction amount
processing
thermal displacement
workpiece
Prior art date
Application number
PCT/KR2023/001641
Other languages
French (fr)
Korean (ko)
Inventor
신향기
Original Assignee
주식회사 디엔솔루션즈
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 디엔솔루션즈 filed Critical 주식회사 디엔솔루션즈
Publication of WO2023149765A1 publication Critical patent/WO2023149765A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/18Compensation of tool-deflection due to temperature or force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/013Control or regulation of feed movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/20Automatic control or regulation of feed movement, cutting velocity or position of tool or work before or after the tool acts upon the workpiece
    • B23Q15/22Control or regulation of position of tool or workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q17/00Arrangements for observing, indicating or measuring on machine tools
    • B23Q17/09Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool
    • B23Q17/0952Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining
    • B23Q17/0985Arrangements for observing, indicating or measuring on machine tools for indicating or measuring cutting pressure or for determining cutting-tool condition, e.g. cutting ability, load on tool during machining by measuring temperature
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning

Definitions

  • the present invention relates to an apparatus and method for compensating for thermal displacement of a machine tool, and more particularly, by machine learning a direct factor and an indirect factor that changes in real time in addition to the direct factor through machine learning to determine a correction amount according to thermal displacement of a structural part in real time.
  • An apparatus and method for compensating thermal displacement of a machine tool that automatically calculates and immediately reflects the calculated correction amount to process a workpiece.
  • a machine tool refers to a machine used for the purpose of processing a metal/non-metal workpiece into a desired shape and dimension using an appropriate tool by various cutting processing methods or non-cutting processing methods.
  • the machine tool has a table on which the material, which is a workpiece, is seated and transported for processing, a pallet for preparing the workpiece before processing, a spindle that rotates with a tool or workpiece combined, a tailstock for supporting the workpiece, etc. provide etc.
  • a table, a tool post, a main shaft, a tailstock, a resting ball, etc. are provided with a feed unit that feeds along a feed axis to perform various machining operations.
  • machine tools use a plurality of tools for various processing, and a tool magazine or a turret is used as a tool storage space for storing and storing a plurality of tools.
  • These machine tools use a plurality of tools for various processing, and a tool magazine is used in the form of a tool storage area for storing and storing a plurality of tools.
  • a machine tool includes an automatic tool changer (ATC) for withdrawing or re-accommodating a specific tool from a tool magazine according to a command of a numerical controller to improve productivity of the machine tool.
  • ATC automatic tool changer
  • machine tools are provided with an automatic pallet changer (APC) to minimize non-processing time.
  • An Automatic Pallet Changer (APC) automatically exchanges pallets between the workpiece processing area and the workpiece installation area. A workpiece may be mounted on the pallet.
  • NC numerical control
  • NC numerical control
  • a numerically controlled (NC) or computer numerically controlled (CNC) machine tool has an operating panel.
  • Such a control panel has various function switches or buttons and a monitor.
  • Recent machine tools are equipped with a numerical control system called CNC (Computer Numerical Control), and such CNC can control the operation of the machine tool in a desired form in various ways.
  • CNC Computer Numerical Control
  • a turning center refers to a machine tool equipped with an automatic tool changer and performing various machining by exchanging various types of tools. It is divided into horizontal turning centers.
  • a machining center refers to a machine tool that is equipped with an automatic tool changer and exchanges various types of tools to perform a wide range of machining that can be performed on a lathe, milling, drilling, boring machine, etc. It is divided into a vertical machining center and a horizontal machining center in which the main axis is mounted vertically.
  • machine tools such as turning centers and machining centers operate at low speeds of hundreds of millimeters per minute (mm) during processing such as tapping, drilling, boring, and cutting to improve machining precision and prevent safety accidents. It performs machining while moving at the cutting speed.
  • machine tools such as turning centers and machining centers rapidly move at the maximum speed of several tens of meters per minute (m) during non-processing, thereby shortening the machining time and maximizing productivity by reducing the overall cycle time, reduce production costs.
  • thermal displacement may occur due to heat generated in the process of processing a workpiece, so that the processing dimensions of the workpiece may be changed.
  • thermal displacement compensating devices and correction methods of machine tools such as turning centers and machining centers perform correction by directly calculating the correction amount according to thermal displacement with a temperature sensor or by indirectly calculating the correction value through a program, etc. performed.
  • the temperature change of the structure received from the temperature sensor is not a real-time temperature change, but a past where thermal displacement has already occurred according to the temperature conversion in the structure.
  • accuracy and reliability decreased because it was not possible to perform precise, accurate and real-time correction for thermal displacement through post-correction by measuring the temperature of the temperature.
  • thermal displacement due to heat generation of the structure is performed by using a temperature sensor in a machine tool such as a complex turning center or machining center for performing milling, turning, and complex processing, equipped with various shaft systems for this purpose, and performing complex processing.
  • a temperature sensor such as a complex turning center or machining center for performing milling, turning, and complex processing, equipped with various shaft systems for this purpose, and performing complex processing.
  • the present invention is to solve the above problems, and an object of the present invention is to calculate a direct correction amount through a direct calculation method using a temperature sensor, and calculate an indirect correction amount through machine learning by machine learning for an indirect factor.
  • the correction amount according to the thermal displacement of the structure is automatically calculated in real time, and the calculated correction amount is immediately reflected to process the workpiece. It relates to a thermal displacement compensating device and a compensating method of a machine.
  • thermal displacement in a machine tool such as a complex turning center or machining center that includes at least one of milling, turning, composite, or designated machining, and has various axis systems for this purpose and performs composite machining.
  • the correction amount is directly calculated through a direct factor, which is the temperature of the structure sensed by the temperature sensor, and in addition to direct factors such as the temperature of the structure, the spindle RPM, motor load, feed shaft load, and feed axis are changed in real time.
  • the indirect correction amount is calculated by machine learning indirect factors such as speed through machine learning, and finally, the final correction amount due to the thermal displacement of the structure is calculated automatically in real time with the direct correction amount and the indirect correction amount, and it is reflected immediately to improve the processing of the workpiece.
  • thermo displacement compensating device and compensating method of a machine tool capable of automatically calculating a final compensating value for correcting a machining origin in real time.
  • the present invention stores and manages accumulated data for machine learning for a certain period of time to prevent overfitting of the amount of indirect correction by indirect factors, and is manufactured in the form of an edge device mounted on a machine tool separately as needed to improve compatibility of equipment It is easily and quickly installed on existing machine tools to promote miniaturization of machine tools, reduce space utilization, improve processing precision by calculating accurately and precisely in real time, increase productivity, and To provide a machine learning-based thermal displacement compensation device and compensation method for machine tools through machine learning that can reduce maintenance costs and time due to damage or breakage of workpieces and increase customer satisfaction.
  • a thermal displacement compensating device for a machine tool is a thermal displacement compensating device for a machine tool for compensating thermal displacement during processing of a workpiece, wherein the workpiece and a tool are provided for processing the workpiece.
  • a thermal displacement correcting unit that automatically calculates a correction amount according to the thermal displacement of the structure unit in real time by machine learning through machine learning a direct factor and an indirect factor that changes in real time in addition to the direct factor; and a control unit that immediately reflects the correction amount calculated by the thermal displacement compensating unit and performs processing of the workpiece.
  • the direct factor of the thermal displacement compensation device for a machine tool is the temperature of the structure measured by the sensing unit
  • the indirect factor is the temperature of the workpiece It may be a processing state and a process mode that change in real time during the processing of the process.
  • the process mode of the thermal displacement compensation device for a machine tool includes a turning mode for performing only turning of the workpiece; a milling mode in which only milling of the workpiece is performed; a combined mode for performing both turning and milling of the workpiece; or a designation mode for performing selective processing on the workpiece according to a user's designation; It may include at least any one or more of them.
  • the structural part of the thermal displacement compensation device for a machine tool includes a milling spindle, a turret, and a processing unit having a spindle and directly processing the workpiece; a transfer unit for transferring the processing unit; and a support portion installed so that the processing portion and the transfer portion are movable.
  • the indirect factor of the thermal displacement compensation device for a machine tool is the machining part RPM and the machining part motor load according to the processing state and process mode of the workpiece , the conveying speed of the conveying part, and the change in motor load of the conveying part.
  • the sensing unit of the thermal displacement compensation device for a machine tool may be installed in at least one of the processing unit, the transfer unit, and the support unit.
  • the control unit of the thermal displacement compensating device for a machine tool controls a processing program, a driving program, and a process mode for processing the workpiece.
  • a memory unit for storing information;
  • a processing unit configured to process the workpiece according to the information stored in the memory unit and the correction amount received from the thermal displacement correcting unit;
  • an information collection unit that collects operation information of the processing unit and the transfer unit operated by the processing unit;
  • a transmission/reception unit configured to transmit the driving information collected by the information collection unit to the thermal displacement correcting unit or to receive the correction amount calculated by the thermal displacement correcting unit.
  • the control unit of the thermal displacement compensation device for a machine tool includes the memory unit, the processing information of the processing unit, and the operation information collected by the information collection unit. , and a display unit for displaying information transmitted and received through the transceiver.
  • the thermal displacement compensating unit of the thermal displacement compensating device for a machine tool learns the direct factor and the indirect factor through machine learning to determine the structural part.
  • a database unit for storing information for automatically calculating a correction amount according to thermal displacement of the in real time; a confirmation unit for confirming whether or not processing has started in the processing unit according to the information stored in the database unit and processing information and operation information received from the control unit; a determination unit for determining a processing state and a process mode of the workpiece when processing is started in the processing unit according to a confirmation result of the confirmation unit; a calculation unit for calculating a final correction amount according to the thermal displacement of the structure unit according to information stored in the database unit, processing information and operation information received from the control unit, a confirmation result of the confirmation unit, and a determination result of the determination unit; and a correction unit configured to transmit the information stored in the database unit and the final correction amount calculated by the operation unit to the control unit.
  • the database unit of the thermal displacement compensation unit of the thermal displacement compensation device for a machine tool stores data on direct coefficients, direct weights, and switching Basic data storage unit; a received data storage unit for storing the data received from the transceiver; a machine learning data storage unit for storing a machine learning program and accumulation data for performing machine learning through machine learning; And a real-time data storage unit for storing the data sensed by the sensing unit, the processing state of the workpiece, and the amount of change in processing RPM, motor load of the processing unit, feed speed of the transfer unit, and motor load of the transfer unit according to the process mode in real time.
  • a received data storage unit for storing the data received from the transceiver
  • a machine learning data storage unit for storing a machine learning program and accumulation data for performing machine learning through machine learning
  • a real-time data storage unit for storing the data sensed by the sensing unit, the processing state of the workpiece, and the amount of change in processing RPM, motor load of the processing unit, feed speed of the transfer unit
  • An indirect correction amount calculation unit that automatically calculates an indirect correction amount in real time through machine learning using machine learning according to changes in processing part RPM, processing part motor load, conveying speed of the conveying part, and motor load of the conveying part; and a final correction amount calculation unit that calculates a final correction amount according to the direct correction amount calculated by the direct correction amount
  • the calculation unit of the thermal displacement compensating unit of the thermal displacement compensating device for a machine tool performs machine learning using machine learning in the indirect correction amount calculation unit.
  • the indirect correction amount is automatically calculated in real time, whether or not overfitting is automatically analyzed in real time according to the confirmation result of the confirmation unit and the judgment result of the judgment unit, and if overfitting occurs as a result of the analysis, the machine learning model selected by the indirect correction amount calculation unit It may further include an analysis unit that selects a machine learning model different from the above, the indirect correction amount calculation unit automatically recalculates the indirect correction amount in real time, and transfers the recalculated indirect correction amount to the final correction amount calculation unit.
  • the thermal displacement compensating unit of the thermal displacement compensating device for a machine tool before transferring the final correction amount to the controller, the processing information, If the operation information, the confirmation result of the confirmation unit, the determination result of the determination unit, and the data stored in the machine learning data storage unit are overcorrected, the final correction amount of the correction unit is automatically corrected by a low-pass filter and the corrected final correction amount It may further include a correction unit for transmitting to the control unit.
  • the stored data of the thermal displacement compensating device for a machine tool is controlled by the control unit, the confirmation result of the confirmation unit, and the determination result of the determination unit.
  • Data of up to 30 minutes can be stored at intervals of 10 seconds from the moment the processing unit operates.
  • the machine learning model selected in the analysis unit of the thermal displacement compensation device for a machine tool is at least one of a neural network algorithm, LSTM, or a multilayer perceptron can be
  • a method for correcting thermal displacement of a machine tool calculates a correction amount according to thermal displacement of a structural part by machine learning a direct factor and an indirect factor that changes in real time in addition to the direct factor through machine learning.
  • the method for correcting thermal displacement of a machine tool calculates an indirect adjustment amount through machine learning using machine learning after the step of calculating the indirect correction amount.
  • the method for correcting thermal displacement of a machine tool calculates an indirect adjustment amount through machine learning using machine learning after the step of calculating the indirect correction amount.
  • the method for compensating thermal displacement of a machine tool after the correction step, before transferring the calculated final correction amount to the control unit, the processing information, the operation Further comprising a step of automatically correcting the final correction amount with a low-pass filter and correcting the machining origin of the workpiece according to the corrected final correction amount when the information, the confirmation result, the judgment result, and the accumulated data are overcorrected due to a small amount. can do.
  • the direct factor is the temperature of the structure measured by the sensing unit
  • the indirect factor is the temperature of the workpiece. It may be a change in the processing state of the workpiece and the process mode, which change in real time during the machining process, in the processing part RPM, the processing part motor load, the conveying speed of the conveying part, and the change in the motor load of the conveying part.
  • An apparatus and method for compensating for thermal displacement of a machine tool perform machining including at least one of milling, turning, composite, or designated machining, and for this purpose, various shaft systems are provided and for performing composite machining
  • the amount of compensation is calculated through direct calculation through a direct factor, which is the temperature of the structural part sensed by the temperature sensor in the thermal displacement compensator, and changes in real time in addition to direct factors such as the temperature of the structural part.
  • Indirect factors such as spindle RPM, motor load, feed shaft load, feed shaft speed, etc. are machine learning through machine learning to calculate the indirect correction amount, and finally, the final correction amount due to thermal displacement of the structure is automatically calculated with the direct correction amount and the indirect correction amount.
  • the processing of the workpiece is performed by calculating and immediately reflecting it in real time, the existing non-reflected part is reflected to minimize the occurrence of time delay with the actual thermal displacement, and correction is performed in real time. It has the effect of maximizing reliability.
  • the apparatus and method for compensating thermal displacement of a machine tool stores and manages accumulated data for machine learning for a certain period of time to prevent overfitting of the indirect correction amount, and edge mounted on the machine tool separately as needed
  • Manufactured in the form of a device it is easily and quickly installed on an existing machine tool through compatibility of equipment, thereby miniaturizing the machine tool and reducing space utilization, thereby reducing manufacturing cost, installation cost, and maintenance cost.
  • the apparatus and method for compensating for thermal displacement of a machine tool according to the present invention are direct factors according to the temperature of a structure and the processing state and process mode that change in real time during the processing of a workpiece, processing part RPM, processing part motor load, By reflecting the change in the conveying speed of the conveying part and the motor load of the conveying part in real time, calculating in real time through machine learning based on machine learning, automatically reflecting the final correction amount to process the workpiece, improving machining precision and productivity, There is an effect of conserving resources by preventing unnecessary defective products and increasing the convenience of users and workers.
  • the apparatus and method for correcting thermal displacement of a machine tool stores and manages accumulated data for machine learning for a certain period of time so that overfitting does not occur, and, if necessary, separate machine tool It is manufactured in the form of an edge device mounted on the machine and can be easily and quickly installed on existing machine tools through compatibility of equipment to improve compatibility and usability, improve consumer satisfaction, and increase exports.
  • FIG. 1 shows a perspective view of a machine tool to which a thermal displacement compensating device and a correction method for a machine tool according to the present invention are applied, and a conceptual diagram of thermal displacement generation.
  • FIG. 2 shows a configuration diagram of a thermal displacement compensating device for a machine tool according to the present invention.
  • FIG. 3 shows a block diagram of a control unit of a thermal displacement compensating device for a machine tool according to the present invention.
  • FIG. 4 shows a configuration diagram of a thermal displacement compensating unit of a thermal displacement compensating device for a machine tool according to the present invention.
  • FIG. 5 shows a conceptual diagram of a thermal displacement compensating device for a machine tool according to the present invention.
  • FIG. 6 shows a procedure diagram of a thermal displacement compensation method of a machine tool according to the present invention.
  • FIG. 7 is a graph of an error amount over time when machine learning by machine learning is performed with LSTM for an indirect correction amount of a thermal displacement correction device and correction method of a machine tool according to the present invention.
  • FIG. 8 is a graph of an error amount over time when machine learning by machine learning is performed with MLP for an indirect correction amount of a thermal displacement compensation device and correction method of a machine tool according to the present invention.
  • FIG. 9 is a graph of a case where overfitting occurs in the thermal displacement compensating device and compensating method for a machine tool according to the present invention.
  • FIG 10 is a graph for the case where overcorrection occurs in the thermal displacement compensating device and correction method of a machine tool according to the present invention.
  • FIG. 1 shows a perspective view of a machine tool to which a thermal displacement compensating device and correction method for a machine tool according to the present invention are applied and a conceptual diagram of thermal displacement generation
  • FIG. 2 is a configuration diagram of a thermal displacement compensating device for a machine tool according to the present invention. indicates 3 shows a configuration diagram of a control unit of a thermal displacement compensation device for a machine tool according to the present invention
  • FIG. 4 shows a configuration diagram of a thermal displacement compensation unit of a thermal displacement compensation device for a machine tool according to the present invention.
  • 5 shows a conceptual diagram of a thermal displacement compensating device for a machine tool according to the present invention.
  • 6 shows a procedure diagram of a thermal displacement compensation method of a machine tool according to the present invention.
  • FIG. 7 is a graph of an error amount over time when machine learning by machine learning is performed with LSTM for an indirect correction amount of a thermal displacement correction device and correction method of a machine tool according to the present invention.
  • 8 is a graph of an error amount over time when machine learning by machine learning is performed with MLP for an indirect correction amount of a thermal displacement compensation device and correction method of a machine tool according to the present invention.
  • 9 is a graph of a case where overfitting occurs in the thermal displacement compensating device and compensating method for a machine tool according to the present invention.
  • 10 is a graph for the case where overcorrection occurs in the thermal displacement compensating device and correction method of a machine tool according to the present invention.
  • Machine tools to which the thermal displacement compensating device and compensation method of machine tools according to the present invention are applied include all machine tools, but preferably perform milling, turning, and complex processing, and for this purpose, various axis systems are provided and complex processing is performed. It may be a machine tool such as a complex turning center or machining center to perform.
  • the machine tool to which the thermal displacement compensating device and the compensating method of the machine tool according to the present invention are applied is general machine tool equipment such as a simple lathe in addition to complex equipment for performing complex processing such as turning or milling. As thermal displacement occurs during machining of a workpiece, processing must be performed by correcting the origin of processing to improve processing precision and increase productivity.
  • the thermal displacement compensating device 10 for a machine tool according to the present invention includes a structural unit 100, a sensing unit 200, a thermal displacement compensating unit 300, and a control unit 400.
  • the structural part means a processing part, a transfer part, a support part, etc. that can relatively move the workpiece and the tool for machining the workpiece.
  • the structural part 100 includes a processing part 110 , a transfer part 120 , and a support part 130 .
  • the processing unit 110 includes a milling spindle 111, a turret 112, and a spindle 113 and directly processes a workpiece. That is, the milling spindle 111 of the processing unit performs milling of the workpiece clamped on the spindle under the control of the controller, and the turret 112 performs turning processing under the control of the controller, and the spindle 113 clamps the workpiece. In one state, it rotates at various revolutions per minute (RPM) according to the control of the controller. If necessary, it is also possible to perform complex machining in which turning and milling are simultaneously performed.
  • RPM revolutions per minute
  • the transfer unit 120 performs a function of transferring the processing unit according to the control of the control unit.
  • the transfer unit 120 is formed of a ball screw and a servo motor or an LM guide and a servo motor to move the processing unit along the bed or column of the support unit.
  • the support part 130 is installed so that the processing part and the conveying part are movable. That is, the support unit 130 includes a bed 131 and a column 132, and a milling spindle, a turret, a spindle, a transfer unit, and the like are installed on the bed and the column.
  • the sensing unit 200 measures the temperature according to the thermal displacement of the structure.
  • This sensing unit 200 may be formed as a temperature sensor.
  • the sensing unit may be installed in at least one of a processing unit, a transfer unit, and a support unit. Specifically, as shown in FIG. 1, one or a plurality of them may be installed in various positions in the structure, or only one may be installed in a milling spindle, spindle, turret, bed, or column. Accordingly, the temperature change according to the thermal displacement of at least one part of the structure is measured by the temperature sensor of the sensing unit, and the result is transmitted to the thermal displacement correcting unit, so that the direct correction amount can be quickly and accurately calculated through the direct factor.
  • the thermal displacement correction unit 300 automatically calculates a correction amount according to the thermal displacement of the structural part in real time by machine learning through machine learning the indirect factor that changes in real time in addition to the direct factor and the direct factor.
  • the direct factor of the thermal displacement compensation device of the machine tool according to the present invention is the temperature according to the thermal displacement of the structure measured by the sensing unit
  • the indirect factor may be the processing state and process mode that change in real time during the processing of the workpiece.
  • the indirect factor may be a change in processing RPM, a motor load in the processing unit, a feed speed in the transfer unit, a motor load in the transfer unit, and a change in coolant temperature according to the processing state and process mode of the workpiece.
  • the control unit 400 immediately reflects the correction amount calculated by the thermal displacement correction unit to process the workpiece.
  • the apparatus for compensating thermal displacement of a machine tool directly calculates the correction amount through a direct factor, which is the temperature according to the thermal displacement of the structural unit sensed by the temperature sensor of the sensing unit, and
  • direct factors such as temperature due to thermal displacement of the machine
  • indirect factors such as spindle RPM, motor load, feed shaft load, and feed shaft speed that change in real time are changed through machine learning through machine learning according to the real-time changes in importance.
  • the indirect correction amount is automatically calculated in real time, and the final correction amount due to the thermal displacement of the structure is automatically calculated in real time with the direct correction amount and the indirect correction amount. Therefore, it is possible to maximize the accuracy and reliability of processing and correction by performing correction in real time by minimizing the occurrence of time delay with the actual occurrence of thermal displacement.
  • the control unit 400 of the thermal displacement compensating device 10 for a machine tool includes a memory unit 410, a processing unit 420, an information collection unit 430, and a transmission and reception unit. 440, and a display unit 450.
  • the control unit includes a numerical control (NC) or a computerized numerical control (CNC), and various numerical control programs are embedded therein.
  • control unit includes a main operation unit, and this main operation unit includes a screen display program and a data input program according to screen display selection, and a screen display program According to the output of the software switch, it displays the software switch on the display screen, recognizes the on/off of the software switch, and performs the function of giving input/output commands for machine operation.
  • the memory unit 410 stores information about a processing program, a driving program, and a process mode for performing machining of a workpiece.
  • the processing unit 420 performs processing of the workpiece according to the information stored in the memory unit and the correction amount received from the thermal displacement compensation unit.
  • the information collection unit 430 collects operation information of the processing unit and the transfer unit operated by the processing unit. That is, the information collection unit collects and stores operation information of the processing unit and the transfer unit that operate when the processing unit performs machining of the workpiece.
  • the transceiver 440 transmits the operation information collected by the information collection unit to the thermal displacement corrector or receives the correction amount calculated by the thermal displacement corrector.
  • the display unit 450 displays processing information of the memory unit, the processing unit, operation information collected by the information collection unit, and information transmitted and received through the transceiver. All of these display units include a liquid crystal display (LCD), a thin film transistor-liquid crystal display (TFT LCD), an organic light-emitting diode (OLED), and a flexible display. ), a 3D display, and an e-ink display.
  • LCD liquid crystal display
  • TFT LCD thin film transistor-liquid crystal display
  • OLED organic light-emitting diode
  • the thermal displacement compensating unit 300 of the thermal displacement compensating device 10 for a machine tool includes a database unit 310 and a confirmation unit 320 , includes a determination unit 330, a calculation unit 340, a correction unit 350, and/or a correction unit 360.
  • the database unit 310 stores information for automatically calculating the correction amount according to the thermal displacement of the structure part in real time by machine learning the direct factor and the indirect factor through machine learning.
  • the confirmation unit 320 checks whether or not processing has started in the processing unit according to the information stored in the database unit and processing information and operation information received from the control unit.
  • the determination unit 330 determines the processing state and the process mode of the workpiece when processing is started in the processing unit according to the confirmation result of the confirmation unit.
  • these process modes include a turning mode that performs only turning of a workpiece, a milling mode that performs only milling of a workpiece, a combined mode that performs both turning and milling of a workpiece, or a user's designation. It may be configured to include at least any one or more of designation modes for performing selective processing on a workpiece according to the present invention.
  • the calculation unit 340 calculates the final correction amount according to the thermal displacement of the structural part according to the information stored in the database unit, the processing information and operation information received from the control unit, the confirmation result of the confirmation unit, and the determination result of the determination unit.
  • the correction unit 350 transmits the information stored in the database unit and the final correction amount calculated in the calculation unit to the control unit.
  • the correction unit 360 is a low-pass filter in case of overcorrection because the processing information, operation information, confirmation result of the confirmation unit, judgment result of the determination unit, and data stored in the machine learning data storage unit are small before the correction unit delivers the final correction amount to the control unit.
  • (low pass filter) automatically corrects the final correction amount of the correction unit and transmits the corrected final correction amount to the control unit. Accordingly, it is possible to maximize processing precision by improving accuracy and reliability of the final correction amount.
  • Such overcorrection may occur when there is too little information about accumulation data, operation information, processing information, direct factors, and indirect factors in the initial stage of machining a workpiece of a machine tool.
  • the memory unit 410 and the database unit 310 may be various storage devices such as ROM, RAM, EPROM, flash drive, hard drive, etc., and the storage function of the data storage unit on the Internet It can also be a web storage that performs.
  • control unit 400 and the thermal displacement compensation unit 300 are application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and field programmable circuits (FPGAs). gate arrays), controllers, micro-controllers, microprocessors, and other electrical units for performing functions, but is not limited thereto.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable circuits
  • gate arrays controllers, micro-controllers, microprocessors, and other electrical units for performing functions, but is not limited thereto.
  • the transmission/reception unit 440, the thermal displacement correction unit 300, and the sensing unit 200 of the control unit all comply with technical standards or communication methods for mobile communication (eg, Global System for Mobile communication (GSM), CDMA). (Code Division Multi Access), HSDPA (High Speed Downlink Packet Access), HSUPA (High Speed Uplink Packet Access), LTE (Long Term Evolution), LTE-A (Long Term Evolution-Advanced), etc.), BluetoothTM A radio signal may be transmitted and received with at least one of the transmission/reception unit 440 of the control unit, the thermal displacement correction unit 300, the sensing unit 200, and an arbitrary server on the mobile communication network constructed according to the above.
  • GSM Global System for Mobile communication
  • CDMA Code Division Multi Access
  • HSDPA High Speed Downlink Packet Access
  • HSUPA High Speed Uplink Packet Access
  • LTE Long Term Evolution
  • LTE-A Long Term Evolution-Advanced
  • BluetoothTM A radio signal may be transmitted and received with at least one of the transmission/
  • the transmission/reception unit 440, the thermal displacement compensation unit 300, and the sensing unit 200 of the control unit are all WLAN (Wireless LAN), Wi-Fi (Wireless-Fidelity), Wi-Fi (Wireless Fidelity) Direct, DLNA (Digital Living Network Alliance), wireless broadband (WiBro), wireless communication methods such as WiMAX (World Interoperability for Microwave Access) may transmit and receive wireless signals, but are not limited thereto.
  • the transmission/reception unit 440 of the control unit, the thermal displacement correction unit 300, and the sensing unit 200 may all transmit and receive wireless signals in a short-distance wireless communication method.
  • the transmission/reception unit 440, the thermal displacement correction unit 300, and the sensing unit 200 of the control unit all use BluetoothTM, Radio Frequency Identification (RFID), Infrared Data Association (IrDA), Short-range communication may be supported using at least one of UWB (Ultra Wideband), ZigBee, NFC (Near Field Communication), Wi-Fi (Wireless-Fidelity), Wi-Fi Direct, and Wireless USB (Wireless Universal Serial Bus) technologies, , but not limited thereto.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • Short-range communication may be supported using at least one of UWB (Ultra Wideband), ZigBee, NFC (Near Field Communication), Wi-Fi (Wireless-Fidelity), Wi-Fi Direct, and Wireless USB (Wireless Universal Serial Bus) technologies, , but not limited thereto.
  • the database unit 310 of the thermal displacement compensating unit 300 of the thermal displacement compensating device 10 for a machine tool includes a basic data storage unit 311 and a received data storage unit. 312, a machine learning data storage unit 313, and a real-time data storage unit 314.
  • the basic data storage unit 311 stores data on direct coefficients, direct weights, and switching.
  • the basic data storage unit may be manually input through a touch screen, keypad, or keyboard in the main operation unit of the thermal displacement correction unit.
  • the received data storage unit 312 stores data received from the transceiver.
  • the machine learning data storage unit 313 stores a machine learning program and accumulated data for performing machine learning through machine learning.
  • a machine learning program for performing machine learning through machine learning stored in such a machine learning data storage unit is a neural network algorithm (convolution neural networks, CNN or recurrent neural networks, RNN), LSTM (long short term memory), or a multilayer perceptron ( Multilayer Perceptrons, MLP).
  • the accumulated data stored in the machine learning data storage unit stores data for up to 30 minutes at intervals of 10 seconds from the moment the processing unit operates according to the control of the control unit, the confirmation result of the confirmation unit, and the judgment result of the determination unit. . That is, when too much accumulated data, processing information, and operation information are stored, problems due to overfitting occur as shown in FIG. As it is installed, it is possible to promote miniaturization of the machine tool and reduce installation cost, maintenance cost, and manufacturing cost.
  • the real-time data storage unit 314 stores the data sensed from the sensing unit, the processing state of the workpiece, and the processing unit RPM according to the process mode, the motor load of the processing unit, the transfer speed of the transfer unit, the motor load of the transfer unit, and the amount of change in the coolant temperature. save in real time
  • the calculation unit 340 of the thermal displacement correction unit 300 of the thermal displacement correction device 10 of the machine tool according to the present invention includes a direct correction amount calculation unit 341 and an indirect correction amount calculation unit ( 342), a final correction amount calculation unit 343, and an analysis unit 344.
  • the direct correction amount calculation unit 341 directly calculates the correction amount according to the confirmation result of the confirmation unit, the judgment result of the determination unit, the data stored in the basic data storage unit and the data stored in the real-time data storage unit, and the temperature according to the thermal displacement of the structure measured by the sensing unit. Calculate directly.
  • the direct correction amount calculation unit is a direct factor according to the temperature according to the thermal displacement of the structural part, which is a direct factor in the same way as the existing technology according to the confirmation result, the judgment result, the basic data, the real-time data, and the temperature according to the thermal displacement of the structural part measured by the sensing unit. directly calculate Specifically, through a method such as multivariable linear regression, a direct correction amount is mechanically calculated through a direct coefficient, a direct weight, and a temperature according to the measured thermal displacement of the structural part.
  • the indirect correction amount calculation unit 342 includes the confirmation result of the confirmation unit, the judgment result of the determination unit, data stored in the basic data storage unit, data stored in the received data storage unit, data stored in the real-time data storage unit, and data stored in the machine learning data storage unit. , and the indirect correction amount is automatically calculated in real time through machine learning using machine learning according to the change of processing part RPM, processing part motor load, conveying speed of conveying part, motor load of conveying part, and coolant temperature. That is, indirect correction amount The calculation unit is based on accumulated data, received data, real-time data, driving information, processing information, direct and indirect factors through machine learning models such as multi-layer perceptrons with multi-layer input layers, hidden layers and output layers, RNN and CNN through neural network algorithms. By performing Supervised Learning, Unsupervised Learning, and Reinforcement Learning, the amount of indirect correction is calculated automatically, accurately, predictably, and reliably in real time.
  • the final correction amount calculation unit 343 calculates the final correction amount according to the direct correction amount calculated by the direct correction amount calculation unit and the indirect correction amount calculated by the indirect correction amount calculation unit. That is, the final correction amount calculation unit sums the calculated direct correction amount and indirect correction amount, calculates the final correction amount quickly, accurately, and in real time and transmits it to the control unit, and the control unit corrects the machining origin by the transmitted final correction amount, The machining of the workpiece is performed through calibration.
  • the analysis unit 344 automatically determines whether overfitting is in real time according to the confirmation result of the confirmation unit and the judgment result of the judgment unit. analysis, and if overfitting occurs as a result of the analysis, by selecting a machine learning model different from the machine learning model selected in the indirect correction amount calculation unit, the indirect correction amount calculation unit automatically recalculates the indirect correction amount in real time, and the recalculated indirect correction amount is the final correction amount forwarded to the calculator.
  • the machine learning model selected by the analysis unit may be at least one of a neural network algorithm, LSTM, and a multi-layer perceptron.
  • the analysis unit automatically, quickly and accurately solves and prevents overfitting problems arising from various data such as too much accumulated data, processing information, operation information, direct factors and indirect factors, as shown in FIG. Safety and reliability can be improved.
  • the overfitting problem is primarily processing precision and correction accuracy and reliability by performing correction in real time by minimizing the occurrence of time delay with the actual thermal displacement occurrence by reflecting the existing non-reflected part by preventing secondary recalibration through the analysis unit.
  • the thermal displacement compensation device for machine tools stores and manages accumulated data for machine learning for a certain period of time to prevent overfitting of indirect correction amounts by indirect factors.
  • Manufactured in the form of an edge device it can be easily and quickly installed on existing machine tools through compatibility of equipment to improve compatibility and usability, improve consumer satisfaction, and increase exports.
  • the method for correcting thermal displacement of a machine tool according to the present invention includes a data storage step (S1), a confirmation step (S2), a temperature measurement step (S3) with a sensing unit, an information collection step (S4), and information storage.
  • the operating process, operating principle, configuration, and contents of the device are the same as those of the thermal displacement compensation device for a machine tool according to the specification of the present invention.
  • the temperature of the structural part is measured when the confirmation result of processing is started.
  • the collected information is stored as real-time data and accumulated data.
  • the current processing state and process mode of the workpiece are determined according to the previously stored information data, real-time data, and accumulated data.
  • the correction amount is directly calculated according to the temperature according to the thermal displacement of the structure measured in real time according to the pre-stored information data and the determination result.
  • the indirect correction amount is measured in real time through machine learning using machine learning according to various changes in the processing mode and processing mode that change in real time during the processing of the workpiece according to the pre-stored information data and the judgment result. automatically calculated as
  • the indirect correction amount calculation step (S8) when the indirect correction amount is automatically calculated in real time through machine learning using machine learning, overfitting is automatically analyzed in real time according to the confirmation result and the judgment result, and the analysis result is overfitting When this occurs, a machine learning model different from the selected machine learning model is selected when calculating the indirect correction amount, the indirect correction amount is automatically recalculated in real time, and the final correction amount is recalculated according to the recalculated indirect correction amount.
  • the final correction amount is automatically calculated according to the calculated direct correction amount and indirect correction amount after the analysis step.
  • the processing origin of the workpiece is corrected according to the calculated final correction amount.
  • the correction step before transmitting the calculated final correction amount to the control unit, if the processing information, operation information, confirmation result, judgment result, and accumulated data are small and overcorrected, the final correction amount is automatically corrected with a low-pass filter and corrected Correct the machining origin of the workpiece according to the final correction amount.
  • the correction step compares whether overcorrection has occurred, and if overcorrection occurs, the final correction amount is automatically corrected by a low-pass filter and transmitted to the control unit. If overcorrection does not occur, the final correction amount is transmitted to the control unit as it is through the existing correction unit. do. Such overcorrection may occur when there is too little information about accumulation data, operation information, processing information, direct factors, and indirect factors in the initial stage of machining a workpiece of a machine tool.
  • FIGS. 1 to 10 the operating principle and operation process of the thermal displacement compensating device and compensating method for a machine tool according to the present invention will be described.
  • a machine tool 1 such as a complex turning center or machining center for performing milling, turning, composite machining, or user-specified machining, and having various axis systems for this purpose, and performing composite machining.
  • Various thermal displacements occur during the processing of blown workpieces or depending on the ambient temperature. Specifically, in FIG. 1, thermal displacement occurs during milling by the milling spindle, and at this time, X-axis and Z-axis corrections are required (A in FIG. 1). Thermal displacement occurs due to the spindle arranged in , and at this time, correction of the X-axis, Y-axis, and Z-axis is required.
  • thermal displacement occurs during turning due to the spindle and turret (D in FIG. 1).
  • thermal displacement occurs due to the transfer speed and transfer load (E in FIG. 1).
  • the process mode is a turning mode that performs only turning of the workpiece, a milling mode that performs only milling of the workpiece, a combined mode that performs both turning and milling of the workpiece, or selectively for the workpiece according to user designation. It may be configured to include at least one or more of designated modes for performing processing. For example, if the time of the milling process becomes longer, the temperature sensor attached to the lower turret and the turret feed axis temperature sensor, which are required for the turning process, generate relatively less thermal displacement, and the effect of thermal displacement on the entire machine tool increases over time. become a negative factor.
  • the motor load of the milling spindle and the motor load of the column relatively have more influence on the thermal displacement than the lower turret or turret feed axis, and thus become more central factors among indirect factors.
  • the indirect factor changes variously in real time according to the processing state and process mode of the workpiece, and the importance and weight are too many variables. It cannot be calculated through a simple calculation like the direct correction amount according to the direct factor as it changes as .
  • machining is performed including at least one of milling, turning, composite, or designated machining, and for this purpose, a complex turning center or machining center equipped with various axis systems and performing complex machining is a workpiece.
  • it is almost impossible to calculate the correction amount indirectly, or the reliability, accuracy, and predictability of the correction amount are remarkably low depending on the program model to be calculated, and problems may occur.
  • the apparatus and method for compensating thermal displacement of a machine tool according to the present invention depend on the processing state and processing mode of the workpiece in addition to the direct correction amount reflecting the direct factor by temperature according to the thermal displacement of the structural part and the direct factor.
  • the indirect correction amount is calculated by reflecting the change in processing part RPM, processing part motor load, conveying speed of the conveying part, motor load of the conveying part, and coolant temperature as indirect factors, and the final correction amount is calculated to perform processing. It is possible to maximize the precision of processing and the accuracy and reliability of correction by performing correction in real time by minimizing the occurrence of time delay with the actual occurrence of thermal displacement by reflecting the unreflected part of the .
  • the present invention primarily arranges one or more sensing units in a structure unit as shown in FIG. 1, and as shown in FIGS. 2 to 4 and 6, the sensing unit is a structural unit.
  • the temperature according to the thermal displacement of is measured and transmitted to the thermal displacement correction unit, and the direct correction amount calculation unit of the calculation unit calculates the correction amount primarily without time delay through direct coefficients and direct weights.
  • the correction part above is the processing part RPM that varies in real time according to the processing state and process mode of the workpiece, the motor load of the processing part, the conveying speed of the conveying part, the motor load of the conveying part, and the coolant Considering the change in temperature as an indirect factor, supervised learning based on accumulated data, received data, real-time data, operation information, processing information, direct factors and indirect factors that change with various variables and combinations at the moment in the indirect correction calculation unit of the calculation unit Supervised Learning), Unsupervised Learning, and Reinforcement Learning are performed to automatically, accurately, predictably, and reliably calculate the amount of indirect correction in real time.
  • the upper graph shows the case where there is no correction by generating accumulated data every 10 seconds (before in FIG. 9) and the case of correction through LSTM for 10 hours (lstm in FIG. 9) and the error value (error in FIG. 9)
  • the lower graph in FIG. 9 shows the case of correction through LSTM for 10 hours (lstm in FIG. 9) and the error value when there is no correction by generating accumulated data for a total of 1 hour (before in FIG. 9) (Error in FIG. 9) is compared.
  • FIG. 9 when too much accumulated data is secured, overfitting occurs, resulting in an increase in error value, resulting in a decrease in accuracy and reliability.
  • the analysis unit automatically calculates the indirect correction amount in real time through machine learning using machine learning in the indirect correction amount calculation unit. Overfitting is automatically analyzed in real time, and if overfitting occurs as a result of the analysis, a machine learning model different from the machine learning model selected in the indirect correction calculation unit is selected, and the indirect correction calculation unit automatically recalculates the indirect correction amount in real time. Calculate and transfer the recalculated indirect correction amount to the final correction amount calculator.
  • the overfitting problem is primarily caused by storing data for up to 30 minutes in machine learning data at intervals of 10 seconds from the moment the processing unit operates according to the control of the control unit, the confirmation result of the confirmation unit, and the judgment result of the judgment unit.
  • processing precision and correction accuracy and reliability by performing correction in real time by minimizing the occurrence of time delay with the actual thermal displacement occurrence by reflecting the existing non-reflected part by preventing secondary recalibration through the analysis unit. can maximize
  • the final correction amount is calculated quickly, accurately, and in real time by adding the direct correction amount and the indirect correction amount calculated by the final correction amount calculation unit of the operation unit.
  • the final correction amount is transmitted to the correction unit, and the correction unit transmits it to the control unit again, and the control unit corrects the machining origin by the transmitted final correction amount and performs processing of the workpiece through compensation according to the thermal displacement of the machine tool.
  • an indirect correction amount is calculated by machine learning by machine learning with long short term memory (LSTM) with 360 accumulated data for a total of 20 hours (Hour), and then the final correction amount is performed (FIG. 7 In Lstm), it can be seen that the error value (error in FIG. 7) converges and the final correction amount is easily corrected as compared to the case where correction is not performed (before in FIG. 7) as time elapses.
  • LSTM long short term memory
  • the indirect correction amount is calculated by machine learning by machine learning with Multilayer Perceptrons (MLP), and then the final correction amount is performed (in FIG. 8, MLP), it can be seen that the error value (error in FIG. 8) converges and the final correction amount is easily corrected as compared to the case where correction is not performed (before in FIG. 8) as time elapses.
  • MLP Multilayer Perceptrons
  • the direct correction amount is directly calculated in the same way as the existing method, and the indirect correction amount is calculated in real time through machine learning regardless of the machine learning model. If the final correction amount is automatically calculated and quickly calculated, the time delay and the conventional time delay and While solving the accuracy and reliability problem, it calculates the final compensation amount quickly and precisely in a predictable state, corrects the machining origin, and processes the workpiece to improve machining precision, increase productivity, and promote convenience for users and operators. can
  • the final correction amount of the correction unit is automatically corrected (part G in FIG. 10), the error value is corrected close to 0, and the corrected final correction amount is transmitted to the control unit, and processing is performed with thermal displacement correction with the corrected final correction amount. carry out Accordingly, it is possible to maximize the processing precision by improving the accuracy and reliability of the final correction amount.
  • the apparatus and method for compensating for thermal displacement of a machine tool perform processing including at least one of milling, turning, composite, and designated processing, and for this purpose, various shaft systems are provided and complex processing is performed.
  • the thermal displacement compensator calculates the amount of correction through direct calculation through direct factor, which is the temperature according to the thermal displacement of the structural part sensed by the temperature sensor in the thermal displacement compensator, and the temperature according to the thermal displacement of the structural part.
  • direct factors such as, indirect factors such as spindle RPM, motor load, feed shaft load, and feed shaft speed, which change in real time
  • direct factors such as spindle RPM, motor load, feed shaft load, and feed shaft speed
  • the direct correction amount and the indirect correction amount determine the structure of the structure.
  • the final correction amount due to thermal displacement is automatically calculated in real time and reflected immediately to process the workpiece.
  • time delay due to temperature deformation of existing structures and time delay due to the number and location of temperature sensors installed are prevented, and simply More accurate and reliable than inaccurate correction temperature estimation performed through machine learning.
  • the final correction value for the correction of the processing origin by the thermal displacement of the structure is automatically calculated in real time, and the final correction amount is automatically reflected to process the workpiece. It can improve processing precision and productivity, prevent unnecessary defective products, conserve resources, and increase user and operator convenience.
  • the embodiments according to the present invention described above may be implemented in the form of program instructions that can be executed through various computer components and recorded on a computer-readable recording medium.
  • the computer readable recording medium may include program instructions, data files, data structures, etc. alone or in combination.
  • Program instructions recorded on the computer-readable recording medium may be specially designed and configured for the present invention, or may be known and usable to those skilled in the art of computer software.
  • Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks and magnetic tapes, optical recording media such as CD-ROMs and DVDs, and magneto-optical media such as floptical disks. medium), and hardware devices specially configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like.
  • Examples of program instructions include high-level language codes that can be executed by a computer using an interpreter or the like as well as machine language codes generated by a compiler.
  • a hardware device may be modified with one or more software modules to perform processing according to the present invention and vice versa

