JPS61109646A - Automatic machining point correcting device for machine tool - Google Patents

Automatic machining point correcting device for machine tool

Info

Publication number
JPS61109646A
JPS61109646A JP22756284A JP22756284A JPS61109646A JP S61109646 A JPS61109646 A JP S61109646A JP 22756284 A JP22756284 A JP 22756284A JP 22756284 A JP22756284 A JP 22756284A JP S61109646 A JPS61109646 A JP S61109646A
Authority
JP
Japan
Prior art keywords
approach
workpiece
tool
work
machining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP22756284A
Other languages
Japanese (ja)
Inventor
Tsugio Kawamura
川村 次男
Fumihiko Yano
矢野 文彦
Takeomi Kikuchi
菊地 武臣
Tokuyasu Akai
赤井 徳安
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Seiki Co Ltd
Original Assignee
Hitachi Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Seiki Co Ltd filed Critical Hitachi Seiki Co Ltd
Priority to JP22756284A priority Critical patent/JPS61109646A/en
Publication of JPS61109646A publication Critical patent/JPS61109646A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37231Tool used as touch probe, sensor
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37405Contact detection between workpiece and tool, probe, feeler
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/50Machine tool, machine tool null till machine tool work handling
    • G05B2219/50063Probe, measure, verify workpiece, feedback measured values

Landscapes

  • Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Numerical Control (AREA)

Abstract

PURPOSE:To improve the machining accuracy while to monitor abnormal correcting operation by providing means for correcting the co-ordinates of mechanical system through automatic measurement of work face while employing the tool as a touch sensor. CONSTITUTION:Work detecting means employing the tool as a touch sensor 3 is provided while in order to perform approach operation of work detecting means, approach point operating means 6x and position data feeding means 5x are provided. While in order to correct the machining operation on the basis of the measurement results, shifting amount detecting means 8x and co- ordinates operating means 9x are provided. Furthermore, in order to provide sequences of commands for interlocking said means, memories for various data or programs and CPU16 are provided. Consequently, the work detecting means is moved by the amount determined for every work until contacting against the work to calculate the distance to the work thus to correct the mechanical system co-ordinates of work.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、複数の工具を備えて工具を選択交換しながら
該工具の座標位置を指示して自動的にワークを加工する
マシニングセンターや数値制御工作機械等の加工点設定
装置におけるワークの取付誤差や工具の流れ量を自動補
正する加工点自動補正装置に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention is applicable to machining centers and numerical control systems that are equipped with a plurality of tools and automatically machine a workpiece by specifying the coordinate position of the tools while selecting and exchanging the tools. The present invention relates to an automatic machining point correction device that automatically corrects workpiece installation errors and tool flow rates in a machining point setting device such as a machine tool.

〔従来の技術〕[Conventional technology]

マシニングセンターや数値制御工作機械等においては、
予めテープ等で入力した機械系座標などの数値制御デー
タに基いてテーブルに取付けられたワークの加工が行な
われるが、ワークの取付は位置を該機械系座標データに
正確に一敗させなければ加工誤差が生ずるという問題が
ある。このため従来はワーク種類別にフィクスチャー機
構を考案し取付は精度を向上させていたが汎用性がなく
しかもコスト高になり、経年変化等もあって完全に正確
な一致は期し難いものであった。また取付は誤差をマイ
クロメータ等で測定して機械系座標データを補正する方
法もあるが、ワークを取付けるたびに補正するのは不便
極まりな(、操作も複雑で工作機械の稼動率を低下させ
、自動化設備には不向きなものであった。また従来はワ
ークの加工前にワークが正しく取付けられ、機械系の動
作も正常に行なわれるかどうかのチェックを行なってい
なかったので、例えばFMS (フレキシブル・マニフ
ァクチャリング・システム)など自動化された設備にお
いて、ロボットなどでワークの自動取付がなされている
場合に、動作異常があると誤った加工や故障を惹き起し
、種々の大きなトラブルの原因となることがあった。
In machining centers and numerically controlled machine tools,
The workpiece attached to the table is machined based on numerical control data such as mechanical system coordinates inputted in advance using tape, etc., but the workpiece cannot be mounted unless the position is accurately matched to the mechanical system coordinate data. There is a problem that errors occur. For this reason, in the past, fixture mechanisms were devised for each type of workpiece to improve mounting accuracy, but these lacked versatility and were expensive, and due to aging, etc., it was difficult to achieve a completely accurate match. . There is also a method of correcting the machine system coordinate data by measuring the mounting error with a micrometer, etc., but it is extremely inconvenient to correct it every time a workpiece is mounted (it is also complicated to operate and reduces the operating rate of the machine tool). , it was not suitable for automated equipment.In addition, in the past, before machining a workpiece, it was not checked whether the workpiece was installed correctly and whether the mechanical system was operating normally.For example, FMS (flexible・In automated equipment such as manufacturing systems, where workpieces are automatically mounted using robots, malfunctions can cause incorrect machining or breakdowns, which can lead to various major troubles. Something happened.