Abstract

The present invention relates to a machine tool thermal displacement compensation device and compensation method comprising: using a temperature sensor so as to calculate a direct compensation amount through direct calculation; calculating an indirect compensation amount through machine learning with respect to indirect factors, so as to calculate a final compensation amount through a non-reflected portion, unlike a conventional method, by means of the direct compensation amount and the indirect compensation amount, thereby automatically calculating a compensation amount in real time according to the thermal displacement of a structure unit; and immediately reflecting the calculated compensation amount so that a workpiece can be machined.

Description

공작기계의 열변위 보정 장치 및 보정 방법Thermal displacement compensating device and compensating method for machine tools
본 발명은 공작기계의 열변위 보정 장치 및 보정 방법에 관한 것으로, 더욱 상세하게는 직접인자 및 직접인자 이외에 실시간으로 변화되는 간접인자를 머신러닝을 통해 기계학습하여 구조부의 열변위에 따른 보정량을 실시간으로 자동으로 산출하고 산출된 보정량을 즉각적으로 반영하여 공작물의 가공을 수행하는 공작기계의 열변위 보정 장치 및 보정 방법에 관한 것이다.The present invention relates to an apparatus and method for compensating for thermal displacement of a machine tool, and more particularly, by machine learning a direct factor and an indirect factor that changes in real time in addition to the direct factor through machine learning to determine a correction amount according to thermal displacement of a structural part in real time. An apparatus and method for compensating thermal displacement of a machine tool that automatically calculates and immediately reflects the calculated correction amount to process a workpiece.
일반적으로 공작기계라 함은 각종 절삭 가공방법 또는 비절삭 가공방법으로 금속/비금속의 공작물을 적당한 공구를 이용하여 원하는 형상 및 치수로 가공할 목적으로 사용하는 기계를 말한다.In general, a machine tool refers to a machine used for the purpose of processing a metal/non-metal workpiece into a desired shape and dimension using an appropriate tool by various cutting processing methods or non-cutting processing methods.
터닝센터, 수직/수평 머시닝센터, 문형머시닝센터, 스위스 턴, 방전 가공기, 수평형 NC 보링머신, CNC 선반 등을 비롯한 다양한 종류의 공작기계는 다양한 산업 현장에서 해당 작업의 용도에 맞게 널리 사용되고 있다.Various types of machine tools, including turning centers, vertical/horizontal machining centers, door type machining centers, Swiss turns, electrical discharge machines, horizontal NC boring machines, and CNC lathes, are widely used in various industrial fields to suit the purpose of the work.
또한, 공작기계는 공작물인 소재가 안착되고 공작물 가공을 위해 이송하는 테이블, 가공전 공작물을 준비하는 팔렛트, 공구 또는 공작물이 결합되어 회전하는 주축, 공작물 등을 가공중에 지지하기 위한 심압대, 방진구 등을 구비한다. In addition, the machine tool has a table on which the material, which is a workpiece, is seated and transported for processing, a pallet for preparing the workpiece before processing, a spindle that rotates with a tool or workpiece combined, a tailstock for supporting the workpiece, etc. provide etc.
일반적으로 공작기계에서 테이블, 공구대, 주축, 심압대, 방진구 등은 다양한 가공을 수행하기 위해 이송축을 따라 이송하는 이송유닛을 구비한다.In general, in a machine tool, a table, a tool post, a main shaft, a tailstock, a resting ball, etc. are provided with a feed unit that feeds along a feed axis to perform various machining operations.
또한, 일반적으로 공작기계는 다양한 가공을 위하여 다수의 공구를 사용하게 되며, 다수의 공구를 수납보관하고 있는 공구 보관장소의 형태로 공구 매거진이나 터렛이 사용된다. Also, in general, machine tools use a plurality of tools for various processing, and a tool magazine or a turret is used as a tool storage space for storing and storing a plurality of tools.
이러한 공작기계는 다양한 가공을 위하여 다수의 공구를 사용하게 되며, 다수의 공구를 수납보관하고 있는 툴 보관장소의 형태로 공구 매거진이 사용된다.These machine tools use a plurality of tools for various processing, and a tool magazine is used in the form of a tool storage area for storing and storing a plurality of tools.
또한, 일반적으로 공작기계는 공작기계의 생산성을 향상시키기 위해 수치제어부의 지령에 의해 특정한 공구를 공구 매거진으로부터 인출하거나 다시 수납하기 위한 자동공구교환장치(ATC, Automatic Tool Changer)를 구비한다.Also, in general, a machine tool includes an automatic tool changer (ATC) for withdrawing or re-accommodating a specific tool from a tool magazine according to a command of a numerical controller to improve productivity of the machine tool.
또한, 일반적으로 공작기계는 비가공 시간을 최소화하기 위해, 자동팔레트교환장치(APC, Automatic Palette Changer)를 구비한다. 자동팔레트교환장치(APC)는 팔레트를 공작물 가공 영역과 공작물 설치 영역 간에 자동으로 교환한다. 팔레트에는 공작물이 탑재될 수 있다.In addition, in general, machine tools are provided with an automatic pallet changer (APC) to minimize non-processing time. An Automatic Pallet Changer (APC) automatically exchanges pallets between the workpiece processing area and the workpiece installation area. A workpiece may be mounted on the pallet.
일반적으로 현재 사용되고 있는 다양한 종류의 공작기계는 수치제어(numerical control, NC)가 급속히 진행되고 있다.In general, numerical control (NC) is rapidly progressing in various types of machine tools currently being used.
최근에는 수치제어(NC)가 탑재된 컴퓨터를 이용하여 공작기계를 자동으로 제어함에 따라 수치제어(NC)를 한층 더 발전시킨 컴퓨터 수치제어(CNC, computerized numerical control) 기술이 적용된 공작기계가 급속도로 보급되고 있는 추세이다.Recently, as machine tools are automatically controlled using a computer equipped with numerical control (NC), machine tools applied with computerized numerical control (CNC) technology, which further develops numerical control (NC), are rapidly increasing. It is a trend that is spreading.
수치제어(NC) 또는 컴퓨터 수치제어(CNC) 공작기계는 조작반을 구비하고 있다. 이러한 조작반은 다양한 기능스위치 또는 버튼과 모니터를 구비한다.A numerically controlled (NC) or computer numerically controlled (CNC) machine tool has an operating panel. Such a control panel has various function switches or buttons and a monitor.
일반적인 컴퓨터와 달리, 특수한 목적을 가지고 있는 수많은 가전제품이나 공작기계는 주어진 작업을 수행하는 임베디드 시스템 또는 엣지 디바이스가 내장되어 있다.Unlike general computers, many home appliances or machine tools with special purposes have built-in embedded systems or edge devices that perform given tasks.
최근의 공작기계는 CNC(Computer Numerical Control)라는 수치제어 시스템을 장작하고 있으며, 이러한 CNC는 공작기계의 운전을 원하는 형태로 다양하게 제어할 수 있다.Recent machine tools are equipped with a numerical control system called CNC (Computer Numerical Control), and such CNC can control the operation of the machine tool in a desired form in various ways.
일반적으로 터닝센터라 함은 자동공구교환장치 등을 구비하고, 여러 종류의 공구를 교환하여 다양한 가공을 수행하는 공작기계를 말하는 것으로 크게 주축이 수직으로 장착되어 있는 수직형(vertical) 터닝센터와 수평형(horizontal) 터닝센터로 나누어진다.In general, a turning center refers to a machine tool equipped with an automatic tool changer and performing various machining by exchanging various types of tools. It is divided into horizontal turning centers.
일반적으로 머시닝센터(machining center)라 함은 자동공구교환장치 등을 구비하고, 여러 종류의 공구를 교환하여 선반, 밀링, 드릴링, 보링머신 등에서 할 수 있는 광범위한 가공을 수행하는 공작기계를 말하는 것으로 크게 주축이 수직으로 장착되어 있는 수직형(vertical) 머시닝센터와 수평형(horizontal) 머시닝센터로 나누어진다.In general, a machining center refers to a machine tool that is equipped with an automatic tool changer and exchanges various types of tools to perform a wide range of machining that can be performed on a lathe, milling, drilling, boring machine, etc. It is divided into a vertical machining center and a horizontal machining center in which the main axis is mounted vertically.
일반적으로 터닝센터와 머시닝센터와 같은 공작기계는 가공 정밀도를 향상하고, 안전사고를 방지하기 위해 태핑(tapping), 드릴링(drilling), 보링, 절삭과 같이 가공시에는 분당 수백 밀리미터(mm)의 저속으로 절삭이동속도로 이동하면서 가공을 수행한다. 이와 달리 터닝센터와 머시닝센터와 같은 공작기계는 가공을 수행하지 않는 비가공시에는 분당 수십 미터(m)의 최고속도로 신속하게 급속이동하여 가공시간을 단축하여 전체적인 사이클 타임을 감소하여 생산성을 극대화하고, 생산비용을 감소시킨다.In general, machine tools such as turning centers and machining centers operate at low speeds of hundreds of millimeters per minute (mm) during processing such as tapping, drilling, boring, and cutting to improve machining precision and prevent safety accidents. It performs machining while moving at the cutting speed. On the other hand, machine tools such as turning centers and machining centers rapidly move at the maximum speed of several tens of meters per minute (m) during non-processing, thereby shortening the machining time and maximizing productivity by reducing the overall cycle time, reduce production costs.
그러나, 종래 터닝센터와 머시닝센터와 같은 공작기계는 공작물의 가공 과정에서 발생된 열에 의해 열변위가 발생하여 공작물의 가공 치수가 변경될 수 있다.However, in conventional machine tools such as turning centers and machining centers, thermal displacement may occur due to heat generated in the process of processing a workpiece, so that the processing dimensions of the workpiece may be changed.
이에 따라, 종래 터닝센터와 머시닝센터와 같은 공작기계의 열변위 보정 장치 및 보정 방법은 온도 센서로 열변위에 따른 보정량을 직접 산출하여 보정을 수행하거나 프로그램 등을 통해 보정값을 간접적으로 산출하여 보정을 수행하였다.Accordingly, conventional thermal displacement compensating devices and correction methods of machine tools such as turning centers and machining centers perform correction by directly calculating the correction amount according to thermal displacement with a temperature sensor or by indirectly calculating the correction value through a program, etc. performed.
그러나, 이와 같은 온도센서만으로 열변위 보정량을 직접 산출하는 경우에는 온도센서의 부착개수에 따라 정밀도가 변화되며, 온도 센서를 복수개로 설치해야 함에 따라 설치비용이 증가하고, 다수의 복수개의 온도센서에서 측정된 온도에 따라 보정값을 산출함에 따라 절차가 복잡하고 시간지연이 발생하며, 온도센서가 설치되지 않은 구조물에서의 온도변화가 반영되지 않아 정확성이 감소하고, 장비의 소형화를 도모할 수 없는 문제점이 있었다.However, in the case of directly calculating the thermal displacement correction amount with only such a temperature sensor, the precision changes according to the number of attachments of the temperature sensor, and the installation cost increases as a plurality of temperature sensors must be installed. As the correction value is calculated according to the measured temperature, the procedure is complicated and time delay occurs, the temperature change is not reflected in the structure where the temperature sensor is not installed, so the accuracy is reduced, and the miniaturization of the equipment cannot be promoted. there was
또한, 종래 공작기계의 열변위 보정 장치 및 보정 방법에서 온도센서만으로 보정을 수행하는 경우에는 온도센서로부터 수신된 구조물의 온도변화는 실시간 온도변화가 아닌 이미 구조물에서 온도변환에 따라 열변위가 발생한 과거의 온도를 측정하는 것으로 후행적인 보정을 통해 정밀하고 정확하며 실시간 열변위에 대한 보정을 수행할 수 없어 정확성과 신뢰성이 감소하는 문제점이 있었다.In addition, in the case of performing correction only with a temperature sensor in the conventional thermal displacement compensation device and correction method of a machine tool, the temperature change of the structure received from the temperature sensor is not a real-time temperature change, but a past where thermal displacement has already occurred according to the temperature conversion in the structure. There was a problem in that accuracy and reliability decreased because it was not possible to perform precise, accurate and real-time correction for thermal displacement through post-correction by measuring the temperature of the temperature.
더욱이, 프로그램 등을 통해 보정값을 간접적으로 산출하는 경우에도 공작기계가 기존과 동일하게 단순한 구조의 가공만을 수행하는 경우에 정확성이 어느 정도 담보되나, 밀링, 선삭, 복합 가공을 수행하고, 이를 위해 다양한 축계를 구비하고 복합 가공을 수행하기 위한 복잡한 터닝센터나 머시닝센터와 같은 공작기계의 경우에는 간접적으로 보정량을 산출하는 것이 거의 불가능하거나 산출하는 경우에도 프로그램과 모델에 따라 정확도와 정밀도가 감소하여 신뢰성과 안정성이 감소되고, 별도의 프로그램이나 장비를 설치해야 함에 따라 많은 비용과 시간이 소모되고, 사용자의 불편을 초래하는 문제점이 있었다.Moreover, even when the compensation value is indirectly calculated through a program, etc., accuracy is guaranteed to some extent when the machine tool performs only simple structural processing as before, but milling, turning, and complex processing are performed. In the case of machine tools such as complex turning centers or machining centers equipped with various axis systems to perform complex machining, it is almost impossible to calculate the compensation amount indirectly, or even when calculated, accuracy and precision decrease depending on the program and model, resulting in reliability and reliability. and stability are reduced, and a lot of cost and time are consumed due to the need to install a separate program or equipment, and there are problems that cause user inconvenience.
이에 따라, 밀링, 선삭, 복합 가공을 수행하고, 이를 위해 다양한 축계를 구비하고 복합 가공을 수행하기 위한 복잡한 터닝센터나 머시닝센터와 같은 공작기계에서 온도 센서를 이용하여 구조물의 열발생에 따른 열변위를 직접인자를 통해 1차적으로 직접 보정량을 산출하고 온도 센서 이외의 공작물의 가공상태나 공정모드에 따른 간접인자를 통해 2차적으로 간접 보정량을 머신러닝에 따른 기계학습을 통해 실시간으로 정확하게 산출하고, 산출된 직접 보정량과 간접 보정량을 기초로 최종 보정량을 산출하고 공작물의 가공에 즉각적으로 반영하여 가공을 수행함에 따라 기존의 미반영 부분을 반영하여 시간 지연 발생을 최소화하고, 정확도와 신뢰성을 극대화하고, 설치비용과 유지비용을 감소하고, 사용자의 편의성과 만족도를 향상할 수 있는 공작기계의 열변위 보정 장치 및 보정 방법의 개발이 시급한 실정이다.Accordingly, thermal displacement due to heat generation of the structure is performed by using a temperature sensor in a machine tool such as a complex turning center or machining center for performing milling, turning, and complex processing, equipped with various shaft systems for this purpose, and performing complex processing. Calculate the direct correction amount firstly through direct factors, and secondarily calculate the indirect correction amounts accurately in real time through machine learning based on machine learning through indirect factors according to the processing state or process mode of the workpiece other than the temperature sensor, The final correction amount is calculated based on the calculated direct correction amount and indirect correction amount, and immediately reflected in the processing of the workpiece to minimize time delay by reflecting the existing non-reflected part, maximize accuracy and reliability, and install There is an urgent need to develop a thermal displacement compensating device and compensating method for machine tools capable of reducing costs and maintenance costs and improving user convenience and satisfaction.
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 본 발명의 목적은 온도 센서를 활용하여 직접 보정량을 직접 계산 방식을 통해 산출하고, 간접인자를 머신러닝에 의한 기계학습을 통해 간접 보정량을 산출하여 직접 보정량과 간접 보정량에 의해 기존과 달리 미반영된 부분에 의한 최종 보정량을 산출하여 구조부의 열변위에 따른 보정량을 실시간으로 자동으로 산출하고 산출된 보정량을 즉각적으로 반영하여 공작물의 가공을 수행할 수 있는 공작기계의 열변위 보정 장치 및 보정 방법에 관한 것이다.The present invention is to solve the above problems, and an object of the present invention is to calculate a direct correction amount through a direct calculation method using a temperature sensor, and calculate an indirect correction amount through machine learning by machine learning for an indirect factor. By calculating the final correction amount by the non-reflected part differently from the conventional method by the direct correction amount and the indirect correction amount, the correction amount according to the thermal displacement of the structure is automatically calculated in real time, and the calculated correction amount is immediately reflected to process the workpiece. It relates to a thermal displacement compensating device and a compensating method of a machine.
보다 상세하게는 밀링, 선삭, 복합, 또는 지정 가공 중 적어도 1개 이상을 포함하여 수행하고, 이를 위해 다양한 축계를 구비하고 복합 가공을 수행하기 위한 복잡한 터닝센터나 머시닝센터와 같은 공작기계에서 열변위 보정부에서 온도 센서에서 센싱된 구조부의 온도인 직접인자를 통해 직접 보정량을 직접 계산을 통해 산출하고, 구조부의 온도와 같은 직접인자 이외에 실시간으로 변화되는 스핀들 RPM, 모터 부하, 이송축 부하, 이송축 속도와 같은 간접인자를 머신러닝을 통해 기계학습하여 간접 보정량을 산출하고, 최종적으로 직접 보정량과 간접 보정량으로 구조물의 열변위에 의한 최종 보정량을 자동으로 실시간으로 산출하고 이를 즉각적으로 반영하여 공작물의 가공을 수행함에 따라 기존 구조물 온도변형에 의한 시간지연과 온도센서의 설치 개수와 설치위치에 의한 시간지연을 방지하고, 단순히 머신러닝을 통해 수행하는 부정확한 보정 온도 추정보다 정확하고 신뢰성 있는 구조물의 열변위에 의한 가공원점 보정을 위한 최종 보정값을 실시간으로 자동으로 산출할 수 있는 공작기계의 열변위 보정 장치 및 보정 방법에 관한 것이다.More specifically, thermal displacement in a machine tool such as a complex turning center or machining center that includes at least one of milling, turning, composite, or designated machining, and has various axis systems for this purpose and performs composite machining. In the correction unit, the correction amount is directly calculated through a direct factor, which is the temperature of the structure sensed by the temperature sensor, and in addition to direct factors such as the temperature of the structure, the spindle RPM, motor load, feed shaft load, and feed axis are changed in real time. The indirect correction amount is calculated by machine learning indirect factors such as speed through machine learning, and finally, the final correction amount due to the thermal displacement of the structure is calculated automatically in real time with the direct correction amount and the indirect correction amount, and it is reflected immediately to improve the processing of the workpiece. As a result, time delay due to temperature deformation of existing structures and time delay due to the number and location of temperature sensors installed are prevented, and thermal displacement of structures that is more accurate and reliable than inaccurate corrected temperature estimation simply performed through machine learning. It relates to a thermal displacement compensating device and compensating method of a machine tool capable of automatically calculating a final compensating value for correcting a machining origin in real time.
또한, 본 발명은 간접인자에 의한 간접 보정량을 과적합이 발생하지 않도록 기계학습을 위한 축적데이터를 일정 시간 보관하여 관리하고, 필요에 따라 별도로 공작기계에 탑재되는 엣지 디바이스 형태로 제조되어 장비의 호환성을 통해 간편하고 신속하게 기존 공작기계에 설치되어 공작기계의 소형화를 도모하고 공간활용도를 감소시키며, 실시간(real time)으로 정확하고 정밀하게 산출하여 가공정밀도를 향상하고, 생산성을 증대시키며, 공작기계나 공작물의 손상이나 파손에 따른 유지보수 비용과 시간을 감소하고, 소비자의 만족도를 증대시킬 수 있는 머신러닝을 통한 기계학습 기반의 공작기계의 열변위 보정 장치 및 보정 방법을 제공하는 것이다.In addition, the present invention stores and manages accumulated data for machine learning for a certain period of time to prevent overfitting of the amount of indirect correction by indirect factors, and is manufactured in the form of an edge device mounted on a machine tool separately as needed to improve compatibility of equipment It is easily and quickly installed on existing machine tools to promote miniaturization of machine tools, reduce space utilization, improve processing precision by calculating accurately and precisely in real time, increase productivity, and To provide a machine learning-based thermal displacement compensation device and compensation method for machine tools through machine learning that can reduce maintenance costs and time due to damage or breakage of workpieces and increase customer satisfaction.
다만, 본 발명 및 본 발명의 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다. However, the technical problems to be achieved by the present invention and the embodiments of the present invention are not limited to the technical problems described above, and other technical problems may exist.
본 발명의 목적을 달성하기 위해 본 발명에 의한 공작기계의 열변위 보정 장치는 공작물의 가공시에 열변위를 보정하기 위한 공작기계의 열변위 보정 장치에 있어서, 상기 공작물 가공을 위해 상기 공작물과 공구를 상대이동시킬 수 있는 구조물이 설치되는 구조부; 상기 구조부의 온도를 측정하는 센싱부; 직접인자 및 상기 직접인자 이외에 실시간으로 변화되는 간접인자를 머신러닝을 통해 기계학습하여 상기 구조부의 열변위에 따른 보정량을 실시간으로 자동으로 산출하는 열변위 보정부; 및 상기 열변위 보정부에서 산출된 보정량을 즉각적으로 반영하여 상기 공작물의 가공을 수행하는 제어부;를 포함할 수 있다.In order to achieve the object of the present invention, a thermal displacement compensating device for a machine tool according to the present invention is a thermal displacement compensating device for a machine tool for compensating thermal displacement during processing of a workpiece, wherein the workpiece and a tool are provided for processing the workpiece. a structure in which a structure capable of relative movement is installed; a sensing unit to measure the temperature of the structural unit; A thermal displacement correcting unit that automatically calculates a correction amount according to the thermal displacement of the structure unit in real time by machine learning through machine learning a direct factor and an indirect factor that changes in real time in addition to the direct factor; and a control unit that immediately reflects the correction amount calculated by the thermal displacement compensating unit and performs processing of the workpiece.
또한, 본 발명에 의한 공작기계의 열변위 보정 장치의 바람직한 다른 실시예에서, 공작기계의 열변위 보정 장치의 상기 직접인자는 상기 센싱부에서 측정된 상기 구조부의 온도이고, 상기 간접인자는 상기 공작물의 가공과정에서 실시간으로 변화하는 가공상태와 공정모드일 수 있다.In addition, in another preferred embodiment of the thermal displacement compensation device for a machine tool according to the present invention, the direct factor of the thermal displacement compensation device for a machine tool is the temperature of the structure measured by the sensing unit, and the indirect factor is the temperature of the workpiece It may be a processing state and a process mode that change in real time during the processing of the process.
또한, 본 발명에 의한 공작기계의 열변위 보정 장치의 바람직한 다른 실시예에서, 공작기계의 열변위 보정 장치의 상기 공정모드는 상기 공작물의 선삭 가공만을 수행하는 선삭모드; 상기 공작물의 밀링 가공만을 수행하는 밀링모드; 상기 공작물의 선삭 가공과 밀링 가공을 모두 수행하는 복합모드; 또는 사용자의 지정에 따라 상기 공작물에 대해 선택적 가공을 수행하는 지정모드; 중 적어도 어느 하나 이상을 포함할 수 있다.In addition, in another preferred embodiment of the thermal displacement compensation device for a machine tool according to the present invention, the process mode of the thermal displacement compensation device for a machine tool includes a turning mode for performing only turning of the workpiece; a milling mode in which only milling of the workpiece is performed; a combined mode for performing both turning and milling of the workpiece; or a designation mode for performing selective processing on the workpiece according to a user's designation; It may include at least any one or more of them.
또한, 본 발명에 의한 공작기계의 열변위 보정 장치의 바람직한 다른 실시예에서, 공작기계의 열변위 보정 장치의 상기 구조부는 밀링스핀들, 터렛, 및 스핀들을 구비하고 상기 공작물을 직접 가공하는 가공부; 상기 가공부를 이송시키는 이송부; 및 상기 가공부와 상기 이송부가 이동 가능하도록 설치되는 지지부;를 포함할 수 있다.In addition, in another preferred embodiment of the thermal displacement compensation device for a machine tool according to the present invention, the structural part of the thermal displacement compensation device for a machine tool includes a milling spindle, a turret, and a processing unit having a spindle and directly processing the workpiece; a transfer unit for transferring the processing unit; and a support portion installed so that the processing portion and the transfer portion are movable.
또한, 본 발명에 의한 공작기계의 열변위 보정 장치의 바람직한 다른 실시예에서, 공작기계의 열변위 보정 장치의 상기 간접인자는 상기 공작물의 가공상태와 공정모드에 의한 가공부RPM, 가공부 모터 부하, 이송부의 이송 속도, 이송부의 모터 부하의 변화일 수 있다.In addition, in another preferred embodiment of the thermal displacement compensation device for a machine tool according to the present invention, the indirect factor of the thermal displacement compensation device for a machine tool is the machining part RPM and the machining part motor load according to the processing state and process mode of the workpiece , the conveying speed of the conveying part, and the change in motor load of the conveying part.
또한, 본 발명에 의한 공작기계의 열변위 보정 장치의 바람직한 다른 실시예에서, 공작기계의 열변위 보정 장치의 상기 센싱부는 상기 가공부, 상기 이송부, 또는 상기 지지부 중 적어도 어느 하나에 설치될 수 있다.In addition, in another preferred embodiment of the thermal displacement compensation device for a machine tool according to the present invention, the sensing unit of the thermal displacement compensation device for a machine tool may be installed in at least one of the processing unit, the transfer unit, and the support unit. .
또한, 본 발명에 의한 공작기계의 열변위 보정 장치의 바람직한 다른 실시예에서, 공작기계의 열변위 보정 장치의 상기 제어부는 상기 공작물의 가공을 수행하기 위한 가공프로그램, 구동프로그램, 및 공정모드에 대한 정보를 저장하는 메모리부; 상기 메모리부에 저장된 정보와 상기 열변위 보정부로부터 수신된 보정량에 따라 상기 공작물의 가공을 수행하는 처리부; 상기 처리부에 의해 작동하는 상기 가공부와 상기 이송부의 운전정보를 수집하는 정보수집부; 및 상기 정보수집부에서 수집된 운전정보를 상기 열변위 보정부에 전송하거나 상기 열변위 보정부에서 산출된 보정량을 수신하는 송수신부;를 포함할 수 있다.In addition, in another preferred embodiment of the thermal displacement compensating device for a machine tool according to the present invention, the control unit of the thermal displacement compensating device for a machine tool controls a processing program, a driving program, and a process mode for processing the workpiece. a memory unit for storing information; a processing unit configured to process the workpiece according to the information stored in the memory unit and the correction amount received from the thermal displacement correcting unit; an information collection unit that collects operation information of the processing unit and the transfer unit operated by the processing unit; and a transmission/reception unit configured to transmit the driving information collected by the information collection unit to the thermal displacement correcting unit or to receive the correction amount calculated by the thermal displacement correcting unit.
또한, 본 발명에 의한 공작기계의 열변위 보정 장치의 바람직한 다른 실시예에서, 공작기계의 열변위 보정 장치의 상기 제어부는 상기 메모리부, 상기 처리부의 처리정보, 상기 정보수집부에 수집된 운전정보, 및 상기 송수신부를 통해 송수신된 정보를 표시하는 표시부;를 더 포함할 수 있다.In addition, in another preferred embodiment of the thermal displacement compensation device for a machine tool according to the present invention, the control unit of the thermal displacement compensation device for a machine tool includes the memory unit, the processing information of the processing unit, and the operation information collected by the information collection unit. , and a display unit for displaying information transmitted and received through the transceiver.
또한, 본 발명에 의한 공작기계의 열변위 보정 장치의 바람직한 다른 실시예에서, 공작기계의 열변위 보정 장치의 상기 열변위 보정부는 상기 직접인자 및 상기 간접인자를 머신러닝을 통해 기계학습하여 상기 구조부의 열변위에 따른 보정량을 실시간으로 자동으로 산출하기 위한 정보를 저장하는 데이터베이스부; 상기 데이터베이스부에 저장된 정보와 상기 제어부로부터 수신된 처리정보와 운전정보에 따라 상기 가공부에서의 가공 시작여부를 확인하는 확인부; 상기 확인부의 확인결과에 따라 상기 가공부에서 가공이 시작된 경우 상기 공작물의 가공상태와 공정모드를 판단하는 판단부; 상기 데이터베이스부에 저장된 정보, 상기 제어부로부터 수신된 처리정보와 운전정보, 상기 확인부의 확인결과, 및 상기 판단부의 판단결과에 따라 상기 구조부의 열변위에 따른 최종 보정량을 연산하는 연산부; 및 상기 데이터베이스부에 저장된 정보와 상기 연산부에서 연산된 최종 보정량을 상기 제어부로 전송하는 보정부;를 포함할 수 있다.In addition, in another preferred embodiment of the thermal displacement compensating device for a machine tool according to the present invention, the thermal displacement compensating unit of the thermal displacement compensating device for a machine tool machine learns the direct factor and the indirect factor through machine learning to determine the structural part. A database unit for storing information for automatically calculating a correction amount according to thermal displacement of the in real time; a confirmation unit for confirming whether or not processing has started in the processing unit according to the information stored in the database unit and processing information and operation information received from the control unit; a determination unit for determining a processing state and a process mode of the workpiece when processing is started in the processing unit according to a confirmation result of the confirmation unit; a calculation unit for calculating a final correction amount according to the thermal displacement of the structure unit according to information stored in the database unit, processing information and operation information received from the control unit, a confirmation result of the confirmation unit, and a determination result of the determination unit; and a correction unit configured to transmit the information stored in the database unit and the final correction amount calculated by the operation unit to the control unit.
또한, 본 발명에 의한 공작기계의 열변위 보정 장치의 바람직한 다른 실시예에서, 공작기계의 열변위 보정 장치의 열변위 보정부의 상기 데이터베이스부는 직접계수, 직접 가중치, 및 스위칭에 대한 데이터를 저장하는 기본데이터 저장부; 상기 송수신부로부터 수신된 데이터를 저장하는 수신데이터 저장부; 머신러닝을 통해 기계학습을 수행하기 위한 기계학습 프로그램과 축적데이터를 저장하는 기계학습데이터 저장부; 및 상기 센싱부로부터 센싱된 데이터와 상기 공작물의 가공상태와 공정모드에 의한 가공부RPM, 가공부 모터 부하, 이송부의 이송 속도, 이송부의 모터 부하의 변화량을 실시간으로 저장하는 실시간데이터 저장부;를 포함할 수 있다.In addition, in another preferred embodiment of the thermal displacement compensation device for a machine tool according to the present invention, the database unit of the thermal displacement compensation unit of the thermal displacement compensation device for a machine tool stores data on direct coefficients, direct weights, and switching Basic data storage unit; a received data storage unit for storing the data received from the transceiver; a machine learning data storage unit for storing a machine learning program and accumulation data for performing machine learning through machine learning; And a real-time data storage unit for storing the data sensed by the sensing unit, the processing state of the workpiece, and the amount of change in processing RPM, motor load of the processing unit, feed speed of the transfer unit, and motor load of the transfer unit according to the process mode in real time. can include
또한, 본 발명에 의한 공작기계의 열변위 보정 장치의 바람직한 다른 실시예에서, 공작기계의 열변위 보정 장치의 열변위 보정부의 상기 연산부는 상기 확인부의 확인결과, 상기 판단부의 판단결과, 상기 기본데이터 저장부에 저장된 데이터와 상기 실시간데이터 저장부에 저장된 데이터와 상기 센싱부에서 측정된 상기 구조부의 온도에 따라 직접 보정량을 직접 계산하는 직접 보정량 계산부; 상기 확인부의 확인결과, 상기 판단부의 판단결과, 상기 기본데이터 저장부에 저장된 데이터, 상기 수신데이터 저장부에 저장된 데이터, 상기 실시간데이터 저장부에 저장된 데이터, 상기 기계학습데이터 저장부에 저장된 데이터, 및 가공부RPM, 가공부 모터 부하, 이송부의 이송 속도, 이송부의 모터 부하의 변화에 따라 머신러닝을 이용한 기계학습을 통해 간접 보정량을 실시간으로 자동으로 계산하는 간접 보정량 계산부; 및 상기 직접 보정량 계산부에서 계산된 직접 보정량과 상기 간접 보정량 계산부에서 계산된 간접 보정량에 따라 최종 보정량을 계산하는 최종 보정량 계산부;를 포함할 수 있다.In addition, in another preferred embodiment of the thermal displacement compensating device for a machine tool according to the present invention, the calculation unit of the thermal displacement compensating unit of the thermal displacement compensating device for a machine tool, the confirmation result of the confirmation unit, the determination result of the determination unit, the basic a direct correction amount calculator for directly calculating a correction amount according to the data stored in the data storage unit, the data stored in the real-time data storage unit, and the temperature of the structure measured by the sensing unit; The confirmation result of the confirmation unit, the determination result of the determination unit, data stored in the basic data storage unit, data stored in the received data storage unit, data stored in the real-time data storage unit, data stored in the machine learning data storage unit, and An indirect correction amount calculation unit that automatically calculates an indirect correction amount in real time through machine learning using machine learning according to changes in processing part RPM, processing part motor load, conveying speed of the conveying part, and motor load of the conveying part; and a final correction amount calculation unit that calculates a final correction amount according to the direct correction amount calculated by the direct correction amount calculation unit and the indirect correction amount calculated by the indirect correction amount calculation unit.
또한, 본 발명에 의한 공작기계의 열변위 보정 장치의 바람직한 다른 실시예에서, 공작기계의 열변위 보정 장치의 열변위 보정부의 상기 연산부는 상기 간접 보정량 계산부에서 머신러닝을 이용한 기계학습을 통해 간접 보정량을 실시간으로 자동으로 계산할 때에 상기 확인부의 확인결과와 상기 판단부의 판단결과에 따라 과적합 여부를 실시간으로 자동으로 분석하고, 분석결과 과적합이 발생한 경우 상기 간접 보정량 계산부에서 선택한 머신러닝 모델과 다른 머신러닝 모델을 선택하여 상기 간접 보정량 계산부가 실시간으로 자동으로 간접 보정량을 재계산하고 재계산된 간접 보정량을 상기 최종 보정량 계산부에 전달하는 분석부;를 더 포함할 수 있다.In addition, in another preferred embodiment of the thermal displacement compensating device for a machine tool according to the present invention, the calculation unit of the thermal displacement compensating unit of the thermal displacement compensating device for a machine tool performs machine learning using machine learning in the indirect correction amount calculation unit. When the indirect correction amount is automatically calculated in real time, whether or not overfitting is automatically analyzed in real time according to the confirmation result of the confirmation unit and the judgment result of the judgment unit, and if overfitting occurs as a result of the analysis, the machine learning model selected by the indirect correction amount calculation unit It may further include an analysis unit that selects a machine learning model different from the above, the indirect correction amount calculation unit automatically recalculates the indirect correction amount in real time, and transfers the recalculated indirect correction amount to the final correction amount calculation unit.
또한, 본 발명에 의한 공작기계의 열변위 보정 장치의 바람직한 다른 실시예에서, 공작기계의 열변위 보정 장치의 상기 열변위 보정부는 상기 보정부에서 최종 보정량을 상기 제어부에 전달하기 전에 상기 처리정보, 상기 운전정보, 상기 확인부의 확인결과, 상기 판단부의 판단결과, 및 상기 기계학습데이터 저장부에 저장된 데이터가 적어 과보정되는 경우 저역필터로 상기 보정부의 최종 보정량을 자동으로 수정하고 수정된 최종 보정량을 상기 제어부로 전송하는 수정부;를 더 포함할 수 있다.In addition, in another preferred embodiment of the thermal displacement compensating device for a machine tool according to the present invention, the thermal displacement compensating unit of the thermal displacement compensating device for a machine tool before transferring the final correction amount to the controller, the processing information, If the operation information, the confirmation result of the confirmation unit, the determination result of the determination unit, and the data stored in the machine learning data storage unit are overcorrected, the final correction amount of the correction unit is automatically corrected by a low-pass filter and the corrected final correction amount It may further include a correction unit for transmitting to the control unit.
또한, 본 발명에 의한 공작기계의 열변위 보정 장치의 바람직한 다른 실시예에서, 공작기계의 열변위 보정 장치의 상기 축적데이터는 상기 제어부의 제어와 상기 확인부의 확인결과 및 상기 판단부의 판단결과에 따라 상기 가공부가 작동하는 순간부터 10초 주기로 최대 30분까지의 데이터를 보관할 수 있다.In addition, in another preferred embodiment of the thermal displacement compensating device for a machine tool according to the present invention, the stored data of the thermal displacement compensating device for a machine tool is controlled by the control unit, the confirmation result of the confirmation unit, and the determination result of the determination unit. Data of up to 30 minutes can be stored at intervals of 10 seconds from the moment the processing unit operates.
또한, 본 발명에 의한 공작기계의 열변위 보정 장치의 바람직한 다른 실시예에서, 공작기계의 열변위 보정 장치의 상기 분석부에서 선택하는 머신러닝 모델은 신경망 알고리즘, LSTM, 또는 다층 퍼셉트론 중 적어도 어느 하나일 수 있다.In addition, in another preferred embodiment of the thermal displacement compensation device for a machine tool according to the present invention, the machine learning model selected in the analysis unit of the thermal displacement compensation device for a machine tool is at least one of a neural network algorithm, LSTM, or a multilayer perceptron can be
본 발명의 또 다른 목적을 달성하기 위해 본 발명에 의한 공작기계의 열변위 보정 방법은 직접인자 및 상기 직접인자 이외에 실시간으로 변화되는 간접인자를 머신러닝을 통해 기계학습하여 구조부의 열변위에 따른 보정량을 실시간으로 자동으로 산출하고 산출된 보정량을 즉각적으로 반영하여 공작물의 가공을 수행하기 위한 정보데이터를 저장하는 단계; 기 저장된 정보데이터와 제어부로부터 수신된 처리정보와 운전정보에 따라 상기 공작물의 가공 시작여부를 확인하는 단계; 확인 결과 가공이 시작된 경우 구조부의 온도를 측정하는 단계; 확인 결과 가공이 시작된 경우 처리정보, 운전정보, 가공정보, 및 온도정보를 수집하는 단계; 수집된 정보를 실시간데이터와 축적데이터로 저장하는 단계; 기 저장된 정보데이터, 실시간데이터, 축적데이터에 따라 현재의 상기 공작물의 가공상태와 공정모드를 판단하는 단계; 기 저장된 정보데이터와 판단결과에 따라 실시간으로 측정된 상기 구조부의 온도에 따라 직접 보정량을 직접 계산하는 단계; 기 저장된 정보데이터와 판단결과에 따라 상기 공작물의 가공과정에서 실시간으로 변화하는 가공상태와 공정모드의 다양한 변화에 따라 머신러닝을 이용한 기계학습을 통해 간접 보정량을 실시간으로 자동으로 계산하는 단계; 계산된 직접 보정량과 간접 보정량에 따라 최종 보정량을 자동으로 계산하는 단계; 및 계산된 최종 보정량에 따라 상기 공작물의 가공 원점을 보정하는 단계;를 포함할 수 있다.In order to achieve another object of the present invention, a method for correcting thermal displacement of a machine tool according to the present invention calculates a correction amount according to thermal displacement of a structural part by machine learning a direct factor and an indirect factor that changes in real time in addition to the direct factor through machine learning. automatically calculating in real time and immediately reflecting the calculated correction amount to store information data for performing processing of a workpiece; Checking whether or not processing of the workpiece has started according to pre-stored information data and processing information and operation information received from the control unit; Measuring the temperature of the structural part when processing is started as a result of the confirmation; Collecting processing information, operation information, processing information, and temperature information when processing is started as a result of the confirmation; Storing the collected information as real-time data and accumulated data; determining a current processing state and process mode of the workpiece according to pre-stored information data, real-time data, and accumulated data; Directly calculating a correction amount according to the temperature of the structure measured in real time according to pre-stored information data and a judgment result; Automatically calculating an indirect correction amount in real time through machine learning using machine learning according to various changes in processing conditions and process modes that change in real time in the processing process of the workpiece according to pre-stored information data and judgment results; automatically calculating a final correction amount according to the calculated direct correction amount and indirect correction amount; and correcting the processing origin of the workpiece according to the calculated final correction amount.
또한, 본 발명에 의한 공작기계의 열변위 보정 방법의 바람직한 다른 실시예에서, 공작기계의 열변위 보정 방법은 상기 간접 보정량을 계산하는 단계 이후에, 머신러닝을 이용한 기계학습을 통해 간접 조정량을 실시간으로 자동으로 계산할 때에 상기 확인결과와 상기 판단결과에 따라 과적합 여부를 실시간으로 자동으로 분석하고, 분석결과 과적합이 발생한 경우 상기 간접 보정량 계산시에 선택한 머신러닝 모델과 다른 머신러닝 모델을 선택하여 상기 간접 보정량을 실시간으로 자동으로 재계산하고 재계산된 간접 보정량에 따라 최종 보정량을 계산하는 단계;를 더 포함할 수 있다.In addition, in another preferred embodiment of the method for correcting thermal displacement of a machine tool according to the present invention, the method for correcting thermal displacement of a machine tool calculates an indirect adjustment amount through machine learning using machine learning after the step of calculating the indirect correction amount. When calculating automatically in real time, whether overfitting is automatically analyzed in real time according to the confirmation result and the judgment result, and if overfitting occurs as a result of the analysis, select a machine learning model different from the machine learning model selected when calculating the indirect correction amount The method may further include automatically recalculating the indirect correction amount in real time and calculating a final correction amount according to the recalculated indirect correction amount.
또한, 본 발명에 의한 공작기계의 열변위 보정 방법의 바람직한 다른 실시예에서, 공작기계의 열변위 보정 방법은 상기 보정 단계 이후에, 계산된 최종 보정량을 제어부에 전달하기 전에 상기 처리정보, 상기 운전정보, 상기 확인결과, 상기 판단결과, 및 상기 축적데이터가 적어 과보정되는 경우 저역필터로 상기 최종 보정량을 자동으로 수정하고 수정된 최종 보정량에 따라 상기 공작물의 가공 원점을 수정하는 단계;를 더 포함할 수 있다.In addition, in another preferred embodiment of the method for compensating thermal displacement of a machine tool according to the present invention, the method for compensating thermal displacement of a machine tool after the correction step, before transferring the calculated final correction amount to the control unit, the processing information, the operation Further comprising a step of automatically correcting the final correction amount with a low-pass filter and correcting the machining origin of the workpiece according to the corrected final correction amount when the information, the confirmation result, the judgment result, and the accumulated data are overcorrected due to a small amount. can do.
또한, 본 발명에 의한 공작기계의 열변위 보정 방법의 바람직한 다른 실시예에서, 공작기계의 열변위 보정 방법에서 상기 직접인자는 센싱부에서 측정된 상기 구조부의 온도이고, 상기 간접인자는 상기 공작물의 가공과정에서 실시간으로 변화하는 상기 공작물의 가공상태와 공정모드에 의한 가공부RPM, 가공부 모터 부하, 이송부의 이송 속도, 이송부의 모터 부하의 변화일 수 있다.In addition, in another preferred embodiment of the method for compensating thermal displacement of a machine tool according to the present invention, in the method for compensating thermal displacement of a machine tool, the direct factor is the temperature of the structure measured by the sensing unit, and the indirect factor is the temperature of the workpiece. It may be a change in the processing state of the workpiece and the process mode, which change in real time during the machining process, in the processing part RPM, the processing part motor load, the conveying speed of the conveying part, and the change in the motor load of the conveying part.
본 발명에 의한 공작기계의 열변위 보정 장치 및 보정 방법은 밀링, 선삭, 복합, 또는 지정 가공 중 적어도 1개 이상을 포함하여 가공을 수행하고, 이를 위해 다양한 축계를 구비하고 복합 가공을 수행하기 위한 복잡한 터닝센터나 머시닝센터와 같은 공작기계에서 열변위 보정부에서 온도 센서에서 센싱된 구조부의 온도인 직접인자를 통해 직접 보정량을 직접 계산을 통해 산출하고, 구조부의 온도와 같은 직접인자 이외에 실시간으로 변화되는 스핀들 RPM, 모터 부하, 이송축 부하, 이송축 속도와 같은 간접인자를 머신러닝을 통해 기계학습하여 간접 보정량을 산출하고, 최종적으로 직접 보정량과 간접 보정량으로 구조물의 열변위에 의한 최종 보정량을 자동으로 실시간으로 산출하고 이를 즉각적으로 반영하여 공작물의 가공을 수행함에 따라 기존의 미반영 부분을 반영하여 실제 열변위 발생과의 시간 지연 발생을 최소화하여 실시간으로 보정을 수행함에 따라 가공의 정밀도와 보정의 정확도와 신뢰성을 극대화할 수 있는 효과가 있다.An apparatus and method for compensating for thermal displacement of a machine tool according to the present invention perform machining including at least one of milling, turning, composite, or designated machining, and for this purpose, various shaft systems are provided and for performing composite machining In machine tools such as complex turning centers and machining centers, the amount of compensation is calculated through direct calculation through a direct factor, which is the temperature of the structural part sensed by the temperature sensor in the thermal displacement compensator, and changes in real time in addition to direct factors such as the temperature of the structural part. Indirect factors such as spindle RPM, motor load, feed shaft load, feed shaft speed, etc. are machine learning through machine learning to calculate the indirect correction amount, and finally, the final correction amount due to thermal displacement of the structure is automatically calculated with the direct correction amount and the indirect correction amount. As the processing of the workpiece is performed by calculating and immediately reflecting it in real time, the existing non-reflected part is reflected to minimize the occurrence of time delay with the actual thermal displacement, and correction is performed in real time. It has the effect of maximizing reliability.
또한, 본 발명에 의한 공작기계의 열변위 보정 장치 및 보정 방법은 간접 보정량을 과적합이 발생하지 않도록 기계학습을 위한 축적데이터를 일정 시간 보관하여 관리하고, 필요에 따라 별도로 공작기계에 탑재되는 엣지 디바이스 형태로 제조되어 장비의 호환성을 통해 간편하고 신속하게 기존 공작기계에 설치되어 공작기계의 소형화를 도모하고 공간활용도를 감소하여 제조비용과 설치비용 및 유지비용을 감소할 수 있는 효과가 있다.In addition, the apparatus and method for compensating thermal displacement of a machine tool according to the present invention stores and manages accumulated data for machine learning for a certain period of time to prevent overfitting of the indirect correction amount, and edge mounted on the machine tool separately as needed Manufactured in the form of a device, it is easily and quickly installed on an existing machine tool through compatibility of equipment, thereby miniaturizing the machine tool and reducing space utilization, thereby reducing manufacturing cost, installation cost, and maintenance cost.
더욱이, 본 발명에 의한 공작기계의 열변위 보정 장치 및 보정 방법은 구조물의 온도에 따른 직접인자와 공작물의 가공과정에서 실시간으로 변화하는 가공상태와 공정모드에 의한 가공부RPM, 가공부 모터 부하, 이송부의 이송 속도, 이송부의 모터 부하의 변화를 실시간으로 반영하여 머신러닝에 의한 기계학습을 통해 실시간으로 산출하여 최종 보정량을 자동으로 반영하여 공작물의 가공을 수행함에 따라 가공정밀도와 생산성을 향상하고, 불필요한 불량품 발생을 방지하여 자원을 보존하고 사용자와 작업자의 편의성을 증대시킬 수 있는 효과가 있다.Moreover, the apparatus and method for compensating for thermal displacement of a machine tool according to the present invention are direct factors according to the temperature of a structure and the processing state and process mode that change in real time during the processing of a workpiece, processing part RPM, processing part motor load, By reflecting the change in the conveying speed of the conveying part and the motor load of the conveying part in real time, calculating in real time through machine learning based on machine learning, automatically reflecting the final correction amount to process the workpiece, improving machining precision and productivity, There is an effect of conserving resources by preventing unnecessary defective products and increasing the convenience of users and workers.
게다가, 본 발명에 의한 공작기계의 열변위 보정 장치 및 보정 방법은 간접인자에 의한 간접 보정량을 과적합이 발생하지 않도록 기계학습을 위한 축적데이터를 일정 시간 보관하여 관리하고, 필요에 따라 별도로 공작기계에 탑재되는 엣지 디바이스 형태로 제조되어 장비의 호환성을 통해 간편하고 신속하게 기존 공작기계에 설치되어 호환성과 활용성을 향상하고 소비자의 만족도를 향상하고, 수출증대를 도모할 수 있는 효과가 있다.In addition, the apparatus and method for correcting thermal displacement of a machine tool according to the present invention stores and manages accumulated data for machine learning for a certain period of time so that overfitting does not occur, and, if necessary, separate machine tool It is manufactured in the form of an edge device mounted on the machine and can be easily and quickly installed on existing machine tools through compatibility of equipment to improve compatibility and usability, improve consumer satisfaction, and increase exports.
도 1은 본 발명에 의한 공작기계의 열변위 보정 장치 및 보정 방법이 적용된 공작기계의 사시도와 열변위 발생에 대한 개념도를 나타낸다.1 shows a perspective view of a machine tool to which a thermal displacement compensating device and a correction method for a machine tool according to the present invention are applied, and a conceptual diagram of thermal displacement generation.
도 2는 본 발명에 의한 공작기계의 열변위 보정 장치의 구성도를 나타낸다.2 shows a configuration diagram of a thermal displacement compensating device for a machine tool according to the present invention.
도 3은 본 발명에 의한 공작기계의 열변위 보정 장치의 제어부의 구성도를 나타낸다.3 shows a block diagram of a control unit of a thermal displacement compensating device for a machine tool according to the present invention.
도 4는 본 발명에 의한 공작기계의 열변위 보정 장치의 열변위 보정부의 구성도를 나타낸다.4 shows a configuration diagram of a thermal displacement compensating unit of a thermal displacement compensating device for a machine tool according to the present invention.
도 5는 본 발명에 의한 공작기계의 열변위 보정 장치의 개념도를 나타낸다.5 shows a conceptual diagram of a thermal displacement compensating device for a machine tool according to the present invention.
도 6은 본 발명에 의한 공작기계의 열변위 보정 장법의 절차도를 나타낸다.6 shows a procedure diagram of a thermal displacement compensation method of a machine tool according to the present invention.
도 7은 본 발명에 의한 공작기계의 열변위 보정 장치 및 보정 방법의 간접 보정량을 머신러닝에 의한 기계학습을 LSTM으로 수행할 때에 시간에 따른 에러량에 대한 그래프이다.7 is a graph of an error amount over time when machine learning by machine learning is performed with LSTM for an indirect correction amount of a thermal displacement correction device and correction method of a machine tool according to the present invention.
도 8은 본 발명에 의한 공작기계의 열변위 보정 장치 및 보정 방법의 간접 보정량을 머신러닝에 의한 기계학습을 MLP로 수행할 때에 시간에 따른 에러량에 대한 그래프이다.8 is a graph of an error amount over time when machine learning by machine learning is performed with MLP for an indirect correction amount of a thermal displacement compensation device and correction method of a machine tool according to the present invention.
도 9는 본 발명에 의한 공작기계의 열변위 보정 장치 및 보정 방법의 과적합이 발생한 경우에 대한 그래프이다.9 is a graph of a case where overfitting occurs in the thermal displacement compensating device and compensating method for a machine tool according to the present invention.
도 10은 본 발명에 의한 공작기계의 열변위 보정 장치 및 보정 방법의 과보정이 발생한 경우에 대한 그래프이다.10 is a graph for the case where overcorrection occurs in the thermal displacement compensating device and correction method of a machine tool according to the present invention.