さらに各加工軸の移動機構には僅かではあるが慣性によ
り停止位置を超過したり、電気系遅れ等によるいわゆる
流れ量がある。従来は加工精度の許容誤差範囲として扱
われて見過されていたが、品質向上が要請される今日で
は見過せない問題となっている。
Furthermore, the movement mechanism of each machining axis has a so-called flow rate, which may exceed the stop position due to inertia or may cause delays in the electrical system, although it may be small. In the past, this was treated as a permissible error range for processing accuracy and was overlooked, but in today's world where quality improvement is required, it has become a problem that cannot be overlooked.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は従来の数値制御工作機械やマシニングセンター
等における前記欠点に鑑みてなされたもので、目的とす
るところは、ワークの取付けに誤差があってもワーク毎
に加工動作を補正し、取付はワークに対する工具の動作
方向を自動検知しまたいわゆる流れ量も補正して加工精
度を極めて高くすることと、補正動作の際にその動作の
異常を監視して安全性を高めることと、前記補正が種々
のワークに対して柔軟性と汎用性を持ち操作が非常に簡
便になるようにすることなどであり、合わせてFMS化
、などの自動化、省力化に最適でかつワークの取付けの
矯正に係っていた時間を短縮させて能率を向上させよう
とするものである。
The present invention was made in view of the above-mentioned shortcomings in conventional numerically controlled machine tools, machining centers, etc., and aims to correct the machining operation for each workpiece even if there is an error in the installation of the workpiece. Automatically detecting the operating direction of the tool and correcting the so-called flow rate to achieve extremely high machining accuracy, and increasing safety by monitoring abnormalities in the operation during correction operations. The goal is to have flexibility and versatility for the workpieces, and to make the operation extremely simple.In addition, it is ideal for automation and labor saving such as FMS, and is also suitable for correcting workpiece installation. The aim is to improve efficiency by shortening the time spent.

〔問題点を解決するための手段〕[Means for solving problems]

本発明は前記目的を達成するために、工具をタッチセン
サーとするようなワーク検出手段を備え、該ワーク検出
手段にアプローチ動作させるためにアプローチ点演算手
段と位置データ送出手段とを備え、計測結果により加工
動作を修正するためにシフト量検出手段と座標系演算手
段とを備え、これら各手段を統括的に連動させる手順や
指令を与えるため各種のデータやプログラムのメモリと
中央処理装置(以下CPUと称する)を備えたことを特
徴としている。
In order to achieve the above object, the present invention is provided with a workpiece detection means such as a tool as a touch sensor, an approach point calculation means and a position data transmission means for causing the workpiece detection means to perform an approach operation, and a measurement result It is equipped with a shift amount detection means and a coordinate system calculation means in order to correct the machining operation, and a central processing unit (hereinafter referred to as CPU) is equipped with a memory for various data and programs and a central processing unit (hereinafter referred to as CPU) to provide procedures and commands to collectively link these means. It is characterized by having a

〔作 用〕[For production]

本発明では工具をタッチセンサーとするようなワーク検
出手段を、予めワーク毎に決められた移動量すなわちア
プローチ量だけワークに接触するまで移動させ、接触し
たら停止させてワークまでの距離を算出し、加工データ
の中のワークの機械系座標値を補正して加工動作を修正
するものである。このとき、複数のアプローチ点を設定
すれば夫々の・移動の間にワークを検出したかしないか
によって動作の合理性すなわち異常を判定することがで
きる0機械系座標値の補正にあっては、いわゆる工具の
流れ量も加味し、加工精度を向上させる0本発明の各手
段は以上の作用を自動的にかつスピーディ−に行なうも
のである。
In the present invention, a workpiece detection means such as a touch sensor is moved by a predetermined movement amount for each workpiece, that is, an approach amount, until it comes into contact with the workpiece, and when it comes into contact, it is stopped and the distance to the workpiece is calculated. This is to correct the machining operation by correcting the mechanical system coordinate values of the workpiece in the machining data. At this time, by setting multiple approach points, it is possible to judge the rationality of the operation, that is, abnormality, depending on whether or not a workpiece is detected during each movement.When correcting the zero mechanical system coordinate values, The means of the present invention which improves machining accuracy by taking into account the so-called tool flow rate automatically and speedily perform the above operations.

〔実施例〕 以下、本発明の実施例を図面に基いて詳細に説明する。〔Example〕 Embodiments of the present invention will be described in detail below with reference to the drawings.