이하, 본 발명의 실시예에 의한 공작기계의 열변위 보정 장치 및 보정 방법의 도면을 참고하여 상세하게 설명한다. 다음에 소개되는 실시 예들은 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시 예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고, 도면들에 있어서, 장치의 크기 및 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 명세서 전체에 걸쳐서 동일한 참조 번호들은 동일한 구성요소들을 나타낸다.Hereinafter, a thermal displacement compensating device and compensating method of a machine tool according to an embodiment of the present invention will be described in detail with reference to drawings. The embodiments introduced below are provided as examples to sufficiently convey the spirit of the present invention to those skilled in the art. Accordingly, the present invention may be embodied in other forms without being limited to the embodiments described below. And, in the drawings, the size and thickness of the device may be exaggerated for convenience. Like reference numbers indicate like elements throughout the specification.
본 발명은 다양한 변환을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시예들을 도면에 예시하고 상세한 설명에 상세하게 설명하고자 한다. 본 발명의 효과 및 특징, 그리고 그것들을 달성하는 방법은 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 다양한 형태로 구현될 수 있다. 이하의 실시예에서, 제1, 제2 등의 용어는 한정적인 의미가 아니라 하나의 구성 요소를 다른 구성 요소와 구별하는 목적으로 사용되었다. 또한, 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 또한, 포함하다 또는 가지다 등의 용어는 명세서상에 기재된 특징, 또는 구성요소가 존재함을 의미하는 것이고, 하나 이상의 다른 특징들 또는 구성요소가 부가될 가능성을 미리 배제하는 것은 아니다. 또한, 도면에서는 설명의 편의를 위하여 구성 요소들이 그 크기가 과장 또는 축소될 수 있다. 예컨대, 도면에서 나타난 각 구성의 크기 및 두께는 설명의 편의를 위해 임의로 나타내었으므로, 본 발명이 반드시 도시된 바에 한정되지 않는다.Since the present invention can apply various transformations and have various embodiments, specific embodiments will be illustrated in the drawings and described in detail in the detailed description. Effects and features of the present invention, and methods for achieving them will become clear with reference to the embodiments described later in detail together with the drawings. However, the present invention is not limited to the embodiments disclosed below and may be implemented in various forms. In the following embodiments, terms such as first and second are used for the purpose of distinguishing one component from another component without limiting meaning. Also, expressions in the singular number include plural expressions unless the context clearly dictates otherwise. In addition, terms such as include or have mean that features or elements described in the specification exist, and do not preclude the possibility that one or more other features or elements may be added. In addition, in the drawings, the size of components may be exaggerated or reduced for convenience of description. For example, since the size and thickness of each component shown in the drawings are arbitrarily shown for convenience of description, the present invention is not necessarily limited to the illustrated bar.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나, 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성요소를 지칭한다. 도면에서 층 및 영역들의 크기 및 상대적인 크기는 설명의 명료성을 위해 과장될 수 있다.Advantages and features of the present invention, and methods for achieving them, will become clear with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various different forms, and only these embodiments make the disclosure of the present invention complete, and the common knowledge in the art to which the present invention belongs It is provided to fully inform the holder of the scope of the invention, and the present invention is only defined by the scope of the claims. Like reference numbers designate like elements throughout the specification. The sizes and relative sizes of layers and regions in the drawings may be exaggerated for clarity of explanation.
본 명세서에서 사용된 용어는 실시 예들을 설명하기 위한 것이며, 따라서 본 발명을 제한하고자 하는 것은 아니다. 본 명세서에서, 단수형은 문구에서 특별히 언급하지 않는 한 복수형도 포함한다. 명세서에서 사용되는 "포함한다 (comprise)" 및/또는 "포함하는(comprising)"은 언급된 구성요소, 단계, 동작 및/ 또는 소자는 하나 이상의 다른 구성요소, 단계, 동작 및/또는 소자의 존재 또는 추가를 배제하지 않는다.Terms used in this specification are for describing embodiments, and therefore are not intended to limit the present invention. In this specification, singular forms also include plural forms unless specifically stated otherwise in a phrase. As used herein, "comprise" and/or "comprising" means that a stated component, step, operation, and/or element is the presence of one or more other components, steps, operations, and/or elements. or do not rule out additions.
도 1은 본 발명에 의한 공작기계의 열변위 보정 장치 및 보정 방법이 적용된 공작기계의 사시도와 열변위 발생에 대한 개념도를 나타내고, 도 2는 본 발명에 의한 공작기계의 열변위 보정 장치의 구성도를 나타낸다. 도 3은 본 발명에 의한 공작기계의 열변위 보정 장치의 제어부의 구성도를 나타내고, 도 4는 본 발명에 의한 공작기계의 열변위 보정 장치의 열변위 보정부의 구성도를 나타낸다. 도 5는 본 발명에 의한 공작기계의 열변위 보정 장치의 개념도를 나타낸다. 도 6은 본 발명에 의한 공작기계의 열변위 보정 장법의 절차도를 나타낸다. 도 7은 본 발명에 의한 공작기계의 열변위 보정 장치 및 보정 방법의 간접 보정량을 머신러닝에 의한 기계학습을 LSTM으로 수행할 때에 시간에 따른 에러량에 대한 그래프이다. 도 8은 본 발명에 의한 공작기계의 열변위 보정 장치 및 보정 방법의 간접 보정량을 머신러닝에 의한 기계학습을 MLP로 수행할 때에 시간에 따른 에러량에 대한 그래프이다. 도 9는 본 발명에 의한 공작기계의 열변위 보정 장치 및 보정 방법의 과적합이 발생한 경우에 대한 그래프이다. 도 10은 본 발명에 의한 공작기계의 열변위 보정 장치 및 보정 방법의 과보정이 발생한 경우에 대한 그래프이다.1 shows a perspective view of a machine tool to which a thermal displacement compensating device and correction method for a machine tool according to the present invention are applied and a conceptual diagram of thermal displacement generation, and FIG. 2 is a configuration diagram of a thermal displacement compensating device for a machine tool according to the present invention. indicates 3 shows a configuration diagram of a control unit of a thermal displacement compensation device for a machine tool according to the present invention, and FIG. 4 shows a configuration diagram of a thermal displacement compensation unit of a thermal displacement compensation device for a machine tool according to the present invention. 5 shows a conceptual diagram of a thermal displacement compensating device for a machine tool according to the present invention. 6 shows a procedure diagram of a thermal displacement compensation method of a machine tool according to the present invention. 7 is a graph of an error amount over time when machine learning by machine learning is performed with LSTM for an indirect correction amount of a thermal displacement correction device and correction method of a machine tool according to the present invention. 8 is a graph of an error amount over time when machine learning by machine learning is performed with MLP for an indirect correction amount of a thermal displacement compensation device and correction method of a machine tool according to the present invention. 9 is a graph of a case where overfitting occurs in the thermal displacement compensating device and compensating method for a machine tool according to the present invention. 10 is a graph for the case where overcorrection occurs in the thermal displacement compensating device and correction method of a machine tool according to the present invention.
본 발명에 의한 공작기계의 열변위 보정 장치와 보정 방법이 적용되는 공작기계는 모든 공작기계를 포함하나, 바람직하게는 밀링, 선삭, 복합 가공을 수행하고, 이를 위해 다양한 축계를 구비하고 복합 가공을 수행하기 위한 복잡한 터닝센터나 머시닝센터와 같은 공작기계일 수 있다. 또한, 반드시 이에 한정되는 것은 아니지만, 본 발명에 의한 공작기계의 열변위 보정 장치와 보정 방법이 적용되는 공작기계는 선삭이나 밀링과 같은 복합 가공을 수행하는 복합장비 이외에 단순히 선반과 같은 일반 공작기계 장비에서도 공작물의 가공시에 열변위가 발생함에 따라 가공원점을 보정하여 가공을 수행하여야 가공정밀도가 향상되고, 생산성이 증대된다.Machine tools to which the thermal displacement compensating device and compensation method of machine tools according to the present invention are applied include all machine tools, but preferably perform milling, turning, and complex processing, and for this purpose, various axis systems are provided and complex processing is performed. It may be a machine tool such as a complex turning center or machining center to perform. In addition, although not necessarily limited thereto, the machine tool to which the thermal displacement compensating device and the compensating method of the machine tool according to the present invention are applied is general machine tool equipment such as a simple lathe in addition to complex equipment for performing complex processing such as turning or milling. As thermal displacement occurs during machining of a workpiece, processing must be performed by correcting the origin of processing to improve processing precision and increase productivity.
도 1 내지 도 10을 참조하여 본 발명에 의한 공작기계의 열변위 보정 장치 및 보정 방법을 설명한다. 도 1 내지 도 5에 도시된 것처럼, 본 발명에 의한 공작기계의 열변위 보정 장치(10)는 구조부(100), 센싱부(200), 열변위 보정부(300), 및 제어부(400)를 포함한다.A thermal displacement compensating device and compensating method of a machine tool according to the present invention will be described with reference to FIGS. 1 to 10 . 1 to 5, the thermal displacement compensating device 10 for a machine tool according to the present invention includes a structural unit 100, a sensing unit 200, a thermal displacement compensating unit 300, and a control unit 400. include
구조부(100)는 공작물 가공을 위한 다양한 구조물이 설치된다. 즉 구조부는 공작물 가공을 위해 공작물과 공구를 상대이동 시킬 수 있는 가공부, 이송부, 지지부 등을 의미한다. In the structure unit 100, various structures for processing a workpiece are installed. That is, the structural part means a processing part, a transfer part, a support part, etc. that can relatively move the workpiece and the tool for machining the workpiece.
도 1에 도시된 것처럼, 본 발명의 일 실시예에 따르면 구조부(100)는 가공부(110), 이송부(120), 및 지지부(130)를 포함한다.As shown in FIG. 1 , according to one embodiment of the present invention, the structural part 100 includes a processing part 110 , a transfer part 120 , and a support part 130 .
가공부(110)는 밀링스핀들(111), 터렛(112), 및 스핀들(113)을 구비하고 공작물을 직접 가공한다. 즉, 가공부의 밀링스핀들(111)은 제어부의 제어에 따라 스핀들에 클램핑된 공작물의 밀링 가공을 수행하고, 터렛(112)은 제어부의 제어에 선삭 가공을 수행하며, 스핀들(113)을 공작물을 클램핑한 상태에서 제어부의 제어에 따라 다양한 회전속도(RPM, revolution per minute)로 회전한다. 필요에 따라 선삭 가공과 밀링 가공을 동시에 수행하는 복합 가공을 수행할 수도 있다.The processing unit 110 includes a milling spindle 111, a turret 112, and a spindle 113 and directly processes a workpiece. That is, the milling spindle 111 of the processing unit performs milling of the workpiece clamped on the spindle under the control of the controller, and the turret 112 performs turning processing under the control of the controller, and the spindle 113 clamps the workpiece. In one state, it rotates at various revolutions per minute (RPM) according to the control of the controller. If necessary, it is also possible to perform complex machining in which turning and milling are simultaneously performed.
이송부(120)는 제어부의 제어에 따라 가공부를 이송시키는 기능을 수행한다. 이러한 이송부(120)는 볼스크류와 서보모터 또는 LM 가이드와 서보모터 등으로 형성되어 가공부를 지지부의 베드나 컬럼을 따라 이동시킨다.The transfer unit 120 performs a function of transferring the processing unit according to the control of the control unit. The transfer unit 120 is formed of a ball screw and a servo motor or an LM guide and a servo motor to move the processing unit along the bed or column of the support unit.
지지부(130)는 가공부와 이송부가 이동 가능하도록 설치된다. 즉, 지지부(130)는 베드(131)와 컬럼(132)을 구비하고 베드와 컬럼에 밀링스핀들, 터렛, 스핀들, 이송부 등이 설치된다.The support part 130 is installed so that the processing part and the conveying part are movable. That is, the support unit 130 includes a bed 131 and a column 132, and a milling spindle, a turret, a spindle, a transfer unit, and the like are installed on the bed and the column.
센싱부(200)는 구조부의 열변위에 따른 온도를 측정한다. 이러한 센싱부(200)는 온도센서로 형성될 수 있다. 또한, 이러한 센싱부는 가공부, 이송부, 또는 지지부 중 적어도 어느 하나에 설치될 수 있다. 구체적으로 도 1에 도시된 것처럼, 구조부에 1개 또는 복수개로 다양한 위치에 설치되거나 밀링 스핀들, 스핀들, 터렛, 베드, 컬럼에 1개만 설치될 수 있다. 이에 따라 센싱부의 온도센서로 구조부의 적어도 어느 한곳의 열변위에 따른 온도 변화를 측정하여 이를 열변위 보정부로 전송하여 직접인자를 통한 직접 보정량을 신속하고 정확하게 산출할 수 있다.The sensing unit 200 measures the temperature according to the thermal displacement of the structure. This sensing unit 200 may be formed as a temperature sensor. In addition, the sensing unit may be installed in at least one of a processing unit, a transfer unit, and a support unit. Specifically, as shown in FIG. 1, one or a plurality of them may be installed in various positions in the structure, or only one may be installed in a milling spindle, spindle, turret, bed, or column. Accordingly, the temperature change according to the thermal displacement of at least one part of the structure is measured by the temperature sensor of the sensing unit, and the result is transmitted to the thermal displacement correcting unit, so that the direct correction amount can be quickly and accurately calculated through the direct factor.
열변위 보정부(300)는 직접인자 및 직접인자 이외에 실시간으로 변화되는 간접인자를 머신러닝을 통해 기계학습하여 구조부의 열변위에 따른 보정량을 실시간으로 자동으로 산출한다.The thermal displacement correction unit 300 automatically calculates a correction amount according to the thermal displacement of the structural part in real time by machine learning through machine learning the indirect factor that changes in real time in addition to the direct factor and the direct factor.
또한, 본 발명에 의한 공작기계의 열변위 보정 장치의 직접인자는 센싱부에서 측정된 구조부의 열변위에 따른 온도이고, 간접인자는 공작물의 가공과정에서 실시간으로 변화하는 가공상태와 공정모드일 수 있다. 구체적으로 간접인자는 공작물의 가공상태와 공정모드에 의한 가공부RPM, 가공부 모터 부하, 이송부의 이송 속도, 이송부의 모터 부하, 쿨런트 온도의 변화일 수 있다.In addition, the direct factor of the thermal displacement compensation device of the machine tool according to the present invention is the temperature according to the thermal displacement of the structure measured by the sensing unit, and the indirect factor may be the processing state and process mode that change in real time during the processing of the workpiece. . Specifically, the indirect factor may be a change in processing RPM, a motor load in the processing unit, a feed speed in the transfer unit, a motor load in the transfer unit, and a change in coolant temperature according to the processing state and process mode of the workpiece.
제어부(400)는 열변위 보정부에서 산출된 보정량을 즉각적으로 반영하여 기 공작물의 가공을 수행한다.The control unit 400 immediately reflects the correction amount calculated by the thermal displacement correction unit to process the workpiece.
이처럼, 본 발명에 의한 공작기계의 열변위 보정 장치는 도 5에 도시된 것처럼, 센싱부의 온도 센서에서 센싱된 구조부의 열변위에 따른 온도인 직접인자를 통해 직접 보정량을 직접 계산을 통해 산출하고, 구조부의 열변위에 따른 온도와 같은 직접인자 이외에 실시간으로 변화되는 스핀들 RPM, 모터 부하, 이송축 부하, 이송축 속도와 같은 간접인자를 너무 다양한 변화와 중요도의 실시간 변화에 따라 머신러닝에 의한 기계학습을 통해 실시간으로 자동으로 간접 보정량을 산출하고, 최종적으로 직접 보정량과 간접 보정량으로 구조물의 열변위에 의한 최종 보정량을 자동으로 실시간으로 산출하고 이를 즉각적으로 반영하여 공작물의 가공을 수행함에 따라 기존의 미반영 부분을 반영하여 실제 열변위 발생과의 시간 지연 발생을 최소화하여 실시간으로 보정을 수행함에 따라 가공의 정밀도와 보정의 정확도와 신뢰성을 극대화할 수 있다.As such, the apparatus for compensating thermal displacement of a machine tool according to the present invention, as shown in FIG. 5, directly calculates the correction amount through a direct factor, which is the temperature according to the thermal displacement of the structural unit sensed by the temperature sensor of the sensing unit, and In addition to direct factors such as temperature due to thermal displacement of the machine, indirect factors such as spindle RPM, motor load, feed shaft load, and feed shaft speed that change in real time are changed through machine learning through machine learning according to the real-time changes in importance. The indirect correction amount is automatically calculated in real time, and the final correction amount due to the thermal displacement of the structure is automatically calculated in real time with the direct correction amount and the indirect correction amount. Therefore, it is possible to maximize the accuracy and reliability of processing and correction by performing correction in real time by minimizing the occurrence of time delay with the actual occurrence of thermal displacement.
도 1 내지 도 3에 도시된 것처럼, 본 발명에 의한 공작기계의 열변위 보정 장치(10)의 제어부(400)는 메모리부(410), 처리부(420), 정보수집부(430), 송수신부(440), 및 표시부(450)를 포함한다. 또한, 이러한 제어부는 NC(numerical control, NC) 또는 CNC(computerized numerical control)를 포함하고, 각종 수치 제어 프로그램이 내장되어 있다. 또한, 도면에 도시되지는 않았지만, 본 발명의 바람직한 일 실시예에 따르면, 제어부는 주조작부를 포함하고, 이러한 주조작부는 화면표시 프로그램과 화면표시 선택에 따른 데이터 입력 프로그램을 포함하고, 화면표시 프로그램의 출력에 따라 표시화면에 소프트웨어 스위치를 디스플레이하고, 소프트웨어 스위치의 온(ON)/오프(OFF)를 인식하여 기계 동작의 입출력 명령을 내리는 기능을 수행한다.1 to 3, the control unit 400 of the thermal displacement compensating device 10 for a machine tool according to the present invention includes a memory unit 410, a processing unit 420, an information collection unit 430, and a transmission and reception unit. 440, and a display unit 450. In addition, the control unit includes a numerical control (NC) or a computerized numerical control (CNC), and various numerical control programs are embedded therein. In addition, although not shown in the drawings, according to a preferred embodiment of the present invention, the control unit includes a main operation unit, and this main operation unit includes a screen display program and a data input program according to screen display selection, and a screen display program According to the output of the software switch, it displays the software switch on the display screen, recognizes the on/off of the software switch, and performs the function of giving input/output commands for machine operation.
메모리부(410)는 공작물의 가공을 수행하기 위한 가공프로그램, 구동프로그램, 및 공정모드에 대한 정보를 저장한다. The memory unit 410 stores information about a processing program, a driving program, and a process mode for performing machining of a workpiece.
처리부(420)는 메모리부에 저장된 정보와 열변위 보정부로부터 수신된 보정량에 따라 공작물의 가공을 수행하는 처리한다.The processing unit 420 performs processing of the workpiece according to the information stored in the memory unit and the correction amount received from the thermal displacement compensation unit.
정보수집부(430)는 처리부에 의해 작동하는 가공부와 이송부의 운전정보를 수집한다. 즉, 정보수집부는 처리부에 의해 공작물의 가공을 수행할 때에 작동하는 가공부와 이송부의 운전정보를 수집하여 저장한다.The information collection unit 430 collects operation information of the processing unit and the transfer unit operated by the processing unit. That is, the information collection unit collects and stores operation information of the processing unit and the transfer unit that operate when the processing unit performs machining of the workpiece.
송수신부(440)는 정보수집부에서 수집된 운전정보를 열변위 보정부에 전송하거나 열변위 보정부에서 산출된 보정량을 수신한다.The transceiver 440 transmits the operation information collected by the information collection unit to the thermal displacement corrector or receives the correction amount calculated by the thermal displacement corrector.
표시부(450)는 메모리부, 처리부의 처리정보, 정보수집부에 수집된 운전정보, 및 송수신부를 통해 송수신된 정보를 표시한다. 이러한, 표시부는 모두 액정 디스플레이(liquid crystal display, LCD), 박막 트랜지스터 액정 디스플레이(thin film transistor-liquid crystal display, TFT LCD), 유기 발광 다이오드(organic light-emitting diode, OLED), 플렉서블 디스플레이(flexible display), 3차원 디스플레이(3D display), 전자잉크 디스플레이(e-ink display) 중에서 적어도 하나를 포함할 수 있다. The display unit 450 displays processing information of the memory unit, the processing unit, operation information collected by the information collection unit, and information transmitted and received through the transceiver. All of these display units include a liquid crystal display (LCD), a thin film transistor-liquid crystal display (TFT LCD), an organic light-emitting diode (OLED), and a flexible display. ), a 3D display, and an e-ink display.
도 1 내지 도 2, 도 4 내지 도 5에 도시된 것처럼, 본 발명에 의한 공작기계의 열변위 보정 장치(10)의 열변위 보정부(300)는 데이터베이스부(310), 확인부(320), 판단부(330), 연산부(340), 보정부(350), 및/또는 수정부(360)를 포함한다.As shown in FIGS. 1 to 2 and 4 to 5, the thermal displacement compensating unit 300 of the thermal displacement compensating device 10 for a machine tool according to the present invention includes a database unit 310 and a confirmation unit 320 , includes a determination unit 330, a calculation unit 340, a correction unit 350, and/or a correction unit 360.
데이터베이스부(310)는 직접인자 및 간접인자를 머신러닝을 통해 기계학습하여 구조부의 열변위에 따른 보정량을 실시간으로 자동으로 산출하기 위한 정보를 저장한다. The database unit 310 stores information for automatically calculating the correction amount according to the thermal displacement of the structure part in real time by machine learning the direct factor and the indirect factor through machine learning.
확인부(320)는 데이터베이스부에 저장된 정보와 제어부로부터 수신된 처리정보와 운전정보에 따라 가공부에서의 가공 시작여부를 확인한다. The confirmation unit 320 checks whether or not processing has started in the processing unit according to the information stored in the database unit and processing information and operation information received from the control unit.
판단부(330)는 확인부의 확인결과에 따라 가공부에서 가공이 시작된 경우 상기 공작물의 가공상태와 공정모드를 판단한다. 반드시 이에 한정 되는 것은 아니지만, 이러한 공정모드는 공작물의 선삭 가공만을 수행하는 선삭모드, 공작물의 밀링 가공만을 수행하는 밀링모드, 공작물의 선삭 가공과 밀링 가공을 모두 수행하는 복합모드, 또는 사용자의 지정에 따라 공작물에 대해 선택적 가공을 수행하는 지정모드 중 적어도 어느 하나 이상을 포함하여 구성될 수 있다.The determination unit 330 determines the processing state and the process mode of the workpiece when processing is started in the processing unit according to the confirmation result of the confirmation unit. Although not necessarily limited thereto, these process modes include a turning mode that performs only turning of a workpiece, a milling mode that performs only milling of a workpiece, a combined mode that performs both turning and milling of a workpiece, or a user's designation. It may be configured to include at least any one or more of designation modes for performing selective processing on a workpiece according to the present invention.
연산부(340)는 데이터베이스부에 저장된 정보, 제어부로부터 수신된 처리정보와 운전정보, 확인부의 확인결과, 및 판단부의 판단결과에 따라 구조부의 열변위에 따른 최종 보정량을 연산한다.The calculation unit 340 calculates the final correction amount according to the thermal displacement of the structural part according to the information stored in the database unit, the processing information and operation information received from the control unit, the confirmation result of the confirmation unit, and the determination result of the determination unit.
보정부(350)는 데이터베이스부에 저장된 정보와 연산부에서 연산된 최종 보정량을 제어부로 전송한다.The correction unit 350 transmits the information stored in the database unit and the final correction amount calculated in the calculation unit to the control unit.
수정부(360)는 보정부에서 최종 보정량을 제어부에 전달하기 전에 처리정보, 운전정보, 확인부의 확인결과, 판단부의 판단결과, 및 기계학습데이터 저장부에 저장된 데이터가 적어 과보정되는 경우 저역필터(low pass filter)로 보정부의 최종 보정량을 자동으로 수정하고 수정된 최종 보정량을 제어부로 전송한다. 이에 따라 최종 보정량의 정확성과 신뢰성을 향상하여 가공정밀도를 극대화할 수 있다. 이러한 과보정은 공작기계의 공작물 가공 초기에 축적데이터와 운전정보, 처리정보, 직접인자, 간접인자에 대한 정보가 너무 적은 경우에 발생할 수 있다.The correction unit 360 is a low-pass filter in case of overcorrection because the processing information, operation information, confirmation result of the confirmation unit, judgment result of the determination unit, and data stored in the machine learning data storage unit are small before the correction unit delivers the final correction amount to the control unit. (low pass filter) automatically corrects the final correction amount of the correction unit and transmits the corrected final correction amount to the control unit. Accordingly, it is possible to maximize processing precision by improving accuracy and reliability of the final correction amount. Such overcorrection may occur when there is too little information about accumulation data, operation information, processing information, direct factors, and indirect factors in the initial stage of machining a workpiece of a machine tool.
반드시 이에 한정되는 것은 아니지만, 메모리부(410)와 데이터베이스부(310)는 ROM, RAM, EPROM, 플래시 드라이브, 하드 드라이브 등과 같은 다양한 저장기기일 수 있고, 인터넷(internet)상에서 데이터 저장부의 저장 기능을 수행하는 웹 스토리지(web storage)일 수도 있다.Although not necessarily limited to this, the memory unit 410 and the database unit 310 may be various storage devices such as ROM, RAM, EPROM, flash drive, hard drive, etc., and the storage function of the data storage unit on the Internet It can also be a web storage that performs.
또한, 제어부(400)와 열변위 보정부(300)는 모두 ASICs (application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 제어기(controllers), 마이크로 컨트롤러(micro-controllers), 마이크로 프로세스(microprocessors), 기타 기능 수행을 위한 전기적 유닛 중 적어도 하나를 이용하여 구현될 수 있으며 이에 한정되는 것은 아니다.In addition, both the control unit 400 and the thermal displacement compensation unit 300 are application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), and field programmable circuits (FPGAs). gate arrays), controllers, micro-controllers, microprocessors, and other electrical units for performing functions, but is not limited thereto.
또한, 제어부의 송수신부(440), 열변위 보정부(300), 센싱부(200)는 모두 이동통신을 위한 기술표준들 또는 통신방식(예를 들어, GSM(Global System for Mobile communication), CDMA(Code Division Multi Access), HSDPA(High Speed Downlink Packet Access), HSUPA(High Speed Uplink Packet Access), LTE(Long Term Evolution), LTE-A(Long Term Evolution-Advanced) 등), 블루투스(Bluetooth™)에 따라 구축된 이동 통신망 상에서 제어부의 송수신부(440), 열변위 보정부(300), 센싱부(200), 임의의 서버 중 적어도 하나와 무선 신호를 송수신할 수 있다. 또한, 제어부의 송수신부(440), 열변위 보정부(300), 센싱부(200)는 모두 WLAN(Wireless LAN), Wi-Fi(Wireless-Fidelity), Wi-Fi(Wireless Fidelity) Direct, DLNA(Digital Living Network Alliance), WiBro(Wireless Broadband), WiMAX(World Interoperability for Microwave Access) 등의 무선 통신방식으로도 무선 신호를 송수신할 수 있으며, 이에 한정되는 것은 아니다. 또한, 제어부의 송수신부(440), 열변위 보정부(300), 센싱부(200)는 모두 근거리 무선 통신방식으로 무선 신호를 송수신할 수 있다. 예를 들어, 제어부의 송수신부(440), 열변위 보정부(300), 센싱부(200)는 모두 블루투스(Bluetooth™), RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association; IrDA), UWB(Ultra Wideband), ZigBee, NFC(Near Field Communication), Wi-Fi(Wireless-Fidelity), Wi-Fi Direct, Wireless USB(Wireless Universal Serial Bus) 기술 중 적어도 하나를 이용하여 근거리 통신을 지원할 수 있고, 이에 한정되지 않는다. In addition, the transmission/reception unit 440, the thermal displacement correction unit 300, and the sensing unit 200 of the control unit all comply with technical standards or communication methods for mobile communication (eg, Global System for Mobile communication (GSM), CDMA). (Code Division Multi Access), HSDPA (High Speed Downlink Packet Access), HSUPA (High Speed Uplink Packet Access), LTE (Long Term Evolution), LTE-A (Long Term Evolution-Advanced), etc.), Bluetooth™ A radio signal may be transmitted and received with at least one of the transmission/reception unit 440 of the control unit, the thermal displacement correction unit 300, the sensing unit 200, and an arbitrary server on the mobile communication network constructed according to the above. In addition, the transmission/reception unit 440, the thermal displacement compensation unit 300, and the sensing unit 200 of the control unit are all WLAN (Wireless LAN), Wi-Fi (Wireless-Fidelity), Wi-Fi (Wireless Fidelity) Direct, DLNA (Digital Living Network Alliance), wireless broadband (WiBro), wireless communication methods such as WiMAX (World Interoperability for Microwave Access) may transmit and receive wireless signals, but are not limited thereto. In addition, the transmission/reception unit 440 of the control unit, the thermal displacement correction unit 300, and the sensing unit 200 may all transmit and receive wireless signals in a short-distance wireless communication method. For example, the transmission/reception unit 440, the thermal displacement correction unit 300, and the sensing unit 200 of the control unit all use Bluetooth™, Radio Frequency Identification (RFID), Infrared Data Association (IrDA), Short-range communication may be supported using at least one of UWB (Ultra Wideband), ZigBee, NFC (Near Field Communication), Wi-Fi (Wireless-Fidelity), Wi-Fi Direct, and Wireless USB (Wireless Universal Serial Bus) technologies, , but not limited thereto.
또한, 도 5에 도시된 것처럼, 본 발명에 의한 공작기계의 열변위 보정 장치(10)의 열변위 보정부(300)의 데이터베이스부(310)는 기본데이터 저장부(311), 수신데이터 저장부(312), 기계학습데이터 저장부(313), 및 실시간데이터 저장부(314)를 포함한다.In addition, as shown in FIG. 5, the database unit 310 of the thermal displacement compensating unit 300 of the thermal displacement compensating device 10 for a machine tool according to the present invention includes a basic data storage unit 311 and a received data storage unit. 312, a machine learning data storage unit 313, and a real-time data storage unit 314.
기본데이터 저장부(311)는 직접계수, 직접 가중치, 및 스위칭에 대한 데이터를 저장하는 한다. 이러한 기본데이터 저장부는 열변위 보정부의 주조작부 등에 있는 터치스크린이나 키패드 또는 키보드 등을 통해 수동으로 입력할 수 있다.The basic data storage unit 311 stores data on direct coefficients, direct weights, and switching. The basic data storage unit may be manually input through a touch screen, keypad, or keyboard in the main operation unit of the thermal displacement correction unit.
수신데이터 저장부(312)는 송수신부로부터 수신된 데이터를 저장한다.The received data storage unit 312 stores data received from the transceiver.
기계학습데이터 저장부(313)는 머신러닝을 통해 기계학습을 수행하기 위한 기계학습 프로그램과 축적데이터를 저장한다. 이러한 기계학습데이터 저장부에 저장된 머신러닝을 통해 기계학습을 수행하기 위한 기계학습 프로그램은 신경망 알고리즘(convolution neural networks, CNN 또는 recurrent neural networks, RNN), LSTM(long short term memory), 또는 다층 퍼셉트론(Multilayer Perceptrons, MLP)일 수 있다. The machine learning data storage unit 313 stores a machine learning program and accumulated data for performing machine learning through machine learning. A machine learning program for performing machine learning through machine learning stored in such a machine learning data storage unit is a neural network algorithm (convolution neural networks, CNN or recurrent neural networks, RNN), LSTM (long short term memory), or a multilayer perceptron ( Multilayer Perceptrons, MLP).
또한, 기계학습데이터 저장부에 저장되는 축적데이터는 상기 제어부의 제어와 상기 확인부의 확인결과 및 상기 판단부의 판단결과에 따라 상기 가공부가 작동하는 순간부터 10초 주기로 최대 30분까지의 데이터가 저장된다. 즉, 너무 많은 축적데이터와 처리정보와 운전정보가 저장된 경우에는 도 9에서와 같이 과적합(overfitting)에 의한 문제가 발생됨에 따라 이를 방지하고, 별도의 임베디드 컴퓨터 등과 같은 추가적인 장치 없이 제어부에 간편하게 추가적으로 장착됨에 따라 공작기계의 소형화를 도모하고 설치비용과 유지비용 및 제조비용을 절감할 수 있다.In addition, the accumulated data stored in the machine learning data storage unit stores data for up to 30 minutes at intervals of 10 seconds from the moment the processing unit operates according to the control of the control unit, the confirmation result of the confirmation unit, and the judgment result of the determination unit. . That is, when too much accumulated data, processing information, and operation information are stored, problems due to overfitting occur as shown in FIG. As it is installed, it is possible to promote miniaturization of the machine tool and reduce installation cost, maintenance cost, and manufacturing cost.
실시간데이터 저장부(314)는 센싱부로부터 센싱된 데이터와 공작물의 가공상태와 공정모드에 의한 가공부RPM, 가공부 모터 부하, 이송부의 이송 속도, 이송부의 모터 부하, 및 쿨런트 온도의 변화량을 실시간으로 저장한다.The real-time data storage unit 314 stores the data sensed from the sensing unit, the processing state of the workpiece, and the processing unit RPM according to the process mode, the motor load of the processing unit, the transfer speed of the transfer unit, the motor load of the transfer unit, and the amount of change in the coolant temperature. save in real time
또한, 도 5에 도시된 것처럼, 본 발명에 의한 공작기계의 열변위 보정 장치(10)의 열변위 보정부(300)의 연산부(340)는 직접 보정량 계산부(341), 간접 보정량 계산부(342), 최종 보정량 계산부(343), 및 분석부(344)를 포함한다.In addition, as shown in FIG. 5, the calculation unit 340 of the thermal displacement correction unit 300 of the thermal displacement correction device 10 of the machine tool according to the present invention includes a direct correction amount calculation unit 341 and an indirect correction amount calculation unit ( 342), a final correction amount calculation unit 343, and an analysis unit 344.
직접 보정량 계산부(341)는 확인부의 확인결과, 판단부의 판단결과, 기본데이터 저장부에 저장된 데이터와 실시간데이터 저장부에 저장된 데이터와 센싱부에서 측정된 구조부의 열변위에 따른 온도에 따라 직접 보정량을 직접 계산한다. 즉, 직접 보정량 계산부는 확인결과, 판단결과, 기본데이터와 실시간데이터와 센싱부에서 측정된 구조부의 열변위에 따른 온도에 따라 기존 기술과 동일한 방식으로 직접인자인 구조부의 열변위에 따른 온도에 따른 직접 보정량을 직접 계산한다. 구체적으로 다변수 선형 회귀 분석(multivariable linear regression)과 같은 방식을 통해 직접계수와 직접 가중치와 측정된 구조부의 열변위에 따른 온도를 통해 직접 보정량을 기계적으로 산출한다.The direct correction amount calculation unit 341 directly calculates the correction amount according to the confirmation result of the confirmation unit, the judgment result of the determination unit, the data stored in the basic data storage unit and the data stored in the real-time data storage unit, and the temperature according to the thermal displacement of the structure measured by the sensing unit. Calculate directly. In other words, the direct correction amount calculation unit is a direct factor according to the temperature according to the thermal displacement of the structural part, which is a direct factor in the same way as the existing technology according to the confirmation result, the judgment result, the basic data, the real-time data, and the temperature according to the thermal displacement of the structural part measured by the sensing unit. directly calculate Specifically, through a method such as multivariable linear regression, a direct correction amount is mechanically calculated through a direct coefficient, a direct weight, and a temperature according to the measured thermal displacement of the structural part.
간접 보정량 계산부(342)는 확인부의 확인결과, 판단부의 판단결과, 기본데이터 저장부에 저장된 데이터, 수신데이터 저장부에 저장된 데이터, 실시간데이터 저장부에 저장된 데이터, 기계학습데이터 저장부에 저장된 데이터, 및 가공부RPM, 가공부 모터 부하, 이송부의 이송 속도, 이송부의 모터 부하, 및 쿨런트 온도의 변화에 따라 머신러닝을 이용한 기계학습을 통해 간접 보정량을 실시간으로 자동으로 계산한다 즉, 간접 보정량 계산부는 신경망 알고리즘을 통해 다층 입력층과 은닉층과 출력층을 갖는 다층 퍼셉트론이나 RNN, CNN과 같은 머신러닝 모델을 통해 축적데이터와 수신데이터 및 실시간데이터와 운전정보와 처리정보와 직접인자와 간접인자를 기반으로 지도학습(Supervised Learning), 비지도학습(Unsupervised Learning), 강화학습(Reinforcement Learning)을 수행하여 간접 보정량을 실시간으로 자동으로 정확하고 예측가능하며 신뢰성 있게 산출한다.The indirect correction amount calculation unit 342 includes the confirmation result of the confirmation unit, the judgment result of the determination unit, data stored in the basic data storage unit, data stored in the received data storage unit, data stored in the real-time data storage unit, and data stored in the machine learning data storage unit. , and the indirect correction amount is automatically calculated in real time through machine learning using machine learning according to the change of processing part RPM, processing part motor load, conveying speed of conveying part, motor load of conveying part, and coolant temperature. That is, indirect correction amount The calculation unit is based on accumulated data, received data, real-time data, driving information, processing information, direct and indirect factors through machine learning models such as multi-layer perceptrons with multi-layer input layers, hidden layers and output layers, RNN and CNN through neural network algorithms. By performing Supervised Learning, Unsupervised Learning, and Reinforcement Learning, the amount of indirect correction is calculated automatically, accurately, predictably, and reliably in real time.
최종 보정량 계산부(343)는 직접 보정량 계산부에서 계산된 직접 보정량과 간접 보정량 계산부에서 계산된 간접 보정량에 따라 최종 보정량을 계산한다. 즉, 최종 보정량 계산부는 산출된 직접 보정량과 간접 보정량을 합산하여 최종 보정량을 신속하고 정확하며 실시간으로 산출하여 제어부로 전송하고, 제어부는 전송된 최종 보정량만큼 가공원점을 보정하여 공작기계의 열변위에 따른 보정을 통해 공작물의 가공을 수행한다.The final correction amount calculation unit 343 calculates the final correction amount according to the direct correction amount calculated by the direct correction amount calculation unit and the indirect correction amount calculated by the indirect correction amount calculation unit. That is, the final correction amount calculation unit sums the calculated direct correction amount and indirect correction amount, calculates the final correction amount quickly, accurately, and in real time and transmits it to the control unit, and the control unit corrects the machining origin by the transmitted final correction amount, The machining of the workpiece is performed through calibration.
분석부(344)는 간접 보정량 계산부에서 머신러닝을 이용한 기계학습을 통해 간접 보정량을 실시간으로 자동으로 계산할 때에 확인부의 확인결과와 판단부의 판단결과에 따라 과적합(overfitting) 여부를 실시간으로 자동으로 분석하고, 분석결과 과적합이 발생한 경우 상기 간접 보정량 계산부에서 선택한 머신러닝 모델과 다른 머신러닝 모델을 선택하여 간접 보정량 계산부가 실시간으로 자동으로 간접 보정량을 재계산하고 재계산된 간접 보정량을 최종 보정량 계산부에 전달한다. 또한, 분석부에서 선택하는 머신러닝 모델은 신경망 알고리즘, LSTM, 또는 다층 퍼셉트론 중 적어도 어느 하나일 수 있다.When the indirect correction amount calculation unit automatically calculates the indirect correction amount in real time through machine learning using machine learning in the indirect correction amount calculation unit, the analysis unit 344 automatically determines whether overfitting is in real time according to the confirmation result of the confirmation unit and the judgment result of the judgment unit. analysis, and if overfitting occurs as a result of the analysis, by selecting a machine learning model different from the machine learning model selected in the indirect correction amount calculation unit, the indirect correction amount calculation unit automatically recalculates the indirect correction amount in real time, and the recalculated indirect correction amount is the final correction amount forwarded to the calculator. In addition, the machine learning model selected by the analysis unit may be at least one of a neural network algorithm, LSTM, and a multi-layer perceptron.
구체적으로 분석부는 도 9와 같이 너무 많은 축적데이터와 처리정보와 운전정보와 직접인자와 간접인자와 같은 다양한 데이터로부터 발생하는 과적합 문제를 자동으로 신속하고 정확하게 해결하고 방지하여 최종 보정량의 예측성에 따른 안전성과 신뢰성을 향상할 수 있다. 즉, 축적데이터가 제어부의 제어와 확인부의 확인결과 및 판단부의 판단결과에 따라 가공부가 작동하는 순간부터 10초 주기로 최대 30분까지의 데이터를 기계학습데이터에 보관함에 따라 과적합 문제가 1차적으로 방지되고, 분석부를 통해 2차적으로 재보정을 통해 방지하여 기존의 미반영 부분을 반영하여 실제 열변위 발생과의 시간 지연 발생을 최소화하여 실시간으로 보정을 수행함에 따라 가공의 정밀도와 보정의 정확도와 신뢰성을 극대화할 수 있다.Specifically, the analysis unit automatically, quickly and accurately solves and prevents overfitting problems arising from various data such as too much accumulated data, processing information, operation information, direct factors and indirect factors, as shown in FIG. Safety and reliability can be improved. In other words, as the accumulated data is stored in the machine learning data for up to 30 minutes at intervals of 10 seconds from the moment the processing unit operates according to the control of the control unit, the confirmation result of the confirmation unit, and the judgment result of the judgment unit, the overfitting problem is primarily processing precision and correction accuracy and reliability by performing correction in real time by minimizing the occurrence of time delay with the actual thermal displacement occurrence by reflecting the existing non-reflected part by preventing secondary recalibration through the analysis unit. can maximize
또한, 본 발명에 의한 공작기계의 열변위 보정 장치는 간접인자에 의한 간접 보정량을 과적합이 발생하지 않도록 기계학습을 위한 축적데이터를 일정 시간 보관하여 관리하고, 필요에 따라 별도로 공작기계에 탑재되는 엣지 디바이스 형태로 제조되어 장비의 호환성을 통해 간편하고 신속하게 기존 공작기계에 설치되어 호환성과 활용성을 향상하고 소비자의 만족도를 향상하고, 수출증대를 도모할 수 있다.In addition, the thermal displacement compensation device for machine tools according to the present invention stores and manages accumulated data for machine learning for a certain period of time to prevent overfitting of indirect correction amounts by indirect factors. Manufactured in the form of an edge device, it can be easily and quickly installed on existing machine tools through compatibility of equipment to improve compatibility and usability, improve consumer satisfaction, and increase exports.
도 6을 참조하여 본 발명에 의한 공작기계의 열변위 보정 방법을 설명한다. 도 6에 도시된 것처럼, 본 발명에 의한 공작기계의 열변위 보정 방법은 데이터 저장 단계(S1), 확인 단계(S2), 센싱부로 온도 측정 단계(S3), 정보 수집 단계(S4), 정보 저장 단계(S5), 판단 단계(S6), 직접 보정량 계산 단계(S7), 간접 보정량 계산 단계(S8), 분석 단계(S9), 최종 보정량 계산 단계(S10), 보정 단계(S11), 수정 단계(S12)를 포함한다. 각 단계에서 구체적으로 장치의 작동과정이나 작동원리와 구성이나 내용은 본 발명의 명세서의 공작기계의 열변위 보정 장치와 동일하여 이하에서는 도 6을 참조하여 공작기계의 열변위 보정 방법의 특이점을 중점으로 설명한다.Referring to FIG. 6, a method for compensating thermal displacement of a machine tool according to the present invention will be described. As shown in FIG. 6, the method for correcting thermal displacement of a machine tool according to the present invention includes a data storage step (S1), a confirmation step (S2), a temperature measurement step (S3) with a sensing unit, an information collection step (S4), and information storage. Step (S5), judgment step (S6), direct correction amount calculation step (S7), indirect correction amount calculation step (S8), analysis step (S9), final correction amount calculation step (S10), correction step (S11), correction step ( S12). In each step, the operating process, operating principle, configuration, and contents of the device are the same as those of the thermal displacement compensation device for a machine tool according to the specification of the present invention. Hereinafter, with reference to FIG. be explained by
직접인자 및 상기 직접인자 이외에 실시간으로 변화되는 간접인자를 머신러닝을 통해 기계학습하여 구조부의 열변위에 따른 보정량을 실시간으로 자동으로 산출하고 산출된 보정량을 즉각적으로 반영하여 공작물의 가공을 수행하기 위한 정보데이터를 저장한다.Information for processing the workpiece by automatically calculating the correction amount according to the thermal displacement of the structural part in real time by machine learning the direct factor and the indirect factor that changes in real time in addition to the direct factor, and immediately reflecting the calculated correction amount through machine learning save the data
데이터 저장 단계(S1) 이후에, 기 저장된 정보데이터와 제어부로부터 수신된 처리정보와 운전정보에 따라 상기 공작물의 가공 시작여부를 확인한다.After the data storage step (S1), it is confirmed whether or not to start processing the workpiece according to the previously stored information data and processing information and operation information received from the control unit.
확인 단계(S2) 이후에, 확인 결과 가공이 시작된 경우 구조부의 온도를 측정한다.After the confirmation step (S2), the temperature of the structural part is measured when the confirmation result of processing is started.
온도 측정 단계(S3) 이후에, 확인 결과 가공이 시작된 경우 처리정보, 운전정보, 가공정보, 및 온도정보를 수집한다.After the temperature measurement step (S3), if processing is started as a result of the confirmation, processing information, operation information, processing information, and temperature information are collected.
정보 수집 단계(S4) 이후에, 수집된 정보를 실시간데이터와 축적데이터로 저장한다.After the information collection step (S4), the collected information is stored as real-time data and accumulated data.
정보 저장 단계(S5) 이후에, 기 저장된 정보데이터, 실시간데이터, 축적데이터에 따라 현재의 공작물의 가공상태와 공정모드를 판단한다.After the information storage step (S5), the current processing state and process mode of the workpiece are determined according to the previously stored information data, real-time data, and accumulated data.
판단 단계(S6) 이후에, 기 저장된 정보데이터와 판단결과에 따라 실시간으로 측정된 구조부의 열변위에 따른 온도에 따라 직접 보정량을 직접 계산한다.After the determination step (S6), the correction amount is directly calculated according to the temperature according to the thermal displacement of the structure measured in real time according to the pre-stored information data and the determination result.
직접 보정량 계산 단계(S7) 이후에, 기 저장된 정보데이터와 판단결과에 따라 공작물의 가공과정에서 실시간으로 변화하는 가공상태와 공정모드의 다양한 변화에 따라 머신러닝을 이용한 기계학습을 통해 간접 보정량을 실시간으로 자동으로 계산한다. After the direct correction amount calculation step (S7), the indirect correction amount is measured in real time through machine learning using machine learning according to various changes in the processing mode and processing mode that change in real time during the processing of the workpiece according to the pre-stored information data and the judgment result. automatically calculated as
간접 보정량 계산 단계(S8) 이후에, 머신러닝을 이용한 기계학습을 통해 간접 조정량을 실시간으로 자동으로 계산할 때에 확인결과와 판단결과에 따라 과적합 여부를 실시간으로 자동으로 분석하고, 분석결과 과적합이 발생한 경우 간접 보정량 계산시에 선택한 머신러닝 모델과 다른 머신러닝 모델을 선택하여 간접 보정량을 실시간으로 자동으로 재계산하고 재계산된 간접 보정량에 따라 최종 보정량을 다시 계산한다. After the indirect correction amount calculation step (S8), when the indirect correction amount is automatically calculated in real time through machine learning using machine learning, overfitting is automatically analyzed in real time according to the confirmation result and the judgment result, and the analysis result is overfitting When this occurs, a machine learning model different from the selected machine learning model is selected when calculating the indirect correction amount, the indirect correction amount is automatically recalculated in real time, and the final correction amount is recalculated according to the recalculated indirect correction amount.
분석 단계(S9)에서 과적합이 발생하지 않으면 분석 단계 이후에, 계산된 직접 보정량과 간접 보정량에 따라 최종 보정량을 자동으로 계산한다.If overfitting does not occur in the analysis step (S9), the final correction amount is automatically calculated according to the calculated direct correction amount and indirect correction amount after the analysis step.
최종 보정량 계산 단계(S10) 이후에, 계산된 최종 보정량에 따라 공작물의 가공 원점을 보정한다.After the final correction amount calculation step (S10), the processing origin of the workpiece is corrected according to the calculated final correction amount.
보정 단계(S11) 이후에, 계산된 최종 보정량을 제어부에 전달하기 전에 처리정보, 운전정보, 확인결과, 판단결과, 및 축적데이터가 적어 과보정되는 경우 저역필터로 최종 보정량을 자동으로 수정하고 수정된 최종 보정량에 따라 공작물의 가공 원점을 수정한다. 즉, 수정 단계는 과보정 발생유무를 비교하여 과보정이 발생한 경우 저역 필터로 최종 보정량을 자동으로 수정하여 제어부로 전송하고, 과보정이 발생하지 않은 경우에는 기존의 보정부를 통해 최종 보정량을 그대로 제어부로 전송한다. 이러한 과보정은 공작기계의 공작물 가공 초기에 축적데이터와 운전정보, 처리정보, 직접인자, 간접인자에 대한 정보가 너무 적은 경우에 발생할 수 있다.After the correction step (S11), before transmitting the calculated final correction amount to the control unit, if the processing information, operation information, confirmation result, judgment result, and accumulated data are small and overcorrected, the final correction amount is automatically corrected with a low-pass filter and corrected Correct the machining origin of the workpiece according to the final correction amount. In other words, the correction step compares whether overcorrection has occurred, and if overcorrection occurs, the final correction amount is automatically corrected by a low-pass filter and transmitted to the control unit. If overcorrection does not occur, the final correction amount is transmitted to the control unit as it is through the existing correction unit. do. Such overcorrection may occur when there is too little information about accumulation data, operation information, processing information, direct factors, and indirect factors in the initial stage of machining a workpiece of a machine tool.
도 1 내지 도 10을 참조하여 본 발명에 의한 공작기계의 열변위 보정 장치 및 보정 방법의 작동원리와 작동과정을 설명한다.Referring to FIGS. 1 to 10 , the operating principle and operation process of the thermal displacement compensating device and compensating method for a machine tool according to the present invention will be described.