第1図は本発明の工作機械の加工点自動補正値の実施例
を示す構成図で、第2図は代表的な工作機械の概略的側
面図である。まず構成について説明する。第1図以下X
軸についてのみ記載しであるが、第2図のようにY軸、
Y軸も存在するような多軸の工作機械にあっては、各軸
に同様な手段を設けることができる。この場合、図中に
Xが付加されている記号のものが各軸筋に存在すること
を示し、本文1図中のXをYまたはZと読み替えれば説
明されるので、X軸以外の部分については説明が繁雑と
なるため省略する。第1図において加工点自動補正装置
は、加工用数値制御データを読み取るテープリーダー1
.アプローチ量などの入力手段のCRT画面つきのキー
ボード2.ワーク検出手段用のタッチセンサー3とタッ
チ信号を発するタッチ検出回路4.ワークの加工のため
各軸の移動を行うサーボモータ、エンローダ、補間器な
どから成る位置データ送出手段5に、タッチセンサー3
のアプローチ点を算出するアプローチ点演算手段6x、
アプローチ動作の方向を決定する動作方向決定手段7x
、流れ量で−から機械系座標値のシフト量S ftXを
算出するシフト量検出手段aX、該シフト量S□8から
ワークの元の機械系座標値を補正する座標系演算手段9
に、アプローチ動作中アプローチ位置とワーク面位置と
を比較し動作の合理性を判定して異常を監視する動作監
視手段10.、加ニブログラムメモリ11゜工具破損検
知プログラムメモリ12.タッチプログラムメモリ13
.初期設定値メモリ14.変換データメモリ15.各手
段を統括するCPU16などから構成されている。
FIG. 1 is a block diagram showing an embodiment of automatic machining point correction values for a machine tool of the present invention, and FIG. 2 is a schematic side view of a typical machine tool. First, the configuration will be explained. Figure 1 and below
Although only the axis is described, as shown in Figure 2, the Y axis,
In a multi-axis machine tool that also has a Y-axis, similar means can be provided for each axis. In this case, a symbol with an X added in the diagram indicates that it exists in each axis muscle, and it can be explained by replacing X in Figure 1 with Y or Z, so parts other than the X axis Since the explanation will be complicated, it will be omitted. In Fig. 1, the automatic machining point correction device is a tape reader 1 that reads numerical control data for machining.
.. Keyboard with CRT screen for inputting approach amount, etc. 2. A touch sensor 3 for detecting a workpiece and a touch detection circuit 4 for emitting a touch signal. A touch sensor 3 is connected to a position data sending means 5 consisting of a servo motor, an encoder, an interpolator, etc. that moves each axis for processing the workpiece.
approach point calculation means 6x for calculating the approach point of
Motion direction determining means 7x for determining the direction of approach motion
, a shift amount detection means aX that calculates the shift amount S ftX of the mechanical system coordinate value from - in the flow rate, and a coordinate system calculation means 9 that corrects the original mechanical system coordinate value of the workpiece from the shift amount S□8.
10. A motion monitoring means for comparing the approach position and the work surface position during the approach motion, determining the rationality of the motion, and monitoring abnormalities. , Cannibal program memory 11° Tool damage detection program memory 12. Touch program memory 13
.. Initial setting value memory 14. Conversion data memory 15. It is composed of a CPU 16 etc. that controls each means.

第2図は本発明の実施対象とする代表的な工作機械の例
で、X方向、Y方向に位置決めされるテーブルTにワー
クWが取付られ、Z方向へ位置決めされる加工ヘッドC
と加工時は回転する工具などであってアプローチ動作時
はワーク検出手段を兼ねるタッチセンサー3などから構
成されている。
FIG. 2 shows an example of a typical machine tool to which the present invention is applied, in which a workpiece W is attached to a table T positioned in the X and Y directions, and a processing head C positioned in the Z direction.
It is composed of a touch sensor 3, which is a rotating tool during machining, and also serves as a workpiece detection means during approach operation.

タッチセンサーは加工ヘッドCの固定側に配設しワーク
Wにタッチセンサー(工具)3が導体接触した瞬間に閉
開路りを形成するもので閉回路に流れる電流を電磁誘導
等で検出している。
The touch sensor is arranged on the fixed side of the processing head C, and forms a closed/open circuit the moment the touch sensor (tool) 3 makes conductive contact with the workpiece W, and detects the current flowing in the closed circuit by electromagnetic induction, etc. .