도 1에 도시된 것처럼, 밀링, 선삭, 복합 가공, 또는 사용자 지정가공을 수행하고, 이를 위해 다양한 축계를 구비하고 복합 가공을 수행하기 위한 복잡한 터닝센터나 머시닝센터와 같은 공작기계(1)의 구조부는 공작물의 가공시나 대기온도에 따라 다양한 열변위가 발생한다. 구체적으로 도 1에서 밀링스핀들에 의해 밀링 가공시에 열변위가 발생하고 이때에는 X축과 Z축 보정이 요구된다.(도 1에서 A) 또한, 대기온도 변동과 가공상태에 의해 밀링스핀들과 왼쪽에 배치된 스핀들에 의해 열변위가 발생하고 이때에는 X축, Y축, Z축의 보정이 요구된다.(도 1에서 B) 또한, 쿨런트 온도와 대기온도 변동 및 가공상태에 의해 열변위가 발생하고 이때에는 X축, Y축, Z축의 보정이 요구된다.(도 1에서 C) 또한, 스핀들과 터렛에 의해 선삭 가공시에 열변위가 발생한다.(도 1에서 D), 또한, 이러한 가공을 수행하가나 비가공시라도 구조물이 이송부를 따라 이송함에 따라 이송속도와 이송부하에 의해 열변위가 발생한다.(도 1에서 E)As shown in FIG. 1, the structure of a machine tool 1 such as a complex turning center or machining center for performing milling, turning, composite machining, or user-specified machining, and having various axis systems for this purpose, and performing composite machining. Various thermal displacements occur during the processing of blown workpieces or depending on the ambient temperature. Specifically, in FIG. 1, thermal displacement occurs during milling by the milling spindle, and at this time, X-axis and Z-axis corrections are required (A in FIG. 1). Thermal displacement occurs due to the spindle arranged in , and at this time, correction of the X-axis, Y-axis, and Z-axis is required. At this time, correction of the X, Y, and Z axes is required. (C in FIG. 1) In addition, thermal displacement occurs during turning due to the spindle and turret (D in FIG. 1). As the structure is transported along the transfer unit even when performing or not being processed, thermal displacement occurs due to the transfer speed and transfer load (E in FIG. 1).
또한, 공정모드는 공작물의 선삭 가공만을 수행하는 선삭모드, 공작물의 밀링 가공만을 수행하는 밀링모드, 공작물의 선삭 가공과 밀링 가공을 모두 수행하는 복합모드, 또는 사용자의 지정에 따라 상기 공작물에 대해 선택적 가공을 수행하는 지정모드 중 적어도 어느 하나 이상을 포함하여 구성될 수 있다. 예들 들어 밀링 공정의 시간이 길어지면 상대적으로 선삭 공정에 필요한 하부 터렛에 부착된 온도센서, 터렛 이송축 온도 센서가 상대적으로 열변위가 적게 발생하고 공작기계 전체의 열변위 영향이 시간이 경과할수록 부가적인 요소가 된다. 또한, 이때에 밀링 스핀들의 모터의 부하와 컬럼의 모터 부하는 상대적으로 하부 터렛이나 터렛 이송축보다 열변위에 더욱 많은 영향을 미치게 되어 간접인자 중에서도 좀더 중심적인 요소가 된다. 이처럼, 공작기계에서 가공을 수행하는 과정에서 구조물의 열변위에 따른 온도 변환에 따른 직접인자 이외에 공작물의 가공상태와 공정모드에 따라 간접인자는 실시간으로 수시로 다양하게 변화하고, 너무 많은 변수로 중요도와 가중치가 변경되면서 변화함에 따라 직접인자에 따른 직접 보정량과 같이 단순한 계산을 통해 산출할 수 없다.In addition, the process mode is a turning mode that performs only turning of the workpiece, a milling mode that performs only milling of the workpiece, a combined mode that performs both turning and milling of the workpiece, or selectively for the workpiece according to user designation. It may be configured to include at least one or more of designated modes for performing processing. For example, if the time of the milling process becomes longer, the temperature sensor attached to the lower turret and the turret feed axis temperature sensor, which are required for the turning process, generate relatively less thermal displacement, and the effect of thermal displacement on the entire machine tool increases over time. become a negative factor. In addition, at this time, the motor load of the milling spindle and the motor load of the column relatively have more influence on the thermal displacement than the lower turret or turret feed axis, and thus become more central factors among indirect factors. In this way, in the process of machining in a machine tool, in addition to the direct factor according to the temperature conversion according to the thermal displacement of the structure, the indirect factor changes variously in real time according to the processing state and process mode of the workpiece, and the importance and weight are too many variables. It cannot be calculated through a simple calculation like the direct correction amount according to the direct factor as it changes as .
이처럼, 상술한 바와 같이 밀링, 선삭, 복합, 또는 지정 가공 중 적어도 어느 하나 이상을 포함하여 가공을 수행하고, 이를 위해 다양한 축계를 구비하고 복합 가공을 수행하기 위한 복잡한 터닝센터나 머시닝센터와 같은 공작기계의 경우에는 간접적으로 보정량을 산출하는 것이 거의 불가능하거나 산출하는 프로그램 모델에 따라 보정량의 신뢰성과 정확성 및 예측성이 현저히 낮아 문제가 발생할 수 있다.In this way, as described above, machining is performed including at least one of milling, turning, composite, or designated machining, and for this purpose, a complex turning center or machining center equipped with various axis systems and performing complex machining is a workpiece. In the case of machines, it is almost impossible to calculate the correction amount indirectly, or the reliability, accuracy, and predictability of the correction amount are remarkably low depending on the program model to be calculated, and problems may occur.
이에 따라 본 발명에 의한 공작기계의 열변위 보정 장치 및 보정 방법은 도 5에 도시된 바와 같이 구조부의 열변위에 따른 온도에 의한 직접인자를 반영한 직접 보정량과 직접인자 이외에 공작물의 가공상태와 가공모드에 의해 다양하게 변화하는 가공부RPM, 가공부 모터 부하, 이송부의 이송 속도, 이송부의 모터 부하, 쿨런트 온도의 변화를 간접인자로 반영한 간접 보정량을 산출하고 최종 보정량을 산출하여 가공을 수행함에 따라 기존의 미반영 부분을 반영하여 실제 열변위 발생과의 시간 지연 발생을 최소화하여 실시간으로 보정을 수행함에 따라 가공의 정밀도와 보정의 정확도와 신뢰성을 극대화할 수 있다.Accordingly, as shown in FIG. 5, the apparatus and method for compensating thermal displacement of a machine tool according to the present invention depend on the processing state and processing mode of the workpiece in addition to the direct correction amount reflecting the direct factor by temperature according to the thermal displacement of the structural part and the direct factor. The indirect correction amount is calculated by reflecting the change in processing part RPM, processing part motor load, conveying speed of the conveying part, motor load of the conveying part, and coolant temperature as indirect factors, and the final correction amount is calculated to perform processing. It is possible to maximize the precision of processing and the accuracy and reliability of correction by performing correction in real time by minimizing the occurrence of time delay with the actual occurrence of thermal displacement by reflecting the unreflected part of the .
구체적으로, 본 발명은 상술한 바와 같은 문제점을 해결하기 위해 1차적으로 도 1에 도시된 것처럼 1개 이상의 센싱부가 구조부에 배치되고, 도 2 내지 도 4 및 도 6에 도시된 것처럼, 센싱부는 구조부의 열변위에 따른 온도를 측정하여 이를 열변위 보정부로 전송하고, 연산부의 직접 보정량 계산부에서 직접계수와 직접 가중치를 통해 시간지연 없이 직접 보정량을 1차적으로 계산한다. Specifically, in order to solve the above-described problems, the present invention primarily arranges one or more sensing units in a structure unit as shown in FIG. 1, and as shown in FIGS. 2 to 4 and 6, the sensing unit is a structural unit. The temperature according to the thermal displacement of is measured and transmitted to the thermal displacement correction unit, and the direct correction amount calculation unit of the calculation unit calculates the correction amount primarily without time delay through direct coefficients and direct weights.
또한, 도 2 내지 도 4 및 도 6에 도시된 것처럼, 상술한 바와 같이 밀링, 선삭, 복합 공정을 수행하는 다축을 구비한 공작기계의 경우 공작물의 가공시에 구조부의 다양한 열변위가 발생하고 열변위 보정부는 구조부의 열변위에 따른 온도에 의한 직접인자 이외에 공작물의 가공상태와 공정모드에 따라 실시간으로 다양하게 변화하는 가공부RPM, 가공부 모터 부하, 이송부의 이송 속도, 이송부의 모터 부하, 쿨런트 온도의 변화를 간접인자로 고려하여 연산부의 간접 보정량 계산부에서 시시각각 다양한 변수와 조합으로 변화되는 축적데이터와 수신데이터 및 실시간데이터와 운전정보와 처리정보와 직접인자와 간접인자를 기반으로 지도학습(Supervised Learning), 비지도학습(Unsupervised Learning), 강화학습(Reinforcement Learning)을 수행하여 간접 보정량을 실시간으로 자동으로 정확하고 예측가능하며 신뢰성 있게 계산한다.In addition, as shown in FIGS. 2 to 4 and 6, in the case of a multi-axis machine tool that performs milling, turning, and complex processes as described above, various thermal displacements of the structural part occur during processing of the workpiece, and thermal change In addition to the direct factor by the temperature according to the thermal displacement of the structural part, the correction part above is the processing part RPM that varies in real time according to the processing state and process mode of the workpiece, the motor load of the processing part, the conveying speed of the conveying part, the motor load of the conveying part, and the coolant Considering the change in temperature as an indirect factor, supervised learning based on accumulated data, received data, real-time data, operation information, processing information, direct factors and indirect factors that change with various variables and combinations at the moment in the indirect correction calculation unit of the calculation unit Supervised Learning), Unsupervised Learning, and Reinforcement Learning are performed to automatically, accurately, predictably, and reliably calculate the amount of indirect correction in real time.
도 9에서 위쪽의 그래프는 10초마다 축적데이터를 생성하여 보정이 없는 경우(도 9에서 before)에서 10시간 동안 LSTM을 통해 보정한 경우(도 9에서 lstm)와 오차값(도 9에서 error)을 비교한 것이고, 도 9에서 아래쪽의 그래프는 총 1시간 동안 축적데이터를 생성하여 보정이 없는 경우(도 9에서 before)에서 10시간 동안 LSTM을 통해 보정한 경우(도 9에서 lstm)와 오차값(도 9에서 error)을 비교한 것이다. 도 9에 도시된 것처럼, 너무 많은 축적데이터가 확보된 경우에 과적합(overfitting)이 발생하고, 결국 오차값이 증가되어 정확성과 신뢰성이 감소하는 문제점을 나타낸다. In FIG. 9, the upper graph shows the case where there is no correction by generating accumulated data every 10 seconds (before in FIG. 9) and the case of correction through LSTM for 10 hours (lstm in FIG. 9) and the error value (error in FIG. 9) , and the lower graph in FIG. 9 shows the case of correction through LSTM for 10 hours (lstm in FIG. 9) and the error value when there is no correction by generating accumulated data for a total of 1 hour (before in FIG. 9) (Error in FIG. 9) is compared. As shown in FIG. 9 , when too much accumulated data is secured, overfitting occurs, resulting in an increase in error value, resulting in a decrease in accuracy and reliability.
이를 방지하기 위해 간접 보정량 계산부에서 간접 보정량을 계산후에 분석부는 간접 보정량 계산부에서 머신러닝을 이용한 기계학습을 통해 간접 보정량을 실시간으로 자동으로 계산할 때에 확인부의 확인결과와 판단부의 판단결과에 따라 과적합(overfitting) 여부를 실시간으로 자동으로 분석하고, 분석결과 과적합이 발생한 경우 상기 간접 보정량 계산부에서 선택한 머신러닝 모델과 다른 머신러닝 모델을 선택하여 간접 보정량 계산부가 실시간으로 자동으로 간접 보정량을 재계산하고 재계산된 간접 보정량을 최종 보정량 계산부에 전달한다. 구체적으로 축적데이터가 제어부의 제어와 확인부의 확인결과 및 판단부의 판단결과에 따라 가공부가 작동하는 순간부터 10초 주기로 최대 30분까지의 데이터를 기계학습데이터에 보관함에 따라 과적합 문제가 1차적으로 방지되고, 분석부를 통해 2차적으로 재보정을 통해 방지하여 기존의 미반영 부분을 반영하여 실제 열변위 발생과의 시간 지연 발생을 최소화하여 실시간으로 보정을 수행함에 따라 가공의 정밀도와 보정의 정확도와 신뢰성을 극대화할 수 있다.To prevent this, after calculating the indirect correction amount in the indirect correction amount calculation unit, the analysis unit automatically calculates the indirect correction amount in real time through machine learning using machine learning in the indirect correction amount calculation unit. Overfitting is automatically analyzed in real time, and if overfitting occurs as a result of the analysis, a machine learning model different from the machine learning model selected in the indirect correction calculation unit is selected, and the indirect correction calculation unit automatically recalculates the indirect correction amount in real time. Calculate and transfer the recalculated indirect correction amount to the final correction amount calculator. Specifically, the overfitting problem is primarily caused by storing data for up to 30 minutes in machine learning data at intervals of 10 seconds from the moment the processing unit operates according to the control of the control unit, the confirmation result of the confirmation unit, and the judgment result of the judgment unit. processing precision and correction accuracy and reliability by performing correction in real time by minimizing the occurrence of time delay with the actual thermal displacement occurrence by reflecting the existing non-reflected part by preventing secondary recalibration through the analysis unit. can maximize
이후, 도 2 내지 도 4 및 도 6에 도시된 것처럼 연산부의 최종 보정량 계산부에서 산출된 직접 보정량과 간접 보정량을 합산하여 최종 보정량을 신속하고 정확하며 실시간으로 산출한다.Then, as shown in FIGS. 2 to 4 and 6 , the final correction amount is calculated quickly, accurately, and in real time by adding the direct correction amount and the indirect correction amount calculated by the final correction amount calculation unit of the operation unit.
이후 최종 보정량을 보정부로 전송하고, 보정부는 다시 이를 제어부로 전송하여, 제어부는 전송된 최종 보정량만큼 가공원점을 보정하여 공작기계의 열변위에 따른 보정을 통해 공작물의 가공을 수행한다.Thereafter, the final correction amount is transmitted to the correction unit, and the correction unit transmits it to the control unit again, and the control unit corrects the machining origin by the transmitted final correction amount and performs processing of the workpiece through compensation according to the thermal displacement of the machine tool.
즉, 도 7에 도시된 것처럼, 총 20시간(Hour) 동안 축적데이터가 360개로 LSTM(long short term memory)으로 머신러닝에 의한 기계학습으로 간접 보정량을 계산하고, 이후 최종 보정량을 수행(도 7에서 Lstm)하면 최종적으로 시간이 경과할수록 보정을 수행하지 않은 경우(도 7에서 before)보다 오차값(도 7에서 error)이 수렴하여 최종 보정량이 용이하게 보정됨을 알 수 있다. That is, as shown in FIG. 7, an indirect correction amount is calculated by machine learning by machine learning with long short term memory (LSTM) with 360 accumulated data for a total of 20 hours (Hour), and then the final correction amount is performed (FIG. 7 In Lstm), it can be seen that the error value (error in FIG. 7) converges and the final correction amount is easily corrected as compared to the case where correction is not performed (before in FIG. 7) as time elapses.
마찬가지로 도 8에 도시된 것처럼 총 20시간(Hour) 동안 축적데이터가 360개로 다층 퍼셉트론(Multilayer Perceptrons, MLP)으로 머신러닝에 의한 기계학습으로 간접 보정량을 계산하고, 이후 최종 보정량을 수행(도 8에서 MLP)하면 최종적으로 시간이 경과할수록 보정을 수행하지 않은 경우(도 8에서 before)보다 오차값(도 8에서 error)이 수렴하여 최종 보정량이 용이하게 보정됨을 알 수 있다. Similarly, as shown in FIG. 8, with 360 accumulated data for a total of 20 hours (Hour), the indirect correction amount is calculated by machine learning by machine learning with Multilayer Perceptrons (MLP), and then the final correction amount is performed (in FIG. 8, MLP), it can be seen that the error value (error in FIG. 8) converges and the final correction amount is easily corrected as compared to the case where correction is not performed (before in FIG. 8) as time elapses.
결과적으로 축적데이터와 실시간데이터와 운전정보와 처리정보가 충분하게 확보된 상태에서 직접 보정량은 기존 방식과 동일하게 신속하게 직접 계산하고, 간접 보정량은 머신러닝의 모델에 관계없이 기계학습을 통해 실시간으로 자동으로 산출하여 최종 보정량을 신속하게 계산하면 밀링 공정, 선삭 공정, 복합 공정, 지정 공정을 수행하기 위해 다양한 축계를 구비하는 복합 공작기계에서의 구조물의 열변위에 따른 보정시에 종래와 같은 시간지연과 정확성과 신뢰성 문제를 해결하면서 예측가능한 상태에서 신속하고 정밀하게 최종 보정량을 산출하여 가공원점을 보정하여 공작물의 가공을 수행함에 따라 가공정밀도를 향상하고 생산성을 증대시키며, 사용자와 작업자의 편의를 도모할 수 있다.As a result, in a state where accumulated data, real-time data, operation information, and processing information are sufficiently secured, the direct correction amount is directly calculated in the same way as the existing method, and the indirect correction amount is calculated in real time through machine learning regardless of the machine learning model. If the final correction amount is automatically calculated and quickly calculated, the time delay and the conventional time delay and While solving the accuracy and reliability problem, it calculates the final compensation amount quickly and precisely in a predictable state, corrects the machining origin, and processes the workpiece to improve machining precision, increase productivity, and promote convenience for users and operators. can
그러나 도 10에 도시된 것처럼, 밀링 공정, 선삭 공정, 복합 공정, 지정 공정을 수행하기 위해 다양한 축계를 구비하는 복합 공작기계에서 가공이 시작되어 축적데이터 등이 적으면 최적화가 되지 않아 도 10의 F부분처럼 과보정이 발생한다. 즉, 예를 들어 가공 초기와 같이 축적데이터가 충분히 확보되지 않은 경우에는 데이터 부족에 따라 머신러닝에 의한 기계학습을 통한 간접 보정량 계산에서 과보정이 발생할 수 있다. 이에 따라 보정부에서 최종 보정량을 제어부에 전달하기 전에 처리정보, 운전정보, 확인부의 확인결과, 판단부의 판단결과, 및 기계학습데이터 저장부에 저장된 데이터가 적어 과보정되는 경우 저역필터(low pass filter)로 보정부의 최종 보정량을 자동으로 수정(도 10에서 G부분)하고 오차값을 0에 가깝게 수정하여 수정된 최종 보정량을 제어부로 전송하여 수정된 최종 보정량으로 열변위 보정을 한 상태로 가공을 수행한다. 이에 따라 최종 보정량의 정확성과 신뢰성을 향상하여 가공정밀도를 극대화할 수 있다.However, as shown in FIG. 10, if the machining is started in a complex machine tool having various axis systems to perform a milling process, a turning process, a complex process, and a designated process, and there is little accumulated data, optimization is not performed. Overcorrection occurs, as in That is, when sufficient accumulation data is not secured, for example, at the beginning of processing, overcorrection may occur in indirect correction amount calculation through machine learning based on machine learning due to lack of data. Accordingly, before the correction unit transfers the final correction amount to the control unit, if the processing information, the operation information, the confirmation result of the confirmation unit, the judgment result of the determination unit, and the data stored in the machine learning data storage unit are too small, a low pass filter (low pass filter) is used. ), the final correction amount of the correction unit is automatically corrected (part G in FIG. 10), the error value is corrected close to 0, and the corrected final correction amount is transmitted to the control unit, and processing is performed with thermal displacement correction with the corrected final correction amount. carry out Accordingly, it is possible to maximize the processing precision by improving the accuracy and reliability of the final correction amount.
이처럼, 본 발명에 의한 공작기계의 열변위 보정 장치 및 보정 방법은 밀링, 선삭, 복합, 또는 지정 가공 중 적어도 어느 하나 이상을 포함하여 가공을 수행하고, 이를 위해 다양한 축계를 구비하고 복합 가공을 수행하기 위한 복잡한 터닝센터나 머시닝센터와 같은 공작기계에서 열변위 보정부에서 온도 센서에서 센싱된 구조부의 열변위에 따른 온도인 직접인자를 통해 직접 보정량을 직접 계산을 통해 산출하고, 구조부의 열변위에 따른 온도와 같은 직접인자 이외에 실시간으로 변화되는 스핀들 RPM, 모터 부하, 이송축 부하, 이송축 속도와 같은 간접인자를 머신러닝을 통해 기계학습하여 간접 보정량을 산출하고, 최종적으로 직접 보정량과 간접 보정량으로 구조물의 열변위에 의한 최종 보정량을 자동으로 실시간으로 산출하고 이를 즉각적으로 반영하여 공작물의 가공을 수행함에 따라 기존 구조물 온도변형에 의한 시간지연과 온도센서의 설치 개수와 설치위치에 의한 시간지연을 방지하고, 단순히 머신러닝을 통해 수행하는 부정확한 보정 온도 추정보다 정확하고 신뢰성 있는 구조물의 열변위에 의한 가공원점 보정을 위한 최종 보정값을 실시간으로 자동으로 산출하여 최종 보정량을 자동으로 반영하여 공작물의 가공을 수행함에 따라 가공정밀도와 생산성을 향상하고, 불필요한 불량품 발생을 방지하여 자원을 보존하고 사용자와 작업자의 편의성을 증대시킬 수 있다.As such, the apparatus and method for compensating for thermal displacement of a machine tool according to the present invention perform processing including at least one of milling, turning, composite, and designated processing, and for this purpose, various shaft systems are provided and complex processing is performed. In machine tools such as complex turning centers or machining centers, the thermal displacement compensator calculates the amount of correction through direct calculation through direct factor, which is the temperature according to the thermal displacement of the structural part sensed by the temperature sensor in the thermal displacement compensator, and the temperature according to the thermal displacement of the structural part. In addition to direct factors such as, indirect factors such as spindle RPM, motor load, feed shaft load, and feed shaft speed, which change in real time, are machine learned through machine learning to calculate the indirect correction amount, and finally, the direct correction amount and the indirect correction amount determine the structure of the structure. The final correction amount due to thermal displacement is automatically calculated in real time and reflected immediately to process the workpiece. As a result, time delay due to temperature deformation of existing structures and time delay due to the number and location of temperature sensors installed are prevented, and simply More accurate and reliable than inaccurate correction temperature estimation performed through machine learning. The final correction value for the correction of the processing origin by the thermal displacement of the structure is automatically calculated in real time, and the final correction amount is automatically reflected to process the workpiece. It can improve processing precision and productivity, prevent unnecessary defective products, conserve resources, and increase user and operator convenience.
또한, 이상 설명된 본 발명에 따른 실시예는 다양한 컴퓨터 구성요소를 통하여 실행될 수 있는 프로그램 명령어의 형태로 구현되어 컴퓨터 판독 가능한 기록 매체에 기록될 수 있다. 상기 컴퓨터 판독 가능한 기록 매체는 프로그램 명령어, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 컴퓨터 판독 가능한 기록 매체에 기록되는 프로그램 명령어는 본 발명을 위하여 특별히 설계되고 구성된 것이거나 컴퓨터 소프트웨어 분야의 당업자에게 공지되어 사용 가능한 것일 수 있다. 컴퓨터 판독 가능한 기록 매체의 예에는, 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM 및 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체(magneto-optical medium), 및 ROM, RAM, 플래시 메모리 등과 같은, 프로그램 명령어를 저장하고 실행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령어의 예에는, 컴파일러에 의하여 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용하여 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드도 포함된다. 하드웨어 장치는 본 발명에 따른 처리를 수행하기 위하여 하나 이상의 소프트웨어 모듈로 변경될 수 있으며, 그 역도 마찬가지이다.In addition, the embodiments according to the present invention described above may be implemented in the form of program instructions that can be executed through various computer components and recorded on a computer-readable recording medium. The computer readable recording medium may include program instructions, data files, data structures, etc. alone or in combination. Program instructions recorded on the computer-readable recording medium may be specially designed and configured for the present invention, or may be known and usable to those skilled in the art of computer software. Examples of computer-readable recording media include magnetic media such as hard disks, floppy disks and magnetic tapes, optical recording media such as CD-ROMs and DVDs, and magneto-optical media such as floptical disks. medium), and hardware devices specially configured to store and execute program instructions, such as ROM, RAM, flash memory, and the like. Examples of program instructions include high-level language codes that can be executed by a computer using an interpreter or the like as well as machine language codes generated by a compiler. A hardware device may be modified with one or more software modules to perform processing according to the present invention and vice versa.
본 발명에서 설명하는 특정 실행들은 일 실시예로서, 어떠한 방법으로도 본 발명의 범위를 한정하는 것은 아니다. 명세서의 간결함을 위하여, 종래 전자적인 구성들, 제어 시스템들, 소프트웨어, 상기 시스템들의 다른 기능적인 측면들의 기재는 생략될 수 있다. 또한, 도면에 도시된 구성 요소들 간의 선들의 연결 또는 연결 부재들은 기능적인 연결 및/또는 물리적 또는 회로적 연결들을 예시적으로 나타낸 것으로서, 실제 장치에서는 대체 가능하거나 추가의 다양한 기능적인 연결, 물리적인 연결, 또는 회로 연결들로서 나타내어질 수 있다. 또한, “필수적인”, “중요하게” 등과 같이 구체적인 언급이 없다면 본 발명의 적용을 위하여 반드시 필요한 구성 요소가 아닐 수 있다.Specific implementations described in the present invention are only examples and do not limit the scope of the present invention in any way. For brevity of the specification, description of conventional electronic components, control systems, software, and other functional aspects of the systems may be omitted. In addition, the connection of lines or connecting members between the components shown in the drawings are examples of functional connections and / or physical or circuit connections, which can be replaced in actual devices or additional various functional connections, physical connection, or circuit connections. In addition, if there is no specific reference such as “essential” or “important”, it may not be a component necessarily required for the application of the present invention.
또한, 설명한 본 발명의 상세한 설명에서는 본 발명의 바람직한 실시예를 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자 또는 해당 기술분야에 통상의 지식을 갖는 자라면 후술할 특허청구범위에 기재된 본 발명의 사상 및 기술 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다. 따라서, 본 발명의 기술적 범위는 명세서의 상세한 설명에 기재된 내용으로 한정되는 것이 아니라 특허청구범위에 의해 정하여져야만 할 것이다.In addition, although the detailed description of the present invention described has been described with reference to preferred embodiments of the present invention, those skilled in the art or those having ordinary knowledge in the art will find the scope of the present invention described in the claims to be described later. It will be understood that various modifications and changes can be made to the present invention without departing from the spirit and technical scope. Therefore, the technical scope of the present invention is not limited to the contents described in the detailed description of the specification, but should be defined by the claims.
<부호의 설명><Description of codes>
1 : 공작기계1: machine tool
10 : 열변위 보정장치10: thermal displacement compensation device
100 : 구조부100: structural part
200 : 센싱부200: sensing unit
300 : 열변위 보정부300: thermal displacement correction unit
400 : 제어부400: control unit

Claims (19)

  1. 공작물의 가공시에 열변위를 보정하기 위한 공작기계의 열변위 보정 장치에 있어서,In the thermal displacement compensation device of a machine tool for correcting thermal displacement during processing of a workpiece,
    상기 공작물 가공을 위해 상기 공작물과 공구를 상대이동시킬 수 있는 구조물이 설치되는 구조부;a structural unit in which a structure capable of relatively moving the workpiece and the tool for machining the workpiece is installed;
    상기 구조부의 온도를 측정하는 센싱부;a sensing unit to measure the temperature of the structural unit;
    직접인자 및 상기 직접인자 이외에 실시간으로 변화되는 간접인자를 머신러닝을 통해 기계학습하여 상기 구조부의 열변위에 따른 보정량을 실시간으로 자동으로 산출하는 열변위 보정부; 및A thermal displacement correcting unit that automatically calculates a correction amount according to the thermal displacement of the structure unit in real time by machine learning through machine learning a direct factor and an indirect factor that changes in real time in addition to the direct factor; and
    상기 열변위 보정부에서 산출된 보정량을 즉각적으로 반영하여 상기 공작물의 가공을 수행하는 제어부;를 포함하는 것을 특징으로 하는 공작기계의 열변위 보정 장치.The thermal displacement compensating device for a machine tool comprising a; control unit for performing processing of the workpiece by immediately reflecting the correction amount calculated by the thermal displacement compensating unit.
  2. 제1항에 있어서,According to claim 1,
    상기 직접인자는 상기 센싱부에서 측정된 상기 구조부의 온도이고,The direct factor is the temperature of the structure part measured by the sensing part,
    상기 간접인자는 상기 공작물의 가공과정에서 실시간으로 변화하는 가공상태와 공정모드인 것을 특징으로 하는 공작기계의 열변위 보정 장치.The thermal displacement compensation device for a machine tool, characterized in that the indirect factor is a processing state and a process mode that change in real time during the processing of the workpiece.
  3. 제2항에 있어서,According to claim 2,
    상기 공정모드는,The process mode is
    상기 공작물의 선삭 가공만을 수행하는 선삭모드;a turning mode for performing only turning processing of the workpiece;
    상기 공작물의 밀링 가공만을 수행하는 밀링모드; a milling mode in which only milling of the workpiece is performed;
    상기 공작물의 선삭 가공과 밀링 가공을 모두 수행하는 복합모드; 또는 a combined mode for performing both turning and milling of the workpiece; or
    사용자의 지정에 따라 상기 공작물에 대해 선택적 가공을 수행하는 지정모드; 중 적어도 어느 하나 이상을 포함하는 것을 특징으로 하는 공작기계의 열변위 보정 장치.a designation mode for selectively processing the workpiece according to a user's designation; A thermal displacement compensation device for a machine tool comprising at least one of the following.
  4. 제2항에 있어서,According to claim 2,
    상기 구조부는,The structural part,
    밀링스핀들, 터렛, 및 스핀들을 구비하고 상기 공작물을 직접 가공하는 가공부;A milling spindle, a turret, and a machining unit provided with a spindle and directly processing the workpiece;
    상기 가공부를 이송시키는 이송부; 및a transfer unit for transferring the processing unit; and
    상기 가공부와 상기 이송부가 이동 가능하도록 설치되는 지지부;를 포함하는 것을 특징으로 하는 공작기계의 열변위 보정 장치.Thermal displacement compensating device for a machine tool comprising a;
  5. 제4항에 있어서,According to claim 4,
    상기 간접인자는 상기 공작물의 가공상태와 공정모드에 의한 가공부RPM, 가공부 모터 부하, 이송부의 이송 속도, 이송부의 모터 부하의 변화인 것을 특징으로 하는 공작기계의 열변위 보정 장치.The thermal displacement compensation device of the machine tool, characterized in that the indirect factor is a change in the machining part RPM, the processing part motor load, the conveying speed of the conveying part, and the motor load of the conveying part according to the processing state and the process mode of the workpiece.
  6. 제4항에 있어서,According to claim 4,
    상기 센싱부는 상기 가공부, 상기 이송부, 또는 상기 지지부 중 적어도 어느 하나에 설치되는 것을 특징으로 하는 공작기계의 열변위 보정 장치.The thermal displacement compensation device for a machine tool, characterized in that the sensing unit is installed on at least one of the processing unit, the transfer unit, and the support unit.
  7. 제4항에 있어서,According to claim 4,
    상기 제어부는,The control unit,
    상기 공작물의 가공을 수행하기 위한 가공프로그램, 구동프로그램, 및 공정모드에 대한 정보를 저장하는 메모리부;a memory unit for storing information about a processing program, a driving program, and a process mode for performing machining of the workpiece;
    상기 메모리부에 저장된 정보와 상기 열변위 보정부로부터 수신된 보정량에 따라 상기 공작물의 가공을 수행하는 처리부;a processing unit configured to process the workpiece according to the information stored in the memory unit and the correction amount received from the thermal displacement correcting unit;
    상기 처리부에 의해 작동하는 상기 가공부와 상기 이송부의 운전정보를 수집하는 정보수집부; 및an information collection unit that collects operation information of the processing unit and the transfer unit operated by the processing unit; and
    상기 정보수집부에서 수집된 운전정보를 상기 열변위 보정부에 전송하거나 상기 열변위 보정부에서 산출된 보정량을 수신하는 송수신부;를 포함하는 것을 특징으로 하는 공작기계의 열변위 보정 장치.The thermal displacement compensating device for a machine tool, comprising: a transceiver for transmitting the operation information collected by the information collection unit to the thermal displacement compensating unit or receiving a correction amount calculated by the thermal displacement compensating unit.
  8. 제7항에 있어서,According to claim 7,
    상기 제어부는,The control unit,
    상기 메모리부, 상기 처리부의 처리정보, 상기 정보수집부에 수집된 운전정보, 및 상기 송수신부를 통해 송수신된 정보를 표시하는 표시부;를 더 포함하는 것을 특징으로 하는 공작기계의 열변위 보정 장치.The thermal displacement compensation device for a machine tool further comprising: a display unit for displaying the memory unit, the processing information of the processing unit, the operation information collected by the information collection unit, and the information transmitted and received through the transmission and reception unit.
  9. 제7항에 있어서,According to claim 7,
    상기 열변위 보정부는,The thermal displacement correction unit,
    상기 직접인자 및 상기 간접인자를 머신러닝을 통해 기계학습하여 상기 구조부의 열변위에 따른 보정량을 실시간으로 자동으로 산출하기 위한 정보를 저장하는 데이터베이스부;a database unit for storing information for automatically calculating a correction amount according to the thermal displacement of the structure unit in real time by machine learning the direct factor and the indirect factor through machine learning;
    상기 데이터베이스부에 저장된 정보와 상기 제어부로부터 수신된 처리정보와 운전정보에 따라 상기 가공부에서의 가공 시작여부를 확인하는 확인부;a confirmation unit for confirming whether or not processing has started in the processing unit according to the information stored in the database unit and processing information and operation information received from the control unit;
    상기 확인부의 확인결과에 따라 상기 가공부에서 가공이 시작된 경우 상기 공작물의 가공상태와 공정모드를 판단하는 판단부;a determination unit for determining a processing state and a process mode of the workpiece when processing is started in the processing unit according to a confirmation result of the confirmation unit;
    상기 데이터베이스부에 저장된 정보, 상기 제어부로부터 수신된 처리정보와 운전정보, 상기 확인부의 확인결과, 및 상기 판단부의 판단결과에 따라 상기 구조부의 열변위에 따른 최종 보정량을 연산하는 연산부; 및a calculation unit for calculating a final correction amount according to the thermal displacement of the structure unit according to information stored in the database unit, processing information and operation information received from the control unit, a confirmation result of the confirmation unit, and a determination result of the determination unit; and
    상기 데이터베이스부에 저장된 정보와 상기 연산부에서 연산된 최종 보정량을 상기 제어부로 전송하는 보정부;를 포함하는 것을 특징으로 하는 공작기계의 열변위 보정 장치.and a correction unit for transmitting the information stored in the database unit and the final correction amount calculated in the operation unit to the control unit.
  10. 제9항에 있어서,According to claim 9,
    상기 데이터베이스부는,The database unit,
    직접계수, 직접 가중치, 및 스위칭에 대한 데이터를 저장하는 기본데이터 저장부;a basic data storage unit for storing data on direct coefficients, direct weights, and switching;
    상기 송수신부로부터 수신된 데이터를 저장하는 수신데이터 저장부;a received data storage unit for storing the data received from the transceiver;
    머신러닝을 통해 기계학습을 수행하기 위한 기계학습 프로그램과 축적데이터를 저장하는 기계학습데이터 저장부; 및a machine learning data storage unit for storing a machine learning program and accumulation data for performing machine learning through machine learning; and
    상기 센싱부로부터 센싱된 데이터와 상기 공작물의 가공상태와 공정모드에 의한 가공부RPM, 가공부 모터 부하, 이송부의 이송 속도, 이송부의 모터 부하의 변화량을 실시간으로 저장하는 실시간데이터 저장부;를 포함하는 것을 특징으로 하는 공작기계의 열변위 보정 장치.A real-time data storage unit for storing the data sensed by the sensing unit, the processing state of the workpiece, and the amount of change in processing RPM, motor load of the processing unit, feed speed of the transfer unit, and motor load of the transfer unit according to the process mode in real time. A thermal displacement compensating device for a machine tool, characterized in that for doing.
  11. 제10항에 있어서,According to claim 10,
    상기 연산부는,The calculation unit,
    상기 확인부의 확인결과, 상기 판단부의 판단결과, 상기 기본데이터 저장부에 저장된 데이터와 상기 실시간데이터 저장부에 저장된 데이터와 상기 센싱부에서 측정된 상기 구조부의 온도에 따라 직접 보정량을 직접 계산하는 직접 보정량 계산부;A direct correction amount that directly calculates a correction amount according to the confirmation result of the confirmation unit, the judgment result of the determination unit, the data stored in the basic data storage unit, the data stored in the real-time data storage unit, and the temperature of the structure measured by the sensing unit. calculator;
    상기 확인부의 확인결과, 상기 판단부의 판단결과, 상기 기본데이터 저장부에 저장된 데이터, 상기 수신데이터 저장부에 저장된 데이터, 상기 실시간데이터 저장부에 저장된 데이터, 상기 기계학습데이터 저장부에 저장된 데이터, 및 가공부RPM, 가공부 모터 부하, 이송부의 이송 속도, 이송부의 모터 부하의 변화에 따라 머신러닝을 이용한 기계학습을 통해 간접 보정량을 실시간으로 자동으로 계산하는 간접 보정량 계산부; 및The confirmation result of the confirmation unit, the determination result of the determination unit, data stored in the basic data storage unit, data stored in the received data storage unit, data stored in the real-time data storage unit, data stored in the machine learning data storage unit, and An indirect correction amount calculation unit that automatically calculates an indirect correction amount in real time through machine learning using machine learning according to changes in processing part RPM, processing part motor load, conveying speed of the conveying part, and motor load of the conveying part; and
    상기 직접 보정량 계산부에서 계산된 직접 보정량과 상기 간접 보정량 계산부에서 계산된 간접 보정량에 따라 최종 보정량을 계산하는 최종 보정량 계산부;를 포함하는 것을 특징으로 하는 공작기계의 열변위 보정 장치.and a final correction amount calculation unit for calculating a final correction amount according to the direct correction amount calculated by the direct correction amount calculation unit and the indirect correction amount calculated by the indirect correction amount calculation unit.
  12. 제11항에 있어서,According to claim 11,
    상기 연산부는,The calculation unit,
    상기 간접 보정량 계산부에서 머신러닝을 이용한 기계학습을 통해 간접 보정량을 실시간으로 자동으로 계산할 때에 상기 확인부의 확인결과와 상기 판단부의 판단결과에 따라 과적합 여부를 실시간으로 자동으로 분석하고, 분석결과 과적합이 발생한 경우 상기 간접 보정량 계산부에서 선택한 머신러닝 모델과 다른 머신러닝 모델을 선택하여 상기 간접 보정량 계산부가 실시간으로 자동으로 간접 보정량을 재계산하고 재계산된 간접 보정량을 상기 최종 보정량 계산부에 전달하는 분석부;를 포함하는 것을 특징으로 하는 공작기계의 열변위 보정 장치.When the indirect correction amount calculation unit automatically calculates the indirect correction amount in real time through machine learning using machine learning, the overfitting is automatically analyzed in real time according to the confirmation result of the confirmation unit and the judgment result of the judgment unit, and the analysis result is overloaded When a sum occurs, a machine learning model different from the machine learning model selected by the indirect correction calculation unit is selected, the indirect correction amount calculation unit automatically recalculates the indirect correction amount in real time, and the recalculated indirect correction amount is transmitted to the final correction amount calculation unit. A thermal displacement compensating device for a machine tool, comprising: an analysis unit to do.
  13. 제11항에 있어서,According to claim 11,
    상기 열변위 보정부는,The thermal displacement correction unit,
    상기 보정부에서 최종 보정량을 상기 제어부에 전달하기 전에 상기 처리정보, 상기 운전정보, 상기 확인부의 확인결과, 상기 판단부의 판단결과, 및 상기 기계학습데이터 저장부에 저장된 데이터가 적어 과보정되는 경우 저역필터로 상기 보정부의 최종 보정량을 자동으로 수정하고 수정된 최종 보정량을 상기 제어부로 전송하는 수정부;를 포함하는 것을 특징으로 하는 공작기계의 열변위 보정 장치.Before the correction unit transfers the final correction amount to the control unit, if the processing information, the driving information, the confirmation result of the confirmation unit, the judgment result of the determination unit, and the data stored in the machine learning data storage unit are small, the low-pass signal is overcorrected. A correction unit for automatically correcting the final correction amount of the correction unit with a filter and transmitting the corrected final correction amount to the controller.
  14. 제11항에 있어서,According to claim 11,
    상기 축적데이터는 상기 제어부의 제어와 상기 확인부의 확인결과 및 상기 판단부의 판단결과에 따라 상기 가공부가 작동하는 순간부터 10초 주기로 최대 30분까지의 데이터를 보관하는 것을 특징으로 하는 공작기계의 열변위 보정 장치.The accumulated data is the thermal displacement of the machine tool, characterized in that the storage of data for up to 30 minutes in a 10-second period from the moment the processing unit operates according to the control of the control unit, the confirmation result of the confirmation unit, and the judgment result of the determination unit. correction device.
  15. 제12항에 있어서,According to claim 12,
    상기 분석부에서 선택하는 머신러닝 모델은 신경망 알고리즘, LSTM, 또는 다층 퍼셉트론 중 적어도 어느 하나인 것을 특징으로 하는 공작기계의 열변위 보정 장치.The machine learning model selected by the analysis unit is at least one of a neural network algorithm, LSTM, and a multi-layer perceptron.
  16. 직접인자 및 상기 직접인자 이외에 실시간으로 변화되는 간접인자를 머신러닝을 통해 기계학습하여 구조부의 열변위에 따른 보정량을 실시간으로 자동으로 산출하고 산출된 보정량을 즉각적으로 반영하여 공작물의 가공을 수행하기 위한 정보데이터를 저장하는 단계;Information for processing the workpiece by automatically calculating the correction amount according to the thermal displacement of the structural part in real time by machine learning the direct factor and the indirect factor that changes in real time in addition to the direct factor, and immediately reflecting the calculated correction amount through machine learning storing data;
    기 저장된 정보데이터와 제어부로부터 수신된 처리정보와 운전정보에 따라 상기 공작물의 가공 시작여부를 확인하는 단계;Checking whether or not processing of the workpiece has started according to pre-stored information data and processing information and operation information received from the control unit;
    확인 결과 가공이 시작된 경우 구조부의 온도를 측정하는 단계;Measuring the temperature of the structural part when processing is started as a result of the check;
    확인 결과 가공이 시작된 경우 처리정보, 운전정보, 가공정보, 및 온도정보를 수집하는 단계;Collecting processing information, operation information, processing information, and temperature information when processing is started as a result of the confirmation;
    수집된 정보를 실시간데이터와 축적데이터로 저장하는 단계;Storing the collected information as real-time data and accumulated data;
    기 저장된 정보데이터, 실시간데이터, 축적데이터에 따라 현재의 상기 공작물의 가공상태와 공정모드를 판단하는 단계;determining a current processing state and process mode of the workpiece according to pre-stored information data, real-time data, and accumulated data;
    기 저장된 정보데이터와 판단결과에 따라 실시간으로 측정된 상기 구조부의 온도에 따라 직접 보정량을 직접 계산하는 단계;Directly calculating a correction amount according to the temperature of the structure measured in real time according to pre-stored information data and a judgment result;
    기 저장된 정보데이터와 판단결과에 따라 상기 공작물의 가공과정에서 실시간으로 변화하는 가공상태와 공정모드의 다양한 변화에 따라 머신러닝을 이용한 기계학습을 통해 간접 보정량을 실시간으로 자동으로 계산하는 단계;Automatically calculating an indirect correction amount in real time through machine learning using machine learning according to various changes in processing conditions and process modes that change in real time in the processing process of the workpiece according to pre-stored information data and judgment results;
    계산된 직접 보정량과 간접 보정량에 따라 최종 보정량을 자동으로 계산하는 단계; 및automatically calculating a final correction amount according to the calculated direct correction amount and indirect correction amount; and
    계산된 최종 보정량에 따라 상기 공작물의 가공 원점을 보정하는 단계;를 포함하는 것을 특징으로 하는 공작기계의 열변위 보정 방법.Compensating the machining origin of the workpiece according to the calculated final correction amount; thermal displacement compensation method of a machine tool comprising the.
  17. 제16항에 있어서,According to claim 16,
    상기 간접 보정량을 계산하는 단계 이후에,After calculating the indirect correction amount,
    머신러닝을 이용한 기계학습을 통해 간접 조정량을 실시간으로 자동으로 계산할 때에 상기 확인결과와 상기 판단결과에 따라 과적합 여부를 실시간으로 자동으로 분석하고, 분석결과 과적합이 발생한 경우 상기 간접 보정량 계산시에 선택한 머신러닝 모델과 다른 머신러닝 모델을 선택하여 상기 간접 보정량을 실시간으로 자동으로 재계산하고 재계산된 간접 보정량에 따라 최종 보정량을 계산하는 단계;를 더 포함하는 것을 특징으로 하는 공작기계의 열변위 보정 방법.When the indirect adjustment amount is automatically calculated in real time through machine learning using machine learning, the overfitting is automatically analyzed in real time according to the confirmation result and the judgment result, and if the analysis result is overfitting, the indirect correction amount calculation Selecting a machine learning model different from the selected machine learning model to automatically recalculate the indirect correction amount in real time and calculating the final correction amount according to the recalculated indirect correction amount; How to correct above.
  18. 제16항에 있어서,According to claim 16,
    상기 보정 단계 이후에,After the correction step,
    계산된 최종 보정량을 제어부에 전달하기 전에 상기 처리정보, 상기 운전정보, 상기 확인결과, 상기 판단결과, 및 상기 축적데이터가 적어 과보정되는 경우 저역필터로 상기 최종 보정량을 자동으로 수정하고 수정된 최종 보정량에 따라 상기 공작물의 가공 원점을 수정하는 단계;를 더 포함하는 것을 특징으로 하는 공작기계의 열변위 보정 방법.Before the calculated final correction amount is transmitted to the control unit, if the processing information, the operation information, the confirmation result, the judgment result, and the accumulation data are small and overcorrected, the final correction amount is automatically corrected by a low-pass filter and the corrected final Correcting the machining origin of the workpiece according to the correction amount; Thermal displacement compensation method of the machine tool, characterized in that it further comprises.
  19. 제16항에 있어서,According to claim 16,
    상기 직접인자는 센싱부에서 측정된 상기 구조부의 온도이고,The direct factor is the temperature of the structure measured by the sensing unit,
    상기 간접인자는 상기 공작물의 가공과정에서 실시간으로 변화하는 상기 공작물의 가공상태와 공정모드에 의한 가공부RPM, 가공부 모터 부하, 이송부의 이송 속도, 이송부의 모터 부하의 변화인 것을 특징으로 하는 공작기계의 열변위 보정 방법.The indirect factor is a change in processing RPM, processing motor load, feed speed of the transfer unit, and motor load of the transfer unit according to the processing state and process mode of the workpiece that change in real time during the processing of the workpiece Workpiece, characterized in that Thermal displacement compensation method of the machine.
PCT/KR2023/001641 2022-02-07 2023-02-06 Machine tool thermal displacement compensation device and compensation method therefor WO2023149765A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0015387 2022-02-07
KR1020220015387A KR20230119360A (en) 2022-02-07 2022-02-07 Thermal displacement compensation device of machine tool and method thereof