第3図(イ)および(TI)は本発明におけるワークW
と工具すなわちタッチセンサー3との関係を示す図であ
る。本発明は工具3の所在位置により第3図(イ)また
は([I)のいずれでも加工出来るように加ニブログラ
ムに汎用性を持たせている。この場合、加ニブログラム
の加工原点からの座標系の符号によって処理される。す
なわち第3図(イ)の座標系では正符号であり第3図(
El)では負符号となる。これらの符号は加ニブログラ
ムにおいてタッチセンサー(工具)3の所在位置によっ
て決まるものである。Omは機械系の座標原点であり、
Xt+は元の機械系座標値である@5ftxがシフト量
すなわち補正量であり補正されたワーク面W1の機械系
座標値がXtである。この補正により機械系座標に対し
誤差のあるプログラム上の加工原点OXIが本来位置す
べき加工原点OxにワークWの取付は位置や工具3など
を矯正することなく一致させることができる。Xoは予
め決められたワーク面プログラム座標値であり、Xlは
実際のワーク面位置、X2はタッチセンサーの第1アプ
ローチ点+Xsはタッチ信号が検出されワーク面W、と
じて計測されるタッチ信号検出点、Xaが第2アプロー
チ点である。またα8は第1アプローチ点を算出するた
めのアプローチ量でワーク面W1にタッチセンサー3が
到達する手前までの安全確認範囲を示すものであり、β
つは第2アプローチ点を算出するためのアプローチ量で
、タッチセンサー3がワーク面W、を探索する範囲を示
すものである。Signxをタッチセンサー3の動作方
向を表わす符号とすると、各数値の関係は次式で表わさ
れる。すなわち Xz=±lXo +α、l X4= Xo +Signx 8 X この式の士は第3図(イ)または(U)の加ニブログラ
ムの座標系の符号である。
Figures 3 (A) and (TI) show the workpiece W in the present invention.
3 is a diagram showing the relationship between the tool and the touch sensor 3. FIG. The present invention provides versatility to the cannibal program so that it can be machined either in FIG. 3 (A) or ([I) depending on the location of the tool 3. In this case, processing is performed using the sign of the coordinate system from the processing origin of the Kani program. In other words, in the coordinate system of Fig. 3 (a), it is a positive sign, and Fig. 3 (
El) has a negative sign. These codes are determined by the location of the touch sensor (tool) 3 in the Canadian program. Om is the coordinate origin of the mechanical system,
Xt+ is the original mechanical system coordinate value @5ftx is the shift amount, that is, the correction amount, and the corrected mechanical system coordinate value of the work surface W1 is Xt. By this correction, the machining origin OXI on the program, which has an error with respect to the mechanical system coordinates, can be brought into alignment with the machining origin Ox, which should originally be located, without correcting the position, tool 3, etc. of the workpiece W. Xo is a predetermined work surface program coordinate value, Xl is the actual work surface position, X2 is the first approach point of the touch sensor + Xs is the work surface W where a touch signal is detected, and touch signal detection that is measured by Point Xa is the second approach point. Further, α8 is the approach amount for calculating the first approach point, which indicates the safety confirmation range up to the point before the touch sensor 3 reaches the work surface W1, and β
One is the approach amount for calculating the second approach point, which indicates the range in which the touch sensor 3 searches the work surface W. When Signx is a code representing the operating direction of the touch sensor 3, the relationship between each numerical value is expressed by the following equation. That is, Xz=±lXo +α, l X4=Xo +Signx 8

5ttx −Xo  X3 +Signx rgXr 
MMXt+ + S ttx となる。τ8は工具3の流れ量である。なお斜線部のW
bは加工領域を示している。
5ttx -Xo X3 +Signx rgXr
MMXt+ + S ttx . τ8 is the flow rate of the tool 3. Note that the shaded W
b indicates the processing area.

次に以上の如く構成される工作機械の加工点自動補正装
置の作動について説明する。第4図はその作動の一例を
示すフローチャートである。作動についてもX軸、Y軸
、Z軸についてほぼ同様なのでここでもX軸についての
み説明を行う。第4図において第0段は工具3の破損検
知を行うために工具破損検知プログラムメモリ12から
工具破損検知プログラムを呼び出し第1図、第2図には
図示していない工具計測基準治具へ工具3の位置決め動
作を行う。第0段として工具計測基準治具にて工具3を
所定の方向から計測して破損検知動作を行う。破損を検
知したらアラームを出力し工作機械の動作を中断ないし
は停止させる。第0段は第1アプローチ点の処理で、工
具を兼ねるタッチセンサー3を8亥タツチセツサー3が
ワークWに接触しない安全確認地点すなわち前記第1ア
プローチ点X2へ移動させる。この第1アプローチ点X
!は前記のようにX、=±lxa +α81の算出式に
よってアプローチ演算手段6xで算出される。このアプ
ローチ動作の間にタッチセンサー3とタッチ検出回路4
とでタッチ信号が検出されると動作監視手段10xはワ
ークWの取付は位置が自動補正苛能領域を逸脱している
か工作機械や加工点自動補正装置の動作に何らかの異常
があるものとしてアラームを発し所定の動作を中断また
は停止させる。すなわち、第1アプローチ点X!へ移動
する間に位置データ送出手段5.の現在値データXを、
比較器においてX≧X2の範囲比較を行ないこの間にタ
ッチ信号が検出されると予定していたワークよりも大き
い違ったワークであるとしてアラームを発する。第0段
で正常であれば第0段でx、y、z軸の各動作別にタッ
チプログラムがタッチプログラムメモリ13から呼び出
され補正動作が開始される。第0段ではまず加ニブログ
ラムメモリ11からタッチプログラムメモリ13と変換
データメモリ15へ工具軸回転数や送り速度と共に〜ワ
ークの元の機械系座標値Xア、などが補正を受けるため
転送される。第0段では第2アプローチ点X4をアプロ
ーチ量β8からアプローチ演算手段6Xによって算出し
タッチセンサー3をアプローチ点X4まで移動可能に制
御し、このアプローチ動作の間にタッチ信号を検出した
ら、ただちにアプローチ動作を停止させる。第2アプロ
ーチ点X4を演算するアプローチ点演算手段6Xと後述
するシスト量検出手段8xの作動前において、ワークに
対する工具の動作方向を決定する動作方向決定手段7X
によって求められた符号Signxデータが入力される
。すなわち、あらかじめ設定される士指令メモリに対し
、比較器において、第1アプローチ点Xzと、ワーク面
プログラム座標値X0を比較する。
Next, the operation of the automatic machining point correction device for a machine tool constructed as described above will be explained. FIG. 4 is a flowchart showing an example of the operation. Since the operation is almost the same for the X-axis, Y-axis, and Z-axis, only the X-axis will be explained here. In Fig. 4, the 0th stage calls the tool breakage detection program from the tool breakage detection program memory 12 in order to detect the breakage of the tool 3, and transfers the tool to the tool measurement standard jig (not shown in Figs. 1 and 2). 3. Perform positioning operation. In the 0th stage, the tool 3 is measured from a predetermined direction using a tool measurement reference jig to perform a damage detection operation. If damage is detected, an alarm is output and the operation of the machine tool is interrupted or stopped. The 0th stage is processing of the first approach point, in which the touch sensor 3, which also serves as a tool, is moved to a safety confirmation point where the touch setter 3 does not come into contact with the workpiece W, that is, the first approach point X2. This first approach point
! is calculated by the approach calculation means 6x using the calculation formula of X,=±lxa+α81 as described above. During this approach operation, the touch sensor 3 and the touch detection circuit 4
When the touch signal is detected, the operation monitoring means 10x issues an alarm, assuming that the mounting position of the workpiece W has deviated from the automatic correction capability range or that there is some abnormality in the operation of the machine tool or the automatic processing point correction device. to interrupt or stop a predetermined operation. That is, the first approach point X! 5. Position data sending means while moving to 5. The current value data X of
A range comparison of X≧X2 is performed in the comparator, and if a touch signal is detected during this period, an alarm is issued because it is a different workpiece that is larger than the expected workpiece. If it is normal at the 0th stage, the touch program is called from the touch program memory 13 for each operation of the x, y, and z axes at the 0th stage, and a correction operation is started. In the 0th stage, first, the original mechanical system coordinates of the workpiece, XA, etc., are transferred from the machine program memory 11 to the touch program memory 13 and conversion data memory 15, along with the tool axis rotation speed and feed rate, for correction. Ru. In the 0th stage, the approach calculation means 6X calculates the second approach point X4 from the approach amount β8, controls the touch sensor 3 so that it can move to the approach point X4, and when a touch signal is detected during this approach operation, the approach operation is performed immediately. to stop. Before the approach point calculation means 6X for calculating the second approach point X4 and the cyst amount detection means 8x (to be described later) operate, the operation direction determining means 7X determines the direction of movement of the tool with respect to the workpiece.
The code Signx data determined by is input. That is, the comparator compares the first approach point Xz and the work surface program coordinate value X0 with respect to a preset operator command memory.

Xi  Xo≧O−(A) X z  X o < O(B) 上記(^)式は、ワークの取付位置に対する、工具3の
アプローチ位置が第3図(イ)の状態にあることを示し
、加工原点に対し一方向に動作することである。またこ
の方向(符号)により、アプローチ点演算手段6xとシ
フ)!検出手段8xにおいて符号処理が行なわれる。
Xi Xo≧O-(A) It operates in one direction relative to the machining origin. Also, depending on this direction (sign), approach point calculation means 6x and shift)! Code processing is performed in the detection means 8x.

上記(B)式は、ワークの取付位置に対する工具3のア
プローチ位置が第3図(tl)の状態であって、加工原
点0□に対し子方向に動作することである。
The above equation (B) means that the approach position of the tool 3 with respect to the mounting position of the workpiece is in the state shown in FIG.

従ってアプローチ演算手段6x、シフト量検出手段8貢
においても十符号処理が行なわれる。
Therefore, the ten sign processing is also performed in the approach calculating means 6x and the shift amount detecting means 8.