Publications (1)

Publication Number Publication Date
WO2023149765A1 true WO2023149765A1 (en) 2023-08-10

Family

ID=87552694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/001641 WO2023149765A1 (en) 2022-02-07 2023-02-06 Machine tool thermal displacement compensation device and compensation method therefor

Country Status (2)

Country Link
KR (1) KR20230119360A (en)
WO (1) WO2023149765A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180107947A1 (en) * 2016-10-18 2018-04-19 Fanuc Corporation Machine learning apparatus that learns setting value in machining program of machine tool, and machining system
JP2018111145A (en) * 2017-01-10 2018-07-19 ファナック株式会社 Mechanical learning device of machine tool and thermal displacement correction device
JP2018153902A (en) * 2017-03-21 2018-10-04 ファナック株式会社 Machine learning device and thermal displacement correction device
JP2020179429A (en) * 2019-04-23 2020-11-05 Dmg森精機株式会社 Fluctuation amount estimation device in machine tool, and correction amount calculation device
KR20200131475A (en) * 2019-05-14 2020-11-24 두산공작기계 주식회사 Method and system for themal displacement compensation in machine tool

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100970557B1 (en) 2003-12-29 2010-07-16 두산인프라코어 주식회사 The Main Axis Heat Displacement Correction Unit of CND and Method Thereof
JP2009214283A (en) 2008-03-13 2009-09-24 Brother Ind Ltd Thermal displacement correction method of machine tool, thermal displacement correction device and program for thermal displacement correction of the same
KR20130059230A (en) 2011-11-28 2013-06-05 현대위아 주식회사 Device for compensating of the thermal errors for machine tool
KR102053465B1 (en) 2013-10-08 2019-12-10 두산공작기계 주식회사 Automatic conversion device of themal deformation compensation parameter automatic conversion for machine tool and method thereof
KR102128632B1 (en) 2014-11-03 2020-06-30 두산공작기계 주식회사 Method and Apparatus for Calibrating Heat Displacement of Machine Tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180107947A1 (en) * 2016-10-18 2018-04-19 Fanuc Corporation Machine learning apparatus that learns setting value in machining program of machine tool, and machining system
JP2018111145A (en) * 2017-01-10 2018-07-19 ファナック株式会社 Mechanical learning device of machine tool and thermal displacement correction device
JP2018153902A (en) * 2017-03-21 2018-10-04 ファナック株式会社 Machine learning device and thermal displacement correction device
JP2020179429A (en) * 2019-04-23 2020-11-05 Dmg森精機株式会社 Fluctuation amount estimation device in machine tool, and correction amount calculation device
KR20200131475A (en) * 2019-05-14 2020-11-24 두산공작기계 주식회사 Method and system for themal displacement compensation in machine tool

Also Published As

Publication number Publication date
KR20230119360A (en) 2023-08-16

Similar Documents

Publication Publication Date Title
WO2019135596A1 (en) Detection apparatus and detection method for machine tool abnormality
US5513113A (en) Method of and device for correcting position of cutting-edge of tool in numerically controlled machine tool
US20180196405A1 (en) Machine learning device for machine tool and thermal displacement compensation device
WO2020184945A1 (en) Automatic tool changer and control method therefor, and machine tool including same
EP2463737A2 (en) Method for determining the position of a tool
US20150066434A1 (en) Data acquisition device for acquiring cause of stoppage of drive axis and information relating thereto
JP2008114322A (en) Position correcting method and position correcting device in machine tool
WO2023149765A1 (en) Machine tool thermal displacement compensation device and compensation method therefor
KR101368048B1 (en) Tool die position compensation device of machine tools and method thereof
WO2022203268A1 (en) Device for correcting processing error of machine tool and method thereof
WO2013058481A1 (en) Method and device for real time position correction by deformation of ball screw of machine tool
JPH08263113A (en) Abnormality processing control unit
WO2023167491A1 (en) System and method for monitoring machine tool by using digital twin thereof
KR20150041328A (en) Automatic conversion device of themal deformation compensation parameter automatic conversion for machine tool and method thereof
KR20190085429A (en) Apparatus and method for compensating spindle of machine tool
CN114770133A (en) Flexible automatic manufacturing system for plate parts
WO2014112752A1 (en) Transfer system thermal displacement compensating device and compensating method for machine tools
US20200183375A1 (en) Data collection device for manufacturing device
CN112705745A (en) Horizontal machining center B-axis calibration and alignment system and working method thereof
JPS61109646A (en) Automatic machining point correcting device for machine tool
JPH10118890A (en) Control device of machine tool
KR20190096018A (en) Device for modifying axis shift of machine tool and method thereof
WO2023163247A1 (en) Ict fusion-type tension pulley manufacturing system
WO2022196948A1 (en) Exact position setting device and setting method for stored item storage device of machine tool
JPH11123637A (en) Measuring method for tool size of nc system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749998

Country of ref document: EP

Kind code of ref document: A1