もし第2アプローチ点X4まで到達してもなおタッチ信
号が検出されない場合は前記同様に何らかの異常がある
ものとしてアラームを発し所定の動作を中断または停止
させる。すなわち、第2アプローチ点X4へ移動する間
に位置送出手段5.Iの現在値データXを比較器におい
てx>x4の範囲比較を行ないこの間にタッチ信号が検
出されずにデータ比較が終了すると予定していたワーク
よりも小さい違つたワークであるとしてアラームを発す
るのである。第0段では第2アプローチ点X2へのアプ
ローチ動作中にタッチ信号が検出できた場合シフト量検
出手段8.において計測手段58の現在位置を読み出し
これをタッチ信号検出点X3としS ftx ” X 
o −X 2 +Signx τ、からシフト量5tt
xを算出する。第0段では座標系演算手段9xによって
ワーク面Waの元の機械系座標値XTIにシフト量5f
txを加えて補正された機械系座標値Xyを算出する。
If the touch signal is still not detected even after reaching the second approach point X4, it is assumed that some abnormality has occurred, and an alarm is issued to interrupt or stop the predetermined operation. That is, while moving to the second approach point X4, the position sending means 5. The current value data X of I is compared in the range of x>x4 using a comparator, and if the data comparison ends without detecting a touch signal during this time, an alarm will be issued as it is a different workpiece that is smaller than the expected workpiece. be. In the 0th stage, if a touch signal is detected during the approach operation to the second approach point X2, the shift amount detection means 8. The current position of the measuring means 58 is read out at , and this is set as the touch signal detection point X3.
o −X 2 +Signx τ, shift amount 5tt
Calculate x. In the 0th stage, the coordinate system calculation means 9x shifts the work surface Wa to the original mechanical system coordinate value XTI by an amount of 5f.
tx is added to calculate the corrected mechanical system coordinate value Xy.

このXTを加ニブログラムメモリ11に転送し第0段に
おいて加ニブログラムメモリ11の加ニブログラムを呼
び出して加工動作を行うが、機械系座標値が補正されて
いるでワークの取付は誤差や流れ量を加味した高精度の
加工が実現できる。加工が終了すると加ニブログラムメ
モリ11や変換データメモリ15の補正された機械系座
標値などは変換データメモリ15に格納されている元の
機械系座標値などが転送されて復帰され、さらに第0段
で加ニブログラムおよびタッチプログラムの復帰処理が
為される。以上により一連の動作が終了して次の加工動
作に備えることになる。
This XT is transferred to the cannibal program memory 11, and the machining operation is performed by calling the cannibal program in the cannibal program memory 11 in the 0th stage, but since the mechanical system coordinate values have been corrected, the mounting of the workpiece is not possible due to errors. High-precision machining that takes into account flow rate can be achieved. When the machining is completed, the corrected mechanical system coordinate values in the machine program memory 11 and the conversion data memory 15 are transferred to the original mechanical system coordinate values stored in the conversion data memory 15, and then restored. At stage 0, the recovery process for the Canadian program and the touch program is performed. With the above steps, the series of operations is completed and preparations are made for the next machining operation.

本発明の実施対象は始めに例として挙げたマシニングセ
ンターや数値制御工作機械に限定されるものではな(単
一の工具を備えた一般の工作機械においても適用し得る
ことは言うまでもない。
The object of the present invention is not limited to the machining centers and numerically controlled machine tools mentioned at the beginning (it goes without saying that it can also be applied to general machine tools equipped with a single tool).

〔効 果〕〔effect〕

本発明は以上の如く工作機械のワークの取付は誤差があ
っても初期においてアプローチ量と工具の流れ量を与え
るという簡単な操作でその後の加工からは加工開始前に
工具がタッチセンサーとなりワーク面を自動的に測定し
て機械系の座標値を補正し加工動作を修正するので加工
精度を従来になく著しく高める効果を得ることができた
As described above, in the present invention, even if there is an error in mounting a workpiece on a machine tool, it is a simple operation that gives the approach amount and tool flow rate at the initial stage, and from the subsequent machining, the tool becomes a touch sensor before the start of machining and the workpiece surface Since the machine automatically measures the coordinate values of the mechanical system and corrects the machining operation, it has been possible to significantly improve machining accuracy compared to conventional methods.

また前記操作は初期に入力するだけであり、補正動作は
自動的にスピーディに行われるので作業能率や工具機械
の稼動率を向上させ生産性を高めるという効果が得られ
た。
Further, since the above-mentioned operation is only inputted at the initial stage, and the correction operation is performed automatically and quickly, the effect of improving work efficiency and operating rate of the tool machine and increasing productivity has been obtained.

この補正の方法はワークに対する工具の動作方向も自動
決定し極めて筒素化されているので種々のワークに柔軟
に対応することができることと汎用性とを侍たらし多種
のワークを順不同に加工するマシニングセンターなどに
おいて加工を自動化する点で最適のものとすることが可
能となった。
This compensation method also automatically determines the direction of tool movement relative to the workpiece, and since it is extremely cylindrical, it can flexibly handle a variety of workpieces and has versatility, allowing it to machine a wide variety of workpieces in random order. It has become possible to make it optimal for automating processing in machining centers and the like.

また補正動作にあってはタッチセンサーの動作の異常を
監視し危険状態があれば動作を停止させることができる
ので安全性を極めて高める効果が得られ、安全監視が集
中監視できることも可能となり、この点においても自動
化、省力化に適合する工作機械を供給できる効果を持た
らす。
In addition, in the correction operation, it is possible to monitor abnormalities in the operation of the touch sensor and stop the operation if there is a dangerous situation, which has the effect of greatly increasing safety. This will also have the effect of supplying machine tools that are compatible with automation and labor saving.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の実施例を示す構成図、第2図は本発明
の実施の対象例を示す工作機械の側面図、第3図(イ)
および(υ)は本発明におけるワークと工具(タッチセ
ンサー)との関係を示す説明図、第4図は本発明の実施
例の動作を示すフローチャートである。 ■・・・テープリーダー  2・・・キーボード3・・
・タッチセンサー(工具) 5X・・・位置データ送出手段 6、・・・アプローチ点演算手段 7X・・・動作方向決定手段 8X・・・シフト量検出手段
Fig. 1 is a configuration diagram showing an embodiment of the present invention, Fig. 2 is a side view of a machine tool showing an example to which the invention is implemented, and Fig. 3 (A).
and (υ) are explanatory diagrams showing the relationship between the workpiece and the tool (touch sensor) in the present invention, and FIG. 4 is a flowchart showing the operation of the embodiment of the present invention. ■...Tape reader 2...Keyboard 3...
・Touch sensor (tool) 5X...position data sending means 6,...approach point calculation means 7X...movement direction determining means 8X...shift amount detection means

Claims (5)

【特許請求の範囲】[Claims] (1)工作機械の加工時の手段としてワーク面位置を把
握するワーク検出手段と、該ワーク検出手段のアプロー
チ量などの入力手段と、該アプローチ量などを記憶する
メモリと、該アプローチ量により実際のアプローチ点を
算出するアプローチ点演算手段と、アプローチ点へのワ
ーク検出手段の移動中にワーク面を検出しワーク面位置
を計測する位置データ送出手段と、該ワーク面位置と加
工用数値制御データの座標値からの誤差値すなわち座標
系のシフト量を算出するシフト量検出手段と、該シフト
量に基き補正したワークの座標値を算出する座標系演算
手段と前記各手段を統括的に連動させる中央処理装置と
を備えることを特徴とする工作機械の加工点自動補正装
置。
(1) A workpiece detection means for grasping the workpiece surface position as a means of machining with a machine tool, a means for inputting the approach amount of the workpiece detection means, a memory for storing the approach amount, etc., and a memory that stores the approach amount etc. approach point calculation means for calculating the approach point of the approach point, position data sending means for detecting the work surface and measuring the work surface position while the work detection means is moving to the approach point, and calculating the work surface position and processing numerical control data. A shift amount detection means that calculates an error value from the coordinate value, that is, a shift amount of the coordinate system, and a coordinate system calculation means that calculates a corrected coordinate value of the workpiece based on the shift amount, and each of the above-mentioned means are integratedly linked. An automatic processing point correction device for a machine tool, characterized by comprising a central processing unit.
(2)ワーク検出手段はタッチセンサーから成り工具を
兼ねて成ることを特徴とする前記特許請求の範囲第1項
記載の工作機械の加工点自動補正装置。
(2) The automatic machining point correction device for a machine tool according to claim 1, wherein the workpiece detection means is comprised of a touch sensor and also serves as a tool.
(3)シフト量検出手段は工具の流れ量をも加算するこ
とを特徴とする前記特許請求の範囲第1項または第2項
記載の工作機械の加工点自動補正装置。
(3) The automatic machining point correction device for a machine tool according to claim 1 or 2, wherein the shift amount detection means also adds the flow amount of the tool.
(4)アプローチ点演算手段はワークの加工原点と工具
の位置関係から自動的に動作方向を決定する動作方向決
定手段を備えて成ることを特徴とする前記特許請求の範
囲第1項ないし第3項のいずれかに記載の工作機械の加
工点自動補正装置。
(4) The approach point calculation means comprises a movement direction determining means that automatically determines the movement direction from the positional relationship between the machining origin of the workpiece and the tool. An automatic machining point correction device for a machine tool according to any one of paragraphs.
(5)位置データ送出手段はワーク検出手段のアプロー
チ点への移動動作の異常を監視する動作監視手段を備え
て成ることを特徴とする前記特許請求の範囲第1項ない
し第4項のいずれかに記載の工作機械の加工点自動補正
装置。
(5) Any one of claims 1 to 4, wherein the position data sending means comprises operation monitoring means for monitoring abnormalities in the moving operation of the workpiece detection means to the approach point. Automatic machining point correction device for machine tools described in .
JP22756284A 1984-10-29 1984-10-29 Automatic machining point correcting device for machine tool Pending JPS61109646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22756284A JPS61109646A (en) 1984-10-29 1984-10-29 Automatic machining point correcting device for machine tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22756284A JPS61109646A (en) 1984-10-29 1984-10-29 Automatic machining point correcting device for machine tool

Publications (1)

Publication Number Publication Date
JPS61109646A true JPS61109646A (en) 1986-05-28

Family

ID=16862852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22756284A Pending JPS61109646A (en) 1984-10-29 1984-10-29 Automatic machining point correcting device for machine tool

Country Status (1)

Country Link
JP (1) JPS61109646A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393545A (en) * 1986-10-07 1988-04-23 Washino Koki Kk Correction of tool position for milling machine
JPS63108409A (en) * 1986-10-24 1988-05-13 Toshiba Mach Co Ltd Operation control mechanism and its method in nc machine tool
JPH05269723A (en) * 1992-03-27 1993-10-19 Daitoua Yogyo Kk Shaping device of foundation
JPH1020911A (en) * 1996-07-02 1998-01-23 Mitsubishi Electric Corp Tool length correcting method for numerical controller, work center position detecting method, and tool wear degree estimating method and numerical controller
WO2004072748A2 (en) * 2003-01-31 2004-08-26 Alstom Technology Ltd Method and device for producing service blades
WO2022195845A1 (en) * 2021-03-19 2022-09-22 国立大学法人東海国立大学機構 Positional relationship measuring method and processing device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50153190A (en) * 1974-05-31 1975-12-09
JPS588550B2 (en) * 1977-07-27 1983-02-16 イ−・アイ・デユポン・ド・ネモア−ス・アンド・コンパニ− Ion source recovery method and apparatus

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50153190A (en) * 1974-05-31 1975-12-09
JPS588550B2 (en) * 1977-07-27 1983-02-16 イ−・アイ・デユポン・ド・ネモア−ス・アンド・コンパニ− Ion source recovery method and apparatus

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6393545A (en) * 1986-10-07 1988-04-23 Washino Koki Kk Correction of tool position for milling machine
JPS63108409A (en) * 1986-10-24 1988-05-13 Toshiba Mach Co Ltd Operation control mechanism and its method in nc machine tool
JPH05269723A (en) * 1992-03-27 1993-10-19 Daitoua Yogyo Kk Shaping device of foundation
JPH1020911A (en) * 1996-07-02 1998-01-23 Mitsubishi Electric Corp Tool length correcting method for numerical controller, work center position detecting method, and tool wear degree estimating method and numerical controller
WO2004072748A2 (en) * 2003-01-31 2004-08-26 Alstom Technology Ltd Method and device for producing service blades
WO2004072748A3 (en) * 2003-01-31 2005-07-28 Alstom Technology Ltd Method and device for producing service blades
US7513027B2 (en) 2003-01-31 2009-04-07 Alstom Technology Ltd Process and apparatus for producing service blades
WO2022195845A1 (en) * 2021-03-19 2022-09-22 国立大学法人東海国立大学機構 Positional relationship measuring method and processing device
JPWO2022195845A1 (en) * 2021-03-19 2022-09-22

Similar Documents

Publication Publication Date Title
US4442493A (en) Cutting tool retreat and return for workpiece protection upon abnormality occurrence in a preprogrammed machine tool
EP1123769A2 (en) Robot welding
US5740081A (en) Method of correcting a deviation of a tool position in a machine tool
EP0104409A2 (en) A method of establishing safe zones in a numerically controlled machine
US5339249A (en) Machine control system
US4558424A (en) Robot control apparatus
JPS61109646A (en) Automatic machining point correcting device for machine tool
EP0068643B1 (en) Lathe tool calibrator and method
JP2013255982A (en) Machine tool, and correction method of thermal deformation thereof
Cutkosky et al. The design of a flexible machining cell for small batch production
JP3648054B2 (en) Automatic determination method of spindle or attachment correction value
KR20190106241A (en) Machine tool and method for controlling the same
US10974385B2 (en) Redundant, diverse collision monitoring
JP2980933B2 (en) Impact test piece automatic processing system and impact test piece automatic processing method
JP2012110983A (en) Instruction method of stopping main shaft at fixed stopping position and workpiece measuring method
Cutkosky et al. Precision flexible machining cells within a manufacturing system
CN114378637B (en) Online measurement method, system and storage medium for CNC precision control
JPS61249222A (en) Automatic working system
JPH10328972A (en) Numerically controlled machining method and device
JPH0646848U (en) Tool breakage detector
CN112859742B (en) Numerical control machine tool control system based on visual identification
KR100198525B1 (en) Automatic tool compsensation device and method for a nc machine tool
JPH11123637A (en) Measuring method for tool size of nc system
JPH0341504A (en) Numerical controller
JP2001105281A (en) Tool blade tip position display device for turret lathe